• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 		return ip->i_d.di_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_d.di_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
115 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp &&
128 	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_lock locking order:
148  *
149  * i_rwsem -> page lock -> mmap_lock
150  * mmap_lock -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_lock locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_lock.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
xfs_lockdep_subclass_ok(int subclass)385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)443 xfs_lock_inodes(
444 	struct xfs_inode	**ips,
445 	int			inodes,
446 	uint			lock_mode)
447 {
448 	int			attempts = 0, i, j, try_lock;
449 	struct xfs_log_item	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = &ips[j]->i_itemp->ili_item;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = &ip0->i_itemp->ili_item;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 STATIC uint
_xfs_dic2xflags(uint16_t di_flags,uint64_t di_flags2,bool has_attr)602 _xfs_dic2xflags(
603 	uint16_t		di_flags,
604 	uint64_t		di_flags2,
605 	bool			has_attr)
606 {
607 	uint			flags = 0;
608 
609 	if (di_flags & XFS_DIFLAG_ANY) {
610 		if (di_flags & XFS_DIFLAG_REALTIME)
611 			flags |= FS_XFLAG_REALTIME;
612 		if (di_flags & XFS_DIFLAG_PREALLOC)
613 			flags |= FS_XFLAG_PREALLOC;
614 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
615 			flags |= FS_XFLAG_IMMUTABLE;
616 		if (di_flags & XFS_DIFLAG_APPEND)
617 			flags |= FS_XFLAG_APPEND;
618 		if (di_flags & XFS_DIFLAG_SYNC)
619 			flags |= FS_XFLAG_SYNC;
620 		if (di_flags & XFS_DIFLAG_NOATIME)
621 			flags |= FS_XFLAG_NOATIME;
622 		if (di_flags & XFS_DIFLAG_NODUMP)
623 			flags |= FS_XFLAG_NODUMP;
624 		if (di_flags & XFS_DIFLAG_RTINHERIT)
625 			flags |= FS_XFLAG_RTINHERIT;
626 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
627 			flags |= FS_XFLAG_PROJINHERIT;
628 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
629 			flags |= FS_XFLAG_NOSYMLINKS;
630 		if (di_flags & XFS_DIFLAG_EXTSIZE)
631 			flags |= FS_XFLAG_EXTSIZE;
632 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
633 			flags |= FS_XFLAG_EXTSZINHERIT;
634 		if (di_flags & XFS_DIFLAG_NODEFRAG)
635 			flags |= FS_XFLAG_NODEFRAG;
636 		if (di_flags & XFS_DIFLAG_FILESTREAM)
637 			flags |= FS_XFLAG_FILESTREAM;
638 	}
639 
640 	if (di_flags2 & XFS_DIFLAG2_ANY) {
641 		if (di_flags2 & XFS_DIFLAG2_DAX)
642 			flags |= FS_XFLAG_DAX;
643 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 			flags |= FS_XFLAG_COWEXTSIZE;
645 	}
646 
647 	if (has_attr)
648 		flags |= FS_XFLAG_HASATTR;
649 
650 	return flags;
651 }
652 
653 uint
xfs_ip2xflags(struct xfs_inode * ip)654 xfs_ip2xflags(
655 	struct xfs_inode	*ip)
656 {
657 	struct xfs_icdinode	*dic = &ip->i_d;
658 
659 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
660 }
661 
662 /*
663  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664  * is allowed, otherwise it has to be an exact match. If a CI match is found,
665  * ci_name->name will point to a the actual name (caller must free) or
666  * will be set to NULL if an exact match is found.
667  */
668 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)669 xfs_lookup(
670 	xfs_inode_t		*dp,
671 	struct xfs_name		*name,
672 	xfs_inode_t		**ipp,
673 	struct xfs_name		*ci_name)
674 {
675 	xfs_ino_t		inum;
676 	int			error;
677 
678 	trace_xfs_lookup(dp, name);
679 
680 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
681 		return -EIO;
682 
683 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
684 	if (error)
685 		goto out_unlock;
686 
687 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 	if (error)
689 		goto out_free_name;
690 
691 	return 0;
692 
693 out_free_name:
694 	if (ci_name)
695 		kmem_free(ci_name->name);
696 out_unlock:
697 	*ipp = NULL;
698 	return error;
699 }
700 
701 /* Propagate di_flags from a parent inode to a child inode. */
702 static void
xfs_inode_inherit_flags(struct xfs_inode * ip,const struct xfs_inode * pip)703 xfs_inode_inherit_flags(
704 	struct xfs_inode	*ip,
705 	const struct xfs_inode	*pip)
706 {
707 	unsigned int		di_flags = 0;
708 	umode_t			mode = VFS_I(ip)->i_mode;
709 
710 	if (S_ISDIR(mode)) {
711 		if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
712 			di_flags |= XFS_DIFLAG_RTINHERIT;
713 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
714 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
715 			ip->i_d.di_extsize = pip->i_d.di_extsize;
716 		}
717 		if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
718 			di_flags |= XFS_DIFLAG_PROJINHERIT;
719 	} else if (S_ISREG(mode)) {
720 		if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) &&
721 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
722 			di_flags |= XFS_DIFLAG_REALTIME;
723 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
724 			di_flags |= XFS_DIFLAG_EXTSIZE;
725 			ip->i_d.di_extsize = pip->i_d.di_extsize;
726 		}
727 	}
728 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
729 	    xfs_inherit_noatime)
730 		di_flags |= XFS_DIFLAG_NOATIME;
731 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
732 	    xfs_inherit_nodump)
733 		di_flags |= XFS_DIFLAG_NODUMP;
734 	if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
735 	    xfs_inherit_sync)
736 		di_flags |= XFS_DIFLAG_SYNC;
737 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
738 	    xfs_inherit_nosymlinks)
739 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
740 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
741 	    xfs_inherit_nodefrag)
742 		di_flags |= XFS_DIFLAG_NODEFRAG;
743 	if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
744 		di_flags |= XFS_DIFLAG_FILESTREAM;
745 
746 	ip->i_d.di_flags |= di_flags;
747 }
748 
749 /* Propagate di_flags2 from a parent inode to a child inode. */
750 static void
xfs_inode_inherit_flags2(struct xfs_inode * ip,const struct xfs_inode * pip)751 xfs_inode_inherit_flags2(
752 	struct xfs_inode	*ip,
753 	const struct xfs_inode	*pip)
754 {
755 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 		ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 		ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
758 	}
759 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
760 		ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
761 }
762 
763 /*
764  * Allocate an inode on disk and return a copy of its in-core version.
765  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
766  * appropriately within the inode.  The uid and gid for the inode are
767  * set according to the contents of the given cred structure.
768  *
769  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
770  * has a free inode available, call xfs_iget() to obtain the in-core
771  * version of the allocated inode.  Finally, fill in the inode and
772  * log its initial contents.  In this case, ialloc_context would be
773  * set to NULL.
774  *
775  * If xfs_dialloc() does not have an available inode, it will replenish
776  * its supply by doing an allocation. Since we can only do one
777  * allocation within a transaction without deadlocks, we must commit
778  * the current transaction before returning the inode itself.
779  * In this case, therefore, we will set ialloc_context and return.
780  * The caller should then commit the current transaction, start a new
781  * transaction, and call xfs_ialloc() again to actually get the inode.
782  *
783  * To ensure that some other process does not grab the inode that
784  * was allocated during the first call to xfs_ialloc(), this routine
785  * also returns the [locked] bp pointing to the head of the freelist
786  * as ialloc_context.  The caller should hold this buffer across
787  * the commit and pass it back into this routine on the second call.
788  *
789  * If we are allocating quota inodes, we do not have a parent inode
790  * to attach to or associate with (i.e. pip == NULL) because they
791  * are not linked into the directory structure - they are attached
792  * directly to the superblock - and so have no parent.
793  */
794 static int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)795 xfs_ialloc(
796 	xfs_trans_t	*tp,
797 	xfs_inode_t	*pip,
798 	umode_t		mode,
799 	xfs_nlink_t	nlink,
800 	dev_t		rdev,
801 	prid_t		prid,
802 	xfs_buf_t	**ialloc_context,
803 	xfs_inode_t	**ipp)
804 {
805 	struct inode	*dir = pip ? VFS_I(pip) : NULL;
806 	struct xfs_mount *mp = tp->t_mountp;
807 	xfs_ino_t	ino;
808 	xfs_inode_t	*ip;
809 	uint		flags;
810 	int		error;
811 	struct timespec64 tv;
812 	struct inode	*inode;
813 
814 	/*
815 	 * Call the space management code to pick
816 	 * the on-disk inode to be allocated.
817 	 */
818 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
819 			    ialloc_context, &ino);
820 	if (error)
821 		return error;
822 	if (*ialloc_context || ino == NULLFSINO) {
823 		*ipp = NULL;
824 		return 0;
825 	}
826 	ASSERT(*ialloc_context == NULL);
827 
828 	/*
829 	 * Protect against obviously corrupt allocation btree records. Later
830 	 * xfs_iget checks will catch re-allocation of other active in-memory
831 	 * and on-disk inodes. If we don't catch reallocating the parent inode
832 	 * here we will deadlock in xfs_iget() so we have to do these checks
833 	 * first.
834 	 */
835 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
836 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
837 		return -EFSCORRUPTED;
838 	}
839 
840 	/*
841 	 * Get the in-core inode with the lock held exclusively.
842 	 * This is because we're setting fields here we need
843 	 * to prevent others from looking at until we're done.
844 	 */
845 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
846 			 XFS_ILOCK_EXCL, &ip);
847 	if (error)
848 		return error;
849 	ASSERT(ip != NULL);
850 	inode = VFS_I(ip);
851 	set_nlink(inode, nlink);
852 	inode->i_rdev = rdev;
853 	ip->i_d.di_projid = prid;
854 
855 	if (dir && !(dir->i_mode & S_ISGID) &&
856 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
857 		inode->i_uid = current_fsuid();
858 		inode->i_gid = dir->i_gid;
859 		inode->i_mode = mode;
860 	} else {
861 		inode_init_owner(inode, dir, mode);
862 	}
863 
864 	/*
865 	 * If the group ID of the new file does not match the effective group
866 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
867 	 * (and only if the irix_sgid_inherit compatibility variable is set).
868 	 */
869 	if (irix_sgid_inherit &&
870 	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
871 		inode->i_mode &= ~S_ISGID;
872 
873 	ip->i_d.di_size = 0;
874 	ip->i_df.if_nextents = 0;
875 	ASSERT(ip->i_d.di_nblocks == 0);
876 
877 	tv = current_time(inode);
878 	inode->i_mtime = tv;
879 	inode->i_atime = tv;
880 	inode->i_ctime = tv;
881 
882 	ip->i_d.di_extsize = 0;
883 	ip->i_d.di_dmevmask = 0;
884 	ip->i_d.di_dmstate = 0;
885 	ip->i_d.di_flags = 0;
886 
887 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
888 		inode_set_iversion(inode, 1);
889 		ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
890 		ip->i_d.di_cowextsize = 0;
891 		ip->i_d.di_crtime = tv;
892 	}
893 
894 	flags = XFS_ILOG_CORE;
895 	switch (mode & S_IFMT) {
896 	case S_IFIFO:
897 	case S_IFCHR:
898 	case S_IFBLK:
899 	case S_IFSOCK:
900 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
901 		ip->i_df.if_flags = 0;
902 		flags |= XFS_ILOG_DEV;
903 		break;
904 	case S_IFREG:
905 	case S_IFDIR:
906 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY))
907 			xfs_inode_inherit_flags(ip, pip);
908 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY))
909 			xfs_inode_inherit_flags2(ip, pip);
910 		/* FALLTHROUGH */
911 	case S_IFLNK:
912 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
913 		ip->i_df.if_flags = XFS_IFEXTENTS;
914 		ip->i_df.if_bytes = 0;
915 		ip->i_df.if_u1.if_root = NULL;
916 		break;
917 	default:
918 		ASSERT(0);
919 	}
920 
921 	/*
922 	 * Log the new values stuffed into the inode.
923 	 */
924 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
925 	xfs_trans_log_inode(tp, ip, flags);
926 
927 	/* now that we have an i_mode we can setup the inode structure */
928 	xfs_setup_inode(ip);
929 
930 	*ipp = ip;
931 	return 0;
932 }
933 
934 /*
935  * Allocates a new inode from disk and return a pointer to the
936  * incore copy. This routine will internally commit the current
937  * transaction and allocate a new one if the Space Manager needed
938  * to do an allocation to replenish the inode free-list.
939  *
940  * This routine is designed to be called from xfs_create and
941  * xfs_create_dir.
942  *
943  */
944 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_inode_t ** ipp)945 xfs_dir_ialloc(
946 	xfs_trans_t	**tpp,		/* input: current transaction;
947 					   output: may be a new transaction. */
948 	xfs_inode_t	*dp,		/* directory within whose allocate
949 					   the inode. */
950 	umode_t		mode,
951 	xfs_nlink_t	nlink,
952 	dev_t		rdev,
953 	prid_t		prid,		/* project id */
954 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
955 					   locked. */
956 {
957 	xfs_trans_t	*tp;
958 	xfs_inode_t	*ip;
959 	xfs_buf_t	*ialloc_context = NULL;
960 	int		code;
961 	void		*dqinfo;
962 	uint		tflags;
963 
964 	tp = *tpp;
965 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
966 
967 	/*
968 	 * xfs_ialloc will return a pointer to an incore inode if
969 	 * the Space Manager has an available inode on the free
970 	 * list. Otherwise, it will do an allocation and replenish
971 	 * the freelist.  Since we can only do one allocation per
972 	 * transaction without deadlocks, we will need to commit the
973 	 * current transaction and start a new one.  We will then
974 	 * need to call xfs_ialloc again to get the inode.
975 	 *
976 	 * If xfs_ialloc did an allocation to replenish the freelist,
977 	 * it returns the bp containing the head of the freelist as
978 	 * ialloc_context. We will hold a lock on it across the
979 	 * transaction commit so that no other process can steal
980 	 * the inode(s) that we've just allocated.
981 	 */
982 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
983 			&ip);
984 
985 	/*
986 	 * Return an error if we were unable to allocate a new inode.
987 	 * This should only happen if we run out of space on disk or
988 	 * encounter a disk error.
989 	 */
990 	if (code) {
991 		*ipp = NULL;
992 		return code;
993 	}
994 	if (!ialloc_context && !ip) {
995 		*ipp = NULL;
996 		return -ENOSPC;
997 	}
998 
999 	/*
1000 	 * If the AGI buffer is non-NULL, then we were unable to get an
1001 	 * inode in one operation.  We need to commit the current
1002 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1003 	 * to succeed the second time.
1004 	 */
1005 	if (ialloc_context) {
1006 		/*
1007 		 * Normally, xfs_trans_commit releases all the locks.
1008 		 * We call bhold to hang on to the ialloc_context across
1009 		 * the commit.  Holding this buffer prevents any other
1010 		 * processes from doing any allocations in this
1011 		 * allocation group.
1012 		 */
1013 		xfs_trans_bhold(tp, ialloc_context);
1014 
1015 		/*
1016 		 * We want the quota changes to be associated with the next
1017 		 * transaction, NOT this one. So, detach the dqinfo from this
1018 		 * and attach it to the next transaction.
1019 		 */
1020 		dqinfo = NULL;
1021 		tflags = 0;
1022 		if (tp->t_dqinfo) {
1023 			dqinfo = (void *)tp->t_dqinfo;
1024 			tp->t_dqinfo = NULL;
1025 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1026 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1027 		}
1028 
1029 		code = xfs_trans_roll(&tp);
1030 
1031 		/*
1032 		 * Re-attach the quota info that we detached from prev trx.
1033 		 */
1034 		if (dqinfo) {
1035 			tp->t_dqinfo = dqinfo;
1036 			tp->t_flags |= tflags;
1037 		}
1038 
1039 		if (code) {
1040 			xfs_buf_relse(ialloc_context);
1041 			*tpp = tp;
1042 			*ipp = NULL;
1043 			return code;
1044 		}
1045 		xfs_trans_bjoin(tp, ialloc_context);
1046 
1047 		/*
1048 		 * Call ialloc again. Since we've locked out all
1049 		 * other allocations in this allocation group,
1050 		 * this call should always succeed.
1051 		 */
1052 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1053 				  &ialloc_context, &ip);
1054 
1055 		/*
1056 		 * If we get an error at this point, return to the caller
1057 		 * so that the current transaction can be aborted.
1058 		 */
1059 		if (code) {
1060 			*tpp = tp;
1061 			*ipp = NULL;
1062 			return code;
1063 		}
1064 		ASSERT(!ialloc_context && ip);
1065 
1066 	}
1067 
1068 	*ipp = ip;
1069 	*tpp = tp;
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  * Decrement the link count on an inode & log the change.  If this causes the
1076  * link count to go to zero, move the inode to AGI unlinked list so that it can
1077  * be freed when the last active reference goes away via xfs_inactive().
1078  */
1079 static int			/* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1080 xfs_droplink(
1081 	xfs_trans_t *tp,
1082 	xfs_inode_t *ip)
1083 {
1084 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1085 
1086 	drop_nlink(VFS_I(ip));
1087 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1088 
1089 	if (VFS_I(ip)->i_nlink)
1090 		return 0;
1091 
1092 	return xfs_iunlink(tp, ip);
1093 }
1094 
1095 /*
1096  * Increment the link count on an inode & log the change.
1097  */
1098 static void
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1099 xfs_bumplink(
1100 	xfs_trans_t *tp,
1101 	xfs_inode_t *ip)
1102 {
1103 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1104 
1105 	inc_nlink(VFS_I(ip));
1106 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1107 }
1108 
1109 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,dev_t rdev,xfs_inode_t ** ipp)1110 xfs_create(
1111 	xfs_inode_t		*dp,
1112 	struct xfs_name		*name,
1113 	umode_t			mode,
1114 	dev_t			rdev,
1115 	xfs_inode_t		**ipp)
1116 {
1117 	int			is_dir = S_ISDIR(mode);
1118 	struct xfs_mount	*mp = dp->i_mount;
1119 	struct xfs_inode	*ip = NULL;
1120 	struct xfs_trans	*tp = NULL;
1121 	int			error;
1122 	bool                    unlock_dp_on_error = false;
1123 	prid_t			prid;
1124 	struct xfs_dquot	*udqp = NULL;
1125 	struct xfs_dquot	*gdqp = NULL;
1126 	struct xfs_dquot	*pdqp = NULL;
1127 	struct xfs_trans_res	*tres;
1128 	uint			resblks;
1129 
1130 	trace_xfs_create(dp, name);
1131 
1132 	if (XFS_FORCED_SHUTDOWN(mp))
1133 		return -EIO;
1134 
1135 	prid = xfs_get_initial_prid(dp);
1136 
1137 	/*
1138 	 * Make sure that we have allocated dquot(s) on disk.
1139 	 */
1140 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1141 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1142 					&udqp, &gdqp, &pdqp);
1143 	if (error)
1144 		return error;
1145 
1146 	if (is_dir) {
1147 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1148 		tres = &M_RES(mp)->tr_mkdir;
1149 	} else {
1150 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1151 		tres = &M_RES(mp)->tr_create;
1152 	}
1153 
1154 	/*
1155 	 * Initially assume that the file does not exist and
1156 	 * reserve the resources for that case.  If that is not
1157 	 * the case we'll drop the one we have and get a more
1158 	 * appropriate transaction later.
1159 	 */
1160 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1161 	if (error == -ENOSPC) {
1162 		/* flush outstanding delalloc blocks and retry */
1163 		xfs_flush_inodes(mp);
1164 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1165 	}
1166 	if (error)
1167 		goto out_release_inode;
1168 
1169 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1170 	unlock_dp_on_error = true;
1171 
1172 	/*
1173 	 * Reserve disk quota and the inode.
1174 	 */
1175 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1176 						pdqp, resblks, 1, 0);
1177 	if (error)
1178 		goto out_trans_cancel;
1179 
1180 	/*
1181 	 * A newly created regular or special file just has one directory
1182 	 * entry pointing to them, but a directory also the "." entry
1183 	 * pointing to itself.
1184 	 */
1185 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1186 	if (error)
1187 		goto out_trans_cancel;
1188 
1189 	/*
1190 	 * Now we join the directory inode to the transaction.  We do not do it
1191 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1192 	 * (and release all the locks).  An error from here on will result in
1193 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1194 	 * error path.
1195 	 */
1196 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1197 	unlock_dp_on_error = false;
1198 
1199 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1200 					resblks - XFS_IALLOC_SPACE_RES(mp));
1201 	if (error) {
1202 		ASSERT(error != -ENOSPC);
1203 		goto out_trans_cancel;
1204 	}
1205 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1206 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1207 
1208 	if (is_dir) {
1209 		error = xfs_dir_init(tp, ip, dp);
1210 		if (error)
1211 			goto out_trans_cancel;
1212 
1213 		xfs_bumplink(tp, dp);
1214 	}
1215 
1216 	/*
1217 	 * If this is a synchronous mount, make sure that the
1218 	 * create transaction goes to disk before returning to
1219 	 * the user.
1220 	 */
1221 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1222 		xfs_trans_set_sync(tp);
1223 
1224 	/*
1225 	 * Attach the dquot(s) to the inodes and modify them incore.
1226 	 * These ids of the inode couldn't have changed since the new
1227 	 * inode has been locked ever since it was created.
1228 	 */
1229 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1230 
1231 	error = xfs_trans_commit(tp);
1232 	if (error)
1233 		goto out_release_inode;
1234 
1235 	xfs_qm_dqrele(udqp);
1236 	xfs_qm_dqrele(gdqp);
1237 	xfs_qm_dqrele(pdqp);
1238 
1239 	*ipp = ip;
1240 	return 0;
1241 
1242  out_trans_cancel:
1243 	xfs_trans_cancel(tp);
1244  out_release_inode:
1245 	/*
1246 	 * Wait until after the current transaction is aborted to finish the
1247 	 * setup of the inode and release the inode.  This prevents recursive
1248 	 * transactions and deadlocks from xfs_inactive.
1249 	 */
1250 	if (ip) {
1251 		xfs_finish_inode_setup(ip);
1252 		xfs_irele(ip);
1253 	}
1254 
1255 	xfs_qm_dqrele(udqp);
1256 	xfs_qm_dqrele(gdqp);
1257 	xfs_qm_dqrele(pdqp);
1258 
1259 	if (unlock_dp_on_error)
1260 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1261 	return error;
1262 }
1263 
1264 int
xfs_create_tmpfile(struct xfs_inode * dp,umode_t mode,struct xfs_inode ** ipp)1265 xfs_create_tmpfile(
1266 	struct xfs_inode	*dp,
1267 	umode_t			mode,
1268 	struct xfs_inode	**ipp)
1269 {
1270 	struct xfs_mount	*mp = dp->i_mount;
1271 	struct xfs_inode	*ip = NULL;
1272 	struct xfs_trans	*tp = NULL;
1273 	int			error;
1274 	prid_t                  prid;
1275 	struct xfs_dquot	*udqp = NULL;
1276 	struct xfs_dquot	*gdqp = NULL;
1277 	struct xfs_dquot	*pdqp = NULL;
1278 	struct xfs_trans_res	*tres;
1279 	uint			resblks;
1280 
1281 	if (XFS_FORCED_SHUTDOWN(mp))
1282 		return -EIO;
1283 
1284 	prid = xfs_get_initial_prid(dp);
1285 
1286 	/*
1287 	 * Make sure that we have allocated dquot(s) on disk.
1288 	 */
1289 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1290 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1291 				&udqp, &gdqp, &pdqp);
1292 	if (error)
1293 		return error;
1294 
1295 	resblks = XFS_IALLOC_SPACE_RES(mp);
1296 	tres = &M_RES(mp)->tr_create_tmpfile;
1297 
1298 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1299 	if (error)
1300 		goto out_release_inode;
1301 
1302 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1303 						pdqp, resblks, 1, 0);
1304 	if (error)
1305 		goto out_trans_cancel;
1306 
1307 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1308 	if (error)
1309 		goto out_trans_cancel;
1310 
1311 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1312 		xfs_trans_set_sync(tp);
1313 
1314 	/*
1315 	 * Attach the dquot(s) to the inodes and modify them incore.
1316 	 * These ids of the inode couldn't have changed since the new
1317 	 * inode has been locked ever since it was created.
1318 	 */
1319 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1320 
1321 	error = xfs_iunlink(tp, ip);
1322 	if (error)
1323 		goto out_trans_cancel;
1324 
1325 	error = xfs_trans_commit(tp);
1326 	if (error)
1327 		goto out_release_inode;
1328 
1329 	xfs_qm_dqrele(udqp);
1330 	xfs_qm_dqrele(gdqp);
1331 	xfs_qm_dqrele(pdqp);
1332 
1333 	*ipp = ip;
1334 	return 0;
1335 
1336  out_trans_cancel:
1337 	xfs_trans_cancel(tp);
1338  out_release_inode:
1339 	/*
1340 	 * Wait until after the current transaction is aborted to finish the
1341 	 * setup of the inode and release the inode.  This prevents recursive
1342 	 * transactions and deadlocks from xfs_inactive.
1343 	 */
1344 	if (ip) {
1345 		xfs_finish_inode_setup(ip);
1346 		xfs_irele(ip);
1347 	}
1348 
1349 	xfs_qm_dqrele(udqp);
1350 	xfs_qm_dqrele(gdqp);
1351 	xfs_qm_dqrele(pdqp);
1352 
1353 	return error;
1354 }
1355 
1356 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1357 xfs_link(
1358 	xfs_inode_t		*tdp,
1359 	xfs_inode_t		*sip,
1360 	struct xfs_name		*target_name)
1361 {
1362 	xfs_mount_t		*mp = tdp->i_mount;
1363 	xfs_trans_t		*tp;
1364 	int			error;
1365 	int			resblks;
1366 
1367 	trace_xfs_link(tdp, target_name);
1368 
1369 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1370 
1371 	if (XFS_FORCED_SHUTDOWN(mp))
1372 		return -EIO;
1373 
1374 	error = xfs_qm_dqattach(sip);
1375 	if (error)
1376 		goto std_return;
1377 
1378 	error = xfs_qm_dqattach(tdp);
1379 	if (error)
1380 		goto std_return;
1381 
1382 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1383 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1384 	if (error == -ENOSPC) {
1385 		resblks = 0;
1386 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1387 	}
1388 	if (error)
1389 		goto std_return;
1390 
1391 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1392 
1393 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1394 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1395 
1396 	/*
1397 	 * If we are using project inheritance, we only allow hard link
1398 	 * creation in our tree when the project IDs are the same; else
1399 	 * the tree quota mechanism could be circumvented.
1400 	 */
1401 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1402 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1403 		error = -EXDEV;
1404 		goto error_return;
1405 	}
1406 
1407 	if (!resblks) {
1408 		error = xfs_dir_canenter(tp, tdp, target_name);
1409 		if (error)
1410 			goto error_return;
1411 	}
1412 
1413 	/*
1414 	 * Handle initial link state of O_TMPFILE inode
1415 	 */
1416 	if (VFS_I(sip)->i_nlink == 0) {
1417 		error = xfs_iunlink_remove(tp, sip);
1418 		if (error)
1419 			goto error_return;
1420 	}
1421 
1422 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1423 				   resblks);
1424 	if (error)
1425 		goto error_return;
1426 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1427 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1428 
1429 	xfs_bumplink(tp, sip);
1430 
1431 	/*
1432 	 * If this is a synchronous mount, make sure that the
1433 	 * link transaction goes to disk before returning to
1434 	 * the user.
1435 	 */
1436 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1437 		xfs_trans_set_sync(tp);
1438 
1439 	return xfs_trans_commit(tp);
1440 
1441  error_return:
1442 	xfs_trans_cancel(tp);
1443  std_return:
1444 	return error;
1445 }
1446 
1447 /* Clear the reflink flag and the cowblocks tag if possible. */
1448 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)1449 xfs_itruncate_clear_reflink_flags(
1450 	struct xfs_inode	*ip)
1451 {
1452 	struct xfs_ifork	*dfork;
1453 	struct xfs_ifork	*cfork;
1454 
1455 	if (!xfs_is_reflink_inode(ip))
1456 		return;
1457 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1458 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1459 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1460 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1461 	if (cfork->if_bytes == 0)
1462 		xfs_inode_clear_cowblocks_tag(ip);
1463 }
1464 
1465 /*
1466  * Free up the underlying blocks past new_size.  The new size must be smaller
1467  * than the current size.  This routine can be used both for the attribute and
1468  * data fork, and does not modify the inode size, which is left to the caller.
1469  *
1470  * The transaction passed to this routine must have made a permanent log
1471  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1472  * given transaction and start new ones, so make sure everything involved in
1473  * the transaction is tidy before calling here.  Some transaction will be
1474  * returned to the caller to be committed.  The incoming transaction must
1475  * already include the inode, and both inode locks must be held exclusively.
1476  * The inode must also be "held" within the transaction.  On return the inode
1477  * will be "held" within the returned transaction.  This routine does NOT
1478  * require any disk space to be reserved for it within the transaction.
1479  *
1480  * If we get an error, we must return with the inode locked and linked into the
1481  * current transaction. This keeps things simple for the higher level code,
1482  * because it always knows that the inode is locked and held in the transaction
1483  * that returns to it whether errors occur or not.  We don't mark the inode
1484  * dirty on error so that transactions can be easily aborted if possible.
1485  */
1486 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1487 xfs_itruncate_extents_flags(
1488 	struct xfs_trans	**tpp,
1489 	struct xfs_inode	*ip,
1490 	int			whichfork,
1491 	xfs_fsize_t		new_size,
1492 	int			flags)
1493 {
1494 	struct xfs_mount	*mp = ip->i_mount;
1495 	struct xfs_trans	*tp = *tpp;
1496 	xfs_fileoff_t		first_unmap_block;
1497 	xfs_filblks_t		unmap_len;
1498 	int			error = 0;
1499 
1500 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1501 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1502 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1503 	ASSERT(new_size <= XFS_ISIZE(ip));
1504 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1505 	ASSERT(ip->i_itemp != NULL);
1506 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1507 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1508 
1509 	trace_xfs_itruncate_extents_start(ip, new_size);
1510 
1511 	flags |= xfs_bmapi_aflag(whichfork);
1512 
1513 	/*
1514 	 * Since it is possible for space to become allocated beyond
1515 	 * the end of the file (in a crash where the space is allocated
1516 	 * but the inode size is not yet updated), simply remove any
1517 	 * blocks which show up between the new EOF and the maximum
1518 	 * possible file size.
1519 	 *
1520 	 * We have to free all the blocks to the bmbt maximum offset, even if
1521 	 * the page cache can't scale that far.
1522 	 */
1523 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1524 	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1525 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1526 		return 0;
1527 	}
1528 
1529 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1530 	while (unmap_len > 0) {
1531 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1532 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1533 				flags, XFS_ITRUNC_MAX_EXTENTS);
1534 		if (error)
1535 			goto out;
1536 
1537 		/* free the just unmapped extents */
1538 		error = xfs_defer_finish(&tp);
1539 		if (error)
1540 			goto out;
1541 	}
1542 
1543 	if (whichfork == XFS_DATA_FORK) {
1544 		/* Remove all pending CoW reservations. */
1545 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1546 				first_unmap_block, XFS_MAX_FILEOFF, true);
1547 		if (error)
1548 			goto out;
1549 
1550 		xfs_itruncate_clear_reflink_flags(ip);
1551 	}
1552 
1553 	/*
1554 	 * Always re-log the inode so that our permanent transaction can keep
1555 	 * on rolling it forward in the log.
1556 	 */
1557 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1558 
1559 	trace_xfs_itruncate_extents_end(ip, new_size);
1560 
1561 out:
1562 	*tpp = tp;
1563 	return error;
1564 }
1565 
1566 int
xfs_release(xfs_inode_t * ip)1567 xfs_release(
1568 	xfs_inode_t	*ip)
1569 {
1570 	xfs_mount_t	*mp = ip->i_mount;
1571 	int		error;
1572 
1573 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1574 		return 0;
1575 
1576 	/* If this is a read-only mount, don't do this (would generate I/O) */
1577 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1578 		return 0;
1579 
1580 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1581 		int truncated;
1582 
1583 		/*
1584 		 * If we previously truncated this file and removed old data
1585 		 * in the process, we want to initiate "early" writeout on
1586 		 * the last close.  This is an attempt to combat the notorious
1587 		 * NULL files problem which is particularly noticeable from a
1588 		 * truncate down, buffered (re-)write (delalloc), followed by
1589 		 * a crash.  What we are effectively doing here is
1590 		 * significantly reducing the time window where we'd otherwise
1591 		 * be exposed to that problem.
1592 		 */
1593 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1594 		if (truncated) {
1595 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1596 			if (ip->i_delayed_blks > 0) {
1597 				error = filemap_flush(VFS_I(ip)->i_mapping);
1598 				if (error)
1599 					return error;
1600 			}
1601 		}
1602 	}
1603 
1604 	if (VFS_I(ip)->i_nlink == 0)
1605 		return 0;
1606 
1607 	if (xfs_can_free_eofblocks(ip, false)) {
1608 
1609 		/*
1610 		 * Check if the inode is being opened, written and closed
1611 		 * frequently and we have delayed allocation blocks outstanding
1612 		 * (e.g. streaming writes from the NFS server), truncating the
1613 		 * blocks past EOF will cause fragmentation to occur.
1614 		 *
1615 		 * In this case don't do the truncation, but we have to be
1616 		 * careful how we detect this case. Blocks beyond EOF show up as
1617 		 * i_delayed_blks even when the inode is clean, so we need to
1618 		 * truncate them away first before checking for a dirty release.
1619 		 * Hence on the first dirty close we will still remove the
1620 		 * speculative allocation, but after that we will leave it in
1621 		 * place.
1622 		 */
1623 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1624 			return 0;
1625 		/*
1626 		 * If we can't get the iolock just skip truncating the blocks
1627 		 * past EOF because we could deadlock with the mmap_lock
1628 		 * otherwise. We'll get another chance to drop them once the
1629 		 * last reference to the inode is dropped, so we'll never leak
1630 		 * blocks permanently.
1631 		 */
1632 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1633 			error = xfs_free_eofblocks(ip);
1634 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1635 			if (error)
1636 				return error;
1637 		}
1638 
1639 		/* delalloc blocks after truncation means it really is dirty */
1640 		if (ip->i_delayed_blks)
1641 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1642 	}
1643 	return 0;
1644 }
1645 
1646 /*
1647  * xfs_inactive_truncate
1648  *
1649  * Called to perform a truncate when an inode becomes unlinked.
1650  */
1651 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1652 xfs_inactive_truncate(
1653 	struct xfs_inode *ip)
1654 {
1655 	struct xfs_mount	*mp = ip->i_mount;
1656 	struct xfs_trans	*tp;
1657 	int			error;
1658 
1659 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1660 	if (error) {
1661 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1662 		return error;
1663 	}
1664 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1665 	xfs_trans_ijoin(tp, ip, 0);
1666 
1667 	/*
1668 	 * Log the inode size first to prevent stale data exposure in the event
1669 	 * of a system crash before the truncate completes. See the related
1670 	 * comment in xfs_vn_setattr_size() for details.
1671 	 */
1672 	ip->i_d.di_size = 0;
1673 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1674 
1675 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1676 	if (error)
1677 		goto error_trans_cancel;
1678 
1679 	ASSERT(ip->i_df.if_nextents == 0);
1680 
1681 	error = xfs_trans_commit(tp);
1682 	if (error)
1683 		goto error_unlock;
1684 
1685 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1686 	return 0;
1687 
1688 error_trans_cancel:
1689 	xfs_trans_cancel(tp);
1690 error_unlock:
1691 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1692 	return error;
1693 }
1694 
1695 /*
1696  * xfs_inactive_ifree()
1697  *
1698  * Perform the inode free when an inode is unlinked.
1699  */
1700 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1701 xfs_inactive_ifree(
1702 	struct xfs_inode *ip)
1703 {
1704 	struct xfs_mount	*mp = ip->i_mount;
1705 	struct xfs_trans	*tp;
1706 	int			error;
1707 
1708 	/*
1709 	 * We try to use a per-AG reservation for any block needed by the finobt
1710 	 * tree, but as the finobt feature predates the per-AG reservation
1711 	 * support a degraded file system might not have enough space for the
1712 	 * reservation at mount time.  In that case try to dip into the reserved
1713 	 * pool and pray.
1714 	 *
1715 	 * Send a warning if the reservation does happen to fail, as the inode
1716 	 * now remains allocated and sits on the unlinked list until the fs is
1717 	 * repaired.
1718 	 */
1719 	if (unlikely(mp->m_finobt_nores)) {
1720 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1721 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1722 				&tp);
1723 	} else {
1724 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1725 	}
1726 	if (error) {
1727 		if (error == -ENOSPC) {
1728 			xfs_warn_ratelimited(mp,
1729 			"Failed to remove inode(s) from unlinked list. "
1730 			"Please free space, unmount and run xfs_repair.");
1731 		} else {
1732 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1733 		}
1734 		return error;
1735 	}
1736 
1737 	/*
1738 	 * We do not hold the inode locked across the entire rolling transaction
1739 	 * here. We only need to hold it for the first transaction that
1740 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1741 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1742 	 * here breaks the relationship between cluster buffer invalidation and
1743 	 * stale inode invalidation on cluster buffer item journal commit
1744 	 * completion, and can result in leaving dirty stale inodes hanging
1745 	 * around in memory.
1746 	 *
1747 	 * We have no need for serialising this inode operation against other
1748 	 * operations - we freed the inode and hence reallocation is required
1749 	 * and that will serialise on reallocating the space the deferops need
1750 	 * to free. Hence we can unlock the inode on the first commit of
1751 	 * the transaction rather than roll it right through the deferops. This
1752 	 * avoids relogging the XFS_ISTALE inode.
1753 	 *
1754 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1755 	 * by asserting that the inode is still locked when it returns.
1756 	 */
1757 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1758 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1759 
1760 	error = xfs_ifree(tp, ip);
1761 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1762 	if (error) {
1763 		/*
1764 		 * If we fail to free the inode, shut down.  The cancel
1765 		 * might do that, we need to make sure.  Otherwise the
1766 		 * inode might be lost for a long time or forever.
1767 		 */
1768 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1769 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1770 				__func__, error);
1771 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1772 		}
1773 		xfs_trans_cancel(tp);
1774 		return error;
1775 	}
1776 
1777 	/*
1778 	 * Credit the quota account(s). The inode is gone.
1779 	 */
1780 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1781 
1782 	/*
1783 	 * Just ignore errors at this point.  There is nothing we can do except
1784 	 * to try to keep going. Make sure it's not a silent error.
1785 	 */
1786 	error = xfs_trans_commit(tp);
1787 	if (error)
1788 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1789 			__func__, error);
1790 
1791 	return 0;
1792 }
1793 
1794 /*
1795  * xfs_inactive
1796  *
1797  * This is called when the vnode reference count for the vnode
1798  * goes to zero.  If the file has been unlinked, then it must
1799  * now be truncated.  Also, we clear all of the read-ahead state
1800  * kept for the inode here since the file is now closed.
1801  */
1802 void
xfs_inactive(xfs_inode_t * ip)1803 xfs_inactive(
1804 	xfs_inode_t	*ip)
1805 {
1806 	struct xfs_mount	*mp;
1807 	int			error;
1808 	int			truncate = 0;
1809 
1810 	/*
1811 	 * If the inode is already free, then there can be nothing
1812 	 * to clean up here.
1813 	 */
1814 	if (VFS_I(ip)->i_mode == 0) {
1815 		ASSERT(ip->i_df.if_broot_bytes == 0);
1816 		return;
1817 	}
1818 
1819 	mp = ip->i_mount;
1820 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1821 
1822 	/* If this is a read-only mount, don't do this (would generate I/O) */
1823 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1824 		return;
1825 
1826 	/* Try to clean out the cow blocks if there are any. */
1827 	if (xfs_inode_has_cow_data(ip))
1828 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1829 
1830 	if (VFS_I(ip)->i_nlink != 0) {
1831 		/*
1832 		 * force is true because we are evicting an inode from the
1833 		 * cache. Post-eof blocks must be freed, lest we end up with
1834 		 * broken free space accounting.
1835 		 *
1836 		 * Note: don't bother with iolock here since lockdep complains
1837 		 * about acquiring it in reclaim context. We have the only
1838 		 * reference to the inode at this point anyways.
1839 		 */
1840 		if (xfs_can_free_eofblocks(ip, true))
1841 			xfs_free_eofblocks(ip);
1842 
1843 		return;
1844 	}
1845 
1846 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1847 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1848 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1849 		truncate = 1;
1850 
1851 	error = xfs_qm_dqattach(ip);
1852 	if (error)
1853 		return;
1854 
1855 	if (S_ISLNK(VFS_I(ip)->i_mode))
1856 		error = xfs_inactive_symlink(ip);
1857 	else if (truncate)
1858 		error = xfs_inactive_truncate(ip);
1859 	if (error)
1860 		return;
1861 
1862 	/*
1863 	 * If there are attributes associated with the file then blow them away
1864 	 * now.  The code calls a routine that recursively deconstructs the
1865 	 * attribute fork. If also blows away the in-core attribute fork.
1866 	 */
1867 	if (XFS_IFORK_Q(ip)) {
1868 		error = xfs_attr_inactive(ip);
1869 		if (error)
1870 			return;
1871 	}
1872 
1873 	ASSERT(!ip->i_afp);
1874 	ASSERT(ip->i_d.di_forkoff == 0);
1875 
1876 	/*
1877 	 * Free the inode.
1878 	 */
1879 	error = xfs_inactive_ifree(ip);
1880 	if (error)
1881 		return;
1882 
1883 	/*
1884 	 * Release the dquots held by inode, if any.
1885 	 */
1886 	xfs_qm_dqdetach(ip);
1887 }
1888 
1889 /*
1890  * In-Core Unlinked List Lookups
1891  * =============================
1892  *
1893  * Every inode is supposed to be reachable from some other piece of metadata
1894  * with the exception of the root directory.  Inodes with a connection to a
1895  * file descriptor but not linked from anywhere in the on-disk directory tree
1896  * are collectively known as unlinked inodes, though the filesystem itself
1897  * maintains links to these inodes so that on-disk metadata are consistent.
1898  *
1899  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1900  * header contains a number of buckets that point to an inode, and each inode
1901  * record has a pointer to the next inode in the hash chain.  This
1902  * singly-linked list causes scaling problems in the iunlink remove function
1903  * because we must walk that list to find the inode that points to the inode
1904  * being removed from the unlinked hash bucket list.
1905  *
1906  * What if we modelled the unlinked list as a collection of records capturing
1907  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1908  * have a fast way to look up unlinked list predecessors, which avoids the
1909  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1910  * rhashtable.
1911  *
1912  * Because this is a backref cache, we ignore operational failures since the
1913  * iunlink code can fall back to the slow bucket walk.  The only errors that
1914  * should bubble out are for obviously incorrect situations.
1915  *
1916  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1917  * access or have otherwise provided for concurrency control.
1918  */
1919 
1920 /* Capture a "X.next_unlinked = Y" relationship. */
1921 struct xfs_iunlink {
1922 	struct rhash_head	iu_rhash_head;
1923 	xfs_agino_t		iu_agino;		/* X */
1924 	xfs_agino_t		iu_next_unlinked;	/* Y */
1925 };
1926 
1927 /* Unlinked list predecessor lookup hashtable construction */
1928 static int
xfs_iunlink_obj_cmpfn(struct rhashtable_compare_arg * arg,const void * obj)1929 xfs_iunlink_obj_cmpfn(
1930 	struct rhashtable_compare_arg	*arg,
1931 	const void			*obj)
1932 {
1933 	const xfs_agino_t		*key = arg->key;
1934 	const struct xfs_iunlink	*iu = obj;
1935 
1936 	if (iu->iu_next_unlinked != *key)
1937 		return 1;
1938 	return 0;
1939 }
1940 
1941 static const struct rhashtable_params xfs_iunlink_hash_params = {
1942 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1943 	.key_len		= sizeof(xfs_agino_t),
1944 	.key_offset		= offsetof(struct xfs_iunlink,
1945 					   iu_next_unlinked),
1946 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1947 	.automatic_shrinking	= true,
1948 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1949 };
1950 
1951 /*
1952  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1953  * relation is found.
1954  */
1955 static xfs_agino_t
xfs_iunlink_lookup_backref(struct xfs_perag * pag,xfs_agino_t agino)1956 xfs_iunlink_lookup_backref(
1957 	struct xfs_perag	*pag,
1958 	xfs_agino_t		agino)
1959 {
1960 	struct xfs_iunlink	*iu;
1961 
1962 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1963 			xfs_iunlink_hash_params);
1964 	return iu ? iu->iu_agino : NULLAGINO;
1965 }
1966 
1967 /*
1968  * Take ownership of an iunlink cache entry and insert it into the hash table.
1969  * If successful, the entry will be owned by the cache; if not, it is freed.
1970  * Either way, the caller does not own @iu after this call.
1971  */
1972 static int
xfs_iunlink_insert_backref(struct xfs_perag * pag,struct xfs_iunlink * iu)1973 xfs_iunlink_insert_backref(
1974 	struct xfs_perag	*pag,
1975 	struct xfs_iunlink	*iu)
1976 {
1977 	int			error;
1978 
1979 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1980 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1981 	/*
1982 	 * Fail loudly if there already was an entry because that's a sign of
1983 	 * corruption of in-memory data.  Also fail loudly if we see an error
1984 	 * code we didn't anticipate from the rhashtable code.  Currently we
1985 	 * only anticipate ENOMEM.
1986 	 */
1987 	if (error) {
1988 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1989 		kmem_free(iu);
1990 	}
1991 	/*
1992 	 * Absorb any runtime errors that aren't a result of corruption because
1993 	 * this is a cache and we can always fall back to bucket list scanning.
1994 	 */
1995 	if (error != 0 && error != -EEXIST)
1996 		error = 0;
1997 	return error;
1998 }
1999 
2000 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2001 static int
xfs_iunlink_add_backref(struct xfs_perag * pag,xfs_agino_t prev_agino,xfs_agino_t this_agino)2002 xfs_iunlink_add_backref(
2003 	struct xfs_perag	*pag,
2004 	xfs_agino_t		prev_agino,
2005 	xfs_agino_t		this_agino)
2006 {
2007 	struct xfs_iunlink	*iu;
2008 
2009 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2010 		return 0;
2011 
2012 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2013 	iu->iu_agino = prev_agino;
2014 	iu->iu_next_unlinked = this_agino;
2015 
2016 	return xfs_iunlink_insert_backref(pag, iu);
2017 }
2018 
2019 /*
2020  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2021  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2022  * wasn't any such entry then we don't bother.
2023  */
2024 static int
xfs_iunlink_change_backref(struct xfs_perag * pag,xfs_agino_t agino,xfs_agino_t next_unlinked)2025 xfs_iunlink_change_backref(
2026 	struct xfs_perag	*pag,
2027 	xfs_agino_t		agino,
2028 	xfs_agino_t		next_unlinked)
2029 {
2030 	struct xfs_iunlink	*iu;
2031 	int			error;
2032 
2033 	/* Look up the old entry; if there wasn't one then exit. */
2034 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2035 			xfs_iunlink_hash_params);
2036 	if (!iu)
2037 		return 0;
2038 
2039 	/*
2040 	 * Remove the entry.  This shouldn't ever return an error, but if we
2041 	 * couldn't remove the old entry we don't want to add it again to the
2042 	 * hash table, and if the entry disappeared on us then someone's
2043 	 * violated the locking rules and we need to fail loudly.  Either way
2044 	 * we cannot remove the inode because internal state is or would have
2045 	 * been corrupt.
2046 	 */
2047 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2048 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2049 	if (error)
2050 		return error;
2051 
2052 	/* If there is no new next entry just free our item and return. */
2053 	if (next_unlinked == NULLAGINO) {
2054 		kmem_free(iu);
2055 		return 0;
2056 	}
2057 
2058 	/* Update the entry and re-add it to the hash table. */
2059 	iu->iu_next_unlinked = next_unlinked;
2060 	return xfs_iunlink_insert_backref(pag, iu);
2061 }
2062 
2063 /* Set up the in-core predecessor structures. */
2064 int
xfs_iunlink_init(struct xfs_perag * pag)2065 xfs_iunlink_init(
2066 	struct xfs_perag	*pag)
2067 {
2068 	return rhashtable_init(&pag->pagi_unlinked_hash,
2069 			&xfs_iunlink_hash_params);
2070 }
2071 
2072 /* Free the in-core predecessor structures. */
2073 static void
xfs_iunlink_free_item(void * ptr,void * arg)2074 xfs_iunlink_free_item(
2075 	void			*ptr,
2076 	void			*arg)
2077 {
2078 	struct xfs_iunlink	*iu = ptr;
2079 	bool			*freed_anything = arg;
2080 
2081 	*freed_anything = true;
2082 	kmem_free(iu);
2083 }
2084 
2085 void
xfs_iunlink_destroy(struct xfs_perag * pag)2086 xfs_iunlink_destroy(
2087 	struct xfs_perag	*pag)
2088 {
2089 	bool			freed_anything = false;
2090 
2091 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2092 			xfs_iunlink_free_item, &freed_anything);
2093 
2094 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2095 }
2096 
2097 /*
2098  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2099  * is responsible for validating the old value.
2100  */
2101 STATIC int
xfs_iunlink_update_bucket(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_buf * agibp,unsigned int bucket_index,xfs_agino_t new_agino)2102 xfs_iunlink_update_bucket(
2103 	struct xfs_trans	*tp,
2104 	xfs_agnumber_t		agno,
2105 	struct xfs_buf		*agibp,
2106 	unsigned int		bucket_index,
2107 	xfs_agino_t		new_agino)
2108 {
2109 	struct xfs_agi		*agi = agibp->b_addr;
2110 	xfs_agino_t		old_value;
2111 	int			offset;
2112 
2113 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2114 
2115 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2116 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2117 			old_value, new_agino);
2118 
2119 	/*
2120 	 * We should never find the head of the list already set to the value
2121 	 * passed in because either we're adding or removing ourselves from the
2122 	 * head of the list.
2123 	 */
2124 	if (old_value == new_agino) {
2125 		xfs_buf_mark_corrupt(agibp);
2126 		return -EFSCORRUPTED;
2127 	}
2128 
2129 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2130 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2131 			(sizeof(xfs_agino_t) * bucket_index);
2132 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2133 	return 0;
2134 }
2135 
2136 /* Set an on-disk inode's next_unlinked pointer. */
2137 STATIC void
xfs_iunlink_update_dinode(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_buf * ibp,struct xfs_dinode * dip,struct xfs_imap * imap,xfs_agino_t next_agino)2138 xfs_iunlink_update_dinode(
2139 	struct xfs_trans	*tp,
2140 	xfs_agnumber_t		agno,
2141 	xfs_agino_t		agino,
2142 	struct xfs_buf		*ibp,
2143 	struct xfs_dinode	*dip,
2144 	struct xfs_imap		*imap,
2145 	xfs_agino_t		next_agino)
2146 {
2147 	struct xfs_mount	*mp = tp->t_mountp;
2148 	int			offset;
2149 
2150 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2151 
2152 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2153 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2154 
2155 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2156 	offset = imap->im_boffset +
2157 			offsetof(struct xfs_dinode, di_next_unlinked);
2158 
2159 	/* need to recalc the inode CRC if appropriate */
2160 	xfs_dinode_calc_crc(mp, dip);
2161 	xfs_trans_inode_buf(tp, ibp);
2162 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2163 }
2164 
2165 /* Set an in-core inode's unlinked pointer and return the old value. */
2166 STATIC int
xfs_iunlink_update_inode(struct xfs_trans * tp,struct xfs_inode * ip,xfs_agnumber_t agno,xfs_agino_t next_agino,xfs_agino_t * old_next_agino)2167 xfs_iunlink_update_inode(
2168 	struct xfs_trans	*tp,
2169 	struct xfs_inode	*ip,
2170 	xfs_agnumber_t		agno,
2171 	xfs_agino_t		next_agino,
2172 	xfs_agino_t		*old_next_agino)
2173 {
2174 	struct xfs_mount	*mp = tp->t_mountp;
2175 	struct xfs_dinode	*dip;
2176 	struct xfs_buf		*ibp;
2177 	xfs_agino_t		old_value;
2178 	int			error;
2179 
2180 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2181 
2182 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2183 	if (error)
2184 		return error;
2185 
2186 	/* Make sure the old pointer isn't garbage. */
2187 	old_value = be32_to_cpu(dip->di_next_unlinked);
2188 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2189 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2190 				sizeof(*dip), __this_address);
2191 		error = -EFSCORRUPTED;
2192 		goto out;
2193 	}
2194 
2195 	/*
2196 	 * Since we're updating a linked list, we should never find that the
2197 	 * current pointer is the same as the new value, unless we're
2198 	 * terminating the list.
2199 	 */
2200 	*old_next_agino = old_value;
2201 	if (old_value == next_agino) {
2202 		if (next_agino != NULLAGINO) {
2203 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2204 					dip, sizeof(*dip), __this_address);
2205 			error = -EFSCORRUPTED;
2206 		}
2207 		goto out;
2208 	}
2209 
2210 	/* Ok, update the new pointer. */
2211 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2212 			ibp, dip, &ip->i_imap, next_agino);
2213 	return 0;
2214 out:
2215 	xfs_trans_brelse(tp, ibp);
2216 	return error;
2217 }
2218 
2219 /*
2220  * This is called when the inode's link count has gone to 0 or we are creating
2221  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2222  *
2223  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2224  * list when the inode is freed.
2225  */
2226 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)2227 xfs_iunlink(
2228 	struct xfs_trans	*tp,
2229 	struct xfs_inode	*ip)
2230 {
2231 	struct xfs_mount	*mp = tp->t_mountp;
2232 	struct xfs_agi		*agi;
2233 	struct xfs_buf		*agibp;
2234 	xfs_agino_t		next_agino;
2235 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2236 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2237 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2238 	int			error;
2239 
2240 	ASSERT(VFS_I(ip)->i_nlink == 0);
2241 	ASSERT(VFS_I(ip)->i_mode != 0);
2242 	trace_xfs_iunlink(ip);
2243 
2244 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2245 	error = xfs_read_agi(mp, tp, agno, &agibp);
2246 	if (error)
2247 		return error;
2248 	agi = agibp->b_addr;
2249 
2250 	/*
2251 	 * Get the index into the agi hash table for the list this inode will
2252 	 * go on.  Make sure the pointer isn't garbage and that this inode
2253 	 * isn't already on the list.
2254 	 */
2255 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2256 	if (next_agino == agino ||
2257 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2258 		xfs_buf_mark_corrupt(agibp);
2259 		return -EFSCORRUPTED;
2260 	}
2261 
2262 	if (next_agino != NULLAGINO) {
2263 		xfs_agino_t		old_agino;
2264 
2265 		/*
2266 		 * There is already another inode in the bucket, so point this
2267 		 * inode to the current head of the list.
2268 		 */
2269 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2270 				&old_agino);
2271 		if (error)
2272 			return error;
2273 		ASSERT(old_agino == NULLAGINO);
2274 
2275 		/*
2276 		 * agino has been unlinked, add a backref from the next inode
2277 		 * back to agino.
2278 		 */
2279 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2280 		if (error)
2281 			return error;
2282 	}
2283 
2284 	/* Point the head of the list to point to this inode. */
2285 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2286 }
2287 
2288 /* Return the imap, dinode pointer, and buffer for an inode. */
2289 STATIC int
xfs_iunlink_map_ino(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp)2290 xfs_iunlink_map_ino(
2291 	struct xfs_trans	*tp,
2292 	xfs_agnumber_t		agno,
2293 	xfs_agino_t		agino,
2294 	struct xfs_imap		*imap,
2295 	struct xfs_dinode	**dipp,
2296 	struct xfs_buf		**bpp)
2297 {
2298 	struct xfs_mount	*mp = tp->t_mountp;
2299 	int			error;
2300 
2301 	imap->im_blkno = 0;
2302 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2303 	if (error) {
2304 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2305 				__func__, error);
2306 		return error;
2307 	}
2308 
2309 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2310 	if (error) {
2311 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2312 				__func__, error);
2313 		return error;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 /*
2320  * Walk the unlinked chain from @head_agino until we find the inode that
2321  * points to @target_agino.  Return the inode number, map, dinode pointer,
2322  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2323  *
2324  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2325  * @agino, @imap, @dipp, and @bpp are all output parameters.
2326  *
2327  * Do not call this function if @target_agino is the head of the list.
2328  */
2329 STATIC int
xfs_iunlink_map_prev(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t head_agino,xfs_agino_t target_agino,xfs_agino_t * agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp,struct xfs_perag * pag)2330 xfs_iunlink_map_prev(
2331 	struct xfs_trans	*tp,
2332 	xfs_agnumber_t		agno,
2333 	xfs_agino_t		head_agino,
2334 	xfs_agino_t		target_agino,
2335 	xfs_agino_t		*agino,
2336 	struct xfs_imap		*imap,
2337 	struct xfs_dinode	**dipp,
2338 	struct xfs_buf		**bpp,
2339 	struct xfs_perag	*pag)
2340 {
2341 	struct xfs_mount	*mp = tp->t_mountp;
2342 	xfs_agino_t		next_agino;
2343 	int			error;
2344 
2345 	ASSERT(head_agino != target_agino);
2346 	*bpp = NULL;
2347 
2348 	/* See if our backref cache can find it faster. */
2349 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2350 	if (*agino != NULLAGINO) {
2351 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2352 		if (error)
2353 			return error;
2354 
2355 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2356 			return 0;
2357 
2358 		/*
2359 		 * If we get here the cache contents were corrupt, so drop the
2360 		 * buffer and fall back to walking the bucket list.
2361 		 */
2362 		xfs_trans_brelse(tp, *bpp);
2363 		*bpp = NULL;
2364 		WARN_ON_ONCE(1);
2365 	}
2366 
2367 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2368 
2369 	/* Otherwise, walk the entire bucket until we find it. */
2370 	next_agino = head_agino;
2371 	while (next_agino != target_agino) {
2372 		xfs_agino_t	unlinked_agino;
2373 
2374 		if (*bpp)
2375 			xfs_trans_brelse(tp, *bpp);
2376 
2377 		*agino = next_agino;
2378 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2379 				bpp);
2380 		if (error)
2381 			return error;
2382 
2383 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2384 		/*
2385 		 * Make sure this pointer is valid and isn't an obvious
2386 		 * infinite loop.
2387 		 */
2388 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2389 		    next_agino == unlinked_agino) {
2390 			XFS_CORRUPTION_ERROR(__func__,
2391 					XFS_ERRLEVEL_LOW, mp,
2392 					*dipp, sizeof(**dipp));
2393 			error = -EFSCORRUPTED;
2394 			return error;
2395 		}
2396 		next_agino = unlinked_agino;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 /*
2403  * Pull the on-disk inode from the AGI unlinked list.
2404  */
2405 STATIC int
xfs_iunlink_remove(struct xfs_trans * tp,struct xfs_inode * ip)2406 xfs_iunlink_remove(
2407 	struct xfs_trans	*tp,
2408 	struct xfs_inode	*ip)
2409 {
2410 	struct xfs_mount	*mp = tp->t_mountp;
2411 	struct xfs_agi		*agi;
2412 	struct xfs_buf		*agibp;
2413 	struct xfs_buf		*last_ibp;
2414 	struct xfs_dinode	*last_dip = NULL;
2415 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2416 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2417 	xfs_agino_t		next_agino;
2418 	xfs_agino_t		head_agino;
2419 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2420 	int			error;
2421 
2422 	trace_xfs_iunlink_remove(ip);
2423 
2424 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2425 	error = xfs_read_agi(mp, tp, agno, &agibp);
2426 	if (error)
2427 		return error;
2428 	agi = agibp->b_addr;
2429 
2430 	/*
2431 	 * Get the index into the agi hash table for the list this inode will
2432 	 * go on.  Make sure the head pointer isn't garbage.
2433 	 */
2434 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2435 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2436 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2437 				agi, sizeof(*agi));
2438 		return -EFSCORRUPTED;
2439 	}
2440 
2441 	/*
2442 	 * Set our inode's next_unlinked pointer to NULL and then return
2443 	 * the old pointer value so that we can update whatever was previous
2444 	 * to us in the list to point to whatever was next in the list.
2445 	 */
2446 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2447 	if (error)
2448 		return error;
2449 
2450 	/*
2451 	 * If there was a backref pointing from the next inode back to this
2452 	 * one, remove it because we've removed this inode from the list.
2453 	 *
2454 	 * Later, if this inode was in the middle of the list we'll update
2455 	 * this inode's backref to point from the next inode.
2456 	 */
2457 	if (next_agino != NULLAGINO) {
2458 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2459 				NULLAGINO);
2460 		if (error)
2461 			return error;
2462 	}
2463 
2464 	if (head_agino != agino) {
2465 		struct xfs_imap	imap;
2466 		xfs_agino_t	prev_agino;
2467 
2468 		/* We need to search the list for the inode being freed. */
2469 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2470 				&prev_agino, &imap, &last_dip, &last_ibp,
2471 				agibp->b_pag);
2472 		if (error)
2473 			return error;
2474 
2475 		/* Point the previous inode on the list to the next inode. */
2476 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2477 				last_dip, &imap, next_agino);
2478 
2479 		/*
2480 		 * Now we deal with the backref for this inode.  If this inode
2481 		 * pointed at a real inode, change the backref that pointed to
2482 		 * us to point to our old next.  If this inode was the end of
2483 		 * the list, delete the backref that pointed to us.  Note that
2484 		 * change_backref takes care of deleting the backref if
2485 		 * next_agino is NULLAGINO.
2486 		 */
2487 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2488 				next_agino);
2489 	}
2490 
2491 	/* Point the head of the list to the next unlinked inode. */
2492 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2493 			next_agino);
2494 }
2495 
2496 /*
2497  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2498  * mark it stale. We should only find clean inodes in this lookup that aren't
2499  * already stale.
2500  */
2501 static void
xfs_ifree_mark_inode_stale(struct xfs_buf * bp,struct xfs_inode * free_ip,xfs_ino_t inum)2502 xfs_ifree_mark_inode_stale(
2503 	struct xfs_buf		*bp,
2504 	struct xfs_inode	*free_ip,
2505 	xfs_ino_t		inum)
2506 {
2507 	struct xfs_mount	*mp = bp->b_mount;
2508 	struct xfs_perag	*pag = bp->b_pag;
2509 	struct xfs_inode_log_item *iip;
2510 	struct xfs_inode	*ip;
2511 
2512 retry:
2513 	rcu_read_lock();
2514 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2515 
2516 	/* Inode not in memory, nothing to do */
2517 	if (!ip) {
2518 		rcu_read_unlock();
2519 		return;
2520 	}
2521 
2522 	/*
2523 	 * because this is an RCU protected lookup, we could find a recently
2524 	 * freed or even reallocated inode during the lookup. We need to check
2525 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2526 	 * valid, the wrong inode or stale.
2527 	 */
2528 	spin_lock(&ip->i_flags_lock);
2529 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2530 		goto out_iflags_unlock;
2531 
2532 	/*
2533 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2534 	 * other inodes that we did not find in the list attached to the buffer
2535 	 * and are not already marked stale. If we can't lock it, back off and
2536 	 * retry.
2537 	 */
2538 	if (ip != free_ip) {
2539 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2540 			spin_unlock(&ip->i_flags_lock);
2541 			rcu_read_unlock();
2542 			delay(1);
2543 			goto retry;
2544 		}
2545 	}
2546 	ip->i_flags |= XFS_ISTALE;
2547 
2548 	/*
2549 	 * If the inode is flushing, it is already attached to the buffer.  All
2550 	 * we needed to do here is mark the inode stale so buffer IO completion
2551 	 * will remove it from the AIL.
2552 	 */
2553 	iip = ip->i_itemp;
2554 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2555 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2556 		ASSERT(iip->ili_last_fields);
2557 		goto out_iunlock;
2558 	}
2559 
2560 	/*
2561 	 * Inodes not attached to the buffer can be released immediately.
2562 	 * Everything else has to go through xfs_iflush_abort() on journal
2563 	 * commit as the flock synchronises removal of the inode from the
2564 	 * cluster buffer against inode reclaim.
2565 	 */
2566 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2567 		goto out_iunlock;
2568 
2569 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2570 	spin_unlock(&ip->i_flags_lock);
2571 	rcu_read_unlock();
2572 
2573 	/* we have a dirty inode in memory that has not yet been flushed. */
2574 	spin_lock(&iip->ili_lock);
2575 	iip->ili_last_fields = iip->ili_fields;
2576 	iip->ili_fields = 0;
2577 	iip->ili_fsync_fields = 0;
2578 	spin_unlock(&iip->ili_lock);
2579 	ASSERT(iip->ili_last_fields);
2580 
2581 	if (ip != free_ip)
2582 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2583 	return;
2584 
2585 out_iunlock:
2586 	if (ip != free_ip)
2587 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2588 out_iflags_unlock:
2589 	spin_unlock(&ip->i_flags_lock);
2590 	rcu_read_unlock();
2591 }
2592 
2593 /*
2594  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2595  * inodes that are in memory - they all must be marked stale and attached to
2596  * the cluster buffer.
2597  */
2598 STATIC int
xfs_ifree_cluster(struct xfs_inode * free_ip,struct xfs_trans * tp,struct xfs_icluster * xic)2599 xfs_ifree_cluster(
2600 	struct xfs_inode	*free_ip,
2601 	struct xfs_trans	*tp,
2602 	struct xfs_icluster	*xic)
2603 {
2604 	struct xfs_mount	*mp = free_ip->i_mount;
2605 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2606 	struct xfs_buf		*bp;
2607 	xfs_daddr_t		blkno;
2608 	xfs_ino_t		inum = xic->first_ino;
2609 	int			nbufs;
2610 	int			i, j;
2611 	int			ioffset;
2612 	int			error;
2613 
2614 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2615 
2616 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2617 		/*
2618 		 * The allocation bitmap tells us which inodes of the chunk were
2619 		 * physically allocated. Skip the cluster if an inode falls into
2620 		 * a sparse region.
2621 		 */
2622 		ioffset = inum - xic->first_ino;
2623 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2624 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2625 			continue;
2626 		}
2627 
2628 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2629 					 XFS_INO_TO_AGBNO(mp, inum));
2630 
2631 		/*
2632 		 * We obtain and lock the backing buffer first in the process
2633 		 * here to ensure dirty inodes attached to the buffer remain in
2634 		 * the flushing state while we mark them stale.
2635 		 *
2636 		 * If we scan the in-memory inodes first, then buffer IO can
2637 		 * complete before we get a lock on it, and hence we may fail
2638 		 * to mark all the active inodes on the buffer stale.
2639 		 */
2640 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2641 				mp->m_bsize * igeo->blocks_per_cluster,
2642 				XBF_UNMAPPED, &bp);
2643 		if (error)
2644 			return error;
2645 
2646 		/*
2647 		 * This buffer may not have been correctly initialised as we
2648 		 * didn't read it from disk. That's not important because we are
2649 		 * only using to mark the buffer as stale in the log, and to
2650 		 * attach stale cached inodes on it. That means it will never be
2651 		 * dispatched for IO. If it is, we want to know about it, and we
2652 		 * want it to fail. We can acheive this by adding a write
2653 		 * verifier to the buffer.
2654 		 */
2655 		bp->b_ops = &xfs_inode_buf_ops;
2656 
2657 		/*
2658 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2659 		 * too. This requires lookups, and will skip inodes that we've
2660 		 * already marked XFS_ISTALE.
2661 		 */
2662 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2663 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2664 
2665 		xfs_trans_stale_inode_buf(tp, bp);
2666 		xfs_trans_binval(tp, bp);
2667 	}
2668 	return 0;
2669 }
2670 
2671 /*
2672  * This is called to return an inode to the inode free list.  The inode should
2673  * already be truncated to 0 length and have no pages associated with it.  This
2674  * routine also assumes that the inode is already a part of the transaction.
2675  *
2676  * The on-disk copy of the inode will have been added to the list of unlinked
2677  * inodes in the AGI. We need to remove the inode from that list atomically with
2678  * respect to freeing it here.
2679  */
2680 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)2681 xfs_ifree(
2682 	struct xfs_trans	*tp,
2683 	struct xfs_inode	*ip)
2684 {
2685 	int			error;
2686 	struct xfs_icluster	xic = { 0 };
2687 	struct xfs_inode_log_item *iip = ip->i_itemp;
2688 
2689 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2690 	ASSERT(VFS_I(ip)->i_nlink == 0);
2691 	ASSERT(ip->i_df.if_nextents == 0);
2692 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2693 	ASSERT(ip->i_d.di_nblocks == 0);
2694 
2695 	/*
2696 	 * Free the inode first so that we guarantee that the AGI lock is going
2697 	 * to be taken before we remove the inode from the unlinked list. This
2698 	 * makes the AGI lock -> unlinked list modification order the same as
2699 	 * used in O_TMPFILE creation.
2700 	 */
2701 	error = xfs_difree(tp, ip->i_ino, &xic);
2702 	if (error)
2703 		return error;
2704 
2705 	error = xfs_iunlink_remove(tp, ip);
2706 	if (error)
2707 		return error;
2708 
2709 	/*
2710 	 * Free any local-format data sitting around before we reset the
2711 	 * data fork to extents format.  Note that the attr fork data has
2712 	 * already been freed by xfs_attr_inactive.
2713 	 */
2714 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2715 		kmem_free(ip->i_df.if_u1.if_data);
2716 		ip->i_df.if_u1.if_data = NULL;
2717 		ip->i_df.if_bytes = 0;
2718 	}
2719 
2720 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2721 	ip->i_d.di_flags = 0;
2722 	ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2723 	ip->i_d.di_dmevmask = 0;
2724 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2725 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2726 
2727 	/* Don't attempt to replay owner changes for a deleted inode */
2728 	spin_lock(&iip->ili_lock);
2729 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2730 	spin_unlock(&iip->ili_lock);
2731 
2732 	/*
2733 	 * Bump the generation count so no one will be confused
2734 	 * by reincarnations of this inode.
2735 	 */
2736 	VFS_I(ip)->i_generation++;
2737 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2738 
2739 	if (xic.deleted)
2740 		error = xfs_ifree_cluster(ip, tp, &xic);
2741 
2742 	return error;
2743 }
2744 
2745 /*
2746  * This is called to unpin an inode.  The caller must have the inode locked
2747  * in at least shared mode so that the buffer cannot be subsequently pinned
2748  * once someone is waiting for it to be unpinned.
2749  */
2750 static void
xfs_iunpin(struct xfs_inode * ip)2751 xfs_iunpin(
2752 	struct xfs_inode	*ip)
2753 {
2754 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2755 
2756 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2757 
2758 	/* Give the log a push to start the unpinning I/O */
2759 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2760 
2761 }
2762 
2763 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2764 __xfs_iunpin_wait(
2765 	struct xfs_inode	*ip)
2766 {
2767 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2768 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2769 
2770 	xfs_iunpin(ip);
2771 
2772 	do {
2773 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2774 		if (xfs_ipincount(ip))
2775 			io_schedule();
2776 	} while (xfs_ipincount(ip));
2777 	finish_wait(wq, &wait.wq_entry);
2778 }
2779 
2780 void
xfs_iunpin_wait(struct xfs_inode * ip)2781 xfs_iunpin_wait(
2782 	struct xfs_inode	*ip)
2783 {
2784 	if (xfs_ipincount(ip))
2785 		__xfs_iunpin_wait(ip);
2786 }
2787 
2788 /*
2789  * Removing an inode from the namespace involves removing the directory entry
2790  * and dropping the link count on the inode. Removing the directory entry can
2791  * result in locking an AGF (directory blocks were freed) and removing a link
2792  * count can result in placing the inode on an unlinked list which results in
2793  * locking an AGI.
2794  *
2795  * The big problem here is that we have an ordering constraint on AGF and AGI
2796  * locking - inode allocation locks the AGI, then can allocate a new extent for
2797  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2798  * removes the inode from the unlinked list, requiring that we lock the AGI
2799  * first, and then freeing the inode can result in an inode chunk being freed
2800  * and hence freeing disk space requiring that we lock an AGF.
2801  *
2802  * Hence the ordering that is imposed by other parts of the code is AGI before
2803  * AGF. This means we cannot remove the directory entry before we drop the inode
2804  * reference count and put it on the unlinked list as this results in a lock
2805  * order of AGF then AGI, and this can deadlock against inode allocation and
2806  * freeing. Therefore we must drop the link counts before we remove the
2807  * directory entry.
2808  *
2809  * This is still safe from a transactional point of view - it is not until we
2810  * get to xfs_defer_finish() that we have the possibility of multiple
2811  * transactions in this operation. Hence as long as we remove the directory
2812  * entry and drop the link count in the first transaction of the remove
2813  * operation, there are no transactional constraints on the ordering here.
2814  */
2815 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2816 xfs_remove(
2817 	xfs_inode_t             *dp,
2818 	struct xfs_name		*name,
2819 	xfs_inode_t		*ip)
2820 {
2821 	xfs_mount_t		*mp = dp->i_mount;
2822 	xfs_trans_t             *tp = NULL;
2823 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2824 	int                     error = 0;
2825 	uint			resblks;
2826 
2827 	trace_xfs_remove(dp, name);
2828 
2829 	if (XFS_FORCED_SHUTDOWN(mp))
2830 		return -EIO;
2831 
2832 	error = xfs_qm_dqattach(dp);
2833 	if (error)
2834 		goto std_return;
2835 
2836 	error = xfs_qm_dqattach(ip);
2837 	if (error)
2838 		goto std_return;
2839 
2840 	/*
2841 	 * We try to get the real space reservation first,
2842 	 * allowing for directory btree deletion(s) implying
2843 	 * possible bmap insert(s).  If we can't get the space
2844 	 * reservation then we use 0 instead, and avoid the bmap
2845 	 * btree insert(s) in the directory code by, if the bmap
2846 	 * insert tries to happen, instead trimming the LAST
2847 	 * block from the directory.
2848 	 */
2849 	resblks = XFS_REMOVE_SPACE_RES(mp);
2850 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2851 	if (error == -ENOSPC) {
2852 		resblks = 0;
2853 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2854 				&tp);
2855 	}
2856 	if (error) {
2857 		ASSERT(error != -ENOSPC);
2858 		goto std_return;
2859 	}
2860 
2861 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2862 
2863 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2864 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2865 
2866 	/*
2867 	 * If we're removing a directory perform some additional validation.
2868 	 */
2869 	if (is_dir) {
2870 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2871 		if (VFS_I(ip)->i_nlink != 2) {
2872 			error = -ENOTEMPTY;
2873 			goto out_trans_cancel;
2874 		}
2875 		if (!xfs_dir_isempty(ip)) {
2876 			error = -ENOTEMPTY;
2877 			goto out_trans_cancel;
2878 		}
2879 
2880 		/* Drop the link from ip's "..".  */
2881 		error = xfs_droplink(tp, dp);
2882 		if (error)
2883 			goto out_trans_cancel;
2884 
2885 		/* Drop the "." link from ip to self.  */
2886 		error = xfs_droplink(tp, ip);
2887 		if (error)
2888 			goto out_trans_cancel;
2889 	} else {
2890 		/*
2891 		 * When removing a non-directory we need to log the parent
2892 		 * inode here.  For a directory this is done implicitly
2893 		 * by the xfs_droplink call for the ".." entry.
2894 		 */
2895 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2896 	}
2897 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2898 
2899 	/* Drop the link from dp to ip. */
2900 	error = xfs_droplink(tp, ip);
2901 	if (error)
2902 		goto out_trans_cancel;
2903 
2904 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2905 	if (error) {
2906 		ASSERT(error != -ENOENT);
2907 		goto out_trans_cancel;
2908 	}
2909 
2910 	/*
2911 	 * If this is a synchronous mount, make sure that the
2912 	 * remove transaction goes to disk before returning to
2913 	 * the user.
2914 	 */
2915 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2916 		xfs_trans_set_sync(tp);
2917 
2918 	error = xfs_trans_commit(tp);
2919 	if (error)
2920 		goto std_return;
2921 
2922 	if (is_dir && xfs_inode_is_filestream(ip))
2923 		xfs_filestream_deassociate(ip);
2924 
2925 	return 0;
2926 
2927  out_trans_cancel:
2928 	xfs_trans_cancel(tp);
2929  std_return:
2930 	return error;
2931 }
2932 
2933 /*
2934  * Enter all inodes for a rename transaction into a sorted array.
2935  */
2936 #define __XFS_SORT_INODES	5
2937 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2938 xfs_sort_for_rename(
2939 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2940 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2941 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2942 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2943 	struct xfs_inode	*wip,	/* in: whiteout inode */
2944 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2945 	int			*num_inodes)  /* in/out: inodes in array */
2946 {
2947 	int			i, j;
2948 
2949 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2950 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2951 
2952 	/*
2953 	 * i_tab contains a list of pointers to inodes.  We initialize
2954 	 * the table here & we'll sort it.  We will then use it to
2955 	 * order the acquisition of the inode locks.
2956 	 *
2957 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2958 	 */
2959 	i = 0;
2960 	i_tab[i++] = dp1;
2961 	i_tab[i++] = dp2;
2962 	i_tab[i++] = ip1;
2963 	if (ip2)
2964 		i_tab[i++] = ip2;
2965 	if (wip)
2966 		i_tab[i++] = wip;
2967 	*num_inodes = i;
2968 
2969 	/*
2970 	 * Sort the elements via bubble sort.  (Remember, there are at
2971 	 * most 5 elements to sort, so this is adequate.)
2972 	 */
2973 	for (i = 0; i < *num_inodes; i++) {
2974 		for (j = 1; j < *num_inodes; j++) {
2975 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2976 				struct xfs_inode *temp = i_tab[j];
2977 				i_tab[j] = i_tab[j-1];
2978 				i_tab[j-1] = temp;
2979 			}
2980 		}
2981 	}
2982 }
2983 
2984 static int
xfs_finish_rename(struct xfs_trans * tp)2985 xfs_finish_rename(
2986 	struct xfs_trans	*tp)
2987 {
2988 	/*
2989 	 * If this is a synchronous mount, make sure that the rename transaction
2990 	 * goes to disk before returning to the user.
2991 	 */
2992 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2993 		xfs_trans_set_sync(tp);
2994 
2995 	return xfs_trans_commit(tp);
2996 }
2997 
2998 /*
2999  * xfs_cross_rename()
3000  *
3001  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3002  */
3003 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,int spaceres)3004 xfs_cross_rename(
3005 	struct xfs_trans	*tp,
3006 	struct xfs_inode	*dp1,
3007 	struct xfs_name		*name1,
3008 	struct xfs_inode	*ip1,
3009 	struct xfs_inode	*dp2,
3010 	struct xfs_name		*name2,
3011 	struct xfs_inode	*ip2,
3012 	int			spaceres)
3013 {
3014 	int		error = 0;
3015 	int		ip1_flags = 0;
3016 	int		ip2_flags = 0;
3017 	int		dp2_flags = 0;
3018 
3019 	/* Swap inode number for dirent in first parent */
3020 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3021 	if (error)
3022 		goto out_trans_abort;
3023 
3024 	/* Swap inode number for dirent in second parent */
3025 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3026 	if (error)
3027 		goto out_trans_abort;
3028 
3029 	/*
3030 	 * If we're renaming one or more directories across different parents,
3031 	 * update the respective ".." entries (and link counts) to match the new
3032 	 * parents.
3033 	 */
3034 	if (dp1 != dp2) {
3035 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3036 
3037 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3038 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3039 						dp1->i_ino, spaceres);
3040 			if (error)
3041 				goto out_trans_abort;
3042 
3043 			/* transfer ip2 ".." reference to dp1 */
3044 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3045 				error = xfs_droplink(tp, dp2);
3046 				if (error)
3047 					goto out_trans_abort;
3048 				xfs_bumplink(tp, dp1);
3049 			}
3050 
3051 			/*
3052 			 * Although ip1 isn't changed here, userspace needs
3053 			 * to be warned about the change, so that applications
3054 			 * relying on it (like backup ones), will properly
3055 			 * notify the change
3056 			 */
3057 			ip1_flags |= XFS_ICHGTIME_CHG;
3058 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3059 		}
3060 
3061 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3062 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3063 						dp2->i_ino, spaceres);
3064 			if (error)
3065 				goto out_trans_abort;
3066 
3067 			/* transfer ip1 ".." reference to dp2 */
3068 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3069 				error = xfs_droplink(tp, dp1);
3070 				if (error)
3071 					goto out_trans_abort;
3072 				xfs_bumplink(tp, dp2);
3073 			}
3074 
3075 			/*
3076 			 * Although ip2 isn't changed here, userspace needs
3077 			 * to be warned about the change, so that applications
3078 			 * relying on it (like backup ones), will properly
3079 			 * notify the change
3080 			 */
3081 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3082 			ip2_flags |= XFS_ICHGTIME_CHG;
3083 		}
3084 	}
3085 
3086 	if (ip1_flags) {
3087 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3088 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3089 	}
3090 	if (ip2_flags) {
3091 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3092 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3093 	}
3094 	if (dp2_flags) {
3095 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3096 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3097 	}
3098 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3099 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3100 	return xfs_finish_rename(tp);
3101 
3102 out_trans_abort:
3103 	xfs_trans_cancel(tp);
3104 	return error;
3105 }
3106 
3107 /*
3108  * xfs_rename_alloc_whiteout()
3109  *
3110  * Return a referenced, unlinked, unlocked inode that can be used as a
3111  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3112  * crash between allocating the inode and linking it into the rename transaction
3113  * recovery will free the inode and we won't leak it.
3114  */
3115 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)3116 xfs_rename_alloc_whiteout(
3117 	struct xfs_inode	*dp,
3118 	struct xfs_inode	**wip)
3119 {
3120 	struct xfs_inode	*tmpfile;
3121 	int			error;
3122 
3123 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3124 	if (error)
3125 		return error;
3126 
3127 	/*
3128 	 * Prepare the tmpfile inode as if it were created through the VFS.
3129 	 * Complete the inode setup and flag it as linkable.  nlink is already
3130 	 * zero, so we can skip the drop_nlink.
3131 	 */
3132 	xfs_setup_iops(tmpfile);
3133 	xfs_finish_inode_setup(tmpfile);
3134 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3135 
3136 	*wip = tmpfile;
3137 	return 0;
3138 }
3139 
3140 /*
3141  * xfs_rename
3142  */
3143 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)3144 xfs_rename(
3145 	struct xfs_inode	*src_dp,
3146 	struct xfs_name		*src_name,
3147 	struct xfs_inode	*src_ip,
3148 	struct xfs_inode	*target_dp,
3149 	struct xfs_name		*target_name,
3150 	struct xfs_inode	*target_ip,
3151 	unsigned int		flags)
3152 {
3153 	struct xfs_mount	*mp = src_dp->i_mount;
3154 	struct xfs_trans	*tp;
3155 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3156 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3157 	int			i;
3158 	int			num_inodes = __XFS_SORT_INODES;
3159 	bool			new_parent = (src_dp != target_dp);
3160 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3161 	int			spaceres;
3162 	int			error;
3163 
3164 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3165 
3166 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3167 		return -EINVAL;
3168 
3169 	/*
3170 	 * If we are doing a whiteout operation, allocate the whiteout inode
3171 	 * we will be placing at the target and ensure the type is set
3172 	 * appropriately.
3173 	 */
3174 	if (flags & RENAME_WHITEOUT) {
3175 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3176 		if (error)
3177 			return error;
3178 
3179 		/* setup target dirent info as whiteout */
3180 		src_name->type = XFS_DIR3_FT_CHRDEV;
3181 	}
3182 
3183 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3184 				inodes, &num_inodes);
3185 
3186 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3187 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3188 	if (error == -ENOSPC) {
3189 		spaceres = 0;
3190 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3191 				&tp);
3192 	}
3193 	if (error)
3194 		goto out_release_wip;
3195 
3196 	/*
3197 	 * Attach the dquots to the inodes
3198 	 */
3199 	error = xfs_qm_vop_rename_dqattach(inodes);
3200 	if (error)
3201 		goto out_trans_cancel;
3202 
3203 	/*
3204 	 * Lock all the participating inodes. Depending upon whether
3205 	 * the target_name exists in the target directory, and
3206 	 * whether the target directory is the same as the source
3207 	 * directory, we can lock from 2 to 4 inodes.
3208 	 */
3209 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3210 
3211 	/*
3212 	 * Join all the inodes to the transaction. From this point on,
3213 	 * we can rely on either trans_commit or trans_cancel to unlock
3214 	 * them.
3215 	 */
3216 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3217 	if (new_parent)
3218 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3219 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3220 	if (target_ip)
3221 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3222 	if (wip)
3223 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3224 
3225 	/*
3226 	 * If we are using project inheritance, we only allow renames
3227 	 * into our tree when the project IDs are the same; else the
3228 	 * tree quota mechanism would be circumvented.
3229 	 */
3230 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3231 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3232 		error = -EXDEV;
3233 		goto out_trans_cancel;
3234 	}
3235 
3236 	/* RENAME_EXCHANGE is unique from here on. */
3237 	if (flags & RENAME_EXCHANGE)
3238 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3239 					target_dp, target_name, target_ip,
3240 					spaceres);
3241 
3242 	/*
3243 	 * Check for expected errors before we dirty the transaction
3244 	 * so we can return an error without a transaction abort.
3245 	 */
3246 	if (target_ip == NULL) {
3247 		/*
3248 		 * If there's no space reservation, check the entry will
3249 		 * fit before actually inserting it.
3250 		 */
3251 		if (!spaceres) {
3252 			error = xfs_dir_canenter(tp, target_dp, target_name);
3253 			if (error)
3254 				goto out_trans_cancel;
3255 		}
3256 	} else {
3257 		/*
3258 		 * If target exists and it's a directory, check that whether
3259 		 * it can be destroyed.
3260 		 */
3261 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3262 		    (!xfs_dir_isempty(target_ip) ||
3263 		     (VFS_I(target_ip)->i_nlink > 2))) {
3264 			error = -EEXIST;
3265 			goto out_trans_cancel;
3266 		}
3267 	}
3268 
3269 	/*
3270 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3271 	 * whiteout inode off the unlinked list and to handle dropping the
3272 	 * nlink of the target inode.  Per locking order rules, do this in
3273 	 * increasing AG order and before directory block allocation tries to
3274 	 * grab AGFs because we grab AGIs before AGFs.
3275 	 *
3276 	 * The (vfs) caller must ensure that if src is a directory then
3277 	 * target_ip is either null or an empty directory.
3278 	 */
3279 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3280 		if (inodes[i] == wip ||
3281 		    (inodes[i] == target_ip &&
3282 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3283 			struct xfs_buf	*bp;
3284 			xfs_agnumber_t	agno;
3285 
3286 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3287 			error = xfs_read_agi(mp, tp, agno, &bp);
3288 			if (error)
3289 				goto out_trans_cancel;
3290 		}
3291 	}
3292 
3293 	/*
3294 	 * Directory entry creation below may acquire the AGF. Remove
3295 	 * the whiteout from the unlinked list first to preserve correct
3296 	 * AGI/AGF locking order. This dirties the transaction so failures
3297 	 * after this point will abort and log recovery will clean up the
3298 	 * mess.
3299 	 *
3300 	 * For whiteouts, we need to bump the link count on the whiteout
3301 	 * inode. After this point, we have a real link, clear the tmpfile
3302 	 * state flag from the inode so it doesn't accidentally get misused
3303 	 * in future.
3304 	 */
3305 	if (wip) {
3306 		ASSERT(VFS_I(wip)->i_nlink == 0);
3307 		error = xfs_iunlink_remove(tp, wip);
3308 		if (error)
3309 			goto out_trans_cancel;
3310 
3311 		xfs_bumplink(tp, wip);
3312 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3313 	}
3314 
3315 	/*
3316 	 * Set up the target.
3317 	 */
3318 	if (target_ip == NULL) {
3319 		/*
3320 		 * If target does not exist and the rename crosses
3321 		 * directories, adjust the target directory link count
3322 		 * to account for the ".." reference from the new entry.
3323 		 */
3324 		error = xfs_dir_createname(tp, target_dp, target_name,
3325 					   src_ip->i_ino, spaceres);
3326 		if (error)
3327 			goto out_trans_cancel;
3328 
3329 		xfs_trans_ichgtime(tp, target_dp,
3330 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3331 
3332 		if (new_parent && src_is_directory) {
3333 			xfs_bumplink(tp, target_dp);
3334 		}
3335 	} else { /* target_ip != NULL */
3336 		/*
3337 		 * Link the source inode under the target name.
3338 		 * If the source inode is a directory and we are moving
3339 		 * it across directories, its ".." entry will be
3340 		 * inconsistent until we replace that down below.
3341 		 *
3342 		 * In case there is already an entry with the same
3343 		 * name at the destination directory, remove it first.
3344 		 */
3345 		error = xfs_dir_replace(tp, target_dp, target_name,
3346 					src_ip->i_ino, spaceres);
3347 		if (error)
3348 			goto out_trans_cancel;
3349 
3350 		xfs_trans_ichgtime(tp, target_dp,
3351 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3352 
3353 		/*
3354 		 * Decrement the link count on the target since the target
3355 		 * dir no longer points to it.
3356 		 */
3357 		error = xfs_droplink(tp, target_ip);
3358 		if (error)
3359 			goto out_trans_cancel;
3360 
3361 		if (src_is_directory) {
3362 			/*
3363 			 * Drop the link from the old "." entry.
3364 			 */
3365 			error = xfs_droplink(tp, target_ip);
3366 			if (error)
3367 				goto out_trans_cancel;
3368 		}
3369 	} /* target_ip != NULL */
3370 
3371 	/*
3372 	 * Remove the source.
3373 	 */
3374 	if (new_parent && src_is_directory) {
3375 		/*
3376 		 * Rewrite the ".." entry to point to the new
3377 		 * directory.
3378 		 */
3379 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3380 					target_dp->i_ino, spaceres);
3381 		ASSERT(error != -EEXIST);
3382 		if (error)
3383 			goto out_trans_cancel;
3384 	}
3385 
3386 	/*
3387 	 * We always want to hit the ctime on the source inode.
3388 	 *
3389 	 * This isn't strictly required by the standards since the source
3390 	 * inode isn't really being changed, but old unix file systems did
3391 	 * it and some incremental backup programs won't work without it.
3392 	 */
3393 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3394 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3395 
3396 	/*
3397 	 * Adjust the link count on src_dp.  This is necessary when
3398 	 * renaming a directory, either within one parent when
3399 	 * the target existed, or across two parent directories.
3400 	 */
3401 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3402 
3403 		/*
3404 		 * Decrement link count on src_directory since the
3405 		 * entry that's moved no longer points to it.
3406 		 */
3407 		error = xfs_droplink(tp, src_dp);
3408 		if (error)
3409 			goto out_trans_cancel;
3410 	}
3411 
3412 	/*
3413 	 * For whiteouts, we only need to update the source dirent with the
3414 	 * inode number of the whiteout inode rather than removing it
3415 	 * altogether.
3416 	 */
3417 	if (wip) {
3418 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3419 					spaceres);
3420 	} else
3421 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3422 					   spaceres);
3423 	if (error)
3424 		goto out_trans_cancel;
3425 
3426 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3427 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3428 	if (new_parent)
3429 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3430 
3431 	error = xfs_finish_rename(tp);
3432 	if (wip)
3433 		xfs_irele(wip);
3434 	return error;
3435 
3436 out_trans_cancel:
3437 	xfs_trans_cancel(tp);
3438 out_release_wip:
3439 	if (wip)
3440 		xfs_irele(wip);
3441 	return error;
3442 }
3443 
3444 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)3445 xfs_iflush(
3446 	struct xfs_inode	*ip,
3447 	struct xfs_buf		*bp)
3448 {
3449 	struct xfs_inode_log_item *iip = ip->i_itemp;
3450 	struct xfs_dinode	*dip;
3451 	struct xfs_mount	*mp = ip->i_mount;
3452 	int			error;
3453 
3454 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3455 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3456 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3457 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3458 	ASSERT(iip->ili_item.li_buf == bp);
3459 
3460 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3461 
3462 	/*
3463 	 * We don't flush the inode if any of the following checks fail, but we
3464 	 * do still update the log item and attach to the backing buffer as if
3465 	 * the flush happened. This is a formality to facilitate predictable
3466 	 * error handling as the caller will shutdown and fail the buffer.
3467 	 */
3468 	error = -EFSCORRUPTED;
3469 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3470 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3471 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3472 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3473 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3474 		goto flush_out;
3475 	}
3476 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3477 		if (XFS_TEST_ERROR(
3478 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3479 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3480 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3481 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3482 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3483 				__func__, ip->i_ino, ip);
3484 			goto flush_out;
3485 		}
3486 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3487 		if (XFS_TEST_ERROR(
3488 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3489 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3490 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3491 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3492 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3493 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3494 				__func__, ip->i_ino, ip);
3495 			goto flush_out;
3496 		}
3497 	}
3498 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3499 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3500 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3501 			"%s: detected corrupt incore inode %Lu, "
3502 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3503 			__func__, ip->i_ino,
3504 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3505 			ip->i_d.di_nblocks, ip);
3506 		goto flush_out;
3507 	}
3508 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3509 				mp, XFS_ERRTAG_IFLUSH_6)) {
3510 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3511 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3512 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3513 		goto flush_out;
3514 	}
3515 
3516 	/*
3517 	 * Inode item log recovery for v2 inodes are dependent on the
3518 	 * di_flushiter count for correct sequencing. We bump the flush
3519 	 * iteration count so we can detect flushes which postdate a log record
3520 	 * during recovery. This is redundant as we now log every change and
3521 	 * hence this can't happen but we need to still do it to ensure
3522 	 * backwards compatibility with old kernels that predate logging all
3523 	 * inode changes.
3524 	 */
3525 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3526 		ip->i_d.di_flushiter++;
3527 
3528 	/*
3529 	 * If there are inline format data / attr forks attached to this inode,
3530 	 * make sure they are not corrupt.
3531 	 */
3532 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3533 	    xfs_ifork_verify_local_data(ip))
3534 		goto flush_out;
3535 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3536 	    xfs_ifork_verify_local_attr(ip))
3537 		goto flush_out;
3538 
3539 	/*
3540 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3541 	 * copy out the core of the inode, because if the inode is dirty at all
3542 	 * the core must be.
3543 	 */
3544 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3545 
3546 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3547 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3548 		ip->i_d.di_flushiter = 0;
3549 
3550 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3551 	if (XFS_IFORK_Q(ip))
3552 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3553 
3554 	/*
3555 	 * We've recorded everything logged in the inode, so we'd like to clear
3556 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3557 	 * However, we can't stop logging all this information until the data
3558 	 * we've copied into the disk buffer is written to disk.  If we did we
3559 	 * might overwrite the copy of the inode in the log with all the data
3560 	 * after re-logging only part of it, and in the face of a crash we
3561 	 * wouldn't have all the data we need to recover.
3562 	 *
3563 	 * What we do is move the bits to the ili_last_fields field.  When
3564 	 * logging the inode, these bits are moved back to the ili_fields field.
3565 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3566 	 * we know that the information those bits represent is permanently on
3567 	 * disk.  As long as the flush completes before the inode is logged
3568 	 * again, then both ili_fields and ili_last_fields will be cleared.
3569 	 */
3570 	error = 0;
3571 flush_out:
3572 	spin_lock(&iip->ili_lock);
3573 	iip->ili_last_fields = iip->ili_fields;
3574 	iip->ili_fields = 0;
3575 	iip->ili_fsync_fields = 0;
3576 	spin_unlock(&iip->ili_lock);
3577 
3578 	/*
3579 	 * Store the current LSN of the inode so that we can tell whether the
3580 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3581 	 */
3582 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3583 				&iip->ili_item.li_lsn);
3584 
3585 	/* generate the checksum. */
3586 	xfs_dinode_calc_crc(mp, dip);
3587 	return error;
3588 }
3589 
3590 /*
3591  * Non-blocking flush of dirty inode metadata into the backing buffer.
3592  *
3593  * The caller must have a reference to the inode and hold the cluster buffer
3594  * locked. The function will walk across all the inodes on the cluster buffer it
3595  * can find and lock without blocking, and flush them to the cluster buffer.
3596  *
3597  * On successful flushing of at least one inode, the caller must write out the
3598  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3599  * the caller needs to release the buffer. On failure, the filesystem will be
3600  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3601  * will be returned.
3602  */
3603 int
xfs_iflush_cluster(struct xfs_buf * bp)3604 xfs_iflush_cluster(
3605 	struct xfs_buf		*bp)
3606 {
3607 	struct xfs_mount	*mp = bp->b_mount;
3608 	struct xfs_log_item	*lip, *n;
3609 	struct xfs_inode	*ip;
3610 	struct xfs_inode_log_item *iip;
3611 	int			clcount = 0;
3612 	int			error = 0;
3613 
3614 	/*
3615 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3616 	 * can remove itself from the list.
3617 	 */
3618 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3619 		iip = (struct xfs_inode_log_item *)lip;
3620 		ip = iip->ili_inode;
3621 
3622 		/*
3623 		 * Quick and dirty check to avoid locks if possible.
3624 		 */
3625 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3626 			continue;
3627 		if (xfs_ipincount(ip))
3628 			continue;
3629 
3630 		/*
3631 		 * The inode is still attached to the buffer, which means it is
3632 		 * dirty but reclaim might try to grab it. Check carefully for
3633 		 * that, and grab the ilock while still holding the i_flags_lock
3634 		 * to guarantee reclaim will not be able to reclaim this inode
3635 		 * once we drop the i_flags_lock.
3636 		 */
3637 		spin_lock(&ip->i_flags_lock);
3638 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3639 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3640 			spin_unlock(&ip->i_flags_lock);
3641 			continue;
3642 		}
3643 
3644 		/*
3645 		 * ILOCK will pin the inode against reclaim and prevent
3646 		 * concurrent transactions modifying the inode while we are
3647 		 * flushing the inode. If we get the lock, set the flushing
3648 		 * state before we drop the i_flags_lock.
3649 		 */
3650 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3651 			spin_unlock(&ip->i_flags_lock);
3652 			continue;
3653 		}
3654 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3655 		spin_unlock(&ip->i_flags_lock);
3656 
3657 		/*
3658 		 * Abort flushing this inode if we are shut down because the
3659 		 * inode may not currently be in the AIL. This can occur when
3660 		 * log I/O failure unpins the inode without inserting into the
3661 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3662 		 * that otherwise looks like it should be flushed.
3663 		 */
3664 		if (XFS_FORCED_SHUTDOWN(mp)) {
3665 			xfs_iunpin_wait(ip);
3666 			xfs_iflush_abort(ip);
3667 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3668 			error = -EIO;
3669 			continue;
3670 		}
3671 
3672 		/* don't block waiting on a log force to unpin dirty inodes */
3673 		if (xfs_ipincount(ip)) {
3674 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3675 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3676 			continue;
3677 		}
3678 
3679 		if (!xfs_inode_clean(ip))
3680 			error = xfs_iflush(ip, bp);
3681 		else
3682 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3683 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3684 		if (error)
3685 			break;
3686 		clcount++;
3687 	}
3688 
3689 	if (error) {
3690 		bp->b_flags |= XBF_ASYNC;
3691 		xfs_buf_ioend_fail(bp);
3692 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3693 		return error;
3694 	}
3695 
3696 	if (!clcount)
3697 		return -EAGAIN;
3698 
3699 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3700 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3701 	return 0;
3702 
3703 }
3704 
3705 /* Release an inode. */
3706 void
xfs_irele(struct xfs_inode * ip)3707 xfs_irele(
3708 	struct xfs_inode	*ip)
3709 {
3710 	trace_xfs_irele(ip, _RET_IP_);
3711 	iput(VFS_I(ip));
3712 }
3713 
3714 /*
3715  * Ensure all commited transactions touching the inode are written to the log.
3716  */
3717 int
xfs_log_force_inode(struct xfs_inode * ip)3718 xfs_log_force_inode(
3719 	struct xfs_inode	*ip)
3720 {
3721 	xfs_csn_t		seq = 0;
3722 
3723 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3724 	if (xfs_ipincount(ip))
3725 		seq = ip->i_itemp->ili_commit_seq;
3726 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3727 
3728 	if (!seq)
3729 		return 0;
3730 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3731 }
3732 
3733 /*
3734  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3735  * abide vfs locking order (lowest pointer value goes first) and breaking the
3736  * layout leases before proceeding.  The loop is needed because we cannot call
3737  * the blocking break_layout() with the iolocks held, and therefore have to
3738  * back out both locks.
3739  */
3740 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)3741 xfs_iolock_two_inodes_and_break_layout(
3742 	struct inode		*src,
3743 	struct inode		*dest)
3744 {
3745 	int			error;
3746 
3747 	if (src > dest)
3748 		swap(src, dest);
3749 
3750 retry:
3751 	/* Wait to break both inodes' layouts before we start locking. */
3752 	error = break_layout(src, true);
3753 	if (error)
3754 		return error;
3755 	if (src != dest) {
3756 		error = break_layout(dest, true);
3757 		if (error)
3758 			return error;
3759 	}
3760 
3761 	/* Lock one inode and make sure nobody got in and leased it. */
3762 	inode_lock(src);
3763 	error = break_layout(src, false);
3764 	if (error) {
3765 		inode_unlock(src);
3766 		if (error == -EWOULDBLOCK)
3767 			goto retry;
3768 		return error;
3769 	}
3770 
3771 	if (src == dest)
3772 		return 0;
3773 
3774 	/* Lock the other inode and make sure nobody got in and leased it. */
3775 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3776 	error = break_layout(dest, false);
3777 	if (error) {
3778 		inode_unlock(src);
3779 		inode_unlock(dest);
3780 		if (error == -EWOULDBLOCK)
3781 			goto retry;
3782 		return error;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 /*
3789  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3790  * mmap activity.
3791  */
3792 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3793 xfs_ilock2_io_mmap(
3794 	struct xfs_inode	*ip1,
3795 	struct xfs_inode	*ip2)
3796 {
3797 	int			ret;
3798 
3799 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3800 	if (ret)
3801 		return ret;
3802 	if (ip1 == ip2)
3803 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3804 	else
3805 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3806 				    ip2, XFS_MMAPLOCK_EXCL);
3807 	return 0;
3808 }
3809 
3810 /* Unlock both inodes to allow IO and mmap activity. */
3811 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)3812 xfs_iunlock2_io_mmap(
3813 	struct xfs_inode	*ip1,
3814 	struct xfs_inode	*ip2)
3815 {
3816 	bool			same_inode = (ip1 == ip2);
3817 
3818 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3819 	if (!same_inode)
3820 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3821 	inode_unlock(VFS_I(ip2));
3822 	if (!same_inode)
3823 		inode_unlock(VFS_I(ip1));
3824 }
3825