• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm75.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	 monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/jiffies.h>
12 #include <linux/i2c.h>
13 #include <linux/hwmon.h>
14 #include <linux/hwmon-sysfs.h>
15 #include <linux/err.h>
16 #include <linux/of_device.h>
17 #include <linux/of.h>
18 #include <linux/regmap.h>
19 #include <linux/util_macros.h>
20 #include <linux/regulator/consumer.h>
21 #include "lm75.h"
22 
23 /*
24  * This driver handles the LM75 and compatible digital temperature sensors.
25  */
26 
27 enum lm75_type {		/* keep sorted in alphabetical order */
28 	adt75,
29 	ds1775,
30 	ds75,
31 	ds7505,
32 	g751,
33 	lm75,
34 	lm75a,
35 	lm75b,
36 	max6625,
37 	max6626,
38 	max31725,
39 	mcp980x,
40 	pct2075,
41 	stds75,
42 	stlm75,
43 	tcn75,
44 	tmp100,
45 	tmp101,
46 	tmp105,
47 	tmp112,
48 	tmp175,
49 	tmp275,
50 	tmp75,
51 	tmp75b,
52 	tmp75c,
53 };
54 
55 /**
56  * struct lm75_params - lm75 configuration parameters.
57  * @set_mask:		Bits to set in configuration register when configuring
58  *			the chip.
59  * @clr_mask:		Bits to clear in configuration register when configuring
60  *			the chip.
61  * @default_resolution:	Default number of bits to represent the temperature
62  *			value.
63  * @resolution_limits:	Limit register resolution. Optional. Should be set if
64  *			the resolution of limit registers does not match the
65  *			resolution of the temperature register.
66  * @resolutions:	List of resolutions associated with sample times.
67  *			Optional. Should be set if num_sample_times is larger
68  *			than 1, and if the resolution changes with sample times.
69  *			If set, number of entries must match num_sample_times.
70  * @default_sample_time:Sample time to be set by default.
71  * @num_sample_times:	Number of possible sample times to be set. Optional.
72  *			Should be set if the number of sample times is larger
73  *			than one.
74  * @sample_times:	All the possible sample times to be set. Mandatory if
75  *			num_sample_times is larger than 1. If set, number of
76  *			entries must match num_sample_times.
77  */
78 
79 struct lm75_params {
80 	u8			set_mask;
81 	u8			clr_mask;
82 	u8			default_resolution;
83 	u8			resolution_limits;
84 	const u8		*resolutions;
85 	unsigned int		default_sample_time;
86 	u8			num_sample_times;
87 	const unsigned int	*sample_times;
88 };
89 
90 /* Addresses scanned */
91 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c,
92 					0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
93 
94 /* The LM75 registers */
95 #define LM75_REG_TEMP		0x00
96 #define LM75_REG_CONF		0x01
97 #define LM75_REG_HYST		0x02
98 #define LM75_REG_MAX		0x03
99 #define PCT2075_REG_IDLE	0x04
100 
101 /* Each client has this additional data */
102 struct lm75_data {
103 	struct i2c_client		*client;
104 	struct regmap			*regmap;
105 	struct regulator		*vs;
106 	u8				orig_conf;
107 	u8				current_conf;
108 	u8				resolution;	/* In bits, 9 to 16 */
109 	unsigned int			sample_time;	/* In ms */
110 	enum lm75_type			kind;
111 	const struct lm75_params	*params;
112 };
113 
114 /*-----------------------------------------------------------------------*/
115 
116 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 };
117 
118 #define LM75_SAMPLE_CLEAR_MASK	(3 << 5)
119 
120 /* The structure below stores the configuration values of the supported devices.
121  * In case of being supported multiple configurations, the default one must
122  * always be the first element of the array
123  */
124 static const struct lm75_params device_params[] = {
125 	[adt75] = {
126 		.clr_mask = 1 << 5,	/* not one-shot mode */
127 		.default_resolution = 12,
128 		.default_sample_time = MSEC_PER_SEC / 10,
129 	},
130 	[ds1775] = {
131 		.clr_mask = 3 << 5,
132 		.set_mask = 2 << 5,	/* 11-bit mode */
133 		.default_resolution = 11,
134 		.default_sample_time = 500,
135 		.num_sample_times = 4,
136 		.sample_times = (unsigned int []){ 125, 250, 500, 1000 },
137 		.resolutions = (u8 []) {9, 10, 11, 12 },
138 	},
139 	[ds75] = {
140 		.clr_mask = 3 << 5,
141 		.set_mask = 2 << 5,	/* 11-bit mode */
142 		.default_resolution = 11,
143 		.default_sample_time = 600,
144 		.num_sample_times = 4,
145 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
146 		.resolutions = (u8 []) {9, 10, 11, 12 },
147 	},
148 	[stds75] = {
149 		.clr_mask = 3 << 5,
150 		.set_mask = 2 << 5,	/* 11-bit mode */
151 		.default_resolution = 11,
152 		.default_sample_time = 600,
153 		.num_sample_times = 4,
154 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
155 		.resolutions = (u8 []) {9, 10, 11, 12 },
156 	},
157 	[stlm75] = {
158 		.default_resolution = 9,
159 		.default_sample_time = MSEC_PER_SEC / 6,
160 	},
161 	[ds7505] = {
162 		.set_mask = 3 << 5,	/* 12-bit mode*/
163 		.default_resolution = 12,
164 		.default_sample_time = 200,
165 		.num_sample_times = 4,
166 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
167 		.resolutions = (u8 []) {9, 10, 11, 12 },
168 	},
169 	[g751] = {
170 		.default_resolution = 9,
171 		.default_sample_time = MSEC_PER_SEC / 10,
172 	},
173 	[lm75] = {
174 		.default_resolution = 9,
175 		.default_sample_time = MSEC_PER_SEC / 10,
176 	},
177 	[lm75a] = {
178 		.default_resolution = 9,
179 		.default_sample_time = MSEC_PER_SEC / 10,
180 	},
181 	[lm75b] = {
182 		.default_resolution = 11,
183 		.default_sample_time = MSEC_PER_SEC / 10,
184 	},
185 	[max6625] = {
186 		.default_resolution = 9,
187 		.default_sample_time = MSEC_PER_SEC / 7,
188 	},
189 	[max6626] = {
190 		.default_resolution = 12,
191 		.default_sample_time = MSEC_PER_SEC / 7,
192 		.resolution_limits = 9,
193 	},
194 	[max31725] = {
195 		.default_resolution = 16,
196 		.default_sample_time = MSEC_PER_SEC / 20,
197 	},
198 	[tcn75] = {
199 		.default_resolution = 9,
200 		.default_sample_time = MSEC_PER_SEC / 18,
201 	},
202 	[pct2075] = {
203 		.default_resolution = 11,
204 		.default_sample_time = MSEC_PER_SEC / 10,
205 		.num_sample_times = 31,
206 		.sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600,
207 		700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
208 		1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700,
209 		2800, 2900, 3000, 3100 },
210 	},
211 	[mcp980x] = {
212 		.set_mask = 3 << 5,	/* 12-bit mode */
213 		.clr_mask = 1 << 7,	/* not one-shot mode */
214 		.default_resolution = 12,
215 		.resolution_limits = 9,
216 		.default_sample_time = 240,
217 		.num_sample_times = 4,
218 		.sample_times = (unsigned int []){ 30, 60, 120, 240 },
219 		.resolutions = (u8 []) {9, 10, 11, 12 },
220 	},
221 	[tmp100] = {
222 		.set_mask = 3 << 5,	/* 12-bit mode */
223 		.clr_mask = 1 << 7,	/* not one-shot mode */
224 		.default_resolution = 12,
225 		.default_sample_time = 320,
226 		.num_sample_times = 4,
227 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
228 		.resolutions = (u8 []) {9, 10, 11, 12 },
229 	},
230 	[tmp101] = {
231 		.set_mask = 3 << 5,	/* 12-bit mode */
232 		.clr_mask = 1 << 7,	/* not one-shot mode */
233 		.default_resolution = 12,
234 		.default_sample_time = 320,
235 		.num_sample_times = 4,
236 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
237 		.resolutions = (u8 []) {9, 10, 11, 12 },
238 	},
239 	[tmp105] = {
240 		.set_mask = 3 << 5,	/* 12-bit mode */
241 		.clr_mask = 1 << 7,	/* not one-shot mode*/
242 		.default_resolution = 12,
243 		.default_sample_time = 220,
244 		.num_sample_times = 4,
245 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
246 		.resolutions = (u8 []) {9, 10, 11, 12 },
247 	},
248 	[tmp112] = {
249 		.set_mask = 3 << 5,	/* 8 samples / second */
250 		.clr_mask = 1 << 7,	/* no one-shot mode*/
251 		.default_resolution = 12,
252 		.default_sample_time = 125,
253 		.num_sample_times = 4,
254 		.sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
255 	},
256 	[tmp175] = {
257 		.set_mask = 3 << 5,	/* 12-bit mode */
258 		.clr_mask = 1 << 7,	/* not one-shot mode*/
259 		.default_resolution = 12,
260 		.default_sample_time = 220,
261 		.num_sample_times = 4,
262 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
263 		.resolutions = (u8 []) {9, 10, 11, 12 },
264 	},
265 	[tmp275] = {
266 		.set_mask = 3 << 5,	/* 12-bit mode */
267 		.clr_mask = 1 << 7,	/* not one-shot mode*/
268 		.default_resolution = 12,
269 		.default_sample_time = 220,
270 		.num_sample_times = 4,
271 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
272 		.resolutions = (u8 []) {9, 10, 11, 12 },
273 	},
274 	[tmp75] = {
275 		.set_mask = 3 << 5,	/* 12-bit mode */
276 		.clr_mask = 1 << 7,	/* not one-shot mode*/
277 		.default_resolution = 12,
278 		.default_sample_time = 220,
279 		.num_sample_times = 4,
280 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
281 		.resolutions = (u8 []) {9, 10, 11, 12 },
282 	},
283 	[tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */
284 		.clr_mask = 1 << 7 | 3 << 5,
285 		.default_resolution = 12,
286 		.default_sample_time = MSEC_PER_SEC / 37,
287 		.sample_times = (unsigned int []){ MSEC_PER_SEC / 37,
288 			MSEC_PER_SEC / 18,
289 			MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 },
290 		.num_sample_times = 4,
291 	},
292 	[tmp75c] = {
293 		.clr_mask = 1 << 5,	/*not one-shot mode*/
294 		.default_resolution = 12,
295 		.default_sample_time = MSEC_PER_SEC / 12,
296 	}
297 };
298 
lm75_reg_to_mc(s16 temp,u8 resolution)299 static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
300 {
301 	return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
302 }
303 
lm75_write_config(struct lm75_data * data,u8 set_mask,u8 clr_mask)304 static int lm75_write_config(struct lm75_data *data, u8 set_mask,
305 			     u8 clr_mask)
306 {
307 	u8 value;
308 
309 	clr_mask |= LM75_SHUTDOWN;
310 	value = data->current_conf & ~clr_mask;
311 	value |= set_mask;
312 
313 	if (data->current_conf != value) {
314 		s32 err;
315 
316 		err = i2c_smbus_write_byte_data(data->client, LM75_REG_CONF,
317 						value);
318 		if (err)
319 			return err;
320 		data->current_conf = value;
321 	}
322 	return 0;
323 }
324 
lm75_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)325 static int lm75_read(struct device *dev, enum hwmon_sensor_types type,
326 		     u32 attr, int channel, long *val)
327 {
328 	struct lm75_data *data = dev_get_drvdata(dev);
329 	unsigned int regval;
330 	int err, reg;
331 
332 	switch (type) {
333 	case hwmon_chip:
334 		switch (attr) {
335 		case hwmon_chip_update_interval:
336 			*val = data->sample_time;
337 			break;
338 		default:
339 			return -EINVAL;
340 		}
341 		break;
342 	case hwmon_temp:
343 		switch (attr) {
344 		case hwmon_temp_input:
345 			reg = LM75_REG_TEMP;
346 			break;
347 		case hwmon_temp_max:
348 			reg = LM75_REG_MAX;
349 			break;
350 		case hwmon_temp_max_hyst:
351 			reg = LM75_REG_HYST;
352 			break;
353 		default:
354 			return -EINVAL;
355 		}
356 		err = regmap_read(data->regmap, reg, &regval);
357 		if (err < 0)
358 			return err;
359 
360 		*val = lm75_reg_to_mc(regval, data->resolution);
361 		break;
362 	default:
363 		return -EINVAL;
364 	}
365 	return 0;
366 }
367 
lm75_write_temp(struct device * dev,u32 attr,long temp)368 static int lm75_write_temp(struct device *dev, u32 attr, long temp)
369 {
370 	struct lm75_data *data = dev_get_drvdata(dev);
371 	u8 resolution;
372 	int reg;
373 
374 	switch (attr) {
375 	case hwmon_temp_max:
376 		reg = LM75_REG_MAX;
377 		break;
378 	case hwmon_temp_max_hyst:
379 		reg = LM75_REG_HYST;
380 		break;
381 	default:
382 		return -EINVAL;
383 	}
384 
385 	/*
386 	 * Resolution of limit registers is assumed to be the same as the
387 	 * temperature input register resolution unless given explicitly.
388 	 */
389 	if (data->params->resolution_limits)
390 		resolution = data->params->resolution_limits;
391 	else
392 		resolution = data->resolution;
393 
394 	temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
395 	temp = DIV_ROUND_CLOSEST(temp  << (resolution - 8),
396 				 1000) << (16 - resolution);
397 
398 	return regmap_write(data->regmap, reg, (u16)temp);
399 }
400 
lm75_update_interval(struct device * dev,long val)401 static int lm75_update_interval(struct device *dev, long val)
402 {
403 	struct lm75_data *data = dev_get_drvdata(dev);
404 	unsigned int reg;
405 	u8 index;
406 	s32 err;
407 
408 	index = find_closest(val, data->params->sample_times,
409 			     (int)data->params->num_sample_times);
410 
411 	switch (data->kind) {
412 	default:
413 		err = lm75_write_config(data, lm75_sample_set_masks[index],
414 					LM75_SAMPLE_CLEAR_MASK);
415 		if (err)
416 			return err;
417 
418 		data->sample_time = data->params->sample_times[index];
419 		if (data->params->resolutions)
420 			data->resolution = data->params->resolutions[index];
421 		break;
422 	case tmp112:
423 		err = regmap_read(data->regmap, LM75_REG_CONF, &reg);
424 		if (err < 0)
425 			return err;
426 		reg &= ~0x00c0;
427 		reg |= (3 - index) << 6;
428 		err = regmap_write(data->regmap, LM75_REG_CONF, reg);
429 		if (err < 0)
430 			return err;
431 		data->sample_time = data->params->sample_times[index];
432 		break;
433 	case pct2075:
434 		err = i2c_smbus_write_byte_data(data->client, PCT2075_REG_IDLE,
435 						index + 1);
436 		if (err)
437 			return err;
438 		data->sample_time = data->params->sample_times[index];
439 		break;
440 	}
441 	return 0;
442 }
443 
lm75_write_chip(struct device * dev,u32 attr,long val)444 static int lm75_write_chip(struct device *dev, u32 attr, long val)
445 {
446 	switch (attr) {
447 	case hwmon_chip_update_interval:
448 		return lm75_update_interval(dev, val);
449 	default:
450 		return -EINVAL;
451 	}
452 	return 0;
453 }
454 
lm75_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)455 static int lm75_write(struct device *dev, enum hwmon_sensor_types type,
456 		      u32 attr, int channel, long val)
457 {
458 	switch (type) {
459 	case hwmon_chip:
460 		return lm75_write_chip(dev, attr, val);
461 	case hwmon_temp:
462 		return lm75_write_temp(dev, attr, val);
463 	default:
464 		return -EINVAL;
465 	}
466 	return 0;
467 }
468 
lm75_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)469 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type,
470 			       u32 attr, int channel)
471 {
472 	const struct lm75_data *config_data = data;
473 
474 	switch (type) {
475 	case hwmon_chip:
476 		switch (attr) {
477 		case hwmon_chip_update_interval:
478 			if (config_data->params->num_sample_times > 1)
479 				return 0644;
480 			return 0444;
481 		}
482 		break;
483 	case hwmon_temp:
484 		switch (attr) {
485 		case hwmon_temp_input:
486 			return 0444;
487 		case hwmon_temp_max:
488 		case hwmon_temp_max_hyst:
489 			return 0644;
490 		}
491 		break;
492 	default:
493 		break;
494 	}
495 	return 0;
496 }
497 
498 static const struct hwmon_channel_info *lm75_info[] = {
499 	HWMON_CHANNEL_INFO(chip,
500 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
501 	HWMON_CHANNEL_INFO(temp,
502 			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST),
503 	NULL
504 };
505 
506 static const struct hwmon_ops lm75_hwmon_ops = {
507 	.is_visible = lm75_is_visible,
508 	.read = lm75_read,
509 	.write = lm75_write,
510 };
511 
512 static const struct hwmon_chip_info lm75_chip_info = {
513 	.ops = &lm75_hwmon_ops,
514 	.info = lm75_info,
515 };
516 
lm75_is_writeable_reg(struct device * dev,unsigned int reg)517 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg)
518 {
519 	return reg != LM75_REG_TEMP;
520 }
521 
lm75_is_volatile_reg(struct device * dev,unsigned int reg)522 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg)
523 {
524 	return reg == LM75_REG_TEMP || reg == LM75_REG_CONF;
525 }
526 
527 static const struct regmap_config lm75_regmap_config = {
528 	.reg_bits = 8,
529 	.val_bits = 16,
530 	.max_register = PCT2075_REG_IDLE,
531 	.writeable_reg = lm75_is_writeable_reg,
532 	.volatile_reg = lm75_is_volatile_reg,
533 	.val_format_endian = REGMAP_ENDIAN_BIG,
534 	.cache_type = REGCACHE_RBTREE,
535 	.use_single_read = true,
536 	.use_single_write = true,
537 };
538 
lm75_disable_regulator(void * data)539 static void lm75_disable_regulator(void *data)
540 {
541 	struct lm75_data *lm75 = data;
542 
543 	regulator_disable(lm75->vs);
544 }
545 
lm75_remove(void * data)546 static void lm75_remove(void *data)
547 {
548 	struct lm75_data *lm75 = data;
549 	struct i2c_client *client = lm75->client;
550 
551 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, lm75->orig_conf);
552 }
553 
554 static const struct i2c_device_id lm75_ids[];
555 
lm75_probe(struct i2c_client * client)556 static int lm75_probe(struct i2c_client *client)
557 {
558 	struct device *dev = &client->dev;
559 	struct device *hwmon_dev;
560 	struct lm75_data *data;
561 	int status, err;
562 	enum lm75_type kind;
563 
564 	if (client->dev.of_node)
565 		kind = (enum lm75_type)of_device_get_match_data(&client->dev);
566 	else
567 		kind = i2c_match_id(lm75_ids, client)->driver_data;
568 
569 	if (!i2c_check_functionality(client->adapter,
570 			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA))
571 		return -EIO;
572 
573 	data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL);
574 	if (!data)
575 		return -ENOMEM;
576 
577 	data->client = client;
578 	data->kind = kind;
579 
580 	data->vs = devm_regulator_get(dev, "vs");
581 	if (IS_ERR(data->vs))
582 		return PTR_ERR(data->vs);
583 
584 	data->regmap = devm_regmap_init_i2c(client, &lm75_regmap_config);
585 	if (IS_ERR(data->regmap))
586 		return PTR_ERR(data->regmap);
587 
588 	/* Set to LM75 resolution (9 bits, 1/2 degree C) and range.
589 	 * Then tweak to be more precise when appropriate.
590 	 */
591 
592 	data->params = &device_params[data->kind];
593 
594 	/* Save default sample time and resolution*/
595 	data->sample_time = data->params->default_sample_time;
596 	data->resolution = data->params->default_resolution;
597 
598 	/* Enable the power */
599 	err = regulator_enable(data->vs);
600 	if (err) {
601 		dev_err(dev, "failed to enable regulator: %d\n", err);
602 		return err;
603 	}
604 
605 	err = devm_add_action_or_reset(dev, lm75_disable_regulator, data);
606 	if (err)
607 		return err;
608 
609 	/* Cache original configuration */
610 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
611 	if (status < 0) {
612 		dev_dbg(dev, "Can't read config? %d\n", status);
613 		return status;
614 	}
615 	data->orig_conf = status;
616 	data->current_conf = status;
617 
618 	err = lm75_write_config(data, data->params->set_mask,
619 				data->params->clr_mask);
620 	if (err)
621 		return err;
622 
623 	err = devm_add_action_or_reset(dev, lm75_remove, data);
624 	if (err)
625 		return err;
626 
627 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
628 							 data, &lm75_chip_info,
629 							 NULL);
630 	if (IS_ERR(hwmon_dev))
631 		return PTR_ERR(hwmon_dev);
632 
633 	dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), client->name);
634 
635 	return 0;
636 }
637 
638 static const struct i2c_device_id lm75_ids[] = {
639 	{ "adt75", adt75, },
640 	{ "ds1775", ds1775, },
641 	{ "ds75", ds75, },
642 	{ "ds7505", ds7505, },
643 	{ "g751", g751, },
644 	{ "lm75", lm75, },
645 	{ "lm75a", lm75a, },
646 	{ "lm75b", lm75b, },
647 	{ "max6625", max6625, },
648 	{ "max6626", max6626, },
649 	{ "max31725", max31725, },
650 	{ "max31726", max31725, },
651 	{ "mcp980x", mcp980x, },
652 	{ "pct2075", pct2075, },
653 	{ "stds75", stds75, },
654 	{ "stlm75", stlm75, },
655 	{ "tcn75", tcn75, },
656 	{ "tmp100", tmp100, },
657 	{ "tmp101", tmp101, },
658 	{ "tmp105", tmp105, },
659 	{ "tmp112", tmp112, },
660 	{ "tmp175", tmp175, },
661 	{ "tmp275", tmp275, },
662 	{ "tmp75", tmp75, },
663 	{ "tmp75b", tmp75b, },
664 	{ "tmp75c", tmp75c, },
665 	{ /* LIST END */ }
666 };
667 MODULE_DEVICE_TABLE(i2c, lm75_ids);
668 
669 static const struct of_device_id __maybe_unused lm75_of_match[] = {
670 	{
671 		.compatible = "adi,adt75",
672 		.data = (void *)adt75
673 	},
674 	{
675 		.compatible = "dallas,ds1775",
676 		.data = (void *)ds1775
677 	},
678 	{
679 		.compatible = "dallas,ds75",
680 		.data = (void *)ds75
681 	},
682 	{
683 		.compatible = "dallas,ds7505",
684 		.data = (void *)ds7505
685 	},
686 	{
687 		.compatible = "gmt,g751",
688 		.data = (void *)g751
689 	},
690 	{
691 		.compatible = "national,lm75",
692 		.data = (void *)lm75
693 	},
694 	{
695 		.compatible = "national,lm75a",
696 		.data = (void *)lm75a
697 	},
698 	{
699 		.compatible = "national,lm75b",
700 		.data = (void *)lm75b
701 	},
702 	{
703 		.compatible = "maxim,max6625",
704 		.data = (void *)max6625
705 	},
706 	{
707 		.compatible = "maxim,max6626",
708 		.data = (void *)max6626
709 	},
710 	{
711 		.compatible = "maxim,max31725",
712 		.data = (void *)max31725
713 	},
714 	{
715 		.compatible = "maxim,max31726",
716 		.data = (void *)max31725
717 	},
718 	{
719 		.compatible = "maxim,mcp980x",
720 		.data = (void *)mcp980x
721 	},
722 	{
723 		.compatible = "nxp,pct2075",
724 		.data = (void *)pct2075
725 	},
726 	{
727 		.compatible = "st,stds75",
728 		.data = (void *)stds75
729 	},
730 	{
731 		.compatible = "st,stlm75",
732 		.data = (void *)stlm75
733 	},
734 	{
735 		.compatible = "microchip,tcn75",
736 		.data = (void *)tcn75
737 	},
738 	{
739 		.compatible = "ti,tmp100",
740 		.data = (void *)tmp100
741 	},
742 	{
743 		.compatible = "ti,tmp101",
744 		.data = (void *)tmp101
745 	},
746 	{
747 		.compatible = "ti,tmp105",
748 		.data = (void *)tmp105
749 	},
750 	{
751 		.compatible = "ti,tmp112",
752 		.data = (void *)tmp112
753 	},
754 	{
755 		.compatible = "ti,tmp175",
756 		.data = (void *)tmp175
757 	},
758 	{
759 		.compatible = "ti,tmp275",
760 		.data = (void *)tmp275
761 	},
762 	{
763 		.compatible = "ti,tmp75",
764 		.data = (void *)tmp75
765 	},
766 	{
767 		.compatible = "ti,tmp75b",
768 		.data = (void *)tmp75b
769 	},
770 	{
771 		.compatible = "ti,tmp75c",
772 		.data = (void *)tmp75c
773 	},
774 	{ },
775 };
776 MODULE_DEVICE_TABLE(of, lm75_of_match);
777 
778 #define LM75A_ID 0xA1
779 
780 /* Return 0 if detection is successful, -ENODEV otherwise */
lm75_detect(struct i2c_client * new_client,struct i2c_board_info * info)781 static int lm75_detect(struct i2c_client *new_client,
782 		       struct i2c_board_info *info)
783 {
784 	struct i2c_adapter *adapter = new_client->adapter;
785 	int i;
786 	int conf, hyst, os;
787 	bool is_lm75a = 0;
788 
789 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
790 				     I2C_FUNC_SMBUS_WORD_DATA))
791 		return -ENODEV;
792 
793 	/*
794 	 * Now, we do the remaining detection. There is no identification-
795 	 * dedicated register so we have to rely on several tricks:
796 	 * unused bits, registers cycling over 8-address boundaries,
797 	 * addresses 0x04-0x07 returning the last read value.
798 	 * The cycling+unused addresses combination is not tested,
799 	 * since it would significantly slow the detection down and would
800 	 * hardly add any value.
801 	 *
802 	 * The National Semiconductor LM75A is different than earlier
803 	 * LM75s.  It has an ID byte of 0xaX (where X is the chip
804 	 * revision, with 1 being the only revision in existence) in
805 	 * register 7, and unused registers return 0xff rather than the
806 	 * last read value.
807 	 *
808 	 * Note that this function only detects the original National
809 	 * Semiconductor LM75 and the LM75A. Clones from other vendors
810 	 * aren't detected, on purpose, because they are typically never
811 	 * found on PC hardware. They are found on embedded designs where
812 	 * they can be instantiated explicitly so detection is not needed.
813 	 * The absence of identification registers on all these clones
814 	 * would make their exhaustive detection very difficult and weak,
815 	 * and odds are that the driver would bind to unsupported devices.
816 	 */
817 
818 	/* Unused bits */
819 	conf = i2c_smbus_read_byte_data(new_client, 1);
820 	if (conf & 0xe0)
821 		return -ENODEV;
822 
823 	/* First check for LM75A */
824 	if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) {
825 		/*
826 		 * LM75A returns 0xff on unused registers so
827 		 * just to be sure we check for that too.
828 		 */
829 		if (i2c_smbus_read_byte_data(new_client, 4) != 0xff
830 		 || i2c_smbus_read_byte_data(new_client, 5) != 0xff
831 		 || i2c_smbus_read_byte_data(new_client, 6) != 0xff)
832 			return -ENODEV;
833 		is_lm75a = 1;
834 		hyst = i2c_smbus_read_byte_data(new_client, 2);
835 		os = i2c_smbus_read_byte_data(new_client, 3);
836 	} else { /* Traditional style LM75 detection */
837 		/* Unused addresses */
838 		hyst = i2c_smbus_read_byte_data(new_client, 2);
839 		if (i2c_smbus_read_byte_data(new_client, 4) != hyst
840 		 || i2c_smbus_read_byte_data(new_client, 5) != hyst
841 		 || i2c_smbus_read_byte_data(new_client, 6) != hyst
842 		 || i2c_smbus_read_byte_data(new_client, 7) != hyst)
843 			return -ENODEV;
844 		os = i2c_smbus_read_byte_data(new_client, 3);
845 		if (i2c_smbus_read_byte_data(new_client, 4) != os
846 		 || i2c_smbus_read_byte_data(new_client, 5) != os
847 		 || i2c_smbus_read_byte_data(new_client, 6) != os
848 		 || i2c_smbus_read_byte_data(new_client, 7) != os)
849 			return -ENODEV;
850 	}
851 	/*
852 	 * It is very unlikely that this is a LM75 if both
853 	 * hysteresis and temperature limit registers are 0.
854 	 */
855 	if (hyst == 0 && os == 0)
856 		return -ENODEV;
857 
858 	/* Addresses cycling */
859 	for (i = 8; i <= 248; i += 40) {
860 		if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
861 		 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst
862 		 || i2c_smbus_read_byte_data(new_client, i + 3) != os)
863 			return -ENODEV;
864 		if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7)
865 				!= LM75A_ID)
866 			return -ENODEV;
867 	}
868 
869 	strlcpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE);
870 
871 	return 0;
872 }
873 
874 #ifdef CONFIG_PM
lm75_suspend(struct device * dev)875 static int lm75_suspend(struct device *dev)
876 {
877 	int status;
878 	struct i2c_client *client = to_i2c_client(dev);
879 
880 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
881 	if (status < 0) {
882 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
883 		return status;
884 	}
885 	status = status | LM75_SHUTDOWN;
886 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
887 	return 0;
888 }
889 
lm75_resume(struct device * dev)890 static int lm75_resume(struct device *dev)
891 {
892 	int status;
893 	struct i2c_client *client = to_i2c_client(dev);
894 
895 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
896 	if (status < 0) {
897 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
898 		return status;
899 	}
900 	status = status & ~LM75_SHUTDOWN;
901 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
902 	return 0;
903 }
904 
905 static const struct dev_pm_ops lm75_dev_pm_ops = {
906 	.suspend	= lm75_suspend,
907 	.resume		= lm75_resume,
908 };
909 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops)
910 #else
911 #define LM75_DEV_PM_OPS NULL
912 #endif /* CONFIG_PM */
913 
914 static struct i2c_driver lm75_driver = {
915 	.class		= I2C_CLASS_HWMON,
916 	.driver = {
917 		.name	= "lm75",
918 		.of_match_table = of_match_ptr(lm75_of_match),
919 		.pm	= LM75_DEV_PM_OPS,
920 	},
921 	.probe_new	= lm75_probe,
922 	.id_table	= lm75_ids,
923 	.detect		= lm75_detect,
924 	.address_list	= normal_i2c,
925 };
926 
927 module_i2c_driver(lm75_driver);
928 
929 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
930 MODULE_DESCRIPTION("LM75 driver");
931 MODULE_LICENSE("GPL");
932