• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/mount.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/kthread.h>
15 #include <linux/delay.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *victim_entry_slab;
26 
27 static unsigned int count_bits(const unsigned long *addr,
28 				unsigned int offset, unsigned int len);
29 
gc_thread_func(void * data)30 static int gc_thread_func(void *data)
31 {
32 	struct f2fs_sb_info *sbi = data;
33 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
34 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
35 	wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
36 	unsigned int wait_ms;
37 
38 	wait_ms = gc_th->min_sleep_time;
39 
40 	set_freezable();
41 	do {
42 		bool sync_mode, foreground = false;
43 
44 		wait_event_interruptible_timeout(*wq,
45 				kthread_should_stop() || freezing(current) ||
46 				waitqueue_active(fggc_wq) ||
47 				gc_th->gc_wake,
48 				msecs_to_jiffies(wait_ms));
49 
50 		if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
51 			foreground = true;
52 
53 		/* give it a try one time */
54 		if (gc_th->gc_wake)
55 			gc_th->gc_wake = 0;
56 
57 		if (try_to_freeze()) {
58 			stat_other_skip_bggc_count(sbi);
59 			continue;
60 		}
61 		if (kthread_should_stop())
62 			break;
63 
64 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
65 			increase_sleep_time(gc_th, &wait_ms);
66 			stat_other_skip_bggc_count(sbi);
67 			continue;
68 		}
69 
70 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
71 			f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
72 			f2fs_stop_checkpoint(sbi, false,
73 					STOP_CP_REASON_FAULT_INJECT);
74 		}
75 
76 		if (!sb_start_write_trylock(sbi->sb)) {
77 			stat_other_skip_bggc_count(sbi);
78 			continue;
79 		}
80 
81 		/*
82 		 * [GC triggering condition]
83 		 * 0. GC is not conducted currently.
84 		 * 1. There are enough dirty segments.
85 		 * 2. IO subsystem is idle by checking the # of writeback pages.
86 		 * 3. IO subsystem is idle by checking the # of requests in
87 		 *    bdev's request list.
88 		 *
89 		 * Note) We have to avoid triggering GCs frequently.
90 		 * Because it is possible that some segments can be
91 		 * invalidated soon after by user update or deletion.
92 		 * So, I'd like to wait some time to collect dirty segments.
93 		 */
94 		if (sbi->gc_mode == GC_URGENT_HIGH ||
95 				sbi->gc_mode == GC_URGENT_MID) {
96 			wait_ms = gc_th->urgent_sleep_time;
97 			f2fs_down_write(&sbi->gc_lock);
98 			goto do_gc;
99 		}
100 
101 		if (foreground) {
102 			f2fs_down_write(&sbi->gc_lock);
103 			goto do_gc;
104 		} else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
105 			stat_other_skip_bggc_count(sbi);
106 			goto next;
107 		}
108 
109 		if (!is_idle(sbi, GC_TIME)) {
110 			increase_sleep_time(gc_th, &wait_ms);
111 			f2fs_up_write(&sbi->gc_lock);
112 			stat_io_skip_bggc_count(sbi);
113 			goto next;
114 		}
115 
116 		if (has_enough_invalid_blocks(sbi))
117 			decrease_sleep_time(gc_th, &wait_ms);
118 		else
119 			increase_sleep_time(gc_th, &wait_ms);
120 do_gc:
121 		if (!foreground)
122 			stat_inc_bggc_count(sbi->stat_info);
123 
124 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
125 
126 		/* foreground GC was been triggered via f2fs_balance_fs() */
127 		if (foreground)
128 			sync_mode = false;
129 
130 		/* if return value is not zero, no victim was selected */
131 		if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO))
132 			wait_ms = gc_th->no_gc_sleep_time;
133 
134 		if (foreground)
135 			wake_up_all(&gc_th->fggc_wq);
136 
137 		trace_f2fs_background_gc(sbi->sb, wait_ms,
138 				prefree_segments(sbi), free_segments(sbi));
139 
140 		/* balancing f2fs's metadata periodically */
141 		f2fs_balance_fs_bg(sbi, true);
142 next:
143 		sb_end_write(sbi->sb);
144 
145 	} while (!kthread_should_stop());
146 	return 0;
147 }
148 
f2fs_start_gc_thread(struct f2fs_sb_info * sbi)149 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
150 {
151 	struct f2fs_gc_kthread *gc_th;
152 	dev_t dev = sbi->sb->s_bdev->bd_dev;
153 	int err = 0;
154 
155 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
156 	if (!gc_th) {
157 		err = -ENOMEM;
158 		goto out;
159 	}
160 
161 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
162 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
163 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
164 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
165 
166 	gc_th->gc_wake = 0;
167 
168 	sbi->gc_thread = gc_th;
169 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
170 	init_waitqueue_head(&sbi->gc_thread->fggc_wq);
171 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
172 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
173 	if (IS_ERR(gc_th->f2fs_gc_task)) {
174 		err = PTR_ERR(gc_th->f2fs_gc_task);
175 		kfree(gc_th);
176 		sbi->gc_thread = NULL;
177 	}
178 out:
179 	return err;
180 }
181 
f2fs_stop_gc_thread(struct f2fs_sb_info * sbi)182 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
183 {
184 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
185 
186 	if (!gc_th)
187 		return;
188 	kthread_stop(gc_th->f2fs_gc_task);
189 	wake_up_all(&gc_th->fggc_wq);
190 	kfree(gc_th);
191 	sbi->gc_thread = NULL;
192 }
193 
select_gc_type(struct f2fs_sb_info * sbi,int gc_type)194 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
195 {
196 	int gc_mode;
197 
198 	if (gc_type == BG_GC) {
199 		if (sbi->am.atgc_enabled)
200 			gc_mode = GC_AT;
201 		else
202 			gc_mode = GC_CB;
203 	} else {
204 		gc_mode = GC_GREEDY;
205 	}
206 
207 	switch (sbi->gc_mode) {
208 	case GC_IDLE_CB:
209 		gc_mode = GC_CB;
210 		break;
211 	case GC_IDLE_GREEDY:
212 	case GC_URGENT_HIGH:
213 		gc_mode = GC_GREEDY;
214 		break;
215 	case GC_IDLE_AT:
216 		gc_mode = GC_AT;
217 		break;
218 	}
219 
220 	return gc_mode;
221 }
222 
select_policy(struct f2fs_sb_info * sbi,int gc_type,int type,struct victim_sel_policy * p)223 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
224 			int type, struct victim_sel_policy *p)
225 {
226 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
227 
228 	if (p->alloc_mode == SSR) {
229 		p->gc_mode = GC_GREEDY;
230 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
231 		p->max_search = dirty_i->nr_dirty[type];
232 		p->ofs_unit = 1;
233 	} else if (p->alloc_mode == AT_SSR) {
234 		p->gc_mode = GC_GREEDY;
235 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
236 		p->max_search = dirty_i->nr_dirty[type];
237 		p->ofs_unit = 1;
238 	} else {
239 		p->gc_mode = select_gc_type(sbi, gc_type);
240 		p->ofs_unit = sbi->segs_per_sec;
241 		if (__is_large_section(sbi)) {
242 			p->dirty_bitmap = dirty_i->dirty_secmap;
243 			p->max_search = count_bits(p->dirty_bitmap,
244 						0, MAIN_SECS(sbi));
245 		} else {
246 			p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
247 			p->max_search = dirty_i->nr_dirty[DIRTY];
248 		}
249 	}
250 
251 	/*
252 	 * adjust candidates range, should select all dirty segments for
253 	 * foreground GC and urgent GC cases.
254 	 */
255 	if (gc_type != FG_GC &&
256 			(sbi->gc_mode != GC_URGENT_HIGH) &&
257 			(p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
258 			p->max_search > sbi->max_victim_search)
259 		p->max_search = sbi->max_victim_search;
260 
261 	/* let's select beginning hot/small space first in no_heap mode*/
262 	if (test_opt(sbi, NOHEAP) &&
263 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
264 		p->offset = 0;
265 	else
266 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
267 }
268 
get_max_cost(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)269 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
270 				struct victim_sel_policy *p)
271 {
272 	/* SSR allocates in a segment unit */
273 	if (p->alloc_mode == SSR)
274 		return sbi->blocks_per_seg;
275 	else if (p->alloc_mode == AT_SSR)
276 		return UINT_MAX;
277 
278 	/* LFS */
279 	if (p->gc_mode == GC_GREEDY)
280 		return 2 * sbi->blocks_per_seg * p->ofs_unit;
281 	else if (p->gc_mode == GC_CB)
282 		return UINT_MAX;
283 	else if (p->gc_mode == GC_AT)
284 		return UINT_MAX;
285 	else /* No other gc_mode */
286 		return 0;
287 }
288 
check_bg_victims(struct f2fs_sb_info * sbi)289 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
290 {
291 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
292 	unsigned int secno;
293 
294 	/*
295 	 * If the gc_type is FG_GC, we can select victim segments
296 	 * selected by background GC before.
297 	 * Those segments guarantee they have small valid blocks.
298 	 */
299 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
300 		if (sec_usage_check(sbi, secno))
301 			continue;
302 		clear_bit(secno, dirty_i->victim_secmap);
303 		return GET_SEG_FROM_SEC(sbi, secno);
304 	}
305 	return NULL_SEGNO;
306 }
307 
get_cb_cost(struct f2fs_sb_info * sbi,unsigned int segno)308 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
309 {
310 	struct sit_info *sit_i = SIT_I(sbi);
311 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
312 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
313 	unsigned long long mtime = 0;
314 	unsigned int vblocks;
315 	unsigned char age = 0;
316 	unsigned char u;
317 	unsigned int i;
318 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
319 
320 	for (i = 0; i < usable_segs_per_sec; i++)
321 		mtime += get_seg_entry(sbi, start + i)->mtime;
322 	vblocks = get_valid_blocks(sbi, segno, true);
323 
324 	mtime = div_u64(mtime, usable_segs_per_sec);
325 	vblocks = div_u64(vblocks, usable_segs_per_sec);
326 
327 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
328 
329 	/* Handle if the system time has changed by the user */
330 	if (mtime < sit_i->min_mtime)
331 		sit_i->min_mtime = mtime;
332 	if (mtime > sit_i->max_mtime)
333 		sit_i->max_mtime = mtime;
334 	if (sit_i->max_mtime != sit_i->min_mtime)
335 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
336 				sit_i->max_mtime - sit_i->min_mtime);
337 
338 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
339 }
340 
get_gc_cost(struct f2fs_sb_info * sbi,unsigned int segno,struct victim_sel_policy * p)341 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
342 			unsigned int segno, struct victim_sel_policy *p)
343 {
344 	if (p->alloc_mode == SSR)
345 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
346 
347 	/* alloc_mode == LFS */
348 	if (p->gc_mode == GC_GREEDY)
349 		return get_valid_blocks(sbi, segno, true);
350 	else if (p->gc_mode == GC_CB)
351 		return get_cb_cost(sbi, segno);
352 
353 	f2fs_bug_on(sbi, 1);
354 	return 0;
355 }
356 
count_bits(const unsigned long * addr,unsigned int offset,unsigned int len)357 static unsigned int count_bits(const unsigned long *addr,
358 				unsigned int offset, unsigned int len)
359 {
360 	unsigned int end = offset + len, sum = 0;
361 
362 	while (offset < end) {
363 		if (test_bit(offset++, addr))
364 			++sum;
365 	}
366 	return sum;
367 }
368 
attach_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno,struct rb_node * parent,struct rb_node ** p,bool left_most)369 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
370 				unsigned long long mtime, unsigned int segno,
371 				struct rb_node *parent, struct rb_node **p,
372 				bool left_most)
373 {
374 	struct atgc_management *am = &sbi->am;
375 	struct victim_entry *ve;
376 
377 	ve =  f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS);
378 
379 	ve->mtime = mtime;
380 	ve->segno = segno;
381 
382 	rb_link_node(&ve->rb_node, parent, p);
383 	rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
384 
385 	list_add_tail(&ve->list, &am->victim_list);
386 
387 	am->victim_count++;
388 
389 	return ve;
390 }
391 
insert_victim_entry(struct f2fs_sb_info * sbi,unsigned long long mtime,unsigned int segno)392 static void insert_victim_entry(struct f2fs_sb_info *sbi,
393 				unsigned long long mtime, unsigned int segno)
394 {
395 	struct atgc_management *am = &sbi->am;
396 	struct rb_node **p;
397 	struct rb_node *parent = NULL;
398 	bool left_most = true;
399 
400 	p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
401 	attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
402 }
403 
add_victim_entry(struct f2fs_sb_info * sbi,struct victim_sel_policy * p,unsigned int segno)404 static void add_victim_entry(struct f2fs_sb_info *sbi,
405 				struct victim_sel_policy *p, unsigned int segno)
406 {
407 	struct sit_info *sit_i = SIT_I(sbi);
408 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
409 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
410 	unsigned long long mtime = 0;
411 	unsigned int i;
412 
413 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
414 		if (p->gc_mode == GC_AT &&
415 			get_valid_blocks(sbi, segno, true) == 0)
416 			return;
417 	}
418 
419 	for (i = 0; i < sbi->segs_per_sec; i++)
420 		mtime += get_seg_entry(sbi, start + i)->mtime;
421 	mtime = div_u64(mtime, sbi->segs_per_sec);
422 
423 	/* Handle if the system time has changed by the user */
424 	if (mtime < sit_i->min_mtime)
425 		sit_i->min_mtime = mtime;
426 	if (mtime > sit_i->max_mtime)
427 		sit_i->max_mtime = mtime;
428 	if (mtime < sit_i->dirty_min_mtime)
429 		sit_i->dirty_min_mtime = mtime;
430 	if (mtime > sit_i->dirty_max_mtime)
431 		sit_i->dirty_max_mtime = mtime;
432 
433 	/* don't choose young section as candidate */
434 	if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
435 		return;
436 
437 	insert_victim_entry(sbi, mtime, segno);
438 }
439 
lookup_central_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)440 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
441 						struct victim_sel_policy *p)
442 {
443 	struct atgc_management *am = &sbi->am;
444 	struct rb_node *parent = NULL;
445 	bool left_most;
446 
447 	f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
448 
449 	return parent;
450 }
451 
atgc_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)452 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
453 						struct victim_sel_policy *p)
454 {
455 	struct sit_info *sit_i = SIT_I(sbi);
456 	struct atgc_management *am = &sbi->am;
457 	struct rb_root_cached *root = &am->root;
458 	struct rb_node *node;
459 	struct rb_entry *re;
460 	struct victim_entry *ve;
461 	unsigned long long total_time;
462 	unsigned long long age, u, accu;
463 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
464 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
465 	unsigned int sec_blocks = BLKS_PER_SEC(sbi);
466 	unsigned int vblocks;
467 	unsigned int dirty_threshold = max(am->max_candidate_count,
468 					am->candidate_ratio *
469 					am->victim_count / 100);
470 	unsigned int age_weight = am->age_weight;
471 	unsigned int cost;
472 	unsigned int iter = 0;
473 
474 	if (max_mtime < min_mtime)
475 		return;
476 
477 	max_mtime += 1;
478 	total_time = max_mtime - min_mtime;
479 
480 	accu = div64_u64(ULLONG_MAX, total_time);
481 	accu = min_t(unsigned long long, div_u64(accu, 100),
482 					DEFAULT_ACCURACY_CLASS);
483 
484 	node = rb_first_cached(root);
485 next:
486 	re = rb_entry_safe(node, struct rb_entry, rb_node);
487 	if (!re)
488 		return;
489 
490 	ve = (struct victim_entry *)re;
491 
492 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
493 		goto skip;
494 
495 	/* age = 10000 * x% * 60 */
496 	age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
497 								age_weight;
498 
499 	vblocks = get_valid_blocks(sbi, ve->segno, true);
500 	f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
501 
502 	/* u = 10000 * x% * 40 */
503 	u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
504 							(100 - age_weight);
505 
506 	f2fs_bug_on(sbi, age + u >= UINT_MAX);
507 
508 	cost = UINT_MAX - (age + u);
509 	iter++;
510 
511 	if (cost < p->min_cost ||
512 			(cost == p->min_cost && age > p->oldest_age)) {
513 		p->min_cost = cost;
514 		p->oldest_age = age;
515 		p->min_segno = ve->segno;
516 	}
517 skip:
518 	if (iter < dirty_threshold) {
519 		node = rb_next(node);
520 		goto next;
521 	}
522 }
523 
524 /*
525  * select candidates around source section in range of
526  * [target - dirty_threshold, target + dirty_threshold]
527  */
atssr_lookup_victim(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)528 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
529 						struct victim_sel_policy *p)
530 {
531 	struct sit_info *sit_i = SIT_I(sbi);
532 	struct atgc_management *am = &sbi->am;
533 	struct rb_node *node;
534 	struct rb_entry *re;
535 	struct victim_entry *ve;
536 	unsigned long long age;
537 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
538 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
539 	unsigned int seg_blocks = sbi->blocks_per_seg;
540 	unsigned int vblocks;
541 	unsigned int dirty_threshold = max(am->max_candidate_count,
542 					am->candidate_ratio *
543 					am->victim_count / 100);
544 	unsigned int cost;
545 	unsigned int iter = 0;
546 	int stage = 0;
547 
548 	if (max_mtime < min_mtime)
549 		return;
550 	max_mtime += 1;
551 next_stage:
552 	node = lookup_central_victim(sbi, p);
553 next_node:
554 	re = rb_entry_safe(node, struct rb_entry, rb_node);
555 	if (!re) {
556 		if (stage == 0)
557 			goto skip_stage;
558 		return;
559 	}
560 
561 	ve = (struct victim_entry *)re;
562 
563 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
564 		goto skip_node;
565 
566 	age = max_mtime - ve->mtime;
567 
568 	vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
569 	f2fs_bug_on(sbi, !vblocks);
570 
571 	/* rare case */
572 	if (vblocks == seg_blocks)
573 		goto skip_node;
574 
575 	iter++;
576 
577 	age = max_mtime - abs(p->age - age);
578 	cost = UINT_MAX - vblocks;
579 
580 	if (cost < p->min_cost ||
581 			(cost == p->min_cost && age > p->oldest_age)) {
582 		p->min_cost = cost;
583 		p->oldest_age = age;
584 		p->min_segno = ve->segno;
585 	}
586 skip_node:
587 	if (iter < dirty_threshold) {
588 		if (stage == 0)
589 			node = rb_prev(node);
590 		else if (stage == 1)
591 			node = rb_next(node);
592 		goto next_node;
593 	}
594 skip_stage:
595 	if (stage < 1) {
596 		stage++;
597 		iter = 0;
598 		goto next_stage;
599 	}
600 }
lookup_victim_by_age(struct f2fs_sb_info * sbi,struct victim_sel_policy * p)601 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
602 						struct victim_sel_policy *p)
603 {
604 	f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
605 						&sbi->am.root, true));
606 
607 	if (p->gc_mode == GC_AT)
608 		atgc_lookup_victim(sbi, p);
609 	else if (p->alloc_mode == AT_SSR)
610 		atssr_lookup_victim(sbi, p);
611 	else
612 		f2fs_bug_on(sbi, 1);
613 }
614 
release_victim_entry(struct f2fs_sb_info * sbi)615 static void release_victim_entry(struct f2fs_sb_info *sbi)
616 {
617 	struct atgc_management *am = &sbi->am;
618 	struct victim_entry *ve, *tmp;
619 
620 	list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
621 		list_del(&ve->list);
622 		kmem_cache_free(victim_entry_slab, ve);
623 		am->victim_count--;
624 	}
625 
626 	am->root = RB_ROOT_CACHED;
627 
628 	f2fs_bug_on(sbi, am->victim_count);
629 	f2fs_bug_on(sbi, !list_empty(&am->victim_list));
630 }
631 
f2fs_pin_section(struct f2fs_sb_info * sbi,unsigned int segno)632 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
633 {
634 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
635 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
636 
637 	if (!dirty_i->enable_pin_section)
638 		return false;
639 	if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
640 		dirty_i->pinned_secmap_cnt++;
641 	return true;
642 }
643 
f2fs_pinned_section_exists(struct dirty_seglist_info * dirty_i)644 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
645 {
646 	return dirty_i->pinned_secmap_cnt;
647 }
648 
f2fs_section_is_pinned(struct dirty_seglist_info * dirty_i,unsigned int secno)649 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
650 						unsigned int secno)
651 {
652 	return dirty_i->enable_pin_section &&
653 		f2fs_pinned_section_exists(dirty_i) &&
654 		test_bit(secno, dirty_i->pinned_secmap);
655 }
656 
f2fs_unpin_all_sections(struct f2fs_sb_info * sbi,bool enable)657 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
658 {
659 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
660 
661 	if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
662 		memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
663 		DIRTY_I(sbi)->pinned_secmap_cnt = 0;
664 	}
665 	DIRTY_I(sbi)->enable_pin_section = enable;
666 }
667 
f2fs_gc_pinned_control(struct inode * inode,int gc_type,unsigned int segno)668 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
669 							unsigned int segno)
670 {
671 	if (!f2fs_is_pinned_file(inode))
672 		return 0;
673 	if (gc_type != FG_GC)
674 		return -EBUSY;
675 	if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
676 		f2fs_pin_file_control(inode, true);
677 	return -EAGAIN;
678 }
679 
680 /*
681  * This function is called from two paths.
682  * One is garbage collection and the other is SSR segment selection.
683  * When it is called during GC, it just gets a victim segment
684  * and it does not remove it from dirty seglist.
685  * When it is called from SSR segment selection, it finds a segment
686  * which has minimum valid blocks and removes it from dirty seglist.
687  */
get_victim_by_default(struct f2fs_sb_info * sbi,unsigned int * result,int gc_type,int type,char alloc_mode,unsigned long long age)688 static int get_victim_by_default(struct f2fs_sb_info *sbi,
689 			unsigned int *result, int gc_type, int type,
690 			char alloc_mode, unsigned long long age)
691 {
692 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
693 	struct sit_info *sm = SIT_I(sbi);
694 	struct victim_sel_policy p;
695 	unsigned int secno, last_victim;
696 	unsigned int last_segment;
697 	unsigned int nsearched;
698 	bool is_atgc;
699 	int ret = 0;
700 
701 	mutex_lock(&dirty_i->seglist_lock);
702 	last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
703 
704 	p.alloc_mode = alloc_mode;
705 	p.age = age;
706 	p.age_threshold = sbi->am.age_threshold;
707 
708 retry:
709 	select_policy(sbi, gc_type, type, &p);
710 	p.min_segno = NULL_SEGNO;
711 	p.oldest_age = 0;
712 	p.min_cost = get_max_cost(sbi, &p);
713 
714 	is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
715 	nsearched = 0;
716 
717 	if (is_atgc)
718 		SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
719 
720 	if (*result != NULL_SEGNO) {
721 		if (!get_valid_blocks(sbi, *result, false)) {
722 			ret = -ENODATA;
723 			goto out;
724 		}
725 
726 		if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
727 			ret = -EBUSY;
728 		else
729 			p.min_segno = *result;
730 		goto out;
731 	}
732 
733 	ret = -ENODATA;
734 	if (p.max_search == 0)
735 		goto out;
736 
737 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
738 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
739 			p.min_segno = sbi->next_victim_seg[BG_GC];
740 			*result = p.min_segno;
741 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
742 			goto got_result;
743 		}
744 		if (gc_type == FG_GC &&
745 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
746 			p.min_segno = sbi->next_victim_seg[FG_GC];
747 			*result = p.min_segno;
748 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
749 			goto got_result;
750 		}
751 	}
752 
753 	last_victim = sm->last_victim[p.gc_mode];
754 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
755 		p.min_segno = check_bg_victims(sbi);
756 		if (p.min_segno != NULL_SEGNO)
757 			goto got_it;
758 	}
759 
760 	while (1) {
761 		unsigned long cost, *dirty_bitmap;
762 		unsigned int unit_no, segno;
763 
764 		dirty_bitmap = p.dirty_bitmap;
765 		unit_no = find_next_bit(dirty_bitmap,
766 				last_segment / p.ofs_unit,
767 				p.offset / p.ofs_unit);
768 		segno = unit_no * p.ofs_unit;
769 		if (segno >= last_segment) {
770 			if (sm->last_victim[p.gc_mode]) {
771 				last_segment =
772 					sm->last_victim[p.gc_mode];
773 				sm->last_victim[p.gc_mode] = 0;
774 				p.offset = 0;
775 				continue;
776 			}
777 			break;
778 		}
779 
780 		p.offset = segno + p.ofs_unit;
781 		nsearched++;
782 
783 #ifdef CONFIG_F2FS_CHECK_FS
784 		/*
785 		 * skip selecting the invalid segno (that is failed due to block
786 		 * validity check failure during GC) to avoid endless GC loop in
787 		 * such cases.
788 		 */
789 		if (test_bit(segno, sm->invalid_segmap))
790 			goto next;
791 #endif
792 
793 		secno = GET_SEC_FROM_SEG(sbi, segno);
794 
795 		if (sec_usage_check(sbi, secno))
796 			goto next;
797 
798 		/* Don't touch checkpointed data */
799 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
800 			if (p.alloc_mode == LFS) {
801 				/*
802 				 * LFS is set to find source section during GC.
803 				 * The victim should have no checkpointed data.
804 				 */
805 				if (get_ckpt_valid_blocks(sbi, segno, true))
806 					goto next;
807 			} else {
808 				/*
809 				 * SSR | AT_SSR are set to find target segment
810 				 * for writes which can be full by checkpointed
811 				 * and newly written blocks.
812 				 */
813 				if (!f2fs_segment_has_free_slot(sbi, segno))
814 					goto next;
815 			}
816 		}
817 
818 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
819 			goto next;
820 
821 		if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
822 			goto next;
823 
824 		if (is_atgc) {
825 			add_victim_entry(sbi, &p, segno);
826 			goto next;
827 		}
828 
829 		cost = get_gc_cost(sbi, segno, &p);
830 
831 		if (p.min_cost > cost) {
832 			p.min_segno = segno;
833 			p.min_cost = cost;
834 		}
835 next:
836 		if (nsearched >= p.max_search) {
837 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
838 				sm->last_victim[p.gc_mode] =
839 					last_victim + p.ofs_unit;
840 			else
841 				sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
842 			sm->last_victim[p.gc_mode] %=
843 				(MAIN_SECS(sbi) * sbi->segs_per_sec);
844 			break;
845 		}
846 	}
847 
848 	/* get victim for GC_AT/AT_SSR */
849 	if (is_atgc) {
850 		lookup_victim_by_age(sbi, &p);
851 		release_victim_entry(sbi);
852 	}
853 
854 	if (is_atgc && p.min_segno == NULL_SEGNO &&
855 			sm->elapsed_time < p.age_threshold) {
856 		p.age_threshold = 0;
857 		goto retry;
858 	}
859 
860 	if (p.min_segno != NULL_SEGNO) {
861 got_it:
862 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
863 got_result:
864 		if (p.alloc_mode == LFS) {
865 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
866 			if (gc_type == FG_GC)
867 				sbi->cur_victim_sec = secno;
868 			else
869 				set_bit(secno, dirty_i->victim_secmap);
870 		}
871 		ret = 0;
872 
873 	}
874 out:
875 	if (p.min_segno != NULL_SEGNO)
876 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
877 				sbi->cur_victim_sec,
878 				prefree_segments(sbi), free_segments(sbi));
879 	mutex_unlock(&dirty_i->seglist_lock);
880 
881 	return ret;
882 }
883 
884 static const struct victim_selection default_v_ops = {
885 	.get_victim = get_victim_by_default,
886 };
887 
find_gc_inode(struct gc_inode_list * gc_list,nid_t ino)888 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
889 {
890 	struct inode_entry *ie;
891 
892 	ie = radix_tree_lookup(&gc_list->iroot, ino);
893 	if (ie)
894 		return ie->inode;
895 	return NULL;
896 }
897 
add_gc_inode(struct gc_inode_list * gc_list,struct inode * inode)898 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
899 {
900 	struct inode_entry *new_ie;
901 
902 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
903 		iput(inode);
904 		return;
905 	}
906 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS);
907 	new_ie->inode = inode;
908 
909 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
910 	list_add_tail(&new_ie->list, &gc_list->ilist);
911 }
912 
put_gc_inode(struct gc_inode_list * gc_list)913 static void put_gc_inode(struct gc_inode_list *gc_list)
914 {
915 	struct inode_entry *ie, *next_ie;
916 
917 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
918 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
919 		iput(ie->inode);
920 		list_del(&ie->list);
921 		kmem_cache_free(f2fs_inode_entry_slab, ie);
922 	}
923 }
924 
check_valid_map(struct f2fs_sb_info * sbi,unsigned int segno,int offset)925 static int check_valid_map(struct f2fs_sb_info *sbi,
926 				unsigned int segno, int offset)
927 {
928 	struct sit_info *sit_i = SIT_I(sbi);
929 	struct seg_entry *sentry;
930 	int ret;
931 
932 	down_read(&sit_i->sentry_lock);
933 	sentry = get_seg_entry(sbi, segno);
934 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
935 	up_read(&sit_i->sentry_lock);
936 	return ret;
937 }
938 
939 /*
940  * This function compares node address got in summary with that in NAT.
941  * On validity, copy that node with cold status, otherwise (invalid node)
942  * ignore that.
943  */
gc_node_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,unsigned int segno,int gc_type)944 static int gc_node_segment(struct f2fs_sb_info *sbi,
945 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
946 {
947 	struct f2fs_summary *entry;
948 	block_t start_addr;
949 	int off;
950 	int phase = 0;
951 	bool fggc = (gc_type == FG_GC);
952 	int submitted = 0;
953 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
954 
955 	start_addr = START_BLOCK(sbi, segno);
956 
957 next_step:
958 	entry = sum;
959 
960 	if (fggc && phase == 2)
961 		atomic_inc(&sbi->wb_sync_req[NODE]);
962 
963 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
964 		nid_t nid = le32_to_cpu(entry->nid);
965 		struct page *node_page;
966 		struct node_info ni;
967 		int err;
968 
969 		/* stop BG_GC if there is not enough free sections. */
970 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
971 			return submitted;
972 
973 		if (check_valid_map(sbi, segno, off) == 0)
974 			continue;
975 
976 		if (phase == 0) {
977 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
978 							META_NAT, true);
979 			continue;
980 		}
981 
982 		if (phase == 1) {
983 			f2fs_ra_node_page(sbi, nid);
984 			continue;
985 		}
986 
987 		/* phase == 2 */
988 		node_page = f2fs_get_node_page(sbi, nid);
989 		if (IS_ERR(node_page))
990 			continue;
991 
992 		/* block may become invalid during f2fs_get_node_page */
993 		if (check_valid_map(sbi, segno, off) == 0) {
994 			f2fs_put_page(node_page, 1);
995 			continue;
996 		}
997 
998 		if (f2fs_get_node_info(sbi, nid, &ni, false)) {
999 			f2fs_put_page(node_page, 1);
1000 			continue;
1001 		}
1002 
1003 		if (ni.blk_addr != start_addr + off) {
1004 			f2fs_put_page(node_page, 1);
1005 			continue;
1006 		}
1007 
1008 		err = f2fs_move_node_page(node_page, gc_type);
1009 		if (!err && gc_type == FG_GC)
1010 			submitted++;
1011 		stat_inc_node_blk_count(sbi, 1, gc_type);
1012 	}
1013 
1014 	if (++phase < 3)
1015 		goto next_step;
1016 
1017 	if (fggc)
1018 		atomic_dec(&sbi->wb_sync_req[NODE]);
1019 	return submitted;
1020 }
1021 
1022 /*
1023  * Calculate start block index indicating the given node offset.
1024  * Be careful, caller should give this node offset only indicating direct node
1025  * blocks. If any node offsets, which point the other types of node blocks such
1026  * as indirect or double indirect node blocks, are given, it must be a caller's
1027  * bug.
1028  */
f2fs_start_bidx_of_node(unsigned int node_ofs,struct inode * inode)1029 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1030 {
1031 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1032 	unsigned int bidx;
1033 
1034 	if (node_ofs == 0)
1035 		return 0;
1036 
1037 	if (node_ofs <= 2) {
1038 		bidx = node_ofs - 1;
1039 	} else if (node_ofs <= indirect_blks) {
1040 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1041 
1042 		bidx = node_ofs - 2 - dec;
1043 	} else {
1044 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1045 
1046 		bidx = node_ofs - 5 - dec;
1047 	}
1048 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1049 }
1050 
is_alive(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct node_info * dni,block_t blkaddr,unsigned int * nofs)1051 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1052 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1053 {
1054 	struct page *node_page;
1055 	nid_t nid;
1056 	unsigned int ofs_in_node, max_addrs, base;
1057 	block_t source_blkaddr;
1058 
1059 	nid = le32_to_cpu(sum->nid);
1060 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1061 
1062 	node_page = f2fs_get_node_page(sbi, nid);
1063 	if (IS_ERR(node_page))
1064 		return false;
1065 
1066 	if (f2fs_get_node_info(sbi, nid, dni, false)) {
1067 		f2fs_put_page(node_page, 1);
1068 		return false;
1069 	}
1070 
1071 	if (sum->version != dni->version) {
1072 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1073 			  __func__);
1074 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1075 	}
1076 
1077 	if (f2fs_check_nid_range(sbi, dni->ino)) {
1078 		f2fs_put_page(node_page, 1);
1079 		return false;
1080 	}
1081 
1082 	if (IS_INODE(node_page)) {
1083 		base = offset_in_addr(F2FS_INODE(node_page));
1084 		max_addrs = DEF_ADDRS_PER_INODE;
1085 	} else {
1086 		base = 0;
1087 		max_addrs = DEF_ADDRS_PER_BLOCK;
1088 	}
1089 
1090 	if (base + ofs_in_node >= max_addrs) {
1091 		f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1092 			base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1093 		f2fs_put_page(node_page, 1);
1094 		return false;
1095 	}
1096 
1097 	*nofs = ofs_of_node(node_page);
1098 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1099 	f2fs_put_page(node_page, 1);
1100 
1101 	if (source_blkaddr != blkaddr) {
1102 #ifdef CONFIG_F2FS_CHECK_FS
1103 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
1104 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1105 
1106 		if (unlikely(check_valid_map(sbi, segno, offset))) {
1107 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1108 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1109 					 blkaddr, source_blkaddr, segno);
1110 				f2fs_bug_on(sbi, 1);
1111 			}
1112 		}
1113 #endif
1114 		return false;
1115 	}
1116 	return true;
1117 }
1118 
ra_data_block(struct inode * inode,pgoff_t index)1119 static int ra_data_block(struct inode *inode, pgoff_t index)
1120 {
1121 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1122 	struct address_space *mapping = inode->i_mapping;
1123 	struct dnode_of_data dn;
1124 	struct page *page;
1125 	struct extent_info ei = {0, };
1126 	struct f2fs_io_info fio = {
1127 		.sbi = sbi,
1128 		.ino = inode->i_ino,
1129 		.type = DATA,
1130 		.temp = COLD,
1131 		.op = REQ_OP_READ,
1132 		.op_flags = 0,
1133 		.encrypted_page = NULL,
1134 		.in_list = false,
1135 		.retry = false,
1136 	};
1137 	int err;
1138 
1139 	page = f2fs_grab_cache_page(mapping, index, true);
1140 	if (!page)
1141 		return -ENOMEM;
1142 
1143 	if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1144 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1145 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1146 						DATA_GENERIC_ENHANCE_READ))) {
1147 			err = -EFSCORRUPTED;
1148 			goto put_page;
1149 		}
1150 		goto got_it;
1151 	}
1152 
1153 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1154 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1155 	if (err)
1156 		goto put_page;
1157 	f2fs_put_dnode(&dn);
1158 
1159 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1160 		err = -ENOENT;
1161 		goto put_page;
1162 	}
1163 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1164 						DATA_GENERIC_ENHANCE))) {
1165 		err = -EFSCORRUPTED;
1166 		goto put_page;
1167 	}
1168 got_it:
1169 	/* read page */
1170 	fio.page = page;
1171 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1172 
1173 	/*
1174 	 * don't cache encrypted data into meta inode until previous dirty
1175 	 * data were writebacked to avoid racing between GC and flush.
1176 	 */
1177 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1178 
1179 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1180 
1181 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1182 					dn.data_blkaddr,
1183 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
1184 	if (!fio.encrypted_page) {
1185 		err = -ENOMEM;
1186 		goto put_page;
1187 	}
1188 
1189 	err = f2fs_submit_page_bio(&fio);
1190 	if (err)
1191 		goto put_encrypted_page;
1192 	f2fs_put_page(fio.encrypted_page, 0);
1193 	f2fs_put_page(page, 1);
1194 
1195 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1196 	f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1197 
1198 	return 0;
1199 put_encrypted_page:
1200 	f2fs_put_page(fio.encrypted_page, 1);
1201 put_page:
1202 	f2fs_put_page(page, 1);
1203 	return err;
1204 }
1205 
1206 /*
1207  * Move data block via META_MAPPING while keeping locked data page.
1208  * This can be used to move blocks, aka LBAs, directly on disk.
1209  */
move_data_block(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1210 static int move_data_block(struct inode *inode, block_t bidx,
1211 				int gc_type, unsigned int segno, int off)
1212 {
1213 	struct f2fs_io_info fio = {
1214 		.sbi = F2FS_I_SB(inode),
1215 		.ino = inode->i_ino,
1216 		.type = DATA,
1217 		.temp = COLD,
1218 		.op = REQ_OP_READ,
1219 		.op_flags = 0,
1220 		.encrypted_page = NULL,
1221 		.in_list = false,
1222 		.retry = false,
1223 	};
1224 	struct dnode_of_data dn;
1225 	struct f2fs_summary sum;
1226 	struct node_info ni;
1227 	struct page *page, *mpage;
1228 	block_t newaddr;
1229 	int err = 0;
1230 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1231 	int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1232 				(fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1233 				CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1234 
1235 	/* do not read out */
1236 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1237 	if (!page)
1238 		return -ENOMEM;
1239 
1240 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1241 		err = -ENOENT;
1242 		goto out;
1243 	}
1244 
1245 	if (f2fs_is_atomic_file(inode)) {
1246 		F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1247 		F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1248 		err = -EAGAIN;
1249 		goto out;
1250 	}
1251 
1252 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1253 	if (err)
1254 		goto out;
1255 
1256 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1257 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1258 	if (err)
1259 		goto out;
1260 
1261 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1262 		ClearPageUptodate(page);
1263 		err = -ENOENT;
1264 		goto put_out;
1265 	}
1266 
1267 	/*
1268 	 * don't cache encrypted data into meta inode until previous dirty
1269 	 * data were writebacked to avoid racing between GC and flush.
1270 	 */
1271 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1272 
1273 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1274 
1275 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1276 	if (err)
1277 		goto put_out;
1278 
1279 	/* read page */
1280 	fio.page = page;
1281 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1282 
1283 	if (lfs_mode)
1284 		f2fs_down_write(&fio.sbi->io_order_lock);
1285 
1286 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1287 					fio.old_blkaddr, false);
1288 	if (!mpage) {
1289 		err = -ENOMEM;
1290 		goto up_out;
1291 	}
1292 
1293 	fio.encrypted_page = mpage;
1294 
1295 	/* read source block in mpage */
1296 	if (!PageUptodate(mpage)) {
1297 		err = f2fs_submit_page_bio(&fio);
1298 		if (err) {
1299 			f2fs_put_page(mpage, 1);
1300 			goto up_out;
1301 		}
1302 
1303 		f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1304 		f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1305 
1306 		lock_page(mpage);
1307 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1308 						!PageUptodate(mpage))) {
1309 			err = -EIO;
1310 			f2fs_put_page(mpage, 1);
1311 			goto up_out;
1312 		}
1313 	}
1314 
1315 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1316 
1317 	/* allocate block address */
1318 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1319 				&sum, type, NULL);
1320 
1321 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1322 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1323 	if (!fio.encrypted_page) {
1324 		err = -ENOMEM;
1325 		f2fs_put_page(mpage, 1);
1326 		goto recover_block;
1327 	}
1328 
1329 	/* write target block */
1330 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1331 	memcpy(page_address(fio.encrypted_page),
1332 				page_address(mpage), PAGE_SIZE);
1333 	f2fs_put_page(mpage, 1);
1334 	invalidate_mapping_pages(META_MAPPING(fio.sbi),
1335 				fio.old_blkaddr, fio.old_blkaddr);
1336 	f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1337 
1338 	set_page_dirty(fio.encrypted_page);
1339 	if (clear_page_dirty_for_io(fio.encrypted_page))
1340 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
1341 
1342 	set_page_writeback(fio.encrypted_page);
1343 	ClearPageError(page);
1344 
1345 	fio.op = REQ_OP_WRITE;
1346 	fio.op_flags = REQ_SYNC;
1347 	fio.new_blkaddr = newaddr;
1348 	f2fs_submit_page_write(&fio);
1349 	if (fio.retry) {
1350 		err = -EAGAIN;
1351 		if (PageWriteback(fio.encrypted_page))
1352 			end_page_writeback(fio.encrypted_page);
1353 		goto put_page_out;
1354 	}
1355 
1356 	f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1357 
1358 	f2fs_update_data_blkaddr(&dn, newaddr);
1359 	set_inode_flag(inode, FI_APPEND_WRITE);
1360 	if (page->index == 0)
1361 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1362 put_page_out:
1363 	f2fs_put_page(fio.encrypted_page, 1);
1364 recover_block:
1365 	if (err)
1366 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1367 							true, true, true);
1368 up_out:
1369 	if (lfs_mode)
1370 		f2fs_up_write(&fio.sbi->io_order_lock);
1371 put_out:
1372 	f2fs_put_dnode(&dn);
1373 out:
1374 	f2fs_put_page(page, 1);
1375 	return err;
1376 }
1377 
move_data_page(struct inode * inode,block_t bidx,int gc_type,unsigned int segno,int off)1378 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1379 							unsigned int segno, int off)
1380 {
1381 	struct page *page;
1382 	int err = 0;
1383 
1384 	page = f2fs_get_lock_data_page(inode, bidx, true);
1385 	if (IS_ERR(page))
1386 		return PTR_ERR(page);
1387 
1388 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1389 		err = -ENOENT;
1390 		goto out;
1391 	}
1392 
1393 	if (f2fs_is_atomic_file(inode)) {
1394 		F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1395 		F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1396 		err = -EAGAIN;
1397 		goto out;
1398 	}
1399 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1400 	if (err)
1401 		goto out;
1402 
1403 	if (gc_type == BG_GC) {
1404 		if (PageWriteback(page)) {
1405 			err = -EAGAIN;
1406 			goto out;
1407 		}
1408 		set_page_dirty(page);
1409 		set_page_private_gcing(page);
1410 	} else {
1411 		struct f2fs_io_info fio = {
1412 			.sbi = F2FS_I_SB(inode),
1413 			.ino = inode->i_ino,
1414 			.type = DATA,
1415 			.temp = COLD,
1416 			.op = REQ_OP_WRITE,
1417 			.op_flags = REQ_SYNC,
1418 			.old_blkaddr = NULL_ADDR,
1419 			.page = page,
1420 			.encrypted_page = NULL,
1421 			.need_lock = LOCK_REQ,
1422 			.io_type = FS_GC_DATA_IO,
1423 		};
1424 		bool is_dirty = PageDirty(page);
1425 
1426 retry:
1427 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1428 
1429 		set_page_dirty(page);
1430 		if (clear_page_dirty_for_io(page)) {
1431 			inode_dec_dirty_pages(inode);
1432 			f2fs_remove_dirty_inode(inode);
1433 		}
1434 
1435 		set_page_private_gcing(page);
1436 
1437 		err = f2fs_do_write_data_page(&fio);
1438 		if (err) {
1439 			clear_page_private_gcing(page);
1440 			if (err == -ENOMEM) {
1441 				congestion_wait(BLK_RW_ASYNC,
1442 						DEFAULT_IO_TIMEOUT);
1443 				goto retry;
1444 			}
1445 			if (is_dirty)
1446 				set_page_dirty(page);
1447 		}
1448 	}
1449 out:
1450 	f2fs_put_page(page, 1);
1451 	return err;
1452 }
1453 
1454 /*
1455  * This function tries to get parent node of victim data block, and identifies
1456  * data block validity. If the block is valid, copy that with cold status and
1457  * modify parent node.
1458  * If the parent node is not valid or the data block address is different,
1459  * the victim data block is ignored.
1460  */
gc_data_segment(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,struct gc_inode_list * gc_list,unsigned int segno,int gc_type,bool force_migrate)1461 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1462 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1463 		bool force_migrate)
1464 {
1465 	struct super_block *sb = sbi->sb;
1466 	struct f2fs_summary *entry;
1467 	block_t start_addr;
1468 	int off;
1469 	int phase = 0;
1470 	int submitted = 0;
1471 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1472 
1473 	start_addr = START_BLOCK(sbi, segno);
1474 
1475 next_step:
1476 	entry = sum;
1477 
1478 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1479 		struct page *data_page;
1480 		struct inode *inode;
1481 		struct node_info dni; /* dnode info for the data */
1482 		unsigned int ofs_in_node, nofs;
1483 		block_t start_bidx;
1484 		nid_t nid = le32_to_cpu(entry->nid);
1485 
1486 		/*
1487 		 * stop BG_GC if there is not enough free sections.
1488 		 * Or, stop GC if the segment becomes fully valid caused by
1489 		 * race condition along with SSR block allocation.
1490 		 */
1491 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1492 			(!force_migrate && get_valid_blocks(sbi, segno, true) ==
1493 							BLKS_PER_SEC(sbi)))
1494 			return submitted;
1495 
1496 		if (check_valid_map(sbi, segno, off) == 0)
1497 			continue;
1498 
1499 		if (phase == 0) {
1500 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1501 							META_NAT, true);
1502 			continue;
1503 		}
1504 
1505 		if (phase == 1) {
1506 			f2fs_ra_node_page(sbi, nid);
1507 			continue;
1508 		}
1509 
1510 		/* Get an inode by ino with checking validity */
1511 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1512 			continue;
1513 
1514 		if (phase == 2) {
1515 			f2fs_ra_node_page(sbi, dni.ino);
1516 			continue;
1517 		}
1518 
1519 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1520 
1521 		if (phase == 3) {
1522 			int err;
1523 
1524 			inode = f2fs_iget(sb, dni.ino);
1525 			if (IS_ERR(inode) || is_bad_inode(inode) ||
1526 					special_file(inode->i_mode))
1527 				continue;
1528 
1529 			err = f2fs_gc_pinned_control(inode, gc_type, segno);
1530 			if (err == -EAGAIN) {
1531 				iput(inode);
1532 				return submitted;
1533 			}
1534 
1535 			if (!f2fs_down_write_trylock(
1536 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1537 				iput(inode);
1538 				sbi->skipped_gc_rwsem++;
1539 				continue;
1540 			}
1541 
1542 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1543 								ofs_in_node;
1544 
1545 			if (f2fs_post_read_required(inode)) {
1546 				int err = ra_data_block(inode, start_bidx);
1547 
1548 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1549 				if (err) {
1550 					iput(inode);
1551 					continue;
1552 				}
1553 				add_gc_inode(gc_list, inode);
1554 				continue;
1555 			}
1556 
1557 			data_page = f2fs_get_read_data_page(inode,
1558 						start_bidx, REQ_RAHEAD, true);
1559 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1560 			if (IS_ERR(data_page)) {
1561 				iput(inode);
1562 				continue;
1563 			}
1564 
1565 			f2fs_put_page(data_page, 0);
1566 			add_gc_inode(gc_list, inode);
1567 			continue;
1568 		}
1569 
1570 		/* phase 4 */
1571 		inode = find_gc_inode(gc_list, dni.ino);
1572 		if (inode) {
1573 			struct f2fs_inode_info *fi = F2FS_I(inode);
1574 			bool locked = false;
1575 			int err;
1576 
1577 			if (S_ISREG(inode->i_mode)) {
1578 				if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1579 					sbi->skipped_gc_rwsem++;
1580 					continue;
1581 				}
1582 				if (!f2fs_down_write_trylock(
1583 						&fi->i_gc_rwsem[WRITE])) {
1584 					sbi->skipped_gc_rwsem++;
1585 					f2fs_up_write(&fi->i_gc_rwsem[READ]);
1586 					continue;
1587 				}
1588 				locked = true;
1589 
1590 				/* wait for all inflight aio data */
1591 				inode_dio_wait(inode);
1592 			}
1593 
1594 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1595 								+ ofs_in_node;
1596 			if (f2fs_post_read_required(inode))
1597 				err = move_data_block(inode, start_bidx,
1598 							gc_type, segno, off);
1599 			else
1600 				err = move_data_page(inode, start_bidx, gc_type,
1601 								segno, off);
1602 
1603 			if (!err && (gc_type == FG_GC ||
1604 					f2fs_post_read_required(inode)))
1605 				submitted++;
1606 
1607 			if (locked) {
1608 				f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1609 				f2fs_up_write(&fi->i_gc_rwsem[READ]);
1610 			}
1611 
1612 			stat_inc_data_blk_count(sbi, 1, gc_type);
1613 		}
1614 	}
1615 
1616 	if (++phase < 5)
1617 		goto next_step;
1618 
1619 	return submitted;
1620 }
1621 
__get_victim(struct f2fs_sb_info * sbi,unsigned int * victim,int gc_type)1622 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1623 			int gc_type)
1624 {
1625 	struct sit_info *sit_i = SIT_I(sbi);
1626 	int ret;
1627 
1628 	down_write(&sit_i->sentry_lock);
1629 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1630 					      NO_CHECK_TYPE, LFS, 0);
1631 	up_write(&sit_i->sentry_lock);
1632 	return ret;
1633 }
1634 
do_garbage_collect(struct f2fs_sb_info * sbi,unsigned int start_segno,struct gc_inode_list * gc_list,int gc_type,bool force_migrate)1635 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1636 				unsigned int start_segno,
1637 				struct gc_inode_list *gc_list, int gc_type,
1638 				bool force_migrate)
1639 {
1640 	struct page *sum_page;
1641 	struct f2fs_summary_block *sum;
1642 	struct blk_plug plug;
1643 	unsigned int segno = start_segno;
1644 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
1645 	int seg_freed = 0, migrated = 0;
1646 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1647 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1648 	int submitted = 0;
1649 
1650 	if (__is_large_section(sbi))
1651 		end_segno = rounddown(end_segno, sbi->segs_per_sec);
1652 
1653 	/*
1654 	 * zone-capacity can be less than zone-size in zoned devices,
1655 	 * resulting in less than expected usable segments in the zone,
1656 	 * calculate the end segno in the zone which can be garbage collected
1657 	 */
1658 	if (f2fs_sb_has_blkzoned(sbi))
1659 		end_segno -= sbi->segs_per_sec -
1660 					f2fs_usable_segs_in_sec(sbi, segno);
1661 
1662 	sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1663 
1664 	/* readahead multi ssa blocks those have contiguous address */
1665 	if (__is_large_section(sbi))
1666 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1667 					end_segno - segno, META_SSA, true);
1668 
1669 	/* reference all summary page */
1670 	while (segno < end_segno) {
1671 		sum_page = f2fs_get_sum_page(sbi, segno++);
1672 		if (IS_ERR(sum_page)) {
1673 			int err = PTR_ERR(sum_page);
1674 
1675 			end_segno = segno - 1;
1676 			for (segno = start_segno; segno < end_segno; segno++) {
1677 				sum_page = find_get_page(META_MAPPING(sbi),
1678 						GET_SUM_BLOCK(sbi, segno));
1679 				f2fs_put_page(sum_page, 0);
1680 				f2fs_put_page(sum_page, 0);
1681 			}
1682 			return err;
1683 		}
1684 		unlock_page(sum_page);
1685 	}
1686 
1687 	blk_start_plug(&plug);
1688 
1689 	for (segno = start_segno; segno < end_segno; segno++) {
1690 
1691 		/* find segment summary of victim */
1692 		sum_page = find_get_page(META_MAPPING(sbi),
1693 					GET_SUM_BLOCK(sbi, segno));
1694 		f2fs_put_page(sum_page, 0);
1695 
1696 		if (get_valid_blocks(sbi, segno, false) == 0)
1697 			goto freed;
1698 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1699 				migrated >= sbi->migration_granularity)
1700 			goto skip;
1701 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1702 			goto skip;
1703 
1704 		sum = page_address(sum_page);
1705 		if (type != GET_SUM_TYPE((&sum->footer))) {
1706 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1707 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1708 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1709 			f2fs_stop_checkpoint(sbi, false,
1710 				STOP_CP_REASON_CORRUPTED_SUMMARY);
1711 			goto skip;
1712 		}
1713 
1714 		/*
1715 		 * this is to avoid deadlock:
1716 		 * - lock_page(sum_page)         - f2fs_replace_block
1717 		 *  - check_valid_map()            - down_write(sentry_lock)
1718 		 *   - down_read(sentry_lock)     - change_curseg()
1719 		 *                                  - lock_page(sum_page)
1720 		 */
1721 		if (type == SUM_TYPE_NODE)
1722 			submitted += gc_node_segment(sbi, sum->entries, segno,
1723 								gc_type);
1724 		else
1725 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1726 							segno, gc_type,
1727 							force_migrate);
1728 
1729 		stat_inc_seg_count(sbi, type, gc_type);
1730 		sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1731 		migrated++;
1732 
1733 freed:
1734 		if (gc_type == FG_GC &&
1735 				get_valid_blocks(sbi, segno, false) == 0)
1736 			seg_freed++;
1737 
1738 		if (__is_large_section(sbi))
1739 			sbi->next_victim_seg[gc_type] =
1740 				(segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1741 skip:
1742 		f2fs_put_page(sum_page, 0);
1743 	}
1744 
1745 	if (submitted)
1746 		f2fs_submit_merged_write(sbi,
1747 				(type == SUM_TYPE_NODE) ? NODE : DATA);
1748 
1749 	blk_finish_plug(&plug);
1750 
1751 	stat_inc_call_count(sbi->stat_info);
1752 
1753 	return seg_freed;
1754 }
1755 
f2fs_gc(struct f2fs_sb_info * sbi,bool sync,bool background,bool force,unsigned int segno)1756 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1757 			bool background, bool force, unsigned int segno)
1758 {
1759 	int gc_type = sync ? FG_GC : BG_GC;
1760 	int sec_freed = 0, seg_freed = 0, total_freed = 0;
1761 	int ret = 0;
1762 	struct cp_control cpc;
1763 	unsigned int init_segno = segno;
1764 	struct gc_inode_list gc_list = {
1765 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1766 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1767 	};
1768 	unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC];
1769 	unsigned long long first_skipped;
1770 	unsigned int skipped_round = 0, round = 0;
1771 
1772 	trace_f2fs_gc_begin(sbi->sb, sync, background,
1773 				get_pages(sbi, F2FS_DIRTY_NODES),
1774 				get_pages(sbi, F2FS_DIRTY_DENTS),
1775 				get_pages(sbi, F2FS_DIRTY_IMETA),
1776 				free_sections(sbi),
1777 				free_segments(sbi),
1778 				reserved_segments(sbi),
1779 				prefree_segments(sbi));
1780 
1781 	cpc.reason = __get_cp_reason(sbi);
1782 	sbi->skipped_gc_rwsem = 0;
1783 	first_skipped = last_skipped;
1784 gc_more:
1785 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1786 		ret = -EINVAL;
1787 		goto stop;
1788 	}
1789 	if (unlikely(f2fs_cp_error(sbi))) {
1790 		ret = -EIO;
1791 		goto stop;
1792 	}
1793 
1794 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1795 		/*
1796 		 * For example, if there are many prefree_segments below given
1797 		 * threshold, we can make them free by checkpoint. Then, we
1798 		 * secure free segments which doesn't need fggc any more.
1799 		 */
1800 		if (prefree_segments(sbi) &&
1801 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1802 			ret = f2fs_write_checkpoint(sbi, &cpc);
1803 			if (ret)
1804 				goto stop;
1805 		}
1806 		if (has_not_enough_free_secs(sbi, 0, 0))
1807 			gc_type = FG_GC;
1808 	}
1809 
1810 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1811 	if (gc_type == BG_GC && !background) {
1812 		ret = -EINVAL;
1813 		goto stop;
1814 	}
1815 retry:
1816 	ret = __get_victim(sbi, &segno, gc_type);
1817 	if (ret) {
1818 		/* allow to search victim from sections has pinned data */
1819 		if (ret == -ENODATA && gc_type == FG_GC &&
1820 				f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1821 			f2fs_unpin_all_sections(sbi, false);
1822 			goto retry;
1823 		}
1824 		goto stop;
1825 	}
1826 
1827 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force);
1828 	if (gc_type == FG_GC &&
1829 		seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1830 		sec_freed++;
1831 	total_freed += seg_freed;
1832 
1833 	if (gc_type == FG_GC) {
1834 		if (sbi->skipped_atomic_files[FG_GC] > last_skipped ||
1835 						sbi->skipped_gc_rwsem)
1836 			skipped_round++;
1837 		last_skipped = sbi->skipped_atomic_files[FG_GC];
1838 		round++;
1839 	}
1840 
1841 	if (gc_type == FG_GC && seg_freed)
1842 		sbi->cur_victim_sec = NULL_SEGNO;
1843 
1844 	if (sync)
1845 		goto stop;
1846 
1847 	if (!has_not_enough_free_secs(sbi, sec_freed, 0))
1848 		goto stop;
1849 
1850 	if (skipped_round <= MAX_SKIP_GC_COUNT || skipped_round * 2 < round) {
1851 
1852 		/* Write checkpoint to reclaim prefree segments */
1853 		if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1854 				prefree_segments(sbi) &&
1855 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1856 			ret = f2fs_write_checkpoint(sbi, &cpc);
1857 			if (ret)
1858 				goto stop;
1859 		}
1860 		segno = NULL_SEGNO;
1861 		goto gc_more;
1862 	}
1863 	if (first_skipped < last_skipped &&
1864 			(last_skipped - first_skipped) >
1865 					sbi->skipped_gc_rwsem) {
1866 		f2fs_drop_inmem_pages_all(sbi, true);
1867 		segno = NULL_SEGNO;
1868 		goto gc_more;
1869 	}
1870 	if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1871 		ret = f2fs_write_checkpoint(sbi, &cpc);
1872 stop:
1873 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1874 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1875 
1876 	if (gc_type == FG_GC)
1877 		f2fs_unpin_all_sections(sbi, true);
1878 
1879 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1880 				get_pages(sbi, F2FS_DIRTY_NODES),
1881 				get_pages(sbi, F2FS_DIRTY_DENTS),
1882 				get_pages(sbi, F2FS_DIRTY_IMETA),
1883 				free_sections(sbi),
1884 				free_segments(sbi),
1885 				reserved_segments(sbi),
1886 				prefree_segments(sbi));
1887 
1888 	f2fs_up_write(&sbi->gc_lock);
1889 
1890 	put_gc_inode(&gc_list);
1891 
1892 	if (sync && !ret)
1893 		ret = sec_freed ? 0 : -EAGAIN;
1894 	return ret;
1895 }
1896 
f2fs_create_garbage_collection_cache(void)1897 int __init f2fs_create_garbage_collection_cache(void)
1898 {
1899 	victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1900 					sizeof(struct victim_entry));
1901 	if (!victim_entry_slab)
1902 		return -ENOMEM;
1903 	return 0;
1904 }
1905 
f2fs_destroy_garbage_collection_cache(void)1906 void f2fs_destroy_garbage_collection_cache(void)
1907 {
1908 	kmem_cache_destroy(victim_entry_slab);
1909 }
1910 
init_atgc_management(struct f2fs_sb_info * sbi)1911 static void init_atgc_management(struct f2fs_sb_info *sbi)
1912 {
1913 	struct atgc_management *am = &sbi->am;
1914 
1915 	if (test_opt(sbi, ATGC) &&
1916 		SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1917 		am->atgc_enabled = true;
1918 
1919 	am->root = RB_ROOT_CACHED;
1920 	INIT_LIST_HEAD(&am->victim_list);
1921 	am->victim_count = 0;
1922 
1923 	am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1924 	am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1925 	am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1926 	am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1927 }
1928 
f2fs_build_gc_manager(struct f2fs_sb_info * sbi)1929 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1930 {
1931 	DIRTY_I(sbi)->v_ops = &default_v_ops;
1932 
1933 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1934 
1935 	/* give warm/cold data area from slower device */
1936 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1937 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1938 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1939 
1940 	init_atgc_management(sbi);
1941 }
1942 
free_segment_range(struct f2fs_sb_info * sbi,unsigned int secs,bool gc_only)1943 static int free_segment_range(struct f2fs_sb_info *sbi,
1944 				unsigned int secs, bool gc_only)
1945 {
1946 	unsigned int segno, next_inuse, start, end;
1947 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1948 	int gc_mode, gc_type;
1949 	int err = 0;
1950 	int type;
1951 
1952 	/* Force block allocation for GC */
1953 	MAIN_SECS(sbi) -= secs;
1954 	start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1955 	end = MAIN_SEGS(sbi) - 1;
1956 
1957 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1958 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1959 		if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1960 			SIT_I(sbi)->last_victim[gc_mode] = 0;
1961 
1962 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1963 		if (sbi->next_victim_seg[gc_type] >= start)
1964 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1965 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1966 
1967 	/* Move out cursegs from the target range */
1968 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1969 		f2fs_allocate_segment_for_resize(sbi, type, start, end);
1970 
1971 	/* do GC to move out valid blocks in the range */
1972 	for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1973 		struct gc_inode_list gc_list = {
1974 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
1975 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1976 		};
1977 
1978 		do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1979 		put_gc_inode(&gc_list);
1980 
1981 		if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1982 			err = -EAGAIN;
1983 			goto out;
1984 		}
1985 		if (fatal_signal_pending(current)) {
1986 			err = -ERESTARTSYS;
1987 			goto out;
1988 		}
1989 	}
1990 	if (gc_only)
1991 		goto out;
1992 
1993 	err = f2fs_write_checkpoint(sbi, &cpc);
1994 	if (err)
1995 		goto out;
1996 
1997 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1998 	if (next_inuse <= end) {
1999 		f2fs_err(sbi, "segno %u should be free but still inuse!",
2000 			 next_inuse);
2001 		f2fs_bug_on(sbi, 1);
2002 	}
2003 out:
2004 	MAIN_SECS(sbi) += secs;
2005 	return err;
2006 }
2007 
update_sb_metadata(struct f2fs_sb_info * sbi,int secs)2008 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2009 {
2010 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2011 	int section_count;
2012 	int segment_count;
2013 	int segment_count_main;
2014 	long long block_count;
2015 	int segs = secs * sbi->segs_per_sec;
2016 
2017 	f2fs_down_write(&sbi->sb_lock);
2018 
2019 	section_count = le32_to_cpu(raw_sb->section_count);
2020 	segment_count = le32_to_cpu(raw_sb->segment_count);
2021 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2022 	block_count = le64_to_cpu(raw_sb->block_count);
2023 
2024 	raw_sb->section_count = cpu_to_le32(section_count + secs);
2025 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2026 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2027 	raw_sb->block_count = cpu_to_le64(block_count +
2028 					(long long)segs * sbi->blocks_per_seg);
2029 	if (f2fs_is_multi_device(sbi)) {
2030 		int last_dev = sbi->s_ndevs - 1;
2031 		int dev_segs =
2032 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2033 
2034 		raw_sb->devs[last_dev].total_segments =
2035 						cpu_to_le32(dev_segs + segs);
2036 	}
2037 
2038 	f2fs_up_write(&sbi->sb_lock);
2039 }
2040 
update_fs_metadata(struct f2fs_sb_info * sbi,int secs)2041 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2042 {
2043 	int segs = secs * sbi->segs_per_sec;
2044 	long long blks = (long long)segs * sbi->blocks_per_seg;
2045 	long long user_block_count =
2046 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2047 
2048 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2049 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2050 	MAIN_SECS(sbi) += secs;
2051 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2052 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2053 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2054 
2055 	if (f2fs_is_multi_device(sbi)) {
2056 		int last_dev = sbi->s_ndevs - 1;
2057 
2058 		FDEV(last_dev).total_segments =
2059 				(int)FDEV(last_dev).total_segments + segs;
2060 		FDEV(last_dev).end_blk =
2061 				(long long)FDEV(last_dev).end_blk + blks;
2062 #ifdef CONFIG_BLK_DEV_ZONED
2063 		FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2064 					(int)(blks >> sbi->log_blocks_per_blkz);
2065 #endif
2066 	}
2067 }
2068 
f2fs_resize_fs(struct file * filp,__u64 block_count)2069 int f2fs_resize_fs(struct file *filp, __u64 block_count)
2070 {
2071 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2072 	__u64 old_block_count, shrunk_blocks;
2073 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2074 	unsigned int secs;
2075 	int err = 0;
2076 	__u32 rem;
2077 
2078 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2079 	if (block_count > old_block_count)
2080 		return -EINVAL;
2081 
2082 	if (f2fs_is_multi_device(sbi)) {
2083 		int last_dev = sbi->s_ndevs - 1;
2084 		__u64 last_segs = FDEV(last_dev).total_segments;
2085 
2086 		if (block_count + last_segs * sbi->blocks_per_seg <=
2087 								old_block_count)
2088 			return -EINVAL;
2089 	}
2090 
2091 	/* new fs size should align to section size */
2092 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2093 	if (rem)
2094 		return -EINVAL;
2095 
2096 	if (block_count == old_block_count)
2097 		return 0;
2098 
2099 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2100 		f2fs_err(sbi, "Should run fsck to repair first.");
2101 		return -EFSCORRUPTED;
2102 	}
2103 
2104 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2105 		f2fs_err(sbi, "Checkpoint should be enabled.");
2106 		return -EINVAL;
2107 	}
2108 
2109 	err = mnt_want_write_file(filp);
2110 	if (err)
2111 		return err;
2112 
2113 	shrunk_blocks = old_block_count - block_count;
2114 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2115 
2116 	/* stop other GC */
2117 	if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2118 		err = -EAGAIN;
2119 		goto out_drop_write;
2120 	}
2121 
2122 	/* stop CP to protect MAIN_SEC in free_segment_range */
2123 	f2fs_lock_op(sbi);
2124 
2125 	spin_lock(&sbi->stat_lock);
2126 	if (shrunk_blocks + valid_user_blocks(sbi) +
2127 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2128 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2129 		err = -ENOSPC;
2130 	spin_unlock(&sbi->stat_lock);
2131 
2132 	if (err)
2133 		goto out_unlock;
2134 
2135 	err = free_segment_range(sbi, secs, true);
2136 
2137 out_unlock:
2138 	f2fs_unlock_op(sbi);
2139 	f2fs_up_write(&sbi->gc_lock);
2140 out_drop_write:
2141 	mnt_drop_write_file(filp);
2142 	if (err)
2143 		return err;
2144 
2145 	freeze_super(sbi->sb);
2146 
2147 	if (f2fs_readonly(sbi->sb)) {
2148 		thaw_super(sbi->sb);
2149 		return -EROFS;
2150 	}
2151 
2152 	f2fs_down_write(&sbi->gc_lock);
2153 	f2fs_down_write(&sbi->cp_global_sem);
2154 
2155 	spin_lock(&sbi->stat_lock);
2156 	if (shrunk_blocks + valid_user_blocks(sbi) +
2157 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2158 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2159 		err = -ENOSPC;
2160 	else
2161 		sbi->user_block_count -= shrunk_blocks;
2162 	spin_unlock(&sbi->stat_lock);
2163 	if (err)
2164 		goto out_err;
2165 
2166 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2167 	err = free_segment_range(sbi, secs, false);
2168 	if (err)
2169 		goto recover_out;
2170 
2171 	update_sb_metadata(sbi, -secs);
2172 
2173 	err = f2fs_commit_super(sbi, false);
2174 	if (err) {
2175 		update_sb_metadata(sbi, secs);
2176 		goto recover_out;
2177 	}
2178 
2179 	update_fs_metadata(sbi, -secs);
2180 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2181 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2182 
2183 	err = f2fs_write_checkpoint(sbi, &cpc);
2184 	if (err) {
2185 		update_fs_metadata(sbi, secs);
2186 		update_sb_metadata(sbi, secs);
2187 		f2fs_commit_super(sbi, false);
2188 	}
2189 recover_out:
2190 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2191 	if (err) {
2192 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2193 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2194 
2195 		spin_lock(&sbi->stat_lock);
2196 		sbi->user_block_count += shrunk_blocks;
2197 		spin_unlock(&sbi->stat_lock);
2198 	}
2199 out_err:
2200 	f2fs_up_write(&sbi->cp_global_sem);
2201 	f2fs_up_write(&sbi->gc_lock);
2202 	thaw_super(sbi->sb);
2203 	return err;
2204 }
2205