• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42 
43 #include <trace/hooks/fs.h>
44 
45 /*
46  * LOCKING:
47  * There are three level of locking required by epoll :
48  *
49  * 1) epmutex (mutex)
50  * 2) ep->mtx (mutex)
51  * 3) ep->lock (rwlock)
52  *
53  * The acquire order is the one listed above, from 1 to 3.
54  * We need a rwlock (ep->lock) because we manipulate objects
55  * from inside the poll callback, that might be triggered from
56  * a wake_up() that in turn might be called from IRQ context.
57  * So we can't sleep inside the poll callback and hence we need
58  * a spinlock. During the event transfer loop (from kernel to
59  * user space) we could end up sleeping due a copy_to_user(), so
60  * we need a lock that will allow us to sleep. This lock is a
61  * mutex (ep->mtx). It is acquired during the event transfer loop,
62  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63  * Then we also need a global mutex to serialize eventpoll_release_file()
64  * and ep_free().
65  * This mutex is acquired by ep_free() during the epoll file
66  * cleanup path and it is also acquired by eventpoll_release_file()
67  * if a file has been pushed inside an epoll set and it is then
68  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69  * It is also acquired when inserting an epoll fd onto another epoll
70  * fd. We do this so that we walk the epoll tree and ensure that this
71  * insertion does not create a cycle of epoll file descriptors, which
72  * could lead to deadlock. We need a global mutex to prevent two
73  * simultaneous inserts (A into B and B into A) from racing and
74  * constructing a cycle without either insert observing that it is
75  * going to.
76  * It is necessary to acquire multiple "ep->mtx"es at once in the
77  * case when one epoll fd is added to another. In this case, we
78  * always acquire the locks in the order of nesting (i.e. after
79  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80  * before e2->mtx). Since we disallow cycles of epoll file
81  * descriptors, this ensures that the mutexes are well-ordered. In
82  * order to communicate this nesting to lockdep, when walking a tree
83  * of epoll file descriptors, we use the current recursion depth as
84  * the lockdep subkey.
85  * It is possible to drop the "ep->mtx" and to use the global
86  * mutex "epmutex" (together with "ep->lock") to have it working,
87  * but having "ep->mtx" will make the interface more scalable.
88  * Events that require holding "epmutex" are very rare, while for
89  * normal operations the epoll private "ep->mtx" will guarantee
90  * a better scalability.
91  */
92 
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
95 
96 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
97 
98 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
99 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
100 
101 /* Maximum number of nesting allowed inside epoll sets */
102 #define EP_MAX_NESTS 4
103 
104 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
105 
106 #define EP_UNACTIVE_PTR ((void *) -1L)
107 
108 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
109 
110 struct epoll_filefd {
111 	struct file *file;
112 	int fd;
113 } __packed;
114 
115 /*
116  * Structure used to track possible nested calls, for too deep recursions
117  * and loop cycles.
118  */
119 struct nested_call_node {
120 	struct list_head llink;
121 	void *cookie;
122 	void *ctx;
123 };
124 
125 /*
126  * This structure is used as collector for nested calls, to check for
127  * maximum recursion dept and loop cycles.
128  */
129 struct nested_calls {
130 	struct list_head tasks_call_list;
131 	spinlock_t lock;
132 };
133 
134 /*
135  * Each file descriptor added to the eventpoll interface will
136  * have an entry of this type linked to the "rbr" RB tree.
137  * Avoid increasing the size of this struct, there can be many thousands
138  * of these on a server and we do not want this to take another cache line.
139  */
140 struct epitem {
141 	union {
142 		/* RB tree node links this structure to the eventpoll RB tree */
143 		struct rb_node rbn;
144 		/* Used to free the struct epitem */
145 		struct rcu_head rcu;
146 	};
147 
148 	/* List header used to link this structure to the eventpoll ready list */
149 	struct list_head rdllink;
150 
151 	/*
152 	 * Works together "struct eventpoll"->ovflist in keeping the
153 	 * single linked chain of items.
154 	 */
155 	struct epitem *next;
156 
157 	/* The file descriptor information this item refers to */
158 	struct epoll_filefd ffd;
159 
160 	/* Number of active wait queue attached to poll operations */
161 	int nwait;
162 
163 	/* List containing poll wait queues */
164 	struct list_head pwqlist;
165 
166 	/* The "container" of this item */
167 	struct eventpoll *ep;
168 
169 	/* List header used to link this item to the "struct file" items list */
170 	struct list_head fllink;
171 
172 	/* wakeup_source used when EPOLLWAKEUP is set */
173 	struct wakeup_source __rcu *ws;
174 
175 	/* The structure that describe the interested events and the source fd */
176 	struct epoll_event event;
177 };
178 
179 /*
180  * This structure is stored inside the "private_data" member of the file
181  * structure and represents the main data structure for the eventpoll
182  * interface.
183  */
184 struct eventpoll {
185 	/*
186 	 * This mutex is used to ensure that files are not removed
187 	 * while epoll is using them. This is held during the event
188 	 * collection loop, the file cleanup path, the epoll file exit
189 	 * code and the ctl operations.
190 	 */
191 	struct mutex mtx;
192 
193 	/* Wait queue used by sys_epoll_wait() */
194 	wait_queue_head_t wq;
195 
196 	/* Wait queue used by file->poll() */
197 	wait_queue_head_t poll_wait;
198 
199 	/* List of ready file descriptors */
200 	struct list_head rdllist;
201 
202 	/* Lock which protects rdllist and ovflist */
203 	rwlock_t lock;
204 
205 	/* RB tree root used to store monitored fd structs */
206 	struct rb_root_cached rbr;
207 
208 	/*
209 	 * This is a single linked list that chains all the "struct epitem" that
210 	 * happened while transferring ready events to userspace w/out
211 	 * holding ->lock.
212 	 */
213 	struct epitem *ovflist;
214 
215 	/* wakeup_source used when ep_scan_ready_list is running */
216 	struct wakeup_source *ws;
217 
218 	/* The user that created the eventpoll descriptor */
219 	struct user_struct *user;
220 
221 	struct file *file;
222 
223 	/* used to optimize loop detection check */
224 	u64 gen;
225 
226 #ifdef CONFIG_NET_RX_BUSY_POLL
227 	/* used to track busy poll napi_id */
228 	unsigned int napi_id;
229 #endif
230 
231 #ifdef CONFIG_DEBUG_LOCK_ALLOC
232 	/* tracks wakeup nests for lockdep validation */
233 	u8 nests;
234 #endif
235 };
236 
237 /* Wait structure used by the poll hooks */
238 struct eppoll_entry {
239 	/* List header used to link this structure to the "struct epitem" */
240 	struct list_head llink;
241 
242 	/* The "base" pointer is set to the container "struct epitem" */
243 	struct epitem *base;
244 
245 	/*
246 	 * Wait queue item that will be linked to the target file wait
247 	 * queue head.
248 	 */
249 	wait_queue_entry_t wait;
250 
251 	/* The wait queue head that linked the "wait" wait queue item */
252 	wait_queue_head_t *whead;
253 };
254 
255 /* Wrapper struct used by poll queueing */
256 struct ep_pqueue {
257 	poll_table pt;
258 	struct epitem *epi;
259 };
260 
261 /* Used by the ep_send_events() function as callback private data */
262 struct ep_send_events_data {
263 	int maxevents;
264 	struct epoll_event __user *events;
265 	int res;
266 };
267 
268 /*
269  * Configuration options available inside /proc/sys/fs/epoll/
270  */
271 /* Maximum number of epoll watched descriptors, per user */
272 static long max_user_watches __read_mostly;
273 
274 /*
275  * This mutex is used to serialize ep_free() and eventpoll_release_file().
276  */
277 static DEFINE_MUTEX(epmutex);
278 
279 static u64 loop_check_gen = 0;
280 
281 /* Used to check for epoll file descriptor inclusion loops */
282 static struct nested_calls poll_loop_ncalls;
283 
284 /* Slab cache used to allocate "struct epitem" */
285 static struct kmem_cache *epi_cache __read_mostly;
286 
287 /* Slab cache used to allocate "struct eppoll_entry" */
288 static struct kmem_cache *pwq_cache __read_mostly;
289 
290 /*
291  * List of files with newly added links, where we may need to limit the number
292  * of emanating paths. Protected by the epmutex.
293  */
294 static LIST_HEAD(tfile_check_list);
295 
296 #ifdef CONFIG_SYSCTL
297 
298 #include <linux/sysctl.h>
299 
300 static long long_zero;
301 static long long_max = LONG_MAX;
302 
303 struct ctl_table epoll_table[] = {
304 	{
305 		.procname	= "max_user_watches",
306 		.data		= &max_user_watches,
307 		.maxlen		= sizeof(max_user_watches),
308 		.mode		= 0644,
309 		.proc_handler	= proc_doulongvec_minmax,
310 		.extra1		= &long_zero,
311 		.extra2		= &long_max,
312 	},
313 	{ }
314 };
315 #endif /* CONFIG_SYSCTL */
316 
317 static const struct file_operations eventpoll_fops;
318 
is_file_epoll(struct file * f)319 static inline int is_file_epoll(struct file *f)
320 {
321 	return f->f_op == &eventpoll_fops;
322 }
323 
324 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)325 static inline void ep_set_ffd(struct epoll_filefd *ffd,
326 			      struct file *file, int fd)
327 {
328 	ffd->file = file;
329 	ffd->fd = fd;
330 }
331 
332 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)333 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
334 			     struct epoll_filefd *p2)
335 {
336 	return (p1->file > p2->file ? +1:
337 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
338 }
339 
340 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)341 static inline int ep_is_linked(struct epitem *epi)
342 {
343 	return !list_empty(&epi->rdllink);
344 }
345 
ep_pwq_from_wait(wait_queue_entry_t * p)346 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
347 {
348 	return container_of(p, struct eppoll_entry, wait);
349 }
350 
351 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)352 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
353 {
354 	return container_of(p, struct eppoll_entry, wait)->base;
355 }
356 
357 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)358 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
359 {
360 	return container_of(p, struct ep_pqueue, pt)->epi;
361 }
362 
363 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)364 static void ep_nested_calls_init(struct nested_calls *ncalls)
365 {
366 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
367 	spin_lock_init(&ncalls->lock);
368 }
369 
370 /**
371  * ep_events_available - Checks if ready events might be available.
372  *
373  * @ep: Pointer to the eventpoll context.
374  *
375  * Returns: Returns a value different than zero if ready events are available,
376  *          or zero otherwise.
377  */
ep_events_available(struct eventpoll * ep)378 static inline int ep_events_available(struct eventpoll *ep)
379 {
380 	return !list_empty_careful(&ep->rdllist) ||
381 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
382 }
383 
384 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
386 {
387 	struct eventpoll *ep = p;
388 
389 	return ep_events_available(ep) || busy_loop_timeout(start_time);
390 }
391 
392 /*
393  * Busy poll if globally on and supporting sockets found && no events,
394  * busy loop will return if need_resched or ep_events_available.
395  *
396  * we must do our busy polling with irqs enabled
397  */
ep_busy_loop(struct eventpoll * ep,int nonblock)398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
399 {
400 	unsigned int napi_id = READ_ONCE(ep->napi_id);
401 
402 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
403 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
404 }
405 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
407 {
408 	if (ep->napi_id)
409 		ep->napi_id = 0;
410 }
411 
412 /*
413  * Set epoll busy poll NAPI ID from sk.
414  */
ep_set_busy_poll_napi_id(struct epitem * epi)415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 	struct eventpoll *ep;
418 	unsigned int napi_id;
419 	struct socket *sock;
420 	struct sock *sk;
421 	int err;
422 
423 	if (!net_busy_loop_on())
424 		return;
425 
426 	sock = sock_from_file(epi->ffd.file, &err);
427 	if (!sock)
428 		return;
429 
430 	sk = sock->sk;
431 	if (!sk)
432 		return;
433 
434 	napi_id = READ_ONCE(sk->sk_napi_id);
435 	ep = epi->ep;
436 
437 	/* Non-NAPI IDs can be rejected
438 	 *	or
439 	 * Nothing to do if we already have this ID
440 	 */
441 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
442 		return;
443 
444 	/* record NAPI ID for use in next busy poll */
445 	ep->napi_id = napi_id;
446 }
447 
448 #else
449 
ep_busy_loop(struct eventpoll * ep,int nonblock)450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
451 {
452 }
453 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
455 {
456 }
457 
ep_set_busy_poll_napi_id(struct epitem * epi)458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
459 {
460 }
461 
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
463 
464 /**
465  * ep_call_nested - Perform a bound (possibly) nested call, by checking
466  *                  that the recursion limit is not exceeded, and that
467  *                  the same nested call (by the meaning of same cookie) is
468  *                  no re-entered.
469  *
470  * @ncalls: Pointer to the nested_calls structure to be used for this call.
471  * @nproc: Nested call core function pointer.
472  * @priv: Opaque data to be passed to the @nproc callback.
473  * @cookie: Cookie to be used to identify this nested call.
474  * @ctx: This instance context.
475  *
476  * Returns: Returns the code returned by the @nproc callback, or -1 if
477  *          the maximum recursion limit has been exceeded.
478  */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)479 static int ep_call_nested(struct nested_calls *ncalls,
480 			  int (*nproc)(void *, void *, int), void *priv,
481 			  void *cookie, void *ctx)
482 {
483 	int error, call_nests = 0;
484 	unsigned long flags;
485 	struct list_head *lsthead = &ncalls->tasks_call_list;
486 	struct nested_call_node *tncur;
487 	struct nested_call_node tnode;
488 
489 	spin_lock_irqsave(&ncalls->lock, flags);
490 
491 	/*
492 	 * Try to see if the current task is already inside this wakeup call.
493 	 * We use a list here, since the population inside this set is always
494 	 * very much limited.
495 	 */
496 	list_for_each_entry(tncur, lsthead, llink) {
497 		if (tncur->ctx == ctx &&
498 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
499 			/*
500 			 * Ops ... loop detected or maximum nest level reached.
501 			 * We abort this wake by breaking the cycle itself.
502 			 */
503 			error = -1;
504 			goto out_unlock;
505 		}
506 	}
507 
508 	/* Add the current task and cookie to the list */
509 	tnode.ctx = ctx;
510 	tnode.cookie = cookie;
511 	list_add(&tnode.llink, lsthead);
512 
513 	spin_unlock_irqrestore(&ncalls->lock, flags);
514 
515 	/* Call the nested function */
516 	error = (*nproc)(priv, cookie, call_nests);
517 
518 	/* Remove the current task from the list */
519 	spin_lock_irqsave(&ncalls->lock, flags);
520 	list_del(&tnode.llink);
521 out_unlock:
522 	spin_unlock_irqrestore(&ncalls->lock, flags);
523 
524 	return error;
525 }
526 
527 /*
528  * As described in commit 0ccf831cb lockdep: annotate epoll
529  * the use of wait queues used by epoll is done in a very controlled
530  * manner. Wake ups can nest inside each other, but are never done
531  * with the same locking. For example:
532  *
533  *   dfd = socket(...);
534  *   efd1 = epoll_create();
535  *   efd2 = epoll_create();
536  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
538  *
539  * When a packet arrives to the device underneath "dfd", the net code will
540  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541  * callback wakeup entry on that queue, and the wake_up() performed by the
542  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543  * (efd1) notices that it may have some event ready, so it needs to wake up
544  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545  * that ends up in another wake_up(), after having checked about the
546  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547  * avoid stack blasting.
548  *
549  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550  * this special case of epoll.
551  */
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
553 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)554 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
555 			     unsigned pollflags)
556 {
557 	struct eventpoll *ep_src;
558 	unsigned long flags;
559 	u8 nests = 0;
560 
561 	/*
562 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
563 	 * it might be natural to create a per-cpu nest count. However, since
564 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
565 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
566 	 * protected. Thus, we are introducing a per eventpoll nest field.
567 	 * If we are not being call from ep_poll_callback(), epi is NULL and
568 	 * we are at the first level of nesting, 0. Otherwise, we are being
569 	 * called from ep_poll_callback() and if a previous wakeup source is
570 	 * not an epoll file itself, we are at depth 1 since the wakeup source
571 	 * is depth 0. If the wakeup source is a previous epoll file in the
572 	 * wakeup chain then we use its nests value and record ours as
573 	 * nests + 1. The previous epoll file nests value is stable since its
574 	 * already holding its own poll_wait.lock.
575 	 */
576 	if (epi) {
577 		if ((is_file_epoll(epi->ffd.file))) {
578 			ep_src = epi->ffd.file->private_data;
579 			nests = ep_src->nests;
580 		} else {
581 			nests = 1;
582 		}
583 	}
584 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
585 	ep->nests = nests + 1;
586 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
587 	ep->nests = 0;
588 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
589 }
590 
591 #else
592 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)593 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
594 			     unsigned pollflags)
595 {
596 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
597 }
598 
599 #endif
600 
ep_remove_wait_queue(struct eppoll_entry * pwq)601 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
602 {
603 	wait_queue_head_t *whead;
604 
605 	rcu_read_lock();
606 	/*
607 	 * If it is cleared by POLLFREE, it should be rcu-safe.
608 	 * If we read NULL we need a barrier paired with
609 	 * smp_store_release() in ep_poll_callback(), otherwise
610 	 * we rely on whead->lock.
611 	 */
612 	whead = smp_load_acquire(&pwq->whead);
613 	if (whead)
614 		remove_wait_queue(whead, &pwq->wait);
615 	rcu_read_unlock();
616 }
617 
618 /*
619  * This function unregisters poll callbacks from the associated file
620  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
621  * ep_free).
622  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)623 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
624 {
625 	struct list_head *lsthead = &epi->pwqlist;
626 	struct eppoll_entry *pwq;
627 
628 	while (!list_empty(lsthead)) {
629 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
630 
631 		list_del(&pwq->llink);
632 		ep_remove_wait_queue(pwq);
633 		kmem_cache_free(pwq_cache, pwq);
634 	}
635 }
636 
637 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)638 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
639 {
640 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
641 }
642 
643 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)644 static inline void ep_pm_stay_awake(struct epitem *epi)
645 {
646 	struct wakeup_source *ws = ep_wakeup_source(epi);
647 
648 	if (ws)
649 		__pm_stay_awake(ws);
650 }
651 
ep_has_wakeup_source(struct epitem * epi)652 static inline bool ep_has_wakeup_source(struct epitem *epi)
653 {
654 	return rcu_access_pointer(epi->ws) ? true : false;
655 }
656 
657 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)658 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
659 {
660 	struct wakeup_source *ws;
661 
662 	rcu_read_lock();
663 	ws = rcu_dereference(epi->ws);
664 	if (ws)
665 		__pm_stay_awake(ws);
666 	rcu_read_unlock();
667 }
668 
669 /**
670  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
671  *                      the scan code, to call f_op->poll(). Also allows for
672  *                      O(NumReady) performance.
673  *
674  * @ep: Pointer to the epoll private data structure.
675  * @sproc: Pointer to the scan callback.
676  * @priv: Private opaque data passed to the @sproc callback.
677  * @depth: The current depth of recursive f_op->poll calls.
678  * @ep_locked: caller already holds ep->mtx
679  *
680  * Returns: The same integer error code returned by the @sproc callback.
681  */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)682 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
683 			      __poll_t (*sproc)(struct eventpoll *,
684 					   struct list_head *, void *),
685 			      void *priv, int depth, bool ep_locked)
686 {
687 	__poll_t res;
688 	struct epitem *epi, *nepi;
689 	LIST_HEAD(txlist);
690 
691 	lockdep_assert_irqs_enabled();
692 
693 	/*
694 	 * We need to lock this because we could be hit by
695 	 * eventpoll_release_file() and epoll_ctl().
696 	 */
697 
698 	if (!ep_locked)
699 		mutex_lock_nested(&ep->mtx, depth);
700 
701 	/*
702 	 * Steal the ready list, and re-init the original one to the
703 	 * empty list. Also, set ep->ovflist to NULL so that events
704 	 * happening while looping w/out locks, are not lost. We cannot
705 	 * have the poll callback to queue directly on ep->rdllist,
706 	 * because we want the "sproc" callback to be able to do it
707 	 * in a lockless way.
708 	 */
709 	write_lock_irq(&ep->lock);
710 	list_splice_init(&ep->rdllist, &txlist);
711 	WRITE_ONCE(ep->ovflist, NULL);
712 	write_unlock_irq(&ep->lock);
713 
714 	/*
715 	 * Now call the callback function.
716 	 */
717 	res = (*sproc)(ep, &txlist, priv);
718 
719 	write_lock_irq(&ep->lock);
720 	/*
721 	 * During the time we spent inside the "sproc" callback, some
722 	 * other events might have been queued by the poll callback.
723 	 * We re-insert them inside the main ready-list here.
724 	 */
725 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
726 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
727 		/*
728 		 * We need to check if the item is already in the list.
729 		 * During the "sproc" callback execution time, items are
730 		 * queued into ->ovflist but the "txlist" might already
731 		 * contain them, and the list_splice() below takes care of them.
732 		 */
733 		if (!ep_is_linked(epi)) {
734 			/*
735 			 * ->ovflist is LIFO, so we have to reverse it in order
736 			 * to keep in FIFO.
737 			 */
738 			list_add(&epi->rdllink, &ep->rdllist);
739 			ep_pm_stay_awake(epi);
740 		}
741 	}
742 	/*
743 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
744 	 * releasing the lock, events will be queued in the normal way inside
745 	 * ep->rdllist.
746 	 */
747 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
748 
749 	/*
750 	 * Quickly re-inject items left on "txlist".
751 	 */
752 	list_splice(&txlist, &ep->rdllist);
753 	__pm_relax(ep->ws);
754 
755 	if (!list_empty(&ep->rdllist)) {
756 		if (waitqueue_active(&ep->wq))
757 			wake_up(&ep->wq);
758 	}
759 
760 	write_unlock_irq(&ep->lock);
761 
762 	if (!ep_locked)
763 		mutex_unlock(&ep->mtx);
764 
765 	return res;
766 }
767 
epi_rcu_free(struct rcu_head * head)768 static void epi_rcu_free(struct rcu_head *head)
769 {
770 	struct epitem *epi = container_of(head, struct epitem, rcu);
771 	kmem_cache_free(epi_cache, epi);
772 }
773 
774 /*
775  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
776  * all the associated resources. Must be called with "mtx" held.
777  */
ep_remove(struct eventpoll * ep,struct epitem * epi)778 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
779 {
780 	struct file *file = epi->ffd.file;
781 
782 	lockdep_assert_irqs_enabled();
783 
784 	/*
785 	 * Removes poll wait queue hooks.
786 	 */
787 	ep_unregister_pollwait(ep, epi);
788 
789 	/* Remove the current item from the list of epoll hooks */
790 	spin_lock(&file->f_lock);
791 	list_del_rcu(&epi->fllink);
792 	spin_unlock(&file->f_lock);
793 
794 	rb_erase_cached(&epi->rbn, &ep->rbr);
795 
796 	write_lock_irq(&ep->lock);
797 	if (ep_is_linked(epi))
798 		list_del_init(&epi->rdllink);
799 	write_unlock_irq(&ep->lock);
800 
801 	wakeup_source_unregister(ep_wakeup_source(epi));
802 	/*
803 	 * At this point it is safe to free the eventpoll item. Use the union
804 	 * field epi->rcu, since we are trying to minimize the size of
805 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
806 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
807 	 * use of the rbn field.
808 	 */
809 	call_rcu(&epi->rcu, epi_rcu_free);
810 
811 	atomic_long_dec(&ep->user->epoll_watches);
812 
813 	return 0;
814 }
815 
ep_free(struct eventpoll * ep)816 static void ep_free(struct eventpoll *ep)
817 {
818 	struct rb_node *rbp;
819 	struct epitem *epi;
820 
821 	/* We need to release all tasks waiting for these file */
822 	if (waitqueue_active(&ep->poll_wait))
823 		ep_poll_safewake(ep, NULL, 0);
824 
825 	/*
826 	 * We need to lock this because we could be hit by
827 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
828 	 * We do not need to hold "ep->mtx" here because the epoll file
829 	 * is on the way to be removed and no one has references to it
830 	 * anymore. The only hit might come from eventpoll_release_file() but
831 	 * holding "epmutex" is sufficient here.
832 	 */
833 	mutex_lock(&epmutex);
834 
835 	/*
836 	 * Walks through the whole tree by unregistering poll callbacks.
837 	 */
838 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
839 		epi = rb_entry(rbp, struct epitem, rbn);
840 
841 		ep_unregister_pollwait(ep, epi);
842 		cond_resched();
843 	}
844 
845 	/*
846 	 * Walks through the whole tree by freeing each "struct epitem". At this
847 	 * point we are sure no poll callbacks will be lingering around, and also by
848 	 * holding "epmutex" we can be sure that no file cleanup code will hit
849 	 * us during this operation. So we can avoid the lock on "ep->lock".
850 	 * We do not need to lock ep->mtx, either, we only do it to prevent
851 	 * a lockdep warning.
852 	 */
853 	mutex_lock(&ep->mtx);
854 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
855 		epi = rb_entry(rbp, struct epitem, rbn);
856 		ep_remove(ep, epi);
857 		cond_resched();
858 	}
859 	mutex_unlock(&ep->mtx);
860 
861 	mutex_unlock(&epmutex);
862 	mutex_destroy(&ep->mtx);
863 	free_uid(ep->user);
864 	wakeup_source_unregister(ep->ws);
865 	kfree(ep);
866 }
867 
ep_eventpoll_release(struct inode * inode,struct file * file)868 static int ep_eventpoll_release(struct inode *inode, struct file *file)
869 {
870 	struct eventpoll *ep = file->private_data;
871 
872 	if (ep)
873 		ep_free(ep);
874 
875 	return 0;
876 }
877 
878 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
879 			       void *priv);
880 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
881 				 poll_table *pt);
882 
883 /*
884  * Differs from ep_eventpoll_poll() in that internal callers already have
885  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
886  * is correctly annotated.
887  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)888 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
889 				 int depth)
890 {
891 	struct eventpoll *ep;
892 	bool locked;
893 
894 	pt->_key = epi->event.events;
895 	if (!is_file_epoll(epi->ffd.file))
896 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
897 
898 	ep = epi->ffd.file->private_data;
899 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
900 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
901 
902 	return ep_scan_ready_list(epi->ffd.file->private_data,
903 				  ep_read_events_proc, &depth, depth,
904 				  locked) & epi->event.events;
905 }
906 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)907 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
908 			       void *priv)
909 {
910 	struct epitem *epi, *tmp;
911 	poll_table pt;
912 	int depth = *(int *)priv;
913 
914 	init_poll_funcptr(&pt, NULL);
915 	depth++;
916 
917 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
918 		if (ep_item_poll(epi, &pt, depth)) {
919 			return EPOLLIN | EPOLLRDNORM;
920 		} else {
921 			/*
922 			 * Item has been dropped into the ready list by the poll
923 			 * callback, but it's not actually ready, as far as
924 			 * caller requested events goes. We can remove it here.
925 			 */
926 			__pm_relax(ep_wakeup_source(epi));
927 			list_del_init(&epi->rdllink);
928 		}
929 	}
930 
931 	return 0;
932 }
933 
ep_eventpoll_poll(struct file * file,poll_table * wait)934 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
935 {
936 	struct eventpoll *ep = file->private_data;
937 	int depth = 0;
938 
939 	/* Insert inside our poll wait queue */
940 	poll_wait(file, &ep->poll_wait, wait);
941 
942 	/*
943 	 * Proceed to find out if wanted events are really available inside
944 	 * the ready list.
945 	 */
946 	return ep_scan_ready_list(ep, ep_read_events_proc,
947 				  &depth, depth, false);
948 }
949 
950 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)951 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
952 {
953 	struct eventpoll *ep = f->private_data;
954 	struct rb_node *rbp;
955 
956 	mutex_lock(&ep->mtx);
957 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
958 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
959 		struct inode *inode = file_inode(epi->ffd.file);
960 
961 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
962 			   " pos:%lli ino:%lx sdev:%x\n",
963 			   epi->ffd.fd, epi->event.events,
964 			   (long long)epi->event.data,
965 			   (long long)epi->ffd.file->f_pos,
966 			   inode->i_ino, inode->i_sb->s_dev);
967 		if (seq_has_overflowed(m))
968 			break;
969 	}
970 	mutex_unlock(&ep->mtx);
971 }
972 #endif
973 
974 /* File callbacks that implement the eventpoll file behaviour */
975 static const struct file_operations eventpoll_fops = {
976 #ifdef CONFIG_PROC_FS
977 	.show_fdinfo	= ep_show_fdinfo,
978 #endif
979 	.release	= ep_eventpoll_release,
980 	.poll		= ep_eventpoll_poll,
981 	.llseek		= noop_llseek,
982 };
983 
984 /*
985  * This is called from eventpoll_release() to unlink files from the eventpoll
986  * interface. We need to have this facility to cleanup correctly files that are
987  * closed without being removed from the eventpoll interface.
988  */
eventpoll_release_file(struct file * file)989 void eventpoll_release_file(struct file *file)
990 {
991 	struct eventpoll *ep;
992 	struct epitem *epi, *next;
993 
994 	/*
995 	 * We don't want to get "file->f_lock" because it is not
996 	 * necessary. It is not necessary because we're in the "struct file"
997 	 * cleanup path, and this means that no one is using this file anymore.
998 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
999 	 * point, the file counter already went to zero and fget() would fail.
1000 	 * The only hit might come from ep_free() but by holding the mutex
1001 	 * will correctly serialize the operation. We do need to acquire
1002 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1003 	 * from anywhere but ep_free().
1004 	 *
1005 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1006 	 */
1007 	mutex_lock(&epmutex);
1008 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1009 		ep = epi->ep;
1010 		mutex_lock_nested(&ep->mtx, 0);
1011 		ep_remove(ep, epi);
1012 		mutex_unlock(&ep->mtx);
1013 	}
1014 	mutex_unlock(&epmutex);
1015 }
1016 
ep_alloc(struct eventpoll ** pep)1017 static int ep_alloc(struct eventpoll **pep)
1018 {
1019 	int error;
1020 	struct user_struct *user;
1021 	struct eventpoll *ep;
1022 
1023 	user = get_current_user();
1024 	error = -ENOMEM;
1025 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1026 	if (unlikely(!ep))
1027 		goto free_uid;
1028 
1029 	mutex_init(&ep->mtx);
1030 	rwlock_init(&ep->lock);
1031 	init_waitqueue_head(&ep->wq);
1032 	init_waitqueue_head(&ep->poll_wait);
1033 	INIT_LIST_HEAD(&ep->rdllist);
1034 	ep->rbr = RB_ROOT_CACHED;
1035 	ep->ovflist = EP_UNACTIVE_PTR;
1036 	ep->user = user;
1037 
1038 	*pep = ep;
1039 
1040 	return 0;
1041 
1042 free_uid:
1043 	free_uid(user);
1044 	return error;
1045 }
1046 
1047 /*
1048  * Search the file inside the eventpoll tree. The RB tree operations
1049  * are protected by the "mtx" mutex, and ep_find() must be called with
1050  * "mtx" held.
1051  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1052 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1053 {
1054 	int kcmp;
1055 	struct rb_node *rbp;
1056 	struct epitem *epi, *epir = NULL;
1057 	struct epoll_filefd ffd;
1058 
1059 	ep_set_ffd(&ffd, file, fd);
1060 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1061 		epi = rb_entry(rbp, struct epitem, rbn);
1062 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1063 		if (kcmp > 0)
1064 			rbp = rbp->rb_right;
1065 		else if (kcmp < 0)
1066 			rbp = rbp->rb_left;
1067 		else {
1068 			epir = epi;
1069 			break;
1070 		}
1071 	}
1072 
1073 	return epir;
1074 }
1075 
1076 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1077 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1078 {
1079 	struct rb_node *rbp;
1080 	struct epitem *epi;
1081 
1082 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1083 		epi = rb_entry(rbp, struct epitem, rbn);
1084 		if (epi->ffd.fd == tfd) {
1085 			if (toff == 0)
1086 				return epi;
1087 			else
1088 				toff--;
1089 		}
1090 		cond_resched();
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1096 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1097 				     unsigned long toff)
1098 {
1099 	struct file *file_raw;
1100 	struct eventpoll *ep;
1101 	struct epitem *epi;
1102 
1103 	if (!is_file_epoll(file))
1104 		return ERR_PTR(-EINVAL);
1105 
1106 	ep = file->private_data;
1107 
1108 	mutex_lock(&ep->mtx);
1109 	epi = ep_find_tfd(ep, tfd, toff);
1110 	if (epi)
1111 		file_raw = epi->ffd.file;
1112 	else
1113 		file_raw = ERR_PTR(-ENOENT);
1114 	mutex_unlock(&ep->mtx);
1115 
1116 	return file_raw;
1117 }
1118 #endif /* CONFIG_KCMP */
1119 
1120 /**
1121  * Adds a new entry to the tail of the list in a lockless way, i.e.
1122  * multiple CPUs are allowed to call this function concurrently.
1123  *
1124  * Beware: it is necessary to prevent any other modifications of the
1125  *         existing list until all changes are completed, in other words
1126  *         concurrent list_add_tail_lockless() calls should be protected
1127  *         with a read lock, where write lock acts as a barrier which
1128  *         makes sure all list_add_tail_lockless() calls are fully
1129  *         completed.
1130  *
1131  *        Also an element can be locklessly added to the list only in one
1132  *        direction i.e. either to the tail either to the head, otherwise
1133  *        concurrent access will corrupt the list.
1134  *
1135  * Returns %false if element has been already added to the list, %true
1136  * otherwise.
1137  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1138 static inline bool list_add_tail_lockless(struct list_head *new,
1139 					  struct list_head *head)
1140 {
1141 	struct list_head *prev;
1142 
1143 	/*
1144 	 * This is simple 'new->next = head' operation, but cmpxchg()
1145 	 * is used in order to detect that same element has been just
1146 	 * added to the list from another CPU: the winner observes
1147 	 * new->next == new.
1148 	 */
1149 	if (cmpxchg(&new->next, new, head) != new)
1150 		return false;
1151 
1152 	/*
1153 	 * Initially ->next of a new element must be updated with the head
1154 	 * (we are inserting to the tail) and only then pointers are atomically
1155 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1156 	 * updated before pointers are actually swapped and pointers are
1157 	 * swapped before prev->next is updated.
1158 	 */
1159 
1160 	prev = xchg(&head->prev, new);
1161 
1162 	/*
1163 	 * It is safe to modify prev->next and new->prev, because a new element
1164 	 * is added only to the tail and new->next is updated before XCHG.
1165 	 */
1166 
1167 	prev->next = new;
1168 	new->prev = prev;
1169 
1170 	return true;
1171 }
1172 
1173 /**
1174  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1175  * i.e. multiple CPUs are allowed to call this function concurrently.
1176  *
1177  * Returns %false if epi element has been already chained, %true otherwise.
1178  */
chain_epi_lockless(struct epitem * epi)1179 static inline bool chain_epi_lockless(struct epitem *epi)
1180 {
1181 	struct eventpoll *ep = epi->ep;
1182 
1183 	/* Fast preliminary check */
1184 	if (epi->next != EP_UNACTIVE_PTR)
1185 		return false;
1186 
1187 	/* Check that the same epi has not been just chained from another CPU */
1188 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1189 		return false;
1190 
1191 	/* Atomically exchange tail */
1192 	epi->next = xchg(&ep->ovflist, epi);
1193 
1194 	return true;
1195 }
1196 
1197 /*
1198  * This is the callback that is passed to the wait queue wakeup
1199  * mechanism. It is called by the stored file descriptors when they
1200  * have events to report.
1201  *
1202  * This callback takes a read lock in order not to content with concurrent
1203  * events from another file descriptors, thus all modifications to ->rdllist
1204  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1205  * ep_scan_ready_list(), which stops all list modifications and guarantees
1206  * that lists state is seen correctly.
1207  *
1208  * Another thing worth to mention is that ep_poll_callback() can be called
1209  * concurrently for the same @epi from different CPUs if poll table was inited
1210  * with several wait queues entries.  Plural wakeup from different CPUs of a
1211  * single wait queue is serialized by wq.lock, but the case when multiple wait
1212  * queues are used should be detected accordingly.  This is detected using
1213  * cmpxchg() operation.
1214  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1215 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1216 {
1217 	int pwake = 0;
1218 	struct epitem *epi = ep_item_from_wait(wait);
1219 	struct eventpoll *ep = epi->ep;
1220 	__poll_t pollflags = key_to_poll(key);
1221 	unsigned long flags;
1222 	int ewake = 0;
1223 
1224 	read_lock_irqsave(&ep->lock, flags);
1225 
1226 	ep_set_busy_poll_napi_id(epi);
1227 
1228 	/*
1229 	 * If the event mask does not contain any poll(2) event, we consider the
1230 	 * descriptor to be disabled. This condition is likely the effect of the
1231 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1232 	 * until the next EPOLL_CTL_MOD will be issued.
1233 	 */
1234 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * Check the events coming with the callback. At this stage, not
1239 	 * every device reports the events in the "key" parameter of the
1240 	 * callback. We need to be able to handle both cases here, hence the
1241 	 * test for "key" != NULL before the event match test.
1242 	 */
1243 	if (pollflags && !(pollflags & epi->event.events))
1244 		goto out_unlock;
1245 
1246 	/*
1247 	 * If we are transferring events to userspace, we can hold no locks
1248 	 * (because we're accessing user memory, and because of linux f_op->poll()
1249 	 * semantics). All the events that happen during that period of time are
1250 	 * chained in ep->ovflist and requeued later on.
1251 	 */
1252 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1253 		if (chain_epi_lockless(epi))
1254 			ep_pm_stay_awake_rcu(epi);
1255 	} else if (!ep_is_linked(epi)) {
1256 		/* In the usual case, add event to ready list. */
1257 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1258 			ep_pm_stay_awake_rcu(epi);
1259 	}
1260 
1261 	/*
1262 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1263 	 * wait list.
1264 	 */
1265 	if (waitqueue_active(&ep->wq)) {
1266 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1267 					!(pollflags & POLLFREE)) {
1268 			switch (pollflags & EPOLLINOUT_BITS) {
1269 			case EPOLLIN:
1270 				if (epi->event.events & EPOLLIN)
1271 					ewake = 1;
1272 				break;
1273 			case EPOLLOUT:
1274 				if (epi->event.events & EPOLLOUT)
1275 					ewake = 1;
1276 				break;
1277 			case 0:
1278 				ewake = 1;
1279 				break;
1280 			}
1281 		}
1282 		wake_up(&ep->wq);
1283 	}
1284 	if (waitqueue_active(&ep->poll_wait))
1285 		pwake++;
1286 
1287 out_unlock:
1288 	read_unlock_irqrestore(&ep->lock, flags);
1289 
1290 	/* We have to call this outside the lock */
1291 	if (pwake)
1292 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1293 
1294 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1295 		ewake = 1;
1296 
1297 	if (pollflags & POLLFREE) {
1298 		/*
1299 		 * If we race with ep_remove_wait_queue() it can miss
1300 		 * ->whead = NULL and do another remove_wait_queue() after
1301 		 * us, so we can't use __remove_wait_queue().
1302 		 */
1303 		list_del_init(&wait->entry);
1304 		/*
1305 		 * ->whead != NULL protects us from the race with ep_free()
1306 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1307 		 * held by the caller. Once we nullify it, nothing protects
1308 		 * ep/epi or even wait.
1309 		 */
1310 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1311 	}
1312 
1313 	return ewake;
1314 }
1315 
1316 /*
1317  * This is the callback that is used to add our wait queue to the
1318  * target file wakeup lists.
1319  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1320 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1321 				 poll_table *pt)
1322 {
1323 	struct epitem *epi = ep_item_from_epqueue(pt);
1324 	struct eppoll_entry *pwq;
1325 
1326 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1327 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1328 		pwq->whead = whead;
1329 		pwq->base = epi;
1330 		if (epi->event.events & EPOLLEXCLUSIVE)
1331 			add_wait_queue_exclusive(whead, &pwq->wait);
1332 		else
1333 			add_wait_queue(whead, &pwq->wait);
1334 		list_add_tail(&pwq->llink, &epi->pwqlist);
1335 		epi->nwait++;
1336 	} else {
1337 		/* We have to signal that an error occurred */
1338 		epi->nwait = -1;
1339 	}
1340 }
1341 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1342 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1343 {
1344 	int kcmp;
1345 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1346 	struct epitem *epic;
1347 	bool leftmost = true;
1348 
1349 	while (*p) {
1350 		parent = *p;
1351 		epic = rb_entry(parent, struct epitem, rbn);
1352 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1353 		if (kcmp > 0) {
1354 			p = &parent->rb_right;
1355 			leftmost = false;
1356 		} else
1357 			p = &parent->rb_left;
1358 	}
1359 	rb_link_node(&epi->rbn, parent, p);
1360 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1361 }
1362 
1363 
1364 
1365 #define PATH_ARR_SIZE 5
1366 /*
1367  * These are the number paths of length 1 to 5, that we are allowing to emanate
1368  * from a single file of interest. For example, we allow 1000 paths of length
1369  * 1, to emanate from each file of interest. This essentially represents the
1370  * potential wakeup paths, which need to be limited in order to avoid massive
1371  * uncontrolled wakeup storms. The common use case should be a single ep which
1372  * is connected to n file sources. In this case each file source has 1 path
1373  * of length 1. Thus, the numbers below should be more than sufficient. These
1374  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1375  * and delete can't add additional paths. Protected by the epmutex.
1376  */
1377 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1378 static int path_count[PATH_ARR_SIZE];
1379 
path_count_inc(int nests)1380 static int path_count_inc(int nests)
1381 {
1382 	/* Allow an arbitrary number of depth 1 paths */
1383 	if (nests == 0)
1384 		return 0;
1385 
1386 	if (++path_count[nests] > path_limits[nests])
1387 		return -1;
1388 	return 0;
1389 }
1390 
path_count_init(void)1391 static void path_count_init(void)
1392 {
1393 	int i;
1394 
1395 	for (i = 0; i < PATH_ARR_SIZE; i++)
1396 		path_count[i] = 0;
1397 }
1398 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1399 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1400 {
1401 	int error = 0;
1402 	struct file *file = priv;
1403 	struct file *child_file;
1404 	struct epitem *epi;
1405 
1406 	/* CTL_DEL can remove links here, but that can't increase our count */
1407 	rcu_read_lock();
1408 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1409 		child_file = epi->ep->file;
1410 		if (is_file_epoll(child_file)) {
1411 			if (list_empty(&child_file->f_ep_links)) {
1412 				if (path_count_inc(call_nests)) {
1413 					error = -1;
1414 					break;
1415 				}
1416 			} else {
1417 				error = ep_call_nested(&poll_loop_ncalls,
1418 							reverse_path_check_proc,
1419 							child_file, child_file,
1420 							current);
1421 			}
1422 			if (error != 0)
1423 				break;
1424 		} else {
1425 			printk(KERN_ERR "reverse_path_check_proc: "
1426 				"file is not an ep!\n");
1427 		}
1428 	}
1429 	rcu_read_unlock();
1430 	return error;
1431 }
1432 
1433 /**
1434  * reverse_path_check - The tfile_check_list is list of file *, which have
1435  *                      links that are proposed to be newly added. We need to
1436  *                      make sure that those added links don't add too many
1437  *                      paths such that we will spend all our time waking up
1438  *                      eventpoll objects.
1439  *
1440  * Returns: Returns zero if the proposed links don't create too many paths,
1441  *	    -1 otherwise.
1442  */
reverse_path_check(void)1443 static int reverse_path_check(void)
1444 {
1445 	int error = 0;
1446 	struct file *current_file;
1447 
1448 	/* let's call this for all tfiles */
1449 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1450 		path_count_init();
1451 		error = ep_call_nested(&poll_loop_ncalls,
1452 					reverse_path_check_proc, current_file,
1453 					current_file, current);
1454 		if (error)
1455 			break;
1456 	}
1457 	return error;
1458 }
1459 
ep_create_wakeup_source(struct epitem * epi)1460 static int ep_create_wakeup_source(struct epitem *epi)
1461 {
1462 	struct name_snapshot n;
1463 	struct wakeup_source *ws;
1464 	char ws_name[64];
1465 
1466 	strlcpy(ws_name, "eventpoll", sizeof(ws_name));
1467 	trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1468 	if (!epi->ep->ws) {
1469 		epi->ep->ws = wakeup_source_register(NULL, ws_name);
1470 		if (!epi->ep->ws)
1471 			return -ENOMEM;
1472 	}
1473 
1474 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1475 	strlcpy(ws_name, n.name.name, sizeof(ws_name));
1476 	trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1477 	ws = wakeup_source_register(NULL, ws_name);
1478 	release_dentry_name_snapshot(&n);
1479 
1480 	if (!ws)
1481 		return -ENOMEM;
1482 	rcu_assign_pointer(epi->ws, ws);
1483 
1484 	return 0;
1485 }
1486 
1487 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1488 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1489 {
1490 	struct wakeup_source *ws = ep_wakeup_source(epi);
1491 
1492 	RCU_INIT_POINTER(epi->ws, NULL);
1493 
1494 	/*
1495 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1496 	 * used internally by wakeup_source_remove, too (called by
1497 	 * wakeup_source_unregister), so we cannot use call_rcu
1498 	 */
1499 	synchronize_rcu();
1500 	wakeup_source_unregister(ws);
1501 }
1502 
1503 /*
1504  * Must be called with "mtx" held.
1505  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1506 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1507 		     struct file *tfile, int fd, int full_check)
1508 {
1509 	int error, pwake = 0;
1510 	__poll_t revents;
1511 	long user_watches;
1512 	struct epitem *epi;
1513 	struct ep_pqueue epq;
1514 
1515 	lockdep_assert_irqs_enabled();
1516 
1517 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1518 	if (unlikely(user_watches >= max_user_watches))
1519 		return -ENOSPC;
1520 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1521 		return -ENOMEM;
1522 
1523 	/* Item initialization follow here ... */
1524 	INIT_LIST_HEAD(&epi->rdllink);
1525 	INIT_LIST_HEAD(&epi->fllink);
1526 	INIT_LIST_HEAD(&epi->pwqlist);
1527 	epi->ep = ep;
1528 	ep_set_ffd(&epi->ffd, tfile, fd);
1529 	epi->event = *event;
1530 	epi->nwait = 0;
1531 	epi->next = EP_UNACTIVE_PTR;
1532 	if (epi->event.events & EPOLLWAKEUP) {
1533 		error = ep_create_wakeup_source(epi);
1534 		if (error)
1535 			goto error_create_wakeup_source;
1536 	} else {
1537 		RCU_INIT_POINTER(epi->ws, NULL);
1538 	}
1539 
1540 	/* Add the current item to the list of active epoll hook for this file */
1541 	spin_lock(&tfile->f_lock);
1542 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1543 	spin_unlock(&tfile->f_lock);
1544 
1545 	/*
1546 	 * Add the current item to the RB tree. All RB tree operations are
1547 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1548 	 */
1549 	ep_rbtree_insert(ep, epi);
1550 
1551 	/* now check if we've created too many backpaths */
1552 	error = -EINVAL;
1553 	if (full_check && reverse_path_check())
1554 		goto error_remove_epi;
1555 
1556 	/* Initialize the poll table using the queue callback */
1557 	epq.epi = epi;
1558 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1559 
1560 	/*
1561 	 * Attach the item to the poll hooks and get current event bits.
1562 	 * We can safely use the file* here because its usage count has
1563 	 * been increased by the caller of this function. Note that after
1564 	 * this operation completes, the poll callback can start hitting
1565 	 * the new item.
1566 	 */
1567 	revents = ep_item_poll(epi, &epq.pt, 1);
1568 
1569 	/*
1570 	 * We have to check if something went wrong during the poll wait queue
1571 	 * install process. Namely an allocation for a wait queue failed due
1572 	 * high memory pressure.
1573 	 */
1574 	error = -ENOMEM;
1575 	if (epi->nwait < 0)
1576 		goto error_unregister;
1577 
1578 	/* We have to drop the new item inside our item list to keep track of it */
1579 	write_lock_irq(&ep->lock);
1580 
1581 	/* record NAPI ID of new item if present */
1582 	ep_set_busy_poll_napi_id(epi);
1583 
1584 	/* If the file is already "ready" we drop it inside the ready list */
1585 	if (revents && !ep_is_linked(epi)) {
1586 		list_add_tail(&epi->rdllink, &ep->rdllist);
1587 		ep_pm_stay_awake(epi);
1588 
1589 		/* Notify waiting tasks that events are available */
1590 		if (waitqueue_active(&ep->wq))
1591 			wake_up(&ep->wq);
1592 		if (waitqueue_active(&ep->poll_wait))
1593 			pwake++;
1594 	}
1595 
1596 	write_unlock_irq(&ep->lock);
1597 
1598 	atomic_long_inc(&ep->user->epoll_watches);
1599 
1600 	/* We have to call this outside the lock */
1601 	if (pwake)
1602 		ep_poll_safewake(ep, NULL, 0);
1603 
1604 	return 0;
1605 
1606 error_unregister:
1607 	ep_unregister_pollwait(ep, epi);
1608 error_remove_epi:
1609 	spin_lock(&tfile->f_lock);
1610 	list_del_rcu(&epi->fllink);
1611 	spin_unlock(&tfile->f_lock);
1612 
1613 	rb_erase_cached(&epi->rbn, &ep->rbr);
1614 
1615 	/*
1616 	 * We need to do this because an event could have been arrived on some
1617 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1618 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1619 	 * And ep_insert() is called with "mtx" held.
1620 	 */
1621 	write_lock_irq(&ep->lock);
1622 	if (ep_is_linked(epi))
1623 		list_del_init(&epi->rdllink);
1624 	write_unlock_irq(&ep->lock);
1625 
1626 	wakeup_source_unregister(ep_wakeup_source(epi));
1627 
1628 error_create_wakeup_source:
1629 	kmem_cache_free(epi_cache, epi);
1630 
1631 	return error;
1632 }
1633 
1634 /*
1635  * Modify the interest event mask by dropping an event if the new mask
1636  * has a match in the current file status. Must be called with "mtx" held.
1637  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1638 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1639 		     const struct epoll_event *event)
1640 {
1641 	int pwake = 0;
1642 	poll_table pt;
1643 
1644 	lockdep_assert_irqs_enabled();
1645 
1646 	init_poll_funcptr(&pt, NULL);
1647 
1648 	/*
1649 	 * Set the new event interest mask before calling f_op->poll();
1650 	 * otherwise we might miss an event that happens between the
1651 	 * f_op->poll() call and the new event set registering.
1652 	 */
1653 	epi->event.events = event->events; /* need barrier below */
1654 	epi->event.data = event->data; /* protected by mtx */
1655 	if (epi->event.events & EPOLLWAKEUP) {
1656 		if (!ep_has_wakeup_source(epi))
1657 			ep_create_wakeup_source(epi);
1658 	} else if (ep_has_wakeup_source(epi)) {
1659 		ep_destroy_wakeup_source(epi);
1660 	}
1661 
1662 	/*
1663 	 * The following barrier has two effects:
1664 	 *
1665 	 * 1) Flush epi changes above to other CPUs.  This ensures
1666 	 *    we do not miss events from ep_poll_callback if an
1667 	 *    event occurs immediately after we call f_op->poll().
1668 	 *    We need this because we did not take ep->lock while
1669 	 *    changing epi above (but ep_poll_callback does take
1670 	 *    ep->lock).
1671 	 *
1672 	 * 2) We also need to ensure we do not miss _past_ events
1673 	 *    when calling f_op->poll().  This barrier also
1674 	 *    pairs with the barrier in wq_has_sleeper (see
1675 	 *    comments for wq_has_sleeper).
1676 	 *
1677 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1678 	 * (or both) will notice the readiness of an item.
1679 	 */
1680 	smp_mb();
1681 
1682 	/*
1683 	 * Get current event bits. We can safely use the file* here because
1684 	 * its usage count has been increased by the caller of this function.
1685 	 * If the item is "hot" and it is not registered inside the ready
1686 	 * list, push it inside.
1687 	 */
1688 	if (ep_item_poll(epi, &pt, 1)) {
1689 		write_lock_irq(&ep->lock);
1690 		if (!ep_is_linked(epi)) {
1691 			list_add_tail(&epi->rdllink, &ep->rdllist);
1692 			ep_pm_stay_awake(epi);
1693 
1694 			/* Notify waiting tasks that events are available */
1695 			if (waitqueue_active(&ep->wq))
1696 				wake_up(&ep->wq);
1697 			if (waitqueue_active(&ep->poll_wait))
1698 				pwake++;
1699 		}
1700 		write_unlock_irq(&ep->lock);
1701 	}
1702 
1703 	/* We have to call this outside the lock */
1704 	if (pwake)
1705 		ep_poll_safewake(ep, NULL, 0);
1706 
1707 	return 0;
1708 }
1709 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1710 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1711 			       void *priv)
1712 {
1713 	struct ep_send_events_data *esed = priv;
1714 	__poll_t revents;
1715 	struct epitem *epi, *tmp;
1716 	struct epoll_event __user *uevent = esed->events;
1717 	struct wakeup_source *ws;
1718 	poll_table pt;
1719 
1720 	init_poll_funcptr(&pt, NULL);
1721 	esed->res = 0;
1722 
1723 	/*
1724 	 * We can loop without lock because we are passed a task private list.
1725 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1726 	 * holding "mtx" during this call.
1727 	 */
1728 	lockdep_assert_held(&ep->mtx);
1729 
1730 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1731 		if (esed->res >= esed->maxevents)
1732 			break;
1733 
1734 		/*
1735 		 * Activate ep->ws before deactivating epi->ws to prevent
1736 		 * triggering auto-suspend here (in case we reactive epi->ws
1737 		 * below).
1738 		 *
1739 		 * This could be rearranged to delay the deactivation of epi->ws
1740 		 * instead, but then epi->ws would temporarily be out of sync
1741 		 * with ep_is_linked().
1742 		 */
1743 		ws = ep_wakeup_source(epi);
1744 		if (ws) {
1745 			if (ws->active)
1746 				__pm_stay_awake(ep->ws);
1747 			__pm_relax(ws);
1748 		}
1749 
1750 		list_del_init(&epi->rdllink);
1751 
1752 		/*
1753 		 * If the event mask intersect the caller-requested one,
1754 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1755 		 * is holding ep->mtx, so no operations coming from userspace
1756 		 * can change the item.
1757 		 */
1758 		revents = ep_item_poll(epi, &pt, 1);
1759 		if (!revents)
1760 			continue;
1761 
1762 		if (__put_user(revents, &uevent->events) ||
1763 		    __put_user(epi->event.data, &uevent->data)) {
1764 			list_add(&epi->rdllink, head);
1765 			ep_pm_stay_awake(epi);
1766 			if (!esed->res)
1767 				esed->res = -EFAULT;
1768 			return 0;
1769 		}
1770 		esed->res++;
1771 		uevent++;
1772 		if (epi->event.events & EPOLLONESHOT)
1773 			epi->event.events &= EP_PRIVATE_BITS;
1774 		else if (!(epi->event.events & EPOLLET)) {
1775 			/*
1776 			 * If this file has been added with Level
1777 			 * Trigger mode, we need to insert back inside
1778 			 * the ready list, so that the next call to
1779 			 * epoll_wait() will check again the events
1780 			 * availability. At this point, no one can insert
1781 			 * into ep->rdllist besides us. The epoll_ctl()
1782 			 * callers are locked out by
1783 			 * ep_scan_ready_list() holding "mtx" and the
1784 			 * poll callback will queue them in ep->ovflist.
1785 			 */
1786 			list_add_tail(&epi->rdllink, &ep->rdllist);
1787 			ep_pm_stay_awake(epi);
1788 		}
1789 	}
1790 
1791 	return 0;
1792 }
1793 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1794 static int ep_send_events(struct eventpoll *ep,
1795 			  struct epoll_event __user *events, int maxevents)
1796 {
1797 	struct ep_send_events_data esed;
1798 
1799 	esed.maxevents = maxevents;
1800 	esed.events = events;
1801 
1802 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1803 	return esed.res;
1804 }
1805 
ep_set_mstimeout(long ms)1806 static inline struct timespec64 ep_set_mstimeout(long ms)
1807 {
1808 	struct timespec64 now, ts = {
1809 		.tv_sec = ms / MSEC_PER_SEC,
1810 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1811 	};
1812 
1813 	ktime_get_ts64(&now);
1814 	return timespec64_add_safe(now, ts);
1815 }
1816 
1817 /*
1818  * autoremove_wake_function, but remove even on failure to wake up, because we
1819  * know that default_wake_function/ttwu will only fail if the thread is already
1820  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1821  * try to reuse it.
1822  */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1823 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1824 				       unsigned int mode, int sync, void *key)
1825 {
1826 	int ret = default_wake_function(wq_entry, mode, sync, key);
1827 
1828 	/*
1829 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1830 	 * iterations see the cause of this wakeup.
1831 	 */
1832 	list_del_init_careful(&wq_entry->entry);
1833 	return ret;
1834 }
1835 
1836 /**
1837  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1838  *           event buffer.
1839  *
1840  * @ep: Pointer to the eventpoll context.
1841  * @events: Pointer to the userspace buffer where the ready events should be
1842  *          stored.
1843  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1844  * @timeout: Maximum timeout for the ready events fetch operation, in
1845  *           milliseconds. If the @timeout is zero, the function will not block,
1846  *           while if the @timeout is less than zero, the function will block
1847  *           until at least one event has been retrieved (or an error
1848  *           occurred).
1849  *
1850  * Returns: Returns the number of ready events which have been fetched, or an
1851  *          error code, in case of error.
1852  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1853 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1854 		   int maxevents, long timeout)
1855 {
1856 	int res = 0, eavail, timed_out = 0;
1857 	u64 slack = 0;
1858 	wait_queue_entry_t wait;
1859 	ktime_t expires, *to = NULL;
1860 
1861 	lockdep_assert_irqs_enabled();
1862 
1863 	if (timeout > 0) {
1864 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1865 
1866 		slack = select_estimate_accuracy(&end_time);
1867 		to = &expires;
1868 		*to = timespec64_to_ktime(end_time);
1869 	} else if (timeout == 0) {
1870 		/*
1871 		 * Avoid the unnecessary trip to the wait queue loop, if the
1872 		 * caller specified a non blocking operation. We still need
1873 		 * lock because we could race and not see an epi being added
1874 		 * to the ready list while in irq callback. Thus incorrectly
1875 		 * returning 0 back to userspace.
1876 		 */
1877 		timed_out = 1;
1878 
1879 		write_lock_irq(&ep->lock);
1880 		eavail = ep_events_available(ep);
1881 		write_unlock_irq(&ep->lock);
1882 
1883 		goto send_events;
1884 	}
1885 
1886 fetch_events:
1887 
1888 	if (!ep_events_available(ep))
1889 		ep_busy_loop(ep, timed_out);
1890 
1891 	eavail = ep_events_available(ep);
1892 	if (eavail)
1893 		goto send_events;
1894 
1895 	/*
1896 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1897 	 * it back in when we have moved a socket with a valid NAPI
1898 	 * ID onto the ready list.
1899 	 */
1900 	ep_reset_busy_poll_napi_id(ep);
1901 
1902 	do {
1903 		/*
1904 		 * Internally init_wait() uses autoremove_wake_function(),
1905 		 * thus wait entry is removed from the wait queue on each
1906 		 * wakeup. Why it is important? In case of several waiters
1907 		 * each new wakeup will hit the next waiter, giving it the
1908 		 * chance to harvest new event. Otherwise wakeup can be
1909 		 * lost. This is also good performance-wise, because on
1910 		 * normal wakeup path no need to call __remove_wait_queue()
1911 		 * explicitly, thus ep->lock is not taken, which halts the
1912 		 * event delivery.
1913 		 *
1914 		 * In fact, we now use an even more aggressive function that
1915 		 * unconditionally removes, because we don't reuse the wait
1916 		 * entry between loop iterations. This lets us also avoid the
1917 		 * performance issue if a process is killed, causing all of its
1918 		 * threads to wake up without being removed normally.
1919 		 */
1920 		init_wait(&wait);
1921 		wait.func = ep_autoremove_wake_function;
1922 
1923 		write_lock_irq(&ep->lock);
1924 		/*
1925 		 * Barrierless variant, waitqueue_active() is called under
1926 		 * the same lock on wakeup ep_poll_callback() side, so it
1927 		 * is safe to avoid an explicit barrier.
1928 		 */
1929 		__set_current_state(TASK_INTERRUPTIBLE);
1930 
1931 		/*
1932 		 * Do the final check under the lock. ep_scan_ready_list()
1933 		 * plays with two lists (->rdllist and ->ovflist) and there
1934 		 * is always a race when both lists are empty for short
1935 		 * period of time although events are pending, so lock is
1936 		 * important.
1937 		 */
1938 		eavail = ep_events_available(ep);
1939 		if (!eavail) {
1940 			if (signal_pending(current))
1941 				res = -EINTR;
1942 			else
1943 				__add_wait_queue_exclusive(&ep->wq, &wait);
1944 		}
1945 		write_unlock_irq(&ep->lock);
1946 
1947 		if (!eavail && !res)
1948 			timed_out = !freezable_schedule_hrtimeout_range(to, slack,
1949 									HRTIMER_MODE_ABS);
1950 
1951 		/*
1952 		 * We were woken up, thus go and try to harvest some events.
1953 		 * If timed out and still on the wait queue, recheck eavail
1954 		 * carefully under lock, below.
1955 		 */
1956 		eavail = 1;
1957 	} while (0);
1958 
1959 	__set_current_state(TASK_RUNNING);
1960 
1961 	if (!list_empty_careful(&wait.entry)) {
1962 		write_lock_irq(&ep->lock);
1963 		/*
1964 		 * If the thread timed out and is not on the wait queue, it
1965 		 * means that the thread was woken up after its timeout expired
1966 		 * before it could reacquire the lock. Thus, when wait.entry is
1967 		 * empty, it needs to harvest events.
1968 		 */
1969 		if (timed_out)
1970 			eavail = list_empty(&wait.entry);
1971 		__remove_wait_queue(&ep->wq, &wait);
1972 		write_unlock_irq(&ep->lock);
1973 	}
1974 
1975 send_events:
1976 	if (fatal_signal_pending(current)) {
1977 		/*
1978 		 * Always short-circuit for fatal signals to allow
1979 		 * threads to make a timely exit without the chance of
1980 		 * finding more events available and fetching
1981 		 * repeatedly.
1982 		 */
1983 		res = -EINTR;
1984 	}
1985 	/*
1986 	 * Try to transfer events to user space. In case we get 0 events and
1987 	 * there's still timeout left over, we go trying again in search of
1988 	 * more luck.
1989 	 */
1990 	if (!res && eavail &&
1991 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1992 		goto fetch_events;
1993 
1994 	return res;
1995 }
1996 
1997 /**
1998  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1999  *                      API, to verify that adding an epoll file inside another
2000  *                      epoll structure, does not violate the constraints, in
2001  *                      terms of closed loops, or too deep chains (which can
2002  *                      result in excessive stack usage).
2003  *
2004  * @priv: Pointer to the epoll file to be currently checked.
2005  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
2006  *          data structure pointer.
2007  * @call_nests: Current dept of the @ep_call_nested() call stack.
2008  *
2009  * Returns: Returns zero if adding the epoll @file inside current epoll
2010  *          structure @ep does not violate the constraints, or -1 otherwise.
2011  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)2012 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
2013 {
2014 	int error = 0;
2015 	struct file *file = priv;
2016 	struct eventpoll *ep = file->private_data;
2017 	struct eventpoll *ep_tovisit;
2018 	struct rb_node *rbp;
2019 	struct epitem *epi;
2020 
2021 	mutex_lock_nested(&ep->mtx, call_nests + 1);
2022 	ep->gen = loop_check_gen;
2023 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2024 		epi = rb_entry(rbp, struct epitem, rbn);
2025 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2026 			ep_tovisit = epi->ffd.file->private_data;
2027 			if (ep_tovisit->gen == loop_check_gen)
2028 				continue;
2029 			error = ep_call_nested(&poll_loop_ncalls,
2030 					ep_loop_check_proc, epi->ffd.file,
2031 					ep_tovisit, current);
2032 			if (error != 0)
2033 				break;
2034 		} else {
2035 			/*
2036 			 * If we've reached a file that is not associated with
2037 			 * an ep, then we need to check if the newly added
2038 			 * links are going to add too many wakeup paths. We do
2039 			 * this by adding it to the tfile_check_list, if it's
2040 			 * not already there, and calling reverse_path_check()
2041 			 * during ep_insert().
2042 			 */
2043 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2044 				if (get_file_rcu(epi->ffd.file))
2045 					list_add(&epi->ffd.file->f_tfile_llink,
2046 						 &tfile_check_list);
2047 			}
2048 		}
2049 	}
2050 	mutex_unlock(&ep->mtx);
2051 
2052 	return error;
2053 }
2054 
2055 /**
2056  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2057  *                 another epoll file (represented by @ep) does not create
2058  *                 closed loops or too deep chains.
2059  *
2060  * @ep: Pointer to the epoll private data structure.
2061  * @file: Pointer to the epoll file to be checked.
2062  *
2063  * Returns: Returns zero if adding the epoll @file inside current epoll
2064  *          structure @ep does not violate the constraints, or -1 otherwise.
2065  */
ep_loop_check(struct eventpoll * ep,struct file * file)2066 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2067 {
2068 	return ep_call_nested(&poll_loop_ncalls,
2069 			      ep_loop_check_proc, file, ep, current);
2070 }
2071 
clear_tfile_check_list(void)2072 static void clear_tfile_check_list(void)
2073 {
2074 	struct file *file;
2075 
2076 	/* first clear the tfile_check_list */
2077 	while (!list_empty(&tfile_check_list)) {
2078 		file = list_first_entry(&tfile_check_list, struct file,
2079 					f_tfile_llink);
2080 		list_del_init(&file->f_tfile_llink);
2081 		fput(file);
2082 	}
2083 	INIT_LIST_HEAD(&tfile_check_list);
2084 }
2085 
2086 /*
2087  * Open an eventpoll file descriptor.
2088  */
do_epoll_create(int flags)2089 static int do_epoll_create(int flags)
2090 {
2091 	int error, fd;
2092 	struct eventpoll *ep = NULL;
2093 	struct file *file;
2094 
2095 	/* Check the EPOLL_* constant for consistency.  */
2096 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2097 
2098 	if (flags & ~EPOLL_CLOEXEC)
2099 		return -EINVAL;
2100 	/*
2101 	 * Create the internal data structure ("struct eventpoll").
2102 	 */
2103 	error = ep_alloc(&ep);
2104 	if (error < 0)
2105 		return error;
2106 	/*
2107 	 * Creates all the items needed to setup an eventpoll file. That is,
2108 	 * a file structure and a free file descriptor.
2109 	 */
2110 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2111 	if (fd < 0) {
2112 		error = fd;
2113 		goto out_free_ep;
2114 	}
2115 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2116 				 O_RDWR | (flags & O_CLOEXEC));
2117 	if (IS_ERR(file)) {
2118 		error = PTR_ERR(file);
2119 		goto out_free_fd;
2120 	}
2121 	ep->file = file;
2122 	fd_install(fd, file);
2123 	return fd;
2124 
2125 out_free_fd:
2126 	put_unused_fd(fd);
2127 out_free_ep:
2128 	ep_free(ep);
2129 	return error;
2130 }
2131 
SYSCALL_DEFINE1(epoll_create1,int,flags)2132 SYSCALL_DEFINE1(epoll_create1, int, flags)
2133 {
2134 	return do_epoll_create(flags);
2135 }
2136 
SYSCALL_DEFINE1(epoll_create,int,size)2137 SYSCALL_DEFINE1(epoll_create, int, size)
2138 {
2139 	if (size <= 0)
2140 		return -EINVAL;
2141 
2142 	return do_epoll_create(0);
2143 }
2144 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2145 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2146 				   bool nonblock)
2147 {
2148 	if (!nonblock) {
2149 		mutex_lock_nested(mutex, depth);
2150 		return 0;
2151 	}
2152 	if (mutex_trylock(mutex))
2153 		return 0;
2154 	return -EAGAIN;
2155 }
2156 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2157 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2158 		 bool nonblock)
2159 {
2160 	int error;
2161 	int full_check = 0;
2162 	struct fd f, tf;
2163 	struct eventpoll *ep;
2164 	struct epitem *epi;
2165 	struct eventpoll *tep = NULL;
2166 
2167 	error = -EBADF;
2168 	f = fdget(epfd);
2169 	if (!f.file)
2170 		goto error_return;
2171 
2172 	/* Get the "struct file *" for the target file */
2173 	tf = fdget(fd);
2174 	if (!tf.file)
2175 		goto error_fput;
2176 
2177 	/* The target file descriptor must support poll */
2178 	error = -EPERM;
2179 	if (!file_can_poll(tf.file))
2180 		goto error_tgt_fput;
2181 
2182 	/* Check if EPOLLWAKEUP is allowed */
2183 	if (ep_op_has_event(op))
2184 		ep_take_care_of_epollwakeup(epds);
2185 
2186 	/*
2187 	 * We have to check that the file structure underneath the file descriptor
2188 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2189 	 * adding an epoll file descriptor inside itself.
2190 	 */
2191 	error = -EINVAL;
2192 	if (f.file == tf.file || !is_file_epoll(f.file))
2193 		goto error_tgt_fput;
2194 
2195 	/*
2196 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2197 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2198 	 * Also, we do not currently supported nested exclusive wakeups.
2199 	 */
2200 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2201 		if (op == EPOLL_CTL_MOD)
2202 			goto error_tgt_fput;
2203 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2204 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2205 			goto error_tgt_fput;
2206 	}
2207 
2208 	/*
2209 	 * At this point it is safe to assume that the "private_data" contains
2210 	 * our own data structure.
2211 	 */
2212 	ep = f.file->private_data;
2213 
2214 	/*
2215 	 * When we insert an epoll file descriptor, inside another epoll file
2216 	 * descriptor, there is the change of creating closed loops, which are
2217 	 * better be handled here, than in more critical paths. While we are
2218 	 * checking for loops we also determine the list of files reachable
2219 	 * and hang them on the tfile_check_list, so we can check that we
2220 	 * haven't created too many possible wakeup paths.
2221 	 *
2222 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2223 	 * the epoll file descriptor is attaching directly to a wakeup source,
2224 	 * unless the epoll file descriptor is nested. The purpose of taking the
2225 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2226 	 * deep wakeup paths from forming in parallel through multiple
2227 	 * EPOLL_CTL_ADD operations.
2228 	 */
2229 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2230 	if (error)
2231 		goto error_tgt_fput;
2232 	if (op == EPOLL_CTL_ADD) {
2233 		if (!list_empty(&f.file->f_ep_links) ||
2234 				ep->gen == loop_check_gen ||
2235 						is_file_epoll(tf.file)) {
2236 			mutex_unlock(&ep->mtx);
2237 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2238 			if (error)
2239 				goto error_tgt_fput;
2240 			loop_check_gen++;
2241 			full_check = 1;
2242 			if (is_file_epoll(tf.file)) {
2243 				error = -ELOOP;
2244 				if (ep_loop_check(ep, tf.file) != 0)
2245 					goto error_tgt_fput;
2246 			} else {
2247 				get_file(tf.file);
2248 				list_add(&tf.file->f_tfile_llink,
2249 							&tfile_check_list);
2250 			}
2251 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2252 			if (error)
2253 				goto error_tgt_fput;
2254 			if (is_file_epoll(tf.file)) {
2255 				tep = tf.file->private_data;
2256 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2257 				if (error) {
2258 					mutex_unlock(&ep->mtx);
2259 					goto error_tgt_fput;
2260 				}
2261 			}
2262 		}
2263 	}
2264 
2265 	/*
2266 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2267 	 * above, we can be sure to be able to use the item looked up by
2268 	 * ep_find() till we release the mutex.
2269 	 */
2270 	epi = ep_find(ep, tf.file, fd);
2271 
2272 	error = -EINVAL;
2273 	switch (op) {
2274 	case EPOLL_CTL_ADD:
2275 		if (!epi) {
2276 			epds->events |= EPOLLERR | EPOLLHUP;
2277 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2278 		} else
2279 			error = -EEXIST;
2280 		break;
2281 	case EPOLL_CTL_DEL:
2282 		if (epi)
2283 			error = ep_remove(ep, epi);
2284 		else
2285 			error = -ENOENT;
2286 		break;
2287 	case EPOLL_CTL_MOD:
2288 		if (epi) {
2289 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2290 				epds->events |= EPOLLERR | EPOLLHUP;
2291 				error = ep_modify(ep, epi, epds);
2292 			}
2293 		} else
2294 			error = -ENOENT;
2295 		break;
2296 	}
2297 	if (tep != NULL)
2298 		mutex_unlock(&tep->mtx);
2299 	mutex_unlock(&ep->mtx);
2300 
2301 error_tgt_fput:
2302 	if (full_check) {
2303 		clear_tfile_check_list();
2304 		loop_check_gen++;
2305 		mutex_unlock(&epmutex);
2306 	}
2307 
2308 	fdput(tf);
2309 error_fput:
2310 	fdput(f);
2311 error_return:
2312 
2313 	return error;
2314 }
2315 
2316 /*
2317  * The following function implements the controller interface for
2318  * the eventpoll file that enables the insertion/removal/change of
2319  * file descriptors inside the interest set.
2320  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2321 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2322 		struct epoll_event __user *, event)
2323 {
2324 	struct epoll_event epds;
2325 
2326 	if (ep_op_has_event(op) &&
2327 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2328 		return -EFAULT;
2329 
2330 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2331 }
2332 
2333 /*
2334  * Implement the event wait interface for the eventpoll file. It is the kernel
2335  * part of the user space epoll_wait(2).
2336  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2337 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2338 			 int maxevents, int timeout)
2339 {
2340 	int error;
2341 	struct fd f;
2342 	struct eventpoll *ep;
2343 
2344 	/* The maximum number of event must be greater than zero */
2345 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2346 		return -EINVAL;
2347 
2348 	/* Verify that the area passed by the user is writeable */
2349 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2350 		return -EFAULT;
2351 
2352 	/* Get the "struct file *" for the eventpoll file */
2353 	f = fdget(epfd);
2354 	if (!f.file)
2355 		return -EBADF;
2356 
2357 	/*
2358 	 * We have to check that the file structure underneath the fd
2359 	 * the user passed to us _is_ an eventpoll file.
2360 	 */
2361 	error = -EINVAL;
2362 	if (!is_file_epoll(f.file))
2363 		goto error_fput;
2364 
2365 	/*
2366 	 * At this point it is safe to assume that the "private_data" contains
2367 	 * our own data structure.
2368 	 */
2369 	ep = f.file->private_data;
2370 
2371 	/* Time to fish for events ... */
2372 	error = ep_poll(ep, events, maxevents, timeout);
2373 
2374 error_fput:
2375 	fdput(f);
2376 	return error;
2377 }
2378 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2379 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2380 		int, maxevents, int, timeout)
2381 {
2382 	return do_epoll_wait(epfd, events, maxevents, timeout);
2383 }
2384 
2385 /*
2386  * Implement the event wait interface for the eventpoll file. It is the kernel
2387  * part of the user space epoll_pwait(2).
2388  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2389 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2390 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2391 		size_t, sigsetsize)
2392 {
2393 	int error;
2394 
2395 	/*
2396 	 * If the caller wants a certain signal mask to be set during the wait,
2397 	 * we apply it here.
2398 	 */
2399 	error = set_user_sigmask(sigmask, sigsetsize);
2400 	if (error)
2401 		return error;
2402 
2403 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2404 	restore_saved_sigmask_unless(error == -EINTR);
2405 
2406 	return error;
2407 }
2408 
2409 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2410 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2411 			struct epoll_event __user *, events,
2412 			int, maxevents, int, timeout,
2413 			const compat_sigset_t __user *, sigmask,
2414 			compat_size_t, sigsetsize)
2415 {
2416 	long err;
2417 
2418 	/*
2419 	 * If the caller wants a certain signal mask to be set during the wait,
2420 	 * we apply it here.
2421 	 */
2422 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2423 	if (err)
2424 		return err;
2425 
2426 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2427 	restore_saved_sigmask_unless(err == -EINTR);
2428 
2429 	return err;
2430 }
2431 #endif
2432 
eventpoll_init(void)2433 static int __init eventpoll_init(void)
2434 {
2435 	struct sysinfo si;
2436 
2437 	si_meminfo(&si);
2438 	/*
2439 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2440 	 */
2441 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2442 		EP_ITEM_COST;
2443 	BUG_ON(max_user_watches < 0);
2444 
2445 	/*
2446 	 * Initialize the structure used to perform epoll file descriptor
2447 	 * inclusion loops checks.
2448 	 */
2449 	ep_nested_calls_init(&poll_loop_ncalls);
2450 
2451 	/*
2452 	 * We can have many thousands of epitems, so prevent this from
2453 	 * using an extra cache line on 64-bit (and smaller) CPUs
2454 	 */
2455 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2456 
2457 	/* Allocates slab cache used to allocate "struct epitem" items */
2458 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2459 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2460 
2461 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2462 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2463 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2464 
2465 	return 0;
2466 }
2467 fs_initcall(eventpoll_init);
2468