• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 #include <linux/android_vendor.h>
69 #include <linux/android_kabi.h>
70 
71 #include <asm/tlb.h>
72 #include <asm-generic/vmlinux.lds.h>
73 
74 #ifdef CONFIG_PARAVIRT
75 # include <asm/paravirt.h>
76 #endif
77 
78 #include "cpupri.h"
79 #include "cpudeadline.h"
80 
81 #include <trace/events/sched.h>
82 
83 #ifdef CONFIG_SCHED_DEBUG
84 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
85 #else
86 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
87 #endif
88 
89 struct rq;
90 struct cpuidle_state;
91 
92 /* task_struct::on_rq states: */
93 #define TASK_ON_RQ_QUEUED	1
94 #define TASK_ON_RQ_MIGRATING	2
95 
96 extern __read_mostly int scheduler_running;
97 
98 extern unsigned long calc_load_update;
99 extern atomic_long_t calc_load_tasks;
100 
101 extern void calc_global_load_tick(struct rq *this_rq);
102 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
103 
104 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
105 /*
106  * Helpers for converting nanosecond timing to jiffy resolution
107  */
108 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 
110 /*
111  * Increase resolution of nice-level calculations for 64-bit architectures.
112  * The extra resolution improves shares distribution and load balancing of
113  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114  * hierarchies, especially on larger systems. This is not a user-visible change
115  * and does not change the user-interface for setting shares/weights.
116  *
117  * We increase resolution only if we have enough bits to allow this increased
118  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119  * are pretty high and the returns do not justify the increased costs.
120  *
121  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122  * increase coverage and consistency always enable it on 64-bit platforms.
123  */
124 #ifdef CONFIG_64BIT
125 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
127 # define scale_load_down(w) \
128 ({ \
129 	unsigned long __w = (w); \
130 	if (__w) \
131 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
132 	__w; \
133 })
134 #else
135 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
136 # define scale_load(w)		(w)
137 # define scale_load_down(w)	(w)
138 #endif
139 
140 /*
141  * Task weight (visible to users) and its load (invisible to users) have
142  * independent resolution, but they should be well calibrated. We use
143  * scale_load() and scale_load_down(w) to convert between them. The
144  * following must be true:
145  *
146  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
147  *
148  */
149 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
150 
151 /*
152  * Single value that decides SCHED_DEADLINE internal math precision.
153  * 10 -> just above 1us
154  * 9  -> just above 0.5us
155  */
156 #define DL_SCALE		10
157 
158 /*
159  * Single value that denotes runtime == period, ie unlimited time.
160  */
161 #define RUNTIME_INF		((u64)~0ULL)
162 
idle_policy(int policy)163 static inline int idle_policy(int policy)
164 {
165 	return policy == SCHED_IDLE;
166 }
fair_policy(int policy)167 static inline int fair_policy(int policy)
168 {
169 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
170 }
171 
rt_policy(int policy)172 static inline int rt_policy(int policy)
173 {
174 	return policy == SCHED_FIFO || policy == SCHED_RR;
175 }
176 
dl_policy(int policy)177 static inline int dl_policy(int policy)
178 {
179 	return policy == SCHED_DEADLINE;
180 }
valid_policy(int policy)181 static inline bool valid_policy(int policy)
182 {
183 	return idle_policy(policy) || fair_policy(policy) ||
184 		rt_policy(policy) || dl_policy(policy);
185 }
186 
task_has_idle_policy(struct task_struct * p)187 static inline int task_has_idle_policy(struct task_struct *p)
188 {
189 	return idle_policy(p->policy);
190 }
191 
task_has_rt_policy(struct task_struct * p)192 static inline int task_has_rt_policy(struct task_struct *p)
193 {
194 	return rt_policy(p->policy);
195 }
196 
task_has_dl_policy(struct task_struct * p)197 static inline int task_has_dl_policy(struct task_struct *p)
198 {
199 	return dl_policy(p->policy);
200 }
201 
202 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
203 
update_avg(u64 * avg,u64 sample)204 static inline void update_avg(u64 *avg, u64 sample)
205 {
206 	s64 diff = sample - *avg;
207 	*avg += diff / 8;
208 }
209 
210 /*
211  * Shifting a value by an exponent greater *or equal* to the size of said value
212  * is UB; cap at size-1.
213  */
214 #define shr_bound(val, shift)							\
215 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
216 
217 /*
218  * !! For sched_setattr_nocheck() (kernel) only !!
219  *
220  * This is actually gross. :(
221  *
222  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
223  * tasks, but still be able to sleep. We need this on platforms that cannot
224  * atomically change clock frequency. Remove once fast switching will be
225  * available on such platforms.
226  *
227  * SUGOV stands for SchedUtil GOVernor.
228  */
229 #define SCHED_FLAG_SUGOV	0x10000000
230 
231 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
232 
dl_entity_is_special(struct sched_dl_entity * dl_se)233 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
234 {
235 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
236 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
237 #else
238 	return false;
239 #endif
240 }
241 
242 /*
243  * Tells if entity @a should preempt entity @b.
244  */
245 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)246 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
247 {
248 	return dl_entity_is_special(a) ||
249 	       dl_time_before(a->deadline, b->deadline);
250 }
251 
252 /*
253  * This is the priority-queue data structure of the RT scheduling class:
254  */
255 struct rt_prio_array {
256 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
257 	struct list_head queue[MAX_RT_PRIO];
258 };
259 
260 struct rt_bandwidth {
261 	/* nests inside the rq lock: */
262 	raw_spinlock_t		rt_runtime_lock;
263 	ktime_t			rt_period;
264 	u64			rt_runtime;
265 	struct hrtimer		rt_period_timer;
266 	unsigned int		rt_period_active;
267 };
268 
269 void __dl_clear_params(struct task_struct *p);
270 
271 struct dl_bandwidth {
272 	raw_spinlock_t		dl_runtime_lock;
273 	u64			dl_runtime;
274 	u64			dl_period;
275 };
276 
dl_bandwidth_enabled(void)277 static inline int dl_bandwidth_enabled(void)
278 {
279 	return sysctl_sched_rt_runtime >= 0;
280 }
281 
282 /*
283  * To keep the bandwidth of -deadline tasks under control
284  * we need some place where:
285  *  - store the maximum -deadline bandwidth of each cpu;
286  *  - cache the fraction of bandwidth that is currently allocated in
287  *    each root domain;
288  *
289  * This is all done in the data structure below. It is similar to the
290  * one used for RT-throttling (rt_bandwidth), with the main difference
291  * that, since here we are only interested in admission control, we
292  * do not decrease any runtime while the group "executes", neither we
293  * need a timer to replenish it.
294  *
295  * With respect to SMP, bandwidth is given on a per root domain basis,
296  * meaning that:
297  *  - bw (< 100%) is the deadline bandwidth of each CPU;
298  *  - total_bw is the currently allocated bandwidth in each root domain;
299  */
300 struct dl_bw {
301 	raw_spinlock_t		lock;
302 	u64			bw;
303 	u64			total_bw;
304 };
305 
306 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
307 
308 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)309 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
310 {
311 	dl_b->total_bw -= tsk_bw;
312 	__dl_update(dl_b, (s32)tsk_bw / cpus);
313 }
314 
315 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)316 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
317 {
318 	dl_b->total_bw += tsk_bw;
319 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
320 }
321 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)322 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
323 				 u64 old_bw, u64 new_bw)
324 {
325 	return dl_b->bw != -1 &&
326 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
327 }
328 
329 /*
330  * Verify the fitness of task @p to run on @cpu taking into account the
331  * CPU original capacity and the runtime/deadline ratio of the task.
332  *
333  * The function will return true if the CPU original capacity of the
334  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
335  * task and false otherwise.
336  */
dl_task_fits_capacity(struct task_struct * p,int cpu)337 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
338 {
339 	unsigned long cap = arch_scale_cpu_capacity(cpu);
340 
341 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
342 }
343 
344 extern void init_dl_bw(struct dl_bw *dl_b);
345 extern int  sched_dl_global_validate(void);
346 extern void sched_dl_do_global(void);
347 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
348 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
349 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
350 extern bool __checkparam_dl(const struct sched_attr *attr);
351 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
352 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
353 extern int  dl_bw_check_overflow(int cpu);
354 
355 #ifdef CONFIG_CGROUP_SCHED
356 
357 #include <linux/cgroup.h>
358 #include <linux/psi.h>
359 
360 struct cfs_rq;
361 struct rt_rq;
362 
363 extern struct list_head task_groups;
364 
365 struct cfs_bandwidth {
366 #ifdef CONFIG_CFS_BANDWIDTH
367 	raw_spinlock_t		lock;
368 	ktime_t			period;
369 	u64			quota;
370 	u64			runtime;
371 	s64			hierarchical_quota;
372 
373 	u8			idle;
374 	u8			period_active;
375 	u8			slack_started;
376 	struct hrtimer		period_timer;
377 	struct hrtimer		slack_timer;
378 	struct list_head	throttled_cfs_rq;
379 
380 	/* Statistics: */
381 	int			nr_periods;
382 	int			nr_throttled;
383 	u64			throttled_time;
384 #endif
385 };
386 
387 /* Task group related information */
388 struct task_group {
389 	struct cgroup_subsys_state css;
390 
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 	/* schedulable entities of this group on each CPU */
393 	struct sched_entity	**se;
394 	/* runqueue "owned" by this group on each CPU */
395 	struct cfs_rq		**cfs_rq;
396 	unsigned long		shares;
397 
398 #ifdef	CONFIG_SMP
399 	/*
400 	 * load_avg can be heavily contended at clock tick time, so put
401 	 * it in its own cacheline separated from the fields above which
402 	 * will also be accessed at each tick.
403 	 */
404 	atomic_long_t		load_avg ____cacheline_aligned;
405 #endif
406 #endif
407 
408 #ifdef CONFIG_RT_GROUP_SCHED
409 	struct sched_rt_entity	**rt_se;
410 	struct rt_rq		**rt_rq;
411 
412 	struct rt_bandwidth	rt_bandwidth;
413 #endif
414 
415 	struct rcu_head		rcu;
416 	struct list_head	list;
417 
418 	struct task_group	*parent;
419 	struct list_head	siblings;
420 	struct list_head	children;
421 
422 #ifdef CONFIG_SCHED_AUTOGROUP
423 	struct autogroup	*autogroup;
424 #endif
425 
426 	struct cfs_bandwidth	cfs_bandwidth;
427 
428 #ifdef CONFIG_UCLAMP_TASK_GROUP
429 	/* The two decimal precision [%] value requested from user-space */
430 	unsigned int		uclamp_pct[UCLAMP_CNT];
431 	/* Clamp values requested for a task group */
432 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
433 	/* Effective clamp values used for a task group */
434 	struct uclamp_se	uclamp[UCLAMP_CNT];
435 	/* Latency-sensitive flag used for a task group */
436 	unsigned int		latency_sensitive;
437 
438 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
439 #endif
440 
441 	ANDROID_KABI_RESERVE(1);
442 	ANDROID_KABI_RESERVE(2);
443 	ANDROID_KABI_RESERVE(3);
444 	ANDROID_KABI_RESERVE(4);
445 };
446 
447 #ifdef CONFIG_FAIR_GROUP_SCHED
448 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
449 
450 /*
451  * A weight of 0 or 1 can cause arithmetics problems.
452  * A weight of a cfs_rq is the sum of weights of which entities
453  * are queued on this cfs_rq, so a weight of a entity should not be
454  * too large, so as the shares value of a task group.
455  * (The default weight is 1024 - so there's no practical
456  *  limitation from this.)
457  */
458 #define MIN_SHARES		(1UL <<  1)
459 #define MAX_SHARES		(1UL << 18)
460 #endif
461 
462 typedef int (*tg_visitor)(struct task_group *, void *);
463 
464 extern int walk_tg_tree_from(struct task_group *from,
465 			     tg_visitor down, tg_visitor up, void *data);
466 
467 /*
468  * Iterate the full tree, calling @down when first entering a node and @up when
469  * leaving it for the final time.
470  *
471  * Caller must hold rcu_lock or sufficient equivalent.
472  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)473 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
474 {
475 	return walk_tg_tree_from(&root_task_group, down, up, data);
476 }
477 
478 extern int tg_nop(struct task_group *tg, void *data);
479 
480 extern void free_fair_sched_group(struct task_group *tg);
481 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
482 extern void online_fair_sched_group(struct task_group *tg);
483 extern void unregister_fair_sched_group(struct task_group *tg);
484 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
485 			struct sched_entity *se, int cpu,
486 			struct sched_entity *parent);
487 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
488 
489 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
490 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
491 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
492 
493 extern void free_rt_sched_group(struct task_group *tg);
494 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
495 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
496 		struct sched_rt_entity *rt_se, int cpu,
497 		struct sched_rt_entity *parent);
498 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
499 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
500 extern long sched_group_rt_runtime(struct task_group *tg);
501 extern long sched_group_rt_period(struct task_group *tg);
502 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
503 
504 extern struct task_group *sched_create_group(struct task_group *parent);
505 extern void sched_online_group(struct task_group *tg,
506 			       struct task_group *parent);
507 extern void sched_destroy_group(struct task_group *tg);
508 extern void sched_offline_group(struct task_group *tg);
509 
510 extern void sched_move_task(struct task_struct *tsk);
511 
512 #ifdef CONFIG_FAIR_GROUP_SCHED
513 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
514 
515 #ifdef CONFIG_SMP
516 extern void set_task_rq_fair(struct sched_entity *se,
517 			     struct cfs_rq *prev, struct cfs_rq *next);
518 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)519 static inline void set_task_rq_fair(struct sched_entity *se,
520 			     struct cfs_rq *prev, struct cfs_rq *next) { }
521 #endif /* CONFIG_SMP */
522 #endif /* CONFIG_FAIR_GROUP_SCHED */
523 
524 #else /* CONFIG_CGROUP_SCHED */
525 
526 struct cfs_bandwidth { };
527 
528 #endif	/* CONFIG_CGROUP_SCHED */
529 
530 /* CFS-related fields in a runqueue */
531 struct cfs_rq {
532 	struct load_weight	load;
533 	unsigned int		nr_running;
534 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
535 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
536 
537 	u64			exec_clock;
538 	u64			min_vruntime;
539 #ifndef CONFIG_64BIT
540 	u64			min_vruntime_copy;
541 #endif
542 
543 	struct rb_root_cached	tasks_timeline;
544 
545 	/*
546 	 * 'curr' points to currently running entity on this cfs_rq.
547 	 * It is set to NULL otherwise (i.e when none are currently running).
548 	 */
549 	struct sched_entity	*curr;
550 	struct sched_entity	*next;
551 	struct sched_entity	*last;
552 	struct sched_entity	*skip;
553 
554 #ifdef	CONFIG_SCHED_DEBUG
555 	unsigned int		nr_spread_over;
556 #endif
557 
558 #ifdef CONFIG_SMP
559 	/*
560 	 * CFS load tracking
561 	 */
562 	struct sched_avg	avg;
563 #ifndef CONFIG_64BIT
564 	u64			load_last_update_time_copy;
565 #endif
566 	struct {
567 		raw_spinlock_t	lock ____cacheline_aligned;
568 		int		nr;
569 		unsigned long	load_avg;
570 		unsigned long	util_avg;
571 		unsigned long	runnable_avg;
572 	} removed;
573 
574 #ifdef CONFIG_FAIR_GROUP_SCHED
575 	unsigned long		tg_load_avg_contrib;
576 	long			propagate;
577 	long			prop_runnable_sum;
578 
579 	/*
580 	 *   h_load = weight * f(tg)
581 	 *
582 	 * Where f(tg) is the recursive weight fraction assigned to
583 	 * this group.
584 	 */
585 	unsigned long		h_load;
586 	u64			last_h_load_update;
587 	struct sched_entity	*h_load_next;
588 #endif /* CONFIG_FAIR_GROUP_SCHED */
589 #endif /* CONFIG_SMP */
590 
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
593 
594 	/*
595 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
596 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
597 	 * (like users, containers etc.)
598 	 *
599 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
600 	 * This list is used during load balance.
601 	 */
602 	int			on_list;
603 	struct list_head	leaf_cfs_rq_list;
604 	struct task_group	*tg;	/* group that "owns" this runqueue */
605 
606 #ifdef CONFIG_CFS_BANDWIDTH
607 	int			runtime_enabled;
608 	s64			runtime_remaining;
609 
610 	u64			throttled_clock;
611 	u64			throttled_clock_pelt;
612 	u64			throttled_clock_pelt_time;
613 	int			throttled;
614 	int			throttle_count;
615 	struct list_head	throttled_list;
616 #endif /* CONFIG_CFS_BANDWIDTH */
617 
618 	ANDROID_VENDOR_DATA_ARRAY(1, 16);
619 #endif /* CONFIG_FAIR_GROUP_SCHED */
620 };
621 
rt_bandwidth_enabled(void)622 static inline int rt_bandwidth_enabled(void)
623 {
624 	return sysctl_sched_rt_runtime >= 0;
625 }
626 
627 /* RT IPI pull logic requires IRQ_WORK */
628 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
629 # define HAVE_RT_PUSH_IPI
630 #endif
631 
632 /* Real-Time classes' related field in a runqueue: */
633 struct rt_rq {
634 	struct rt_prio_array	active;
635 	unsigned int		rt_nr_running;
636 	unsigned int		rr_nr_running;
637 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
638 	struct {
639 		int		curr; /* highest queued rt task prio */
640 #ifdef CONFIG_SMP
641 		int		next; /* next highest */
642 #endif
643 	} highest_prio;
644 #endif
645 #ifdef CONFIG_SMP
646 	unsigned long		rt_nr_migratory;
647 	unsigned long		rt_nr_total;
648 	int			overloaded;
649 	struct plist_head	pushable_tasks;
650 
651 #endif /* CONFIG_SMP */
652 	int			rt_queued;
653 
654 	int			rt_throttled;
655 	u64			rt_time;
656 	u64			rt_runtime;
657 	/* Nests inside the rq lock: */
658 	raw_spinlock_t		rt_runtime_lock;
659 
660 #ifdef CONFIG_RT_GROUP_SCHED
661 	unsigned long		rt_nr_boosted;
662 
663 	struct rq		*rq;
664 	struct task_group	*tg;
665 #endif
666 };
667 
rt_rq_is_runnable(struct rt_rq * rt_rq)668 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
669 {
670 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
671 }
672 
673 /* Deadline class' related fields in a runqueue */
674 struct dl_rq {
675 	/* runqueue is an rbtree, ordered by deadline */
676 	struct rb_root_cached	root;
677 
678 	unsigned long		dl_nr_running;
679 
680 #ifdef CONFIG_SMP
681 	/*
682 	 * Deadline values of the currently executing and the
683 	 * earliest ready task on this rq. Caching these facilitates
684 	 * the decision whether or not a ready but not running task
685 	 * should migrate somewhere else.
686 	 */
687 	struct {
688 		u64		curr;
689 		u64		next;
690 	} earliest_dl;
691 
692 	unsigned long		dl_nr_migratory;
693 	int			overloaded;
694 
695 	/*
696 	 * Tasks on this rq that can be pushed away. They are kept in
697 	 * an rb-tree, ordered by tasks' deadlines, with caching
698 	 * of the leftmost (earliest deadline) element.
699 	 */
700 	struct rb_root_cached	pushable_dl_tasks_root;
701 #else
702 	struct dl_bw		dl_bw;
703 #endif
704 	/*
705 	 * "Active utilization" for this runqueue: increased when a
706 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
707 	 * task blocks
708 	 */
709 	u64			running_bw;
710 
711 	/*
712 	 * Utilization of the tasks "assigned" to this runqueue (including
713 	 * the tasks that are in runqueue and the tasks that executed on this
714 	 * CPU and blocked). Increased when a task moves to this runqueue, and
715 	 * decreased when the task moves away (migrates, changes scheduling
716 	 * policy, or terminates).
717 	 * This is needed to compute the "inactive utilization" for the
718 	 * runqueue (inactive utilization = this_bw - running_bw).
719 	 */
720 	u64			this_bw;
721 	u64			extra_bw;
722 
723 	/*
724 	 * Inverse of the fraction of CPU utilization that can be reclaimed
725 	 * by the GRUB algorithm.
726 	 */
727 	u64			bw_ratio;
728 };
729 
730 #ifdef CONFIG_FAIR_GROUP_SCHED
731 /* An entity is a task if it doesn't "own" a runqueue */
732 #define entity_is_task(se)	(!se->my_q)
733 
se_update_runnable(struct sched_entity * se)734 static inline void se_update_runnable(struct sched_entity *se)
735 {
736 	if (!entity_is_task(se))
737 		se->runnable_weight = se->my_q->h_nr_running;
738 }
739 
se_runnable(struct sched_entity * se)740 static inline long se_runnable(struct sched_entity *se)
741 {
742 	if (entity_is_task(se))
743 		return !!se->on_rq;
744 	else
745 		return se->runnable_weight;
746 }
747 
748 #else
749 #define entity_is_task(se)	1
750 
se_update_runnable(struct sched_entity * se)751 static inline void se_update_runnable(struct sched_entity *se) {}
752 
se_runnable(struct sched_entity * se)753 static inline long se_runnable(struct sched_entity *se)
754 {
755 	return !!se->on_rq;
756 }
757 #endif
758 
759 #ifdef CONFIG_SMP
760 /*
761  * XXX we want to get rid of these helpers and use the full load resolution.
762  */
se_weight(struct sched_entity * se)763 static inline long se_weight(struct sched_entity *se)
764 {
765 	return scale_load_down(se->load.weight);
766 }
767 
768 
sched_asym_prefer(int a,int b)769 static inline bool sched_asym_prefer(int a, int b)
770 {
771 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
772 }
773 
774 struct perf_domain {
775 	struct em_perf_domain *em_pd;
776 	struct perf_domain *next;
777 	struct rcu_head rcu;
778 };
779 
780 /* Scheduling group status flags */
781 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
782 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
783 
784 /*
785  * We add the notion of a root-domain which will be used to define per-domain
786  * variables. Each exclusive cpuset essentially defines an island domain by
787  * fully partitioning the member CPUs from any other cpuset. Whenever a new
788  * exclusive cpuset is created, we also create and attach a new root-domain
789  * object.
790  *
791  */
792 struct root_domain {
793 	atomic_t		refcount;
794 	atomic_t		rto_count;
795 	struct rcu_head		rcu;
796 	cpumask_var_t		span;
797 	cpumask_var_t		online;
798 
799 	/*
800 	 * Indicate pullable load on at least one CPU, e.g:
801 	 * - More than one runnable task
802 	 * - Running task is misfit
803 	 */
804 	int			overload;
805 
806 	/* Indicate one or more cpus over-utilized (tipping point) */
807 	int			overutilized;
808 
809 	/*
810 	 * The bit corresponding to a CPU gets set here if such CPU has more
811 	 * than one runnable -deadline task (as it is below for RT tasks).
812 	 */
813 	cpumask_var_t		dlo_mask;
814 	atomic_t		dlo_count;
815 	struct dl_bw		dl_bw;
816 	struct cpudl		cpudl;
817 
818 #ifdef HAVE_RT_PUSH_IPI
819 	/*
820 	 * For IPI pull requests, loop across the rto_mask.
821 	 */
822 	struct irq_work		rto_push_work;
823 	raw_spinlock_t		rto_lock;
824 	/* These are only updated and read within rto_lock */
825 	int			rto_loop;
826 	int			rto_cpu;
827 	/* These atomics are updated outside of a lock */
828 	atomic_t		rto_loop_next;
829 	atomic_t		rto_loop_start;
830 #endif
831 	/*
832 	 * The "RT overload" flag: it gets set if a CPU has more than
833 	 * one runnable RT task.
834 	 */
835 	cpumask_var_t		rto_mask;
836 	struct cpupri		cpupri;
837 
838 	unsigned long		max_cpu_capacity;
839 
840 	/*
841 	 * NULL-terminated list of performance domains intersecting with the
842 	 * CPUs of the rd. Protected by RCU.
843 	 */
844 	struct perf_domain __rcu *pd;
845 
846 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
847 
848 	ANDROID_KABI_RESERVE(1);
849 	ANDROID_KABI_RESERVE(2);
850 	ANDROID_KABI_RESERVE(3);
851 	ANDROID_KABI_RESERVE(4);
852 };
853 
854 extern void init_defrootdomain(void);
855 extern int sched_init_domains(const struct cpumask *cpu_map);
856 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
857 extern void sched_get_rd(struct root_domain *rd);
858 extern void sched_put_rd(struct root_domain *rd);
859 
860 #ifdef HAVE_RT_PUSH_IPI
861 extern void rto_push_irq_work_func(struct irq_work *work);
862 #endif
863 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
864 #endif /* CONFIG_SMP */
865 
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868  * struct uclamp_bucket - Utilization clamp bucket
869  * @value: utilization clamp value for tasks on this clamp bucket
870  * @tasks: number of RUNNABLE tasks on this clamp bucket
871  *
872  * Keep track of how many tasks are RUNNABLE for a given utilization
873  * clamp value.
874  */
875 struct uclamp_bucket {
876 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
877 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
878 };
879 
880 /*
881  * struct uclamp_rq - rq's utilization clamp
882  * @value: currently active clamp values for a rq
883  * @bucket: utilization clamp buckets affecting a rq
884  *
885  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
886  * A clamp value is affecting a rq when there is at least one task RUNNABLE
887  * (or actually running) with that value.
888  *
889  * There are up to UCLAMP_CNT possible different clamp values, currently there
890  * are only two: minimum utilization and maximum utilization.
891  *
892  * All utilization clamping values are MAX aggregated, since:
893  * - for util_min: we want to run the CPU at least at the max of the minimum
894  *   utilization required by its currently RUNNABLE tasks.
895  * - for util_max: we want to allow the CPU to run up to the max of the
896  *   maximum utilization allowed by its currently RUNNABLE tasks.
897  *
898  * Since on each system we expect only a limited number of different
899  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
900  * the metrics required to compute all the per-rq utilization clamp values.
901  */
902 struct uclamp_rq {
903 	unsigned int value;
904 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
905 };
906 
907 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
908 #endif /* CONFIG_UCLAMP_TASK */
909 
910 /*
911  * This is the main, per-CPU runqueue data structure.
912  *
913  * Locking rule: those places that want to lock multiple runqueues
914  * (such as the load balancing or the thread migration code), lock
915  * acquire operations must be ordered by ascending &runqueue.
916  */
917 struct rq {
918 	/* runqueue lock: */
919 	raw_spinlock_t		lock;
920 
921 	/*
922 	 * nr_running and cpu_load should be in the same cacheline because
923 	 * remote CPUs use both these fields when doing load calculation.
924 	 */
925 	unsigned int		nr_running;
926 #ifdef CONFIG_NUMA_BALANCING
927 	unsigned int		nr_numa_running;
928 	unsigned int		nr_preferred_running;
929 	unsigned int		numa_migrate_on;
930 #endif
931 #ifdef CONFIG_NO_HZ_COMMON
932 #ifdef CONFIG_SMP
933 	unsigned long		last_blocked_load_update_tick;
934 	unsigned int		has_blocked_load;
935 	call_single_data_t	nohz_csd;
936 #endif /* CONFIG_SMP */
937 	unsigned int		nohz_tick_stopped;
938 	atomic_t		nohz_flags;
939 #endif /* CONFIG_NO_HZ_COMMON */
940 
941 #ifdef CONFIG_SMP
942 	unsigned int		ttwu_pending;
943 #endif
944 	u64			nr_switches;
945 
946 #ifdef CONFIG_UCLAMP_TASK
947 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
948 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
949 	unsigned int		uclamp_flags;
950 #define UCLAMP_FLAG_IDLE 0x01
951 #endif
952 
953 	struct cfs_rq		cfs;
954 	struct rt_rq		rt;
955 	struct dl_rq		dl;
956 
957 #ifdef CONFIG_FAIR_GROUP_SCHED
958 	/* list of leaf cfs_rq on this CPU: */
959 	struct list_head	leaf_cfs_rq_list;
960 	struct list_head	*tmp_alone_branch;
961 #endif /* CONFIG_FAIR_GROUP_SCHED */
962 
963 	/*
964 	 * This is part of a global counter where only the total sum
965 	 * over all CPUs matters. A task can increase this counter on
966 	 * one CPU and if it got migrated afterwards it may decrease
967 	 * it on another CPU. Always updated under the runqueue lock:
968 	 */
969 	unsigned long		nr_uninterruptible;
970 
971 	struct task_struct __rcu	*curr;
972 	struct task_struct	*idle;
973 	struct task_struct	*stop;
974 	unsigned long		next_balance;
975 	struct mm_struct	*prev_mm;
976 
977 	unsigned int		clock_update_flags;
978 	u64			clock;
979 	/* Ensure that all clocks are in the same cache line */
980 	u64			clock_task ____cacheline_aligned;
981 	u64			clock_pelt;
982 	unsigned long		lost_idle_time;
983 
984 	atomic_t		nr_iowait;
985 
986 #ifdef CONFIG_MEMBARRIER
987 	int membarrier_state;
988 #endif
989 
990 #ifdef CONFIG_SMP
991 	struct root_domain		*rd;
992 	struct sched_domain __rcu	*sd;
993 
994 	unsigned long		cpu_capacity;
995 	unsigned long		cpu_capacity_orig;
996 
997 	struct callback_head	*balance_callback;
998 
999 	unsigned char		nohz_idle_balance;
1000 	unsigned char		idle_balance;
1001 
1002 	unsigned long		misfit_task_load;
1003 
1004 	/* For active balancing */
1005 	int			active_balance;
1006 	int			push_cpu;
1007 	struct cpu_stop_work	active_balance_work;
1008 
1009 	/* CPU of this runqueue: */
1010 	int			cpu;
1011 	int			online;
1012 
1013 	struct list_head cfs_tasks;
1014 
1015 	struct sched_avg	avg_rt;
1016 	struct sched_avg	avg_dl;
1017 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1018 	struct sched_avg	avg_irq;
1019 #endif
1020 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1021 	struct sched_avg	avg_thermal;
1022 #endif
1023 	u64			idle_stamp;
1024 	u64			avg_idle;
1025 
1026 	/* This is used to determine avg_idle's max value */
1027 	u64			max_idle_balance_cost;
1028 #endif /* CONFIG_SMP */
1029 
1030 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1031 	u64			prev_irq_time;
1032 #endif
1033 #ifdef CONFIG_PARAVIRT
1034 	u64			prev_steal_time;
1035 #endif
1036 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1037 	u64			prev_steal_time_rq;
1038 #endif
1039 
1040 	/* calc_load related fields */
1041 	unsigned long		calc_load_update;
1042 	long			calc_load_active;
1043 
1044 #ifdef CONFIG_SCHED_HRTICK
1045 #ifdef CONFIG_SMP
1046 	call_single_data_t	hrtick_csd;
1047 #endif
1048 	struct hrtimer		hrtick_timer;
1049 	ktime_t 		hrtick_time;
1050 #endif
1051 
1052 #ifdef CONFIG_SCHEDSTATS
1053 	/* latency stats */
1054 	struct sched_info	rq_sched_info;
1055 	unsigned long long	rq_cpu_time;
1056 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1057 
1058 	/* sys_sched_yield() stats */
1059 	unsigned int		yld_count;
1060 
1061 	/* schedule() stats */
1062 	unsigned int		sched_count;
1063 	unsigned int		sched_goidle;
1064 
1065 	/* try_to_wake_up() stats */
1066 	unsigned int		ttwu_count;
1067 	unsigned int		ttwu_local;
1068 #endif
1069 
1070 #ifdef CONFIG_HOTPLUG_CPU
1071 	struct cpu_stop_work	drain;
1072 	struct cpu_stop_done	drain_done;
1073 #endif
1074 
1075 #ifdef CONFIG_CPU_IDLE
1076 	/* Must be inspected within a rcu lock section */
1077 	struct cpuidle_state	*idle_state;
1078 #endif
1079 
1080 	ANDROID_VENDOR_DATA_ARRAY(1, 96);
1081 	ANDROID_OEM_DATA_ARRAY(1, 16);
1082 
1083 	ANDROID_KABI_RESERVE(1);
1084 	ANDROID_KABI_RESERVE(2);
1085 	ANDROID_KABI_RESERVE(3);
1086 	ANDROID_KABI_RESERVE(4);
1087 };
1088 
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 
1091 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1092 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1093 {
1094 	return cfs_rq->rq;
1095 }
1096 
1097 #else
1098 
rq_of(struct cfs_rq * cfs_rq)1099 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1100 {
1101 	return container_of(cfs_rq, struct rq, cfs);
1102 }
1103 #endif
1104 
cpu_of(struct rq * rq)1105 static inline int cpu_of(struct rq *rq)
1106 {
1107 #ifdef CONFIG_SMP
1108 	return rq->cpu;
1109 #else
1110 	return 0;
1111 #endif
1112 }
1113 
1114 
1115 #ifdef CONFIG_SCHED_SMT
1116 extern void __update_idle_core(struct rq *rq);
1117 
update_idle_core(struct rq * rq)1118 static inline void update_idle_core(struct rq *rq)
1119 {
1120 	if (static_branch_unlikely(&sched_smt_present))
1121 		__update_idle_core(rq);
1122 }
1123 
1124 #else
update_idle_core(struct rq * rq)1125 static inline void update_idle_core(struct rq *rq) { }
1126 #endif
1127 
1128 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1129 
1130 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1131 #define this_rq()		this_cpu_ptr(&runqueues)
1132 #define task_rq(p)		cpu_rq(task_cpu(p))
1133 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1134 #define raw_rq()		raw_cpu_ptr(&runqueues)
1135 
1136 extern void update_rq_clock(struct rq *rq);
1137 
__rq_clock_broken(struct rq * rq)1138 static inline u64 __rq_clock_broken(struct rq *rq)
1139 {
1140 	return READ_ONCE(rq->clock);
1141 }
1142 
1143 /*
1144  * rq::clock_update_flags bits
1145  *
1146  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1147  *  call to __schedule(). This is an optimisation to avoid
1148  *  neighbouring rq clock updates.
1149  *
1150  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1151  *  in effect and calls to update_rq_clock() are being ignored.
1152  *
1153  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1154  *  made to update_rq_clock() since the last time rq::lock was pinned.
1155  *
1156  * If inside of __schedule(), clock_update_flags will have been
1157  * shifted left (a left shift is a cheap operation for the fast path
1158  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1159  *
1160  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1161  *
1162  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1163  * one position though, because the next rq_unpin_lock() will shift it
1164  * back.
1165  */
1166 #define RQCF_REQ_SKIP		0x01
1167 #define RQCF_ACT_SKIP		0x02
1168 #define RQCF_UPDATED		0x04
1169 
assert_clock_updated(struct rq * rq)1170 static inline void assert_clock_updated(struct rq *rq)
1171 {
1172 	/*
1173 	 * The only reason for not seeing a clock update since the
1174 	 * last rq_pin_lock() is if we're currently skipping updates.
1175 	 */
1176 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1177 }
1178 
rq_clock(struct rq * rq)1179 static inline u64 rq_clock(struct rq *rq)
1180 {
1181 	lockdep_assert_held(&rq->lock);
1182 	assert_clock_updated(rq);
1183 
1184 	return rq->clock;
1185 }
1186 
rq_clock_task(struct rq * rq)1187 static inline u64 rq_clock_task(struct rq *rq)
1188 {
1189 	lockdep_assert_held(&rq->lock);
1190 	assert_clock_updated(rq);
1191 
1192 	return rq->clock_task;
1193 }
1194 
1195 #ifdef CONFIG_SMP
1196 DECLARE_PER_CPU(u64, clock_task_mult);
1197 
rq_clock_task_mult(struct rq * rq)1198 static inline u64 rq_clock_task_mult(struct rq *rq)
1199 {
1200 	lockdep_assert_held(&rq->lock);
1201 	assert_clock_updated(rq);
1202 
1203 	return per_cpu(clock_task_mult, cpu_of(rq));
1204 }
1205 #else
rq_clock_task_mult(struct rq * rq)1206 static inline u64 rq_clock_task_mult(struct rq *rq)
1207 {
1208 	return rq_clock_task(rq);
1209 }
1210 #endif
1211 
1212 /**
1213  * By default the decay is the default pelt decay period.
1214  * The decay shift can change the decay period in
1215  * multiples of 32.
1216  *  Decay shift		Decay period(ms)
1217  *	0			32
1218  *	1			64
1219  *	2			128
1220  *	3			256
1221  *	4			512
1222  */
1223 extern int sched_thermal_decay_shift;
1224 
rq_clock_thermal(struct rq * rq)1225 static inline u64 rq_clock_thermal(struct rq *rq)
1226 {
1227 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1228 }
1229 
rq_clock_skip_update(struct rq * rq)1230 static inline void rq_clock_skip_update(struct rq *rq)
1231 {
1232 	lockdep_assert_held(&rq->lock);
1233 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1234 }
1235 
1236 /*
1237  * See rt task throttling, which is the only time a skip
1238  * request is cancelled.
1239  */
rq_clock_cancel_skipupdate(struct rq * rq)1240 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1241 {
1242 	lockdep_assert_held(&rq->lock);
1243 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1244 }
1245 
1246 struct rq_flags {
1247 	unsigned long flags;
1248 	struct pin_cookie cookie;
1249 #ifdef CONFIG_SCHED_DEBUG
1250 	/*
1251 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1252 	 * current pin context is stashed here in case it needs to be
1253 	 * restored in rq_repin_lock().
1254 	 */
1255 	unsigned int clock_update_flags;
1256 #endif
1257 };
1258 
1259 /*
1260  * Lockdep annotation that avoids accidental unlocks; it's like a
1261  * sticky/continuous lockdep_assert_held().
1262  *
1263  * This avoids code that has access to 'struct rq *rq' (basically everything in
1264  * the scheduler) from accidentally unlocking the rq if they do not also have a
1265  * copy of the (on-stack) 'struct rq_flags rf'.
1266  *
1267  * Also see Documentation/locking/lockdep-design.rst.
1268  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1269 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1270 {
1271 	rf->cookie = lockdep_pin_lock(&rq->lock);
1272 
1273 #ifdef CONFIG_SCHED_DEBUG
1274 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1275 	rf->clock_update_flags = 0;
1276 #endif
1277 }
1278 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1279 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1280 {
1281 #ifdef CONFIG_SCHED_DEBUG
1282 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1283 		rf->clock_update_flags = RQCF_UPDATED;
1284 #endif
1285 
1286 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1287 }
1288 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1289 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1290 {
1291 	lockdep_repin_lock(&rq->lock, rf->cookie);
1292 
1293 #ifdef CONFIG_SCHED_DEBUG
1294 	/*
1295 	 * Restore the value we stashed in @rf for this pin context.
1296 	 */
1297 	rq->clock_update_flags |= rf->clock_update_flags;
1298 #endif
1299 }
1300 
1301 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1302 	__acquires(rq->lock);
1303 
1304 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1305 	__acquires(p->pi_lock)
1306 	__acquires(rq->lock);
1307 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1308 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1309 	__releases(rq->lock)
1310 {
1311 	rq_unpin_lock(rq, rf);
1312 	raw_spin_unlock(&rq->lock);
1313 }
1314 
1315 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1316 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1317 	__releases(rq->lock)
1318 	__releases(p->pi_lock)
1319 {
1320 	rq_unpin_lock(rq, rf);
1321 	raw_spin_unlock(&rq->lock);
1322 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1323 }
1324 
1325 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1326 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1327 	__acquires(rq->lock)
1328 {
1329 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1330 	rq_pin_lock(rq, rf);
1331 }
1332 
1333 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1334 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1335 	__acquires(rq->lock)
1336 {
1337 	raw_spin_lock_irq(&rq->lock);
1338 	rq_pin_lock(rq, rf);
1339 }
1340 
1341 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1342 rq_lock(struct rq *rq, struct rq_flags *rf)
1343 	__acquires(rq->lock)
1344 {
1345 	raw_spin_lock(&rq->lock);
1346 	rq_pin_lock(rq, rf);
1347 }
1348 
1349 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1350 rq_relock(struct rq *rq, struct rq_flags *rf)
1351 	__acquires(rq->lock)
1352 {
1353 	raw_spin_lock(&rq->lock);
1354 	rq_repin_lock(rq, rf);
1355 }
1356 
1357 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1358 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1359 	__releases(rq->lock)
1360 {
1361 	rq_unpin_lock(rq, rf);
1362 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1363 }
1364 
1365 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1366 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1367 	__releases(rq->lock)
1368 {
1369 	rq_unpin_lock(rq, rf);
1370 	raw_spin_unlock_irq(&rq->lock);
1371 }
1372 
1373 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1374 rq_unlock(struct rq *rq, struct rq_flags *rf)
1375 	__releases(rq->lock)
1376 {
1377 	rq_unpin_lock(rq, rf);
1378 	raw_spin_unlock(&rq->lock);
1379 }
1380 
1381 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1382 this_rq_lock_irq(struct rq_flags *rf)
1383 	__acquires(rq->lock)
1384 {
1385 	struct rq *rq;
1386 
1387 	local_irq_disable();
1388 	rq = this_rq();
1389 	rq_lock(rq, rf);
1390 	return rq;
1391 }
1392 
1393 #ifdef CONFIG_NUMA
1394 enum numa_topology_type {
1395 	NUMA_DIRECT,
1396 	NUMA_GLUELESS_MESH,
1397 	NUMA_BACKPLANE,
1398 };
1399 extern enum numa_topology_type sched_numa_topology_type;
1400 extern int sched_max_numa_distance;
1401 extern bool find_numa_distance(int distance);
1402 extern void sched_init_numa(void);
1403 extern void sched_domains_numa_masks_set(unsigned int cpu);
1404 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1405 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1406 #else
sched_init_numa(void)1407 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1408 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1409 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1410 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1411 {
1412 	return nr_cpu_ids;
1413 }
1414 #endif
1415 
1416 #ifdef CONFIG_NUMA_BALANCING
1417 /* The regions in numa_faults array from task_struct */
1418 enum numa_faults_stats {
1419 	NUMA_MEM = 0,
1420 	NUMA_CPU,
1421 	NUMA_MEMBUF,
1422 	NUMA_CPUBUF
1423 };
1424 extern void sched_setnuma(struct task_struct *p, int node);
1425 extern int migrate_task_to(struct task_struct *p, int cpu);
1426 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1427 #else
1428 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1429 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1430 {
1431 }
1432 #endif /* CONFIG_NUMA_BALANCING */
1433 
1434 #ifdef CONFIG_SMP
1435 
1436 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1437 			int cpu, int scpu);
1438 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1439 queue_balance_callback(struct rq *rq,
1440 		       struct callback_head *head,
1441 		       void (*func)(struct rq *rq))
1442 {
1443 	lockdep_assert_held(&rq->lock);
1444 
1445 	if (unlikely(head->next))
1446 		return;
1447 
1448 	head->func = (void (*)(struct callback_head *))func;
1449 	head->next = rq->balance_callback;
1450 	rq->balance_callback = head;
1451 }
1452 
1453 #define rcu_dereference_check_sched_domain(p) \
1454 	rcu_dereference_check((p), \
1455 			      lockdep_is_held(&sched_domains_mutex))
1456 
1457 /*
1458  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1459  * See destroy_sched_domains: call_rcu for details.
1460  *
1461  * The domain tree of any CPU may only be accessed from within
1462  * preempt-disabled sections.
1463  */
1464 #define for_each_domain(cpu, __sd) \
1465 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1466 			__sd; __sd = __sd->parent)
1467 
1468 /**
1469  * highest_flag_domain - Return highest sched_domain containing flag.
1470  * @cpu:	The CPU whose highest level of sched domain is to
1471  *		be returned.
1472  * @flag:	The flag to check for the highest sched_domain
1473  *		for the given CPU.
1474  *
1475  * Returns the highest sched_domain of a CPU which contains the given flag.
1476  */
highest_flag_domain(int cpu,int flag)1477 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1478 {
1479 	struct sched_domain *sd, *hsd = NULL;
1480 
1481 	for_each_domain(cpu, sd) {
1482 		if (!(sd->flags & flag))
1483 			break;
1484 		hsd = sd;
1485 	}
1486 
1487 	return hsd;
1488 }
1489 
lowest_flag_domain(int cpu,int flag)1490 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1491 {
1492 	struct sched_domain *sd;
1493 
1494 	for_each_domain(cpu, sd) {
1495 		if (sd->flags & flag)
1496 			break;
1497 	}
1498 
1499 	return sd;
1500 }
1501 
1502 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1503 DECLARE_PER_CPU(int, sd_llc_size);
1504 DECLARE_PER_CPU(int, sd_llc_id);
1505 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1506 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1507 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1508 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1509 extern struct static_key_false sched_asym_cpucapacity;
1510 
1511 struct sched_group_capacity {
1512 	atomic_t		ref;
1513 	/*
1514 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1515 	 * for a single CPU.
1516 	 */
1517 	unsigned long		capacity;
1518 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1519 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1520 	unsigned long		next_update;
1521 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1522 
1523 #ifdef CONFIG_SCHED_DEBUG
1524 	int			id;
1525 #endif
1526 
1527 	unsigned long		cpumask[];		/* Balance mask */
1528 };
1529 
1530 struct sched_group {
1531 	struct sched_group	*next;			/* Must be a circular list */
1532 	atomic_t		ref;
1533 
1534 	unsigned int		group_weight;
1535 	struct sched_group_capacity *sgc;
1536 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1537 
1538 	/*
1539 	 * The CPUs this group covers.
1540 	 *
1541 	 * NOTE: this field is variable length. (Allocated dynamically
1542 	 * by attaching extra space to the end of the structure,
1543 	 * depending on how many CPUs the kernel has booted up with)
1544 	 */
1545 	unsigned long		cpumask[];
1546 };
1547 
sched_group_span(struct sched_group * sg)1548 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1549 {
1550 	return to_cpumask(sg->cpumask);
1551 }
1552 
1553 /*
1554  * See build_balance_mask().
1555  */
group_balance_mask(struct sched_group * sg)1556 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1557 {
1558 	return to_cpumask(sg->sgc->cpumask);
1559 }
1560 
1561 /**
1562  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1563  * @group: The group whose first CPU is to be returned.
1564  */
group_first_cpu(struct sched_group * group)1565 static inline unsigned int group_first_cpu(struct sched_group *group)
1566 {
1567 	return cpumask_first(sched_group_span(group));
1568 }
1569 
1570 extern int group_balance_cpu(struct sched_group *sg);
1571 
1572 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1573 void register_sched_domain_sysctl(void);
1574 void dirty_sched_domain_sysctl(int cpu);
1575 void unregister_sched_domain_sysctl(void);
1576 #else
register_sched_domain_sysctl(void)1577 static inline void register_sched_domain_sysctl(void)
1578 {
1579 }
dirty_sched_domain_sysctl(int cpu)1580 static inline void dirty_sched_domain_sysctl(int cpu)
1581 {
1582 }
unregister_sched_domain_sysctl(void)1583 static inline void unregister_sched_domain_sysctl(void)
1584 {
1585 }
1586 #endif
1587 
1588 extern void flush_smp_call_function_from_idle(void);
1589 
1590 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1591 static inline void flush_smp_call_function_from_idle(void) { }
1592 #endif
1593 
1594 #include "stats.h"
1595 #include "autogroup.h"
1596 
1597 #ifdef CONFIG_CGROUP_SCHED
1598 
1599 /*
1600  * Return the group to which this tasks belongs.
1601  *
1602  * We cannot use task_css() and friends because the cgroup subsystem
1603  * changes that value before the cgroup_subsys::attach() method is called,
1604  * therefore we cannot pin it and might observe the wrong value.
1605  *
1606  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1607  * core changes this before calling sched_move_task().
1608  *
1609  * Instead we use a 'copy' which is updated from sched_move_task() while
1610  * holding both task_struct::pi_lock and rq::lock.
1611  */
task_group(struct task_struct * p)1612 static inline struct task_group *task_group(struct task_struct *p)
1613 {
1614 	return p->sched_task_group;
1615 }
1616 
1617 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1618 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1619 {
1620 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1621 	struct task_group *tg = task_group(p);
1622 #endif
1623 
1624 #ifdef CONFIG_FAIR_GROUP_SCHED
1625 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1626 	p->se.cfs_rq = tg->cfs_rq[cpu];
1627 	p->se.parent = tg->se[cpu];
1628 #endif
1629 
1630 #ifdef CONFIG_RT_GROUP_SCHED
1631 	p->rt.rt_rq  = tg->rt_rq[cpu];
1632 	p->rt.parent = tg->rt_se[cpu];
1633 #endif
1634 }
1635 
1636 #else /* CONFIG_CGROUP_SCHED */
1637 
set_task_rq(struct task_struct * p,unsigned int cpu)1638 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1639 static inline struct task_group *task_group(struct task_struct *p)
1640 {
1641 	return NULL;
1642 }
1643 
1644 #endif /* CONFIG_CGROUP_SCHED */
1645 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1646 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1647 {
1648 	set_task_rq(p, cpu);
1649 #ifdef CONFIG_SMP
1650 	/*
1651 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1652 	 * successfully executed on another CPU. We must ensure that updates of
1653 	 * per-task data have been completed by this moment.
1654 	 */
1655 	smp_wmb();
1656 #ifdef CONFIG_THREAD_INFO_IN_TASK
1657 	WRITE_ONCE(p->cpu, cpu);
1658 #else
1659 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1660 #endif
1661 	p->wake_cpu = cpu;
1662 #endif
1663 }
1664 
1665 /*
1666  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1667  */
1668 #ifdef CONFIG_SCHED_DEBUG
1669 # include <linux/static_key.h>
1670 # define const_debug __read_mostly
1671 #else
1672 # define const_debug const
1673 #endif
1674 
1675 #define SCHED_FEAT(name, enabled)	\
1676 	__SCHED_FEAT_##name ,
1677 
1678 enum {
1679 #include "features.h"
1680 	__SCHED_FEAT_NR,
1681 };
1682 
1683 #undef SCHED_FEAT
1684 
1685 #ifdef CONFIG_SCHED_DEBUG
1686 
1687 /*
1688  * To support run-time toggling of sched features, all the translation units
1689  * (but core.c) reference the sysctl_sched_features defined in core.c.
1690  */
1691 extern const_debug unsigned int sysctl_sched_features;
1692 
1693 #ifdef CONFIG_JUMP_LABEL
1694 #define SCHED_FEAT(name, enabled)					\
1695 static __always_inline bool static_branch_##name(struct static_key *key) \
1696 {									\
1697 	return static_key_##enabled(key);				\
1698 }
1699 
1700 #include "features.h"
1701 #undef SCHED_FEAT
1702 
1703 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1704 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
1705 
1706 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1707 
1708 #else /* !CONFIG_JUMP_LABEL */
1709 
1710 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1711 
1712 #endif /* CONFIG_JUMP_LABEL */
1713 
1714 #else /* !SCHED_DEBUG */
1715 
1716 /*
1717  * Each translation unit has its own copy of sysctl_sched_features to allow
1718  * constants propagation at compile time and compiler optimization based on
1719  * features default.
1720  */
1721 #define SCHED_FEAT(name, enabled)	\
1722 	(1UL << __SCHED_FEAT_##name) * enabled |
1723 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1724 #include "features.h"
1725 	0;
1726 #undef SCHED_FEAT
1727 
1728 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1729 
1730 #endif /* SCHED_DEBUG */
1731 
1732 extern struct static_key_false sched_numa_balancing;
1733 extern struct static_key_false sched_schedstats;
1734 
global_rt_period(void)1735 static inline u64 global_rt_period(void)
1736 {
1737 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1738 }
1739 
global_rt_runtime(void)1740 static inline u64 global_rt_runtime(void)
1741 {
1742 	if (sysctl_sched_rt_runtime < 0)
1743 		return RUNTIME_INF;
1744 
1745 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1746 }
1747 
task_current(struct rq * rq,struct task_struct * p)1748 static inline int task_current(struct rq *rq, struct task_struct *p)
1749 {
1750 	return rq->curr == p;
1751 }
1752 
task_running(struct rq * rq,struct task_struct * p)1753 static inline int task_running(struct rq *rq, struct task_struct *p)
1754 {
1755 #ifdef CONFIG_SMP
1756 	return p->on_cpu;
1757 #else
1758 	return task_current(rq, p);
1759 #endif
1760 }
1761 
task_on_rq_queued(struct task_struct * p)1762 static inline int task_on_rq_queued(struct task_struct *p)
1763 {
1764 	return p->on_rq == TASK_ON_RQ_QUEUED;
1765 }
1766 
task_on_rq_migrating(struct task_struct * p)1767 static inline int task_on_rq_migrating(struct task_struct *p)
1768 {
1769 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1770 }
1771 
1772 /*
1773  * wake flags
1774  */
1775 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1776 #define WF_FORK			0x02		/* Child wakeup after fork */
1777 #define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1778 #define WF_ON_CPU		0x08		/* Wakee is on_cpu */
1779 #define WF_ANDROID_VENDOR	0x1000		/* Vendor specific for Android */
1780 
1781 /*
1782  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1783  * of tasks with abnormal "nice" values across CPUs the contribution that
1784  * each task makes to its run queue's load is weighted according to its
1785  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1786  * scaled version of the new time slice allocation that they receive on time
1787  * slice expiry etc.
1788  */
1789 
1790 #define WEIGHT_IDLEPRIO		3
1791 #define WMULT_IDLEPRIO		1431655765
1792 
1793 extern const int		sched_prio_to_weight[40];
1794 extern const u32		sched_prio_to_wmult[40];
1795 
1796 /*
1797  * {de,en}queue flags:
1798  *
1799  * DEQUEUE_SLEEP  - task is no longer runnable
1800  * ENQUEUE_WAKEUP - task just became runnable
1801  *
1802  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1803  *                are in a known state which allows modification. Such pairs
1804  *                should preserve as much state as possible.
1805  *
1806  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1807  *        in the runqueue.
1808  *
1809  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1810  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1811  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1812  *
1813  */
1814 
1815 #define DEQUEUE_SLEEP		0x01
1816 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1817 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1818 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1819 
1820 #define ENQUEUE_WAKEUP		0x01
1821 #define ENQUEUE_RESTORE		0x02
1822 #define ENQUEUE_MOVE		0x04
1823 #define ENQUEUE_NOCLOCK		0x08
1824 
1825 #define ENQUEUE_HEAD		0x10
1826 #define ENQUEUE_REPLENISH	0x20
1827 #ifdef CONFIG_SMP
1828 #define ENQUEUE_MIGRATED	0x40
1829 #else
1830 #define ENQUEUE_MIGRATED	0x00
1831 #endif
1832 
1833 #define ENQUEUE_WAKEUP_SYNC	0x80
1834 
1835 #define RETRY_TASK		((void *)-1UL)
1836 
1837 struct sched_class {
1838 
1839 #ifdef CONFIG_UCLAMP_TASK
1840 	int uclamp_enabled;
1841 #endif
1842 
1843 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1844 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1845 	void (*yield_task)   (struct rq *rq);
1846 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1847 
1848 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1849 
1850 	struct task_struct *(*pick_next_task)(struct rq *rq);
1851 
1852 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1853 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1854 
1855 #ifdef CONFIG_SMP
1856 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1857 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1858 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1859 
1860 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1861 
1862 	void (*set_cpus_allowed)(struct task_struct *p,
1863 				 const struct cpumask *newmask);
1864 
1865 	void (*rq_online)(struct rq *rq);
1866 	void (*rq_offline)(struct rq *rq);
1867 #endif
1868 
1869 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1870 	void (*task_fork)(struct task_struct *p);
1871 	void (*task_dead)(struct task_struct *p);
1872 
1873 	/*
1874 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1875 	 * cannot assume the switched_from/switched_to pair is serliazed by
1876 	 * rq->lock. They are however serialized by p->pi_lock.
1877 	 */
1878 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1879 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1880 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1881 			      int oldprio);
1882 
1883 	unsigned int (*get_rr_interval)(struct rq *rq,
1884 					struct task_struct *task);
1885 
1886 	void (*update_curr)(struct rq *rq);
1887 
1888 #define TASK_SET_GROUP		0
1889 #define TASK_MOVE_GROUP		1
1890 
1891 #ifdef CONFIG_FAIR_GROUP_SCHED
1892 	void (*task_change_group)(struct task_struct *p, int type);
1893 #endif
1894 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1895 
put_prev_task(struct rq * rq,struct task_struct * prev)1896 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1897 {
1898 	WARN_ON_ONCE(rq->curr != prev);
1899 	prev->sched_class->put_prev_task(rq, prev);
1900 }
1901 
set_next_task(struct rq * rq,struct task_struct * next)1902 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1903 {
1904 	WARN_ON_ONCE(rq->curr != next);
1905 	next->sched_class->set_next_task(rq, next, false);
1906 }
1907 
1908 /* Defined in include/asm-generic/vmlinux.lds.h */
1909 extern struct sched_class __begin_sched_classes[];
1910 extern struct sched_class __end_sched_classes[];
1911 
1912 #define sched_class_highest (__end_sched_classes - 1)
1913 #define sched_class_lowest  (__begin_sched_classes - 1)
1914 
1915 #define for_class_range(class, _from, _to) \
1916 	for (class = (_from); class != (_to); class--)
1917 
1918 #define for_each_class(class) \
1919 	for_class_range(class, sched_class_highest, sched_class_lowest)
1920 
1921 extern const struct sched_class stop_sched_class;
1922 extern const struct sched_class dl_sched_class;
1923 extern const struct sched_class rt_sched_class;
1924 extern const struct sched_class fair_sched_class;
1925 extern const struct sched_class idle_sched_class;
1926 
sched_stop_runnable(struct rq * rq)1927 static inline bool sched_stop_runnable(struct rq *rq)
1928 {
1929 	return rq->stop && task_on_rq_queued(rq->stop);
1930 }
1931 
sched_dl_runnable(struct rq * rq)1932 static inline bool sched_dl_runnable(struct rq *rq)
1933 {
1934 	return rq->dl.dl_nr_running > 0;
1935 }
1936 
sched_rt_runnable(struct rq * rq)1937 static inline bool sched_rt_runnable(struct rq *rq)
1938 {
1939 	return rq->rt.rt_queued > 0;
1940 }
1941 
sched_fair_runnable(struct rq * rq)1942 static inline bool sched_fair_runnable(struct rq *rq)
1943 {
1944 	return rq->cfs.nr_running > 0;
1945 }
1946 
1947 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1948 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1949 
1950 #ifdef CONFIG_SMP
1951 
1952 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1953 
1954 extern void trigger_load_balance(struct rq *rq);
1955 
1956 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1957 
1958 extern unsigned long __read_mostly max_load_balance_interval;
1959 #endif
1960 
1961 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1962 static inline void idle_set_state(struct rq *rq,
1963 				  struct cpuidle_state *idle_state)
1964 {
1965 	rq->idle_state = idle_state;
1966 }
1967 
idle_get_state(struct rq * rq)1968 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1969 {
1970 	SCHED_WARN_ON(!rcu_read_lock_held());
1971 
1972 	return rq->idle_state;
1973 }
1974 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1975 static inline void idle_set_state(struct rq *rq,
1976 				  struct cpuidle_state *idle_state)
1977 {
1978 }
1979 
idle_get_state(struct rq * rq)1980 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1981 {
1982 	return NULL;
1983 }
1984 #endif
1985 
1986 extern void schedule_idle(void);
1987 
1988 extern void sysrq_sched_debug_show(void);
1989 extern void sched_init_granularity(void);
1990 extern void update_max_interval(void);
1991 
1992 extern void init_sched_dl_class(void);
1993 extern void init_sched_rt_class(void);
1994 extern void init_sched_fair_class(void);
1995 
1996 extern void reweight_task(struct task_struct *p, int prio);
1997 
1998 extern void resched_curr(struct rq *rq);
1999 extern void resched_cpu(int cpu);
2000 
2001 extern struct rt_bandwidth def_rt_bandwidth;
2002 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2003 
2004 extern struct dl_bandwidth def_dl_bandwidth;
2005 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2006 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2007 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2008 
2009 #define BW_SHIFT		20
2010 #define BW_UNIT			(1 << BW_SHIFT)
2011 #define RATIO_SHIFT		8
2012 #define MAX_BW_BITS		(64 - BW_SHIFT)
2013 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2014 unsigned long to_ratio(u64 period, u64 runtime);
2015 
2016 extern void init_entity_runnable_average(struct sched_entity *se);
2017 extern void post_init_entity_util_avg(struct task_struct *p);
2018 
2019 #ifdef CONFIG_NO_HZ_FULL
2020 extern bool sched_can_stop_tick(struct rq *rq);
2021 extern int __init sched_tick_offload_init(void);
2022 
2023 /*
2024  * Tick may be needed by tasks in the runqueue depending on their policy and
2025  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2026  * nohz mode if necessary.
2027  */
sched_update_tick_dependency(struct rq * rq)2028 static inline void sched_update_tick_dependency(struct rq *rq)
2029 {
2030 	int cpu = cpu_of(rq);
2031 
2032 	if (!tick_nohz_full_cpu(cpu))
2033 		return;
2034 
2035 	if (sched_can_stop_tick(rq))
2036 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2037 	else
2038 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2039 }
2040 #else
sched_tick_offload_init(void)2041 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2042 static inline void sched_update_tick_dependency(struct rq *rq) { }
2043 #endif
2044 
add_nr_running(struct rq * rq,unsigned count)2045 static inline void add_nr_running(struct rq *rq, unsigned count)
2046 {
2047 	unsigned prev_nr = rq->nr_running;
2048 
2049 	rq->nr_running = prev_nr + count;
2050 	if (trace_sched_update_nr_running_tp_enabled()) {
2051 		call_trace_sched_update_nr_running(rq, count);
2052 	}
2053 
2054 #ifdef CONFIG_SMP
2055 	if (prev_nr < 2 && rq->nr_running >= 2) {
2056 		if (!READ_ONCE(rq->rd->overload))
2057 			WRITE_ONCE(rq->rd->overload, 1);
2058 	}
2059 #endif
2060 
2061 	sched_update_tick_dependency(rq);
2062 }
2063 
sub_nr_running(struct rq * rq,unsigned count)2064 static inline void sub_nr_running(struct rq *rq, unsigned count)
2065 {
2066 	rq->nr_running -= count;
2067 	if (trace_sched_update_nr_running_tp_enabled()) {
2068 		call_trace_sched_update_nr_running(rq, -count);
2069 	}
2070 
2071 	/* Check if we still need preemption */
2072 	sched_update_tick_dependency(rq);
2073 }
2074 
2075 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2076 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2077 
2078 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2079 
2080 extern const_debug unsigned int sysctl_sched_nr_migrate;
2081 extern const_debug unsigned int sysctl_sched_migration_cost;
2082 
2083 #ifdef CONFIG_SCHED_HRTICK
2084 
2085 /*
2086  * Use hrtick when:
2087  *  - enabled by features
2088  *  - hrtimer is actually high res
2089  */
hrtick_enabled(struct rq * rq)2090 static inline int hrtick_enabled(struct rq *rq)
2091 {
2092 	if (!sched_feat(HRTICK))
2093 		return 0;
2094 	if (!cpu_active(cpu_of(rq)))
2095 		return 0;
2096 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2097 }
2098 
2099 void hrtick_start(struct rq *rq, u64 delay);
2100 
2101 #else
2102 
hrtick_enabled(struct rq * rq)2103 static inline int hrtick_enabled(struct rq *rq)
2104 {
2105 	return 0;
2106 }
2107 
2108 #endif /* CONFIG_SCHED_HRTICK */
2109 
2110 #ifndef arch_scale_freq_tick
2111 static __always_inline
arch_scale_freq_tick(void)2112 void arch_scale_freq_tick(void)
2113 {
2114 }
2115 #endif
2116 
2117 #ifndef arch_scale_freq_capacity
2118 /**
2119  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2120  * @cpu: the CPU in question.
2121  *
2122  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2123  *
2124  *     f_curr
2125  *     ------ * SCHED_CAPACITY_SCALE
2126  *     f_max
2127  */
2128 static __always_inline
arch_scale_freq_capacity(int cpu)2129 unsigned long arch_scale_freq_capacity(int cpu)
2130 {
2131 	return SCHED_CAPACITY_SCALE;
2132 }
2133 #endif
2134 
2135 #ifdef CONFIG_SMP
2136 #ifdef CONFIG_PREEMPTION
2137 
2138 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2139 
2140 /*
2141  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2142  * way at the expense of forcing extra atomic operations in all
2143  * invocations.  This assures that the double_lock is acquired using the
2144  * same underlying policy as the spinlock_t on this architecture, which
2145  * reduces latency compared to the unfair variant below.  However, it
2146  * also adds more overhead and therefore may reduce throughput.
2147  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2148 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2149 	__releases(this_rq->lock)
2150 	__acquires(busiest->lock)
2151 	__acquires(this_rq->lock)
2152 {
2153 	raw_spin_unlock(&this_rq->lock);
2154 	double_rq_lock(this_rq, busiest);
2155 
2156 	return 1;
2157 }
2158 
2159 #else
2160 /*
2161  * Unfair double_lock_balance: Optimizes throughput at the expense of
2162  * latency by eliminating extra atomic operations when the locks are
2163  * already in proper order on entry.  This favors lower CPU-ids and will
2164  * grant the double lock to lower CPUs over higher ids under contention,
2165  * regardless of entry order into the function.
2166  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2167 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2168 	__releases(this_rq->lock)
2169 	__acquires(busiest->lock)
2170 	__acquires(this_rq->lock)
2171 {
2172 	int ret = 0;
2173 
2174 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2175 		if (busiest < this_rq) {
2176 			raw_spin_unlock(&this_rq->lock);
2177 			raw_spin_lock(&busiest->lock);
2178 			raw_spin_lock_nested(&this_rq->lock,
2179 					      SINGLE_DEPTH_NESTING);
2180 			ret = 1;
2181 		} else
2182 			raw_spin_lock_nested(&busiest->lock,
2183 					      SINGLE_DEPTH_NESTING);
2184 	}
2185 	return ret;
2186 }
2187 
2188 #endif /* CONFIG_PREEMPTION */
2189 
2190 /*
2191  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2192  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2193 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2194 {
2195 	if (unlikely(!irqs_disabled())) {
2196 		/* printk() doesn't work well under rq->lock */
2197 		raw_spin_unlock(&this_rq->lock);
2198 		BUG_ON(1);
2199 	}
2200 
2201 	return _double_lock_balance(this_rq, busiest);
2202 }
2203 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2204 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2205 	__releases(busiest->lock)
2206 {
2207 	raw_spin_unlock(&busiest->lock);
2208 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2209 }
2210 
double_lock(spinlock_t * l1,spinlock_t * l2)2211 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2212 {
2213 	if (l1 > l2)
2214 		swap(l1, l2);
2215 
2216 	spin_lock(l1);
2217 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2218 }
2219 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2220 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2221 {
2222 	if (l1 > l2)
2223 		swap(l1, l2);
2224 
2225 	spin_lock_irq(l1);
2226 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2227 }
2228 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2229 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2230 {
2231 	if (l1 > l2)
2232 		swap(l1, l2);
2233 
2234 	raw_spin_lock(l1);
2235 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2236 }
2237 
2238 /*
2239  * double_rq_lock - safely lock two runqueues
2240  *
2241  * Note this does not disable interrupts like task_rq_lock,
2242  * you need to do so manually before calling.
2243  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2244 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2245 	__acquires(rq1->lock)
2246 	__acquires(rq2->lock)
2247 {
2248 	BUG_ON(!irqs_disabled());
2249 	if (rq1 == rq2) {
2250 		raw_spin_lock(&rq1->lock);
2251 		__acquire(rq2->lock);	/* Fake it out ;) */
2252 	} else {
2253 		if (rq1 < rq2) {
2254 			raw_spin_lock(&rq1->lock);
2255 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2256 		} else {
2257 			raw_spin_lock(&rq2->lock);
2258 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2259 		}
2260 	}
2261 }
2262 
2263 /*
2264  * double_rq_unlock - safely unlock two runqueues
2265  *
2266  * Note this does not restore interrupts like task_rq_unlock,
2267  * you need to do so manually after calling.
2268  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2269 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2270 	__releases(rq1->lock)
2271 	__releases(rq2->lock)
2272 {
2273 	raw_spin_unlock(&rq1->lock);
2274 	if (rq1 != rq2)
2275 		raw_spin_unlock(&rq2->lock);
2276 	else
2277 		__release(rq2->lock);
2278 }
2279 
2280 extern void set_rq_online (struct rq *rq);
2281 extern void set_rq_offline(struct rq *rq);
2282 extern bool sched_smp_initialized;
2283 
2284 #else /* CONFIG_SMP */
2285 
2286 /*
2287  * double_rq_lock - safely lock two runqueues
2288  *
2289  * Note this does not disable interrupts like task_rq_lock,
2290  * you need to do so manually before calling.
2291  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2292 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2293 	__acquires(rq1->lock)
2294 	__acquires(rq2->lock)
2295 {
2296 	BUG_ON(!irqs_disabled());
2297 	BUG_ON(rq1 != rq2);
2298 	raw_spin_lock(&rq1->lock);
2299 	__acquire(rq2->lock);	/* Fake it out ;) */
2300 }
2301 
2302 /*
2303  * double_rq_unlock - safely unlock two runqueues
2304  *
2305  * Note this does not restore interrupts like task_rq_unlock,
2306  * you need to do so manually after calling.
2307  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2308 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2309 	__releases(rq1->lock)
2310 	__releases(rq2->lock)
2311 {
2312 	BUG_ON(rq1 != rq2);
2313 	raw_spin_unlock(&rq1->lock);
2314 	__release(rq2->lock);
2315 }
2316 
2317 #endif
2318 
2319 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2320 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2321 
2322 #ifdef	CONFIG_SCHED_DEBUG
2323 extern bool sched_debug_enabled;
2324 
2325 extern void print_cfs_stats(struct seq_file *m, int cpu);
2326 extern void print_rt_stats(struct seq_file *m, int cpu);
2327 extern void print_dl_stats(struct seq_file *m, int cpu);
2328 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2329 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2330 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2331 #ifdef CONFIG_NUMA_BALANCING
2332 extern void
2333 show_numa_stats(struct task_struct *p, struct seq_file *m);
2334 extern void
2335 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2336 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2337 #endif /* CONFIG_NUMA_BALANCING */
2338 #endif /* CONFIG_SCHED_DEBUG */
2339 
2340 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2341 extern void init_rt_rq(struct rt_rq *rt_rq);
2342 extern void init_dl_rq(struct dl_rq *dl_rq);
2343 
2344 extern void cfs_bandwidth_usage_inc(void);
2345 extern void cfs_bandwidth_usage_dec(void);
2346 
2347 #ifdef CONFIG_NO_HZ_COMMON
2348 #define NOHZ_BALANCE_KICK_BIT	0
2349 #define NOHZ_STATS_KICK_BIT	1
2350 
2351 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2352 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2353 
2354 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2355 
2356 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2357 
2358 extern void nohz_balance_exit_idle(struct rq *rq);
2359 #else
nohz_balance_exit_idle(struct rq * rq)2360 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2361 #endif
2362 
2363 
2364 #ifdef CONFIG_SMP
2365 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2366 void __dl_update(struct dl_bw *dl_b, s64 bw)
2367 {
2368 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2369 	int i;
2370 
2371 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2372 			 "sched RCU must be held");
2373 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2374 		struct rq *rq = cpu_rq(i);
2375 
2376 		rq->dl.extra_bw += bw;
2377 	}
2378 }
2379 #else
2380 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2381 void __dl_update(struct dl_bw *dl_b, s64 bw)
2382 {
2383 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2384 
2385 	dl->extra_bw += bw;
2386 }
2387 #endif
2388 
2389 
2390 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2391 struct irqtime {
2392 	u64			total;
2393 	u64			tick_delta;
2394 	u64			irq_start_time;
2395 	struct u64_stats_sync	sync;
2396 };
2397 
2398 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2399 
2400 /*
2401  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2402  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2403  * and never move forward.
2404  */
irq_time_read(int cpu)2405 static inline u64 irq_time_read(int cpu)
2406 {
2407 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2408 	unsigned int seq;
2409 	u64 total;
2410 
2411 	do {
2412 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2413 		total = irqtime->total;
2414 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2415 
2416 	return total;
2417 }
2418 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2419 
2420 #ifdef CONFIG_CPU_FREQ
2421 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2422 
2423 /**
2424  * cpufreq_update_util - Take a note about CPU utilization changes.
2425  * @rq: Runqueue to carry out the update for.
2426  * @flags: Update reason flags.
2427  *
2428  * This function is called by the scheduler on the CPU whose utilization is
2429  * being updated.
2430  *
2431  * It can only be called from RCU-sched read-side critical sections.
2432  *
2433  * The way cpufreq is currently arranged requires it to evaluate the CPU
2434  * performance state (frequency/voltage) on a regular basis to prevent it from
2435  * being stuck in a completely inadequate performance level for too long.
2436  * That is not guaranteed to happen if the updates are only triggered from CFS
2437  * and DL, though, because they may not be coming in if only RT tasks are
2438  * active all the time (or there are RT tasks only).
2439  *
2440  * As a workaround for that issue, this function is called periodically by the
2441  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2442  * but that really is a band-aid.  Going forward it should be replaced with
2443  * solutions targeted more specifically at RT tasks.
2444  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2445 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2446 {
2447 	struct update_util_data *data;
2448 
2449 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2450 						  cpu_of(rq)));
2451 	if (data)
2452 		data->func(data, rq_clock(rq), flags);
2453 }
2454 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2455 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2456 #endif /* CONFIG_CPU_FREQ */
2457 
2458 #ifdef CONFIG_UCLAMP_TASK
2459 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2460 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2461 static inline unsigned long uclamp_rq_get(struct rq *rq,
2462 					  enum uclamp_id clamp_id)
2463 {
2464 	return READ_ONCE(rq->uclamp[clamp_id].value);
2465 }
2466 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2467 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2468 				 unsigned int value)
2469 {
2470 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
2471 }
2472 
uclamp_rq_is_idle(struct rq * rq)2473 static inline bool uclamp_rq_is_idle(struct rq *rq)
2474 {
2475 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
2476 }
2477 
2478 /**
2479  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2480  * @rq:		The rq to clamp against. Must not be NULL.
2481  * @util:	The util value to clamp.
2482  * @p:		The task to clamp against. Can be NULL if you want to clamp
2483  *		against @rq only.
2484  *
2485  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2486  *
2487  * If sched_uclamp_used static key is disabled, then just return the util
2488  * without any clamping since uclamp aggregation at the rq level in the fast
2489  * path is disabled, rendering this operation a NOP.
2490  *
2491  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2492  * will return the correct effective uclamp value of the task even if the
2493  * static key is disabled.
2494  */
2495 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2496 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2497 				  struct task_struct *p)
2498 {
2499 	unsigned long min_util = 0;
2500 	unsigned long max_util = 0;
2501 
2502 	if (!static_branch_likely(&sched_uclamp_used))
2503 		return util;
2504 
2505 	if (p) {
2506 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
2507 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
2508 
2509 		/*
2510 		 * Ignore last runnable task's max clamp, as this task will
2511 		 * reset it. Similarly, no need to read the rq's min clamp.
2512 		 */
2513 		if (uclamp_rq_is_idle(rq))
2514 			goto out;
2515 	}
2516 
2517 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
2518 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
2519 out:
2520 	/*
2521 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2522 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2523 	 * inversion. Fix it now when the clamps are applied.
2524 	 */
2525 	if (unlikely(min_util >= max_util))
2526 		return min_util;
2527 
2528 	return clamp(util, min_util, max_util);
2529 }
2530 
uclamp_boosted(struct task_struct * p)2531 static inline bool uclamp_boosted(struct task_struct *p)
2532 {
2533 	return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2534 }
2535 
2536 /*
2537  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2538  * by default in the fast path and only gets turned on once userspace performs
2539  * an operation that requires it.
2540  *
2541  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2542  * hence is active.
2543  */
uclamp_is_used(void)2544 static inline bool uclamp_is_used(void)
2545 {
2546 	return static_branch_likely(&sched_uclamp_used);
2547 }
2548 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)2549 static inline unsigned long uclamp_eff_value(struct task_struct *p,
2550 					     enum uclamp_id clamp_id)
2551 {
2552 	if (clamp_id == UCLAMP_MIN)
2553 		return 0;
2554 
2555 	return SCHED_CAPACITY_SCALE;
2556 }
2557 
2558 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2559 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2560 				  struct task_struct *p)
2561 {
2562 	return util;
2563 }
2564 
uclamp_boosted(struct task_struct * p)2565 static inline bool uclamp_boosted(struct task_struct *p)
2566 {
2567 	return false;
2568 }
2569 
uclamp_is_used(void)2570 static inline bool uclamp_is_used(void)
2571 {
2572 	return false;
2573 }
2574 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)2575 static inline unsigned long uclamp_rq_get(struct rq *rq,
2576 					  enum uclamp_id clamp_id)
2577 {
2578 	if (clamp_id == UCLAMP_MIN)
2579 		return 0;
2580 
2581 	return SCHED_CAPACITY_SCALE;
2582 }
2583 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)2584 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
2585 				 unsigned int value)
2586 {
2587 }
2588 
uclamp_rq_is_idle(struct rq * rq)2589 static inline bool uclamp_rq_is_idle(struct rq *rq)
2590 {
2591 	return false;
2592 }
2593 #endif /* CONFIG_UCLAMP_TASK */
2594 
2595 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_latency_sensitive(struct task_struct * p)2596 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2597 {
2598 	struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
2599 	struct task_group *tg;
2600 
2601 	if (!css)
2602 		return false;
2603 	tg = container_of(css, struct task_group, css);
2604 
2605 	return tg->latency_sensitive;
2606 }
2607 #else
uclamp_latency_sensitive(struct task_struct * p)2608 static inline bool uclamp_latency_sensitive(struct task_struct *p)
2609 {
2610 	return false;
2611 }
2612 #endif /* CONFIG_UCLAMP_TASK_GROUP */
2613 
2614 #ifdef arch_scale_freq_capacity
2615 # ifndef arch_scale_freq_invariant
2616 #  define arch_scale_freq_invariant()	true
2617 # endif
2618 #else
2619 # define arch_scale_freq_invariant()	false
2620 #endif
2621 
2622 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2623 static inline unsigned long capacity_orig_of(int cpu)
2624 {
2625 	return cpu_rq(cpu)->cpu_capacity_orig;
2626 }
2627 #endif
2628 
2629 /**
2630  * enum schedutil_type - CPU utilization type
2631  * @FREQUENCY_UTIL:	Utilization used to select frequency
2632  * @ENERGY_UTIL:	Utilization used during energy calculation
2633  *
2634  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2635  * need to be aggregated differently depending on the usage made of them. This
2636  * enum is used within schedutil_freq_util() to differentiate the types of
2637  * utilization expected by the callers, and adjust the aggregation accordingly.
2638  */
2639 enum schedutil_type {
2640 	FREQUENCY_UTIL,
2641 	ENERGY_UTIL,
2642 };
2643 
2644 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2645 
2646 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2647 				 unsigned long max, enum schedutil_type type,
2648 				 struct task_struct *p);
2649 
cpu_bw_dl(struct rq * rq)2650 static inline unsigned long cpu_bw_dl(struct rq *rq)
2651 {
2652 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2653 }
2654 
cpu_util_dl(struct rq * rq)2655 static inline unsigned long cpu_util_dl(struct rq *rq)
2656 {
2657 	return READ_ONCE(rq->avg_dl.util_avg);
2658 }
2659 
cpu_util_cfs(struct rq * rq)2660 static inline unsigned long cpu_util_cfs(struct rq *rq)
2661 {
2662 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2663 
2664 	if (sched_feat(UTIL_EST)) {
2665 		util = max_t(unsigned long, util,
2666 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2667 	}
2668 
2669 	return util;
2670 }
2671 
cpu_util_rt(struct rq * rq)2672 static inline unsigned long cpu_util_rt(struct rq *rq)
2673 {
2674 	return READ_ONCE(rq->avg_rt.util_avg);
2675 }
2676 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2677 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2678 				 unsigned long max, enum schedutil_type type,
2679 				 struct task_struct *p)
2680 {
2681 	return 0;
2682 }
2683 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2684 
2685 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2686 static inline unsigned long cpu_util_irq(struct rq *rq)
2687 {
2688 	return rq->avg_irq.util_avg;
2689 }
2690 
2691 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2692 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2693 {
2694 	util *= (max - irq);
2695 	util /= max;
2696 
2697 	return util;
2698 
2699 }
2700 #else
cpu_util_irq(struct rq * rq)2701 static inline unsigned long cpu_util_irq(struct rq *rq)
2702 {
2703 	return 0;
2704 }
2705 
2706 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2707 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2708 {
2709 	return util;
2710 }
2711 #endif
2712 
2713 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2714 
2715 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2716 
2717 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2718 
sched_energy_enabled(void)2719 static inline bool sched_energy_enabled(void)
2720 {
2721 	return static_branch_unlikely(&sched_energy_present);
2722 }
2723 
2724 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2725 
2726 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2727 static inline bool sched_energy_enabled(void) { return false; }
2728 
2729 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2730 
2731 #ifdef CONFIG_MEMBARRIER
2732 /*
2733  * The scheduler provides memory barriers required by membarrier between:
2734  * - prior user-space memory accesses and store to rq->membarrier_state,
2735  * - store to rq->membarrier_state and following user-space memory accesses.
2736  * In the same way it provides those guarantees around store to rq->curr.
2737  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2738 static inline void membarrier_switch_mm(struct rq *rq,
2739 					struct mm_struct *prev_mm,
2740 					struct mm_struct *next_mm)
2741 {
2742 	int membarrier_state;
2743 
2744 	if (prev_mm == next_mm)
2745 		return;
2746 
2747 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2748 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2749 		return;
2750 
2751 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2752 }
2753 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2754 static inline void membarrier_switch_mm(struct rq *rq,
2755 					struct mm_struct *prev_mm,
2756 					struct mm_struct *next_mm)
2757 {
2758 }
2759 #endif
2760 
2761 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2762 static inline bool is_per_cpu_kthread(struct task_struct *p)
2763 {
2764 	if (!(p->flags & PF_KTHREAD))
2765 		return false;
2766 
2767 	if (p->nr_cpus_allowed != 1)
2768 		return false;
2769 
2770 	return true;
2771 }
2772 #endif
2773 
2774 void swake_up_all_locked(struct swait_queue_head *q);
2775 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2776 
2777 /*
2778  * task_may_not_preempt - check whether a task may not be preemptible soon
2779  */
2780 #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
2781 extern bool task_may_not_preempt(struct task_struct *task, int cpu);
2782 #else
task_may_not_preempt(struct task_struct * task,int cpu)2783 static inline bool task_may_not_preempt(struct task_struct *task, int cpu)
2784 {
2785 	return false;
2786 }
2787 #endif /* CONFIG_RT_SOFTINT_OPTIMIZATION */
2788