• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  (sbi)->segs_per_sec) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  (sbi)->segs_per_sec) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  (sbi)->segs_per_sec) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  (sbi)->segs_per_sec) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  (sbi)->segs_per_sec) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  (sbi)->segs_per_sec) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  (sbi)->segs_per_sec) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  (sbi)->segs_per_sec))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)					\
103 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)					\
105 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106 	 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi)					\
108 	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 	(sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno)				\
111 	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno)				\
113 	((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno)				\
115 	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno)				\
117 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118 
119 #define GET_SUM_BLOCK(sbi, segno)				\
120 	((sbi)->sm_info->ssa_blkaddr + (segno))
121 
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124 
125 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
126 	((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno)					\
128 	((segno) / SIT_ENTRY_PER_BLOCK)
129 #define	START_SEGNO(segno)		\
130 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi)			\
132 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr)			\
134 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135 
136 #define SECTOR_FROM_BLOCK(blk_addr)					\
137 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors)					\
139 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140 
141 /*
142  * indicate a block allocation direction: RIGHT and LEFT.
143  * RIGHT means allocating new sections towards the end of volume.
144  * LEFT means the opposite direction.
145  */
146 enum {
147 	ALLOC_RIGHT = 0,
148 	ALLOC_LEFT
149 };
150 
151 /*
152  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
153  * LFS writes data sequentially with cleaning operations.
154  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156  * fragmented segment which has similar aging degree.
157  */
158 enum {
159 	LFS = 0,
160 	SSR,
161 	AT_SSR,
162 };
163 
164 /*
165  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
166  * GC_CB is based on cost-benefit algorithm.
167  * GC_GREEDY is based on greedy algorithm.
168  * GC_AT is based on age-threshold algorithm.
169  */
170 enum {
171 	GC_CB = 0,
172 	GC_GREEDY,
173 	GC_AT,
174 	ALLOC_NEXT,
175 	FLUSH_DEVICE,
176 	MAX_GC_POLICY,
177 };
178 
179 /*
180  * BG_GC means the background cleaning job.
181  * FG_GC means the on-demand cleaning job.
182  */
183 enum {
184 	BG_GC = 0,
185 	FG_GC,
186 };
187 
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190 	int alloc_mode;			/* LFS or SSR */
191 	int gc_mode;			/* GC_CB or GC_GREEDY */
192 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
193 	unsigned int max_search;	/*
194 					 * maximum # of segments/sections
195 					 * to search
196 					 */
197 	unsigned int offset;		/* last scanned bitmap offset */
198 	unsigned int ofs_unit;		/* bitmap search unit */
199 	unsigned int min_cost;		/* minimum cost */
200 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
201 	unsigned int min_segno;		/* segment # having min. cost */
202 	unsigned long long age;		/* mtime of GCed section*/
203 	unsigned long long age_threshold;/* age threshold */
204 };
205 
206 struct seg_entry {
207 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
208 	unsigned int valid_blocks:10;	/* # of valid blocks */
209 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
210 	unsigned int padding:6;		/* padding */
211 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
214 #endif
215 	/*
216 	 * # of valid blocks and the validity bitmap stored in the last
217 	 * checkpoint pack. This information is used by the SSR mode.
218 	 */
219 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
220 	unsigned char *discard_map;
221 	unsigned long long mtime;	/* modification time of the segment */
222 };
223 
224 struct sec_entry {
225 	unsigned int valid_blocks;	/* # of valid blocks in a section */
226 };
227 
228 struct segment_allocation {
229 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
230 };
231 
232 #define MAX_SKIP_GC_COUNT			16
233 
234 struct inmem_pages {
235 	struct list_head list;
236 	struct page *page;
237 	block_t old_addr;		/* for revoking when fail to commit */
238 };
239 
240 struct sit_info {
241 	const struct segment_allocation *s_ops;
242 
243 	block_t sit_base_addr;		/* start block address of SIT area */
244 	block_t sit_blocks;		/* # of blocks used by SIT area */
245 	block_t written_valid_blocks;	/* # of valid blocks in main area */
246 	char *bitmap;			/* all bitmaps pointer */
247 	char *sit_bitmap;		/* SIT bitmap pointer */
248 #ifdef CONFIG_F2FS_CHECK_FS
249 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
250 
251 	/* bitmap of segments to be ignored by GC in case of errors */
252 	unsigned long *invalid_segmap;
253 #endif
254 	unsigned int bitmap_size;	/* SIT bitmap size */
255 
256 	unsigned long *tmp_map;			/* bitmap for temporal use */
257 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
258 	unsigned int dirty_sentries;		/* # of dirty sentries */
259 	unsigned int sents_per_block;		/* # of SIT entries per block */
260 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
261 	struct seg_entry *sentries;		/* SIT segment-level cache */
262 	struct sec_entry *sec_entries;		/* SIT section-level cache */
263 
264 	/* for cost-benefit algorithm in cleaning procedure */
265 	unsigned long long elapsed_time;	/* elapsed time after mount */
266 	unsigned long long mounted_time;	/* mount time */
267 	unsigned long long min_mtime;		/* min. modification time */
268 	unsigned long long max_mtime;		/* max. modification time */
269 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
270 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
271 
272 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
273 };
274 
275 struct free_segmap_info {
276 	unsigned int start_segno;	/* start segment number logically */
277 	unsigned int free_segments;	/* # of free segments */
278 	unsigned int free_sections;	/* # of free sections */
279 	spinlock_t segmap_lock;		/* free segmap lock */
280 	unsigned long *free_segmap;	/* free segment bitmap */
281 	unsigned long *free_secmap;	/* free section bitmap */
282 };
283 
284 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
285 enum dirty_type {
286 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
287 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
288 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
289 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
290 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
291 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
292 	DIRTY,			/* to count # of dirty segments */
293 	PRE,			/* to count # of entirely obsolete segments */
294 	NR_DIRTY_TYPE
295 };
296 
297 struct dirty_seglist_info {
298 	const struct victim_selection *v_ops;	/* victim selction operation */
299 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
300 	unsigned long *dirty_secmap;
301 	struct mutex seglist_lock;		/* lock for segment bitmaps */
302 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
303 	unsigned long *victim_secmap;		/* background GC victims */
304 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
305 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
306 	bool enable_pin_section;		/* enable pinning section */
307 };
308 
309 /* victim selection function for cleaning and SSR */
310 struct victim_selection {
311 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
312 					int, int, char, unsigned long long);
313 };
314 
315 /* for active log information */
316 struct curseg_info {
317 	struct mutex curseg_mutex;		/* lock for consistency */
318 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
319 	struct rw_semaphore journal_rwsem;	/* protect journal area */
320 	struct f2fs_journal *journal;		/* cached journal info */
321 	unsigned char alloc_type;		/* current allocation type */
322 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
323 	unsigned int segno;			/* current segment number */
324 	unsigned short next_blkoff;		/* next block offset to write */
325 	unsigned int zone;			/* current zone number */
326 	unsigned int next_segno;		/* preallocated segment */
327 	bool inited;				/* indicate inmem log is inited */
328 };
329 
330 struct sit_entry_set {
331 	struct list_head set_list;	/* link with all sit sets */
332 	unsigned int start_segno;	/* start segno of sits in set */
333 	unsigned int entry_cnt;		/* the # of sit entries in set */
334 };
335 
336 /*
337  * inline functions
338  */
CURSEG_I(struct f2fs_sb_info * sbi,int type)339 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
340 {
341 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
342 }
343 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)344 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
345 						unsigned int segno)
346 {
347 	struct sit_info *sit_i = SIT_I(sbi);
348 	return &sit_i->sentries[segno];
349 }
350 
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)351 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
352 						unsigned int segno)
353 {
354 	struct sit_info *sit_i = SIT_I(sbi);
355 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
356 }
357 
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)358 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
359 				unsigned int segno, bool use_section)
360 {
361 	/*
362 	 * In order to get # of valid blocks in a section instantly from many
363 	 * segments, f2fs manages two counting structures separately.
364 	 */
365 	if (use_section && __is_large_section(sbi))
366 		return get_sec_entry(sbi, segno)->valid_blocks;
367 	else
368 		return get_seg_entry(sbi, segno)->valid_blocks;
369 }
370 
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)371 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
372 				unsigned int segno, bool use_section)
373 {
374 	if (use_section && __is_large_section(sbi)) {
375 		unsigned int start_segno = START_SEGNO(segno);
376 		unsigned int blocks = 0;
377 		int i;
378 
379 		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
380 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
381 
382 			blocks += se->ckpt_valid_blocks;
383 		}
384 		return blocks;
385 	}
386 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
387 }
388 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)389 static inline void seg_info_from_raw_sit(struct seg_entry *se,
390 					struct f2fs_sit_entry *rs)
391 {
392 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
393 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
394 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
395 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
396 #ifdef CONFIG_F2FS_CHECK_FS
397 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
398 #endif
399 	se->type = GET_SIT_TYPE(rs);
400 	se->mtime = le64_to_cpu(rs->mtime);
401 }
402 
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)403 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
404 					struct f2fs_sit_entry *rs)
405 {
406 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
407 					se->valid_blocks;
408 	rs->vblocks = cpu_to_le16(raw_vblocks);
409 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
410 	rs->mtime = cpu_to_le64(se->mtime);
411 }
412 
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)413 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
414 				struct page *page, unsigned int start)
415 {
416 	struct f2fs_sit_block *raw_sit;
417 	struct seg_entry *se;
418 	struct f2fs_sit_entry *rs;
419 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
420 					(unsigned long)MAIN_SEGS(sbi));
421 	int i;
422 
423 	raw_sit = (struct f2fs_sit_block *)page_address(page);
424 	memset(raw_sit, 0, PAGE_SIZE);
425 	for (i = 0; i < end - start; i++) {
426 		rs = &raw_sit->entries[i];
427 		se = get_seg_entry(sbi, start + i);
428 		__seg_info_to_raw_sit(se, rs);
429 	}
430 }
431 
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)432 static inline void seg_info_to_raw_sit(struct seg_entry *se,
433 					struct f2fs_sit_entry *rs)
434 {
435 	__seg_info_to_raw_sit(se, rs);
436 
437 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
438 	se->ckpt_valid_blocks = se->valid_blocks;
439 }
440 
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)441 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
442 		unsigned int max, unsigned int segno)
443 {
444 	unsigned int ret;
445 	spin_lock(&free_i->segmap_lock);
446 	ret = find_next_bit(free_i->free_segmap, max, segno);
447 	spin_unlock(&free_i->segmap_lock);
448 	return ret;
449 }
450 
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)451 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
452 {
453 	struct free_segmap_info *free_i = FREE_I(sbi);
454 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
455 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
456 	unsigned int next;
457 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
458 
459 	spin_lock(&free_i->segmap_lock);
460 	clear_bit(segno, free_i->free_segmap);
461 	free_i->free_segments++;
462 
463 	next = find_next_bit(free_i->free_segmap,
464 			start_segno + sbi->segs_per_sec, start_segno);
465 	if (next >= start_segno + usable_segs) {
466 		clear_bit(secno, free_i->free_secmap);
467 		free_i->free_sections++;
468 	}
469 	spin_unlock(&free_i->segmap_lock);
470 }
471 
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)472 static inline void __set_inuse(struct f2fs_sb_info *sbi,
473 		unsigned int segno)
474 {
475 	struct free_segmap_info *free_i = FREE_I(sbi);
476 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
477 
478 	set_bit(segno, free_i->free_segmap);
479 	free_i->free_segments--;
480 	if (!test_and_set_bit(secno, free_i->free_secmap))
481 		free_i->free_sections--;
482 }
483 
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)484 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
485 		unsigned int segno, bool inmem)
486 {
487 	struct free_segmap_info *free_i = FREE_I(sbi);
488 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
490 	unsigned int next;
491 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
492 
493 	spin_lock(&free_i->segmap_lock);
494 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
495 		free_i->free_segments++;
496 
497 		if (!inmem && IS_CURSEC(sbi, secno))
498 			goto skip_free;
499 		next = find_next_bit(free_i->free_segmap,
500 				start_segno + sbi->segs_per_sec, start_segno);
501 		if (next >= start_segno + usable_segs) {
502 			if (test_and_clear_bit(secno, free_i->free_secmap))
503 				free_i->free_sections++;
504 		}
505 	}
506 skip_free:
507 	spin_unlock(&free_i->segmap_lock);
508 }
509 
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)510 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
511 		unsigned int segno)
512 {
513 	struct free_segmap_info *free_i = FREE_I(sbi);
514 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
515 
516 	spin_lock(&free_i->segmap_lock);
517 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
518 		free_i->free_segments--;
519 		if (!test_and_set_bit(secno, free_i->free_secmap))
520 			free_i->free_sections--;
521 	}
522 	spin_unlock(&free_i->segmap_lock);
523 }
524 
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)525 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
526 		void *dst_addr)
527 {
528 	struct sit_info *sit_i = SIT_I(sbi);
529 
530 #ifdef CONFIG_F2FS_CHECK_FS
531 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
532 						sit_i->bitmap_size))
533 		f2fs_bug_on(sbi, 1);
534 #endif
535 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
536 }
537 
written_block_count(struct f2fs_sb_info * sbi)538 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
539 {
540 	return SIT_I(sbi)->written_valid_blocks;
541 }
542 
free_segments(struct f2fs_sb_info * sbi)543 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
544 {
545 	return FREE_I(sbi)->free_segments;
546 }
547 
reserved_segments(struct f2fs_sb_info * sbi)548 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
549 {
550 	return SM_I(sbi)->reserved_segments +
551 			SM_I(sbi)->additional_reserved_segments;
552 }
553 
free_sections(struct f2fs_sb_info * sbi)554 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
555 {
556 	return FREE_I(sbi)->free_sections;
557 }
558 
prefree_segments(struct f2fs_sb_info * sbi)559 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
560 {
561 	return DIRTY_I(sbi)->nr_dirty[PRE];
562 }
563 
dirty_segments(struct f2fs_sb_info * sbi)564 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
565 {
566 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
567 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
568 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
569 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
570 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
571 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
572 }
573 
overprovision_segments(struct f2fs_sb_info * sbi)574 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
575 {
576 	return SM_I(sbi)->ovp_segments;
577 }
578 
reserved_sections(struct f2fs_sb_info * sbi)579 static inline int reserved_sections(struct f2fs_sb_info *sbi)
580 {
581 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
582 }
583 
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)584 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
585 			unsigned int node_blocks, unsigned int dent_blocks)
586 {
587 
588 	unsigned int segno, left_blocks;
589 	int i;
590 
591 	/* check current node segment */
592 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
593 		segno = CURSEG_I(sbi, i)->segno;
594 		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
595 				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
596 
597 		if (node_blocks > left_blocks)
598 			return false;
599 	}
600 
601 	/* check current data segment */
602 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
603 	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
604 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
605 	if (dent_blocks > left_blocks)
606 		return false;
607 	return true;
608 }
609 
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)610 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
611 					int freed, int needed)
612 {
613 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
614 					get_pages(sbi, F2FS_DIRTY_DENTS) +
615 					get_pages(sbi, F2FS_DIRTY_IMETA);
616 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
617 	unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
618 	unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
619 	unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
620 	unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
621 	unsigned int free, need_lower, need_upper;
622 
623 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
624 		return false;
625 
626 	free = free_sections(sbi) + freed;
627 	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
628 	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
629 
630 	if (free > need_upper)
631 		return false;
632 	else if (free <= need_lower)
633 		return true;
634 	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
635 }
636 
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)637 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
638 {
639 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
640 		return true;
641 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
642 		return true;
643 	return false;
644 }
645 
excess_prefree_segs(struct f2fs_sb_info * sbi)646 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
647 {
648 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
649 }
650 
utilization(struct f2fs_sb_info * sbi)651 static inline int utilization(struct f2fs_sb_info *sbi)
652 {
653 	return div_u64((u64)valid_user_blocks(sbi) * 100,
654 					sbi->user_block_count);
655 }
656 
657 /*
658  * Sometimes f2fs may be better to drop out-of-place update policy.
659  * And, users can control the policy through sysfs entries.
660  * There are five policies with triggering conditions as follows.
661  * F2FS_IPU_FORCE - all the time,
662  * F2FS_IPU_SSR - if SSR mode is activated,
663  * F2FS_IPU_UTIL - if FS utilization is over threashold,
664  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
665  *                     threashold,
666  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
667  *                     storages. IPU will be triggered only if the # of dirty
668  *                     pages over min_fsync_blocks. (=default option)
669  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
670  * F2FS_IPU_NOCACHE - disable IPU bio cache.
671  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
672  *                            FI_OPU_WRITE flag.
673  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
674  */
675 #define DEF_MIN_IPU_UTIL	70
676 #define DEF_MIN_FSYNC_BLOCKS	8
677 #define DEF_MIN_HOT_BLOCKS	16
678 
679 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
680 
681 enum {
682 	F2FS_IPU_FORCE,
683 	F2FS_IPU_SSR,
684 	F2FS_IPU_UTIL,
685 	F2FS_IPU_SSR_UTIL,
686 	F2FS_IPU_FSYNC,
687 	F2FS_IPU_ASYNC,
688 	F2FS_IPU_NOCACHE,
689 	F2FS_IPU_HONOR_OPU_WRITE,
690 };
691 
curseg_segno(struct f2fs_sb_info * sbi,int type)692 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
693 		int type)
694 {
695 	struct curseg_info *curseg = CURSEG_I(sbi, type);
696 	return curseg->segno;
697 }
698 
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)699 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
700 		int type)
701 {
702 	struct curseg_info *curseg = CURSEG_I(sbi, type);
703 	return curseg->alloc_type;
704 }
705 
curseg_blkoff(struct f2fs_sb_info * sbi,int type)706 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
707 {
708 	struct curseg_info *curseg = CURSEG_I(sbi, type);
709 	return curseg->next_blkoff;
710 }
711 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)712 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
713 {
714 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
715 }
716 
verify_fio_blkaddr(struct f2fs_io_info * fio)717 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
718 {
719 	struct f2fs_sb_info *sbi = fio->sbi;
720 
721 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
722 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
723 					META_GENERIC : DATA_GENERIC);
724 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
725 					META_GENERIC : DATA_GENERIC_ENHANCE);
726 }
727 
728 /*
729  * Summary block is always treated as an invalid block
730  */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)731 static inline int check_block_count(struct f2fs_sb_info *sbi,
732 		int segno, struct f2fs_sit_entry *raw_sit)
733 {
734 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
735 	int valid_blocks = 0;
736 	int cur_pos = 0, next_pos;
737 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
738 
739 	/* check bitmap with valid block count */
740 	do {
741 		if (is_valid) {
742 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
743 					usable_blks_per_seg,
744 					cur_pos);
745 			valid_blocks += next_pos - cur_pos;
746 		} else
747 			next_pos = find_next_bit_le(&raw_sit->valid_map,
748 					usable_blks_per_seg,
749 					cur_pos);
750 		cur_pos = next_pos;
751 		is_valid = !is_valid;
752 	} while (cur_pos < usable_blks_per_seg);
753 
754 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
755 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
756 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
757 		set_sbi_flag(sbi, SBI_NEED_FSCK);
758 		return -EFSCORRUPTED;
759 	}
760 
761 	if (usable_blks_per_seg < sbi->blocks_per_seg)
762 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
763 				sbi->blocks_per_seg,
764 				usable_blks_per_seg) != sbi->blocks_per_seg);
765 
766 	/* check segment usage, and check boundary of a given segment number */
767 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
768 					|| segno > TOTAL_SEGS(sbi) - 1)) {
769 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
770 			 GET_SIT_VBLOCKS(raw_sit), segno);
771 		set_sbi_flag(sbi, SBI_NEED_FSCK);
772 		return -EFSCORRUPTED;
773 	}
774 	return 0;
775 }
776 
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)777 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
778 						unsigned int start)
779 {
780 	struct sit_info *sit_i = SIT_I(sbi);
781 	unsigned int offset = SIT_BLOCK_OFFSET(start);
782 	block_t blk_addr = sit_i->sit_base_addr + offset;
783 
784 	check_seg_range(sbi, start);
785 
786 #ifdef CONFIG_F2FS_CHECK_FS
787 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
788 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
789 		f2fs_bug_on(sbi, 1);
790 #endif
791 
792 	/* calculate sit block address */
793 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
794 		blk_addr += sit_i->sit_blocks;
795 
796 	return blk_addr;
797 }
798 
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)799 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
800 						pgoff_t block_addr)
801 {
802 	struct sit_info *sit_i = SIT_I(sbi);
803 	block_addr -= sit_i->sit_base_addr;
804 	if (block_addr < sit_i->sit_blocks)
805 		block_addr += sit_i->sit_blocks;
806 	else
807 		block_addr -= sit_i->sit_blocks;
808 
809 	return block_addr + sit_i->sit_base_addr;
810 }
811 
set_to_next_sit(struct sit_info * sit_i,unsigned int start)812 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
813 {
814 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
815 
816 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
817 #ifdef CONFIG_F2FS_CHECK_FS
818 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
819 #endif
820 }
821 
get_mtime(struct f2fs_sb_info * sbi,bool base_time)822 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
823 						bool base_time)
824 {
825 	struct sit_info *sit_i = SIT_I(sbi);
826 	time64_t diff, now = ktime_get_boottime_seconds();
827 
828 	if (now >= sit_i->mounted_time)
829 		return sit_i->elapsed_time + now - sit_i->mounted_time;
830 
831 	/* system time is set to the past */
832 	if (!base_time) {
833 		diff = sit_i->mounted_time - now;
834 		if (sit_i->elapsed_time >= diff)
835 			return sit_i->elapsed_time - diff;
836 		return 0;
837 	}
838 	return sit_i->elapsed_time;
839 }
840 
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)841 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
842 			unsigned int ofs_in_node, unsigned char version)
843 {
844 	sum->nid = cpu_to_le32(nid);
845 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
846 	sum->version = version;
847 }
848 
start_sum_block(struct f2fs_sb_info * sbi)849 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
850 {
851 	return __start_cp_addr(sbi) +
852 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
853 }
854 
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)855 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
856 {
857 	return __start_cp_addr(sbi) +
858 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
859 				- (base + 1) + type;
860 }
861 
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)862 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
863 {
864 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
865 		return true;
866 	return false;
867 }
868 
869 /*
870  * It is very important to gather dirty pages and write at once, so that we can
871  * submit a big bio without interfering other data writes.
872  * By default, 512 pages for directory data,
873  * 512 pages (2MB) * 8 for nodes, and
874  * 256 pages * 8 for meta are set.
875  */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)876 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
877 {
878 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
879 		return 0;
880 
881 	if (type == DATA)
882 		return sbi->blocks_per_seg;
883 	else if (type == NODE)
884 		return 8 * sbi->blocks_per_seg;
885 	else if (type == META)
886 		return 8 * BIO_MAX_PAGES;
887 	else
888 		return 0;
889 }
890 
891 /*
892  * When writing pages, it'd better align nr_to_write for segment size.
893  */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)894 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
895 					struct writeback_control *wbc)
896 {
897 	long nr_to_write, desired;
898 
899 	if (wbc->sync_mode != WB_SYNC_NONE)
900 		return 0;
901 
902 	nr_to_write = wbc->nr_to_write;
903 	desired = BIO_MAX_PAGES;
904 	if (type == NODE)
905 		desired <<= 1;
906 
907 	wbc->nr_to_write = desired;
908 	return desired - nr_to_write;
909 }
910 
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)911 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
912 {
913 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
914 	bool wakeup = false;
915 	int i;
916 
917 	if (force)
918 		goto wake_up;
919 
920 	mutex_lock(&dcc->cmd_lock);
921 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
922 		if (i + 1 < dcc->discard_granularity)
923 			break;
924 		if (!list_empty(&dcc->pend_list[i])) {
925 			wakeup = true;
926 			break;
927 		}
928 	}
929 	mutex_unlock(&dcc->cmd_lock);
930 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
931 		return;
932 wake_up:
933 	dcc->discard_wake = 1;
934 	wake_up_interruptible_all(&dcc->discard_wait_queue);
935 }
936