1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20
21 struct xfs_writepage_ctx {
22 struct iomap_writepage_ctx ctx;
23 unsigned int data_seq;
24 unsigned int cow_seq;
25 };
26
27 static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx * ctx)28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32
33 /*
34 * Fast and loose check if this write could update the on-disk inode size.
35 */
xfs_ioend_is_append(struct iomap_ioend * ioend)36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
37 {
38 return ioend->io_offset + ioend->io_size >
39 XFS_I(ioend->io_inode)->i_d.di_size;
40 }
41
42 /*
43 * Update on-disk file size now that data has been written to disk.
44 */
45 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)46 __xfs_setfilesize(
47 struct xfs_inode *ip,
48 struct xfs_trans *tp,
49 xfs_off_t offset,
50 size_t size)
51 {
52 xfs_fsize_t isize;
53
54 xfs_ilock(ip, XFS_ILOCK_EXCL);
55 isize = xfs_new_eof(ip, offset + size);
56 if (!isize) {
57 xfs_iunlock(ip, XFS_ILOCK_EXCL);
58 xfs_trans_cancel(tp);
59 return 0;
60 }
61
62 trace_xfs_setfilesize(ip, offset, size);
63
64 ip->i_d.di_size = isize;
65 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
66 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
67
68 return xfs_trans_commit(tp);
69 }
70
71 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)72 xfs_setfilesize(
73 struct xfs_inode *ip,
74 xfs_off_t offset,
75 size_t size)
76 {
77 struct xfs_mount *mp = ip->i_mount;
78 struct xfs_trans *tp;
79 int error;
80
81 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
82 if (error)
83 return error;
84
85 return __xfs_setfilesize(ip, tp, offset, size);
86 }
87
88 STATIC int
xfs_setfilesize_ioend(struct iomap_ioend * ioend,int error)89 xfs_setfilesize_ioend(
90 struct iomap_ioend *ioend,
91 int error)
92 {
93 struct xfs_inode *ip = XFS_I(ioend->io_inode);
94 struct xfs_trans *tp = ioend->io_private;
95
96 /*
97 * The transaction may have been allocated in the I/O submission thread,
98 * thus we need to mark ourselves as being in a transaction manually.
99 * Similarly for freeze protection.
100 */
101 xfs_trans_set_context(tp);
102 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
103
104 /* we abort the update if there was an IO error */
105 if (error) {
106 xfs_trans_cancel(tp);
107 return error;
108 }
109
110 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
111 }
112
113 /*
114 * IO write completion.
115 */
116 STATIC void
xfs_end_ioend(struct iomap_ioend * ioend)117 xfs_end_ioend(
118 struct iomap_ioend *ioend)
119 {
120 struct xfs_inode *ip = XFS_I(ioend->io_inode);
121 struct xfs_mount *mp = ip->i_mount;
122 xfs_off_t offset = ioend->io_offset;
123 size_t size = ioend->io_size;
124 unsigned int nofs_flag;
125 int error;
126
127 /*
128 * We can allocate memory here while doing writeback on behalf of
129 * memory reclaim. To avoid memory allocation deadlocks set the
130 * task-wide nofs context for the following operations.
131 */
132 nofs_flag = memalloc_nofs_save();
133
134 /*
135 * Just clean up the in-memory strutures if the fs has been shut down.
136 */
137 if (XFS_FORCED_SHUTDOWN(mp)) {
138 error = -EIO;
139 goto done;
140 }
141
142 /*
143 * Clean up all COW blocks and underlying data fork delalloc blocks on
144 * I/O error. The delalloc punch is required because this ioend was
145 * mapped to blocks in the COW fork and the associated pages are no
146 * longer dirty. If we don't remove delalloc blocks here, they become
147 * stale and can corrupt free space accounting on unmount.
148 */
149 error = blk_status_to_errno(ioend->io_bio->bi_status);
150 if (unlikely(error)) {
151 if (ioend->io_flags & IOMAP_F_SHARED) {
152 xfs_reflink_cancel_cow_range(ip, offset, size, true);
153 xfs_bmap_punch_delalloc_range(ip,
154 XFS_B_TO_FSBT(mp, offset),
155 XFS_B_TO_FSB(mp, size));
156 }
157 goto done;
158 }
159
160 /*
161 * Success: commit the COW or unwritten blocks if needed.
162 */
163 if (ioend->io_flags & IOMAP_F_SHARED)
164 error = xfs_reflink_end_cow(ip, offset, size);
165 else if (ioend->io_type == IOMAP_UNWRITTEN)
166 error = xfs_iomap_write_unwritten(ip, offset, size, false);
167
168 if (!error && xfs_ioend_is_append(ioend))
169 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
170 done:
171 iomap_finish_ioends(ioend, error);
172 memalloc_nofs_restore(nofs_flag);
173 }
174
175 /*
176 * If the to be merged ioend has a preallocated transaction for file
177 * size updates we need to ensure the ioend it is merged into also
178 * has one. If it already has one we can simply cancel the transaction
179 * as it is guaranteed to be clean.
180 */
181 static void
xfs_ioend_merge_private(struct iomap_ioend * ioend,struct iomap_ioend * next)182 xfs_ioend_merge_private(
183 struct iomap_ioend *ioend,
184 struct iomap_ioend *next)
185 {
186 if (!ioend->io_private) {
187 ioend->io_private = next->io_private;
188 next->io_private = NULL;
189 } else {
190 xfs_setfilesize_ioend(next, -ECANCELED);
191 }
192 }
193
194 /* Finish all pending io completions. */
195 void
xfs_end_io(struct work_struct * work)196 xfs_end_io(
197 struct work_struct *work)
198 {
199 struct xfs_inode *ip =
200 container_of(work, struct xfs_inode, i_ioend_work);
201 struct iomap_ioend *ioend;
202 struct list_head tmp;
203 unsigned long flags;
204
205 spin_lock_irqsave(&ip->i_ioend_lock, flags);
206 list_replace_init(&ip->i_ioend_list, &tmp);
207 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
208
209 iomap_sort_ioends(&tmp);
210 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
211 io_list))) {
212 list_del_init(&ioend->io_list);
213 iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
214 xfs_end_ioend(ioend);
215 }
216 }
217
xfs_ioend_needs_workqueue(struct iomap_ioend * ioend)218 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
219 {
220 return xfs_ioend_is_append(ioend) ||
221 ioend->io_type == IOMAP_UNWRITTEN ||
222 (ioend->io_flags & IOMAP_F_SHARED);
223 }
224
225 STATIC void
xfs_end_bio(struct bio * bio)226 xfs_end_bio(
227 struct bio *bio)
228 {
229 struct iomap_ioend *ioend = bio->bi_private;
230 struct xfs_inode *ip = XFS_I(ioend->io_inode);
231 unsigned long flags;
232
233 spin_lock_irqsave(&ip->i_ioend_lock, flags);
234 if (list_empty(&ip->i_ioend_list))
235 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
236 &ip->i_ioend_work));
237 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
238 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
239 }
240
241 /*
242 * Fast revalidation of the cached writeback mapping. Return true if the current
243 * mapping is valid, false otherwise.
244 */
245 static bool
xfs_imap_valid(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,loff_t offset)246 xfs_imap_valid(
247 struct iomap_writepage_ctx *wpc,
248 struct xfs_inode *ip,
249 loff_t offset)
250 {
251 if (offset < wpc->iomap.offset ||
252 offset >= wpc->iomap.offset + wpc->iomap.length)
253 return false;
254 /*
255 * If this is a COW mapping, it is sufficient to check that the mapping
256 * covers the offset. Be careful to check this first because the caller
257 * can revalidate a COW mapping without updating the data seqno.
258 */
259 if (wpc->iomap.flags & IOMAP_F_SHARED)
260 return true;
261
262 /*
263 * This is not a COW mapping. Check the sequence number of the data fork
264 * because concurrent changes could have invalidated the extent. Check
265 * the COW fork because concurrent changes since the last time we
266 * checked (and found nothing at this offset) could have added
267 * overlapping blocks.
268 */
269 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
270 return false;
271 if (xfs_inode_has_cow_data(ip) &&
272 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
273 return false;
274 return true;
275 }
276
277 /*
278 * Pass in a dellalloc extent and convert it to real extents, return the real
279 * extent that maps offset_fsb in wpc->iomap.
280 *
281 * The current page is held locked so nothing could have removed the block
282 * backing offset_fsb, although it could have moved from the COW to the data
283 * fork by another thread.
284 */
285 static int
xfs_convert_blocks(struct iomap_writepage_ctx * wpc,struct xfs_inode * ip,int whichfork,loff_t offset)286 xfs_convert_blocks(
287 struct iomap_writepage_ctx *wpc,
288 struct xfs_inode *ip,
289 int whichfork,
290 loff_t offset)
291 {
292 int error;
293 unsigned *seq;
294
295 if (whichfork == XFS_COW_FORK)
296 seq = &XFS_WPC(wpc)->cow_seq;
297 else
298 seq = &XFS_WPC(wpc)->data_seq;
299
300 /*
301 * Attempt to allocate whatever delalloc extent currently backs offset
302 * and put the result into wpc->iomap. Allocate in a loop because it
303 * may take several attempts to allocate real blocks for a contiguous
304 * delalloc extent if free space is sufficiently fragmented.
305 */
306 do {
307 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
308 &wpc->iomap, seq);
309 if (error)
310 return error;
311 } while (wpc->iomap.offset + wpc->iomap.length <= offset);
312
313 return 0;
314 }
315
316 static int
xfs_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)317 xfs_map_blocks(
318 struct iomap_writepage_ctx *wpc,
319 struct inode *inode,
320 loff_t offset)
321 {
322 struct xfs_inode *ip = XFS_I(inode);
323 struct xfs_mount *mp = ip->i_mount;
324 ssize_t count = i_blocksize(inode);
325 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
326 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
327 xfs_fileoff_t cow_fsb;
328 int whichfork;
329 struct xfs_bmbt_irec imap;
330 struct xfs_iext_cursor icur;
331 int retries = 0;
332 int error = 0;
333
334 if (XFS_FORCED_SHUTDOWN(mp))
335 return -EIO;
336
337 /*
338 * COW fork blocks can overlap data fork blocks even if the blocks
339 * aren't shared. COW I/O always takes precedent, so we must always
340 * check for overlap on reflink inodes unless the mapping is already a
341 * COW one, or the COW fork hasn't changed from the last time we looked
342 * at it.
343 *
344 * It's safe to check the COW fork if_seq here without the ILOCK because
345 * we've indirectly protected against concurrent updates: writeback has
346 * the page locked, which prevents concurrent invalidations by reflink
347 * and directio and prevents concurrent buffered writes to the same
348 * page. Changes to if_seq always happen under i_lock, which protects
349 * against concurrent updates and provides a memory barrier on the way
350 * out that ensures that we always see the current value.
351 */
352 if (xfs_imap_valid(wpc, ip, offset))
353 return 0;
354
355 /*
356 * If we don't have a valid map, now it's time to get a new one for this
357 * offset. This will convert delayed allocations (including COW ones)
358 * into real extents. If we return without a valid map, it means we
359 * landed in a hole and we skip the block.
360 */
361 retry:
362 cow_fsb = NULLFILEOFF;
363 whichfork = XFS_DATA_FORK;
364 xfs_ilock(ip, XFS_ILOCK_SHARED);
365 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
366 (ip->i_df.if_flags & XFS_IFEXTENTS));
367
368 /*
369 * Check if this is offset is covered by a COW extents, and if yes use
370 * it directly instead of looking up anything in the data fork.
371 */
372 if (xfs_inode_has_cow_data(ip) &&
373 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
374 cow_fsb = imap.br_startoff;
375 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
376 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
377 xfs_iunlock(ip, XFS_ILOCK_SHARED);
378
379 whichfork = XFS_COW_FORK;
380 goto allocate_blocks;
381 }
382
383 /*
384 * No COW extent overlap. Revalidate now that we may have updated
385 * ->cow_seq. If the data mapping is still valid, we're done.
386 */
387 if (xfs_imap_valid(wpc, ip, offset)) {
388 xfs_iunlock(ip, XFS_ILOCK_SHARED);
389 return 0;
390 }
391
392 /*
393 * If we don't have a valid map, now it's time to get a new one for this
394 * offset. This will convert delayed allocations (including COW ones)
395 * into real extents.
396 */
397 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
398 imap.br_startoff = end_fsb; /* fake a hole past EOF */
399 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
400 xfs_iunlock(ip, XFS_ILOCK_SHARED);
401
402 /* landed in a hole or beyond EOF? */
403 if (imap.br_startoff > offset_fsb) {
404 imap.br_blockcount = imap.br_startoff - offset_fsb;
405 imap.br_startoff = offset_fsb;
406 imap.br_startblock = HOLESTARTBLOCK;
407 imap.br_state = XFS_EXT_NORM;
408 }
409
410 /*
411 * Truncate to the next COW extent if there is one. This is the only
412 * opportunity to do this because we can skip COW fork lookups for the
413 * subsequent blocks in the mapping; however, the requirement to treat
414 * the COW range separately remains.
415 */
416 if (cow_fsb != NULLFILEOFF &&
417 cow_fsb < imap.br_startoff + imap.br_blockcount)
418 imap.br_blockcount = cow_fsb - imap.br_startoff;
419
420 /* got a delalloc extent? */
421 if (imap.br_startblock != HOLESTARTBLOCK &&
422 isnullstartblock(imap.br_startblock))
423 goto allocate_blocks;
424
425 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
426 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
427 return 0;
428 allocate_blocks:
429 error = xfs_convert_blocks(wpc, ip, whichfork, offset);
430 if (error) {
431 /*
432 * If we failed to find the extent in the COW fork we might have
433 * raced with a COW to data fork conversion or truncate.
434 * Restart the lookup to catch the extent in the data fork for
435 * the former case, but prevent additional retries to avoid
436 * looping forever for the latter case.
437 */
438 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
439 goto retry;
440 ASSERT(error != -EAGAIN);
441 return error;
442 }
443
444 /*
445 * Due to merging the return real extent might be larger than the
446 * original delalloc one. Trim the return extent to the next COW
447 * boundary again to force a re-lookup.
448 */
449 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
450 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
451
452 if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
453 wpc->iomap.length = cow_offset - wpc->iomap.offset;
454 }
455
456 ASSERT(wpc->iomap.offset <= offset);
457 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
458 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
459 return 0;
460 }
461
462 static int
xfs_prepare_ioend(struct iomap_ioend * ioend,int status)463 xfs_prepare_ioend(
464 struct iomap_ioend *ioend,
465 int status)
466 {
467 unsigned int nofs_flag;
468
469 /*
470 * We can allocate memory here while doing writeback on behalf of
471 * memory reclaim. To avoid memory allocation deadlocks set the
472 * task-wide nofs context for the following operations.
473 */
474 nofs_flag = memalloc_nofs_save();
475
476 /* Convert CoW extents to regular */
477 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
478 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
479 ioend->io_offset, ioend->io_size);
480 }
481
482 memalloc_nofs_restore(nofs_flag);
483
484 if (xfs_ioend_needs_workqueue(ioend))
485 ioend->io_bio->bi_end_io = xfs_end_bio;
486 return status;
487 }
488
489 /*
490 * If the page has delalloc blocks on it, we need to punch them out before we
491 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
492 * inode that can trip up a later direct I/O read operation on the same region.
493 *
494 * We prevent this by truncating away the delalloc regions on the page. Because
495 * they are delalloc, we can do this without needing a transaction. Indeed - if
496 * we get ENOSPC errors, we have to be able to do this truncation without a
497 * transaction as there is no space left for block reservation (typically why we
498 * see a ENOSPC in writeback).
499 */
500 static void
xfs_discard_page(struct page * page,loff_t fileoff)501 xfs_discard_page(
502 struct page *page,
503 loff_t fileoff)
504 {
505 struct inode *inode = page->mapping->host;
506 struct xfs_inode *ip = XFS_I(inode);
507 struct xfs_mount *mp = ip->i_mount;
508 unsigned int pageoff = offset_in_page(fileoff);
509 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff);
510 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff);
511 int error;
512
513 if (XFS_FORCED_SHUTDOWN(mp))
514 goto out_invalidate;
515
516 xfs_alert_ratelimited(mp,
517 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
518 page, ip->i_ino, fileoff);
519
520 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
521 i_blocks_per_page(inode, page) - pageoff_fsb);
522 if (error && !XFS_FORCED_SHUTDOWN(mp))
523 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
524 out_invalidate:
525 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff);
526 }
527
528 static const struct iomap_writeback_ops xfs_writeback_ops = {
529 .map_blocks = xfs_map_blocks,
530 .prepare_ioend = xfs_prepare_ioend,
531 .discard_page = xfs_discard_page,
532 };
533
534 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)535 xfs_vm_writepage(
536 struct page *page,
537 struct writeback_control *wbc)
538 {
539 struct xfs_writepage_ctx wpc = { };
540
541 if (WARN_ON_ONCE(current->journal_info)) {
542 redirty_page_for_writepage(wbc, page);
543 unlock_page(page);
544 return 0;
545 }
546
547 return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
548 }
549
550 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)551 xfs_vm_writepages(
552 struct address_space *mapping,
553 struct writeback_control *wbc)
554 {
555 struct xfs_writepage_ctx wpc = { };
556
557 /*
558 * Writing back data in a transaction context can result in recursive
559 * transactions. This is bad, so issue a warning and get out of here.
560 */
561 if (WARN_ON_ONCE(current->journal_info))
562 return 0;
563
564 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
565 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
566 }
567
568 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)569 xfs_dax_writepages(
570 struct address_space *mapping,
571 struct writeback_control *wbc)
572 {
573 struct xfs_inode *ip = XFS_I(mapping->host);
574
575 xfs_iflags_clear(ip, XFS_ITRUNCATED);
576 return dax_writeback_mapping_range(mapping,
577 xfs_inode_buftarg(ip)->bt_daxdev, wbc);
578 }
579
580 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)581 xfs_vm_bmap(
582 struct address_space *mapping,
583 sector_t block)
584 {
585 struct xfs_inode *ip = XFS_I(mapping->host);
586
587 trace_xfs_vm_bmap(ip);
588
589 /*
590 * The swap code (ab-)uses ->bmap to get a block mapping and then
591 * bypasses the file system for actual I/O. We really can't allow
592 * that on reflinks inodes, so we have to skip out here. And yes,
593 * 0 is the magic code for a bmap error.
594 *
595 * Since we don't pass back blockdev info, we can't return bmap
596 * information for rt files either.
597 */
598 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
599 return 0;
600 return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
601 }
602
603 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)604 xfs_vm_readpage(
605 struct file *unused,
606 struct page *page)
607 {
608 return iomap_readpage(page, &xfs_read_iomap_ops);
609 }
610
611 STATIC void
xfs_vm_readahead(struct readahead_control * rac)612 xfs_vm_readahead(
613 struct readahead_control *rac)
614 {
615 iomap_readahead(rac, &xfs_read_iomap_ops);
616 }
617
618 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)619 xfs_iomap_swapfile_activate(
620 struct swap_info_struct *sis,
621 struct file *swap_file,
622 sector_t *span)
623 {
624 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
625 return iomap_swapfile_activate(sis, swap_file, span,
626 &xfs_read_iomap_ops);
627 }
628
629 const struct address_space_operations xfs_address_space_operations = {
630 .readpage = xfs_vm_readpage,
631 .readahead = xfs_vm_readahead,
632 .writepage = xfs_vm_writepage,
633 .writepages = xfs_vm_writepages,
634 .set_page_dirty = iomap_set_page_dirty,
635 .releasepage = iomap_releasepage,
636 .invalidatepage = iomap_invalidatepage,
637 .bmap = xfs_vm_bmap,
638 .direct_IO = noop_direct_IO,
639 .migratepage = iomap_migrate_page,
640 .is_partially_uptodate = iomap_is_partially_uptodate,
641 .error_remove_page = generic_error_remove_page,
642 .swap_activate = xfs_iomap_swapfile_activate,
643 };
644
645 const struct address_space_operations xfs_dax_aops = {
646 .writepages = xfs_dax_writepages,
647 .direct_IO = noop_direct_IO,
648 .set_page_dirty = noop_set_page_dirty,
649 .invalidatepage = noop_invalidatepage,
650 .swap_activate = xfs_iomap_swapfile_activate,
651 };
652