• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
check_load_and_stores(const struct sock_filter * filter,int flen)907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
chk_code_allowed(u16 code_to_probe)960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
bpf_release_orig_filter(struct bpf_prog * fp)1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
__bpf_prog_release(struct bpf_prog * prog)1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
__sk_filter_release(struct sk_filter * fp)1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
sk_filter_release_rcu(struct rcu_head * rcu)1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
sk_filter_release(struct sk_filter * fp)1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
bpf_migrate_filter(struct bpf_prog * fp)1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it
1246 	 * won't be used at this point in time anymore internally
1247 	 * after the migration to the internal BPF instruction
1248 	 * representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the
1340 	 * internal BPF translation for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
bpf_prog_destroy(struct bpf_prog * fp)1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
__get_bpf(u32 ufd,struct sock * sk)1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
sk_attach_bpf(u32 ufd,struct sock * sk)1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
sk_reuseport_prog_free(struct bpf_prog * prog)1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
bpf_try_make_head_writable(struct sk_buff * skb)1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
bpf_push_mac_rcsum(struct sk_buff * skb)1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
bpf_pull_mac_rcsum(struct sk_buff * skb)1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > INT_MAX))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > INT_MAX))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	int err = __bpf_try_make_writable(skb, write_len);
1868 
1869 	bpf_compute_data_end_sk_skb(skb);
1870 	return err;
1871 }
1872 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb(dev, skb);
2088 }
2089 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb->tstamp = 0;
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (unlikely(skb->len <= mlen)) {
2129 		kfree_skb(skb);
2130 		return -ERANGE;
2131 	}
2132 
2133 	if (mlen) {
2134 		__skb_pull(skb, mlen);
2135 		if (unlikely(!skb->len)) {
2136 			kfree_skb(skb);
2137 			return -ERANGE;
2138 		}
2139 
2140 		/* At ingress, the mac header has already been pulled once.
2141 		 * At egress, skb_pospull_rcsum has to be done in case that
2142 		 * the skb is originated from ingress (i.e. a forwarded skb)
2143 		 * to ensure that rcsum starts at net header.
2144 		 */
2145 		if (!skb_at_tc_ingress(skb))
2146 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147 	}
2148 	skb_pop_mac_header(skb);
2149 	skb_reset_mac_len(skb);
2150 	return flags & BPF_F_INGRESS ?
2151 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155 				 u32 flags)
2156 {
2157 	/* Verify that a link layer header is carried */
2158 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159 		kfree_skb(skb);
2160 		return -ERANGE;
2161 	}
2162 
2163 	bpf_push_mac_rcsum(skb);
2164 	return flags & BPF_F_INGRESS ?
2165 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169 			  u32 flags)
2170 {
2171 	if (dev_is_mac_header_xmit(dev))
2172 		return __bpf_redirect_common(skb, dev, flags);
2173 	else
2174 		return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176 
2177 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179 			    struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181 	u32 hh_len = LL_RESERVED_SPACE(dev);
2182 	const struct in6_addr *nexthop;
2183 	struct dst_entry *dst = NULL;
2184 	struct neighbour *neigh;
2185 
2186 	if (dev_xmit_recursion()) {
2187 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188 		goto out_drop;
2189 	}
2190 
2191 	skb->dev = dev;
2192 	skb->tstamp = 0;
2193 
2194 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195 		struct sk_buff *skb2;
2196 
2197 		skb2 = skb_realloc_headroom(skb, hh_len);
2198 		if (unlikely(!skb2)) {
2199 			kfree_skb(skb);
2200 			return -ENOMEM;
2201 		}
2202 		if (skb->sk)
2203 			skb_set_owner_w(skb2, skb->sk);
2204 		consume_skb(skb);
2205 		skb = skb2;
2206 	}
2207 
2208 	rcu_read_lock_bh();
2209 	if (!nh) {
2210 		dst = skb_dst(skb);
2211 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 				      &ipv6_hdr(skb)->daddr);
2213 	} else {
2214 		nexthop = &nh->ipv6_nh;
2215 	}
2216 	neigh = ip_neigh_gw6(dev, nexthop);
2217 	if (likely(!IS_ERR(neigh))) {
2218 		int ret;
2219 
2220 		sock_confirm_neigh(skb, neigh);
2221 		dev_xmit_recursion_inc();
2222 		ret = neigh_output(neigh, skb, false);
2223 		dev_xmit_recursion_dec();
2224 		rcu_read_unlock_bh();
2225 		return ret;
2226 	}
2227 	rcu_read_unlock_bh();
2228 	if (dst)
2229 		IP6_INC_STATS(dev_net(dst->dev),
2230 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2231 out_drop:
2232 	kfree_skb(skb);
2233 	return -ENETDOWN;
2234 }
2235 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2236 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2237 				   struct bpf_nh_params *nh)
2238 {
2239 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2240 	struct net *net = dev_net(dev);
2241 	int err, ret = NET_XMIT_DROP;
2242 
2243 	if (!nh) {
2244 		struct dst_entry *dst;
2245 		struct flowi6 fl6 = {
2246 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2247 			.flowi6_mark  = skb->mark,
2248 			.flowlabel    = ip6_flowinfo(ip6h),
2249 			.flowi6_oif   = dev->ifindex,
2250 			.flowi6_proto = ip6h->nexthdr,
2251 			.daddr	      = ip6h->daddr,
2252 			.saddr	      = ip6h->saddr,
2253 		};
2254 
2255 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2256 		if (IS_ERR(dst))
2257 			goto out_drop;
2258 
2259 		skb_dst_set(skb, dst);
2260 	} else if (nh->nh_family != AF_INET6) {
2261 		goto out_drop;
2262 	}
2263 
2264 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2265 	if (unlikely(net_xmit_eval(err)))
2266 		dev->stats.tx_errors++;
2267 	else
2268 		ret = NET_XMIT_SUCCESS;
2269 	goto out_xmit;
2270 out_drop:
2271 	dev->stats.tx_errors++;
2272 	kfree_skb(skb);
2273 out_xmit:
2274 	return ret;
2275 }
2276 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2277 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2278 				   struct bpf_nh_params *nh)
2279 {
2280 	kfree_skb(skb);
2281 	return NET_XMIT_DROP;
2282 }
2283 #endif /* CONFIG_IPV6 */
2284 
2285 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2286 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2287 			    struct net_device *dev, struct bpf_nh_params *nh)
2288 {
2289 	u32 hh_len = LL_RESERVED_SPACE(dev);
2290 	struct neighbour *neigh;
2291 	bool is_v6gw = false;
2292 
2293 	if (dev_xmit_recursion()) {
2294 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2295 		goto out_drop;
2296 	}
2297 
2298 	skb->dev = dev;
2299 	skb->tstamp = 0;
2300 
2301 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2302 		struct sk_buff *skb2;
2303 
2304 		skb2 = skb_realloc_headroom(skb, hh_len);
2305 		if (unlikely(!skb2)) {
2306 			kfree_skb(skb);
2307 			return -ENOMEM;
2308 		}
2309 		if (skb->sk)
2310 			skb_set_owner_w(skb2, skb->sk);
2311 		consume_skb(skb);
2312 		skb = skb2;
2313 	}
2314 
2315 	rcu_read_lock_bh();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock_bh();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		dev_xmit_recursion_inc();
2336 		ret = neigh_output(neigh, skb, is_v6gw);
2337 		dev_xmit_recursion_dec();
2338 		rcu_read_unlock_bh();
2339 		return ret;
2340 	}
2341 	rcu_read_unlock_bh();
2342 out_drop:
2343 	kfree_skb(skb);
2344 	return -ENETDOWN;
2345 }
2346 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2347 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2348 				   struct bpf_nh_params *nh)
2349 {
2350 	const struct iphdr *ip4h = ip_hdr(skb);
2351 	struct net *net = dev_net(dev);
2352 	int err, ret = NET_XMIT_DROP;
2353 
2354 	if (!nh) {
2355 		struct flowi4 fl4 = {
2356 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2357 			.flowi4_mark  = skb->mark,
2358 			.flowi4_tos   = RT_TOS(ip4h->tos),
2359 			.flowi4_oif   = dev->ifindex,
2360 			.flowi4_proto = ip4h->protocol,
2361 			.daddr	      = ip4h->daddr,
2362 			.saddr	      = ip4h->saddr,
2363 		};
2364 		struct rtable *rt;
2365 
2366 		rt = ip_route_output_flow(net, &fl4, NULL);
2367 		if (IS_ERR(rt))
2368 			goto out_drop;
2369 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2370 			ip_rt_put(rt);
2371 			goto out_drop;
2372 		}
2373 
2374 		skb_dst_set(skb, &rt->dst);
2375 	}
2376 
2377 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2378 	if (unlikely(net_xmit_eval(err)))
2379 		dev->stats.tx_errors++;
2380 	else
2381 		ret = NET_XMIT_SUCCESS;
2382 	goto out_xmit;
2383 out_drop:
2384 	dev->stats.tx_errors++;
2385 	kfree_skb(skb);
2386 out_xmit:
2387 	return ret;
2388 }
2389 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2390 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2391 				   struct bpf_nh_params *nh)
2392 {
2393 	kfree_skb(skb);
2394 	return NET_XMIT_DROP;
2395 }
2396 #endif /* CONFIG_INET */
2397 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2398 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2399 				struct bpf_nh_params *nh)
2400 {
2401 	struct ethhdr *ethh = eth_hdr(skb);
2402 
2403 	if (unlikely(skb->mac_header >= skb->network_header))
2404 		goto out;
2405 	bpf_push_mac_rcsum(skb);
2406 	if (is_multicast_ether_addr(ethh->h_dest))
2407 		goto out;
2408 
2409 	skb_pull(skb, sizeof(*ethh));
2410 	skb_unset_mac_header(skb);
2411 	skb_reset_network_header(skb);
2412 
2413 	if (skb->protocol == htons(ETH_P_IP))
2414 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2415 	else if (skb->protocol == htons(ETH_P_IPV6))
2416 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2417 out:
2418 	kfree_skb(skb);
2419 	return -ENOTSUPP;
2420 }
2421 
2422 /* Internal, non-exposed redirect flags. */
2423 enum {
2424 	BPF_F_NEIGH	= (1ULL << 1),
2425 	BPF_F_PEER	= (1ULL << 2),
2426 	BPF_F_NEXTHOP	= (1ULL << 3),
2427 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2428 };
2429 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2430 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2431 {
2432 	struct net_device *dev;
2433 	struct sk_buff *clone;
2434 	int ret;
2435 
2436 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2437 		return -EINVAL;
2438 
2439 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2440 	if (unlikely(!dev))
2441 		return -EINVAL;
2442 
2443 	clone = skb_clone(skb, GFP_ATOMIC);
2444 	if (unlikely(!clone))
2445 		return -ENOMEM;
2446 
2447 	/* For direct write, we need to keep the invariant that the skbs
2448 	 * we're dealing with need to be uncloned. Should uncloning fail
2449 	 * here, we need to free the just generated clone to unclone once
2450 	 * again.
2451 	 */
2452 	ret = bpf_try_make_head_writable(skb);
2453 	if (unlikely(ret)) {
2454 		kfree_skb(clone);
2455 		return -ENOMEM;
2456 	}
2457 
2458 	return __bpf_redirect(clone, dev, flags);
2459 }
2460 
2461 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2462 	.func           = bpf_clone_redirect,
2463 	.gpl_only       = false,
2464 	.ret_type       = RET_INTEGER,
2465 	.arg1_type      = ARG_PTR_TO_CTX,
2466 	.arg2_type      = ARG_ANYTHING,
2467 	.arg3_type      = ARG_ANYTHING,
2468 };
2469 
2470 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2471 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2472 
skb_do_redirect(struct sk_buff * skb)2473 int skb_do_redirect(struct sk_buff *skb)
2474 {
2475 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2476 	struct net *net = dev_net(skb->dev);
2477 	struct net_device *dev;
2478 	u32 flags = ri->flags;
2479 
2480 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2481 	ri->tgt_index = 0;
2482 	ri->flags = 0;
2483 	if (unlikely(!dev))
2484 		goto out_drop;
2485 	if (flags & BPF_F_PEER) {
2486 		const struct net_device_ops *ops = dev->netdev_ops;
2487 
2488 		if (unlikely(!ops->ndo_get_peer_dev ||
2489 			     !skb_at_tc_ingress(skb)))
2490 			goto out_drop;
2491 		dev = ops->ndo_get_peer_dev(dev);
2492 		if (unlikely(!dev ||
2493 			     !is_skb_forwardable(dev, skb) ||
2494 			     net_eq(net, dev_net(dev))))
2495 			goto out_drop;
2496 		skb->dev = dev;
2497 		return -EAGAIN;
2498 	}
2499 	return flags & BPF_F_NEIGH ?
2500 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2501 				    &ri->nh : NULL) :
2502 	       __bpf_redirect(skb, dev, flags);
2503 out_drop:
2504 	kfree_skb(skb);
2505 	return -EINVAL;
2506 }
2507 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2508 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2509 {
2510 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511 
2512 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2513 		return TC_ACT_SHOT;
2514 
2515 	ri->flags = flags;
2516 	ri->tgt_index = ifindex;
2517 
2518 	return TC_ACT_REDIRECT;
2519 }
2520 
2521 static const struct bpf_func_proto bpf_redirect_proto = {
2522 	.func           = bpf_redirect,
2523 	.gpl_only       = false,
2524 	.ret_type       = RET_INTEGER,
2525 	.arg1_type      = ARG_ANYTHING,
2526 	.arg2_type      = ARG_ANYTHING,
2527 };
2528 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2529 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2530 {
2531 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2532 
2533 	if (unlikely(flags))
2534 		return TC_ACT_SHOT;
2535 
2536 	ri->flags = BPF_F_PEER;
2537 	ri->tgt_index = ifindex;
2538 
2539 	return TC_ACT_REDIRECT;
2540 }
2541 
2542 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2543 	.func           = bpf_redirect_peer,
2544 	.gpl_only       = false,
2545 	.ret_type       = RET_INTEGER,
2546 	.arg1_type      = ARG_ANYTHING,
2547 	.arg2_type      = ARG_ANYTHING,
2548 };
2549 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2550 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2551 	   int, plen, u64, flags)
2552 {
2553 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2554 
2555 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2556 		return TC_ACT_SHOT;
2557 
2558 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2559 	ri->tgt_index = ifindex;
2560 
2561 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2562 	if (plen)
2563 		memcpy(&ri->nh, params, sizeof(ri->nh));
2564 
2565 	return TC_ACT_REDIRECT;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2569 	.func		= bpf_redirect_neigh,
2570 	.gpl_only	= false,
2571 	.ret_type	= RET_INTEGER,
2572 	.arg1_type	= ARG_ANYTHING,
2573 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2574 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2575 	.arg4_type	= ARG_ANYTHING,
2576 };
2577 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2578 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2579 {
2580 	msg->apply_bytes = bytes;
2581 	return 0;
2582 }
2583 
2584 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2585 	.func           = bpf_msg_apply_bytes,
2586 	.gpl_only       = false,
2587 	.ret_type       = RET_INTEGER,
2588 	.arg1_type	= ARG_PTR_TO_CTX,
2589 	.arg2_type      = ARG_ANYTHING,
2590 };
2591 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2592 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2593 {
2594 	msg->cork_bytes = bytes;
2595 	return 0;
2596 }
2597 
sk_msg_reset_curr(struct sk_msg * msg)2598 static void sk_msg_reset_curr(struct sk_msg *msg)
2599 {
2600 	u32 i = msg->sg.start;
2601 	u32 len = 0;
2602 
2603 	do {
2604 		len += sk_msg_elem(msg, i)->length;
2605 		sk_msg_iter_var_next(i);
2606 		if (len >= msg->sg.size)
2607 			break;
2608 	} while (i != msg->sg.end);
2609 
2610 	msg->sg.curr = i;
2611 	msg->sg.copybreak = 0;
2612 }
2613 
2614 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2615 	.func           = bpf_msg_cork_bytes,
2616 	.gpl_only       = false,
2617 	.ret_type       = RET_INTEGER,
2618 	.arg1_type	= ARG_PTR_TO_CTX,
2619 	.arg2_type      = ARG_ANYTHING,
2620 };
2621 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2622 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2623 	   u32, end, u64, flags)
2624 {
2625 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2626 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2627 	struct scatterlist *sge;
2628 	u8 *raw, *to, *from;
2629 	struct page *page;
2630 
2631 	if (unlikely(flags || end <= start))
2632 		return -EINVAL;
2633 
2634 	/* First find the starting scatterlist element */
2635 	i = msg->sg.start;
2636 	do {
2637 		offset += len;
2638 		len = sk_msg_elem(msg, i)->length;
2639 		if (start < offset + len)
2640 			break;
2641 		sk_msg_iter_var_next(i);
2642 	} while (i != msg->sg.end);
2643 
2644 	if (unlikely(start >= offset + len))
2645 		return -EINVAL;
2646 
2647 	first_sge = i;
2648 	/* The start may point into the sg element so we need to also
2649 	 * account for the headroom.
2650 	 */
2651 	bytes_sg_total = start - offset + bytes;
2652 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2653 		goto out;
2654 
2655 	/* At this point we need to linearize multiple scatterlist
2656 	 * elements or a single shared page. Either way we need to
2657 	 * copy into a linear buffer exclusively owned by BPF. Then
2658 	 * place the buffer in the scatterlist and fixup the original
2659 	 * entries by removing the entries now in the linear buffer
2660 	 * and shifting the remaining entries. For now we do not try
2661 	 * to copy partial entries to avoid complexity of running out
2662 	 * of sg_entry slots. The downside is reading a single byte
2663 	 * will copy the entire sg entry.
2664 	 */
2665 	do {
2666 		copy += sk_msg_elem(msg, i)->length;
2667 		sk_msg_iter_var_next(i);
2668 		if (bytes_sg_total <= copy)
2669 			break;
2670 	} while (i != msg->sg.end);
2671 	last_sge = i;
2672 
2673 	if (unlikely(bytes_sg_total > copy))
2674 		return -EINVAL;
2675 
2676 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2677 			   get_order(copy));
2678 	if (unlikely(!page))
2679 		return -ENOMEM;
2680 
2681 	raw = page_address(page);
2682 	i = first_sge;
2683 	do {
2684 		sge = sk_msg_elem(msg, i);
2685 		from = sg_virt(sge);
2686 		len = sge->length;
2687 		to = raw + poffset;
2688 
2689 		memcpy(to, from, len);
2690 		poffset += len;
2691 		sge->length = 0;
2692 		put_page(sg_page(sge));
2693 
2694 		sk_msg_iter_var_next(i);
2695 	} while (i != last_sge);
2696 
2697 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2698 
2699 	/* To repair sg ring we need to shift entries. If we only
2700 	 * had a single entry though we can just replace it and
2701 	 * be done. Otherwise walk the ring and shift the entries.
2702 	 */
2703 	WARN_ON_ONCE(last_sge == first_sge);
2704 	shift = last_sge > first_sge ?
2705 		last_sge - first_sge - 1 :
2706 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2707 	if (!shift)
2708 		goto out;
2709 
2710 	i = first_sge;
2711 	sk_msg_iter_var_next(i);
2712 	do {
2713 		u32 move_from;
2714 
2715 		if (i + shift >= NR_MSG_FRAG_IDS)
2716 			move_from = i + shift - NR_MSG_FRAG_IDS;
2717 		else
2718 			move_from = i + shift;
2719 		if (move_from == msg->sg.end)
2720 			break;
2721 
2722 		msg->sg.data[i] = msg->sg.data[move_from];
2723 		msg->sg.data[move_from].length = 0;
2724 		msg->sg.data[move_from].page_link = 0;
2725 		msg->sg.data[move_from].offset = 0;
2726 		sk_msg_iter_var_next(i);
2727 	} while (1);
2728 
2729 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2730 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2731 		      msg->sg.end - shift;
2732 out:
2733 	sk_msg_reset_curr(msg);
2734 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2735 	msg->data_end = msg->data + bytes;
2736 	return 0;
2737 }
2738 
2739 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2740 	.func		= bpf_msg_pull_data,
2741 	.gpl_only	= false,
2742 	.ret_type	= RET_INTEGER,
2743 	.arg1_type	= ARG_PTR_TO_CTX,
2744 	.arg2_type	= ARG_ANYTHING,
2745 	.arg3_type	= ARG_ANYTHING,
2746 	.arg4_type	= ARG_ANYTHING,
2747 };
2748 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2749 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2750 	   u32, len, u64, flags)
2751 {
2752 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2753 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2754 	u8 *raw, *to, *from;
2755 	struct page *page;
2756 
2757 	if (unlikely(flags))
2758 		return -EINVAL;
2759 
2760 	if (unlikely(len == 0))
2761 		return 0;
2762 
2763 	/* First find the starting scatterlist element */
2764 	i = msg->sg.start;
2765 	do {
2766 		offset += l;
2767 		l = sk_msg_elem(msg, i)->length;
2768 
2769 		if (start < offset + l)
2770 			break;
2771 		sk_msg_iter_var_next(i);
2772 	} while (i != msg->sg.end);
2773 
2774 	if (start >= offset + l)
2775 		return -EINVAL;
2776 
2777 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2778 
2779 	/* If no space available will fallback to copy, we need at
2780 	 * least one scatterlist elem available to push data into
2781 	 * when start aligns to the beginning of an element or two
2782 	 * when it falls inside an element. We handle the start equals
2783 	 * offset case because its the common case for inserting a
2784 	 * header.
2785 	 */
2786 	if (!space || (space == 1 && start != offset))
2787 		copy = msg->sg.data[i].length;
2788 
2789 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2790 			   get_order(copy + len));
2791 	if (unlikely(!page))
2792 		return -ENOMEM;
2793 
2794 	if (copy) {
2795 		int front, back;
2796 
2797 		raw = page_address(page);
2798 
2799 		psge = sk_msg_elem(msg, i);
2800 		front = start - offset;
2801 		back = psge->length - front;
2802 		from = sg_virt(psge);
2803 
2804 		if (front)
2805 			memcpy(raw, from, front);
2806 
2807 		if (back) {
2808 			from += front;
2809 			to = raw + front + len;
2810 
2811 			memcpy(to, from, back);
2812 		}
2813 
2814 		put_page(sg_page(psge));
2815 	} else if (start - offset) {
2816 		psge = sk_msg_elem(msg, i);
2817 		rsge = sk_msg_elem_cpy(msg, i);
2818 
2819 		psge->length = start - offset;
2820 		rsge.length -= psge->length;
2821 		rsge.offset += start;
2822 
2823 		sk_msg_iter_var_next(i);
2824 		sg_unmark_end(psge);
2825 		sg_unmark_end(&rsge);
2826 		sk_msg_iter_next(msg, end);
2827 	}
2828 
2829 	/* Slot(s) to place newly allocated data */
2830 	new = i;
2831 
2832 	/* Shift one or two slots as needed */
2833 	if (!copy) {
2834 		sge = sk_msg_elem_cpy(msg, i);
2835 
2836 		sk_msg_iter_var_next(i);
2837 		sg_unmark_end(&sge);
2838 		sk_msg_iter_next(msg, end);
2839 
2840 		nsge = sk_msg_elem_cpy(msg, i);
2841 		if (rsge.length) {
2842 			sk_msg_iter_var_next(i);
2843 			nnsge = sk_msg_elem_cpy(msg, i);
2844 		}
2845 
2846 		while (i != msg->sg.end) {
2847 			msg->sg.data[i] = sge;
2848 			sge = nsge;
2849 			sk_msg_iter_var_next(i);
2850 			if (rsge.length) {
2851 				nsge = nnsge;
2852 				nnsge = sk_msg_elem_cpy(msg, i);
2853 			} else {
2854 				nsge = sk_msg_elem_cpy(msg, i);
2855 			}
2856 		}
2857 	}
2858 
2859 	/* Place newly allocated data buffer */
2860 	sk_mem_charge(msg->sk, len);
2861 	msg->sg.size += len;
2862 	__clear_bit(new, &msg->sg.copy);
2863 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2864 	if (rsge.length) {
2865 		get_page(sg_page(&rsge));
2866 		sk_msg_iter_var_next(new);
2867 		msg->sg.data[new] = rsge;
2868 	}
2869 
2870 	sk_msg_reset_curr(msg);
2871 	sk_msg_compute_data_pointers(msg);
2872 	return 0;
2873 }
2874 
2875 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2876 	.func		= bpf_msg_push_data,
2877 	.gpl_only	= false,
2878 	.ret_type	= RET_INTEGER,
2879 	.arg1_type	= ARG_PTR_TO_CTX,
2880 	.arg2_type	= ARG_ANYTHING,
2881 	.arg3_type	= ARG_ANYTHING,
2882 	.arg4_type	= ARG_ANYTHING,
2883 };
2884 
sk_msg_shift_left(struct sk_msg * msg,int i)2885 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2886 {
2887 	int prev;
2888 
2889 	do {
2890 		prev = i;
2891 		sk_msg_iter_var_next(i);
2892 		msg->sg.data[prev] = msg->sg.data[i];
2893 	} while (i != msg->sg.end);
2894 
2895 	sk_msg_iter_prev(msg, end);
2896 }
2897 
sk_msg_shift_right(struct sk_msg * msg,int i)2898 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2899 {
2900 	struct scatterlist tmp, sge;
2901 
2902 	sk_msg_iter_next(msg, end);
2903 	sge = sk_msg_elem_cpy(msg, i);
2904 	sk_msg_iter_var_next(i);
2905 	tmp = sk_msg_elem_cpy(msg, i);
2906 
2907 	while (i != msg->sg.end) {
2908 		msg->sg.data[i] = sge;
2909 		sk_msg_iter_var_next(i);
2910 		sge = tmp;
2911 		tmp = sk_msg_elem_cpy(msg, i);
2912 	}
2913 }
2914 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2915 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2916 	   u32, len, u64, flags)
2917 {
2918 	u32 i = 0, l = 0, space, offset = 0;
2919 	u64 last = start + len;
2920 	int pop;
2921 
2922 	if (unlikely(flags))
2923 		return -EINVAL;
2924 
2925 	/* First find the starting scatterlist element */
2926 	i = msg->sg.start;
2927 	do {
2928 		offset += l;
2929 		l = sk_msg_elem(msg, i)->length;
2930 
2931 		if (start < offset + l)
2932 			break;
2933 		sk_msg_iter_var_next(i);
2934 	} while (i != msg->sg.end);
2935 
2936 	/* Bounds checks: start and pop must be inside message */
2937 	if (start >= offset + l || last >= msg->sg.size)
2938 		return -EINVAL;
2939 
2940 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2941 
2942 	pop = len;
2943 	/* --------------| offset
2944 	 * -| start      |-------- len -------|
2945 	 *
2946 	 *  |----- a ----|-------- pop -------|----- b ----|
2947 	 *  |______________________________________________| length
2948 	 *
2949 	 *
2950 	 * a:   region at front of scatter element to save
2951 	 * b:   region at back of scatter element to save when length > A + pop
2952 	 * pop: region to pop from element, same as input 'pop' here will be
2953 	 *      decremented below per iteration.
2954 	 *
2955 	 * Two top-level cases to handle when start != offset, first B is non
2956 	 * zero and second B is zero corresponding to when a pop includes more
2957 	 * than one element.
2958 	 *
2959 	 * Then if B is non-zero AND there is no space allocate space and
2960 	 * compact A, B regions into page. If there is space shift ring to
2961 	 * the rigth free'ing the next element in ring to place B, leaving
2962 	 * A untouched except to reduce length.
2963 	 */
2964 	if (start != offset) {
2965 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2966 		int a = start;
2967 		int b = sge->length - pop - a;
2968 
2969 		sk_msg_iter_var_next(i);
2970 
2971 		if (pop < sge->length - a) {
2972 			if (space) {
2973 				sge->length = a;
2974 				sk_msg_shift_right(msg, i);
2975 				nsge = sk_msg_elem(msg, i);
2976 				get_page(sg_page(sge));
2977 				sg_set_page(nsge,
2978 					    sg_page(sge),
2979 					    b, sge->offset + pop + a);
2980 			} else {
2981 				struct page *page, *orig;
2982 				u8 *to, *from;
2983 
2984 				page = alloc_pages(__GFP_NOWARN |
2985 						   __GFP_COMP   | GFP_ATOMIC,
2986 						   get_order(a + b));
2987 				if (unlikely(!page))
2988 					return -ENOMEM;
2989 
2990 				sge->length = a;
2991 				orig = sg_page(sge);
2992 				from = sg_virt(sge);
2993 				to = page_address(page);
2994 				memcpy(to, from, a);
2995 				memcpy(to + a, from + a + pop, b);
2996 				sg_set_page(sge, page, a + b, 0);
2997 				put_page(orig);
2998 			}
2999 			pop = 0;
3000 		} else if (pop >= sge->length - a) {
3001 			pop -= (sge->length - a);
3002 			sge->length = a;
3003 		}
3004 	}
3005 
3006 	/* From above the current layout _must_ be as follows,
3007 	 *
3008 	 * -| offset
3009 	 * -| start
3010 	 *
3011 	 *  |---- pop ---|---------------- b ------------|
3012 	 *  |____________________________________________| length
3013 	 *
3014 	 * Offset and start of the current msg elem are equal because in the
3015 	 * previous case we handled offset != start and either consumed the
3016 	 * entire element and advanced to the next element OR pop == 0.
3017 	 *
3018 	 * Two cases to handle here are first pop is less than the length
3019 	 * leaving some remainder b above. Simply adjust the element's layout
3020 	 * in this case. Or pop >= length of the element so that b = 0. In this
3021 	 * case advance to next element decrementing pop.
3022 	 */
3023 	while (pop) {
3024 		struct scatterlist *sge = sk_msg_elem(msg, i);
3025 
3026 		if (pop < sge->length) {
3027 			sge->length -= pop;
3028 			sge->offset += pop;
3029 			pop = 0;
3030 		} else {
3031 			pop -= sge->length;
3032 			sk_msg_shift_left(msg, i);
3033 		}
3034 		sk_msg_iter_var_next(i);
3035 	}
3036 
3037 	sk_mem_uncharge(msg->sk, len - pop);
3038 	msg->sg.size -= (len - pop);
3039 	sk_msg_reset_curr(msg);
3040 	sk_msg_compute_data_pointers(msg);
3041 	return 0;
3042 }
3043 
3044 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3045 	.func		= bpf_msg_pop_data,
3046 	.gpl_only	= false,
3047 	.ret_type	= RET_INTEGER,
3048 	.arg1_type	= ARG_PTR_TO_CTX,
3049 	.arg2_type	= ARG_ANYTHING,
3050 	.arg3_type	= ARG_ANYTHING,
3051 	.arg4_type	= ARG_ANYTHING,
3052 };
3053 
3054 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3055 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3056 {
3057 	return __task_get_classid(current);
3058 }
3059 
3060 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3061 	.func		= bpf_get_cgroup_classid_curr,
3062 	.gpl_only	= false,
3063 	.ret_type	= RET_INTEGER,
3064 };
3065 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3066 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3067 {
3068 	struct sock *sk = skb_to_full_sk(skb);
3069 
3070 	if (!sk || !sk_fullsock(sk))
3071 		return 0;
3072 
3073 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3074 }
3075 
3076 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3077 	.func		= bpf_skb_cgroup_classid,
3078 	.gpl_only	= false,
3079 	.ret_type	= RET_INTEGER,
3080 	.arg1_type	= ARG_PTR_TO_CTX,
3081 };
3082 #endif
3083 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3084 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3085 {
3086 	return task_get_classid(skb);
3087 }
3088 
3089 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3090 	.func           = bpf_get_cgroup_classid,
3091 	.gpl_only       = false,
3092 	.ret_type       = RET_INTEGER,
3093 	.arg1_type      = ARG_PTR_TO_CTX,
3094 };
3095 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3096 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3097 {
3098 	return dst_tclassid(skb);
3099 }
3100 
3101 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3102 	.func           = bpf_get_route_realm,
3103 	.gpl_only       = false,
3104 	.ret_type       = RET_INTEGER,
3105 	.arg1_type      = ARG_PTR_TO_CTX,
3106 };
3107 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3108 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3109 {
3110 	/* If skb_clear_hash() was called due to mangling, we can
3111 	 * trigger SW recalculation here. Later access to hash
3112 	 * can then use the inline skb->hash via context directly
3113 	 * instead of calling this helper again.
3114 	 */
3115 	return skb_get_hash(skb);
3116 }
3117 
3118 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3119 	.func		= bpf_get_hash_recalc,
3120 	.gpl_only	= false,
3121 	.ret_type	= RET_INTEGER,
3122 	.arg1_type	= ARG_PTR_TO_CTX,
3123 };
3124 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3125 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3126 {
3127 	/* After all direct packet write, this can be used once for
3128 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3129 	 */
3130 	skb_clear_hash(skb);
3131 	return 0;
3132 }
3133 
3134 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3135 	.func		= bpf_set_hash_invalid,
3136 	.gpl_only	= false,
3137 	.ret_type	= RET_INTEGER,
3138 	.arg1_type	= ARG_PTR_TO_CTX,
3139 };
3140 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3141 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3142 {
3143 	/* Set user specified hash as L4(+), so that it gets returned
3144 	 * on skb_get_hash() call unless BPF prog later on triggers a
3145 	 * skb_clear_hash().
3146 	 */
3147 	__skb_set_sw_hash(skb, hash, true);
3148 	return 0;
3149 }
3150 
3151 static const struct bpf_func_proto bpf_set_hash_proto = {
3152 	.func		= bpf_set_hash,
3153 	.gpl_only	= false,
3154 	.ret_type	= RET_INTEGER,
3155 	.arg1_type	= ARG_PTR_TO_CTX,
3156 	.arg2_type	= ARG_ANYTHING,
3157 };
3158 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3159 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3160 	   u16, vlan_tci)
3161 {
3162 	int ret;
3163 
3164 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3165 		     vlan_proto != htons(ETH_P_8021AD)))
3166 		vlan_proto = htons(ETH_P_8021Q);
3167 
3168 	bpf_push_mac_rcsum(skb);
3169 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3170 	bpf_pull_mac_rcsum(skb);
3171 
3172 	bpf_compute_data_pointers(skb);
3173 	return ret;
3174 }
3175 
3176 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3177 	.func           = bpf_skb_vlan_push,
3178 	.gpl_only       = false,
3179 	.ret_type       = RET_INTEGER,
3180 	.arg1_type      = ARG_PTR_TO_CTX,
3181 	.arg2_type      = ARG_ANYTHING,
3182 	.arg3_type      = ARG_ANYTHING,
3183 };
3184 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3185 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3186 {
3187 	int ret;
3188 
3189 	bpf_push_mac_rcsum(skb);
3190 	ret = skb_vlan_pop(skb);
3191 	bpf_pull_mac_rcsum(skb);
3192 
3193 	bpf_compute_data_pointers(skb);
3194 	return ret;
3195 }
3196 
3197 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3198 	.func           = bpf_skb_vlan_pop,
3199 	.gpl_only       = false,
3200 	.ret_type       = RET_INTEGER,
3201 	.arg1_type      = ARG_PTR_TO_CTX,
3202 };
3203 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3204 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206 	/* Caller already did skb_cow() with len as headroom,
3207 	 * so no need to do it here.
3208 	 */
3209 	skb_push(skb, len);
3210 	memmove(skb->data, skb->data + len, off);
3211 	memset(skb->data + off, 0, len);
3212 
3213 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3214 	 * needed here as it does not change the skb->csum
3215 	 * result for checksum complete when summing over
3216 	 * zeroed blocks.
3217 	 */
3218 	return 0;
3219 }
3220 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3221 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3222 {
3223 	void *old_data;
3224 
3225 	/* skb_ensure_writable() is not needed here, as we're
3226 	 * already working on an uncloned skb.
3227 	 */
3228 	if (unlikely(!pskb_may_pull(skb, off + len)))
3229 		return -ENOMEM;
3230 
3231 	old_data = skb->data;
3232 	__skb_pull(skb, len);
3233 	skb_postpull_rcsum(skb, old_data + off, len);
3234 	memmove(skb->data, old_data, off);
3235 
3236 	return 0;
3237 }
3238 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3239 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3240 {
3241 	bool trans_same = skb->transport_header == skb->network_header;
3242 	int ret;
3243 
3244 	/* There's no need for __skb_push()/__skb_pull() pair to
3245 	 * get to the start of the mac header as we're guaranteed
3246 	 * to always start from here under eBPF.
3247 	 */
3248 	ret = bpf_skb_generic_push(skb, off, len);
3249 	if (likely(!ret)) {
3250 		skb->mac_header -= len;
3251 		skb->network_header -= len;
3252 		if (trans_same)
3253 			skb->transport_header = skb->network_header;
3254 	}
3255 
3256 	return ret;
3257 }
3258 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3259 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3260 {
3261 	bool trans_same = skb->transport_header == skb->network_header;
3262 	int ret;
3263 
3264 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3265 	ret = bpf_skb_generic_pop(skb, off, len);
3266 	if (likely(!ret)) {
3267 		skb->mac_header += len;
3268 		skb->network_header += len;
3269 		if (trans_same)
3270 			skb->transport_header = skb->network_header;
3271 	}
3272 
3273 	return ret;
3274 }
3275 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3276 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3277 {
3278 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3279 	u32 off = skb_mac_header_len(skb);
3280 	int ret;
3281 
3282 	ret = skb_cow(skb, len_diff);
3283 	if (unlikely(ret < 0))
3284 		return ret;
3285 
3286 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3287 	if (unlikely(ret < 0))
3288 		return ret;
3289 
3290 	if (skb_is_gso(skb)) {
3291 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3292 
3293 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3294 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3295 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3296 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3297 		}
3298 	}
3299 
3300 	skb->protocol = htons(ETH_P_IPV6);
3301 	skb_clear_hash(skb);
3302 
3303 	return 0;
3304 }
3305 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3306 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3307 {
3308 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3309 	u32 off = skb_mac_header_len(skb);
3310 	int ret;
3311 
3312 	ret = skb_unclone(skb, GFP_ATOMIC);
3313 	if (unlikely(ret < 0))
3314 		return ret;
3315 
3316 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3317 	if (unlikely(ret < 0))
3318 		return ret;
3319 
3320 	if (skb_is_gso(skb)) {
3321 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3322 
3323 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3324 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3325 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3326 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3327 		}
3328 	}
3329 
3330 	skb->protocol = htons(ETH_P_IP);
3331 	skb_clear_hash(skb);
3332 
3333 	return 0;
3334 }
3335 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3336 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3337 {
3338 	__be16 from_proto = skb->protocol;
3339 
3340 	if (from_proto == htons(ETH_P_IP) &&
3341 	      to_proto == htons(ETH_P_IPV6))
3342 		return bpf_skb_proto_4_to_6(skb);
3343 
3344 	if (from_proto == htons(ETH_P_IPV6) &&
3345 	      to_proto == htons(ETH_P_IP))
3346 		return bpf_skb_proto_6_to_4(skb);
3347 
3348 	return -ENOTSUPP;
3349 }
3350 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3351 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3352 	   u64, flags)
3353 {
3354 	int ret;
3355 
3356 	if (unlikely(flags))
3357 		return -EINVAL;
3358 
3359 	/* General idea is that this helper does the basic groundwork
3360 	 * needed for changing the protocol, and eBPF program fills the
3361 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3362 	 * and other helpers, rather than passing a raw buffer here.
3363 	 *
3364 	 * The rationale is to keep this minimal and without a need to
3365 	 * deal with raw packet data. F.e. even if we would pass buffers
3366 	 * here, the program still needs to call the bpf_lX_csum_replace()
3367 	 * helpers anyway. Plus, this way we keep also separation of
3368 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3369 	 * care of stores.
3370 	 *
3371 	 * Currently, additional options and extension header space are
3372 	 * not supported, but flags register is reserved so we can adapt
3373 	 * that. For offloads, we mark packet as dodgy, so that headers
3374 	 * need to be verified first.
3375 	 */
3376 	ret = bpf_skb_proto_xlat(skb, proto);
3377 	bpf_compute_data_pointers(skb);
3378 	return ret;
3379 }
3380 
3381 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3382 	.func		= bpf_skb_change_proto,
3383 	.gpl_only	= false,
3384 	.ret_type	= RET_INTEGER,
3385 	.arg1_type	= ARG_PTR_TO_CTX,
3386 	.arg2_type	= ARG_ANYTHING,
3387 	.arg3_type	= ARG_ANYTHING,
3388 };
3389 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3390 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3391 {
3392 	/* We only allow a restricted subset to be changed for now. */
3393 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3394 		     !skb_pkt_type_ok(pkt_type)))
3395 		return -EINVAL;
3396 
3397 	skb->pkt_type = pkt_type;
3398 	return 0;
3399 }
3400 
3401 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3402 	.func		= bpf_skb_change_type,
3403 	.gpl_only	= false,
3404 	.ret_type	= RET_INTEGER,
3405 	.arg1_type	= ARG_PTR_TO_CTX,
3406 	.arg2_type	= ARG_ANYTHING,
3407 };
3408 
bpf_skb_net_base_len(const struct sk_buff * skb)3409 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3410 {
3411 	switch (skb->protocol) {
3412 	case htons(ETH_P_IP):
3413 		return sizeof(struct iphdr);
3414 	case htons(ETH_P_IPV6):
3415 		return sizeof(struct ipv6hdr);
3416 	default:
3417 		return ~0U;
3418 	}
3419 }
3420 
3421 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3422 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3423 
3424 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3425 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3426 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3427 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3428 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3429 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3430 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3431 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3432 			    u64 flags)
3433 {
3434 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3435 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3436 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3437 	unsigned int gso_type = SKB_GSO_DODGY;
3438 	int ret;
3439 
3440 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3441 		/* udp gso_size delineates datagrams, only allow if fixed */
3442 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3443 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3444 			return -ENOTSUPP;
3445 	}
3446 
3447 	ret = skb_cow_head(skb, len_diff);
3448 	if (unlikely(ret < 0))
3449 		return ret;
3450 
3451 	if (encap) {
3452 		if (skb->protocol != htons(ETH_P_IP) &&
3453 		    skb->protocol != htons(ETH_P_IPV6))
3454 			return -ENOTSUPP;
3455 
3456 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3457 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3458 			return -EINVAL;
3459 
3460 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3461 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3462 			return -EINVAL;
3463 
3464 		if (skb->encapsulation)
3465 			return -EALREADY;
3466 
3467 		mac_len = skb->network_header - skb->mac_header;
3468 		inner_net = skb->network_header;
3469 		if (inner_mac_len > len_diff)
3470 			return -EINVAL;
3471 		inner_trans = skb->transport_header;
3472 	}
3473 
3474 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3475 	if (unlikely(ret < 0))
3476 		return ret;
3477 
3478 	if (encap) {
3479 		skb->inner_mac_header = inner_net - inner_mac_len;
3480 		skb->inner_network_header = inner_net;
3481 		skb->inner_transport_header = inner_trans;
3482 		skb_set_inner_protocol(skb, skb->protocol);
3483 
3484 		skb->encapsulation = 1;
3485 		skb_set_network_header(skb, mac_len);
3486 
3487 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3488 			gso_type |= SKB_GSO_UDP_TUNNEL;
3489 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3490 			gso_type |= SKB_GSO_GRE;
3491 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3492 			gso_type |= SKB_GSO_IPXIP6;
3493 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3494 			gso_type |= SKB_GSO_IPXIP4;
3495 
3496 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3497 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3498 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3499 					sizeof(struct ipv6hdr) :
3500 					sizeof(struct iphdr);
3501 
3502 			skb_set_transport_header(skb, mac_len + nh_len);
3503 		}
3504 
3505 		/* Match skb->protocol to new outer l3 protocol */
3506 		if (skb->protocol == htons(ETH_P_IP) &&
3507 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3508 			skb->protocol = htons(ETH_P_IPV6);
3509 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3510 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3511 			skb->protocol = htons(ETH_P_IP);
3512 	}
3513 
3514 	if (skb_is_gso(skb)) {
3515 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3516 
3517 		/* Due to header grow, MSS needs to be downgraded. */
3518 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3519 			skb_decrease_gso_size(shinfo, len_diff);
3520 
3521 		/* Header must be checked, and gso_segs recomputed. */
3522 		shinfo->gso_type |= gso_type;
3523 		shinfo->gso_segs = 0;
3524 	}
3525 
3526 	return 0;
3527 }
3528 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3529 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3530 			      u64 flags)
3531 {
3532 	int ret;
3533 
3534 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3535 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3536 		return -EINVAL;
3537 
3538 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3539 		/* udp gso_size delineates datagrams, only allow if fixed */
3540 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3541 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3542 			return -ENOTSUPP;
3543 	}
3544 
3545 	ret = skb_unclone(skb, GFP_ATOMIC);
3546 	if (unlikely(ret < 0))
3547 		return ret;
3548 
3549 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3550 	if (unlikely(ret < 0))
3551 		return ret;
3552 
3553 	if (skb_is_gso(skb)) {
3554 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3555 
3556 		/* Due to header shrink, MSS can be upgraded. */
3557 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3558 			skb_increase_gso_size(shinfo, len_diff);
3559 
3560 		/* Header must be checked, and gso_segs recomputed. */
3561 		shinfo->gso_type |= SKB_GSO_DODGY;
3562 		shinfo->gso_segs = 0;
3563 	}
3564 
3565 	return 0;
3566 }
3567 
3568 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3569 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3570 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3571 	   u32, mode, u64, flags)
3572 {
3573 	u32 len_diff_abs = abs(len_diff);
3574 	bool shrink = len_diff < 0;
3575 	int ret = 0;
3576 
3577 	if (unlikely(flags || mode))
3578 		return -EINVAL;
3579 	if (unlikely(len_diff_abs > 0xfffU))
3580 		return -EFAULT;
3581 
3582 	if (!shrink) {
3583 		ret = skb_cow(skb, len_diff);
3584 		if (unlikely(ret < 0))
3585 			return ret;
3586 		__skb_push(skb, len_diff_abs);
3587 		memset(skb->data, 0, len_diff_abs);
3588 	} else {
3589 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3590 			return -ENOMEM;
3591 		__skb_pull(skb, len_diff_abs);
3592 	}
3593 	bpf_compute_data_end_sk_skb(skb);
3594 	if (tls_sw_has_ctx_rx(skb->sk)) {
3595 		struct strp_msg *rxm = strp_msg(skb);
3596 
3597 		rxm->full_len += len_diff;
3598 	}
3599 	return ret;
3600 }
3601 
3602 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3603 	.func		= sk_skb_adjust_room,
3604 	.gpl_only	= false,
3605 	.ret_type	= RET_INTEGER,
3606 	.arg1_type	= ARG_PTR_TO_CTX,
3607 	.arg2_type	= ARG_ANYTHING,
3608 	.arg3_type	= ARG_ANYTHING,
3609 	.arg4_type	= ARG_ANYTHING,
3610 };
3611 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3612 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3613 	   u32, mode, u64, flags)
3614 {
3615 	u32 len_cur, len_diff_abs = abs(len_diff);
3616 	u32 len_min = bpf_skb_net_base_len(skb);
3617 	u32 len_max = BPF_SKB_MAX_LEN;
3618 	__be16 proto = skb->protocol;
3619 	bool shrink = len_diff < 0;
3620 	u32 off;
3621 	int ret;
3622 
3623 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3624 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3625 		return -EINVAL;
3626 	if (unlikely(len_diff_abs > 0xfffU))
3627 		return -EFAULT;
3628 	if (unlikely(proto != htons(ETH_P_IP) &&
3629 		     proto != htons(ETH_P_IPV6)))
3630 		return -ENOTSUPP;
3631 
3632 	off = skb_mac_header_len(skb);
3633 	switch (mode) {
3634 	case BPF_ADJ_ROOM_NET:
3635 		off += bpf_skb_net_base_len(skb);
3636 		break;
3637 	case BPF_ADJ_ROOM_MAC:
3638 		break;
3639 	default:
3640 		return -ENOTSUPP;
3641 	}
3642 
3643 	len_cur = skb->len - skb_network_offset(skb);
3644 	if ((shrink && (len_diff_abs >= len_cur ||
3645 			len_cur - len_diff_abs < len_min)) ||
3646 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3647 			 !skb_is_gso(skb))))
3648 		return -ENOTSUPP;
3649 
3650 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3651 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3652 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3653 		__skb_reset_checksum_unnecessary(skb);
3654 
3655 	bpf_compute_data_pointers(skb);
3656 	return ret;
3657 }
3658 
3659 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3660 	.func		= bpf_skb_adjust_room,
3661 	.gpl_only	= false,
3662 	.ret_type	= RET_INTEGER,
3663 	.arg1_type	= ARG_PTR_TO_CTX,
3664 	.arg2_type	= ARG_ANYTHING,
3665 	.arg3_type	= ARG_ANYTHING,
3666 	.arg4_type	= ARG_ANYTHING,
3667 };
3668 
__bpf_skb_min_len(const struct sk_buff * skb)3669 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3670 {
3671 	u32 min_len = skb_network_offset(skb);
3672 
3673 	if (skb_transport_header_was_set(skb))
3674 		min_len = skb_transport_offset(skb);
3675 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3676 		min_len = skb_checksum_start_offset(skb) +
3677 			  skb->csum_offset + sizeof(__sum16);
3678 	return min_len;
3679 }
3680 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3681 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3682 {
3683 	unsigned int old_len = skb->len;
3684 	int ret;
3685 
3686 	ret = __skb_grow_rcsum(skb, new_len);
3687 	if (!ret)
3688 		memset(skb->data + old_len, 0, new_len - old_len);
3689 	return ret;
3690 }
3691 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3692 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3693 {
3694 	return __skb_trim_rcsum(skb, new_len);
3695 }
3696 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3697 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3698 					u64 flags)
3699 {
3700 	u32 max_len = BPF_SKB_MAX_LEN;
3701 	u32 min_len = __bpf_skb_min_len(skb);
3702 	int ret;
3703 
3704 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3705 		return -EINVAL;
3706 	if (skb->encapsulation)
3707 		return -ENOTSUPP;
3708 
3709 	/* The basic idea of this helper is that it's performing the
3710 	 * needed work to either grow or trim an skb, and eBPF program
3711 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3712 	 * bpf_lX_csum_replace() and others rather than passing a raw
3713 	 * buffer here. This one is a slow path helper and intended
3714 	 * for replies with control messages.
3715 	 *
3716 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3717 	 * minimal and without protocol specifics so that we are able
3718 	 * to separate concerns as in bpf_skb_store_bytes() should only
3719 	 * be the one responsible for writing buffers.
3720 	 *
3721 	 * It's really expected to be a slow path operation here for
3722 	 * control message replies, so we're implicitly linearizing,
3723 	 * uncloning and drop offloads from the skb by this.
3724 	 */
3725 	ret = __bpf_try_make_writable(skb, skb->len);
3726 	if (!ret) {
3727 		if (new_len > skb->len)
3728 			ret = bpf_skb_grow_rcsum(skb, new_len);
3729 		else if (new_len < skb->len)
3730 			ret = bpf_skb_trim_rcsum(skb, new_len);
3731 		if (!ret && skb_is_gso(skb))
3732 			skb_gso_reset(skb);
3733 	}
3734 	return ret;
3735 }
3736 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3737 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3738 	   u64, flags)
3739 {
3740 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3741 
3742 	bpf_compute_data_pointers(skb);
3743 	return ret;
3744 }
3745 
3746 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3747 	.func		= bpf_skb_change_tail,
3748 	.gpl_only	= false,
3749 	.ret_type	= RET_INTEGER,
3750 	.arg1_type	= ARG_PTR_TO_CTX,
3751 	.arg2_type	= ARG_ANYTHING,
3752 	.arg3_type	= ARG_ANYTHING,
3753 };
3754 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3755 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3756 	   u64, flags)
3757 {
3758 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3759 
3760 	bpf_compute_data_end_sk_skb(skb);
3761 	return ret;
3762 }
3763 
3764 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3765 	.func		= sk_skb_change_tail,
3766 	.gpl_only	= false,
3767 	.ret_type	= RET_INTEGER,
3768 	.arg1_type	= ARG_PTR_TO_CTX,
3769 	.arg2_type	= ARG_ANYTHING,
3770 	.arg3_type	= ARG_ANYTHING,
3771 };
3772 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3773 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3774 					u64 flags)
3775 {
3776 	u32 max_len = BPF_SKB_MAX_LEN;
3777 	u32 new_len = skb->len + head_room;
3778 	int ret;
3779 
3780 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3781 		     new_len < skb->len))
3782 		return -EINVAL;
3783 
3784 	ret = skb_cow(skb, head_room);
3785 	if (likely(!ret)) {
3786 		/* Idea for this helper is that we currently only
3787 		 * allow to expand on mac header. This means that
3788 		 * skb->protocol network header, etc, stay as is.
3789 		 * Compared to bpf_skb_change_tail(), we're more
3790 		 * flexible due to not needing to linearize or
3791 		 * reset GSO. Intention for this helper is to be
3792 		 * used by an L3 skb that needs to push mac header
3793 		 * for redirection into L2 device.
3794 		 */
3795 		__skb_push(skb, head_room);
3796 		memset(skb->data, 0, head_room);
3797 		skb_reset_mac_header(skb);
3798 		skb_reset_mac_len(skb);
3799 	}
3800 
3801 	return ret;
3802 }
3803 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3804 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3805 	   u64, flags)
3806 {
3807 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3808 
3809 	bpf_compute_data_pointers(skb);
3810 	return ret;
3811 }
3812 
3813 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3814 	.func		= bpf_skb_change_head,
3815 	.gpl_only	= false,
3816 	.ret_type	= RET_INTEGER,
3817 	.arg1_type	= ARG_PTR_TO_CTX,
3818 	.arg2_type	= ARG_ANYTHING,
3819 	.arg3_type	= ARG_ANYTHING,
3820 };
3821 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3822 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3823 	   u64, flags)
3824 {
3825 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3826 
3827 	bpf_compute_data_end_sk_skb(skb);
3828 	return ret;
3829 }
3830 
3831 static const struct bpf_func_proto sk_skb_change_head_proto = {
3832 	.func		= sk_skb_change_head,
3833 	.gpl_only	= false,
3834 	.ret_type	= RET_INTEGER,
3835 	.arg1_type	= ARG_PTR_TO_CTX,
3836 	.arg2_type	= ARG_ANYTHING,
3837 	.arg3_type	= ARG_ANYTHING,
3838 };
xdp_get_metalen(const struct xdp_buff * xdp)3839 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3840 {
3841 	return xdp_data_meta_unsupported(xdp) ? 0 :
3842 	       xdp->data - xdp->data_meta;
3843 }
3844 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3845 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3846 {
3847 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3848 	unsigned long metalen = xdp_get_metalen(xdp);
3849 	void *data_start = xdp_frame_end + metalen;
3850 	void *data = xdp->data + offset;
3851 
3852 	if (unlikely(data < data_start ||
3853 		     data > xdp->data_end - ETH_HLEN))
3854 		return -EINVAL;
3855 
3856 	if (metalen)
3857 		memmove(xdp->data_meta + offset,
3858 			xdp->data_meta, metalen);
3859 	xdp->data_meta += offset;
3860 	xdp->data = data;
3861 
3862 	return 0;
3863 }
3864 
3865 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3866 	.func		= bpf_xdp_adjust_head,
3867 	.gpl_only	= false,
3868 	.ret_type	= RET_INTEGER,
3869 	.arg1_type	= ARG_PTR_TO_CTX,
3870 	.arg2_type	= ARG_ANYTHING,
3871 };
3872 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3873 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3874 {
3875 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3876 	void *data_end = xdp->data_end + offset;
3877 
3878 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3879 	if (unlikely(data_end > data_hard_end))
3880 		return -EINVAL;
3881 
3882 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3883 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3884 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3885 		return -EINVAL;
3886 	}
3887 
3888 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3889 		return -EINVAL;
3890 
3891 	/* Clear memory area on grow, can contain uninit kernel memory */
3892 	if (offset > 0)
3893 		memset(xdp->data_end, 0, offset);
3894 
3895 	xdp->data_end = data_end;
3896 
3897 	return 0;
3898 }
3899 
3900 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3901 	.func		= bpf_xdp_adjust_tail,
3902 	.gpl_only	= false,
3903 	.ret_type	= RET_INTEGER,
3904 	.arg1_type	= ARG_PTR_TO_CTX,
3905 	.arg2_type	= ARG_ANYTHING,
3906 };
3907 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3908 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3909 {
3910 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3911 	void *meta = xdp->data_meta + offset;
3912 	unsigned long metalen = xdp->data - meta;
3913 
3914 	if (xdp_data_meta_unsupported(xdp))
3915 		return -ENOTSUPP;
3916 	if (unlikely(meta < xdp_frame_end ||
3917 		     meta > xdp->data))
3918 		return -EINVAL;
3919 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3920 		     (metalen > 32)))
3921 		return -EACCES;
3922 
3923 	xdp->data_meta = meta;
3924 
3925 	return 0;
3926 }
3927 
3928 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3929 	.func		= bpf_xdp_adjust_meta,
3930 	.gpl_only	= false,
3931 	.ret_type	= RET_INTEGER,
3932 	.arg1_type	= ARG_PTR_TO_CTX,
3933 	.arg2_type	= ARG_ANYTHING,
3934 };
3935 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp)3936 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3937 			    struct bpf_map *map, struct xdp_buff *xdp)
3938 {
3939 	switch (map->map_type) {
3940 	case BPF_MAP_TYPE_DEVMAP:
3941 	case BPF_MAP_TYPE_DEVMAP_HASH:
3942 		return dev_map_enqueue(fwd, xdp, dev_rx);
3943 	case BPF_MAP_TYPE_CPUMAP:
3944 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3945 	case BPF_MAP_TYPE_XSKMAP:
3946 		return __xsk_map_redirect(fwd, xdp);
3947 	default:
3948 		return -EBADRQC;
3949 	}
3950 	return 0;
3951 }
3952 
xdp_do_flush(void)3953 void xdp_do_flush(void)
3954 {
3955 	__dev_flush();
3956 	__cpu_map_flush();
3957 	__xsk_map_flush();
3958 }
3959 EXPORT_SYMBOL_GPL(xdp_do_flush);
3960 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3961 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3962 {
3963 	switch (map->map_type) {
3964 	case BPF_MAP_TYPE_DEVMAP:
3965 		return __dev_map_lookup_elem(map, index);
3966 	case BPF_MAP_TYPE_DEVMAP_HASH:
3967 		return __dev_map_hash_lookup_elem(map, index);
3968 	case BPF_MAP_TYPE_CPUMAP:
3969 		return __cpu_map_lookup_elem(map, index);
3970 	case BPF_MAP_TYPE_XSKMAP:
3971 		return __xsk_map_lookup_elem(map, index);
3972 	default:
3973 		return NULL;
3974 	}
3975 }
3976 
bpf_clear_redirect_map(struct bpf_map * map)3977 void bpf_clear_redirect_map(struct bpf_map *map)
3978 {
3979 	struct bpf_redirect_info *ri;
3980 	int cpu;
3981 
3982 	for_each_possible_cpu(cpu) {
3983 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3984 		/* Avoid polluting remote cacheline due to writes if
3985 		 * not needed. Once we pass this test, we need the
3986 		 * cmpxchg() to make sure it hasn't been changed in
3987 		 * the meantime by remote CPU.
3988 		 */
3989 		if (unlikely(READ_ONCE(ri->map) == map))
3990 			cmpxchg(&ri->map, map, NULL);
3991 	}
3992 }
3993 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3994 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3995 		    struct bpf_prog *xdp_prog)
3996 {
3997 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3998 	struct bpf_map *map = READ_ONCE(ri->map);
3999 	u32 index = ri->tgt_index;
4000 	void *fwd = ri->tgt_value;
4001 	int err;
4002 
4003 	ri->tgt_index = 0;
4004 	ri->tgt_value = NULL;
4005 	WRITE_ONCE(ri->map, NULL);
4006 
4007 	if (unlikely(!map)) {
4008 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
4009 		if (unlikely(!fwd)) {
4010 			err = -EINVAL;
4011 			goto err;
4012 		}
4013 
4014 		err = dev_xdp_enqueue(fwd, xdp, dev);
4015 	} else {
4016 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4017 	}
4018 
4019 	if (unlikely(err))
4020 		goto err;
4021 
4022 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4023 	return 0;
4024 err:
4025 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4026 	return err;
4027 }
4028 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4029 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)4030 static int xdp_do_generic_redirect_map(struct net_device *dev,
4031 				       struct sk_buff *skb,
4032 				       struct xdp_buff *xdp,
4033 				       struct bpf_prog *xdp_prog,
4034 				       struct bpf_map *map)
4035 {
4036 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4037 	u32 index = ri->tgt_index;
4038 	void *fwd = ri->tgt_value;
4039 	int err = 0;
4040 
4041 	ri->tgt_index = 0;
4042 	ri->tgt_value = NULL;
4043 	WRITE_ONCE(ri->map, NULL);
4044 
4045 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4046 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4047 		struct bpf_dtab_netdev *dst = fwd;
4048 
4049 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4050 		if (unlikely(err))
4051 			goto err;
4052 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4053 		struct xdp_sock *xs = fwd;
4054 
4055 		err = xsk_generic_rcv(xs, xdp);
4056 		if (err)
4057 			goto err;
4058 		consume_skb(skb);
4059 	} else {
4060 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4061 		err = -EBADRQC;
4062 		goto err;
4063 	}
4064 
4065 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4066 	return 0;
4067 err:
4068 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4069 	return err;
4070 }
4071 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4072 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4073 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4074 {
4075 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4076 	struct bpf_map *map = READ_ONCE(ri->map);
4077 	u32 index = ri->tgt_index;
4078 	struct net_device *fwd;
4079 	int err = 0;
4080 
4081 	if (map)
4082 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4083 						   map);
4084 	ri->tgt_index = 0;
4085 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4086 	if (unlikely(!fwd)) {
4087 		err = -EINVAL;
4088 		goto err;
4089 	}
4090 
4091 	err = xdp_ok_fwd_dev(fwd, skb->len);
4092 	if (unlikely(err))
4093 		goto err;
4094 
4095 	skb->dev = fwd;
4096 	_trace_xdp_redirect(dev, xdp_prog, index);
4097 	generic_xdp_tx(skb, xdp_prog);
4098 	return 0;
4099 err:
4100 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4101 	return err;
4102 }
4103 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4104 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4105 {
4106 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4107 
4108 	if (unlikely(flags))
4109 		return XDP_ABORTED;
4110 
4111 	ri->flags = flags;
4112 	ri->tgt_index = ifindex;
4113 	ri->tgt_value = NULL;
4114 	WRITE_ONCE(ri->map, NULL);
4115 
4116 	return XDP_REDIRECT;
4117 }
4118 
4119 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4120 	.func           = bpf_xdp_redirect,
4121 	.gpl_only       = false,
4122 	.ret_type       = RET_INTEGER,
4123 	.arg1_type      = ARG_ANYTHING,
4124 	.arg2_type      = ARG_ANYTHING,
4125 };
4126 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4127 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4128 	   u64, flags)
4129 {
4130 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4131 
4132 	/* Lower bits of the flags are used as return code on lookup failure */
4133 	if (unlikely(flags > XDP_TX))
4134 		return XDP_ABORTED;
4135 
4136 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4137 	if (unlikely(!ri->tgt_value)) {
4138 		/* If the lookup fails we want to clear out the state in the
4139 		 * redirect_info struct completely, so that if an eBPF program
4140 		 * performs multiple lookups, the last one always takes
4141 		 * precedence.
4142 		 */
4143 		WRITE_ONCE(ri->map, NULL);
4144 		return flags;
4145 	}
4146 
4147 	ri->flags = flags;
4148 	ri->tgt_index = ifindex;
4149 	WRITE_ONCE(ri->map, map);
4150 
4151 	return XDP_REDIRECT;
4152 }
4153 
4154 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4155 	.func           = bpf_xdp_redirect_map,
4156 	.gpl_only       = false,
4157 	.ret_type       = RET_INTEGER,
4158 	.arg1_type      = ARG_CONST_MAP_PTR,
4159 	.arg2_type      = ARG_ANYTHING,
4160 	.arg3_type      = ARG_ANYTHING,
4161 };
4162 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4163 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4164 				  unsigned long off, unsigned long len)
4165 {
4166 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4167 
4168 	if (unlikely(!ptr))
4169 		return len;
4170 	if (ptr != dst_buff)
4171 		memcpy(dst_buff, ptr, len);
4172 
4173 	return 0;
4174 }
4175 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4176 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4177 	   u64, flags, void *, meta, u64, meta_size)
4178 {
4179 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4180 
4181 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4182 		return -EINVAL;
4183 	if (unlikely(!skb || skb_size > skb->len))
4184 		return -EFAULT;
4185 
4186 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4187 				bpf_skb_copy);
4188 }
4189 
4190 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4191 	.func		= bpf_skb_event_output,
4192 	.gpl_only	= true,
4193 	.ret_type	= RET_INTEGER,
4194 	.arg1_type	= ARG_PTR_TO_CTX,
4195 	.arg2_type	= ARG_CONST_MAP_PTR,
4196 	.arg3_type	= ARG_ANYTHING,
4197 	.arg4_type	= ARG_PTR_TO_MEM,
4198 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4199 };
4200 
4201 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4202 
4203 const struct bpf_func_proto bpf_skb_output_proto = {
4204 	.func		= bpf_skb_event_output,
4205 	.gpl_only	= true,
4206 	.ret_type	= RET_INTEGER,
4207 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4208 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4209 	.arg2_type	= ARG_CONST_MAP_PTR,
4210 	.arg3_type	= ARG_ANYTHING,
4211 	.arg4_type	= ARG_PTR_TO_MEM,
4212 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4213 };
4214 
bpf_tunnel_key_af(u64 flags)4215 static unsigned short bpf_tunnel_key_af(u64 flags)
4216 {
4217 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4218 }
4219 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4220 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4221 	   u32, size, u64, flags)
4222 {
4223 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4224 	u8 compat[sizeof(struct bpf_tunnel_key)];
4225 	void *to_orig = to;
4226 	int err;
4227 
4228 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4229 		err = -EINVAL;
4230 		goto err_clear;
4231 	}
4232 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4233 		err = -EPROTO;
4234 		goto err_clear;
4235 	}
4236 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4237 		err = -EINVAL;
4238 		switch (size) {
4239 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4240 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4241 			goto set_compat;
4242 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4243 			/* Fixup deprecated structure layouts here, so we have
4244 			 * a common path later on.
4245 			 */
4246 			if (ip_tunnel_info_af(info) != AF_INET)
4247 				goto err_clear;
4248 set_compat:
4249 			to = (struct bpf_tunnel_key *)compat;
4250 			break;
4251 		default:
4252 			goto err_clear;
4253 		}
4254 	}
4255 
4256 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4257 	to->tunnel_tos = info->key.tos;
4258 	to->tunnel_ttl = info->key.ttl;
4259 	to->tunnel_ext = 0;
4260 
4261 	if (flags & BPF_F_TUNINFO_IPV6) {
4262 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4263 		       sizeof(to->remote_ipv6));
4264 		to->tunnel_label = be32_to_cpu(info->key.label);
4265 	} else {
4266 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4267 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4268 		to->tunnel_label = 0;
4269 	}
4270 
4271 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4272 		memcpy(to_orig, to, size);
4273 
4274 	return 0;
4275 err_clear:
4276 	memset(to_orig, 0, size);
4277 	return err;
4278 }
4279 
4280 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4281 	.func		= bpf_skb_get_tunnel_key,
4282 	.gpl_only	= false,
4283 	.ret_type	= RET_INTEGER,
4284 	.arg1_type	= ARG_PTR_TO_CTX,
4285 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4286 	.arg3_type	= ARG_CONST_SIZE,
4287 	.arg4_type	= ARG_ANYTHING,
4288 };
4289 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4290 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4291 {
4292 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4293 	int err;
4294 
4295 	if (unlikely(!info ||
4296 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4297 		err = -ENOENT;
4298 		goto err_clear;
4299 	}
4300 	if (unlikely(size < info->options_len)) {
4301 		err = -ENOMEM;
4302 		goto err_clear;
4303 	}
4304 
4305 	ip_tunnel_info_opts_get(to, info);
4306 	if (size > info->options_len)
4307 		memset(to + info->options_len, 0, size - info->options_len);
4308 
4309 	return info->options_len;
4310 err_clear:
4311 	memset(to, 0, size);
4312 	return err;
4313 }
4314 
4315 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4316 	.func		= bpf_skb_get_tunnel_opt,
4317 	.gpl_only	= false,
4318 	.ret_type	= RET_INTEGER,
4319 	.arg1_type	= ARG_PTR_TO_CTX,
4320 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4321 	.arg3_type	= ARG_CONST_SIZE,
4322 };
4323 
4324 static struct metadata_dst __percpu *md_dst;
4325 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4326 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4327 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4328 {
4329 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4330 	u8 compat[sizeof(struct bpf_tunnel_key)];
4331 	struct ip_tunnel_info *info;
4332 
4333 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4334 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4335 		return -EINVAL;
4336 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4337 		switch (size) {
4338 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4339 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4340 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4341 			/* Fixup deprecated structure layouts here, so we have
4342 			 * a common path later on.
4343 			 */
4344 			memcpy(compat, from, size);
4345 			memset(compat + size, 0, sizeof(compat) - size);
4346 			from = (const struct bpf_tunnel_key *) compat;
4347 			break;
4348 		default:
4349 			return -EINVAL;
4350 		}
4351 	}
4352 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4353 		     from->tunnel_ext))
4354 		return -EINVAL;
4355 
4356 	skb_dst_drop(skb);
4357 	dst_hold((struct dst_entry *) md);
4358 	skb_dst_set(skb, (struct dst_entry *) md);
4359 
4360 	info = &md->u.tun_info;
4361 	memset(info, 0, sizeof(*info));
4362 	info->mode = IP_TUNNEL_INFO_TX;
4363 
4364 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4365 	if (flags & BPF_F_DONT_FRAGMENT)
4366 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4367 	if (flags & BPF_F_ZERO_CSUM_TX)
4368 		info->key.tun_flags &= ~TUNNEL_CSUM;
4369 	if (flags & BPF_F_SEQ_NUMBER)
4370 		info->key.tun_flags |= TUNNEL_SEQ;
4371 
4372 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4373 	info->key.tos = from->tunnel_tos;
4374 	info->key.ttl = from->tunnel_ttl;
4375 
4376 	if (flags & BPF_F_TUNINFO_IPV6) {
4377 		info->mode |= IP_TUNNEL_INFO_IPV6;
4378 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4379 		       sizeof(from->remote_ipv6));
4380 		info->key.label = cpu_to_be32(from->tunnel_label) &
4381 				  IPV6_FLOWLABEL_MASK;
4382 	} else {
4383 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4384 	}
4385 
4386 	return 0;
4387 }
4388 
4389 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4390 	.func		= bpf_skb_set_tunnel_key,
4391 	.gpl_only	= false,
4392 	.ret_type	= RET_INTEGER,
4393 	.arg1_type	= ARG_PTR_TO_CTX,
4394 	.arg2_type	= ARG_PTR_TO_MEM,
4395 	.arg3_type	= ARG_CONST_SIZE,
4396 	.arg4_type	= ARG_ANYTHING,
4397 };
4398 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4399 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4400 	   const u8 *, from, u32, size)
4401 {
4402 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4403 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4404 
4405 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4406 		return -EINVAL;
4407 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4408 		return -ENOMEM;
4409 
4410 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4411 
4412 	return 0;
4413 }
4414 
4415 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4416 	.func		= bpf_skb_set_tunnel_opt,
4417 	.gpl_only	= false,
4418 	.ret_type	= RET_INTEGER,
4419 	.arg1_type	= ARG_PTR_TO_CTX,
4420 	.arg2_type	= ARG_PTR_TO_MEM,
4421 	.arg3_type	= ARG_CONST_SIZE,
4422 };
4423 
4424 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4425 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4426 {
4427 	if (!md_dst) {
4428 		struct metadata_dst __percpu *tmp;
4429 
4430 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4431 						METADATA_IP_TUNNEL,
4432 						GFP_KERNEL);
4433 		if (!tmp)
4434 			return NULL;
4435 		if (cmpxchg(&md_dst, NULL, tmp))
4436 			metadata_dst_free_percpu(tmp);
4437 	}
4438 
4439 	switch (which) {
4440 	case BPF_FUNC_skb_set_tunnel_key:
4441 		return &bpf_skb_set_tunnel_key_proto;
4442 	case BPF_FUNC_skb_set_tunnel_opt:
4443 		return &bpf_skb_set_tunnel_opt_proto;
4444 	default:
4445 		return NULL;
4446 	}
4447 }
4448 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4449 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4450 	   u32, idx)
4451 {
4452 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4453 	struct cgroup *cgrp;
4454 	struct sock *sk;
4455 
4456 	sk = skb_to_full_sk(skb);
4457 	if (!sk || !sk_fullsock(sk))
4458 		return -ENOENT;
4459 	if (unlikely(idx >= array->map.max_entries))
4460 		return -E2BIG;
4461 
4462 	cgrp = READ_ONCE(array->ptrs[idx]);
4463 	if (unlikely(!cgrp))
4464 		return -EAGAIN;
4465 
4466 	return sk_under_cgroup_hierarchy(sk, cgrp);
4467 }
4468 
4469 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4470 	.func		= bpf_skb_under_cgroup,
4471 	.gpl_only	= false,
4472 	.ret_type	= RET_INTEGER,
4473 	.arg1_type	= ARG_PTR_TO_CTX,
4474 	.arg2_type	= ARG_CONST_MAP_PTR,
4475 	.arg3_type	= ARG_ANYTHING,
4476 };
4477 
4478 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4479 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4480 {
4481 	struct cgroup *cgrp;
4482 
4483 	sk = sk_to_full_sk(sk);
4484 	if (!sk || !sk_fullsock(sk))
4485 		return 0;
4486 
4487 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4488 	return cgroup_id(cgrp);
4489 }
4490 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4491 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4492 {
4493 	return __bpf_sk_cgroup_id(skb->sk);
4494 }
4495 
4496 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4497 	.func           = bpf_skb_cgroup_id,
4498 	.gpl_only       = false,
4499 	.ret_type       = RET_INTEGER,
4500 	.arg1_type      = ARG_PTR_TO_CTX,
4501 };
4502 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4503 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4504 					      int ancestor_level)
4505 {
4506 	struct cgroup *ancestor;
4507 	struct cgroup *cgrp;
4508 
4509 	sk = sk_to_full_sk(sk);
4510 	if (!sk || !sk_fullsock(sk))
4511 		return 0;
4512 
4513 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4514 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4515 	if (!ancestor)
4516 		return 0;
4517 
4518 	return cgroup_id(ancestor);
4519 }
4520 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4521 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4522 	   ancestor_level)
4523 {
4524 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4525 }
4526 
4527 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4528 	.func           = bpf_skb_ancestor_cgroup_id,
4529 	.gpl_only       = false,
4530 	.ret_type       = RET_INTEGER,
4531 	.arg1_type      = ARG_PTR_TO_CTX,
4532 	.arg2_type      = ARG_ANYTHING,
4533 };
4534 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4535 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4536 {
4537 	return __bpf_sk_cgroup_id(sk);
4538 }
4539 
4540 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4541 	.func           = bpf_sk_cgroup_id,
4542 	.gpl_only       = false,
4543 	.ret_type       = RET_INTEGER,
4544 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4545 };
4546 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4547 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4548 {
4549 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4550 }
4551 
4552 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4553 	.func           = bpf_sk_ancestor_cgroup_id,
4554 	.gpl_only       = false,
4555 	.ret_type       = RET_INTEGER,
4556 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4557 	.arg2_type      = ARG_ANYTHING,
4558 };
4559 #endif
4560 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4561 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4562 				  unsigned long off, unsigned long len)
4563 {
4564 	memcpy(dst_buff, src_buff + off, len);
4565 	return 0;
4566 }
4567 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4568 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4569 	   u64, flags, void *, meta, u64, meta_size)
4570 {
4571 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4572 
4573 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4574 		return -EINVAL;
4575 	if (unlikely(!xdp ||
4576 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4577 		return -EFAULT;
4578 
4579 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4580 				xdp_size, bpf_xdp_copy);
4581 }
4582 
4583 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4584 	.func		= bpf_xdp_event_output,
4585 	.gpl_only	= true,
4586 	.ret_type	= RET_INTEGER,
4587 	.arg1_type	= ARG_PTR_TO_CTX,
4588 	.arg2_type	= ARG_CONST_MAP_PTR,
4589 	.arg3_type	= ARG_ANYTHING,
4590 	.arg4_type	= ARG_PTR_TO_MEM,
4591 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4592 };
4593 
4594 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4595 
4596 const struct bpf_func_proto bpf_xdp_output_proto = {
4597 	.func		= bpf_xdp_event_output,
4598 	.gpl_only	= true,
4599 	.ret_type	= RET_INTEGER,
4600 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4601 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4602 	.arg2_type	= ARG_CONST_MAP_PTR,
4603 	.arg3_type	= ARG_ANYTHING,
4604 	.arg4_type	= ARG_PTR_TO_MEM,
4605 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4606 };
4607 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4608 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4609 {
4610 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4611 }
4612 
4613 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4614 	.func           = bpf_get_socket_cookie,
4615 	.gpl_only       = false,
4616 	.ret_type       = RET_INTEGER,
4617 	.arg1_type      = ARG_PTR_TO_CTX,
4618 };
4619 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4620 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4621 {
4622 	return __sock_gen_cookie(ctx->sk);
4623 }
4624 
4625 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4626 	.func		= bpf_get_socket_cookie_sock_addr,
4627 	.gpl_only	= false,
4628 	.ret_type	= RET_INTEGER,
4629 	.arg1_type	= ARG_PTR_TO_CTX,
4630 };
4631 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4632 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4633 {
4634 	return __sock_gen_cookie(ctx);
4635 }
4636 
4637 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4638 	.func		= bpf_get_socket_cookie_sock,
4639 	.gpl_only	= false,
4640 	.ret_type	= RET_INTEGER,
4641 	.arg1_type	= ARG_PTR_TO_CTX,
4642 };
4643 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4644 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4645 {
4646 	return __sock_gen_cookie(ctx->sk);
4647 }
4648 
4649 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4650 	.func		= bpf_get_socket_cookie_sock_ops,
4651 	.gpl_only	= false,
4652 	.ret_type	= RET_INTEGER,
4653 	.arg1_type	= ARG_PTR_TO_CTX,
4654 };
4655 
__bpf_get_netns_cookie(struct sock * sk)4656 static u64 __bpf_get_netns_cookie(struct sock *sk)
4657 {
4658 	const struct net *net = sk ? sock_net(sk) : &init_net;
4659 
4660 	return atomic64_read(&net->net_cookie);
4661 }
4662 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4663 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4664 {
4665 	return __bpf_get_netns_cookie(ctx);
4666 }
4667 
4668 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4669 	.func		= bpf_get_netns_cookie_sock,
4670 	.gpl_only	= false,
4671 	.ret_type	= RET_INTEGER,
4672 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4673 };
4674 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4675 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4676 {
4677 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4678 }
4679 
4680 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4681 	.func		= bpf_get_netns_cookie_sock_addr,
4682 	.gpl_only	= false,
4683 	.ret_type	= RET_INTEGER,
4684 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4685 };
4686 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4687 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4688 {
4689 	struct sock *sk = sk_to_full_sk(skb->sk);
4690 	kuid_t kuid;
4691 
4692 	if (!sk || !sk_fullsock(sk))
4693 		return overflowuid;
4694 	kuid = sock_net_uid(sock_net(sk), sk);
4695 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4696 }
4697 
4698 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4699 	.func           = bpf_get_socket_uid,
4700 	.gpl_only       = false,
4701 	.ret_type       = RET_INTEGER,
4702 	.arg1_type      = ARG_PTR_TO_CTX,
4703 };
4704 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4705 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4706 			   char *optval, int optlen)
4707 {
4708 	char devname[IFNAMSIZ];
4709 	int val, valbool;
4710 	struct net *net;
4711 	int ifindex;
4712 	int ret = 0;
4713 
4714 	if (!sk_fullsock(sk))
4715 		return -EINVAL;
4716 
4717 	sock_owned_by_me(sk);
4718 
4719 	if (level == SOL_SOCKET) {
4720 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4721 			return -EINVAL;
4722 		val = *((int *)optval);
4723 		valbool = val ? 1 : 0;
4724 
4725 		/* Only some socketops are supported */
4726 		switch (optname) {
4727 		case SO_RCVBUF:
4728 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4729 			val = min_t(int, val, INT_MAX / 2);
4730 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4731 			WRITE_ONCE(sk->sk_rcvbuf,
4732 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4733 			break;
4734 		case SO_SNDBUF:
4735 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4736 			val = min_t(int, val, INT_MAX / 2);
4737 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4738 			WRITE_ONCE(sk->sk_sndbuf,
4739 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4740 			break;
4741 		case SO_MAX_PACING_RATE: /* 32bit version */
4742 			if (val != ~0U)
4743 				cmpxchg(&sk->sk_pacing_status,
4744 					SK_PACING_NONE,
4745 					SK_PACING_NEEDED);
4746 			sk->sk_max_pacing_rate = (val == ~0U) ?
4747 						 ~0UL : (unsigned int)val;
4748 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4749 						 sk->sk_max_pacing_rate);
4750 			break;
4751 		case SO_PRIORITY:
4752 			sk->sk_priority = val;
4753 			break;
4754 		case SO_RCVLOWAT:
4755 			if (val < 0)
4756 				val = INT_MAX;
4757 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4758 			break;
4759 		case SO_MARK:
4760 			if (sk->sk_mark != val) {
4761 				sk->sk_mark = val;
4762 				sk_dst_reset(sk);
4763 			}
4764 			break;
4765 		case SO_BINDTODEVICE:
4766 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4767 			strncpy(devname, optval, optlen);
4768 			devname[optlen] = 0;
4769 
4770 			ifindex = 0;
4771 			if (devname[0] != '\0') {
4772 				struct net_device *dev;
4773 
4774 				ret = -ENODEV;
4775 
4776 				net = sock_net(sk);
4777 				dev = dev_get_by_name(net, devname);
4778 				if (!dev)
4779 					break;
4780 				ifindex = dev->ifindex;
4781 				dev_put(dev);
4782 			}
4783 			ret = sock_bindtoindex(sk, ifindex, false);
4784 			break;
4785 		case SO_KEEPALIVE:
4786 			if (sk->sk_prot->keepalive)
4787 				sk->sk_prot->keepalive(sk, valbool);
4788 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4789 			break;
4790 		default:
4791 			ret = -EINVAL;
4792 		}
4793 #ifdef CONFIG_INET
4794 	} else if (level == SOL_IP) {
4795 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4796 			return -EINVAL;
4797 
4798 		val = *((int *)optval);
4799 		/* Only some options are supported */
4800 		switch (optname) {
4801 		case IP_TOS:
4802 			if (val < -1 || val > 0xff) {
4803 				ret = -EINVAL;
4804 			} else {
4805 				struct inet_sock *inet = inet_sk(sk);
4806 
4807 				if (val == -1)
4808 					val = 0;
4809 				inet->tos = val;
4810 			}
4811 			break;
4812 		default:
4813 			ret = -EINVAL;
4814 		}
4815 #if IS_ENABLED(CONFIG_IPV6)
4816 	} else if (level == SOL_IPV6) {
4817 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4818 			return -EINVAL;
4819 
4820 		val = *((int *)optval);
4821 		/* Only some options are supported */
4822 		switch (optname) {
4823 		case IPV6_TCLASS:
4824 			if (val < -1 || val > 0xff) {
4825 				ret = -EINVAL;
4826 			} else {
4827 				struct ipv6_pinfo *np = inet6_sk(sk);
4828 
4829 				if (val == -1)
4830 					val = 0;
4831 				np->tclass = val;
4832 			}
4833 			break;
4834 		default:
4835 			ret = -EINVAL;
4836 		}
4837 #endif
4838 	} else if (level == SOL_TCP &&
4839 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4840 		if (optname == TCP_CONGESTION) {
4841 			char name[TCP_CA_NAME_MAX];
4842 
4843 			strncpy(name, optval, min_t(long, optlen,
4844 						    TCP_CA_NAME_MAX-1));
4845 			name[TCP_CA_NAME_MAX-1] = 0;
4846 			ret = tcp_set_congestion_control(sk, name, false, true);
4847 		} else {
4848 			struct inet_connection_sock *icsk = inet_csk(sk);
4849 			struct tcp_sock *tp = tcp_sk(sk);
4850 			unsigned long timeout;
4851 
4852 			if (optlen != sizeof(int))
4853 				return -EINVAL;
4854 
4855 			val = *((int *)optval);
4856 			/* Only some options are supported */
4857 			switch (optname) {
4858 			case TCP_BPF_IW:
4859 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4860 					ret = -EINVAL;
4861 				else
4862 					tp->snd_cwnd = val;
4863 				break;
4864 			case TCP_BPF_SNDCWND_CLAMP:
4865 				if (val <= 0) {
4866 					ret = -EINVAL;
4867 				} else {
4868 					tp->snd_cwnd_clamp = val;
4869 					tp->snd_ssthresh = val;
4870 				}
4871 				break;
4872 			case TCP_BPF_DELACK_MAX:
4873 				timeout = usecs_to_jiffies(val);
4874 				if (timeout > TCP_DELACK_MAX ||
4875 				    timeout < TCP_TIMEOUT_MIN)
4876 					return -EINVAL;
4877 				inet_csk(sk)->icsk_delack_max = timeout;
4878 				break;
4879 			case TCP_BPF_RTO_MIN:
4880 				timeout = usecs_to_jiffies(val);
4881 				if (timeout > TCP_RTO_MIN ||
4882 				    timeout < TCP_TIMEOUT_MIN)
4883 					return -EINVAL;
4884 				inet_csk(sk)->icsk_rto_min = timeout;
4885 				break;
4886 			case TCP_SAVE_SYN:
4887 				if (val < 0 || val > 1)
4888 					ret = -EINVAL;
4889 				else
4890 					tp->save_syn = val;
4891 				break;
4892 			case TCP_KEEPIDLE:
4893 				ret = tcp_sock_set_keepidle_locked(sk, val);
4894 				break;
4895 			case TCP_KEEPINTVL:
4896 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4897 					ret = -EINVAL;
4898 				else
4899 					tp->keepalive_intvl = val * HZ;
4900 				break;
4901 			case TCP_KEEPCNT:
4902 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4903 					ret = -EINVAL;
4904 				else
4905 					tp->keepalive_probes = val;
4906 				break;
4907 			case TCP_SYNCNT:
4908 				if (val < 1 || val > MAX_TCP_SYNCNT)
4909 					ret = -EINVAL;
4910 				else
4911 					icsk->icsk_syn_retries = val;
4912 				break;
4913 			case TCP_USER_TIMEOUT:
4914 				if (val < 0)
4915 					ret = -EINVAL;
4916 				else
4917 					icsk->icsk_user_timeout = val;
4918 				break;
4919 			case TCP_NOTSENT_LOWAT:
4920 				tp->notsent_lowat = val;
4921 				sk->sk_write_space(sk);
4922 				break;
4923 			default:
4924 				ret = -EINVAL;
4925 			}
4926 		}
4927 #endif
4928 	} else {
4929 		ret = -EINVAL;
4930 	}
4931 	return ret;
4932 }
4933 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4934 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4935 			   char *optval, int optlen)
4936 {
4937 	if (!sk_fullsock(sk))
4938 		goto err_clear;
4939 
4940 	sock_owned_by_me(sk);
4941 
4942 #ifdef CONFIG_INET
4943 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4944 		struct inet_connection_sock *icsk;
4945 		struct tcp_sock *tp;
4946 
4947 		switch (optname) {
4948 		case TCP_CONGESTION:
4949 			icsk = inet_csk(sk);
4950 
4951 			if (!icsk->icsk_ca_ops || optlen <= 1)
4952 				goto err_clear;
4953 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4954 			optval[optlen - 1] = 0;
4955 			break;
4956 		case TCP_SAVED_SYN:
4957 			tp = tcp_sk(sk);
4958 
4959 			if (optlen <= 0 || !tp->saved_syn ||
4960 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4961 				goto err_clear;
4962 			memcpy(optval, tp->saved_syn->data, optlen);
4963 			break;
4964 		default:
4965 			goto err_clear;
4966 		}
4967 	} else if (level == SOL_IP) {
4968 		struct inet_sock *inet = inet_sk(sk);
4969 
4970 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4971 			goto err_clear;
4972 
4973 		/* Only some options are supported */
4974 		switch (optname) {
4975 		case IP_TOS:
4976 			*((int *)optval) = (int)inet->tos;
4977 			break;
4978 		default:
4979 			goto err_clear;
4980 		}
4981 #if IS_ENABLED(CONFIG_IPV6)
4982 	} else if (level == SOL_IPV6) {
4983 		struct ipv6_pinfo *np = inet6_sk(sk);
4984 
4985 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4986 			goto err_clear;
4987 
4988 		/* Only some options are supported */
4989 		switch (optname) {
4990 		case IPV6_TCLASS:
4991 			*((int *)optval) = (int)np->tclass;
4992 			break;
4993 		default:
4994 			goto err_clear;
4995 		}
4996 #endif
4997 	} else {
4998 		goto err_clear;
4999 	}
5000 	return 0;
5001 #endif
5002 err_clear:
5003 	memset(optval, 0, optlen);
5004 	return -EINVAL;
5005 }
5006 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5007 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5008 	   int, level, int, optname, char *, optval, int, optlen)
5009 {
5010 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5011 }
5012 
5013 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5014 	.func		= bpf_sock_addr_setsockopt,
5015 	.gpl_only	= false,
5016 	.ret_type	= RET_INTEGER,
5017 	.arg1_type	= ARG_PTR_TO_CTX,
5018 	.arg2_type	= ARG_ANYTHING,
5019 	.arg3_type	= ARG_ANYTHING,
5020 	.arg4_type	= ARG_PTR_TO_MEM,
5021 	.arg5_type	= ARG_CONST_SIZE,
5022 };
5023 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5024 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5025 	   int, level, int, optname, char *, optval, int, optlen)
5026 {
5027 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5028 }
5029 
5030 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5031 	.func		= bpf_sock_addr_getsockopt,
5032 	.gpl_only	= false,
5033 	.ret_type	= RET_INTEGER,
5034 	.arg1_type	= ARG_PTR_TO_CTX,
5035 	.arg2_type	= ARG_ANYTHING,
5036 	.arg3_type	= ARG_ANYTHING,
5037 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5038 	.arg5_type	= ARG_CONST_SIZE,
5039 };
5040 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5041 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5042 	   int, level, int, optname, char *, optval, int, optlen)
5043 {
5044 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5045 }
5046 
5047 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5048 	.func		= bpf_sock_ops_setsockopt,
5049 	.gpl_only	= false,
5050 	.ret_type	= RET_INTEGER,
5051 	.arg1_type	= ARG_PTR_TO_CTX,
5052 	.arg2_type	= ARG_ANYTHING,
5053 	.arg3_type	= ARG_ANYTHING,
5054 	.arg4_type	= ARG_PTR_TO_MEM,
5055 	.arg5_type	= ARG_CONST_SIZE,
5056 };
5057 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5058 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5059 				int optname, const u8 **start)
5060 {
5061 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5062 	const u8 *hdr_start;
5063 	int ret;
5064 
5065 	if (syn_skb) {
5066 		/* sk is a request_sock here */
5067 
5068 		if (optname == TCP_BPF_SYN) {
5069 			hdr_start = syn_skb->data;
5070 			ret = tcp_hdrlen(syn_skb);
5071 		} else if (optname == TCP_BPF_SYN_IP) {
5072 			hdr_start = skb_network_header(syn_skb);
5073 			ret = skb_network_header_len(syn_skb) +
5074 				tcp_hdrlen(syn_skb);
5075 		} else {
5076 			/* optname == TCP_BPF_SYN_MAC */
5077 			hdr_start = skb_mac_header(syn_skb);
5078 			ret = skb_mac_header_len(syn_skb) +
5079 				skb_network_header_len(syn_skb) +
5080 				tcp_hdrlen(syn_skb);
5081 		}
5082 	} else {
5083 		struct sock *sk = bpf_sock->sk;
5084 		struct saved_syn *saved_syn;
5085 
5086 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5087 			/* synack retransmit. bpf_sock->syn_skb will
5088 			 * not be available.  It has to resort to
5089 			 * saved_syn (if it is saved).
5090 			 */
5091 			saved_syn = inet_reqsk(sk)->saved_syn;
5092 		else
5093 			saved_syn = tcp_sk(sk)->saved_syn;
5094 
5095 		if (!saved_syn)
5096 			return -ENOENT;
5097 
5098 		if (optname == TCP_BPF_SYN) {
5099 			hdr_start = saved_syn->data +
5100 				saved_syn->mac_hdrlen +
5101 				saved_syn->network_hdrlen;
5102 			ret = saved_syn->tcp_hdrlen;
5103 		} else if (optname == TCP_BPF_SYN_IP) {
5104 			hdr_start = saved_syn->data +
5105 				saved_syn->mac_hdrlen;
5106 			ret = saved_syn->network_hdrlen +
5107 				saved_syn->tcp_hdrlen;
5108 		} else {
5109 			/* optname == TCP_BPF_SYN_MAC */
5110 
5111 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5112 			if (!saved_syn->mac_hdrlen)
5113 				return -ENOENT;
5114 
5115 			hdr_start = saved_syn->data;
5116 			ret = saved_syn->mac_hdrlen +
5117 				saved_syn->network_hdrlen +
5118 				saved_syn->tcp_hdrlen;
5119 		}
5120 	}
5121 
5122 	*start = hdr_start;
5123 	return ret;
5124 }
5125 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5126 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5127 	   int, level, int, optname, char *, optval, int, optlen)
5128 {
5129 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5130 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5131 		int ret, copy_len = 0;
5132 		const u8 *start;
5133 
5134 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5135 		if (ret > 0) {
5136 			copy_len = ret;
5137 			if (optlen < copy_len) {
5138 				copy_len = optlen;
5139 				ret = -ENOSPC;
5140 			}
5141 
5142 			memcpy(optval, start, copy_len);
5143 		}
5144 
5145 		/* Zero out unused buffer at the end */
5146 		memset(optval + copy_len, 0, optlen - copy_len);
5147 
5148 		return ret;
5149 	}
5150 
5151 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5152 }
5153 
5154 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5155 	.func		= bpf_sock_ops_getsockopt,
5156 	.gpl_only	= false,
5157 	.ret_type	= RET_INTEGER,
5158 	.arg1_type	= ARG_PTR_TO_CTX,
5159 	.arg2_type	= ARG_ANYTHING,
5160 	.arg3_type	= ARG_ANYTHING,
5161 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5162 	.arg5_type	= ARG_CONST_SIZE,
5163 };
5164 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5165 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5166 	   int, argval)
5167 {
5168 	struct sock *sk = bpf_sock->sk;
5169 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5170 
5171 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5172 		return -EINVAL;
5173 
5174 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5175 
5176 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5177 }
5178 
5179 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5180 	.func		= bpf_sock_ops_cb_flags_set,
5181 	.gpl_only	= false,
5182 	.ret_type	= RET_INTEGER,
5183 	.arg1_type	= ARG_PTR_TO_CTX,
5184 	.arg2_type	= ARG_ANYTHING,
5185 };
5186 
5187 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5188 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5189 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5190 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5191 	   int, addr_len)
5192 {
5193 #ifdef CONFIG_INET
5194 	struct sock *sk = ctx->sk;
5195 	u32 flags = BIND_FROM_BPF;
5196 	int err;
5197 
5198 	err = -EINVAL;
5199 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5200 		return err;
5201 	if (addr->sa_family == AF_INET) {
5202 		if (addr_len < sizeof(struct sockaddr_in))
5203 			return err;
5204 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5205 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5206 		return __inet_bind(sk, addr, addr_len, flags);
5207 #if IS_ENABLED(CONFIG_IPV6)
5208 	} else if (addr->sa_family == AF_INET6) {
5209 		if (addr_len < SIN6_LEN_RFC2133)
5210 			return err;
5211 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5212 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5213 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5214 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5215 		 */
5216 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5217 #endif /* CONFIG_IPV6 */
5218 	}
5219 #endif /* CONFIG_INET */
5220 
5221 	return -EAFNOSUPPORT;
5222 }
5223 
5224 static const struct bpf_func_proto bpf_bind_proto = {
5225 	.func		= bpf_bind,
5226 	.gpl_only	= false,
5227 	.ret_type	= RET_INTEGER,
5228 	.arg1_type	= ARG_PTR_TO_CTX,
5229 	.arg2_type	= ARG_PTR_TO_MEM,
5230 	.arg3_type	= ARG_CONST_SIZE,
5231 };
5232 
5233 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5234 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5235 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5236 {
5237 	const struct sec_path *sp = skb_sec_path(skb);
5238 	const struct xfrm_state *x;
5239 
5240 	if (!sp || unlikely(index >= sp->len || flags))
5241 		goto err_clear;
5242 
5243 	x = sp->xvec[index];
5244 
5245 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5246 		goto err_clear;
5247 
5248 	to->reqid = x->props.reqid;
5249 	to->spi = x->id.spi;
5250 	to->family = x->props.family;
5251 	to->ext = 0;
5252 
5253 	if (to->family == AF_INET6) {
5254 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5255 		       sizeof(to->remote_ipv6));
5256 	} else {
5257 		to->remote_ipv4 = x->props.saddr.a4;
5258 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5259 	}
5260 
5261 	return 0;
5262 err_clear:
5263 	memset(to, 0, size);
5264 	return -EINVAL;
5265 }
5266 
5267 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5268 	.func		= bpf_skb_get_xfrm_state,
5269 	.gpl_only	= false,
5270 	.ret_type	= RET_INTEGER,
5271 	.arg1_type	= ARG_PTR_TO_CTX,
5272 	.arg2_type	= ARG_ANYTHING,
5273 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5274 	.arg4_type	= ARG_CONST_SIZE,
5275 	.arg5_type	= ARG_ANYTHING,
5276 };
5277 #endif
5278 
5279 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)5280 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5281 				  const struct neighbour *neigh,
5282 				  const struct net_device *dev)
5283 {
5284 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5285 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5286 	params->h_vlan_TCI = 0;
5287 	params->h_vlan_proto = 0;
5288 
5289 	return 0;
5290 }
5291 #endif
5292 
5293 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5294 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5295 			       u32 flags, bool check_mtu)
5296 {
5297 	struct fib_nh_common *nhc;
5298 	struct in_device *in_dev;
5299 	struct neighbour *neigh;
5300 	struct net_device *dev;
5301 	struct fib_result res;
5302 	struct flowi4 fl4;
5303 	int err;
5304 	u32 mtu;
5305 
5306 	dev = dev_get_by_index_rcu(net, params->ifindex);
5307 	if (unlikely(!dev))
5308 		return -ENODEV;
5309 
5310 	/* verify forwarding is enabled on this interface */
5311 	in_dev = __in_dev_get_rcu(dev);
5312 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5313 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5314 
5315 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5316 		fl4.flowi4_iif = 1;
5317 		fl4.flowi4_oif = params->ifindex;
5318 	} else {
5319 		fl4.flowi4_iif = params->ifindex;
5320 		fl4.flowi4_oif = 0;
5321 	}
5322 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5323 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5324 	fl4.flowi4_flags = 0;
5325 
5326 	fl4.flowi4_proto = params->l4_protocol;
5327 	fl4.daddr = params->ipv4_dst;
5328 	fl4.saddr = params->ipv4_src;
5329 	fl4.fl4_sport = params->sport;
5330 	fl4.fl4_dport = params->dport;
5331 	fl4.flowi4_multipath_hash = 0;
5332 
5333 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5334 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5335 		struct fib_table *tb;
5336 
5337 		tb = fib_get_table(net, tbid);
5338 		if (unlikely(!tb))
5339 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5340 
5341 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5342 	} else {
5343 		fl4.flowi4_mark = 0;
5344 		fl4.flowi4_secid = 0;
5345 		fl4.flowi4_tun_key.tun_id = 0;
5346 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5347 
5348 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5349 	}
5350 
5351 	if (err) {
5352 		/* map fib lookup errors to RTN_ type */
5353 		if (err == -EINVAL)
5354 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5355 		if (err == -EHOSTUNREACH)
5356 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5357 		if (err == -EACCES)
5358 			return BPF_FIB_LKUP_RET_PROHIBIT;
5359 
5360 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5361 	}
5362 
5363 	if (res.type != RTN_UNICAST)
5364 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5365 
5366 	if (fib_info_num_path(res.fi) > 1)
5367 		fib_select_path(net, &res, &fl4, NULL);
5368 
5369 	if (check_mtu) {
5370 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5371 		if (params->tot_len > mtu)
5372 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5373 	}
5374 
5375 	nhc = res.nhc;
5376 
5377 	/* do not handle lwt encaps right now */
5378 	if (nhc->nhc_lwtstate)
5379 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5380 
5381 	dev = nhc->nhc_dev;
5382 
5383 	params->rt_metric = res.fi->fib_priority;
5384 	params->ifindex = dev->ifindex;
5385 
5386 	/* xdp and cls_bpf programs are run in RCU-bh so
5387 	 * rcu_read_lock_bh is not needed here
5388 	 */
5389 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5390 		if (nhc->nhc_gw_family)
5391 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5392 
5393 		neigh = __ipv4_neigh_lookup_noref(dev,
5394 						 (__force u32)params->ipv4_dst);
5395 	} else {
5396 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5397 
5398 		params->family = AF_INET6;
5399 		*dst = nhc->nhc_gw.ipv6;
5400 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5401 	}
5402 
5403 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5404 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5405 
5406 	return bpf_fib_set_fwd_params(params, neigh, dev);
5407 }
5408 #endif
5409 
5410 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5411 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5412 			       u32 flags, bool check_mtu)
5413 {
5414 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5415 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5416 	struct fib6_result res = {};
5417 	struct neighbour *neigh;
5418 	struct net_device *dev;
5419 	struct inet6_dev *idev;
5420 	struct flowi6 fl6;
5421 	int strict = 0;
5422 	int oif, err;
5423 	u32 mtu;
5424 
5425 	/* link local addresses are never forwarded */
5426 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5427 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5428 
5429 	dev = dev_get_by_index_rcu(net, params->ifindex);
5430 	if (unlikely(!dev))
5431 		return -ENODEV;
5432 
5433 	idev = __in6_dev_get_safely(dev);
5434 	if (unlikely(!idev || !idev->cnf.forwarding))
5435 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5436 
5437 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5438 		fl6.flowi6_iif = 1;
5439 		oif = fl6.flowi6_oif = params->ifindex;
5440 	} else {
5441 		oif = fl6.flowi6_iif = params->ifindex;
5442 		fl6.flowi6_oif = 0;
5443 		strict = RT6_LOOKUP_F_HAS_SADDR;
5444 	}
5445 	fl6.flowlabel = params->flowinfo;
5446 	fl6.flowi6_scope = 0;
5447 	fl6.flowi6_flags = 0;
5448 	fl6.mp_hash = 0;
5449 
5450 	fl6.flowi6_proto = params->l4_protocol;
5451 	fl6.daddr = *dst;
5452 	fl6.saddr = *src;
5453 	fl6.fl6_sport = params->sport;
5454 	fl6.fl6_dport = params->dport;
5455 
5456 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5457 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5458 		struct fib6_table *tb;
5459 
5460 		tb = ipv6_stub->fib6_get_table(net, tbid);
5461 		if (unlikely(!tb))
5462 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5463 
5464 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5465 						   strict);
5466 	} else {
5467 		fl6.flowi6_mark = 0;
5468 		fl6.flowi6_secid = 0;
5469 		fl6.flowi6_tun_key.tun_id = 0;
5470 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5471 
5472 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5473 	}
5474 
5475 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5476 		     res.f6i == net->ipv6.fib6_null_entry))
5477 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5478 
5479 	switch (res.fib6_type) {
5480 	/* only unicast is forwarded */
5481 	case RTN_UNICAST:
5482 		break;
5483 	case RTN_BLACKHOLE:
5484 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5485 	case RTN_UNREACHABLE:
5486 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5487 	case RTN_PROHIBIT:
5488 		return BPF_FIB_LKUP_RET_PROHIBIT;
5489 	default:
5490 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5491 	}
5492 
5493 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5494 				    fl6.flowi6_oif != 0, NULL, strict);
5495 
5496 	if (check_mtu) {
5497 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5498 		if (params->tot_len > mtu)
5499 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5500 	}
5501 
5502 	if (res.nh->fib_nh_lws)
5503 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5504 
5505 	if (res.nh->fib_nh_gw_family)
5506 		*dst = res.nh->fib_nh_gw6;
5507 
5508 	dev = res.nh->fib_nh_dev;
5509 	params->rt_metric = res.f6i->fib6_metric;
5510 	params->ifindex = dev->ifindex;
5511 
5512 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5513 	 * not needed here.
5514 	 */
5515 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5516 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5517 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5518 
5519 	return bpf_fib_set_fwd_params(params, neigh, dev);
5520 }
5521 #endif
5522 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5523 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5524 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5525 {
5526 	if (plen < sizeof(*params))
5527 		return -EINVAL;
5528 
5529 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5530 		return -EINVAL;
5531 
5532 	switch (params->family) {
5533 #if IS_ENABLED(CONFIG_INET)
5534 	case AF_INET:
5535 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5536 					   flags, true);
5537 #endif
5538 #if IS_ENABLED(CONFIG_IPV6)
5539 	case AF_INET6:
5540 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5541 					   flags, true);
5542 #endif
5543 	}
5544 	return -EAFNOSUPPORT;
5545 }
5546 
5547 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5548 	.func		= bpf_xdp_fib_lookup,
5549 	.gpl_only	= true,
5550 	.ret_type	= RET_INTEGER,
5551 	.arg1_type      = ARG_PTR_TO_CTX,
5552 	.arg2_type      = ARG_PTR_TO_MEM,
5553 	.arg3_type      = ARG_CONST_SIZE,
5554 	.arg4_type	= ARG_ANYTHING,
5555 };
5556 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5557 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5558 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5559 {
5560 	struct net *net = dev_net(skb->dev);
5561 	int rc = -EAFNOSUPPORT;
5562 	bool check_mtu = false;
5563 
5564 	if (plen < sizeof(*params))
5565 		return -EINVAL;
5566 
5567 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5568 		return -EINVAL;
5569 
5570 	if (params->tot_len)
5571 		check_mtu = true;
5572 
5573 	switch (params->family) {
5574 #if IS_ENABLED(CONFIG_INET)
5575 	case AF_INET:
5576 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5577 		break;
5578 #endif
5579 #if IS_ENABLED(CONFIG_IPV6)
5580 	case AF_INET6:
5581 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5582 		break;
5583 #endif
5584 	}
5585 
5586 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5587 		struct net_device *dev;
5588 
5589 		/* When tot_len isn't provided by user, check skb
5590 		 * against MTU of FIB lookup resulting net_device
5591 		 */
5592 		dev = dev_get_by_index_rcu(net, params->ifindex);
5593 		if (!is_skb_forwardable(dev, skb))
5594 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5595 	}
5596 
5597 	return rc;
5598 }
5599 
5600 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5601 	.func		= bpf_skb_fib_lookup,
5602 	.gpl_only	= true,
5603 	.ret_type	= RET_INTEGER,
5604 	.arg1_type      = ARG_PTR_TO_CTX,
5605 	.arg2_type      = ARG_PTR_TO_MEM,
5606 	.arg3_type      = ARG_CONST_SIZE,
5607 	.arg4_type	= ARG_ANYTHING,
5608 };
5609 
5610 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5611 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5612 {
5613 	int err;
5614 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5615 
5616 	if (!seg6_validate_srh(srh, len, false))
5617 		return -EINVAL;
5618 
5619 	switch (type) {
5620 	case BPF_LWT_ENCAP_SEG6_INLINE:
5621 		if (skb->protocol != htons(ETH_P_IPV6))
5622 			return -EBADMSG;
5623 
5624 		err = seg6_do_srh_inline(skb, srh);
5625 		break;
5626 	case BPF_LWT_ENCAP_SEG6:
5627 		skb_reset_inner_headers(skb);
5628 		skb->encapsulation = 1;
5629 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5630 		break;
5631 	default:
5632 		return -EINVAL;
5633 	}
5634 
5635 	bpf_compute_data_pointers(skb);
5636 	if (err)
5637 		return err;
5638 
5639 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5640 
5641 	return seg6_lookup_nexthop(skb, NULL, 0);
5642 }
5643 #endif /* CONFIG_IPV6_SEG6_BPF */
5644 
5645 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5646 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5647 			     bool ingress)
5648 {
5649 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5650 }
5651 #endif
5652 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5653 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5654 	   u32, len)
5655 {
5656 	switch (type) {
5657 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5658 	case BPF_LWT_ENCAP_SEG6:
5659 	case BPF_LWT_ENCAP_SEG6_INLINE:
5660 		return bpf_push_seg6_encap(skb, type, hdr, len);
5661 #endif
5662 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5663 	case BPF_LWT_ENCAP_IP:
5664 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5665 #endif
5666 	default:
5667 		return -EINVAL;
5668 	}
5669 }
5670 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5671 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5672 	   void *, hdr, u32, len)
5673 {
5674 	switch (type) {
5675 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5676 	case BPF_LWT_ENCAP_IP:
5677 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5678 #endif
5679 	default:
5680 		return -EINVAL;
5681 	}
5682 }
5683 
5684 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5685 	.func		= bpf_lwt_in_push_encap,
5686 	.gpl_only	= false,
5687 	.ret_type	= RET_INTEGER,
5688 	.arg1_type	= ARG_PTR_TO_CTX,
5689 	.arg2_type	= ARG_ANYTHING,
5690 	.arg3_type	= ARG_PTR_TO_MEM,
5691 	.arg4_type	= ARG_CONST_SIZE
5692 };
5693 
5694 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5695 	.func		= bpf_lwt_xmit_push_encap,
5696 	.gpl_only	= false,
5697 	.ret_type	= RET_INTEGER,
5698 	.arg1_type	= ARG_PTR_TO_CTX,
5699 	.arg2_type	= ARG_ANYTHING,
5700 	.arg3_type	= ARG_PTR_TO_MEM,
5701 	.arg4_type	= ARG_CONST_SIZE
5702 };
5703 
5704 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5705 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5706 	   const void *, from, u32, len)
5707 {
5708 	struct seg6_bpf_srh_state *srh_state =
5709 		this_cpu_ptr(&seg6_bpf_srh_states);
5710 	struct ipv6_sr_hdr *srh = srh_state->srh;
5711 	void *srh_tlvs, *srh_end, *ptr;
5712 	int srhoff = 0;
5713 
5714 	if (srh == NULL)
5715 		return -EINVAL;
5716 
5717 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5718 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5719 
5720 	ptr = skb->data + offset;
5721 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5722 		srh_state->valid = false;
5723 	else if (ptr < (void *)&srh->flags ||
5724 		 ptr + len > (void *)&srh->segments)
5725 		return -EFAULT;
5726 
5727 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5728 		return -EFAULT;
5729 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5730 		return -EINVAL;
5731 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5732 
5733 	memcpy(skb->data + offset, from, len);
5734 	return 0;
5735 }
5736 
5737 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5738 	.func		= bpf_lwt_seg6_store_bytes,
5739 	.gpl_only	= false,
5740 	.ret_type	= RET_INTEGER,
5741 	.arg1_type	= ARG_PTR_TO_CTX,
5742 	.arg2_type	= ARG_ANYTHING,
5743 	.arg3_type	= ARG_PTR_TO_MEM,
5744 	.arg4_type	= ARG_CONST_SIZE
5745 };
5746 
bpf_update_srh_state(struct sk_buff * skb)5747 static void bpf_update_srh_state(struct sk_buff *skb)
5748 {
5749 	struct seg6_bpf_srh_state *srh_state =
5750 		this_cpu_ptr(&seg6_bpf_srh_states);
5751 	int srhoff = 0;
5752 
5753 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5754 		srh_state->srh = NULL;
5755 	} else {
5756 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5757 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5758 		srh_state->valid = true;
5759 	}
5760 }
5761 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5762 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5763 	   u32, action, void *, param, u32, param_len)
5764 {
5765 	struct seg6_bpf_srh_state *srh_state =
5766 		this_cpu_ptr(&seg6_bpf_srh_states);
5767 	int hdroff = 0;
5768 	int err;
5769 
5770 	switch (action) {
5771 	case SEG6_LOCAL_ACTION_END_X:
5772 		if (!seg6_bpf_has_valid_srh(skb))
5773 			return -EBADMSG;
5774 		if (param_len != sizeof(struct in6_addr))
5775 			return -EINVAL;
5776 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5777 	case SEG6_LOCAL_ACTION_END_T:
5778 		if (!seg6_bpf_has_valid_srh(skb))
5779 			return -EBADMSG;
5780 		if (param_len != sizeof(int))
5781 			return -EINVAL;
5782 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5783 	case SEG6_LOCAL_ACTION_END_DT6:
5784 		if (!seg6_bpf_has_valid_srh(skb))
5785 			return -EBADMSG;
5786 		if (param_len != sizeof(int))
5787 			return -EINVAL;
5788 
5789 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5790 			return -EBADMSG;
5791 		if (!pskb_pull(skb, hdroff))
5792 			return -EBADMSG;
5793 
5794 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5795 		skb_reset_network_header(skb);
5796 		skb_reset_transport_header(skb);
5797 		skb->encapsulation = 0;
5798 
5799 		bpf_compute_data_pointers(skb);
5800 		bpf_update_srh_state(skb);
5801 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5802 	case SEG6_LOCAL_ACTION_END_B6:
5803 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5804 			return -EBADMSG;
5805 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5806 					  param, param_len);
5807 		if (!err)
5808 			bpf_update_srh_state(skb);
5809 
5810 		return err;
5811 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5812 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5813 			return -EBADMSG;
5814 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5815 					  param, param_len);
5816 		if (!err)
5817 			bpf_update_srh_state(skb);
5818 
5819 		return err;
5820 	default:
5821 		return -EINVAL;
5822 	}
5823 }
5824 
5825 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5826 	.func		= bpf_lwt_seg6_action,
5827 	.gpl_only	= false,
5828 	.ret_type	= RET_INTEGER,
5829 	.arg1_type	= ARG_PTR_TO_CTX,
5830 	.arg2_type	= ARG_ANYTHING,
5831 	.arg3_type	= ARG_PTR_TO_MEM,
5832 	.arg4_type	= ARG_CONST_SIZE
5833 };
5834 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5835 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5836 	   s32, len)
5837 {
5838 	struct seg6_bpf_srh_state *srh_state =
5839 		this_cpu_ptr(&seg6_bpf_srh_states);
5840 	struct ipv6_sr_hdr *srh = srh_state->srh;
5841 	void *srh_end, *srh_tlvs, *ptr;
5842 	struct ipv6hdr *hdr;
5843 	int srhoff = 0;
5844 	int ret;
5845 
5846 	if (unlikely(srh == NULL))
5847 		return -EINVAL;
5848 
5849 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5850 			((srh->first_segment + 1) << 4));
5851 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5852 			srh_state->hdrlen);
5853 	ptr = skb->data + offset;
5854 
5855 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5856 		return -EFAULT;
5857 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5858 		return -EFAULT;
5859 
5860 	if (len > 0) {
5861 		ret = skb_cow_head(skb, len);
5862 		if (unlikely(ret < 0))
5863 			return ret;
5864 
5865 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5866 	} else {
5867 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5868 	}
5869 
5870 	bpf_compute_data_pointers(skb);
5871 	if (unlikely(ret < 0))
5872 		return ret;
5873 
5874 	hdr = (struct ipv6hdr *)skb->data;
5875 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5876 
5877 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5878 		return -EINVAL;
5879 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5880 	srh_state->hdrlen += len;
5881 	srh_state->valid = false;
5882 	return 0;
5883 }
5884 
5885 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5886 	.func		= bpf_lwt_seg6_adjust_srh,
5887 	.gpl_only	= false,
5888 	.ret_type	= RET_INTEGER,
5889 	.arg1_type	= ARG_PTR_TO_CTX,
5890 	.arg2_type	= ARG_ANYTHING,
5891 	.arg3_type	= ARG_ANYTHING,
5892 };
5893 #endif /* CONFIG_IPV6_SEG6_BPF */
5894 
5895 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5896 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5897 			      int dif, int sdif, u8 family, u8 proto)
5898 {
5899 	bool refcounted = false;
5900 	struct sock *sk = NULL;
5901 
5902 	if (family == AF_INET) {
5903 		__be32 src4 = tuple->ipv4.saddr;
5904 		__be32 dst4 = tuple->ipv4.daddr;
5905 
5906 		if (proto == IPPROTO_TCP)
5907 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5908 					   src4, tuple->ipv4.sport,
5909 					   dst4, tuple->ipv4.dport,
5910 					   dif, sdif, &refcounted);
5911 		else
5912 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5913 					       dst4, tuple->ipv4.dport,
5914 					       dif, sdif, &udp_table, NULL);
5915 #if IS_ENABLED(CONFIG_IPV6)
5916 	} else {
5917 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5918 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5919 
5920 		if (proto == IPPROTO_TCP)
5921 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5922 					    src6, tuple->ipv6.sport,
5923 					    dst6, ntohs(tuple->ipv6.dport),
5924 					    dif, sdif, &refcounted);
5925 		else if (likely(ipv6_bpf_stub))
5926 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5927 							    src6, tuple->ipv6.sport,
5928 							    dst6, tuple->ipv6.dport,
5929 							    dif, sdif,
5930 							    &udp_table, NULL);
5931 #endif
5932 	}
5933 
5934 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5935 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5936 		sk = NULL;
5937 	}
5938 	return sk;
5939 }
5940 
5941 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5942  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5943  * Returns the socket as an 'unsigned long' to simplify the casting in the
5944  * callers to satisfy BPF_CALL declarations.
5945  */
5946 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5947 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5948 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5949 		 u64 flags)
5950 {
5951 	struct sock *sk = NULL;
5952 	u8 family = AF_UNSPEC;
5953 	struct net *net;
5954 	int sdif;
5955 
5956 	if (len == sizeof(tuple->ipv4))
5957 		family = AF_INET;
5958 	else if (len == sizeof(tuple->ipv6))
5959 		family = AF_INET6;
5960 	else
5961 		return NULL;
5962 
5963 	if (unlikely(family == AF_UNSPEC || flags ||
5964 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5965 		goto out;
5966 
5967 	if (family == AF_INET)
5968 		sdif = inet_sdif(skb);
5969 	else
5970 		sdif = inet6_sdif(skb);
5971 
5972 	if ((s32)netns_id < 0) {
5973 		net = caller_net;
5974 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5975 	} else {
5976 		net = get_net_ns_by_id(caller_net, netns_id);
5977 		if (unlikely(!net))
5978 			goto out;
5979 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5980 		put_net(net);
5981 	}
5982 
5983 out:
5984 	return sk;
5985 }
5986 
5987 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5988 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5989 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5990 		u64 flags)
5991 {
5992 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5993 					   ifindex, proto, netns_id, flags);
5994 
5995 	if (sk) {
5996 		struct sock *sk2 = sk_to_full_sk(sk);
5997 
5998 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
5999 		 * sock refcnt is decremented to prevent a request_sock leak.
6000 		 */
6001 		if (!sk_fullsock(sk2))
6002 			sk2 = NULL;
6003 		if (sk2 != sk) {
6004 			sock_gen_put(sk);
6005 			/* Ensure there is no need to bump sk2 refcnt */
6006 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6007 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6008 				return NULL;
6009 			}
6010 			sk = sk2;
6011 		}
6012 	}
6013 
6014 	return sk;
6015 }
6016 
6017 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6018 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6019 	       u8 proto, u64 netns_id, u64 flags)
6020 {
6021 	struct net *caller_net;
6022 	int ifindex;
6023 
6024 	if (skb->dev) {
6025 		caller_net = dev_net(skb->dev);
6026 		ifindex = skb->dev->ifindex;
6027 	} else {
6028 		caller_net = sock_net(skb->sk);
6029 		ifindex = 0;
6030 	}
6031 
6032 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6033 				netns_id, flags);
6034 }
6035 
6036 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6037 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6038 	      u8 proto, u64 netns_id, u64 flags)
6039 {
6040 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6041 					 flags);
6042 
6043 	if (sk) {
6044 		struct sock *sk2 = sk_to_full_sk(sk);
6045 
6046 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6047 		 * sock refcnt is decremented to prevent a request_sock leak.
6048 		 */
6049 		if (!sk_fullsock(sk2))
6050 			sk2 = NULL;
6051 		if (sk2 != sk) {
6052 			sock_gen_put(sk);
6053 			/* Ensure there is no need to bump sk2 refcnt */
6054 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6055 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6056 				return NULL;
6057 			}
6058 			sk = sk2;
6059 		}
6060 	}
6061 
6062 	return sk;
6063 }
6064 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6065 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6066 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6067 {
6068 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6069 					     netns_id, flags);
6070 }
6071 
6072 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6073 	.func		= bpf_skc_lookup_tcp,
6074 	.gpl_only	= false,
6075 	.pkt_access	= true,
6076 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6077 	.arg1_type	= ARG_PTR_TO_CTX,
6078 	.arg2_type	= ARG_PTR_TO_MEM,
6079 	.arg3_type	= ARG_CONST_SIZE,
6080 	.arg4_type	= ARG_ANYTHING,
6081 	.arg5_type	= ARG_ANYTHING,
6082 };
6083 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6084 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6085 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6086 {
6087 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6088 					    netns_id, flags);
6089 }
6090 
6091 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6092 	.func		= bpf_sk_lookup_tcp,
6093 	.gpl_only	= false,
6094 	.pkt_access	= true,
6095 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6096 	.arg1_type	= ARG_PTR_TO_CTX,
6097 	.arg2_type	= ARG_PTR_TO_MEM,
6098 	.arg3_type	= ARG_CONST_SIZE,
6099 	.arg4_type	= ARG_ANYTHING,
6100 	.arg5_type	= ARG_ANYTHING,
6101 };
6102 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6103 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6104 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6105 {
6106 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6107 					    netns_id, flags);
6108 }
6109 
6110 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6111 	.func		= bpf_sk_lookup_udp,
6112 	.gpl_only	= false,
6113 	.pkt_access	= true,
6114 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6115 	.arg1_type	= ARG_PTR_TO_CTX,
6116 	.arg2_type	= ARG_PTR_TO_MEM,
6117 	.arg3_type	= ARG_CONST_SIZE,
6118 	.arg4_type	= ARG_ANYTHING,
6119 	.arg5_type	= ARG_ANYTHING,
6120 };
6121 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6122 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6123 {
6124 	if (sk && sk_is_refcounted(sk))
6125 		sock_gen_put(sk);
6126 	return 0;
6127 }
6128 
6129 static const struct bpf_func_proto bpf_sk_release_proto = {
6130 	.func		= bpf_sk_release,
6131 	.gpl_only	= false,
6132 	.ret_type	= RET_INTEGER,
6133 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6134 };
6135 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6136 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6137 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6138 {
6139 	struct net *caller_net = dev_net(ctx->rxq->dev);
6140 	int ifindex = ctx->rxq->dev->ifindex;
6141 
6142 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6143 					      ifindex, IPPROTO_UDP, netns_id,
6144 					      flags);
6145 }
6146 
6147 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6148 	.func           = bpf_xdp_sk_lookup_udp,
6149 	.gpl_only       = false,
6150 	.pkt_access     = true,
6151 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6152 	.arg1_type      = ARG_PTR_TO_CTX,
6153 	.arg2_type      = ARG_PTR_TO_MEM,
6154 	.arg3_type      = ARG_CONST_SIZE,
6155 	.arg4_type      = ARG_ANYTHING,
6156 	.arg5_type      = ARG_ANYTHING,
6157 };
6158 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6159 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6160 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6161 {
6162 	struct net *caller_net = dev_net(ctx->rxq->dev);
6163 	int ifindex = ctx->rxq->dev->ifindex;
6164 
6165 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6166 					       ifindex, IPPROTO_TCP, netns_id,
6167 					       flags);
6168 }
6169 
6170 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6171 	.func           = bpf_xdp_skc_lookup_tcp,
6172 	.gpl_only       = false,
6173 	.pkt_access     = true,
6174 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6175 	.arg1_type      = ARG_PTR_TO_CTX,
6176 	.arg2_type      = ARG_PTR_TO_MEM,
6177 	.arg3_type      = ARG_CONST_SIZE,
6178 	.arg4_type      = ARG_ANYTHING,
6179 	.arg5_type      = ARG_ANYTHING,
6180 };
6181 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6182 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6183 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6184 {
6185 	struct net *caller_net = dev_net(ctx->rxq->dev);
6186 	int ifindex = ctx->rxq->dev->ifindex;
6187 
6188 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6189 					      ifindex, IPPROTO_TCP, netns_id,
6190 					      flags);
6191 }
6192 
6193 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6194 	.func           = bpf_xdp_sk_lookup_tcp,
6195 	.gpl_only       = false,
6196 	.pkt_access     = true,
6197 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6198 	.arg1_type      = ARG_PTR_TO_CTX,
6199 	.arg2_type      = ARG_PTR_TO_MEM,
6200 	.arg3_type      = ARG_CONST_SIZE,
6201 	.arg4_type      = ARG_ANYTHING,
6202 	.arg5_type      = ARG_ANYTHING,
6203 };
6204 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6205 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6206 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6207 {
6208 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6209 					       sock_net(ctx->sk), 0,
6210 					       IPPROTO_TCP, netns_id, flags);
6211 }
6212 
6213 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6214 	.func		= bpf_sock_addr_skc_lookup_tcp,
6215 	.gpl_only	= false,
6216 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6217 	.arg1_type	= ARG_PTR_TO_CTX,
6218 	.arg2_type	= ARG_PTR_TO_MEM,
6219 	.arg3_type	= ARG_CONST_SIZE,
6220 	.arg4_type	= ARG_ANYTHING,
6221 	.arg5_type	= ARG_ANYTHING,
6222 };
6223 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6224 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6225 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6226 {
6227 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6228 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6229 					      netns_id, flags);
6230 }
6231 
6232 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6233 	.func		= bpf_sock_addr_sk_lookup_tcp,
6234 	.gpl_only	= false,
6235 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6236 	.arg1_type	= ARG_PTR_TO_CTX,
6237 	.arg2_type	= ARG_PTR_TO_MEM,
6238 	.arg3_type	= ARG_CONST_SIZE,
6239 	.arg4_type	= ARG_ANYTHING,
6240 	.arg5_type	= ARG_ANYTHING,
6241 };
6242 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6243 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6244 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6245 {
6246 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6247 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6248 					      netns_id, flags);
6249 }
6250 
6251 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6252 	.func		= bpf_sock_addr_sk_lookup_udp,
6253 	.gpl_only	= false,
6254 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6255 	.arg1_type	= ARG_PTR_TO_CTX,
6256 	.arg2_type	= ARG_PTR_TO_MEM,
6257 	.arg3_type	= ARG_CONST_SIZE,
6258 	.arg4_type	= ARG_ANYTHING,
6259 	.arg5_type	= ARG_ANYTHING,
6260 };
6261 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6262 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6263 				  struct bpf_insn_access_aux *info)
6264 {
6265 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6266 					  icsk_retransmits))
6267 		return false;
6268 
6269 	if (off % size != 0)
6270 		return false;
6271 
6272 	switch (off) {
6273 	case offsetof(struct bpf_tcp_sock, bytes_received):
6274 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6275 		return size == sizeof(__u64);
6276 	default:
6277 		return size == sizeof(__u32);
6278 	}
6279 }
6280 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6281 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6282 				    const struct bpf_insn *si,
6283 				    struct bpf_insn *insn_buf,
6284 				    struct bpf_prog *prog, u32 *target_size)
6285 {
6286 	struct bpf_insn *insn = insn_buf;
6287 
6288 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6289 	do {								\
6290 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6291 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6292 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6293 				      si->dst_reg, si->src_reg,		\
6294 				      offsetof(struct tcp_sock, FIELD)); \
6295 	} while (0)
6296 
6297 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6298 	do {								\
6299 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6300 					  FIELD) >			\
6301 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6302 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6303 					struct inet_connection_sock,	\
6304 					FIELD),				\
6305 				      si->dst_reg, si->src_reg,		\
6306 				      offsetof(				\
6307 					struct inet_connection_sock,	\
6308 					FIELD));			\
6309 	} while (0)
6310 
6311 	if (insn > insn_buf)
6312 		return insn - insn_buf;
6313 
6314 	switch (si->off) {
6315 	case offsetof(struct bpf_tcp_sock, rtt_min):
6316 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6317 			     sizeof(struct minmax));
6318 		BUILD_BUG_ON(sizeof(struct minmax) <
6319 			     sizeof(struct minmax_sample));
6320 
6321 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6322 				      offsetof(struct tcp_sock, rtt_min) +
6323 				      offsetof(struct minmax_sample, v));
6324 		break;
6325 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6326 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6327 		break;
6328 	case offsetof(struct bpf_tcp_sock, srtt_us):
6329 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6330 		break;
6331 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6332 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6333 		break;
6334 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6335 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6336 		break;
6337 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6338 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6339 		break;
6340 	case offsetof(struct bpf_tcp_sock, snd_una):
6341 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6342 		break;
6343 	case offsetof(struct bpf_tcp_sock, mss_cache):
6344 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6345 		break;
6346 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6347 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6348 		break;
6349 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6350 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6351 		break;
6352 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6353 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6354 		break;
6355 	case offsetof(struct bpf_tcp_sock, packets_out):
6356 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6357 		break;
6358 	case offsetof(struct bpf_tcp_sock, retrans_out):
6359 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6360 		break;
6361 	case offsetof(struct bpf_tcp_sock, total_retrans):
6362 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6363 		break;
6364 	case offsetof(struct bpf_tcp_sock, segs_in):
6365 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6366 		break;
6367 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6368 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6369 		break;
6370 	case offsetof(struct bpf_tcp_sock, segs_out):
6371 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6372 		break;
6373 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6374 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6375 		break;
6376 	case offsetof(struct bpf_tcp_sock, lost_out):
6377 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6378 		break;
6379 	case offsetof(struct bpf_tcp_sock, sacked_out):
6380 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6381 		break;
6382 	case offsetof(struct bpf_tcp_sock, bytes_received):
6383 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6384 		break;
6385 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6386 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6387 		break;
6388 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6389 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6390 		break;
6391 	case offsetof(struct bpf_tcp_sock, delivered):
6392 		BPF_TCP_SOCK_GET_COMMON(delivered);
6393 		break;
6394 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6395 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6396 		break;
6397 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6398 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6399 		break;
6400 	}
6401 
6402 	return insn - insn_buf;
6403 }
6404 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6405 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6406 {
6407 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6408 		return (unsigned long)sk;
6409 
6410 	return (unsigned long)NULL;
6411 }
6412 
6413 const struct bpf_func_proto bpf_tcp_sock_proto = {
6414 	.func		= bpf_tcp_sock,
6415 	.gpl_only	= false,
6416 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6417 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6418 };
6419 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6420 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6421 {
6422 	sk = sk_to_full_sk(sk);
6423 
6424 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6425 		return (unsigned long)sk;
6426 
6427 	return (unsigned long)NULL;
6428 }
6429 
6430 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6431 	.func		= bpf_get_listener_sock,
6432 	.gpl_only	= false,
6433 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6434 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6435 };
6436 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6437 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6438 {
6439 	unsigned int iphdr_len;
6440 
6441 	switch (skb_protocol(skb, true)) {
6442 	case cpu_to_be16(ETH_P_IP):
6443 		iphdr_len = sizeof(struct iphdr);
6444 		break;
6445 	case cpu_to_be16(ETH_P_IPV6):
6446 		iphdr_len = sizeof(struct ipv6hdr);
6447 		break;
6448 	default:
6449 		return 0;
6450 	}
6451 
6452 	if (skb_headlen(skb) < iphdr_len)
6453 		return 0;
6454 
6455 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6456 		return 0;
6457 
6458 	return INET_ECN_set_ce(skb);
6459 }
6460 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6461 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6462 				  struct bpf_insn_access_aux *info)
6463 {
6464 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6465 		return false;
6466 
6467 	if (off % size != 0)
6468 		return false;
6469 
6470 	switch (off) {
6471 	default:
6472 		return size == sizeof(__u32);
6473 	}
6474 }
6475 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6476 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6477 				    const struct bpf_insn *si,
6478 				    struct bpf_insn *insn_buf,
6479 				    struct bpf_prog *prog, u32 *target_size)
6480 {
6481 	struct bpf_insn *insn = insn_buf;
6482 
6483 #define BPF_XDP_SOCK_GET(FIELD)						\
6484 	do {								\
6485 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6486 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6488 				      si->dst_reg, si->src_reg,		\
6489 				      offsetof(struct xdp_sock, FIELD)); \
6490 	} while (0)
6491 
6492 	switch (si->off) {
6493 	case offsetof(struct bpf_xdp_sock, queue_id):
6494 		BPF_XDP_SOCK_GET(queue_id);
6495 		break;
6496 	}
6497 
6498 	return insn - insn_buf;
6499 }
6500 
6501 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6502 	.func           = bpf_skb_ecn_set_ce,
6503 	.gpl_only       = false,
6504 	.ret_type       = RET_INTEGER,
6505 	.arg1_type      = ARG_PTR_TO_CTX,
6506 };
6507 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6508 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6509 	   struct tcphdr *, th, u32, th_len)
6510 {
6511 #ifdef CONFIG_SYN_COOKIES
6512 	u32 cookie;
6513 	int ret;
6514 
6515 	if (unlikely(!sk || th_len < sizeof(*th)))
6516 		return -EINVAL;
6517 
6518 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6519 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6520 		return -EINVAL;
6521 
6522 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6523 		return -EINVAL;
6524 
6525 	if (!th->ack || th->rst || th->syn)
6526 		return -ENOENT;
6527 
6528 	if (unlikely(iph_len < sizeof(struct iphdr)))
6529 		return -EINVAL;
6530 
6531 	if (tcp_synq_no_recent_overflow(sk))
6532 		return -ENOENT;
6533 
6534 	cookie = ntohl(th->ack_seq) - 1;
6535 
6536 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6537 	 * same offset so we can cast to the shorter header (struct iphdr).
6538 	 */
6539 	switch (((struct iphdr *)iph)->version) {
6540 	case 4:
6541 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6542 			return -EINVAL;
6543 
6544 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6545 		break;
6546 
6547 #if IS_BUILTIN(CONFIG_IPV6)
6548 	case 6:
6549 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6550 			return -EINVAL;
6551 
6552 		if (sk->sk_family != AF_INET6)
6553 			return -EINVAL;
6554 
6555 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6556 		break;
6557 #endif /* CONFIG_IPV6 */
6558 
6559 	default:
6560 		return -EPROTONOSUPPORT;
6561 	}
6562 
6563 	if (ret > 0)
6564 		return 0;
6565 
6566 	return -ENOENT;
6567 #else
6568 	return -ENOTSUPP;
6569 #endif
6570 }
6571 
6572 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6573 	.func		= bpf_tcp_check_syncookie,
6574 	.gpl_only	= true,
6575 	.pkt_access	= true,
6576 	.ret_type	= RET_INTEGER,
6577 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6578 	.arg2_type	= ARG_PTR_TO_MEM,
6579 	.arg3_type	= ARG_CONST_SIZE,
6580 	.arg4_type	= ARG_PTR_TO_MEM,
6581 	.arg5_type	= ARG_CONST_SIZE,
6582 };
6583 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6584 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6585 	   struct tcphdr *, th, u32, th_len)
6586 {
6587 #ifdef CONFIG_SYN_COOKIES
6588 	u32 cookie;
6589 	u16 mss;
6590 
6591 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6592 		return -EINVAL;
6593 
6594 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6595 		return -EINVAL;
6596 
6597 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6598 		return -ENOENT;
6599 
6600 	if (!th->syn || th->ack || th->fin || th->rst)
6601 		return -EINVAL;
6602 
6603 	if (unlikely(iph_len < sizeof(struct iphdr)))
6604 		return -EINVAL;
6605 
6606 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6607 	 * same offset so we can cast to the shorter header (struct iphdr).
6608 	 */
6609 	switch (((struct iphdr *)iph)->version) {
6610 	case 4:
6611 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6612 			return -EINVAL;
6613 
6614 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6615 		break;
6616 
6617 #if IS_BUILTIN(CONFIG_IPV6)
6618 	case 6:
6619 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6620 			return -EINVAL;
6621 
6622 		if (sk->sk_family != AF_INET6)
6623 			return -EINVAL;
6624 
6625 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6626 		break;
6627 #endif /* CONFIG_IPV6 */
6628 
6629 	default:
6630 		return -EPROTONOSUPPORT;
6631 	}
6632 	if (mss == 0)
6633 		return -ENOENT;
6634 
6635 	return cookie | ((u64)mss << 32);
6636 #else
6637 	return -EOPNOTSUPP;
6638 #endif /* CONFIG_SYN_COOKIES */
6639 }
6640 
6641 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6642 	.func		= bpf_tcp_gen_syncookie,
6643 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6644 	.pkt_access	= true,
6645 	.ret_type	= RET_INTEGER,
6646 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6647 	.arg2_type	= ARG_PTR_TO_MEM,
6648 	.arg3_type	= ARG_CONST_SIZE,
6649 	.arg4_type	= ARG_PTR_TO_MEM,
6650 	.arg5_type	= ARG_CONST_SIZE,
6651 };
6652 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6653 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6654 {
6655 	if (!sk || flags != 0)
6656 		return -EINVAL;
6657 	if (!skb_at_tc_ingress(skb))
6658 		return -EOPNOTSUPP;
6659 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6660 		return -ENETUNREACH;
6661 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6662 		return -ESOCKTNOSUPPORT;
6663 	if (sk_unhashed(sk))
6664 		return -EOPNOTSUPP;
6665 	if (sk_is_refcounted(sk) &&
6666 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6667 		return -ENOENT;
6668 
6669 	skb_orphan(skb);
6670 	skb->sk = sk;
6671 	skb->destructor = sock_pfree;
6672 
6673 	return 0;
6674 }
6675 
6676 static const struct bpf_func_proto bpf_sk_assign_proto = {
6677 	.func		= bpf_sk_assign,
6678 	.gpl_only	= false,
6679 	.ret_type	= RET_INTEGER,
6680 	.arg1_type      = ARG_PTR_TO_CTX,
6681 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6682 	.arg3_type	= ARG_ANYTHING,
6683 };
6684 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)6685 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6686 				    u8 search_kind, const u8 *magic,
6687 				    u8 magic_len, bool *eol)
6688 {
6689 	u8 kind, kind_len;
6690 
6691 	*eol = false;
6692 
6693 	while (op < opend) {
6694 		kind = op[0];
6695 
6696 		if (kind == TCPOPT_EOL) {
6697 			*eol = true;
6698 			return ERR_PTR(-ENOMSG);
6699 		} else if (kind == TCPOPT_NOP) {
6700 			op++;
6701 			continue;
6702 		}
6703 
6704 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6705 			/* Something is wrong in the received header.
6706 			 * Follow the TCP stack's tcp_parse_options()
6707 			 * and just bail here.
6708 			 */
6709 			return ERR_PTR(-EFAULT);
6710 
6711 		kind_len = op[1];
6712 		if (search_kind == kind) {
6713 			if (!magic_len)
6714 				return op;
6715 
6716 			if (magic_len > kind_len - 2)
6717 				return ERR_PTR(-ENOMSG);
6718 
6719 			if (!memcmp(&op[2], magic, magic_len))
6720 				return op;
6721 		}
6722 
6723 		op += kind_len;
6724 	}
6725 
6726 	return ERR_PTR(-ENOMSG);
6727 }
6728 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)6729 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6730 	   void *, search_res, u32, len, u64, flags)
6731 {
6732 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6733 	const u8 *op, *opend, *magic, *search = search_res;
6734 	u8 search_kind, search_len, copy_len, magic_len;
6735 	int ret;
6736 
6737 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6738 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6739 	 * and this helper disallow loading them also.
6740 	 */
6741 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6742 		return -EINVAL;
6743 
6744 	search_kind = search[0];
6745 	search_len = search[1];
6746 
6747 	if (search_len > len || search_kind == TCPOPT_NOP ||
6748 	    search_kind == TCPOPT_EOL)
6749 		return -EINVAL;
6750 
6751 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6752 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6753 		if (search_len != 4 && search_len != 6)
6754 			return -EINVAL;
6755 		magic = &search[2];
6756 		magic_len = search_len - 2;
6757 	} else {
6758 		if (search_len)
6759 			return -EINVAL;
6760 		magic = NULL;
6761 		magic_len = 0;
6762 	}
6763 
6764 	if (load_syn) {
6765 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6766 		if (ret < 0)
6767 			return ret;
6768 
6769 		opend = op + ret;
6770 		op += sizeof(struct tcphdr);
6771 	} else {
6772 		if (!bpf_sock->skb ||
6773 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6774 			/* This bpf_sock->op cannot call this helper */
6775 			return -EPERM;
6776 
6777 		opend = bpf_sock->skb_data_end;
6778 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6779 	}
6780 
6781 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6782 				&eol);
6783 	if (IS_ERR(op))
6784 		return PTR_ERR(op);
6785 
6786 	copy_len = op[1];
6787 	ret = copy_len;
6788 	if (copy_len > len) {
6789 		ret = -ENOSPC;
6790 		copy_len = len;
6791 	}
6792 
6793 	memcpy(search_res, op, copy_len);
6794 	return ret;
6795 }
6796 
6797 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6798 	.func		= bpf_sock_ops_load_hdr_opt,
6799 	.gpl_only	= false,
6800 	.ret_type	= RET_INTEGER,
6801 	.arg1_type	= ARG_PTR_TO_CTX,
6802 	.arg2_type	= ARG_PTR_TO_MEM,
6803 	.arg3_type	= ARG_CONST_SIZE,
6804 	.arg4_type	= ARG_ANYTHING,
6805 };
6806 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)6807 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6808 	   const void *, from, u32, len, u64, flags)
6809 {
6810 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6811 	const u8 *op, *new_op, *magic = NULL;
6812 	struct sk_buff *skb;
6813 	bool eol;
6814 
6815 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6816 		return -EPERM;
6817 
6818 	if (len < 2 || flags)
6819 		return -EINVAL;
6820 
6821 	new_op = from;
6822 	new_kind = new_op[0];
6823 	new_kind_len = new_op[1];
6824 
6825 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6826 	    new_kind == TCPOPT_EOL)
6827 		return -EINVAL;
6828 
6829 	if (new_kind_len > bpf_sock->remaining_opt_len)
6830 		return -ENOSPC;
6831 
6832 	/* 253 is another experimental kind */
6833 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6834 		if (new_kind_len < 4)
6835 			return -EINVAL;
6836 		/* Match for the 2 byte magic also.
6837 		 * RFC 6994: the magic could be 2 or 4 bytes.
6838 		 * Hence, matching by 2 byte only is on the
6839 		 * conservative side but it is the right
6840 		 * thing to do for the 'search-for-duplication'
6841 		 * purpose.
6842 		 */
6843 		magic = &new_op[2];
6844 		magic_len = 2;
6845 	}
6846 
6847 	/* Check for duplication */
6848 	skb = bpf_sock->skb;
6849 	op = skb->data + sizeof(struct tcphdr);
6850 	opend = bpf_sock->skb_data_end;
6851 
6852 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6853 				&eol);
6854 	if (!IS_ERR(op))
6855 		return -EEXIST;
6856 
6857 	if (PTR_ERR(op) != -ENOMSG)
6858 		return PTR_ERR(op);
6859 
6860 	if (eol)
6861 		/* The option has been ended.  Treat it as no more
6862 		 * header option can be written.
6863 		 */
6864 		return -ENOSPC;
6865 
6866 	/* No duplication found.  Store the header option. */
6867 	memcpy(opend, from, new_kind_len);
6868 
6869 	bpf_sock->remaining_opt_len -= new_kind_len;
6870 	bpf_sock->skb_data_end += new_kind_len;
6871 
6872 	return 0;
6873 }
6874 
6875 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6876 	.func		= bpf_sock_ops_store_hdr_opt,
6877 	.gpl_only	= false,
6878 	.ret_type	= RET_INTEGER,
6879 	.arg1_type	= ARG_PTR_TO_CTX,
6880 	.arg2_type	= ARG_PTR_TO_MEM,
6881 	.arg3_type	= ARG_CONST_SIZE,
6882 	.arg4_type	= ARG_ANYTHING,
6883 };
6884 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)6885 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6886 	   u32, len, u64, flags)
6887 {
6888 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6889 		return -EPERM;
6890 
6891 	if (flags || len < 2)
6892 		return -EINVAL;
6893 
6894 	if (len > bpf_sock->remaining_opt_len)
6895 		return -ENOSPC;
6896 
6897 	bpf_sock->remaining_opt_len -= len;
6898 
6899 	return 0;
6900 }
6901 
6902 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6903 	.func		= bpf_sock_ops_reserve_hdr_opt,
6904 	.gpl_only	= false,
6905 	.ret_type	= RET_INTEGER,
6906 	.arg1_type	= ARG_PTR_TO_CTX,
6907 	.arg2_type	= ARG_ANYTHING,
6908 	.arg3_type	= ARG_ANYTHING,
6909 };
6910 
6911 #endif /* CONFIG_INET */
6912 
bpf_helper_changes_pkt_data(void * func)6913 bool bpf_helper_changes_pkt_data(void *func)
6914 {
6915 	if (func == bpf_skb_vlan_push ||
6916 	    func == bpf_skb_vlan_pop ||
6917 	    func == bpf_skb_store_bytes ||
6918 	    func == bpf_skb_change_proto ||
6919 	    func == bpf_skb_change_head ||
6920 	    func == sk_skb_change_head ||
6921 	    func == bpf_skb_change_tail ||
6922 	    func == sk_skb_change_tail ||
6923 	    func == bpf_skb_adjust_room ||
6924 	    func == sk_skb_adjust_room ||
6925 	    func == bpf_skb_pull_data ||
6926 	    func == sk_skb_pull_data ||
6927 	    func == bpf_clone_redirect ||
6928 	    func == bpf_l3_csum_replace ||
6929 	    func == bpf_l4_csum_replace ||
6930 	    func == bpf_xdp_adjust_head ||
6931 	    func == bpf_xdp_adjust_meta ||
6932 	    func == bpf_msg_pull_data ||
6933 	    func == bpf_msg_push_data ||
6934 	    func == bpf_msg_pop_data ||
6935 	    func == bpf_xdp_adjust_tail ||
6936 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6937 	    func == bpf_lwt_seg6_store_bytes ||
6938 	    func == bpf_lwt_seg6_adjust_srh ||
6939 	    func == bpf_lwt_seg6_action ||
6940 #endif
6941 #ifdef CONFIG_INET
6942 	    func == bpf_sock_ops_store_hdr_opt ||
6943 #endif
6944 	    func == bpf_lwt_in_push_encap ||
6945 	    func == bpf_lwt_xmit_push_encap)
6946 		return true;
6947 
6948 	return false;
6949 }
6950 
6951 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6952 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6953 
6954 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6955 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6956 {
6957 	switch (func_id) {
6958 	/* inet and inet6 sockets are created in a process
6959 	 * context so there is always a valid uid/gid
6960 	 */
6961 	case BPF_FUNC_get_current_uid_gid:
6962 		return &bpf_get_current_uid_gid_proto;
6963 	case BPF_FUNC_get_local_storage:
6964 		return &bpf_get_local_storage_proto;
6965 	case BPF_FUNC_get_socket_cookie:
6966 		return &bpf_get_socket_cookie_sock_proto;
6967 	case BPF_FUNC_get_netns_cookie:
6968 		return &bpf_get_netns_cookie_sock_proto;
6969 	case BPF_FUNC_perf_event_output:
6970 		return &bpf_event_output_data_proto;
6971 	case BPF_FUNC_get_current_pid_tgid:
6972 		return &bpf_get_current_pid_tgid_proto;
6973 	case BPF_FUNC_get_current_comm:
6974 		return &bpf_get_current_comm_proto;
6975 #ifdef CONFIG_CGROUPS
6976 	case BPF_FUNC_get_current_cgroup_id:
6977 		return &bpf_get_current_cgroup_id_proto;
6978 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6979 		return &bpf_get_current_ancestor_cgroup_id_proto;
6980 #endif
6981 #ifdef CONFIG_CGROUP_NET_CLASSID
6982 	case BPF_FUNC_get_cgroup_classid:
6983 		return &bpf_get_cgroup_classid_curr_proto;
6984 #endif
6985 	case BPF_FUNC_sk_storage_get:
6986 		return &bpf_sk_storage_get_cg_sock_proto;
6987 	default:
6988 		return bpf_base_func_proto(func_id);
6989 	}
6990 }
6991 
6992 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6993 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6994 {
6995 	switch (func_id) {
6996 	/* inet and inet6 sockets are created in a process
6997 	 * context so there is always a valid uid/gid
6998 	 */
6999 	case BPF_FUNC_get_current_uid_gid:
7000 		return &bpf_get_current_uid_gid_proto;
7001 	case BPF_FUNC_bind:
7002 		switch (prog->expected_attach_type) {
7003 		case BPF_CGROUP_INET4_CONNECT:
7004 		case BPF_CGROUP_INET6_CONNECT:
7005 			return &bpf_bind_proto;
7006 		default:
7007 			return NULL;
7008 		}
7009 	case BPF_FUNC_get_socket_cookie:
7010 		return &bpf_get_socket_cookie_sock_addr_proto;
7011 	case BPF_FUNC_get_netns_cookie:
7012 		return &bpf_get_netns_cookie_sock_addr_proto;
7013 	case BPF_FUNC_get_local_storage:
7014 		return &bpf_get_local_storage_proto;
7015 	case BPF_FUNC_perf_event_output:
7016 		return &bpf_event_output_data_proto;
7017 	case BPF_FUNC_get_current_pid_tgid:
7018 		return &bpf_get_current_pid_tgid_proto;
7019 	case BPF_FUNC_get_current_comm:
7020 		return &bpf_get_current_comm_proto;
7021 #ifdef CONFIG_CGROUPS
7022 	case BPF_FUNC_get_current_cgroup_id:
7023 		return &bpf_get_current_cgroup_id_proto;
7024 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7025 		return &bpf_get_current_ancestor_cgroup_id_proto;
7026 #endif
7027 #ifdef CONFIG_CGROUP_NET_CLASSID
7028 	case BPF_FUNC_get_cgroup_classid:
7029 		return &bpf_get_cgroup_classid_curr_proto;
7030 #endif
7031 #ifdef CONFIG_INET
7032 	case BPF_FUNC_sk_lookup_tcp:
7033 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7034 	case BPF_FUNC_sk_lookup_udp:
7035 		return &bpf_sock_addr_sk_lookup_udp_proto;
7036 	case BPF_FUNC_sk_release:
7037 		return &bpf_sk_release_proto;
7038 	case BPF_FUNC_skc_lookup_tcp:
7039 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7040 #endif /* CONFIG_INET */
7041 	case BPF_FUNC_sk_storage_get:
7042 		return &bpf_sk_storage_get_proto;
7043 	case BPF_FUNC_sk_storage_delete:
7044 		return &bpf_sk_storage_delete_proto;
7045 	case BPF_FUNC_setsockopt:
7046 		switch (prog->expected_attach_type) {
7047 		case BPF_CGROUP_INET4_CONNECT:
7048 		case BPF_CGROUP_INET6_CONNECT:
7049 			return &bpf_sock_addr_setsockopt_proto;
7050 		default:
7051 			return NULL;
7052 		}
7053 	case BPF_FUNC_getsockopt:
7054 		switch (prog->expected_attach_type) {
7055 		case BPF_CGROUP_INET4_CONNECT:
7056 		case BPF_CGROUP_INET6_CONNECT:
7057 			return &bpf_sock_addr_getsockopt_proto;
7058 		default:
7059 			return NULL;
7060 		}
7061 	default:
7062 		return bpf_sk_base_func_proto(func_id);
7063 	}
7064 }
7065 
7066 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7067 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7068 {
7069 	switch (func_id) {
7070 	case BPF_FUNC_skb_load_bytes:
7071 		return &bpf_skb_load_bytes_proto;
7072 	case BPF_FUNC_skb_load_bytes_relative:
7073 		return &bpf_skb_load_bytes_relative_proto;
7074 	case BPF_FUNC_get_socket_cookie:
7075 		return &bpf_get_socket_cookie_proto;
7076 	case BPF_FUNC_get_socket_uid:
7077 		return &bpf_get_socket_uid_proto;
7078 	case BPF_FUNC_perf_event_output:
7079 		return &bpf_skb_event_output_proto;
7080 	default:
7081 		return bpf_sk_base_func_proto(func_id);
7082 	}
7083 }
7084 
7085 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7086 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7087 
7088 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7089 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7090 {
7091 	switch (func_id) {
7092 	case BPF_FUNC_get_local_storage:
7093 		return &bpf_get_local_storage_proto;
7094 	case BPF_FUNC_sk_fullsock:
7095 		return &bpf_sk_fullsock_proto;
7096 	case BPF_FUNC_sk_storage_get:
7097 		return &bpf_sk_storage_get_proto;
7098 	case BPF_FUNC_sk_storage_delete:
7099 		return &bpf_sk_storage_delete_proto;
7100 	case BPF_FUNC_perf_event_output:
7101 		return &bpf_skb_event_output_proto;
7102 #ifdef CONFIG_SOCK_CGROUP_DATA
7103 	case BPF_FUNC_skb_cgroup_id:
7104 		return &bpf_skb_cgroup_id_proto;
7105 	case BPF_FUNC_skb_ancestor_cgroup_id:
7106 		return &bpf_skb_ancestor_cgroup_id_proto;
7107 	case BPF_FUNC_sk_cgroup_id:
7108 		return &bpf_sk_cgroup_id_proto;
7109 	case BPF_FUNC_sk_ancestor_cgroup_id:
7110 		return &bpf_sk_ancestor_cgroup_id_proto;
7111 #endif
7112 #ifdef CONFIG_INET
7113 	case BPF_FUNC_sk_lookup_tcp:
7114 		return &bpf_sk_lookup_tcp_proto;
7115 	case BPF_FUNC_sk_lookup_udp:
7116 		return &bpf_sk_lookup_udp_proto;
7117 	case BPF_FUNC_sk_release:
7118 		return &bpf_sk_release_proto;
7119 	case BPF_FUNC_skc_lookup_tcp:
7120 		return &bpf_skc_lookup_tcp_proto;
7121 	case BPF_FUNC_tcp_sock:
7122 		return &bpf_tcp_sock_proto;
7123 	case BPF_FUNC_get_listener_sock:
7124 		return &bpf_get_listener_sock_proto;
7125 	case BPF_FUNC_skb_ecn_set_ce:
7126 		return &bpf_skb_ecn_set_ce_proto;
7127 #endif
7128 	default:
7129 		return sk_filter_func_proto(func_id, prog);
7130 	}
7131 }
7132 
7133 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7134 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7135 {
7136 	switch (func_id) {
7137 	case BPF_FUNC_skb_store_bytes:
7138 		return &bpf_skb_store_bytes_proto;
7139 	case BPF_FUNC_skb_load_bytes:
7140 		return &bpf_skb_load_bytes_proto;
7141 	case BPF_FUNC_skb_load_bytes_relative:
7142 		return &bpf_skb_load_bytes_relative_proto;
7143 	case BPF_FUNC_skb_pull_data:
7144 		return &bpf_skb_pull_data_proto;
7145 	case BPF_FUNC_csum_diff:
7146 		return &bpf_csum_diff_proto;
7147 	case BPF_FUNC_csum_update:
7148 		return &bpf_csum_update_proto;
7149 	case BPF_FUNC_csum_level:
7150 		return &bpf_csum_level_proto;
7151 	case BPF_FUNC_l3_csum_replace:
7152 		return &bpf_l3_csum_replace_proto;
7153 	case BPF_FUNC_l4_csum_replace:
7154 		return &bpf_l4_csum_replace_proto;
7155 	case BPF_FUNC_clone_redirect:
7156 		return &bpf_clone_redirect_proto;
7157 	case BPF_FUNC_get_cgroup_classid:
7158 		return &bpf_get_cgroup_classid_proto;
7159 	case BPF_FUNC_skb_vlan_push:
7160 		return &bpf_skb_vlan_push_proto;
7161 	case BPF_FUNC_skb_vlan_pop:
7162 		return &bpf_skb_vlan_pop_proto;
7163 	case BPF_FUNC_skb_change_proto:
7164 		return &bpf_skb_change_proto_proto;
7165 	case BPF_FUNC_skb_change_type:
7166 		return &bpf_skb_change_type_proto;
7167 	case BPF_FUNC_skb_adjust_room:
7168 		return &bpf_skb_adjust_room_proto;
7169 	case BPF_FUNC_skb_change_tail:
7170 		return &bpf_skb_change_tail_proto;
7171 	case BPF_FUNC_skb_change_head:
7172 		return &bpf_skb_change_head_proto;
7173 	case BPF_FUNC_skb_get_tunnel_key:
7174 		return &bpf_skb_get_tunnel_key_proto;
7175 	case BPF_FUNC_skb_set_tunnel_key:
7176 		return bpf_get_skb_set_tunnel_proto(func_id);
7177 	case BPF_FUNC_skb_get_tunnel_opt:
7178 		return &bpf_skb_get_tunnel_opt_proto;
7179 	case BPF_FUNC_skb_set_tunnel_opt:
7180 		return bpf_get_skb_set_tunnel_proto(func_id);
7181 	case BPF_FUNC_redirect:
7182 		return &bpf_redirect_proto;
7183 	case BPF_FUNC_redirect_neigh:
7184 		return &bpf_redirect_neigh_proto;
7185 	case BPF_FUNC_redirect_peer:
7186 		return &bpf_redirect_peer_proto;
7187 	case BPF_FUNC_get_route_realm:
7188 		return &bpf_get_route_realm_proto;
7189 	case BPF_FUNC_get_hash_recalc:
7190 		return &bpf_get_hash_recalc_proto;
7191 	case BPF_FUNC_set_hash_invalid:
7192 		return &bpf_set_hash_invalid_proto;
7193 	case BPF_FUNC_set_hash:
7194 		return &bpf_set_hash_proto;
7195 	case BPF_FUNC_perf_event_output:
7196 		return &bpf_skb_event_output_proto;
7197 	case BPF_FUNC_get_smp_processor_id:
7198 		return &bpf_get_smp_processor_id_proto;
7199 	case BPF_FUNC_skb_under_cgroup:
7200 		return &bpf_skb_under_cgroup_proto;
7201 	case BPF_FUNC_get_socket_cookie:
7202 		return &bpf_get_socket_cookie_proto;
7203 	case BPF_FUNC_get_socket_uid:
7204 		return &bpf_get_socket_uid_proto;
7205 	case BPF_FUNC_fib_lookup:
7206 		return &bpf_skb_fib_lookup_proto;
7207 	case BPF_FUNC_sk_fullsock:
7208 		return &bpf_sk_fullsock_proto;
7209 	case BPF_FUNC_sk_storage_get:
7210 		return &bpf_sk_storage_get_proto;
7211 	case BPF_FUNC_sk_storage_delete:
7212 		return &bpf_sk_storage_delete_proto;
7213 #ifdef CONFIG_XFRM
7214 	case BPF_FUNC_skb_get_xfrm_state:
7215 		return &bpf_skb_get_xfrm_state_proto;
7216 #endif
7217 #ifdef CONFIG_CGROUP_NET_CLASSID
7218 	case BPF_FUNC_skb_cgroup_classid:
7219 		return &bpf_skb_cgroup_classid_proto;
7220 #endif
7221 #ifdef CONFIG_SOCK_CGROUP_DATA
7222 	case BPF_FUNC_skb_cgroup_id:
7223 		return &bpf_skb_cgroup_id_proto;
7224 	case BPF_FUNC_skb_ancestor_cgroup_id:
7225 		return &bpf_skb_ancestor_cgroup_id_proto;
7226 #endif
7227 #ifdef CONFIG_INET
7228 	case BPF_FUNC_sk_lookup_tcp:
7229 		return &bpf_sk_lookup_tcp_proto;
7230 	case BPF_FUNC_sk_lookup_udp:
7231 		return &bpf_sk_lookup_udp_proto;
7232 	case BPF_FUNC_sk_release:
7233 		return &bpf_sk_release_proto;
7234 	case BPF_FUNC_tcp_sock:
7235 		return &bpf_tcp_sock_proto;
7236 	case BPF_FUNC_get_listener_sock:
7237 		return &bpf_get_listener_sock_proto;
7238 	case BPF_FUNC_skc_lookup_tcp:
7239 		return &bpf_skc_lookup_tcp_proto;
7240 	case BPF_FUNC_tcp_check_syncookie:
7241 		return &bpf_tcp_check_syncookie_proto;
7242 	case BPF_FUNC_skb_ecn_set_ce:
7243 		return &bpf_skb_ecn_set_ce_proto;
7244 	case BPF_FUNC_tcp_gen_syncookie:
7245 		return &bpf_tcp_gen_syncookie_proto;
7246 	case BPF_FUNC_sk_assign:
7247 		return &bpf_sk_assign_proto;
7248 #endif
7249 	default:
7250 		return bpf_sk_base_func_proto(func_id);
7251 	}
7252 }
7253 
7254 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7255 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7256 {
7257 	switch (func_id) {
7258 	case BPF_FUNC_perf_event_output:
7259 		return &bpf_xdp_event_output_proto;
7260 	case BPF_FUNC_get_smp_processor_id:
7261 		return &bpf_get_smp_processor_id_proto;
7262 	case BPF_FUNC_csum_diff:
7263 		return &bpf_csum_diff_proto;
7264 	case BPF_FUNC_xdp_adjust_head:
7265 		return &bpf_xdp_adjust_head_proto;
7266 	case BPF_FUNC_xdp_adjust_meta:
7267 		return &bpf_xdp_adjust_meta_proto;
7268 	case BPF_FUNC_redirect:
7269 		return &bpf_xdp_redirect_proto;
7270 	case BPF_FUNC_redirect_map:
7271 		return &bpf_xdp_redirect_map_proto;
7272 	case BPF_FUNC_xdp_adjust_tail:
7273 		return &bpf_xdp_adjust_tail_proto;
7274 	case BPF_FUNC_fib_lookup:
7275 		return &bpf_xdp_fib_lookup_proto;
7276 #ifdef CONFIG_INET
7277 	case BPF_FUNC_sk_lookup_udp:
7278 		return &bpf_xdp_sk_lookup_udp_proto;
7279 	case BPF_FUNC_sk_lookup_tcp:
7280 		return &bpf_xdp_sk_lookup_tcp_proto;
7281 	case BPF_FUNC_sk_release:
7282 		return &bpf_sk_release_proto;
7283 	case BPF_FUNC_skc_lookup_tcp:
7284 		return &bpf_xdp_skc_lookup_tcp_proto;
7285 	case BPF_FUNC_tcp_check_syncookie:
7286 		return &bpf_tcp_check_syncookie_proto;
7287 	case BPF_FUNC_tcp_gen_syncookie:
7288 		return &bpf_tcp_gen_syncookie_proto;
7289 #endif
7290 	default:
7291 		return bpf_sk_base_func_proto(func_id);
7292 	}
7293 }
7294 
7295 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7296 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7297 
7298 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7299 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7300 {
7301 	switch (func_id) {
7302 	case BPF_FUNC_setsockopt:
7303 		return &bpf_sock_ops_setsockopt_proto;
7304 	case BPF_FUNC_getsockopt:
7305 		return &bpf_sock_ops_getsockopt_proto;
7306 	case BPF_FUNC_sock_ops_cb_flags_set:
7307 		return &bpf_sock_ops_cb_flags_set_proto;
7308 	case BPF_FUNC_sock_map_update:
7309 		return &bpf_sock_map_update_proto;
7310 	case BPF_FUNC_sock_hash_update:
7311 		return &bpf_sock_hash_update_proto;
7312 	case BPF_FUNC_get_socket_cookie:
7313 		return &bpf_get_socket_cookie_sock_ops_proto;
7314 	case BPF_FUNC_get_local_storage:
7315 		return &bpf_get_local_storage_proto;
7316 	case BPF_FUNC_perf_event_output:
7317 		return &bpf_event_output_data_proto;
7318 	case BPF_FUNC_sk_storage_get:
7319 		return &bpf_sk_storage_get_proto;
7320 	case BPF_FUNC_sk_storage_delete:
7321 		return &bpf_sk_storage_delete_proto;
7322 #ifdef CONFIG_INET
7323 	case BPF_FUNC_load_hdr_opt:
7324 		return &bpf_sock_ops_load_hdr_opt_proto;
7325 	case BPF_FUNC_store_hdr_opt:
7326 		return &bpf_sock_ops_store_hdr_opt_proto;
7327 	case BPF_FUNC_reserve_hdr_opt:
7328 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7329 	case BPF_FUNC_tcp_sock:
7330 		return &bpf_tcp_sock_proto;
7331 #endif /* CONFIG_INET */
7332 	default:
7333 		return bpf_sk_base_func_proto(func_id);
7334 	}
7335 }
7336 
7337 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7338 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7339 
7340 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7341 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7342 {
7343 	switch (func_id) {
7344 	case BPF_FUNC_msg_redirect_map:
7345 		return &bpf_msg_redirect_map_proto;
7346 	case BPF_FUNC_msg_redirect_hash:
7347 		return &bpf_msg_redirect_hash_proto;
7348 	case BPF_FUNC_msg_apply_bytes:
7349 		return &bpf_msg_apply_bytes_proto;
7350 	case BPF_FUNC_msg_cork_bytes:
7351 		return &bpf_msg_cork_bytes_proto;
7352 	case BPF_FUNC_msg_pull_data:
7353 		return &bpf_msg_pull_data_proto;
7354 	case BPF_FUNC_msg_push_data:
7355 		return &bpf_msg_push_data_proto;
7356 	case BPF_FUNC_msg_pop_data:
7357 		return &bpf_msg_pop_data_proto;
7358 	case BPF_FUNC_perf_event_output:
7359 		return &bpf_event_output_data_proto;
7360 	case BPF_FUNC_get_current_uid_gid:
7361 		return &bpf_get_current_uid_gid_proto;
7362 	case BPF_FUNC_get_current_pid_tgid:
7363 		return &bpf_get_current_pid_tgid_proto;
7364 	case BPF_FUNC_sk_storage_get:
7365 		return &bpf_sk_storage_get_proto;
7366 	case BPF_FUNC_sk_storage_delete:
7367 		return &bpf_sk_storage_delete_proto;
7368 #ifdef CONFIG_CGROUPS
7369 	case BPF_FUNC_get_current_cgroup_id:
7370 		return &bpf_get_current_cgroup_id_proto;
7371 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7372 		return &bpf_get_current_ancestor_cgroup_id_proto;
7373 #endif
7374 #ifdef CONFIG_CGROUP_NET_CLASSID
7375 	case BPF_FUNC_get_cgroup_classid:
7376 		return &bpf_get_cgroup_classid_curr_proto;
7377 #endif
7378 	default:
7379 		return bpf_sk_base_func_proto(func_id);
7380 	}
7381 }
7382 
7383 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7384 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7385 
7386 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7387 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7388 {
7389 	switch (func_id) {
7390 	case BPF_FUNC_skb_store_bytes:
7391 		return &bpf_skb_store_bytes_proto;
7392 	case BPF_FUNC_skb_load_bytes:
7393 		return &bpf_skb_load_bytes_proto;
7394 	case BPF_FUNC_skb_pull_data:
7395 		return &sk_skb_pull_data_proto;
7396 	case BPF_FUNC_skb_change_tail:
7397 		return &sk_skb_change_tail_proto;
7398 	case BPF_FUNC_skb_change_head:
7399 		return &sk_skb_change_head_proto;
7400 	case BPF_FUNC_skb_adjust_room:
7401 		return &sk_skb_adjust_room_proto;
7402 	case BPF_FUNC_get_socket_cookie:
7403 		return &bpf_get_socket_cookie_proto;
7404 	case BPF_FUNC_get_socket_uid:
7405 		return &bpf_get_socket_uid_proto;
7406 	case BPF_FUNC_sk_redirect_map:
7407 		return &bpf_sk_redirect_map_proto;
7408 	case BPF_FUNC_sk_redirect_hash:
7409 		return &bpf_sk_redirect_hash_proto;
7410 	case BPF_FUNC_perf_event_output:
7411 		return &bpf_skb_event_output_proto;
7412 #ifdef CONFIG_INET
7413 	case BPF_FUNC_sk_lookup_tcp:
7414 		return &bpf_sk_lookup_tcp_proto;
7415 	case BPF_FUNC_sk_lookup_udp:
7416 		return &bpf_sk_lookup_udp_proto;
7417 	case BPF_FUNC_sk_release:
7418 		return &bpf_sk_release_proto;
7419 	case BPF_FUNC_skc_lookup_tcp:
7420 		return &bpf_skc_lookup_tcp_proto;
7421 #endif
7422 	default:
7423 		return bpf_sk_base_func_proto(func_id);
7424 	}
7425 }
7426 
7427 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7428 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7429 {
7430 	switch (func_id) {
7431 	case BPF_FUNC_skb_load_bytes:
7432 		return &bpf_flow_dissector_load_bytes_proto;
7433 	default:
7434 		return bpf_sk_base_func_proto(func_id);
7435 	}
7436 }
7437 
7438 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7439 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7440 {
7441 	switch (func_id) {
7442 	case BPF_FUNC_skb_load_bytes:
7443 		return &bpf_skb_load_bytes_proto;
7444 	case BPF_FUNC_skb_pull_data:
7445 		return &bpf_skb_pull_data_proto;
7446 	case BPF_FUNC_csum_diff:
7447 		return &bpf_csum_diff_proto;
7448 	case BPF_FUNC_get_cgroup_classid:
7449 		return &bpf_get_cgroup_classid_proto;
7450 	case BPF_FUNC_get_route_realm:
7451 		return &bpf_get_route_realm_proto;
7452 	case BPF_FUNC_get_hash_recalc:
7453 		return &bpf_get_hash_recalc_proto;
7454 	case BPF_FUNC_perf_event_output:
7455 		return &bpf_skb_event_output_proto;
7456 	case BPF_FUNC_get_smp_processor_id:
7457 		return &bpf_get_smp_processor_id_proto;
7458 	case BPF_FUNC_skb_under_cgroup:
7459 		return &bpf_skb_under_cgroup_proto;
7460 	default:
7461 		return bpf_sk_base_func_proto(func_id);
7462 	}
7463 }
7464 
7465 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7466 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7467 {
7468 	switch (func_id) {
7469 	case BPF_FUNC_lwt_push_encap:
7470 		return &bpf_lwt_in_push_encap_proto;
7471 	default:
7472 		return lwt_out_func_proto(func_id, prog);
7473 	}
7474 }
7475 
7476 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7477 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7478 {
7479 	switch (func_id) {
7480 	case BPF_FUNC_skb_get_tunnel_key:
7481 		return &bpf_skb_get_tunnel_key_proto;
7482 	case BPF_FUNC_skb_set_tunnel_key:
7483 		return bpf_get_skb_set_tunnel_proto(func_id);
7484 	case BPF_FUNC_skb_get_tunnel_opt:
7485 		return &bpf_skb_get_tunnel_opt_proto;
7486 	case BPF_FUNC_skb_set_tunnel_opt:
7487 		return bpf_get_skb_set_tunnel_proto(func_id);
7488 	case BPF_FUNC_redirect:
7489 		return &bpf_redirect_proto;
7490 	case BPF_FUNC_clone_redirect:
7491 		return &bpf_clone_redirect_proto;
7492 	case BPF_FUNC_skb_change_tail:
7493 		return &bpf_skb_change_tail_proto;
7494 	case BPF_FUNC_skb_change_head:
7495 		return &bpf_skb_change_head_proto;
7496 	case BPF_FUNC_skb_store_bytes:
7497 		return &bpf_skb_store_bytes_proto;
7498 	case BPF_FUNC_csum_update:
7499 		return &bpf_csum_update_proto;
7500 	case BPF_FUNC_csum_level:
7501 		return &bpf_csum_level_proto;
7502 	case BPF_FUNC_l3_csum_replace:
7503 		return &bpf_l3_csum_replace_proto;
7504 	case BPF_FUNC_l4_csum_replace:
7505 		return &bpf_l4_csum_replace_proto;
7506 	case BPF_FUNC_set_hash_invalid:
7507 		return &bpf_set_hash_invalid_proto;
7508 	case BPF_FUNC_lwt_push_encap:
7509 		return &bpf_lwt_xmit_push_encap_proto;
7510 	default:
7511 		return lwt_out_func_proto(func_id, prog);
7512 	}
7513 }
7514 
7515 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7516 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7517 {
7518 	switch (func_id) {
7519 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7520 	case BPF_FUNC_lwt_seg6_store_bytes:
7521 		return &bpf_lwt_seg6_store_bytes_proto;
7522 	case BPF_FUNC_lwt_seg6_action:
7523 		return &bpf_lwt_seg6_action_proto;
7524 	case BPF_FUNC_lwt_seg6_adjust_srh:
7525 		return &bpf_lwt_seg6_adjust_srh_proto;
7526 #endif
7527 	default:
7528 		return lwt_out_func_proto(func_id, prog);
7529 	}
7530 }
7531 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7532 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7533 				    const struct bpf_prog *prog,
7534 				    struct bpf_insn_access_aux *info)
7535 {
7536 	const int size_default = sizeof(__u32);
7537 
7538 	if (off < 0 || off >= sizeof(struct __sk_buff))
7539 		return false;
7540 
7541 	/* The verifier guarantees that size > 0. */
7542 	if (off % size != 0)
7543 		return false;
7544 
7545 	switch (off) {
7546 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7547 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7548 			return false;
7549 		break;
7550 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7551 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7552 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7553 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7554 	case bpf_ctx_range(struct __sk_buff, data):
7555 	case bpf_ctx_range(struct __sk_buff, data_meta):
7556 	case bpf_ctx_range(struct __sk_buff, data_end):
7557 		if (size != size_default)
7558 			return false;
7559 		break;
7560 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7561 		return false;
7562 	case bpf_ctx_range(struct __sk_buff, tstamp):
7563 		if (size != sizeof(__u64))
7564 			return false;
7565 		break;
7566 	case offsetof(struct __sk_buff, sk):
7567 		if (type == BPF_WRITE || size != sizeof(__u64))
7568 			return false;
7569 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7570 		break;
7571 	default:
7572 		/* Only narrow read access allowed for now. */
7573 		if (type == BPF_WRITE) {
7574 			if (size != size_default)
7575 				return false;
7576 		} else {
7577 			bpf_ctx_record_field_size(info, size_default);
7578 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7579 				return false;
7580 		}
7581 	}
7582 
7583 	return true;
7584 }
7585 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7586 static bool sk_filter_is_valid_access(int off, int size,
7587 				      enum bpf_access_type type,
7588 				      const struct bpf_prog *prog,
7589 				      struct bpf_insn_access_aux *info)
7590 {
7591 	switch (off) {
7592 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7593 	case bpf_ctx_range(struct __sk_buff, data):
7594 	case bpf_ctx_range(struct __sk_buff, data_meta):
7595 	case bpf_ctx_range(struct __sk_buff, data_end):
7596 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7597 	case bpf_ctx_range(struct __sk_buff, tstamp):
7598 	case bpf_ctx_range(struct __sk_buff, wire_len):
7599 		return false;
7600 	}
7601 
7602 	if (type == BPF_WRITE) {
7603 		switch (off) {
7604 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7605 			break;
7606 		default:
7607 			return false;
7608 		}
7609 	}
7610 
7611 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7612 }
7613 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7614 static bool cg_skb_is_valid_access(int off, int size,
7615 				   enum bpf_access_type type,
7616 				   const struct bpf_prog *prog,
7617 				   struct bpf_insn_access_aux *info)
7618 {
7619 	switch (off) {
7620 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7621 	case bpf_ctx_range(struct __sk_buff, data_meta):
7622 	case bpf_ctx_range(struct __sk_buff, wire_len):
7623 		return false;
7624 	case bpf_ctx_range(struct __sk_buff, data):
7625 	case bpf_ctx_range(struct __sk_buff, data_end):
7626 		if (!bpf_capable())
7627 			return false;
7628 		break;
7629 	}
7630 
7631 	if (type == BPF_WRITE) {
7632 		switch (off) {
7633 		case bpf_ctx_range(struct __sk_buff, mark):
7634 		case bpf_ctx_range(struct __sk_buff, priority):
7635 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7636 			break;
7637 		case bpf_ctx_range(struct __sk_buff, tstamp):
7638 			if (!bpf_capable())
7639 				return false;
7640 			break;
7641 		default:
7642 			return false;
7643 		}
7644 	}
7645 
7646 	switch (off) {
7647 	case bpf_ctx_range(struct __sk_buff, data):
7648 		info->reg_type = PTR_TO_PACKET;
7649 		break;
7650 	case bpf_ctx_range(struct __sk_buff, data_end):
7651 		info->reg_type = PTR_TO_PACKET_END;
7652 		break;
7653 	}
7654 
7655 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7656 }
7657 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7658 static bool lwt_is_valid_access(int off, int size,
7659 				enum bpf_access_type type,
7660 				const struct bpf_prog *prog,
7661 				struct bpf_insn_access_aux *info)
7662 {
7663 	switch (off) {
7664 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7665 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7666 	case bpf_ctx_range(struct __sk_buff, data_meta):
7667 	case bpf_ctx_range(struct __sk_buff, tstamp):
7668 	case bpf_ctx_range(struct __sk_buff, wire_len):
7669 		return false;
7670 	}
7671 
7672 	if (type == BPF_WRITE) {
7673 		switch (off) {
7674 		case bpf_ctx_range(struct __sk_buff, mark):
7675 		case bpf_ctx_range(struct __sk_buff, priority):
7676 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7677 			break;
7678 		default:
7679 			return false;
7680 		}
7681 	}
7682 
7683 	switch (off) {
7684 	case bpf_ctx_range(struct __sk_buff, data):
7685 		info->reg_type = PTR_TO_PACKET;
7686 		break;
7687 	case bpf_ctx_range(struct __sk_buff, data_end):
7688 		info->reg_type = PTR_TO_PACKET_END;
7689 		break;
7690 	}
7691 
7692 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7693 }
7694 
7695 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)7696 static bool __sock_filter_check_attach_type(int off,
7697 					    enum bpf_access_type access_type,
7698 					    enum bpf_attach_type attach_type)
7699 {
7700 	switch (off) {
7701 	case offsetof(struct bpf_sock, bound_dev_if):
7702 	case offsetof(struct bpf_sock, mark):
7703 	case offsetof(struct bpf_sock, priority):
7704 		switch (attach_type) {
7705 		case BPF_CGROUP_INET_SOCK_CREATE:
7706 		case BPF_CGROUP_INET_SOCK_RELEASE:
7707 			goto full_access;
7708 		default:
7709 			return false;
7710 		}
7711 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7712 		switch (attach_type) {
7713 		case BPF_CGROUP_INET4_POST_BIND:
7714 			goto read_only;
7715 		default:
7716 			return false;
7717 		}
7718 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7719 		switch (attach_type) {
7720 		case BPF_CGROUP_INET6_POST_BIND:
7721 			goto read_only;
7722 		default:
7723 			return false;
7724 		}
7725 	case bpf_ctx_range(struct bpf_sock, src_port):
7726 		switch (attach_type) {
7727 		case BPF_CGROUP_INET4_POST_BIND:
7728 		case BPF_CGROUP_INET6_POST_BIND:
7729 			goto read_only;
7730 		default:
7731 			return false;
7732 		}
7733 	}
7734 read_only:
7735 	return access_type == BPF_READ;
7736 full_access:
7737 	return true;
7738 }
7739 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7740 bool bpf_sock_common_is_valid_access(int off, int size,
7741 				     enum bpf_access_type type,
7742 				     struct bpf_insn_access_aux *info)
7743 {
7744 	switch (off) {
7745 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7746 		return false;
7747 	default:
7748 		return bpf_sock_is_valid_access(off, size, type, info);
7749 	}
7750 }
7751 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7752 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7753 			      struct bpf_insn_access_aux *info)
7754 {
7755 	const int size_default = sizeof(__u32);
7756 	int field_size;
7757 
7758 	if (off < 0 || off >= sizeof(struct bpf_sock))
7759 		return false;
7760 	if (off % size != 0)
7761 		return false;
7762 
7763 	switch (off) {
7764 	case offsetof(struct bpf_sock, state):
7765 	case offsetof(struct bpf_sock, family):
7766 	case offsetof(struct bpf_sock, type):
7767 	case offsetof(struct bpf_sock, protocol):
7768 	case offsetof(struct bpf_sock, src_port):
7769 	case offsetof(struct bpf_sock, rx_queue_mapping):
7770 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7771 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7772 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7773 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7774 		bpf_ctx_record_field_size(info, size_default);
7775 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7776 	case bpf_ctx_range(struct bpf_sock, dst_port):
7777 		field_size = size == size_default ?
7778 			size_default : sizeof_field(struct bpf_sock, dst_port);
7779 		bpf_ctx_record_field_size(info, field_size);
7780 		return bpf_ctx_narrow_access_ok(off, size, field_size);
7781 	case offsetofend(struct bpf_sock, dst_port) ...
7782 	     offsetof(struct bpf_sock, dst_ip4) - 1:
7783 		return false;
7784 	}
7785 
7786 	return size == size_default;
7787 }
7788 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7789 static bool sock_filter_is_valid_access(int off, int size,
7790 					enum bpf_access_type type,
7791 					const struct bpf_prog *prog,
7792 					struct bpf_insn_access_aux *info)
7793 {
7794 	if (!bpf_sock_is_valid_access(off, size, type, info))
7795 		return false;
7796 	return __sock_filter_check_attach_type(off, type,
7797 					       prog->expected_attach_type);
7798 }
7799 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7800 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7801 			     const struct bpf_prog *prog)
7802 {
7803 	/* Neither direct read nor direct write requires any preliminary
7804 	 * action.
7805 	 */
7806 	return 0;
7807 }
7808 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)7809 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7810 				const struct bpf_prog *prog, int drop_verdict)
7811 {
7812 	struct bpf_insn *insn = insn_buf;
7813 
7814 	if (!direct_write)
7815 		return 0;
7816 
7817 	/* if (!skb->cloned)
7818 	 *       goto start;
7819 	 *
7820 	 * (Fast-path, otherwise approximation that we might be
7821 	 *  a clone, do the rest in helper.)
7822 	 */
7823 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7824 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7825 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7826 
7827 	/* ret = bpf_skb_pull_data(skb, 0); */
7828 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7829 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7830 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7831 			       BPF_FUNC_skb_pull_data);
7832 	/* if (!ret)
7833 	 *      goto restore;
7834 	 * return TC_ACT_SHOT;
7835 	 */
7836 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7837 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7838 	*insn++ = BPF_EXIT_INSN();
7839 
7840 	/* restore: */
7841 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7842 	/* start: */
7843 	*insn++ = prog->insnsi[0];
7844 
7845 	return insn - insn_buf;
7846 }
7847 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)7848 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7849 			  struct bpf_insn *insn_buf)
7850 {
7851 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7852 	struct bpf_insn *insn = insn_buf;
7853 
7854 	if (!indirect) {
7855 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7856 	} else {
7857 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7858 		if (orig->imm)
7859 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7860 	}
7861 	/* We're guaranteed here that CTX is in R6. */
7862 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7863 
7864 	switch (BPF_SIZE(orig->code)) {
7865 	case BPF_B:
7866 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7867 		break;
7868 	case BPF_H:
7869 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7870 		break;
7871 	case BPF_W:
7872 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7873 		break;
7874 	}
7875 
7876 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7877 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7878 	*insn++ = BPF_EXIT_INSN();
7879 
7880 	return insn - insn_buf;
7881 }
7882 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7883 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7884 			       const struct bpf_prog *prog)
7885 {
7886 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7887 }
7888 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7889 static bool tc_cls_act_is_valid_access(int off, int size,
7890 				       enum bpf_access_type type,
7891 				       const struct bpf_prog *prog,
7892 				       struct bpf_insn_access_aux *info)
7893 {
7894 	if (type == BPF_WRITE) {
7895 		switch (off) {
7896 		case bpf_ctx_range(struct __sk_buff, mark):
7897 		case bpf_ctx_range(struct __sk_buff, tc_index):
7898 		case bpf_ctx_range(struct __sk_buff, priority):
7899 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7900 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7901 		case bpf_ctx_range(struct __sk_buff, tstamp):
7902 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7903 			break;
7904 		default:
7905 			return false;
7906 		}
7907 	}
7908 
7909 	switch (off) {
7910 	case bpf_ctx_range(struct __sk_buff, data):
7911 		info->reg_type = PTR_TO_PACKET;
7912 		break;
7913 	case bpf_ctx_range(struct __sk_buff, data_meta):
7914 		info->reg_type = PTR_TO_PACKET_META;
7915 		break;
7916 	case bpf_ctx_range(struct __sk_buff, data_end):
7917 		info->reg_type = PTR_TO_PACKET_END;
7918 		break;
7919 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7920 		return false;
7921 	}
7922 
7923 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7924 }
7925 
__is_valid_xdp_access(int off,int size)7926 static bool __is_valid_xdp_access(int off, int size)
7927 {
7928 	if (off < 0 || off >= sizeof(struct xdp_md))
7929 		return false;
7930 	if (off % size != 0)
7931 		return false;
7932 	if (size != sizeof(__u32))
7933 		return false;
7934 
7935 	return true;
7936 }
7937 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7938 static bool xdp_is_valid_access(int off, int size,
7939 				enum bpf_access_type type,
7940 				const struct bpf_prog *prog,
7941 				struct bpf_insn_access_aux *info)
7942 {
7943 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7944 		switch (off) {
7945 		case offsetof(struct xdp_md, egress_ifindex):
7946 			return false;
7947 		}
7948 	}
7949 
7950 	if (type == BPF_WRITE) {
7951 		if (bpf_prog_is_dev_bound(prog->aux)) {
7952 			switch (off) {
7953 			case offsetof(struct xdp_md, rx_queue_index):
7954 				return __is_valid_xdp_access(off, size);
7955 			}
7956 		}
7957 		return false;
7958 	}
7959 
7960 	switch (off) {
7961 	case offsetof(struct xdp_md, data):
7962 		info->reg_type = PTR_TO_PACKET;
7963 		break;
7964 	case offsetof(struct xdp_md, data_meta):
7965 		info->reg_type = PTR_TO_PACKET_META;
7966 		break;
7967 	case offsetof(struct xdp_md, data_end):
7968 		info->reg_type = PTR_TO_PACKET_END;
7969 		break;
7970 	}
7971 
7972 	return __is_valid_xdp_access(off, size);
7973 }
7974 
bpf_warn_invalid_xdp_action(u32 act)7975 void bpf_warn_invalid_xdp_action(u32 act)
7976 {
7977 	const u32 act_max = XDP_REDIRECT;
7978 
7979 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
7980 		     act > act_max ? "Illegal" : "Driver unsupported",
7981 		     act);
7982 }
7983 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7984 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7985 static bool sock_addr_is_valid_access(int off, int size,
7986 				      enum bpf_access_type type,
7987 				      const struct bpf_prog *prog,
7988 				      struct bpf_insn_access_aux *info)
7989 {
7990 	const int size_default = sizeof(__u32);
7991 
7992 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7993 		return false;
7994 	if (off % size != 0)
7995 		return false;
7996 
7997 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7998 	 * versa.
7999 	 */
8000 	switch (off) {
8001 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8002 		switch (prog->expected_attach_type) {
8003 		case BPF_CGROUP_INET4_BIND:
8004 		case BPF_CGROUP_INET4_CONNECT:
8005 		case BPF_CGROUP_INET4_GETPEERNAME:
8006 		case BPF_CGROUP_INET4_GETSOCKNAME:
8007 		case BPF_CGROUP_UDP4_SENDMSG:
8008 		case BPF_CGROUP_UDP4_RECVMSG:
8009 			break;
8010 		default:
8011 			return false;
8012 		}
8013 		break;
8014 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8015 		switch (prog->expected_attach_type) {
8016 		case BPF_CGROUP_INET6_BIND:
8017 		case BPF_CGROUP_INET6_CONNECT:
8018 		case BPF_CGROUP_INET6_GETPEERNAME:
8019 		case BPF_CGROUP_INET6_GETSOCKNAME:
8020 		case BPF_CGROUP_UDP6_SENDMSG:
8021 		case BPF_CGROUP_UDP6_RECVMSG:
8022 			break;
8023 		default:
8024 			return false;
8025 		}
8026 		break;
8027 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8028 		switch (prog->expected_attach_type) {
8029 		case BPF_CGROUP_UDP4_SENDMSG:
8030 			break;
8031 		default:
8032 			return false;
8033 		}
8034 		break;
8035 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8036 				msg_src_ip6[3]):
8037 		switch (prog->expected_attach_type) {
8038 		case BPF_CGROUP_UDP6_SENDMSG:
8039 			break;
8040 		default:
8041 			return false;
8042 		}
8043 		break;
8044 	}
8045 
8046 	switch (off) {
8047 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8048 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8049 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8050 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8051 				msg_src_ip6[3]):
8052 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8053 		if (type == BPF_READ) {
8054 			bpf_ctx_record_field_size(info, size_default);
8055 
8056 			if (bpf_ctx_wide_access_ok(off, size,
8057 						   struct bpf_sock_addr,
8058 						   user_ip6))
8059 				return true;
8060 
8061 			if (bpf_ctx_wide_access_ok(off, size,
8062 						   struct bpf_sock_addr,
8063 						   msg_src_ip6))
8064 				return true;
8065 
8066 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8067 				return false;
8068 		} else {
8069 			if (bpf_ctx_wide_access_ok(off, size,
8070 						   struct bpf_sock_addr,
8071 						   user_ip6))
8072 				return true;
8073 
8074 			if (bpf_ctx_wide_access_ok(off, size,
8075 						   struct bpf_sock_addr,
8076 						   msg_src_ip6))
8077 				return true;
8078 
8079 			if (size != size_default)
8080 				return false;
8081 		}
8082 		break;
8083 	case offsetof(struct bpf_sock_addr, sk):
8084 		if (type != BPF_READ)
8085 			return false;
8086 		if (size != sizeof(__u64))
8087 			return false;
8088 		info->reg_type = PTR_TO_SOCKET;
8089 		break;
8090 	default:
8091 		if (type == BPF_READ) {
8092 			if (size != size_default)
8093 				return false;
8094 		} else {
8095 			return false;
8096 		}
8097 	}
8098 
8099 	return true;
8100 }
8101 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8102 static bool sock_ops_is_valid_access(int off, int size,
8103 				     enum bpf_access_type type,
8104 				     const struct bpf_prog *prog,
8105 				     struct bpf_insn_access_aux *info)
8106 {
8107 	const int size_default = sizeof(__u32);
8108 
8109 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8110 		return false;
8111 
8112 	/* The verifier guarantees that size > 0. */
8113 	if (off % size != 0)
8114 		return false;
8115 
8116 	if (type == BPF_WRITE) {
8117 		switch (off) {
8118 		case offsetof(struct bpf_sock_ops, reply):
8119 		case offsetof(struct bpf_sock_ops, sk_txhash):
8120 			if (size != size_default)
8121 				return false;
8122 			break;
8123 		default:
8124 			return false;
8125 		}
8126 	} else {
8127 		switch (off) {
8128 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8129 					bytes_acked):
8130 			if (size != sizeof(__u64))
8131 				return false;
8132 			break;
8133 		case offsetof(struct bpf_sock_ops, sk):
8134 			if (size != sizeof(__u64))
8135 				return false;
8136 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8137 			break;
8138 		case offsetof(struct bpf_sock_ops, skb_data):
8139 			if (size != sizeof(__u64))
8140 				return false;
8141 			info->reg_type = PTR_TO_PACKET;
8142 			break;
8143 		case offsetof(struct bpf_sock_ops, skb_data_end):
8144 			if (size != sizeof(__u64))
8145 				return false;
8146 			info->reg_type = PTR_TO_PACKET_END;
8147 			break;
8148 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8149 			bpf_ctx_record_field_size(info, size_default);
8150 			return bpf_ctx_narrow_access_ok(off, size,
8151 							size_default);
8152 		default:
8153 			if (size != size_default)
8154 				return false;
8155 			break;
8156 		}
8157 	}
8158 
8159 	return true;
8160 }
8161 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8162 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8163 			   const struct bpf_prog *prog)
8164 {
8165 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8166 }
8167 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8168 static bool sk_skb_is_valid_access(int off, int size,
8169 				   enum bpf_access_type type,
8170 				   const struct bpf_prog *prog,
8171 				   struct bpf_insn_access_aux *info)
8172 {
8173 	switch (off) {
8174 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8175 	case bpf_ctx_range(struct __sk_buff, data_meta):
8176 	case bpf_ctx_range(struct __sk_buff, tstamp):
8177 	case bpf_ctx_range(struct __sk_buff, wire_len):
8178 		return false;
8179 	}
8180 
8181 	if (type == BPF_WRITE) {
8182 		switch (off) {
8183 		case bpf_ctx_range(struct __sk_buff, tc_index):
8184 		case bpf_ctx_range(struct __sk_buff, priority):
8185 			break;
8186 		default:
8187 			return false;
8188 		}
8189 	}
8190 
8191 	switch (off) {
8192 	case bpf_ctx_range(struct __sk_buff, mark):
8193 		return false;
8194 	case bpf_ctx_range(struct __sk_buff, data):
8195 		info->reg_type = PTR_TO_PACKET;
8196 		break;
8197 	case bpf_ctx_range(struct __sk_buff, data_end):
8198 		info->reg_type = PTR_TO_PACKET_END;
8199 		break;
8200 	}
8201 
8202 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8203 }
8204 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8205 static bool sk_msg_is_valid_access(int off, int size,
8206 				   enum bpf_access_type type,
8207 				   const struct bpf_prog *prog,
8208 				   struct bpf_insn_access_aux *info)
8209 {
8210 	if (type == BPF_WRITE)
8211 		return false;
8212 
8213 	if (off % size != 0)
8214 		return false;
8215 
8216 	switch (off) {
8217 	case offsetof(struct sk_msg_md, data):
8218 		info->reg_type = PTR_TO_PACKET;
8219 		if (size != sizeof(__u64))
8220 			return false;
8221 		break;
8222 	case offsetof(struct sk_msg_md, data_end):
8223 		info->reg_type = PTR_TO_PACKET_END;
8224 		if (size != sizeof(__u64))
8225 			return false;
8226 		break;
8227 	case offsetof(struct sk_msg_md, sk):
8228 		if (size != sizeof(__u64))
8229 			return false;
8230 		info->reg_type = PTR_TO_SOCKET;
8231 		break;
8232 	case bpf_ctx_range(struct sk_msg_md, family):
8233 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8234 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8235 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8236 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8237 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8238 	case bpf_ctx_range(struct sk_msg_md, local_port):
8239 	case bpf_ctx_range(struct sk_msg_md, size):
8240 		if (size != sizeof(__u32))
8241 			return false;
8242 		break;
8243 	default:
8244 		return false;
8245 	}
8246 	return true;
8247 }
8248 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8249 static bool flow_dissector_is_valid_access(int off, int size,
8250 					   enum bpf_access_type type,
8251 					   const struct bpf_prog *prog,
8252 					   struct bpf_insn_access_aux *info)
8253 {
8254 	const int size_default = sizeof(__u32);
8255 
8256 	if (off < 0 || off >= sizeof(struct __sk_buff))
8257 		return false;
8258 
8259 	if (type == BPF_WRITE)
8260 		return false;
8261 
8262 	switch (off) {
8263 	case bpf_ctx_range(struct __sk_buff, data):
8264 		if (size != size_default)
8265 			return false;
8266 		info->reg_type = PTR_TO_PACKET;
8267 		return true;
8268 	case bpf_ctx_range(struct __sk_buff, data_end):
8269 		if (size != size_default)
8270 			return false;
8271 		info->reg_type = PTR_TO_PACKET_END;
8272 		return true;
8273 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8274 		if (size != sizeof(__u64))
8275 			return false;
8276 		info->reg_type = PTR_TO_FLOW_KEYS;
8277 		return true;
8278 	default:
8279 		return false;
8280 	}
8281 }
8282 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8283 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8284 					     const struct bpf_insn *si,
8285 					     struct bpf_insn *insn_buf,
8286 					     struct bpf_prog *prog,
8287 					     u32 *target_size)
8288 
8289 {
8290 	struct bpf_insn *insn = insn_buf;
8291 
8292 	switch (si->off) {
8293 	case offsetof(struct __sk_buff, data):
8294 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8295 				      si->dst_reg, si->src_reg,
8296 				      offsetof(struct bpf_flow_dissector, data));
8297 		break;
8298 
8299 	case offsetof(struct __sk_buff, data_end):
8300 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8301 				      si->dst_reg, si->src_reg,
8302 				      offsetof(struct bpf_flow_dissector, data_end));
8303 		break;
8304 
8305 	case offsetof(struct __sk_buff, flow_keys):
8306 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8307 				      si->dst_reg, si->src_reg,
8308 				      offsetof(struct bpf_flow_dissector, flow_keys));
8309 		break;
8310 	}
8311 
8312 	return insn - insn_buf;
8313 }
8314 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8315 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8316 						  struct bpf_insn *insn)
8317 {
8318 	/* si->dst_reg = skb_shinfo(SKB); */
8319 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8320 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8321 			      BPF_REG_AX, si->src_reg,
8322 			      offsetof(struct sk_buff, end));
8323 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8324 			      si->dst_reg, si->src_reg,
8325 			      offsetof(struct sk_buff, head));
8326 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8327 #else
8328 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8329 			      si->dst_reg, si->src_reg,
8330 			      offsetof(struct sk_buff, end));
8331 #endif
8332 
8333 	return insn;
8334 }
8335 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8336 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8337 				  const struct bpf_insn *si,
8338 				  struct bpf_insn *insn_buf,
8339 				  struct bpf_prog *prog, u32 *target_size)
8340 {
8341 	struct bpf_insn *insn = insn_buf;
8342 	int off;
8343 
8344 	switch (si->off) {
8345 	case offsetof(struct __sk_buff, len):
8346 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8347 				      bpf_target_off(struct sk_buff, len, 4,
8348 						     target_size));
8349 		break;
8350 
8351 	case offsetof(struct __sk_buff, protocol):
8352 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8353 				      bpf_target_off(struct sk_buff, protocol, 2,
8354 						     target_size));
8355 		break;
8356 
8357 	case offsetof(struct __sk_buff, vlan_proto):
8358 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8359 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8360 						     target_size));
8361 		break;
8362 
8363 	case offsetof(struct __sk_buff, priority):
8364 		if (type == BPF_WRITE)
8365 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8366 					      bpf_target_off(struct sk_buff, priority, 4,
8367 							     target_size));
8368 		else
8369 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8370 					      bpf_target_off(struct sk_buff, priority, 4,
8371 							     target_size));
8372 		break;
8373 
8374 	case offsetof(struct __sk_buff, ingress_ifindex):
8375 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8376 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8377 						     target_size));
8378 		break;
8379 
8380 	case offsetof(struct __sk_buff, ifindex):
8381 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8382 				      si->dst_reg, si->src_reg,
8383 				      offsetof(struct sk_buff, dev));
8384 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8385 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8386 				      bpf_target_off(struct net_device, ifindex, 4,
8387 						     target_size));
8388 		break;
8389 
8390 	case offsetof(struct __sk_buff, hash):
8391 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8392 				      bpf_target_off(struct sk_buff, hash, 4,
8393 						     target_size));
8394 		break;
8395 
8396 	case offsetof(struct __sk_buff, mark):
8397 		if (type == BPF_WRITE)
8398 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8399 					      bpf_target_off(struct sk_buff, mark, 4,
8400 							     target_size));
8401 		else
8402 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8403 					      bpf_target_off(struct sk_buff, mark, 4,
8404 							     target_size));
8405 		break;
8406 
8407 	case offsetof(struct __sk_buff, pkt_type):
8408 		*target_size = 1;
8409 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8410 				      PKT_TYPE_OFFSET());
8411 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8412 #ifdef __BIG_ENDIAN_BITFIELD
8413 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8414 #endif
8415 		break;
8416 
8417 	case offsetof(struct __sk_buff, queue_mapping):
8418 		if (type == BPF_WRITE) {
8419 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8420 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8421 					      bpf_target_off(struct sk_buff,
8422 							     queue_mapping,
8423 							     2, target_size));
8424 		} else {
8425 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8426 					      bpf_target_off(struct sk_buff,
8427 							     queue_mapping,
8428 							     2, target_size));
8429 		}
8430 		break;
8431 
8432 	case offsetof(struct __sk_buff, vlan_present):
8433 		*target_size = 1;
8434 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8435 				      PKT_VLAN_PRESENT_OFFSET());
8436 		if (PKT_VLAN_PRESENT_BIT)
8437 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8438 		if (PKT_VLAN_PRESENT_BIT < 7)
8439 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8440 		break;
8441 
8442 	case offsetof(struct __sk_buff, vlan_tci):
8443 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8444 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8445 						     target_size));
8446 		break;
8447 
8448 	case offsetof(struct __sk_buff, cb[0]) ...
8449 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8450 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8451 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8452 			      offsetof(struct qdisc_skb_cb, data)) %
8453 			     sizeof(__u64));
8454 
8455 		prog->cb_access = 1;
8456 		off  = si->off;
8457 		off -= offsetof(struct __sk_buff, cb[0]);
8458 		off += offsetof(struct sk_buff, cb);
8459 		off += offsetof(struct qdisc_skb_cb, data);
8460 		if (type == BPF_WRITE)
8461 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8462 					      si->src_reg, off);
8463 		else
8464 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8465 					      si->src_reg, off);
8466 		break;
8467 
8468 	case offsetof(struct __sk_buff, tc_classid):
8469 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8470 
8471 		off  = si->off;
8472 		off -= offsetof(struct __sk_buff, tc_classid);
8473 		off += offsetof(struct sk_buff, cb);
8474 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8475 		*target_size = 2;
8476 		if (type == BPF_WRITE)
8477 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8478 					      si->src_reg, off);
8479 		else
8480 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8481 					      si->src_reg, off);
8482 		break;
8483 
8484 	case offsetof(struct __sk_buff, data):
8485 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8486 				      si->dst_reg, si->src_reg,
8487 				      offsetof(struct sk_buff, data));
8488 		break;
8489 
8490 	case offsetof(struct __sk_buff, data_meta):
8491 		off  = si->off;
8492 		off -= offsetof(struct __sk_buff, data_meta);
8493 		off += offsetof(struct sk_buff, cb);
8494 		off += offsetof(struct bpf_skb_data_end, data_meta);
8495 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8496 				      si->src_reg, off);
8497 		break;
8498 
8499 	case offsetof(struct __sk_buff, data_end):
8500 		off  = si->off;
8501 		off -= offsetof(struct __sk_buff, data_end);
8502 		off += offsetof(struct sk_buff, cb);
8503 		off += offsetof(struct bpf_skb_data_end, data_end);
8504 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8505 				      si->src_reg, off);
8506 		break;
8507 
8508 	case offsetof(struct __sk_buff, tc_index):
8509 #ifdef CONFIG_NET_SCHED
8510 		if (type == BPF_WRITE)
8511 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8512 					      bpf_target_off(struct sk_buff, tc_index, 2,
8513 							     target_size));
8514 		else
8515 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8516 					      bpf_target_off(struct sk_buff, tc_index, 2,
8517 							     target_size));
8518 #else
8519 		*target_size = 2;
8520 		if (type == BPF_WRITE)
8521 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8522 		else
8523 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8524 #endif
8525 		break;
8526 
8527 	case offsetof(struct __sk_buff, napi_id):
8528 #if defined(CONFIG_NET_RX_BUSY_POLL)
8529 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8530 				      bpf_target_off(struct sk_buff, napi_id, 4,
8531 						     target_size));
8532 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8533 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8534 #else
8535 		*target_size = 4;
8536 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8537 #endif
8538 		break;
8539 	case offsetof(struct __sk_buff, family):
8540 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8541 
8542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8543 				      si->dst_reg, si->src_reg,
8544 				      offsetof(struct sk_buff, sk));
8545 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8546 				      bpf_target_off(struct sock_common,
8547 						     skc_family,
8548 						     2, target_size));
8549 		break;
8550 	case offsetof(struct __sk_buff, remote_ip4):
8551 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8552 
8553 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8554 				      si->dst_reg, si->src_reg,
8555 				      offsetof(struct sk_buff, sk));
8556 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8557 				      bpf_target_off(struct sock_common,
8558 						     skc_daddr,
8559 						     4, target_size));
8560 		break;
8561 	case offsetof(struct __sk_buff, local_ip4):
8562 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8563 					  skc_rcv_saddr) != 4);
8564 
8565 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8566 				      si->dst_reg, si->src_reg,
8567 				      offsetof(struct sk_buff, sk));
8568 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8569 				      bpf_target_off(struct sock_common,
8570 						     skc_rcv_saddr,
8571 						     4, target_size));
8572 		break;
8573 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8574 	     offsetof(struct __sk_buff, remote_ip6[3]):
8575 #if IS_ENABLED(CONFIG_IPV6)
8576 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8577 					  skc_v6_daddr.s6_addr32[0]) != 4);
8578 
8579 		off = si->off;
8580 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8581 
8582 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8583 				      si->dst_reg, si->src_reg,
8584 				      offsetof(struct sk_buff, sk));
8585 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8586 				      offsetof(struct sock_common,
8587 					       skc_v6_daddr.s6_addr32[0]) +
8588 				      off);
8589 #else
8590 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8591 #endif
8592 		break;
8593 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8594 	     offsetof(struct __sk_buff, local_ip6[3]):
8595 #if IS_ENABLED(CONFIG_IPV6)
8596 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8597 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8598 
8599 		off = si->off;
8600 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8601 
8602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8603 				      si->dst_reg, si->src_reg,
8604 				      offsetof(struct sk_buff, sk));
8605 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8606 				      offsetof(struct sock_common,
8607 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8608 				      off);
8609 #else
8610 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8611 #endif
8612 		break;
8613 
8614 	case offsetof(struct __sk_buff, remote_port):
8615 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8616 
8617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8618 				      si->dst_reg, si->src_reg,
8619 				      offsetof(struct sk_buff, sk));
8620 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8621 				      bpf_target_off(struct sock_common,
8622 						     skc_dport,
8623 						     2, target_size));
8624 #ifndef __BIG_ENDIAN_BITFIELD
8625 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8626 #endif
8627 		break;
8628 
8629 	case offsetof(struct __sk_buff, local_port):
8630 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8631 
8632 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8633 				      si->dst_reg, si->src_reg,
8634 				      offsetof(struct sk_buff, sk));
8635 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8636 				      bpf_target_off(struct sock_common,
8637 						     skc_num, 2, target_size));
8638 		break;
8639 
8640 	case offsetof(struct __sk_buff, tstamp):
8641 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8642 
8643 		if (type == BPF_WRITE)
8644 			*insn++ = BPF_STX_MEM(BPF_DW,
8645 					      si->dst_reg, si->src_reg,
8646 					      bpf_target_off(struct sk_buff,
8647 							     tstamp, 8,
8648 							     target_size));
8649 		else
8650 			*insn++ = BPF_LDX_MEM(BPF_DW,
8651 					      si->dst_reg, si->src_reg,
8652 					      bpf_target_off(struct sk_buff,
8653 							     tstamp, 8,
8654 							     target_size));
8655 		break;
8656 
8657 	case offsetof(struct __sk_buff, gso_segs):
8658 		insn = bpf_convert_shinfo_access(si, insn);
8659 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8660 				      si->dst_reg, si->dst_reg,
8661 				      bpf_target_off(struct skb_shared_info,
8662 						     gso_segs, 2,
8663 						     target_size));
8664 		break;
8665 	case offsetof(struct __sk_buff, gso_size):
8666 		insn = bpf_convert_shinfo_access(si, insn);
8667 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8668 				      si->dst_reg, si->dst_reg,
8669 				      bpf_target_off(struct skb_shared_info,
8670 						     gso_size, 2,
8671 						     target_size));
8672 		break;
8673 	case offsetof(struct __sk_buff, wire_len):
8674 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8675 
8676 		off = si->off;
8677 		off -= offsetof(struct __sk_buff, wire_len);
8678 		off += offsetof(struct sk_buff, cb);
8679 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8680 		*target_size = 4;
8681 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8682 		break;
8683 
8684 	case offsetof(struct __sk_buff, sk):
8685 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8686 				      si->dst_reg, si->src_reg,
8687 				      offsetof(struct sk_buff, sk));
8688 		break;
8689 	}
8690 
8691 	return insn - insn_buf;
8692 }
8693 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8694 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8695 				const struct bpf_insn *si,
8696 				struct bpf_insn *insn_buf,
8697 				struct bpf_prog *prog, u32 *target_size)
8698 {
8699 	struct bpf_insn *insn = insn_buf;
8700 	int off;
8701 
8702 	switch (si->off) {
8703 	case offsetof(struct bpf_sock, bound_dev_if):
8704 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8705 
8706 		if (type == BPF_WRITE)
8707 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8708 					offsetof(struct sock, sk_bound_dev_if));
8709 		else
8710 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8711 				      offsetof(struct sock, sk_bound_dev_if));
8712 		break;
8713 
8714 	case offsetof(struct bpf_sock, mark):
8715 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8716 
8717 		if (type == BPF_WRITE)
8718 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8719 					offsetof(struct sock, sk_mark));
8720 		else
8721 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8722 				      offsetof(struct sock, sk_mark));
8723 		break;
8724 
8725 	case offsetof(struct bpf_sock, priority):
8726 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8727 
8728 		if (type == BPF_WRITE)
8729 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8730 					offsetof(struct sock, sk_priority));
8731 		else
8732 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8733 				      offsetof(struct sock, sk_priority));
8734 		break;
8735 
8736 	case offsetof(struct bpf_sock, family):
8737 		*insn++ = BPF_LDX_MEM(
8738 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8739 			si->dst_reg, si->src_reg,
8740 			bpf_target_off(struct sock_common,
8741 				       skc_family,
8742 				       sizeof_field(struct sock_common,
8743 						    skc_family),
8744 				       target_size));
8745 		break;
8746 
8747 	case offsetof(struct bpf_sock, type):
8748 		*insn++ = BPF_LDX_MEM(
8749 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8750 			si->dst_reg, si->src_reg,
8751 			bpf_target_off(struct sock, sk_type,
8752 				       sizeof_field(struct sock, sk_type),
8753 				       target_size));
8754 		break;
8755 
8756 	case offsetof(struct bpf_sock, protocol):
8757 		*insn++ = BPF_LDX_MEM(
8758 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8759 			si->dst_reg, si->src_reg,
8760 			bpf_target_off(struct sock, sk_protocol,
8761 				       sizeof_field(struct sock, sk_protocol),
8762 				       target_size));
8763 		break;
8764 
8765 	case offsetof(struct bpf_sock, src_ip4):
8766 		*insn++ = BPF_LDX_MEM(
8767 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8768 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8769 				       sizeof_field(struct sock_common,
8770 						    skc_rcv_saddr),
8771 				       target_size));
8772 		break;
8773 
8774 	case offsetof(struct bpf_sock, dst_ip4):
8775 		*insn++ = BPF_LDX_MEM(
8776 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8777 			bpf_target_off(struct sock_common, skc_daddr,
8778 				       sizeof_field(struct sock_common,
8779 						    skc_daddr),
8780 				       target_size));
8781 		break;
8782 
8783 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8784 #if IS_ENABLED(CONFIG_IPV6)
8785 		off = si->off;
8786 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8787 		*insn++ = BPF_LDX_MEM(
8788 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8789 			bpf_target_off(
8790 				struct sock_common,
8791 				skc_v6_rcv_saddr.s6_addr32[0],
8792 				sizeof_field(struct sock_common,
8793 					     skc_v6_rcv_saddr.s6_addr32[0]),
8794 				target_size) + off);
8795 #else
8796 		(void)off;
8797 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8798 #endif
8799 		break;
8800 
8801 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8802 #if IS_ENABLED(CONFIG_IPV6)
8803 		off = si->off;
8804 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8805 		*insn++ = BPF_LDX_MEM(
8806 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8807 			bpf_target_off(struct sock_common,
8808 				       skc_v6_daddr.s6_addr32[0],
8809 				       sizeof_field(struct sock_common,
8810 						    skc_v6_daddr.s6_addr32[0]),
8811 				       target_size) + off);
8812 #else
8813 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8814 		*target_size = 4;
8815 #endif
8816 		break;
8817 
8818 	case offsetof(struct bpf_sock, src_port):
8819 		*insn++ = BPF_LDX_MEM(
8820 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8821 			si->dst_reg, si->src_reg,
8822 			bpf_target_off(struct sock_common, skc_num,
8823 				       sizeof_field(struct sock_common,
8824 						    skc_num),
8825 				       target_size));
8826 		break;
8827 
8828 	case offsetof(struct bpf_sock, dst_port):
8829 		*insn++ = BPF_LDX_MEM(
8830 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8831 			si->dst_reg, si->src_reg,
8832 			bpf_target_off(struct sock_common, skc_dport,
8833 				       sizeof_field(struct sock_common,
8834 						    skc_dport),
8835 				       target_size));
8836 		break;
8837 
8838 	case offsetof(struct bpf_sock, state):
8839 		*insn++ = BPF_LDX_MEM(
8840 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8841 			si->dst_reg, si->src_reg,
8842 			bpf_target_off(struct sock_common, skc_state,
8843 				       sizeof_field(struct sock_common,
8844 						    skc_state),
8845 				       target_size));
8846 		break;
8847 	case offsetof(struct bpf_sock, rx_queue_mapping):
8848 #ifdef CONFIG_XPS
8849 		*insn++ = BPF_LDX_MEM(
8850 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8851 			si->dst_reg, si->src_reg,
8852 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8853 				       sizeof_field(struct sock,
8854 						    sk_rx_queue_mapping),
8855 				       target_size));
8856 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8857 				      1);
8858 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8859 #else
8860 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8861 		*target_size = 2;
8862 #endif
8863 		break;
8864 	}
8865 
8866 	return insn - insn_buf;
8867 }
8868 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8869 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8870 					 const struct bpf_insn *si,
8871 					 struct bpf_insn *insn_buf,
8872 					 struct bpf_prog *prog, u32 *target_size)
8873 {
8874 	struct bpf_insn *insn = insn_buf;
8875 
8876 	switch (si->off) {
8877 	case offsetof(struct __sk_buff, ifindex):
8878 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8879 				      si->dst_reg, si->src_reg,
8880 				      offsetof(struct sk_buff, dev));
8881 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8882 				      bpf_target_off(struct net_device, ifindex, 4,
8883 						     target_size));
8884 		break;
8885 	default:
8886 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8887 					      target_size);
8888 	}
8889 
8890 	return insn - insn_buf;
8891 }
8892 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8893 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8894 				  const struct bpf_insn *si,
8895 				  struct bpf_insn *insn_buf,
8896 				  struct bpf_prog *prog, u32 *target_size)
8897 {
8898 	struct bpf_insn *insn = insn_buf;
8899 
8900 	switch (si->off) {
8901 	case offsetof(struct xdp_md, data):
8902 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8903 				      si->dst_reg, si->src_reg,
8904 				      offsetof(struct xdp_buff, data));
8905 		break;
8906 	case offsetof(struct xdp_md, data_meta):
8907 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8908 				      si->dst_reg, si->src_reg,
8909 				      offsetof(struct xdp_buff, data_meta));
8910 		break;
8911 	case offsetof(struct xdp_md, data_end):
8912 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8913 				      si->dst_reg, si->src_reg,
8914 				      offsetof(struct xdp_buff, data_end));
8915 		break;
8916 	case offsetof(struct xdp_md, ingress_ifindex):
8917 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8918 				      si->dst_reg, si->src_reg,
8919 				      offsetof(struct xdp_buff, rxq));
8920 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8921 				      si->dst_reg, si->dst_reg,
8922 				      offsetof(struct xdp_rxq_info, dev));
8923 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8924 				      offsetof(struct net_device, ifindex));
8925 		break;
8926 	case offsetof(struct xdp_md, rx_queue_index):
8927 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8928 				      si->dst_reg, si->src_reg,
8929 				      offsetof(struct xdp_buff, rxq));
8930 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8931 				      offsetof(struct xdp_rxq_info,
8932 					       queue_index));
8933 		break;
8934 	case offsetof(struct xdp_md, egress_ifindex):
8935 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8936 				      si->dst_reg, si->src_reg,
8937 				      offsetof(struct xdp_buff, txq));
8938 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8939 				      si->dst_reg, si->dst_reg,
8940 				      offsetof(struct xdp_txq_info, dev));
8941 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8942 				      offsetof(struct net_device, ifindex));
8943 		break;
8944 	}
8945 
8946 	return insn - insn_buf;
8947 }
8948 
8949 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8950  * context Structure, F is Field in context structure that contains a pointer
8951  * to Nested Structure of type NS that has the field NF.
8952  *
8953  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8954  * sure that SIZE is not greater than actual size of S.F.NF.
8955  *
8956  * If offset OFF is provided, the load happens from that offset relative to
8957  * offset of NF.
8958  */
8959 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8960 	do {								       \
8961 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8962 				      si->src_reg, offsetof(S, F));	       \
8963 		*insn++ = BPF_LDX_MEM(					       \
8964 			SIZE, si->dst_reg, si->dst_reg,			       \
8965 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8966 				       target_size)			       \
8967 				+ OFF);					       \
8968 	} while (0)
8969 
8970 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8971 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8972 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8973 
8974 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8975  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8976  *
8977  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8978  * "register" since two registers available in convert_ctx_access are not
8979  * enough: we can't override neither SRC, since it contains value to store, nor
8980  * DST since it contains pointer to context that may be used by later
8981  * instructions. But we need a temporary place to save pointer to nested
8982  * structure whose field we want to store to.
8983  */
8984 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8985 	do {								       \
8986 		int tmp_reg = BPF_REG_9;				       \
8987 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8988 			--tmp_reg;					       \
8989 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8990 			--tmp_reg;					       \
8991 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8992 				      offsetof(S, TF));			       \
8993 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8994 				      si->dst_reg, offsetof(S, F));	       \
8995 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8996 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8997 				       target_size)			       \
8998 				+ OFF);					       \
8999 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9000 				      offsetof(S, TF));			       \
9001 	} while (0)
9002 
9003 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9004 						      TF)		       \
9005 	do {								       \
9006 		if (type == BPF_WRITE) {				       \
9007 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9008 							 OFF, TF);	       \
9009 		} else {						       \
9010 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9011 				S, NS, F, NF, SIZE, OFF);  \
9012 		}							       \
9013 	} while (0)
9014 
9015 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9016 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9017 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9018 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9019 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9020 					const struct bpf_insn *si,
9021 					struct bpf_insn *insn_buf,
9022 					struct bpf_prog *prog, u32 *target_size)
9023 {
9024 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9025 	struct bpf_insn *insn = insn_buf;
9026 
9027 	switch (si->off) {
9028 	case offsetof(struct bpf_sock_addr, user_family):
9029 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9030 					    struct sockaddr, uaddr, sa_family);
9031 		break;
9032 
9033 	case offsetof(struct bpf_sock_addr, user_ip4):
9034 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9035 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9036 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9037 		break;
9038 
9039 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9040 		off = si->off;
9041 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9042 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9043 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9044 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9045 			tmp_reg);
9046 		break;
9047 
9048 	case offsetof(struct bpf_sock_addr, user_port):
9049 		/* To get port we need to know sa_family first and then treat
9050 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9051 		 * Though we can simplify since port field has same offset and
9052 		 * size in both structures.
9053 		 * Here we check this invariant and use just one of the
9054 		 * structures if it's true.
9055 		 */
9056 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9057 			     offsetof(struct sockaddr_in6, sin6_port));
9058 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9059 			     sizeof_field(struct sockaddr_in6, sin6_port));
9060 		/* Account for sin6_port being smaller than user_port. */
9061 		port_size = min(port_size, BPF_LDST_BYTES(si));
9062 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9063 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9064 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9065 		break;
9066 
9067 	case offsetof(struct bpf_sock_addr, family):
9068 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9069 					    struct sock, sk, sk_family);
9070 		break;
9071 
9072 	case offsetof(struct bpf_sock_addr, type):
9073 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9074 					    struct sock, sk, sk_type);
9075 		break;
9076 
9077 	case offsetof(struct bpf_sock_addr, protocol):
9078 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9079 					    struct sock, sk, sk_protocol);
9080 		break;
9081 
9082 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9083 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9084 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9085 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9086 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9087 		break;
9088 
9089 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9090 				msg_src_ip6[3]):
9091 		off = si->off;
9092 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9093 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9094 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9095 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9096 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9097 		break;
9098 	case offsetof(struct bpf_sock_addr, sk):
9099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9100 				      si->dst_reg, si->src_reg,
9101 				      offsetof(struct bpf_sock_addr_kern, sk));
9102 		break;
9103 	}
9104 
9105 	return insn - insn_buf;
9106 }
9107 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9108 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9109 				       const struct bpf_insn *si,
9110 				       struct bpf_insn *insn_buf,
9111 				       struct bpf_prog *prog,
9112 				       u32 *target_size)
9113 {
9114 	struct bpf_insn *insn = insn_buf;
9115 	int off;
9116 
9117 /* Helper macro for adding read access to tcp_sock or sock fields. */
9118 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9119 	do {								      \
9120 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9121 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9122 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9123 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9124 			reg--;						      \
9125 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9126 			reg--;						      \
9127 		if (si->dst_reg == si->src_reg) {			      \
9128 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9129 					  offsetof(struct bpf_sock_ops_kern,  \
9130 					  temp));			      \
9131 			fullsock_reg = reg;				      \
9132 			jmp += 2;					      \
9133 		}							      \
9134 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9135 						struct bpf_sock_ops_kern,     \
9136 						is_fullsock),		      \
9137 				      fullsock_reg, si->src_reg,	      \
9138 				      offsetof(struct bpf_sock_ops_kern,      \
9139 					       is_fullsock));		      \
9140 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9141 		if (si->dst_reg == si->src_reg)				      \
9142 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9143 				      offsetof(struct bpf_sock_ops_kern,      \
9144 				      temp));				      \
9145 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9146 						struct bpf_sock_ops_kern, sk),\
9147 				      si->dst_reg, si->src_reg,		      \
9148 				      offsetof(struct bpf_sock_ops_kern, sk));\
9149 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9150 						       OBJ_FIELD),	      \
9151 				      si->dst_reg, si->dst_reg,		      \
9152 				      offsetof(OBJ, OBJ_FIELD));	      \
9153 		if (si->dst_reg == si->src_reg)	{			      \
9154 			*insn++ = BPF_JMP_A(1);				      \
9155 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9156 				      offsetof(struct bpf_sock_ops_kern,      \
9157 				      temp));				      \
9158 		}							      \
9159 	} while (0)
9160 
9161 #define SOCK_OPS_GET_SK()							      \
9162 	do {								      \
9163 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9164 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9165 			reg--;						      \
9166 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9167 			reg--;						      \
9168 		if (si->dst_reg == si->src_reg) {			      \
9169 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9170 					  offsetof(struct bpf_sock_ops_kern,  \
9171 					  temp));			      \
9172 			fullsock_reg = reg;				      \
9173 			jmp += 2;					      \
9174 		}							      \
9175 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9176 						struct bpf_sock_ops_kern,     \
9177 						is_fullsock),		      \
9178 				      fullsock_reg, si->src_reg,	      \
9179 				      offsetof(struct bpf_sock_ops_kern,      \
9180 					       is_fullsock));		      \
9181 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9182 		if (si->dst_reg == si->src_reg)				      \
9183 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9184 				      offsetof(struct bpf_sock_ops_kern,      \
9185 				      temp));				      \
9186 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9187 						struct bpf_sock_ops_kern, sk),\
9188 				      si->dst_reg, si->src_reg,		      \
9189 				      offsetof(struct bpf_sock_ops_kern, sk));\
9190 		if (si->dst_reg == si->src_reg)	{			      \
9191 			*insn++ = BPF_JMP_A(1);				      \
9192 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9193 				      offsetof(struct bpf_sock_ops_kern,      \
9194 				      temp));				      \
9195 		}							      \
9196 	} while (0)
9197 
9198 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9199 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9200 
9201 /* Helper macro for adding write access to tcp_sock or sock fields.
9202  * The macro is called with two registers, dst_reg which contains a pointer
9203  * to ctx (context) and src_reg which contains the value that should be
9204  * stored. However, we need an additional register since we cannot overwrite
9205  * dst_reg because it may be used later in the program.
9206  * Instead we "borrow" one of the other register. We first save its value
9207  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9208  * it at the end of the macro.
9209  */
9210 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9211 	do {								      \
9212 		int reg = BPF_REG_9;					      \
9213 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9214 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9215 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9216 			reg--;						      \
9217 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9218 			reg--;						      \
9219 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9220 				      offsetof(struct bpf_sock_ops_kern,      \
9221 					       temp));			      \
9222 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9223 						struct bpf_sock_ops_kern,     \
9224 						is_fullsock),		      \
9225 				      reg, si->dst_reg,			      \
9226 				      offsetof(struct bpf_sock_ops_kern,      \
9227 					       is_fullsock));		      \
9228 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9229 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9230 						struct bpf_sock_ops_kern, sk),\
9231 				      reg, si->dst_reg,			      \
9232 				      offsetof(struct bpf_sock_ops_kern, sk));\
9233 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9234 				      reg, si->src_reg,			      \
9235 				      offsetof(OBJ, OBJ_FIELD));	      \
9236 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9237 				      offsetof(struct bpf_sock_ops_kern,      \
9238 					       temp));			      \
9239 	} while (0)
9240 
9241 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9242 	do {								      \
9243 		if (TYPE == BPF_WRITE)					      \
9244 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9245 		else							      \
9246 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9247 	} while (0)
9248 
9249 	if (insn > insn_buf)
9250 		return insn - insn_buf;
9251 
9252 	switch (si->off) {
9253 	case offsetof(struct bpf_sock_ops, op):
9254 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9255 						       op),
9256 				      si->dst_reg, si->src_reg,
9257 				      offsetof(struct bpf_sock_ops_kern, op));
9258 		break;
9259 
9260 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9261 	     offsetof(struct bpf_sock_ops, replylong[3]):
9262 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9263 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9264 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9265 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9266 		off = si->off;
9267 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9268 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9269 		if (type == BPF_WRITE)
9270 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9271 					      off);
9272 		else
9273 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9274 					      off);
9275 		break;
9276 
9277 	case offsetof(struct bpf_sock_ops, family):
9278 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9279 
9280 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9281 					      struct bpf_sock_ops_kern, sk),
9282 				      si->dst_reg, si->src_reg,
9283 				      offsetof(struct bpf_sock_ops_kern, sk));
9284 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9285 				      offsetof(struct sock_common, skc_family));
9286 		break;
9287 
9288 	case offsetof(struct bpf_sock_ops, remote_ip4):
9289 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9290 
9291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9292 						struct bpf_sock_ops_kern, sk),
9293 				      si->dst_reg, si->src_reg,
9294 				      offsetof(struct bpf_sock_ops_kern, sk));
9295 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9296 				      offsetof(struct sock_common, skc_daddr));
9297 		break;
9298 
9299 	case offsetof(struct bpf_sock_ops, local_ip4):
9300 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9301 					  skc_rcv_saddr) != 4);
9302 
9303 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9304 					      struct bpf_sock_ops_kern, sk),
9305 				      si->dst_reg, si->src_reg,
9306 				      offsetof(struct bpf_sock_ops_kern, sk));
9307 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9308 				      offsetof(struct sock_common,
9309 					       skc_rcv_saddr));
9310 		break;
9311 
9312 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9313 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9314 #if IS_ENABLED(CONFIG_IPV6)
9315 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9316 					  skc_v6_daddr.s6_addr32[0]) != 4);
9317 
9318 		off = si->off;
9319 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9320 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9321 						struct bpf_sock_ops_kern, sk),
9322 				      si->dst_reg, si->src_reg,
9323 				      offsetof(struct bpf_sock_ops_kern, sk));
9324 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9325 				      offsetof(struct sock_common,
9326 					       skc_v6_daddr.s6_addr32[0]) +
9327 				      off);
9328 #else
9329 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9330 #endif
9331 		break;
9332 
9333 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9334 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9335 #if IS_ENABLED(CONFIG_IPV6)
9336 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9337 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9338 
9339 		off = si->off;
9340 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9341 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9342 						struct bpf_sock_ops_kern, sk),
9343 				      si->dst_reg, si->src_reg,
9344 				      offsetof(struct bpf_sock_ops_kern, sk));
9345 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9346 				      offsetof(struct sock_common,
9347 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9348 				      off);
9349 #else
9350 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9351 #endif
9352 		break;
9353 
9354 	case offsetof(struct bpf_sock_ops, remote_port):
9355 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9356 
9357 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9358 						struct bpf_sock_ops_kern, sk),
9359 				      si->dst_reg, si->src_reg,
9360 				      offsetof(struct bpf_sock_ops_kern, sk));
9361 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9362 				      offsetof(struct sock_common, skc_dport));
9363 #ifndef __BIG_ENDIAN_BITFIELD
9364 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9365 #endif
9366 		break;
9367 
9368 	case offsetof(struct bpf_sock_ops, local_port):
9369 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9370 
9371 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9372 						struct bpf_sock_ops_kern, sk),
9373 				      si->dst_reg, si->src_reg,
9374 				      offsetof(struct bpf_sock_ops_kern, sk));
9375 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9376 				      offsetof(struct sock_common, skc_num));
9377 		break;
9378 
9379 	case offsetof(struct bpf_sock_ops, is_fullsock):
9380 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9381 						struct bpf_sock_ops_kern,
9382 						is_fullsock),
9383 				      si->dst_reg, si->src_reg,
9384 				      offsetof(struct bpf_sock_ops_kern,
9385 					       is_fullsock));
9386 		break;
9387 
9388 	case offsetof(struct bpf_sock_ops, state):
9389 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9390 
9391 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9392 						struct bpf_sock_ops_kern, sk),
9393 				      si->dst_reg, si->src_reg,
9394 				      offsetof(struct bpf_sock_ops_kern, sk));
9395 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9396 				      offsetof(struct sock_common, skc_state));
9397 		break;
9398 
9399 	case offsetof(struct bpf_sock_ops, rtt_min):
9400 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9401 			     sizeof(struct minmax));
9402 		BUILD_BUG_ON(sizeof(struct minmax) <
9403 			     sizeof(struct minmax_sample));
9404 
9405 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9406 						struct bpf_sock_ops_kern, sk),
9407 				      si->dst_reg, si->src_reg,
9408 				      offsetof(struct bpf_sock_ops_kern, sk));
9409 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9410 				      offsetof(struct tcp_sock, rtt_min) +
9411 				      sizeof_field(struct minmax_sample, t));
9412 		break;
9413 
9414 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9415 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9416 				   struct tcp_sock);
9417 		break;
9418 
9419 	case offsetof(struct bpf_sock_ops, sk_txhash):
9420 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9421 					  struct sock, type);
9422 		break;
9423 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9424 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9425 		break;
9426 	case offsetof(struct bpf_sock_ops, srtt_us):
9427 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9428 		break;
9429 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9430 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9431 		break;
9432 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9433 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9434 		break;
9435 	case offsetof(struct bpf_sock_ops, snd_nxt):
9436 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9437 		break;
9438 	case offsetof(struct bpf_sock_ops, snd_una):
9439 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9440 		break;
9441 	case offsetof(struct bpf_sock_ops, mss_cache):
9442 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9443 		break;
9444 	case offsetof(struct bpf_sock_ops, ecn_flags):
9445 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9446 		break;
9447 	case offsetof(struct bpf_sock_ops, rate_delivered):
9448 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9449 		break;
9450 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9451 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9452 		break;
9453 	case offsetof(struct bpf_sock_ops, packets_out):
9454 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9455 		break;
9456 	case offsetof(struct bpf_sock_ops, retrans_out):
9457 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9458 		break;
9459 	case offsetof(struct bpf_sock_ops, total_retrans):
9460 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9461 		break;
9462 	case offsetof(struct bpf_sock_ops, segs_in):
9463 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9464 		break;
9465 	case offsetof(struct bpf_sock_ops, data_segs_in):
9466 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9467 		break;
9468 	case offsetof(struct bpf_sock_ops, segs_out):
9469 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9470 		break;
9471 	case offsetof(struct bpf_sock_ops, data_segs_out):
9472 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9473 		break;
9474 	case offsetof(struct bpf_sock_ops, lost_out):
9475 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9476 		break;
9477 	case offsetof(struct bpf_sock_ops, sacked_out):
9478 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9479 		break;
9480 	case offsetof(struct bpf_sock_ops, bytes_received):
9481 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9482 		break;
9483 	case offsetof(struct bpf_sock_ops, bytes_acked):
9484 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9485 		break;
9486 	case offsetof(struct bpf_sock_ops, sk):
9487 		SOCK_OPS_GET_SK();
9488 		break;
9489 	case offsetof(struct bpf_sock_ops, skb_data_end):
9490 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9491 						       skb_data_end),
9492 				      si->dst_reg, si->src_reg,
9493 				      offsetof(struct bpf_sock_ops_kern,
9494 					       skb_data_end));
9495 		break;
9496 	case offsetof(struct bpf_sock_ops, skb_data):
9497 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9498 						       skb),
9499 				      si->dst_reg, si->src_reg,
9500 				      offsetof(struct bpf_sock_ops_kern,
9501 					       skb));
9502 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9503 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9504 				      si->dst_reg, si->dst_reg,
9505 				      offsetof(struct sk_buff, data));
9506 		break;
9507 	case offsetof(struct bpf_sock_ops, skb_len):
9508 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9509 						       skb),
9510 				      si->dst_reg, si->src_reg,
9511 				      offsetof(struct bpf_sock_ops_kern,
9512 					       skb));
9513 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9514 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9515 				      si->dst_reg, si->dst_reg,
9516 				      offsetof(struct sk_buff, len));
9517 		break;
9518 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9519 		off = offsetof(struct sk_buff, cb);
9520 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9521 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9522 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9523 						       skb),
9524 				      si->dst_reg, si->src_reg,
9525 				      offsetof(struct bpf_sock_ops_kern,
9526 					       skb));
9527 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9528 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9529 						       tcp_flags),
9530 				      si->dst_reg, si->dst_reg, off);
9531 		break;
9532 	}
9533 	return insn - insn_buf;
9534 }
9535 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9536 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9537 				     const struct bpf_insn *si,
9538 				     struct bpf_insn *insn_buf,
9539 				     struct bpf_prog *prog, u32 *target_size)
9540 {
9541 	struct bpf_insn *insn = insn_buf;
9542 	int off;
9543 
9544 	switch (si->off) {
9545 	case offsetof(struct __sk_buff, data_end):
9546 		off  = si->off;
9547 		off -= offsetof(struct __sk_buff, data_end);
9548 		off += offsetof(struct sk_buff, cb);
9549 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9550 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9551 				      si->src_reg, off);
9552 		break;
9553 	case offsetof(struct __sk_buff, cb[0]) ...
9554 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9555 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9556 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9557 			      offsetof(struct sk_skb_cb, data)) %
9558 			     sizeof(__u64));
9559 
9560 		prog->cb_access = 1;
9561 		off  = si->off;
9562 		off -= offsetof(struct __sk_buff, cb[0]);
9563 		off += offsetof(struct sk_buff, cb);
9564 		off += offsetof(struct sk_skb_cb, data);
9565 		if (type == BPF_WRITE)
9566 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9567 					      si->src_reg, off);
9568 		else
9569 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9570 					      si->src_reg, off);
9571 		break;
9572 
9573 
9574 	default:
9575 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9576 					      target_size);
9577 	}
9578 
9579 	return insn - insn_buf;
9580 }
9581 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9582 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9583 				     const struct bpf_insn *si,
9584 				     struct bpf_insn *insn_buf,
9585 				     struct bpf_prog *prog, u32 *target_size)
9586 {
9587 	struct bpf_insn *insn = insn_buf;
9588 #if IS_ENABLED(CONFIG_IPV6)
9589 	int off;
9590 #endif
9591 
9592 	/* convert ctx uses the fact sg element is first in struct */
9593 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9594 
9595 	switch (si->off) {
9596 	case offsetof(struct sk_msg_md, data):
9597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9598 				      si->dst_reg, si->src_reg,
9599 				      offsetof(struct sk_msg, data));
9600 		break;
9601 	case offsetof(struct sk_msg_md, data_end):
9602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9603 				      si->dst_reg, si->src_reg,
9604 				      offsetof(struct sk_msg, data_end));
9605 		break;
9606 	case offsetof(struct sk_msg_md, family):
9607 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9608 
9609 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9610 					      struct sk_msg, sk),
9611 				      si->dst_reg, si->src_reg,
9612 				      offsetof(struct sk_msg, sk));
9613 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9614 				      offsetof(struct sock_common, skc_family));
9615 		break;
9616 
9617 	case offsetof(struct sk_msg_md, remote_ip4):
9618 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9619 
9620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9621 						struct sk_msg, sk),
9622 				      si->dst_reg, si->src_reg,
9623 				      offsetof(struct sk_msg, sk));
9624 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9625 				      offsetof(struct sock_common, skc_daddr));
9626 		break;
9627 
9628 	case offsetof(struct sk_msg_md, local_ip4):
9629 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9630 					  skc_rcv_saddr) != 4);
9631 
9632 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9633 					      struct sk_msg, sk),
9634 				      si->dst_reg, si->src_reg,
9635 				      offsetof(struct sk_msg, sk));
9636 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9637 				      offsetof(struct sock_common,
9638 					       skc_rcv_saddr));
9639 		break;
9640 
9641 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9642 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9643 #if IS_ENABLED(CONFIG_IPV6)
9644 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9645 					  skc_v6_daddr.s6_addr32[0]) != 4);
9646 
9647 		off = si->off;
9648 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9649 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9650 						struct sk_msg, sk),
9651 				      si->dst_reg, si->src_reg,
9652 				      offsetof(struct sk_msg, sk));
9653 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9654 				      offsetof(struct sock_common,
9655 					       skc_v6_daddr.s6_addr32[0]) +
9656 				      off);
9657 #else
9658 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9659 #endif
9660 		break;
9661 
9662 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9663 	     offsetof(struct sk_msg_md, local_ip6[3]):
9664 #if IS_ENABLED(CONFIG_IPV6)
9665 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9666 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9667 
9668 		off = si->off;
9669 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9670 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9671 						struct sk_msg, sk),
9672 				      si->dst_reg, si->src_reg,
9673 				      offsetof(struct sk_msg, sk));
9674 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9675 				      offsetof(struct sock_common,
9676 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9677 				      off);
9678 #else
9679 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9680 #endif
9681 		break;
9682 
9683 	case offsetof(struct sk_msg_md, remote_port):
9684 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9685 
9686 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9687 						struct sk_msg, sk),
9688 				      si->dst_reg, si->src_reg,
9689 				      offsetof(struct sk_msg, sk));
9690 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9691 				      offsetof(struct sock_common, skc_dport));
9692 #ifndef __BIG_ENDIAN_BITFIELD
9693 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9694 #endif
9695 		break;
9696 
9697 	case offsetof(struct sk_msg_md, local_port):
9698 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9699 
9700 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9701 						struct sk_msg, sk),
9702 				      si->dst_reg, si->src_reg,
9703 				      offsetof(struct sk_msg, sk));
9704 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9705 				      offsetof(struct sock_common, skc_num));
9706 		break;
9707 
9708 	case offsetof(struct sk_msg_md, size):
9709 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9710 				      si->dst_reg, si->src_reg,
9711 				      offsetof(struct sk_msg_sg, size));
9712 		break;
9713 
9714 	case offsetof(struct sk_msg_md, sk):
9715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9716 				      si->dst_reg, si->src_reg,
9717 				      offsetof(struct sk_msg, sk));
9718 		break;
9719 	}
9720 
9721 	return insn - insn_buf;
9722 }
9723 
9724 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9725 	.get_func_proto		= sk_filter_func_proto,
9726 	.is_valid_access	= sk_filter_is_valid_access,
9727 	.convert_ctx_access	= bpf_convert_ctx_access,
9728 	.gen_ld_abs		= bpf_gen_ld_abs,
9729 };
9730 
9731 const struct bpf_prog_ops sk_filter_prog_ops = {
9732 	.test_run		= bpf_prog_test_run_skb,
9733 };
9734 
9735 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9736 	.get_func_proto		= tc_cls_act_func_proto,
9737 	.is_valid_access	= tc_cls_act_is_valid_access,
9738 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9739 	.gen_prologue		= tc_cls_act_prologue,
9740 	.gen_ld_abs		= bpf_gen_ld_abs,
9741 };
9742 
9743 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9744 	.test_run		= bpf_prog_test_run_skb,
9745 };
9746 
9747 const struct bpf_verifier_ops xdp_verifier_ops = {
9748 	.get_func_proto		= xdp_func_proto,
9749 	.is_valid_access	= xdp_is_valid_access,
9750 	.convert_ctx_access	= xdp_convert_ctx_access,
9751 	.gen_prologue		= bpf_noop_prologue,
9752 };
9753 
9754 const struct bpf_prog_ops xdp_prog_ops = {
9755 	.test_run		= bpf_prog_test_run_xdp,
9756 };
9757 
9758 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9759 	.get_func_proto		= cg_skb_func_proto,
9760 	.is_valid_access	= cg_skb_is_valid_access,
9761 	.convert_ctx_access	= bpf_convert_ctx_access,
9762 };
9763 
9764 const struct bpf_prog_ops cg_skb_prog_ops = {
9765 	.test_run		= bpf_prog_test_run_skb,
9766 };
9767 
9768 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9769 	.get_func_proto		= lwt_in_func_proto,
9770 	.is_valid_access	= lwt_is_valid_access,
9771 	.convert_ctx_access	= bpf_convert_ctx_access,
9772 };
9773 
9774 const struct bpf_prog_ops lwt_in_prog_ops = {
9775 	.test_run		= bpf_prog_test_run_skb,
9776 };
9777 
9778 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9779 	.get_func_proto		= lwt_out_func_proto,
9780 	.is_valid_access	= lwt_is_valid_access,
9781 	.convert_ctx_access	= bpf_convert_ctx_access,
9782 };
9783 
9784 const struct bpf_prog_ops lwt_out_prog_ops = {
9785 	.test_run		= bpf_prog_test_run_skb,
9786 };
9787 
9788 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9789 	.get_func_proto		= lwt_xmit_func_proto,
9790 	.is_valid_access	= lwt_is_valid_access,
9791 	.convert_ctx_access	= bpf_convert_ctx_access,
9792 	.gen_prologue		= tc_cls_act_prologue,
9793 };
9794 
9795 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9796 	.test_run		= bpf_prog_test_run_skb,
9797 };
9798 
9799 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9800 	.get_func_proto		= lwt_seg6local_func_proto,
9801 	.is_valid_access	= lwt_is_valid_access,
9802 	.convert_ctx_access	= bpf_convert_ctx_access,
9803 };
9804 
9805 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9806 	.test_run		= bpf_prog_test_run_skb,
9807 };
9808 
9809 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9810 	.get_func_proto		= sock_filter_func_proto,
9811 	.is_valid_access	= sock_filter_is_valid_access,
9812 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9813 };
9814 
9815 const struct bpf_prog_ops cg_sock_prog_ops = {
9816 };
9817 
9818 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9819 	.get_func_proto		= sock_addr_func_proto,
9820 	.is_valid_access	= sock_addr_is_valid_access,
9821 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9822 };
9823 
9824 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9825 };
9826 
9827 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9828 	.get_func_proto		= sock_ops_func_proto,
9829 	.is_valid_access	= sock_ops_is_valid_access,
9830 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9831 };
9832 
9833 const struct bpf_prog_ops sock_ops_prog_ops = {
9834 };
9835 
9836 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9837 	.get_func_proto		= sk_skb_func_proto,
9838 	.is_valid_access	= sk_skb_is_valid_access,
9839 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9840 	.gen_prologue		= sk_skb_prologue,
9841 };
9842 
9843 const struct bpf_prog_ops sk_skb_prog_ops = {
9844 };
9845 
9846 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9847 	.get_func_proto		= sk_msg_func_proto,
9848 	.is_valid_access	= sk_msg_is_valid_access,
9849 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9850 	.gen_prologue		= bpf_noop_prologue,
9851 };
9852 
9853 const struct bpf_prog_ops sk_msg_prog_ops = {
9854 };
9855 
9856 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9857 	.get_func_proto		= flow_dissector_func_proto,
9858 	.is_valid_access	= flow_dissector_is_valid_access,
9859 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9860 };
9861 
9862 const struct bpf_prog_ops flow_dissector_prog_ops = {
9863 	.test_run		= bpf_prog_test_run_flow_dissector,
9864 };
9865 
sk_detach_filter(struct sock * sk)9866 int sk_detach_filter(struct sock *sk)
9867 {
9868 	int ret = -ENOENT;
9869 	struct sk_filter *filter;
9870 
9871 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9872 		return -EPERM;
9873 
9874 	filter = rcu_dereference_protected(sk->sk_filter,
9875 					   lockdep_sock_is_held(sk));
9876 	if (filter) {
9877 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9878 		sk_filter_uncharge(sk, filter);
9879 		ret = 0;
9880 	}
9881 
9882 	return ret;
9883 }
9884 EXPORT_SYMBOL_GPL(sk_detach_filter);
9885 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)9886 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
9887 {
9888 	struct sock_fprog_kern *fprog;
9889 	struct sk_filter *filter;
9890 	int ret = 0;
9891 
9892 	lock_sock(sk);
9893 	filter = rcu_dereference_protected(sk->sk_filter,
9894 					   lockdep_sock_is_held(sk));
9895 	if (!filter)
9896 		goto out;
9897 
9898 	/* We're copying the filter that has been originally attached,
9899 	 * so no conversion/decode needed anymore. eBPF programs that
9900 	 * have no original program cannot be dumped through this.
9901 	 */
9902 	ret = -EACCES;
9903 	fprog = filter->prog->orig_prog;
9904 	if (!fprog)
9905 		goto out;
9906 
9907 	ret = fprog->len;
9908 	if (!len)
9909 		/* User space only enquires number of filter blocks. */
9910 		goto out;
9911 
9912 	ret = -EINVAL;
9913 	if (len < fprog->len)
9914 		goto out;
9915 
9916 	ret = -EFAULT;
9917 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
9918 		goto out;
9919 
9920 	/* Instead of bytes, the API requests to return the number
9921 	 * of filter blocks.
9922 	 */
9923 	ret = fprog->len;
9924 out:
9925 	release_sock(sk);
9926 	return ret;
9927 }
9928 
9929 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)9930 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9931 				    struct sock_reuseport *reuse,
9932 				    struct sock *sk, struct sk_buff *skb,
9933 				    u32 hash)
9934 {
9935 	reuse_kern->skb = skb;
9936 	reuse_kern->sk = sk;
9937 	reuse_kern->selected_sk = NULL;
9938 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9939 	reuse_kern->hash = hash;
9940 	reuse_kern->reuseport_id = reuse->reuseport_id;
9941 	reuse_kern->bind_inany = reuse->bind_inany;
9942 }
9943 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)9944 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9945 				  struct bpf_prog *prog, struct sk_buff *skb,
9946 				  u32 hash)
9947 {
9948 	struct sk_reuseport_kern reuse_kern;
9949 	enum sk_action action;
9950 
9951 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9952 	action = BPF_PROG_RUN(prog, &reuse_kern);
9953 
9954 	if (action == SK_PASS)
9955 		return reuse_kern.selected_sk;
9956 	else
9957 		return ERR_PTR(-ECONNREFUSED);
9958 }
9959 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)9960 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9961 	   struct bpf_map *, map, void *, key, u32, flags)
9962 {
9963 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9964 	struct sock_reuseport *reuse;
9965 	struct sock *selected_sk;
9966 
9967 	selected_sk = map->ops->map_lookup_elem(map, key);
9968 	if (!selected_sk)
9969 		return -ENOENT;
9970 
9971 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9972 	if (!reuse) {
9973 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9974 		if (sk_is_refcounted(selected_sk))
9975 			sock_put(selected_sk);
9976 
9977 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9978 		 * The only (!reuse) case here is - the sk has already been
9979 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9980 		 *
9981 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9982 		 * the sk may never be in the reuseport group to begin with.
9983 		 */
9984 		return is_sockarray ? -ENOENT : -EINVAL;
9985 	}
9986 
9987 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9988 		struct sock *sk = reuse_kern->sk;
9989 
9990 		if (sk->sk_protocol != selected_sk->sk_protocol)
9991 			return -EPROTOTYPE;
9992 		else if (sk->sk_family != selected_sk->sk_family)
9993 			return -EAFNOSUPPORT;
9994 
9995 		/* Catch all. Likely bound to a different sockaddr. */
9996 		return -EBADFD;
9997 	}
9998 
9999 	reuse_kern->selected_sk = selected_sk;
10000 
10001 	return 0;
10002 }
10003 
10004 static const struct bpf_func_proto sk_select_reuseport_proto = {
10005 	.func           = sk_select_reuseport,
10006 	.gpl_only       = false,
10007 	.ret_type       = RET_INTEGER,
10008 	.arg1_type	= ARG_PTR_TO_CTX,
10009 	.arg2_type      = ARG_CONST_MAP_PTR,
10010 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10011 	.arg4_type	= ARG_ANYTHING,
10012 };
10013 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)10014 BPF_CALL_4(sk_reuseport_load_bytes,
10015 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10016 	   void *, to, u32, len)
10017 {
10018 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10019 }
10020 
10021 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10022 	.func		= sk_reuseport_load_bytes,
10023 	.gpl_only	= false,
10024 	.ret_type	= RET_INTEGER,
10025 	.arg1_type	= ARG_PTR_TO_CTX,
10026 	.arg2_type	= ARG_ANYTHING,
10027 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10028 	.arg4_type	= ARG_CONST_SIZE,
10029 };
10030 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10031 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10032 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10033 	   void *, to, u32, len, u32, start_header)
10034 {
10035 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10036 					       len, start_header);
10037 }
10038 
10039 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10040 	.func		= sk_reuseport_load_bytes_relative,
10041 	.gpl_only	= false,
10042 	.ret_type	= RET_INTEGER,
10043 	.arg1_type	= ARG_PTR_TO_CTX,
10044 	.arg2_type	= ARG_ANYTHING,
10045 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10046 	.arg4_type	= ARG_CONST_SIZE,
10047 	.arg5_type	= ARG_ANYTHING,
10048 };
10049 
10050 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10051 sk_reuseport_func_proto(enum bpf_func_id func_id,
10052 			const struct bpf_prog *prog)
10053 {
10054 	switch (func_id) {
10055 	case BPF_FUNC_sk_select_reuseport:
10056 		return &sk_select_reuseport_proto;
10057 	case BPF_FUNC_skb_load_bytes:
10058 		return &sk_reuseport_load_bytes_proto;
10059 	case BPF_FUNC_skb_load_bytes_relative:
10060 		return &sk_reuseport_load_bytes_relative_proto;
10061 	default:
10062 		return bpf_base_func_proto(func_id);
10063 	}
10064 }
10065 
10066 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10067 sk_reuseport_is_valid_access(int off, int size,
10068 			     enum bpf_access_type type,
10069 			     const struct bpf_prog *prog,
10070 			     struct bpf_insn_access_aux *info)
10071 {
10072 	const u32 size_default = sizeof(__u32);
10073 
10074 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10075 	    off % size || type != BPF_READ)
10076 		return false;
10077 
10078 	switch (off) {
10079 	case offsetof(struct sk_reuseport_md, data):
10080 		info->reg_type = PTR_TO_PACKET;
10081 		return size == sizeof(__u64);
10082 
10083 	case offsetof(struct sk_reuseport_md, data_end):
10084 		info->reg_type = PTR_TO_PACKET_END;
10085 		return size == sizeof(__u64);
10086 
10087 	case offsetof(struct sk_reuseport_md, hash):
10088 		return size == size_default;
10089 
10090 	/* Fields that allow narrowing */
10091 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10092 		if (size < sizeof_field(struct sk_buff, protocol))
10093 			return false;
10094 		fallthrough;
10095 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10096 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10097 	case bpf_ctx_range(struct sk_reuseport_md, len):
10098 		bpf_ctx_record_field_size(info, size_default);
10099 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10100 
10101 	default:
10102 		return false;
10103 	}
10104 }
10105 
10106 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10107 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10108 			      si->dst_reg, si->src_reg,			\
10109 			      bpf_target_off(struct sk_reuseport_kern, F, \
10110 					     sizeof_field(struct sk_reuseport_kern, F), \
10111 					     target_size));		\
10112 	})
10113 
10114 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10115 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10116 				    struct sk_buff,			\
10117 				    skb,				\
10118 				    SKB_FIELD)
10119 
10120 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10121 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10122 				    struct sock,			\
10123 				    sk,					\
10124 				    SK_FIELD)
10125 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10126 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10127 					   const struct bpf_insn *si,
10128 					   struct bpf_insn *insn_buf,
10129 					   struct bpf_prog *prog,
10130 					   u32 *target_size)
10131 {
10132 	struct bpf_insn *insn = insn_buf;
10133 
10134 	switch (si->off) {
10135 	case offsetof(struct sk_reuseport_md, data):
10136 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10137 		break;
10138 
10139 	case offsetof(struct sk_reuseport_md, len):
10140 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10141 		break;
10142 
10143 	case offsetof(struct sk_reuseport_md, eth_protocol):
10144 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10145 		break;
10146 
10147 	case offsetof(struct sk_reuseport_md, ip_protocol):
10148 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10149 		break;
10150 
10151 	case offsetof(struct sk_reuseport_md, data_end):
10152 		SK_REUSEPORT_LOAD_FIELD(data_end);
10153 		break;
10154 
10155 	case offsetof(struct sk_reuseport_md, hash):
10156 		SK_REUSEPORT_LOAD_FIELD(hash);
10157 		break;
10158 
10159 	case offsetof(struct sk_reuseport_md, bind_inany):
10160 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10161 		break;
10162 	}
10163 
10164 	return insn - insn_buf;
10165 }
10166 
10167 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10168 	.get_func_proto		= sk_reuseport_func_proto,
10169 	.is_valid_access	= sk_reuseport_is_valid_access,
10170 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10171 };
10172 
10173 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10174 };
10175 
10176 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10177 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10178 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10179 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10180 	   struct sock *, sk, u64, flags)
10181 {
10182 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10183 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10184 		return -EINVAL;
10185 	if (unlikely(sk && sk_is_refcounted(sk)))
10186 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10187 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10188 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10189 
10190 	/* Check if socket is suitable for packet L3/L4 protocol */
10191 	if (sk && sk->sk_protocol != ctx->protocol)
10192 		return -EPROTOTYPE;
10193 	if (sk && sk->sk_family != ctx->family &&
10194 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10195 		return -EAFNOSUPPORT;
10196 
10197 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10198 		return -EEXIST;
10199 
10200 	/* Select socket as lookup result */
10201 	ctx->selected_sk = sk;
10202 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10203 	return 0;
10204 }
10205 
10206 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10207 	.func		= bpf_sk_lookup_assign,
10208 	.gpl_only	= false,
10209 	.ret_type	= RET_INTEGER,
10210 	.arg1_type	= ARG_PTR_TO_CTX,
10211 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10212 	.arg3_type	= ARG_ANYTHING,
10213 };
10214 
10215 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10216 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10217 {
10218 	switch (func_id) {
10219 	case BPF_FUNC_perf_event_output:
10220 		return &bpf_event_output_data_proto;
10221 	case BPF_FUNC_sk_assign:
10222 		return &bpf_sk_lookup_assign_proto;
10223 	case BPF_FUNC_sk_release:
10224 		return &bpf_sk_release_proto;
10225 	default:
10226 		return bpf_sk_base_func_proto(func_id);
10227 	}
10228 }
10229 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10230 static bool sk_lookup_is_valid_access(int off, int size,
10231 				      enum bpf_access_type type,
10232 				      const struct bpf_prog *prog,
10233 				      struct bpf_insn_access_aux *info)
10234 {
10235 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10236 		return false;
10237 	if (off % size != 0)
10238 		return false;
10239 	if (type != BPF_READ)
10240 		return false;
10241 
10242 	switch (off) {
10243 	case offsetof(struct bpf_sk_lookup, sk):
10244 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10245 		return size == sizeof(__u64);
10246 
10247 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10248 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10249 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10250 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10251 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10252 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10253 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10254 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10255 		bpf_ctx_record_field_size(info, sizeof(__u32));
10256 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10257 
10258 	default:
10259 		return false;
10260 	}
10261 }
10262 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10263 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10264 					const struct bpf_insn *si,
10265 					struct bpf_insn *insn_buf,
10266 					struct bpf_prog *prog,
10267 					u32 *target_size)
10268 {
10269 	struct bpf_insn *insn = insn_buf;
10270 
10271 	switch (si->off) {
10272 	case offsetof(struct bpf_sk_lookup, sk):
10273 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10274 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10275 		break;
10276 
10277 	case offsetof(struct bpf_sk_lookup, family):
10278 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10279 				      bpf_target_off(struct bpf_sk_lookup_kern,
10280 						     family, 2, target_size));
10281 		break;
10282 
10283 	case offsetof(struct bpf_sk_lookup, protocol):
10284 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10285 				      bpf_target_off(struct bpf_sk_lookup_kern,
10286 						     protocol, 2, target_size));
10287 		break;
10288 
10289 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10290 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10291 				      bpf_target_off(struct bpf_sk_lookup_kern,
10292 						     v4.saddr, 4, target_size));
10293 		break;
10294 
10295 	case offsetof(struct bpf_sk_lookup, local_ip4):
10296 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10297 				      bpf_target_off(struct bpf_sk_lookup_kern,
10298 						     v4.daddr, 4, target_size));
10299 		break;
10300 
10301 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10302 				remote_ip6[0], remote_ip6[3]): {
10303 #if IS_ENABLED(CONFIG_IPV6)
10304 		int off = si->off;
10305 
10306 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10307 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10308 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10309 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10310 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10311 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10312 #else
10313 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10314 #endif
10315 		break;
10316 	}
10317 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10318 				local_ip6[0], local_ip6[3]): {
10319 #if IS_ENABLED(CONFIG_IPV6)
10320 		int off = si->off;
10321 
10322 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10323 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10324 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10325 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10326 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10327 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10328 #else
10329 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10330 #endif
10331 		break;
10332 	}
10333 	case offsetof(struct bpf_sk_lookup, remote_port):
10334 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10335 				      bpf_target_off(struct bpf_sk_lookup_kern,
10336 						     sport, 2, target_size));
10337 		break;
10338 
10339 	case offsetof(struct bpf_sk_lookup, local_port):
10340 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10341 				      bpf_target_off(struct bpf_sk_lookup_kern,
10342 						     dport, 2, target_size));
10343 		break;
10344 	}
10345 
10346 	return insn - insn_buf;
10347 }
10348 
10349 const struct bpf_prog_ops sk_lookup_prog_ops = {
10350 	.test_run = bpf_prog_test_run_sk_lookup,
10351 };
10352 
10353 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10354 	.get_func_proto		= sk_lookup_func_proto,
10355 	.is_valid_access	= sk_lookup_is_valid_access,
10356 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10357 };
10358 
10359 #endif /* CONFIG_INET */
10360 
DEFINE_BPF_DISPATCHER(xdp)10361 DEFINE_BPF_DISPATCHER(xdp)
10362 
10363 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10364 {
10365 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10366 }
10367 
10368 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10369 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10370 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10371 BTF_SOCK_TYPE_xxx
10372 #undef BTF_SOCK_TYPE
10373 #else
10374 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10375 #endif
10376 
10377 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10378 {
10379 	/* tcp6_sock type is not generated in dwarf and hence btf,
10380 	 * trigger an explicit type generation here.
10381 	 */
10382 	BTF_TYPE_EMIT(struct tcp6_sock);
10383 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10384 	    sk->sk_family == AF_INET6)
10385 		return (unsigned long)sk;
10386 
10387 	return (unsigned long)NULL;
10388 }
10389 
10390 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10391 	.func			= bpf_skc_to_tcp6_sock,
10392 	.gpl_only		= false,
10393 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10394 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10395 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10396 };
10397 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10398 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10399 {
10400 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10401 		return (unsigned long)sk;
10402 
10403 	return (unsigned long)NULL;
10404 }
10405 
10406 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10407 	.func			= bpf_skc_to_tcp_sock,
10408 	.gpl_only		= false,
10409 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10410 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10411 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10412 };
10413 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10414 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10415 {
10416 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10417 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10418 	 */
10419 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10420 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10421 
10422 #ifdef CONFIG_INET
10423 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10424 		return (unsigned long)sk;
10425 #endif
10426 
10427 #if IS_BUILTIN(CONFIG_IPV6)
10428 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10429 		return (unsigned long)sk;
10430 #endif
10431 
10432 	return (unsigned long)NULL;
10433 }
10434 
10435 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10436 	.func			= bpf_skc_to_tcp_timewait_sock,
10437 	.gpl_only		= false,
10438 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10439 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10440 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10441 };
10442 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10443 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10444 {
10445 #ifdef CONFIG_INET
10446 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10447 		return (unsigned long)sk;
10448 #endif
10449 
10450 #if IS_BUILTIN(CONFIG_IPV6)
10451 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10452 		return (unsigned long)sk;
10453 #endif
10454 
10455 	return (unsigned long)NULL;
10456 }
10457 
10458 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10459 	.func			= bpf_skc_to_tcp_request_sock,
10460 	.gpl_only		= false,
10461 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10462 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10463 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10464 };
10465 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10466 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10467 {
10468 	/* udp6_sock type is not generated in dwarf and hence btf,
10469 	 * trigger an explicit type generation here.
10470 	 */
10471 	BTF_TYPE_EMIT(struct udp6_sock);
10472 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10473 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10474 		return (unsigned long)sk;
10475 
10476 	return (unsigned long)NULL;
10477 }
10478 
10479 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10480 	.func			= bpf_skc_to_udp6_sock,
10481 	.gpl_only		= false,
10482 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10483 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10484 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10485 };
10486 
10487 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10488 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10489 {
10490 	const struct bpf_func_proto *func;
10491 
10492 	switch (func_id) {
10493 	case BPF_FUNC_skc_to_tcp6_sock:
10494 		func = &bpf_skc_to_tcp6_sock_proto;
10495 		break;
10496 	case BPF_FUNC_skc_to_tcp_sock:
10497 		func = &bpf_skc_to_tcp_sock_proto;
10498 		break;
10499 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10500 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10501 		break;
10502 	case BPF_FUNC_skc_to_tcp_request_sock:
10503 		func = &bpf_skc_to_tcp_request_sock_proto;
10504 		break;
10505 	case BPF_FUNC_skc_to_udp6_sock:
10506 		func = &bpf_skc_to_udp6_sock_proto;
10507 		break;
10508 	default:
10509 		return bpf_base_func_proto(func_id);
10510 	}
10511 
10512 	if (!perfmon_capable())
10513 		return NULL;
10514 
10515 	return func;
10516 }
10517