Searched +full:min +full:- +full:residency (Results 1 – 6 of 6) sorted by relevance
/Documentation/devicetree/bindings/power/ |
D | domain-idle-state.yaml | 1 # SPDX-License-Identifier: GPL-2.0 3 --- 4 $id: http://devicetree.org/schemas/power/domain-idle-state.yaml# 5 $schema: http://devicetree.org/meta-schemas/core.yaml# 10 - Ulf Hansson <ulf.hansson@linaro.org> 18 const: domain-idle-states 21 "^(cpu|cluster|domain)-": 28 const: domain-idle-state 30 entry-latency-us: 33 state. Note that, the exit-latency-us duration may be guaranteed only [all …]
|
D | power-domain.yaml | 1 # SPDX-License-Identifier: GPL-2.0 3 --- 4 $id: http://devicetree.org/schemas/power/power-domain.yaml# 5 $schema: http://devicetree.org/meta-schemas/core.yaml# 10 - Rafael J. Wysocki <rjw@rjwysocki.net> 11 - Kevin Hilman <khilman@kernel.org> 12 - Ulf Hansson <ulf.hansson@linaro.org> 24 \#power-domain-cells property in the PM domain provider node. 28 pattern: "^(power-controller|power-domain)([@-].*)?$" 30 domain-idle-states: [all …]
|
/Documentation/devicetree/bindings/arm/ |
D | idle-states.yaml | 1 # SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 3 --- 4 $id: http://devicetree.org/schemas/arm/idle-states.yaml# 5 $schema: http://devicetree.org/meta-schemas/core.yaml# 10 - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 14 1 - Introduction 18 where cores can be put in different low-power states (ranging from simple wfi 20 range of dynamic idle states that a processor can enter at run-time, can be 27 - Running 28 - Idle_standby [all …]
|
D | psci.yaml | 1 # SPDX-License-Identifier: GPL-2.0 3 --- 5 $schema: http://devicetree.org/meta-schemas/core.yaml# 10 - Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 15 processors") can be used by Linux to initiate various CPU-centric power 25 r0 => 32-bit Function ID / return value 26 {r1 - r3} => Parameters 40 - description: 44 - description: 46 const: arm,psci-0.2 [all …]
|
D | cpu-capacity.txt | 6 1 - Introduction 15 2 - CPU capacity definition 19 heterogeneity. Such heterogeneity can come from micro-architectural differences 23 capture a first-order approximation of the relative performance of CPUs. 29 * A "single-threaded" or CPU affine benchmark 43 3 - capacity-dmips-mhz 46 capacity-dmips-mhz is an optional cpu node [1] property: u32 value 51 capacity-dmips-mhz property is all-or-nothing: if it is specified for a cpu 54 available, final capacities are calculated by directly using capacity-dmips- 58 4 - Examples [all …]
|
/Documentation/devicetree/bindings/arm/msm/ |
D | qcom,idle-state.txt | 3 ARM provides idle-state node to define the cpuidle states, as defined in [1]. 4 cpuidle-qcom is the cpuidle driver for Qualcomm SoCs and uses these idle 5 states. Idle states have different enter/exit latency and residency values. 6 The idle states supported by the QCOM SoC are defined as - 44 code in the EL for the SoC. On SoCs with write-back L1 cache, the cache has to 50 be flushed, system bus, clocks - lowered, and SoC main XO clock gated and 52 power modes possible at this state is vast, the exit latency and the residency 58 The idle-state for QCOM SoCs are distinguished by the compatible property of 59 the idle-states device node. 61 The devicetree representation of the idle state should be - [all …]
|