1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42
43 #include <trace/hooks/fs.h>
44
45 /*
46 * LOCKING:
47 * There are three level of locking required by epoll :
48 *
49 * 1) epmutex (mutex)
50 * 2) ep->mtx (mutex)
51 * 3) ep->lock (rwlock)
52 *
53 * The acquire order is the one listed above, from 1 to 3.
54 * We need a rwlock (ep->lock) because we manipulate objects
55 * from inside the poll callback, that might be triggered from
56 * a wake_up() that in turn might be called from IRQ context.
57 * So we can't sleep inside the poll callback and hence we need
58 * a spinlock. During the event transfer loop (from kernel to
59 * user space) we could end up sleeping due a copy_to_user(), so
60 * we need a lock that will allow us to sleep. This lock is a
61 * mutex (ep->mtx). It is acquired during the event transfer loop,
62 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63 * Then we also need a global mutex to serialize eventpoll_release_file()
64 * and ep_free().
65 * This mutex is acquired by ep_free() during the epoll file
66 * cleanup path and it is also acquired by eventpoll_release_file()
67 * if a file has been pushed inside an epoll set and it is then
68 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69 * It is also acquired when inserting an epoll fd onto another epoll
70 * fd. We do this so that we walk the epoll tree and ensure that this
71 * insertion does not create a cycle of epoll file descriptors, which
72 * could lead to deadlock. We need a global mutex to prevent two
73 * simultaneous inserts (A into B and B into A) from racing and
74 * constructing a cycle without either insert observing that it is
75 * going to.
76 * It is necessary to acquire multiple "ep->mtx"es at once in the
77 * case when one epoll fd is added to another. In this case, we
78 * always acquire the locks in the order of nesting (i.e. after
79 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80 * before e2->mtx). Since we disallow cycles of epoll file
81 * descriptors, this ensures that the mutexes are well-ordered. In
82 * order to communicate this nesting to lockdep, when walking a tree
83 * of epoll file descriptors, we use the current recursion depth as
84 * the lockdep subkey.
85 * It is possible to drop the "ep->mtx" and to use the global
86 * mutex "epmutex" (together with "ep->lock") to have it working,
87 * but having "ep->mtx" will make the interface more scalable.
88 * Events that require holding "epmutex" are very rare, while for
89 * normal operations the epoll private "ep->mtx" will guarantee
90 * a better scalability.
91 */
92
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
95
96 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
97
98 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
99 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
100
101 /* Maximum number of nesting allowed inside epoll sets */
102 #define EP_MAX_NESTS 4
103
104 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
105
106 #define EP_UNACTIVE_PTR ((void *) -1L)
107
108 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
109
110 struct epoll_filefd {
111 struct file *file;
112 int fd;
113 } __packed;
114
115 /*
116 * Structure used to track possible nested calls, for too deep recursions
117 * and loop cycles.
118 */
119 struct nested_call_node {
120 struct list_head llink;
121 void *cookie;
122 void *ctx;
123 };
124
125 /*
126 * This structure is used as collector for nested calls, to check for
127 * maximum recursion dept and loop cycles.
128 */
129 struct nested_calls {
130 struct list_head tasks_call_list;
131 spinlock_t lock;
132 };
133
134 /*
135 * Each file descriptor added to the eventpoll interface will
136 * have an entry of this type linked to the "rbr" RB tree.
137 * Avoid increasing the size of this struct, there can be many thousands
138 * of these on a server and we do not want this to take another cache line.
139 */
140 struct epitem {
141 union {
142 /* RB tree node links this structure to the eventpoll RB tree */
143 struct rb_node rbn;
144 /* Used to free the struct epitem */
145 struct rcu_head rcu;
146 };
147
148 /* List header used to link this structure to the eventpoll ready list */
149 struct list_head rdllink;
150
151 /*
152 * Works together "struct eventpoll"->ovflist in keeping the
153 * single linked chain of items.
154 */
155 struct epitem *next;
156
157 /* The file descriptor information this item refers to */
158 struct epoll_filefd ffd;
159
160 /* Number of active wait queue attached to poll operations */
161 int nwait;
162
163 /* List containing poll wait queues */
164 struct list_head pwqlist;
165
166 /* The "container" of this item */
167 struct eventpoll *ep;
168
169 /* List header used to link this item to the "struct file" items list */
170 struct list_head fllink;
171
172 /* wakeup_source used when EPOLLWAKEUP is set */
173 struct wakeup_source __rcu *ws;
174
175 /* The structure that describe the interested events and the source fd */
176 struct epoll_event event;
177 };
178
179 /*
180 * This structure is stored inside the "private_data" member of the file
181 * structure and represents the main data structure for the eventpoll
182 * interface.
183 */
184 struct eventpoll {
185 /*
186 * This mutex is used to ensure that files are not removed
187 * while epoll is using them. This is held during the event
188 * collection loop, the file cleanup path, the epoll file exit
189 * code and the ctl operations.
190 */
191 struct mutex mtx;
192
193 /* Wait queue used by sys_epoll_wait() */
194 wait_queue_head_t wq;
195
196 /* Wait queue used by file->poll() */
197 wait_queue_head_t poll_wait;
198
199 /* List of ready file descriptors */
200 struct list_head rdllist;
201
202 /* Lock which protects rdllist and ovflist */
203 rwlock_t lock;
204
205 /* RB tree root used to store monitored fd structs */
206 struct rb_root_cached rbr;
207
208 /*
209 * This is a single linked list that chains all the "struct epitem" that
210 * happened while transferring ready events to userspace w/out
211 * holding ->lock.
212 */
213 struct epitem *ovflist;
214
215 /* wakeup_source used when ep_scan_ready_list is running */
216 struct wakeup_source *ws;
217
218 /* The user that created the eventpoll descriptor */
219 struct user_struct *user;
220
221 struct file *file;
222
223 /* used to optimize loop detection check */
224 u64 gen;
225
226 #ifdef CONFIG_NET_RX_BUSY_POLL
227 /* used to track busy poll napi_id */
228 unsigned int napi_id;
229 #endif
230
231 #ifdef CONFIG_DEBUG_LOCK_ALLOC
232 /* tracks wakeup nests for lockdep validation */
233 u8 nests;
234 #endif
235 };
236
237 /* Wait structure used by the poll hooks */
238 struct eppoll_entry {
239 /* List header used to link this structure to the "struct epitem" */
240 struct list_head llink;
241
242 /* The "base" pointer is set to the container "struct epitem" */
243 struct epitem *base;
244
245 /*
246 * Wait queue item that will be linked to the target file wait
247 * queue head.
248 */
249 wait_queue_entry_t wait;
250
251 /* The wait queue head that linked the "wait" wait queue item */
252 wait_queue_head_t *whead;
253 };
254
255 /* Wrapper struct used by poll queueing */
256 struct ep_pqueue {
257 poll_table pt;
258 struct epitem *epi;
259 };
260
261 /* Used by the ep_send_events() function as callback private data */
262 struct ep_send_events_data {
263 int maxevents;
264 struct epoll_event __user *events;
265 int res;
266 };
267
268 /*
269 * Configuration options available inside /proc/sys/fs/epoll/
270 */
271 /* Maximum number of epoll watched descriptors, per user */
272 static long max_user_watches __read_mostly;
273
274 /*
275 * This mutex is used to serialize ep_free() and eventpoll_release_file().
276 */
277 static DEFINE_MUTEX(epmutex);
278
279 static u64 loop_check_gen = 0;
280
281 /* Used to check for epoll file descriptor inclusion loops */
282 static struct nested_calls poll_loop_ncalls;
283
284 /* Slab cache used to allocate "struct epitem" */
285 static struct kmem_cache *epi_cache __read_mostly;
286
287 /* Slab cache used to allocate "struct eppoll_entry" */
288 static struct kmem_cache *pwq_cache __read_mostly;
289
290 /*
291 * List of files with newly added links, where we may need to limit the number
292 * of emanating paths. Protected by the epmutex.
293 */
294 static LIST_HEAD(tfile_check_list);
295
296 #ifdef CONFIG_SYSCTL
297
298 #include <linux/sysctl.h>
299
300 static long long_zero;
301 static long long_max = LONG_MAX;
302
303 struct ctl_table epoll_table[] = {
304 {
305 .procname = "max_user_watches",
306 .data = &max_user_watches,
307 .maxlen = sizeof(max_user_watches),
308 .mode = 0644,
309 .proc_handler = proc_doulongvec_minmax,
310 .extra1 = &long_zero,
311 .extra2 = &long_max,
312 },
313 { }
314 };
315 #endif /* CONFIG_SYSCTL */
316
317 static const struct file_operations eventpoll_fops;
318
is_file_epoll(struct file * f)319 static inline int is_file_epoll(struct file *f)
320 {
321 return f->f_op == &eventpoll_fops;
322 }
323
324 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)325 static inline void ep_set_ffd(struct epoll_filefd *ffd,
326 struct file *file, int fd)
327 {
328 ffd->file = file;
329 ffd->fd = fd;
330 }
331
332 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)333 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
334 struct epoll_filefd *p2)
335 {
336 return (p1->file > p2->file ? +1:
337 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
338 }
339
340 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)341 static inline int ep_is_linked(struct epitem *epi)
342 {
343 return !list_empty(&epi->rdllink);
344 }
345
ep_pwq_from_wait(wait_queue_entry_t * p)346 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
347 {
348 return container_of(p, struct eppoll_entry, wait);
349 }
350
351 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)352 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
353 {
354 return container_of(p, struct eppoll_entry, wait)->base;
355 }
356
357 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)358 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
359 {
360 return container_of(p, struct ep_pqueue, pt)->epi;
361 }
362
363 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)364 static void ep_nested_calls_init(struct nested_calls *ncalls)
365 {
366 INIT_LIST_HEAD(&ncalls->tasks_call_list);
367 spin_lock_init(&ncalls->lock);
368 }
369
370 /**
371 * ep_events_available - Checks if ready events might be available.
372 *
373 * @ep: Pointer to the eventpoll context.
374 *
375 * Returns: Returns a value different than zero if ready events are available,
376 * or zero otherwise.
377 */
ep_events_available(struct eventpoll * ep)378 static inline int ep_events_available(struct eventpoll *ep)
379 {
380 return !list_empty_careful(&ep->rdllist) ||
381 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
382 }
383
384 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
386 {
387 struct eventpoll *ep = p;
388
389 return ep_events_available(ep) || busy_loop_timeout(start_time);
390 }
391
392 /*
393 * Busy poll if globally on and supporting sockets found && no events,
394 * busy loop will return if need_resched or ep_events_available.
395 *
396 * we must do our busy polling with irqs enabled
397 */
ep_busy_loop(struct eventpoll * ep,int nonblock)398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
399 {
400 unsigned int napi_id = READ_ONCE(ep->napi_id);
401
402 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
403 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
404 }
405
ep_reset_busy_poll_napi_id(struct eventpoll * ep)406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
407 {
408 if (ep->napi_id)
409 ep->napi_id = 0;
410 }
411
412 /*
413 * Set epoll busy poll NAPI ID from sk.
414 */
ep_set_busy_poll_napi_id(struct epitem * epi)415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 struct eventpoll *ep;
418 unsigned int napi_id;
419 struct socket *sock;
420 struct sock *sk;
421 int err;
422
423 if (!net_busy_loop_on())
424 return;
425
426 sock = sock_from_file(epi->ffd.file, &err);
427 if (!sock)
428 return;
429
430 sk = sock->sk;
431 if (!sk)
432 return;
433
434 napi_id = READ_ONCE(sk->sk_napi_id);
435 ep = epi->ep;
436
437 /* Non-NAPI IDs can be rejected
438 * or
439 * Nothing to do if we already have this ID
440 */
441 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
442 return;
443
444 /* record NAPI ID for use in next busy poll */
445 ep->napi_id = napi_id;
446 }
447
448 #else
449
ep_busy_loop(struct eventpoll * ep,int nonblock)450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
451 {
452 }
453
ep_reset_busy_poll_napi_id(struct eventpoll * ep)454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
455 {
456 }
457
ep_set_busy_poll_napi_id(struct epitem * epi)458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
459 {
460 }
461
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
463
464 /**
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
468 * no re-entered.
469 *
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @nproc: Nested call core function pointer.
472 * @priv: Opaque data to be passed to the @nproc callback.
473 * @cookie: Cookie to be used to identify this nested call.
474 * @ctx: This instance context.
475 *
476 * Returns: Returns the code returned by the @nproc callback, or -1 if
477 * the maximum recursion limit has been exceeded.
478 */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)479 static int ep_call_nested(struct nested_calls *ncalls,
480 int (*nproc)(void *, void *, int), void *priv,
481 void *cookie, void *ctx)
482 {
483 int error, call_nests = 0;
484 unsigned long flags;
485 struct list_head *lsthead = &ncalls->tasks_call_list;
486 struct nested_call_node *tncur;
487 struct nested_call_node tnode;
488
489 spin_lock_irqsave(&ncalls->lock, flags);
490
491 /*
492 * Try to see if the current task is already inside this wakeup call.
493 * We use a list here, since the population inside this set is always
494 * very much limited.
495 */
496 list_for_each_entry(tncur, lsthead, llink) {
497 if (tncur->ctx == ctx &&
498 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
499 /*
500 * Ops ... loop detected or maximum nest level reached.
501 * We abort this wake by breaking the cycle itself.
502 */
503 error = -1;
504 goto out_unlock;
505 }
506 }
507
508 /* Add the current task and cookie to the list */
509 tnode.ctx = ctx;
510 tnode.cookie = cookie;
511 list_add(&tnode.llink, lsthead);
512
513 spin_unlock_irqrestore(&ncalls->lock, flags);
514
515 /* Call the nested function */
516 error = (*nproc)(priv, cookie, call_nests);
517
518 /* Remove the current task from the list */
519 spin_lock_irqsave(&ncalls->lock, flags);
520 list_del(&tnode.llink);
521 out_unlock:
522 spin_unlock_irqrestore(&ncalls->lock, flags);
523
524 return error;
525 }
526
527 /*
528 * As described in commit 0ccf831cb lockdep: annotate epoll
529 * the use of wait queues used by epoll is done in a very controlled
530 * manner. Wake ups can nest inside each other, but are never done
531 * with the same locking. For example:
532 *
533 * dfd = socket(...);
534 * efd1 = epoll_create();
535 * efd2 = epoll_create();
536 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
538 *
539 * When a packet arrives to the device underneath "dfd", the net code will
540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541 * callback wakeup entry on that queue, and the wake_up() performed by the
542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543 * (efd1) notices that it may have some event ready, so it needs to wake up
544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545 * that ends up in another wake_up(), after having checked about the
546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547 * avoid stack blasting.
548 *
549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550 * this special case of epoll.
551 */
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
553
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)554 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
555 unsigned pollflags)
556 {
557 struct eventpoll *ep_src;
558 unsigned long flags;
559 u8 nests = 0;
560
561 /*
562 * To set the subclass or nesting level for spin_lock_irqsave_nested()
563 * it might be natural to create a per-cpu nest count. However, since
564 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
565 * schedule() in the -rt kernel, the per-cpu variable are no longer
566 * protected. Thus, we are introducing a per eventpoll nest field.
567 * If we are not being call from ep_poll_callback(), epi is NULL and
568 * we are at the first level of nesting, 0. Otherwise, we are being
569 * called from ep_poll_callback() and if a previous wakeup source is
570 * not an epoll file itself, we are at depth 1 since the wakeup source
571 * is depth 0. If the wakeup source is a previous epoll file in the
572 * wakeup chain then we use its nests value and record ours as
573 * nests + 1. The previous epoll file nests value is stable since its
574 * already holding its own poll_wait.lock.
575 */
576 if (epi) {
577 if ((is_file_epoll(epi->ffd.file))) {
578 ep_src = epi->ffd.file->private_data;
579 nests = ep_src->nests;
580 } else {
581 nests = 1;
582 }
583 }
584 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
585 ep->nests = nests + 1;
586 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
587 ep->nests = 0;
588 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
589 }
590
591 #else
592
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)593 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
594 unsigned pollflags)
595 {
596 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
597 }
598
599 #endif
600
ep_remove_wait_queue(struct eppoll_entry * pwq)601 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
602 {
603 wait_queue_head_t *whead;
604
605 rcu_read_lock();
606 /*
607 * If it is cleared by POLLFREE, it should be rcu-safe.
608 * If we read NULL we need a barrier paired with
609 * smp_store_release() in ep_poll_callback(), otherwise
610 * we rely on whead->lock.
611 */
612 whead = smp_load_acquire(&pwq->whead);
613 if (whead)
614 remove_wait_queue(whead, &pwq->wait);
615 rcu_read_unlock();
616 }
617
618 /*
619 * This function unregisters poll callbacks from the associated file
620 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
621 * ep_free).
622 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)623 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
624 {
625 struct list_head *lsthead = &epi->pwqlist;
626 struct eppoll_entry *pwq;
627
628 while (!list_empty(lsthead)) {
629 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
630
631 list_del(&pwq->llink);
632 ep_remove_wait_queue(pwq);
633 kmem_cache_free(pwq_cache, pwq);
634 }
635 }
636
637 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)638 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
639 {
640 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
641 }
642
643 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)644 static inline void ep_pm_stay_awake(struct epitem *epi)
645 {
646 struct wakeup_source *ws = ep_wakeup_source(epi);
647
648 if (ws)
649 __pm_stay_awake(ws);
650 }
651
ep_has_wakeup_source(struct epitem * epi)652 static inline bool ep_has_wakeup_source(struct epitem *epi)
653 {
654 return rcu_access_pointer(epi->ws) ? true : false;
655 }
656
657 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)658 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
659 {
660 struct wakeup_source *ws;
661
662 rcu_read_lock();
663 ws = rcu_dereference(epi->ws);
664 if (ws)
665 __pm_stay_awake(ws);
666 rcu_read_unlock();
667 }
668
669 /**
670 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
671 * the scan code, to call f_op->poll(). Also allows for
672 * O(NumReady) performance.
673 *
674 * @ep: Pointer to the epoll private data structure.
675 * @sproc: Pointer to the scan callback.
676 * @priv: Private opaque data passed to the @sproc callback.
677 * @depth: The current depth of recursive f_op->poll calls.
678 * @ep_locked: caller already holds ep->mtx
679 *
680 * Returns: The same integer error code returned by the @sproc callback.
681 */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)682 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
683 __poll_t (*sproc)(struct eventpoll *,
684 struct list_head *, void *),
685 void *priv, int depth, bool ep_locked)
686 {
687 __poll_t res;
688 struct epitem *epi, *nepi;
689 LIST_HEAD(txlist);
690
691 lockdep_assert_irqs_enabled();
692
693 /*
694 * We need to lock this because we could be hit by
695 * eventpoll_release_file() and epoll_ctl().
696 */
697
698 if (!ep_locked)
699 mutex_lock_nested(&ep->mtx, depth);
700
701 /*
702 * Steal the ready list, and re-init the original one to the
703 * empty list. Also, set ep->ovflist to NULL so that events
704 * happening while looping w/out locks, are not lost. We cannot
705 * have the poll callback to queue directly on ep->rdllist,
706 * because we want the "sproc" callback to be able to do it
707 * in a lockless way.
708 */
709 write_lock_irq(&ep->lock);
710 list_splice_init(&ep->rdllist, &txlist);
711 WRITE_ONCE(ep->ovflist, NULL);
712 write_unlock_irq(&ep->lock);
713
714 /*
715 * Now call the callback function.
716 */
717 res = (*sproc)(ep, &txlist, priv);
718
719 write_lock_irq(&ep->lock);
720 /*
721 * During the time we spent inside the "sproc" callback, some
722 * other events might have been queued by the poll callback.
723 * We re-insert them inside the main ready-list here.
724 */
725 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
726 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
727 /*
728 * We need to check if the item is already in the list.
729 * During the "sproc" callback execution time, items are
730 * queued into ->ovflist but the "txlist" might already
731 * contain them, and the list_splice() below takes care of them.
732 */
733 if (!ep_is_linked(epi)) {
734 /*
735 * ->ovflist is LIFO, so we have to reverse it in order
736 * to keep in FIFO.
737 */
738 list_add(&epi->rdllink, &ep->rdllist);
739 ep_pm_stay_awake(epi);
740 }
741 }
742 /*
743 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
744 * releasing the lock, events will be queued in the normal way inside
745 * ep->rdllist.
746 */
747 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
748
749 /*
750 * Quickly re-inject items left on "txlist".
751 */
752 list_splice(&txlist, &ep->rdllist);
753 __pm_relax(ep->ws);
754
755 if (!list_empty(&ep->rdllist)) {
756 if (waitqueue_active(&ep->wq))
757 wake_up(&ep->wq);
758 }
759
760 write_unlock_irq(&ep->lock);
761
762 if (!ep_locked)
763 mutex_unlock(&ep->mtx);
764
765 return res;
766 }
767
epi_rcu_free(struct rcu_head * head)768 static void epi_rcu_free(struct rcu_head *head)
769 {
770 struct epitem *epi = container_of(head, struct epitem, rcu);
771 kmem_cache_free(epi_cache, epi);
772 }
773
774 /*
775 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
776 * all the associated resources. Must be called with "mtx" held.
777 */
ep_remove(struct eventpoll * ep,struct epitem * epi)778 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
779 {
780 struct file *file = epi->ffd.file;
781
782 lockdep_assert_irqs_enabled();
783
784 /*
785 * Removes poll wait queue hooks.
786 */
787 ep_unregister_pollwait(ep, epi);
788
789 /* Remove the current item from the list of epoll hooks */
790 spin_lock(&file->f_lock);
791 list_del_rcu(&epi->fllink);
792 spin_unlock(&file->f_lock);
793
794 rb_erase_cached(&epi->rbn, &ep->rbr);
795
796 write_lock_irq(&ep->lock);
797 if (ep_is_linked(epi))
798 list_del_init(&epi->rdllink);
799 write_unlock_irq(&ep->lock);
800
801 wakeup_source_unregister(ep_wakeup_source(epi));
802 /*
803 * At this point it is safe to free the eventpoll item. Use the union
804 * field epi->rcu, since we are trying to minimize the size of
805 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
806 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
807 * use of the rbn field.
808 */
809 call_rcu(&epi->rcu, epi_rcu_free);
810
811 atomic_long_dec(&ep->user->epoll_watches);
812
813 return 0;
814 }
815
ep_free(struct eventpoll * ep)816 static void ep_free(struct eventpoll *ep)
817 {
818 struct rb_node *rbp;
819 struct epitem *epi;
820
821 /* We need to release all tasks waiting for these file */
822 if (waitqueue_active(&ep->poll_wait))
823 ep_poll_safewake(ep, NULL, 0);
824
825 /*
826 * We need to lock this because we could be hit by
827 * eventpoll_release_file() while we're freeing the "struct eventpoll".
828 * We do not need to hold "ep->mtx" here because the epoll file
829 * is on the way to be removed and no one has references to it
830 * anymore. The only hit might come from eventpoll_release_file() but
831 * holding "epmutex" is sufficient here.
832 */
833 mutex_lock(&epmutex);
834
835 /*
836 * Walks through the whole tree by unregistering poll callbacks.
837 */
838 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
839 epi = rb_entry(rbp, struct epitem, rbn);
840
841 ep_unregister_pollwait(ep, epi);
842 cond_resched();
843 }
844
845 /*
846 * Walks through the whole tree by freeing each "struct epitem". At this
847 * point we are sure no poll callbacks will be lingering around, and also by
848 * holding "epmutex" we can be sure that no file cleanup code will hit
849 * us during this operation. So we can avoid the lock on "ep->lock".
850 * We do not need to lock ep->mtx, either, we only do it to prevent
851 * a lockdep warning.
852 */
853 mutex_lock(&ep->mtx);
854 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
855 epi = rb_entry(rbp, struct epitem, rbn);
856 ep_remove(ep, epi);
857 cond_resched();
858 }
859 mutex_unlock(&ep->mtx);
860
861 mutex_unlock(&epmutex);
862 mutex_destroy(&ep->mtx);
863 free_uid(ep->user);
864 wakeup_source_unregister(ep->ws);
865 kfree(ep);
866 }
867
ep_eventpoll_release(struct inode * inode,struct file * file)868 static int ep_eventpoll_release(struct inode *inode, struct file *file)
869 {
870 struct eventpoll *ep = file->private_data;
871
872 if (ep)
873 ep_free(ep);
874
875 return 0;
876 }
877
878 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
879 void *priv);
880 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
881 poll_table *pt);
882
883 /*
884 * Differs from ep_eventpoll_poll() in that internal callers already have
885 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
886 * is correctly annotated.
887 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)888 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
889 int depth)
890 {
891 struct eventpoll *ep;
892 bool locked;
893
894 pt->_key = epi->event.events;
895 if (!is_file_epoll(epi->ffd.file))
896 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
897
898 ep = epi->ffd.file->private_data;
899 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
900 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
901
902 return ep_scan_ready_list(epi->ffd.file->private_data,
903 ep_read_events_proc, &depth, depth,
904 locked) & epi->event.events;
905 }
906
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)907 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
908 void *priv)
909 {
910 struct epitem *epi, *tmp;
911 poll_table pt;
912 int depth = *(int *)priv;
913
914 init_poll_funcptr(&pt, NULL);
915 depth++;
916
917 list_for_each_entry_safe(epi, tmp, head, rdllink) {
918 if (ep_item_poll(epi, &pt, depth)) {
919 return EPOLLIN | EPOLLRDNORM;
920 } else {
921 /*
922 * Item has been dropped into the ready list by the poll
923 * callback, but it's not actually ready, as far as
924 * caller requested events goes. We can remove it here.
925 */
926 __pm_relax(ep_wakeup_source(epi));
927 list_del_init(&epi->rdllink);
928 }
929 }
930
931 return 0;
932 }
933
ep_eventpoll_poll(struct file * file,poll_table * wait)934 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
935 {
936 struct eventpoll *ep = file->private_data;
937 int depth = 0;
938
939 /* Insert inside our poll wait queue */
940 poll_wait(file, &ep->poll_wait, wait);
941
942 /*
943 * Proceed to find out if wanted events are really available inside
944 * the ready list.
945 */
946 return ep_scan_ready_list(ep, ep_read_events_proc,
947 &depth, depth, false);
948 }
949
950 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)951 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
952 {
953 struct eventpoll *ep = f->private_data;
954 struct rb_node *rbp;
955
956 mutex_lock(&ep->mtx);
957 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
958 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
959 struct inode *inode = file_inode(epi->ffd.file);
960
961 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
962 " pos:%lli ino:%lx sdev:%x\n",
963 epi->ffd.fd, epi->event.events,
964 (long long)epi->event.data,
965 (long long)epi->ffd.file->f_pos,
966 inode->i_ino, inode->i_sb->s_dev);
967 if (seq_has_overflowed(m))
968 break;
969 }
970 mutex_unlock(&ep->mtx);
971 }
972 #endif
973
974 /* File callbacks that implement the eventpoll file behaviour */
975 static const struct file_operations eventpoll_fops = {
976 #ifdef CONFIG_PROC_FS
977 .show_fdinfo = ep_show_fdinfo,
978 #endif
979 .release = ep_eventpoll_release,
980 .poll = ep_eventpoll_poll,
981 .llseek = noop_llseek,
982 };
983
984 /*
985 * This is called from eventpoll_release() to unlink files from the eventpoll
986 * interface. We need to have this facility to cleanup correctly files that are
987 * closed without being removed from the eventpoll interface.
988 */
eventpoll_release_file(struct file * file)989 void eventpoll_release_file(struct file *file)
990 {
991 struct eventpoll *ep;
992 struct epitem *epi, *next;
993
994 /*
995 * We don't want to get "file->f_lock" because it is not
996 * necessary. It is not necessary because we're in the "struct file"
997 * cleanup path, and this means that no one is using this file anymore.
998 * So, for example, epoll_ctl() cannot hit here since if we reach this
999 * point, the file counter already went to zero and fget() would fail.
1000 * The only hit might come from ep_free() but by holding the mutex
1001 * will correctly serialize the operation. We do need to acquire
1002 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1003 * from anywhere but ep_free().
1004 *
1005 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1006 */
1007 mutex_lock(&epmutex);
1008 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1009 ep = epi->ep;
1010 mutex_lock_nested(&ep->mtx, 0);
1011 ep_remove(ep, epi);
1012 mutex_unlock(&ep->mtx);
1013 }
1014 mutex_unlock(&epmutex);
1015 }
1016
ep_alloc(struct eventpoll ** pep)1017 static int ep_alloc(struct eventpoll **pep)
1018 {
1019 int error;
1020 struct user_struct *user;
1021 struct eventpoll *ep;
1022
1023 user = get_current_user();
1024 error = -ENOMEM;
1025 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1026 if (unlikely(!ep))
1027 goto free_uid;
1028
1029 mutex_init(&ep->mtx);
1030 rwlock_init(&ep->lock);
1031 init_waitqueue_head(&ep->wq);
1032 init_waitqueue_head(&ep->poll_wait);
1033 INIT_LIST_HEAD(&ep->rdllist);
1034 ep->rbr = RB_ROOT_CACHED;
1035 ep->ovflist = EP_UNACTIVE_PTR;
1036 ep->user = user;
1037
1038 *pep = ep;
1039
1040 return 0;
1041
1042 free_uid:
1043 free_uid(user);
1044 return error;
1045 }
1046
1047 /*
1048 * Search the file inside the eventpoll tree. The RB tree operations
1049 * are protected by the "mtx" mutex, and ep_find() must be called with
1050 * "mtx" held.
1051 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1052 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1053 {
1054 int kcmp;
1055 struct rb_node *rbp;
1056 struct epitem *epi, *epir = NULL;
1057 struct epoll_filefd ffd;
1058
1059 ep_set_ffd(&ffd, file, fd);
1060 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1061 epi = rb_entry(rbp, struct epitem, rbn);
1062 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1063 if (kcmp > 0)
1064 rbp = rbp->rb_right;
1065 else if (kcmp < 0)
1066 rbp = rbp->rb_left;
1067 else {
1068 epir = epi;
1069 break;
1070 }
1071 }
1072
1073 return epir;
1074 }
1075
1076 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1077 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1078 {
1079 struct rb_node *rbp;
1080 struct epitem *epi;
1081
1082 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1083 epi = rb_entry(rbp, struct epitem, rbn);
1084 if (epi->ffd.fd == tfd) {
1085 if (toff == 0)
1086 return epi;
1087 else
1088 toff--;
1089 }
1090 cond_resched();
1091 }
1092
1093 return NULL;
1094 }
1095
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1096 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1097 unsigned long toff)
1098 {
1099 struct file *file_raw;
1100 struct eventpoll *ep;
1101 struct epitem *epi;
1102
1103 if (!is_file_epoll(file))
1104 return ERR_PTR(-EINVAL);
1105
1106 ep = file->private_data;
1107
1108 mutex_lock(&ep->mtx);
1109 epi = ep_find_tfd(ep, tfd, toff);
1110 if (epi)
1111 file_raw = epi->ffd.file;
1112 else
1113 file_raw = ERR_PTR(-ENOENT);
1114 mutex_unlock(&ep->mtx);
1115
1116 return file_raw;
1117 }
1118 #endif /* CONFIG_KCMP */
1119
1120 /**
1121 * Adds a new entry to the tail of the list in a lockless way, i.e.
1122 * multiple CPUs are allowed to call this function concurrently.
1123 *
1124 * Beware: it is necessary to prevent any other modifications of the
1125 * existing list until all changes are completed, in other words
1126 * concurrent list_add_tail_lockless() calls should be protected
1127 * with a read lock, where write lock acts as a barrier which
1128 * makes sure all list_add_tail_lockless() calls are fully
1129 * completed.
1130 *
1131 * Also an element can be locklessly added to the list only in one
1132 * direction i.e. either to the tail either to the head, otherwise
1133 * concurrent access will corrupt the list.
1134 *
1135 * Returns %false if element has been already added to the list, %true
1136 * otherwise.
1137 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1138 static inline bool list_add_tail_lockless(struct list_head *new,
1139 struct list_head *head)
1140 {
1141 struct list_head *prev;
1142
1143 /*
1144 * This is simple 'new->next = head' operation, but cmpxchg()
1145 * is used in order to detect that same element has been just
1146 * added to the list from another CPU: the winner observes
1147 * new->next == new.
1148 */
1149 if (cmpxchg(&new->next, new, head) != new)
1150 return false;
1151
1152 /*
1153 * Initially ->next of a new element must be updated with the head
1154 * (we are inserting to the tail) and only then pointers are atomically
1155 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1156 * updated before pointers are actually swapped and pointers are
1157 * swapped before prev->next is updated.
1158 */
1159
1160 prev = xchg(&head->prev, new);
1161
1162 /*
1163 * It is safe to modify prev->next and new->prev, because a new element
1164 * is added only to the tail and new->next is updated before XCHG.
1165 */
1166
1167 prev->next = new;
1168 new->prev = prev;
1169
1170 return true;
1171 }
1172
1173 /**
1174 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1175 * i.e. multiple CPUs are allowed to call this function concurrently.
1176 *
1177 * Returns %false if epi element has been already chained, %true otherwise.
1178 */
chain_epi_lockless(struct epitem * epi)1179 static inline bool chain_epi_lockless(struct epitem *epi)
1180 {
1181 struct eventpoll *ep = epi->ep;
1182
1183 /* Fast preliminary check */
1184 if (epi->next != EP_UNACTIVE_PTR)
1185 return false;
1186
1187 /* Check that the same epi has not been just chained from another CPU */
1188 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1189 return false;
1190
1191 /* Atomically exchange tail */
1192 epi->next = xchg(&ep->ovflist, epi);
1193
1194 return true;
1195 }
1196
1197 /*
1198 * This is the callback that is passed to the wait queue wakeup
1199 * mechanism. It is called by the stored file descriptors when they
1200 * have events to report.
1201 *
1202 * This callback takes a read lock in order not to content with concurrent
1203 * events from another file descriptors, thus all modifications to ->rdllist
1204 * or ->ovflist are lockless. Read lock is paired with the write lock from
1205 * ep_scan_ready_list(), which stops all list modifications and guarantees
1206 * that lists state is seen correctly.
1207 *
1208 * Another thing worth to mention is that ep_poll_callback() can be called
1209 * concurrently for the same @epi from different CPUs if poll table was inited
1210 * with several wait queues entries. Plural wakeup from different CPUs of a
1211 * single wait queue is serialized by wq.lock, but the case when multiple wait
1212 * queues are used should be detected accordingly. This is detected using
1213 * cmpxchg() operation.
1214 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1215 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1216 {
1217 int pwake = 0;
1218 struct epitem *epi = ep_item_from_wait(wait);
1219 struct eventpoll *ep = epi->ep;
1220 __poll_t pollflags = key_to_poll(key);
1221 unsigned long flags;
1222 int ewake = 0;
1223
1224 read_lock_irqsave(&ep->lock, flags);
1225
1226 ep_set_busy_poll_napi_id(epi);
1227
1228 /*
1229 * If the event mask does not contain any poll(2) event, we consider the
1230 * descriptor to be disabled. This condition is likely the effect of the
1231 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1232 * until the next EPOLL_CTL_MOD will be issued.
1233 */
1234 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1235 goto out_unlock;
1236
1237 /*
1238 * Check the events coming with the callback. At this stage, not
1239 * every device reports the events in the "key" parameter of the
1240 * callback. We need to be able to handle both cases here, hence the
1241 * test for "key" != NULL before the event match test.
1242 */
1243 if (pollflags && !(pollflags & epi->event.events))
1244 goto out_unlock;
1245
1246 /*
1247 * If we are transferring events to userspace, we can hold no locks
1248 * (because we're accessing user memory, and because of linux f_op->poll()
1249 * semantics). All the events that happen during that period of time are
1250 * chained in ep->ovflist and requeued later on.
1251 */
1252 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1253 if (chain_epi_lockless(epi))
1254 ep_pm_stay_awake_rcu(epi);
1255 } else if (!ep_is_linked(epi)) {
1256 /* In the usual case, add event to ready list. */
1257 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1258 ep_pm_stay_awake_rcu(epi);
1259 }
1260
1261 /*
1262 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1263 * wait list.
1264 */
1265 if (waitqueue_active(&ep->wq)) {
1266 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1267 !(pollflags & POLLFREE)) {
1268 switch (pollflags & EPOLLINOUT_BITS) {
1269 case EPOLLIN:
1270 if (epi->event.events & EPOLLIN)
1271 ewake = 1;
1272 break;
1273 case EPOLLOUT:
1274 if (epi->event.events & EPOLLOUT)
1275 ewake = 1;
1276 break;
1277 case 0:
1278 ewake = 1;
1279 break;
1280 }
1281 }
1282 wake_up(&ep->wq);
1283 }
1284 if (waitqueue_active(&ep->poll_wait))
1285 pwake++;
1286
1287 out_unlock:
1288 read_unlock_irqrestore(&ep->lock, flags);
1289
1290 /* We have to call this outside the lock */
1291 if (pwake)
1292 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1293
1294 if (!(epi->event.events & EPOLLEXCLUSIVE))
1295 ewake = 1;
1296
1297 if (pollflags & POLLFREE) {
1298 /*
1299 * If we race with ep_remove_wait_queue() it can miss
1300 * ->whead = NULL and do another remove_wait_queue() after
1301 * us, so we can't use __remove_wait_queue().
1302 */
1303 list_del_init(&wait->entry);
1304 /*
1305 * ->whead != NULL protects us from the race with ep_free()
1306 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1307 * held by the caller. Once we nullify it, nothing protects
1308 * ep/epi or even wait.
1309 */
1310 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1311 }
1312
1313 return ewake;
1314 }
1315
1316 /*
1317 * This is the callback that is used to add our wait queue to the
1318 * target file wakeup lists.
1319 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1320 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1321 poll_table *pt)
1322 {
1323 struct epitem *epi = ep_item_from_epqueue(pt);
1324 struct eppoll_entry *pwq;
1325
1326 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1327 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1328 pwq->whead = whead;
1329 pwq->base = epi;
1330 if (epi->event.events & EPOLLEXCLUSIVE)
1331 add_wait_queue_exclusive(whead, &pwq->wait);
1332 else
1333 add_wait_queue(whead, &pwq->wait);
1334 list_add_tail(&pwq->llink, &epi->pwqlist);
1335 epi->nwait++;
1336 } else {
1337 /* We have to signal that an error occurred */
1338 epi->nwait = -1;
1339 }
1340 }
1341
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1342 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1343 {
1344 int kcmp;
1345 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1346 struct epitem *epic;
1347 bool leftmost = true;
1348
1349 while (*p) {
1350 parent = *p;
1351 epic = rb_entry(parent, struct epitem, rbn);
1352 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1353 if (kcmp > 0) {
1354 p = &parent->rb_right;
1355 leftmost = false;
1356 } else
1357 p = &parent->rb_left;
1358 }
1359 rb_link_node(&epi->rbn, parent, p);
1360 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1361 }
1362
1363
1364
1365 #define PATH_ARR_SIZE 5
1366 /*
1367 * These are the number paths of length 1 to 5, that we are allowing to emanate
1368 * from a single file of interest. For example, we allow 1000 paths of length
1369 * 1, to emanate from each file of interest. This essentially represents the
1370 * potential wakeup paths, which need to be limited in order to avoid massive
1371 * uncontrolled wakeup storms. The common use case should be a single ep which
1372 * is connected to n file sources. In this case each file source has 1 path
1373 * of length 1. Thus, the numbers below should be more than sufficient. These
1374 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1375 * and delete can't add additional paths. Protected by the epmutex.
1376 */
1377 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1378 static int path_count[PATH_ARR_SIZE];
1379
path_count_inc(int nests)1380 static int path_count_inc(int nests)
1381 {
1382 /* Allow an arbitrary number of depth 1 paths */
1383 if (nests == 0)
1384 return 0;
1385
1386 if (++path_count[nests] > path_limits[nests])
1387 return -1;
1388 return 0;
1389 }
1390
path_count_init(void)1391 static void path_count_init(void)
1392 {
1393 int i;
1394
1395 for (i = 0; i < PATH_ARR_SIZE; i++)
1396 path_count[i] = 0;
1397 }
1398
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1399 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1400 {
1401 int error = 0;
1402 struct file *file = priv;
1403 struct file *child_file;
1404 struct epitem *epi;
1405
1406 /* CTL_DEL can remove links here, but that can't increase our count */
1407 rcu_read_lock();
1408 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1409 child_file = epi->ep->file;
1410 if (is_file_epoll(child_file)) {
1411 if (list_empty(&child_file->f_ep_links)) {
1412 if (path_count_inc(call_nests)) {
1413 error = -1;
1414 break;
1415 }
1416 } else {
1417 error = ep_call_nested(&poll_loop_ncalls,
1418 reverse_path_check_proc,
1419 child_file, child_file,
1420 current);
1421 }
1422 if (error != 0)
1423 break;
1424 } else {
1425 printk(KERN_ERR "reverse_path_check_proc: "
1426 "file is not an ep!\n");
1427 }
1428 }
1429 rcu_read_unlock();
1430 return error;
1431 }
1432
1433 /**
1434 * reverse_path_check - The tfile_check_list is list of file *, which have
1435 * links that are proposed to be newly added. We need to
1436 * make sure that those added links don't add too many
1437 * paths such that we will spend all our time waking up
1438 * eventpoll objects.
1439 *
1440 * Returns: Returns zero if the proposed links don't create too many paths,
1441 * -1 otherwise.
1442 */
reverse_path_check(void)1443 static int reverse_path_check(void)
1444 {
1445 int error = 0;
1446 struct file *current_file;
1447
1448 /* let's call this for all tfiles */
1449 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1450 path_count_init();
1451 error = ep_call_nested(&poll_loop_ncalls,
1452 reverse_path_check_proc, current_file,
1453 current_file, current);
1454 if (error)
1455 break;
1456 }
1457 return error;
1458 }
1459
ep_create_wakeup_source(struct epitem * epi)1460 static int ep_create_wakeup_source(struct epitem *epi)
1461 {
1462 struct name_snapshot n;
1463 struct wakeup_source *ws;
1464 char ws_name[64];
1465
1466 strlcpy(ws_name, "eventpoll", sizeof(ws_name));
1467 trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1468 if (!epi->ep->ws) {
1469 epi->ep->ws = wakeup_source_register(NULL, ws_name);
1470 if (!epi->ep->ws)
1471 return -ENOMEM;
1472 }
1473
1474 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1475 strlcpy(ws_name, n.name.name, sizeof(ws_name));
1476 trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1477 ws = wakeup_source_register(NULL, ws_name);
1478 release_dentry_name_snapshot(&n);
1479
1480 if (!ws)
1481 return -ENOMEM;
1482 rcu_assign_pointer(epi->ws, ws);
1483
1484 return 0;
1485 }
1486
1487 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1488 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1489 {
1490 struct wakeup_source *ws = ep_wakeup_source(epi);
1491
1492 RCU_INIT_POINTER(epi->ws, NULL);
1493
1494 /*
1495 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1496 * used internally by wakeup_source_remove, too (called by
1497 * wakeup_source_unregister), so we cannot use call_rcu
1498 */
1499 synchronize_rcu();
1500 wakeup_source_unregister(ws);
1501 }
1502
1503 /*
1504 * Must be called with "mtx" held.
1505 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1506 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1507 struct file *tfile, int fd, int full_check)
1508 {
1509 int error, pwake = 0;
1510 __poll_t revents;
1511 long user_watches;
1512 struct epitem *epi;
1513 struct ep_pqueue epq;
1514
1515 lockdep_assert_irqs_enabled();
1516
1517 user_watches = atomic_long_read(&ep->user->epoll_watches);
1518 if (unlikely(user_watches >= max_user_watches))
1519 return -ENOSPC;
1520 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1521 return -ENOMEM;
1522
1523 /* Item initialization follow here ... */
1524 INIT_LIST_HEAD(&epi->rdllink);
1525 INIT_LIST_HEAD(&epi->fllink);
1526 INIT_LIST_HEAD(&epi->pwqlist);
1527 epi->ep = ep;
1528 ep_set_ffd(&epi->ffd, tfile, fd);
1529 epi->event = *event;
1530 epi->nwait = 0;
1531 epi->next = EP_UNACTIVE_PTR;
1532 if (epi->event.events & EPOLLWAKEUP) {
1533 error = ep_create_wakeup_source(epi);
1534 if (error)
1535 goto error_create_wakeup_source;
1536 } else {
1537 RCU_INIT_POINTER(epi->ws, NULL);
1538 }
1539
1540 /* Add the current item to the list of active epoll hook for this file */
1541 spin_lock(&tfile->f_lock);
1542 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1543 spin_unlock(&tfile->f_lock);
1544
1545 /*
1546 * Add the current item to the RB tree. All RB tree operations are
1547 * protected by "mtx", and ep_insert() is called with "mtx" held.
1548 */
1549 ep_rbtree_insert(ep, epi);
1550
1551 /* now check if we've created too many backpaths */
1552 error = -EINVAL;
1553 if (full_check && reverse_path_check())
1554 goto error_remove_epi;
1555
1556 /* Initialize the poll table using the queue callback */
1557 epq.epi = epi;
1558 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1559
1560 /*
1561 * Attach the item to the poll hooks and get current event bits.
1562 * We can safely use the file* here because its usage count has
1563 * been increased by the caller of this function. Note that after
1564 * this operation completes, the poll callback can start hitting
1565 * the new item.
1566 */
1567 revents = ep_item_poll(epi, &epq.pt, 1);
1568
1569 /*
1570 * We have to check if something went wrong during the poll wait queue
1571 * install process. Namely an allocation for a wait queue failed due
1572 * high memory pressure.
1573 */
1574 error = -ENOMEM;
1575 if (epi->nwait < 0)
1576 goto error_unregister;
1577
1578 /* We have to drop the new item inside our item list to keep track of it */
1579 write_lock_irq(&ep->lock);
1580
1581 /* record NAPI ID of new item if present */
1582 ep_set_busy_poll_napi_id(epi);
1583
1584 /* If the file is already "ready" we drop it inside the ready list */
1585 if (revents && !ep_is_linked(epi)) {
1586 list_add_tail(&epi->rdllink, &ep->rdllist);
1587 ep_pm_stay_awake(epi);
1588
1589 /* Notify waiting tasks that events are available */
1590 if (waitqueue_active(&ep->wq))
1591 wake_up(&ep->wq);
1592 if (waitqueue_active(&ep->poll_wait))
1593 pwake++;
1594 }
1595
1596 write_unlock_irq(&ep->lock);
1597
1598 atomic_long_inc(&ep->user->epoll_watches);
1599
1600 /* We have to call this outside the lock */
1601 if (pwake)
1602 ep_poll_safewake(ep, NULL, 0);
1603
1604 return 0;
1605
1606 error_unregister:
1607 ep_unregister_pollwait(ep, epi);
1608 error_remove_epi:
1609 spin_lock(&tfile->f_lock);
1610 list_del_rcu(&epi->fllink);
1611 spin_unlock(&tfile->f_lock);
1612
1613 rb_erase_cached(&epi->rbn, &ep->rbr);
1614
1615 /*
1616 * We need to do this because an event could have been arrived on some
1617 * allocated wait queue. Note that we don't care about the ep->ovflist
1618 * list, since that is used/cleaned only inside a section bound by "mtx".
1619 * And ep_insert() is called with "mtx" held.
1620 */
1621 write_lock_irq(&ep->lock);
1622 if (ep_is_linked(epi))
1623 list_del_init(&epi->rdllink);
1624 write_unlock_irq(&ep->lock);
1625
1626 wakeup_source_unregister(ep_wakeup_source(epi));
1627
1628 error_create_wakeup_source:
1629 kmem_cache_free(epi_cache, epi);
1630
1631 return error;
1632 }
1633
1634 /*
1635 * Modify the interest event mask by dropping an event if the new mask
1636 * has a match in the current file status. Must be called with "mtx" held.
1637 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1638 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1639 const struct epoll_event *event)
1640 {
1641 int pwake = 0;
1642 poll_table pt;
1643
1644 lockdep_assert_irqs_enabled();
1645
1646 init_poll_funcptr(&pt, NULL);
1647
1648 /*
1649 * Set the new event interest mask before calling f_op->poll();
1650 * otherwise we might miss an event that happens between the
1651 * f_op->poll() call and the new event set registering.
1652 */
1653 epi->event.events = event->events; /* need barrier below */
1654 epi->event.data = event->data; /* protected by mtx */
1655 if (epi->event.events & EPOLLWAKEUP) {
1656 if (!ep_has_wakeup_source(epi))
1657 ep_create_wakeup_source(epi);
1658 } else if (ep_has_wakeup_source(epi)) {
1659 ep_destroy_wakeup_source(epi);
1660 }
1661
1662 /*
1663 * The following barrier has two effects:
1664 *
1665 * 1) Flush epi changes above to other CPUs. This ensures
1666 * we do not miss events from ep_poll_callback if an
1667 * event occurs immediately after we call f_op->poll().
1668 * We need this because we did not take ep->lock while
1669 * changing epi above (but ep_poll_callback does take
1670 * ep->lock).
1671 *
1672 * 2) We also need to ensure we do not miss _past_ events
1673 * when calling f_op->poll(). This barrier also
1674 * pairs with the barrier in wq_has_sleeper (see
1675 * comments for wq_has_sleeper).
1676 *
1677 * This barrier will now guarantee ep_poll_callback or f_op->poll
1678 * (or both) will notice the readiness of an item.
1679 */
1680 smp_mb();
1681
1682 /*
1683 * Get current event bits. We can safely use the file* here because
1684 * its usage count has been increased by the caller of this function.
1685 * If the item is "hot" and it is not registered inside the ready
1686 * list, push it inside.
1687 */
1688 if (ep_item_poll(epi, &pt, 1)) {
1689 write_lock_irq(&ep->lock);
1690 if (!ep_is_linked(epi)) {
1691 list_add_tail(&epi->rdllink, &ep->rdllist);
1692 ep_pm_stay_awake(epi);
1693
1694 /* Notify waiting tasks that events are available */
1695 if (waitqueue_active(&ep->wq))
1696 wake_up(&ep->wq);
1697 if (waitqueue_active(&ep->poll_wait))
1698 pwake++;
1699 }
1700 write_unlock_irq(&ep->lock);
1701 }
1702
1703 /* We have to call this outside the lock */
1704 if (pwake)
1705 ep_poll_safewake(ep, NULL, 0);
1706
1707 return 0;
1708 }
1709
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1710 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1711 void *priv)
1712 {
1713 struct ep_send_events_data *esed = priv;
1714 __poll_t revents;
1715 struct epitem *epi, *tmp;
1716 struct epoll_event __user *uevent = esed->events;
1717 struct wakeup_source *ws;
1718 poll_table pt;
1719
1720 init_poll_funcptr(&pt, NULL);
1721 esed->res = 0;
1722
1723 /*
1724 * We can loop without lock because we are passed a task private list.
1725 * Items cannot vanish during the loop because ep_scan_ready_list() is
1726 * holding "mtx" during this call.
1727 */
1728 lockdep_assert_held(&ep->mtx);
1729
1730 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1731 if (esed->res >= esed->maxevents)
1732 break;
1733
1734 /*
1735 * Activate ep->ws before deactivating epi->ws to prevent
1736 * triggering auto-suspend here (in case we reactive epi->ws
1737 * below).
1738 *
1739 * This could be rearranged to delay the deactivation of epi->ws
1740 * instead, but then epi->ws would temporarily be out of sync
1741 * with ep_is_linked().
1742 */
1743 ws = ep_wakeup_source(epi);
1744 if (ws) {
1745 if (ws->active)
1746 __pm_stay_awake(ep->ws);
1747 __pm_relax(ws);
1748 }
1749
1750 list_del_init(&epi->rdllink);
1751
1752 /*
1753 * If the event mask intersect the caller-requested one,
1754 * deliver the event to userspace. Again, ep_scan_ready_list()
1755 * is holding ep->mtx, so no operations coming from userspace
1756 * can change the item.
1757 */
1758 revents = ep_item_poll(epi, &pt, 1);
1759 if (!revents)
1760 continue;
1761
1762 if (__put_user(revents, &uevent->events) ||
1763 __put_user(epi->event.data, &uevent->data)) {
1764 list_add(&epi->rdllink, head);
1765 ep_pm_stay_awake(epi);
1766 if (!esed->res)
1767 esed->res = -EFAULT;
1768 return 0;
1769 }
1770 esed->res++;
1771 uevent++;
1772 if (epi->event.events & EPOLLONESHOT)
1773 epi->event.events &= EP_PRIVATE_BITS;
1774 else if (!(epi->event.events & EPOLLET)) {
1775 /*
1776 * If this file has been added with Level
1777 * Trigger mode, we need to insert back inside
1778 * the ready list, so that the next call to
1779 * epoll_wait() will check again the events
1780 * availability. At this point, no one can insert
1781 * into ep->rdllist besides us. The epoll_ctl()
1782 * callers are locked out by
1783 * ep_scan_ready_list() holding "mtx" and the
1784 * poll callback will queue them in ep->ovflist.
1785 */
1786 list_add_tail(&epi->rdllink, &ep->rdllist);
1787 ep_pm_stay_awake(epi);
1788 }
1789 }
1790
1791 return 0;
1792 }
1793
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1794 static int ep_send_events(struct eventpoll *ep,
1795 struct epoll_event __user *events, int maxevents)
1796 {
1797 struct ep_send_events_data esed;
1798
1799 esed.maxevents = maxevents;
1800 esed.events = events;
1801
1802 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1803 return esed.res;
1804 }
1805
ep_set_mstimeout(long ms)1806 static inline struct timespec64 ep_set_mstimeout(long ms)
1807 {
1808 struct timespec64 now, ts = {
1809 .tv_sec = ms / MSEC_PER_SEC,
1810 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1811 };
1812
1813 ktime_get_ts64(&now);
1814 return timespec64_add_safe(now, ts);
1815 }
1816
1817 /*
1818 * autoremove_wake_function, but remove even on failure to wake up, because we
1819 * know that default_wake_function/ttwu will only fail if the thread is already
1820 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1821 * try to reuse it.
1822 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1823 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1824 unsigned int mode, int sync, void *key)
1825 {
1826 int ret = default_wake_function(wq_entry, mode, sync, key);
1827
1828 /*
1829 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1830 * iterations see the cause of this wakeup.
1831 */
1832 list_del_init_careful(&wq_entry->entry);
1833 return ret;
1834 }
1835
1836 /**
1837 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1838 * event buffer.
1839 *
1840 * @ep: Pointer to the eventpoll context.
1841 * @events: Pointer to the userspace buffer where the ready events should be
1842 * stored.
1843 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1844 * @timeout: Maximum timeout for the ready events fetch operation, in
1845 * milliseconds. If the @timeout is zero, the function will not block,
1846 * while if the @timeout is less than zero, the function will block
1847 * until at least one event has been retrieved (or an error
1848 * occurred).
1849 *
1850 * Returns: Returns the number of ready events which have been fetched, or an
1851 * error code, in case of error.
1852 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1853 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1854 int maxevents, long timeout)
1855 {
1856 int res = 0, eavail, timed_out = 0;
1857 u64 slack = 0;
1858 wait_queue_entry_t wait;
1859 ktime_t expires, *to = NULL;
1860
1861 lockdep_assert_irqs_enabled();
1862
1863 if (timeout > 0) {
1864 struct timespec64 end_time = ep_set_mstimeout(timeout);
1865
1866 slack = select_estimate_accuracy(&end_time);
1867 to = &expires;
1868 *to = timespec64_to_ktime(end_time);
1869 } else if (timeout == 0) {
1870 /*
1871 * Avoid the unnecessary trip to the wait queue loop, if the
1872 * caller specified a non blocking operation. We still need
1873 * lock because we could race and not see an epi being added
1874 * to the ready list while in irq callback. Thus incorrectly
1875 * returning 0 back to userspace.
1876 */
1877 timed_out = 1;
1878
1879 write_lock_irq(&ep->lock);
1880 eavail = ep_events_available(ep);
1881 write_unlock_irq(&ep->lock);
1882
1883 goto send_events;
1884 }
1885
1886 fetch_events:
1887
1888 if (!ep_events_available(ep))
1889 ep_busy_loop(ep, timed_out);
1890
1891 eavail = ep_events_available(ep);
1892 if (eavail)
1893 goto send_events;
1894
1895 /*
1896 * Busy poll timed out. Drop NAPI ID for now, we can add
1897 * it back in when we have moved a socket with a valid NAPI
1898 * ID onto the ready list.
1899 */
1900 ep_reset_busy_poll_napi_id(ep);
1901
1902 do {
1903 /*
1904 * Internally init_wait() uses autoremove_wake_function(),
1905 * thus wait entry is removed from the wait queue on each
1906 * wakeup. Why it is important? In case of several waiters
1907 * each new wakeup will hit the next waiter, giving it the
1908 * chance to harvest new event. Otherwise wakeup can be
1909 * lost. This is also good performance-wise, because on
1910 * normal wakeup path no need to call __remove_wait_queue()
1911 * explicitly, thus ep->lock is not taken, which halts the
1912 * event delivery.
1913 *
1914 * In fact, we now use an even more aggressive function that
1915 * unconditionally removes, because we don't reuse the wait
1916 * entry between loop iterations. This lets us also avoid the
1917 * performance issue if a process is killed, causing all of its
1918 * threads to wake up without being removed normally.
1919 */
1920 init_wait(&wait);
1921 wait.func = ep_autoremove_wake_function;
1922
1923 write_lock_irq(&ep->lock);
1924 /*
1925 * Barrierless variant, waitqueue_active() is called under
1926 * the same lock on wakeup ep_poll_callback() side, so it
1927 * is safe to avoid an explicit barrier.
1928 */
1929 __set_current_state(TASK_INTERRUPTIBLE);
1930
1931 /*
1932 * Do the final check under the lock. ep_scan_ready_list()
1933 * plays with two lists (->rdllist and ->ovflist) and there
1934 * is always a race when both lists are empty for short
1935 * period of time although events are pending, so lock is
1936 * important.
1937 */
1938 eavail = ep_events_available(ep);
1939 if (!eavail) {
1940 if (signal_pending(current))
1941 res = -EINTR;
1942 else
1943 __add_wait_queue_exclusive(&ep->wq, &wait);
1944 }
1945 write_unlock_irq(&ep->lock);
1946
1947 if (!eavail && !res)
1948 timed_out = !freezable_schedule_hrtimeout_range(to, slack,
1949 HRTIMER_MODE_ABS);
1950
1951 /*
1952 * We were woken up, thus go and try to harvest some events.
1953 * If timed out and still on the wait queue, recheck eavail
1954 * carefully under lock, below.
1955 */
1956 eavail = 1;
1957 } while (0);
1958
1959 __set_current_state(TASK_RUNNING);
1960
1961 if (!list_empty_careful(&wait.entry)) {
1962 write_lock_irq(&ep->lock);
1963 /*
1964 * If the thread timed out and is not on the wait queue, it
1965 * means that the thread was woken up after its timeout expired
1966 * before it could reacquire the lock. Thus, when wait.entry is
1967 * empty, it needs to harvest events.
1968 */
1969 if (timed_out)
1970 eavail = list_empty(&wait.entry);
1971 __remove_wait_queue(&ep->wq, &wait);
1972 write_unlock_irq(&ep->lock);
1973 }
1974
1975 send_events:
1976 if (fatal_signal_pending(current)) {
1977 /*
1978 * Always short-circuit for fatal signals to allow
1979 * threads to make a timely exit without the chance of
1980 * finding more events available and fetching
1981 * repeatedly.
1982 */
1983 res = -EINTR;
1984 }
1985 /*
1986 * Try to transfer events to user space. In case we get 0 events and
1987 * there's still timeout left over, we go trying again in search of
1988 * more luck.
1989 */
1990 if (!res && eavail &&
1991 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1992 goto fetch_events;
1993
1994 return res;
1995 }
1996
1997 /**
1998 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1999 * API, to verify that adding an epoll file inside another
2000 * epoll structure, does not violate the constraints, in
2001 * terms of closed loops, or too deep chains (which can
2002 * result in excessive stack usage).
2003 *
2004 * @priv: Pointer to the epoll file to be currently checked.
2005 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
2006 * data structure pointer.
2007 * @call_nests: Current dept of the @ep_call_nested() call stack.
2008 *
2009 * Returns: Returns zero if adding the epoll @file inside current epoll
2010 * structure @ep does not violate the constraints, or -1 otherwise.
2011 */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)2012 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
2013 {
2014 int error = 0;
2015 struct file *file = priv;
2016 struct eventpoll *ep = file->private_data;
2017 struct eventpoll *ep_tovisit;
2018 struct rb_node *rbp;
2019 struct epitem *epi;
2020
2021 mutex_lock_nested(&ep->mtx, call_nests + 1);
2022 ep->gen = loop_check_gen;
2023 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2024 epi = rb_entry(rbp, struct epitem, rbn);
2025 if (unlikely(is_file_epoll(epi->ffd.file))) {
2026 ep_tovisit = epi->ffd.file->private_data;
2027 if (ep_tovisit->gen == loop_check_gen)
2028 continue;
2029 error = ep_call_nested(&poll_loop_ncalls,
2030 ep_loop_check_proc, epi->ffd.file,
2031 ep_tovisit, current);
2032 if (error != 0)
2033 break;
2034 } else {
2035 /*
2036 * If we've reached a file that is not associated with
2037 * an ep, then we need to check if the newly added
2038 * links are going to add too many wakeup paths. We do
2039 * this by adding it to the tfile_check_list, if it's
2040 * not already there, and calling reverse_path_check()
2041 * during ep_insert().
2042 */
2043 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2044 if (get_file_rcu(epi->ffd.file))
2045 list_add(&epi->ffd.file->f_tfile_llink,
2046 &tfile_check_list);
2047 }
2048 }
2049 }
2050 mutex_unlock(&ep->mtx);
2051
2052 return error;
2053 }
2054
2055 /**
2056 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2057 * another epoll file (represented by @ep) does not create
2058 * closed loops or too deep chains.
2059 *
2060 * @ep: Pointer to the epoll private data structure.
2061 * @file: Pointer to the epoll file to be checked.
2062 *
2063 * Returns: Returns zero if adding the epoll @file inside current epoll
2064 * structure @ep does not violate the constraints, or -1 otherwise.
2065 */
ep_loop_check(struct eventpoll * ep,struct file * file)2066 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2067 {
2068 return ep_call_nested(&poll_loop_ncalls,
2069 ep_loop_check_proc, file, ep, current);
2070 }
2071
clear_tfile_check_list(void)2072 static void clear_tfile_check_list(void)
2073 {
2074 struct file *file;
2075
2076 /* first clear the tfile_check_list */
2077 while (!list_empty(&tfile_check_list)) {
2078 file = list_first_entry(&tfile_check_list, struct file,
2079 f_tfile_llink);
2080 list_del_init(&file->f_tfile_llink);
2081 fput(file);
2082 }
2083 INIT_LIST_HEAD(&tfile_check_list);
2084 }
2085
2086 /*
2087 * Open an eventpoll file descriptor.
2088 */
do_epoll_create(int flags)2089 static int do_epoll_create(int flags)
2090 {
2091 int error, fd;
2092 struct eventpoll *ep = NULL;
2093 struct file *file;
2094
2095 /* Check the EPOLL_* constant for consistency. */
2096 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2097
2098 if (flags & ~EPOLL_CLOEXEC)
2099 return -EINVAL;
2100 /*
2101 * Create the internal data structure ("struct eventpoll").
2102 */
2103 error = ep_alloc(&ep);
2104 if (error < 0)
2105 return error;
2106 /*
2107 * Creates all the items needed to setup an eventpoll file. That is,
2108 * a file structure and a free file descriptor.
2109 */
2110 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2111 if (fd < 0) {
2112 error = fd;
2113 goto out_free_ep;
2114 }
2115 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2116 O_RDWR | (flags & O_CLOEXEC));
2117 if (IS_ERR(file)) {
2118 error = PTR_ERR(file);
2119 goto out_free_fd;
2120 }
2121 ep->file = file;
2122 fd_install(fd, file);
2123 return fd;
2124
2125 out_free_fd:
2126 put_unused_fd(fd);
2127 out_free_ep:
2128 ep_free(ep);
2129 return error;
2130 }
2131
SYSCALL_DEFINE1(epoll_create1,int,flags)2132 SYSCALL_DEFINE1(epoll_create1, int, flags)
2133 {
2134 return do_epoll_create(flags);
2135 }
2136
SYSCALL_DEFINE1(epoll_create,int,size)2137 SYSCALL_DEFINE1(epoll_create, int, size)
2138 {
2139 if (size <= 0)
2140 return -EINVAL;
2141
2142 return do_epoll_create(0);
2143 }
2144
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2145 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2146 bool nonblock)
2147 {
2148 if (!nonblock) {
2149 mutex_lock_nested(mutex, depth);
2150 return 0;
2151 }
2152 if (mutex_trylock(mutex))
2153 return 0;
2154 return -EAGAIN;
2155 }
2156
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2157 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2158 bool nonblock)
2159 {
2160 int error;
2161 int full_check = 0;
2162 struct fd f, tf;
2163 struct eventpoll *ep;
2164 struct epitem *epi;
2165 struct eventpoll *tep = NULL;
2166
2167 error = -EBADF;
2168 f = fdget(epfd);
2169 if (!f.file)
2170 goto error_return;
2171
2172 /* Get the "struct file *" for the target file */
2173 tf = fdget(fd);
2174 if (!tf.file)
2175 goto error_fput;
2176
2177 /* The target file descriptor must support poll */
2178 error = -EPERM;
2179 if (!file_can_poll(tf.file))
2180 goto error_tgt_fput;
2181
2182 /* Check if EPOLLWAKEUP is allowed */
2183 if (ep_op_has_event(op))
2184 ep_take_care_of_epollwakeup(epds);
2185
2186 /*
2187 * We have to check that the file structure underneath the file descriptor
2188 * the user passed to us _is_ an eventpoll file. And also we do not permit
2189 * adding an epoll file descriptor inside itself.
2190 */
2191 error = -EINVAL;
2192 if (f.file == tf.file || !is_file_epoll(f.file))
2193 goto error_tgt_fput;
2194
2195 /*
2196 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2197 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2198 * Also, we do not currently supported nested exclusive wakeups.
2199 */
2200 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2201 if (op == EPOLL_CTL_MOD)
2202 goto error_tgt_fput;
2203 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2204 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2205 goto error_tgt_fput;
2206 }
2207
2208 /*
2209 * At this point it is safe to assume that the "private_data" contains
2210 * our own data structure.
2211 */
2212 ep = f.file->private_data;
2213
2214 /*
2215 * When we insert an epoll file descriptor, inside another epoll file
2216 * descriptor, there is the change of creating closed loops, which are
2217 * better be handled here, than in more critical paths. While we are
2218 * checking for loops we also determine the list of files reachable
2219 * and hang them on the tfile_check_list, so we can check that we
2220 * haven't created too many possible wakeup paths.
2221 *
2222 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2223 * the epoll file descriptor is attaching directly to a wakeup source,
2224 * unless the epoll file descriptor is nested. The purpose of taking the
2225 * 'epmutex' on add is to prevent complex toplogies such as loops and
2226 * deep wakeup paths from forming in parallel through multiple
2227 * EPOLL_CTL_ADD operations.
2228 */
2229 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2230 if (error)
2231 goto error_tgt_fput;
2232 if (op == EPOLL_CTL_ADD) {
2233 if (!list_empty(&f.file->f_ep_links) ||
2234 ep->gen == loop_check_gen ||
2235 is_file_epoll(tf.file)) {
2236 mutex_unlock(&ep->mtx);
2237 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2238 if (error)
2239 goto error_tgt_fput;
2240 loop_check_gen++;
2241 full_check = 1;
2242 if (is_file_epoll(tf.file)) {
2243 error = -ELOOP;
2244 if (ep_loop_check(ep, tf.file) != 0)
2245 goto error_tgt_fput;
2246 } else {
2247 get_file(tf.file);
2248 list_add(&tf.file->f_tfile_llink,
2249 &tfile_check_list);
2250 }
2251 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2252 if (error)
2253 goto error_tgt_fput;
2254 if (is_file_epoll(tf.file)) {
2255 tep = tf.file->private_data;
2256 error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2257 if (error) {
2258 mutex_unlock(&ep->mtx);
2259 goto error_tgt_fput;
2260 }
2261 }
2262 }
2263 }
2264
2265 /*
2266 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2267 * above, we can be sure to be able to use the item looked up by
2268 * ep_find() till we release the mutex.
2269 */
2270 epi = ep_find(ep, tf.file, fd);
2271
2272 error = -EINVAL;
2273 switch (op) {
2274 case EPOLL_CTL_ADD:
2275 if (!epi) {
2276 epds->events |= EPOLLERR | EPOLLHUP;
2277 error = ep_insert(ep, epds, tf.file, fd, full_check);
2278 } else
2279 error = -EEXIST;
2280 break;
2281 case EPOLL_CTL_DEL:
2282 if (epi)
2283 error = ep_remove(ep, epi);
2284 else
2285 error = -ENOENT;
2286 break;
2287 case EPOLL_CTL_MOD:
2288 if (epi) {
2289 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2290 epds->events |= EPOLLERR | EPOLLHUP;
2291 error = ep_modify(ep, epi, epds);
2292 }
2293 } else
2294 error = -ENOENT;
2295 break;
2296 }
2297 if (tep != NULL)
2298 mutex_unlock(&tep->mtx);
2299 mutex_unlock(&ep->mtx);
2300
2301 error_tgt_fput:
2302 if (full_check) {
2303 clear_tfile_check_list();
2304 loop_check_gen++;
2305 mutex_unlock(&epmutex);
2306 }
2307
2308 fdput(tf);
2309 error_fput:
2310 fdput(f);
2311 error_return:
2312
2313 return error;
2314 }
2315
2316 /*
2317 * The following function implements the controller interface for
2318 * the eventpoll file that enables the insertion/removal/change of
2319 * file descriptors inside the interest set.
2320 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2321 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2322 struct epoll_event __user *, event)
2323 {
2324 struct epoll_event epds;
2325
2326 if (ep_op_has_event(op) &&
2327 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2328 return -EFAULT;
2329
2330 return do_epoll_ctl(epfd, op, fd, &epds, false);
2331 }
2332
2333 /*
2334 * Implement the event wait interface for the eventpoll file. It is the kernel
2335 * part of the user space epoll_wait(2).
2336 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2337 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2338 int maxevents, int timeout)
2339 {
2340 int error;
2341 struct fd f;
2342 struct eventpoll *ep;
2343
2344 /* The maximum number of event must be greater than zero */
2345 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2346 return -EINVAL;
2347
2348 /* Verify that the area passed by the user is writeable */
2349 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2350 return -EFAULT;
2351
2352 /* Get the "struct file *" for the eventpoll file */
2353 f = fdget(epfd);
2354 if (!f.file)
2355 return -EBADF;
2356
2357 /*
2358 * We have to check that the file structure underneath the fd
2359 * the user passed to us _is_ an eventpoll file.
2360 */
2361 error = -EINVAL;
2362 if (!is_file_epoll(f.file))
2363 goto error_fput;
2364
2365 /*
2366 * At this point it is safe to assume that the "private_data" contains
2367 * our own data structure.
2368 */
2369 ep = f.file->private_data;
2370
2371 /* Time to fish for events ... */
2372 error = ep_poll(ep, events, maxevents, timeout);
2373
2374 error_fput:
2375 fdput(f);
2376 return error;
2377 }
2378
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2379 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2380 int, maxevents, int, timeout)
2381 {
2382 return do_epoll_wait(epfd, events, maxevents, timeout);
2383 }
2384
2385 /*
2386 * Implement the event wait interface for the eventpoll file. It is the kernel
2387 * part of the user space epoll_pwait(2).
2388 */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2389 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2390 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2391 size_t, sigsetsize)
2392 {
2393 int error;
2394
2395 /*
2396 * If the caller wants a certain signal mask to be set during the wait,
2397 * we apply it here.
2398 */
2399 error = set_user_sigmask(sigmask, sigsetsize);
2400 if (error)
2401 return error;
2402
2403 error = do_epoll_wait(epfd, events, maxevents, timeout);
2404 restore_saved_sigmask_unless(error == -EINTR);
2405
2406 return error;
2407 }
2408
2409 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2410 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2411 struct epoll_event __user *, events,
2412 int, maxevents, int, timeout,
2413 const compat_sigset_t __user *, sigmask,
2414 compat_size_t, sigsetsize)
2415 {
2416 long err;
2417
2418 /*
2419 * If the caller wants a certain signal mask to be set during the wait,
2420 * we apply it here.
2421 */
2422 err = set_compat_user_sigmask(sigmask, sigsetsize);
2423 if (err)
2424 return err;
2425
2426 err = do_epoll_wait(epfd, events, maxevents, timeout);
2427 restore_saved_sigmask_unless(err == -EINTR);
2428
2429 return err;
2430 }
2431 #endif
2432
eventpoll_init(void)2433 static int __init eventpoll_init(void)
2434 {
2435 struct sysinfo si;
2436
2437 si_meminfo(&si);
2438 /*
2439 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2440 */
2441 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2442 EP_ITEM_COST;
2443 BUG_ON(max_user_watches < 0);
2444
2445 /*
2446 * Initialize the structure used to perform epoll file descriptor
2447 * inclusion loops checks.
2448 */
2449 ep_nested_calls_init(&poll_loop_ncalls);
2450
2451 /*
2452 * We can have many thousands of epitems, so prevent this from
2453 * using an extra cache line on 64-bit (and smaller) CPUs
2454 */
2455 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2456
2457 /* Allocates slab cache used to allocate "struct epitem" items */
2458 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2459 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2460
2461 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2462 pwq_cache = kmem_cache_create("eventpoll_pwq",
2463 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2464
2465 return 0;
2466 }
2467 fs_initcall(eventpoll_init);
2468