1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36 * i_pages lock (widely used)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
52 */
53
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/tlb.h>
79
80 #include <trace/hooks/mm.h>
81
82 #include "internal.h"
83
84 static struct kmem_cache *anon_vma_cachep;
85 static struct kmem_cache *anon_vma_chain_cachep;
86
anon_vma_alloc(void)87 static inline struct anon_vma *anon_vma_alloc(void)
88 {
89 struct anon_vma *anon_vma;
90
91 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
92 if (anon_vma) {
93 atomic_set(&anon_vma->refcount, 1);
94 anon_vma->num_children = 0;
95 anon_vma->num_active_vmas = 0;
96 anon_vma->parent = anon_vma;
97 /*
98 * Initialise the anon_vma root to point to itself. If called
99 * from fork, the root will be reset to the parents anon_vma.
100 */
101 anon_vma->root = anon_vma;
102 }
103
104 return anon_vma;
105 }
106
anon_vma_free(struct anon_vma * anon_vma)107 static inline void anon_vma_free(struct anon_vma *anon_vma)
108 {
109 VM_BUG_ON(atomic_read(&anon_vma->refcount));
110
111 /*
112 * Synchronize against page_lock_anon_vma_read() such that
113 * we can safely hold the lock without the anon_vma getting
114 * freed.
115 *
116 * Relies on the full mb implied by the atomic_dec_and_test() from
117 * put_anon_vma() against the acquire barrier implied by
118 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
119 *
120 * page_lock_anon_vma_read() VS put_anon_vma()
121 * down_read_trylock() atomic_dec_and_test()
122 * LOCK MB
123 * atomic_read() rwsem_is_locked()
124 *
125 * LOCK should suffice since the actual taking of the lock must
126 * happen _before_ what follows.
127 */
128 might_sleep();
129 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
130 anon_vma_lock_write(anon_vma);
131 anon_vma_unlock_write(anon_vma);
132 }
133
134 kmem_cache_free(anon_vma_cachep, anon_vma);
135 }
136
anon_vma_chain_alloc(gfp_t gfp)137 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
138 {
139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140 }
141
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)142 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
143 {
144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145 }
146
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)147 static void anon_vma_chain_link(struct vm_area_struct *vma,
148 struct anon_vma_chain *avc,
149 struct anon_vma *anon_vma)
150 {
151 avc->vma = vma;
152 avc->anon_vma = anon_vma;
153 list_add(&avc->same_vma, &vma->anon_vma_chain);
154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
155 }
156
157 /**
158 * __anon_vma_prepare - attach an anon_vma to a memory region
159 * @vma: the memory region in question
160 *
161 * This makes sure the memory mapping described by 'vma' has
162 * an 'anon_vma' attached to it, so that we can associate the
163 * anonymous pages mapped into it with that anon_vma.
164 *
165 * The common case will be that we already have one, which
166 * is handled inline by anon_vma_prepare(). But if
167 * not we either need to find an adjacent mapping that we
168 * can re-use the anon_vma from (very common when the only
169 * reason for splitting a vma has been mprotect()), or we
170 * allocate a new one.
171 *
172 * Anon-vma allocations are very subtle, because we may have
173 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
174 * and that may actually touch the spinlock even in the newly
175 * allocated vma (it depends on RCU to make sure that the
176 * anon_vma isn't actually destroyed).
177 *
178 * As a result, we need to do proper anon_vma locking even
179 * for the new allocation. At the same time, we do not want
180 * to do any locking for the common case of already having
181 * an anon_vma.
182 *
183 * This must be called with the mmap_lock held for reading.
184 */
__anon_vma_prepare(struct vm_area_struct * vma)185 int __anon_vma_prepare(struct vm_area_struct *vma)
186 {
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
190
191 might_sleep();
192
193 avc = anon_vma_chain_alloc(GFP_KERNEL);
194 if (!avc)
195 goto out_enomem;
196
197 anon_vma = find_mergeable_anon_vma(vma);
198 allocated = NULL;
199 if (!anon_vma) {
200 anon_vma = anon_vma_alloc();
201 if (unlikely(!anon_vma))
202 goto out_enomem_free_avc;
203 anon_vma->num_children++; /* self-parent link for new root */
204 allocated = anon_vma;
205 }
206
207 anon_vma_lock_write(anon_vma);
208 /* page_table_lock to protect against threads */
209 spin_lock(&mm->page_table_lock);
210 if (likely(!vma->anon_vma)) {
211 vma->anon_vma = anon_vma;
212 anon_vma_chain_link(vma, avc, anon_vma);
213 anon_vma->num_active_vmas++;
214 allocated = NULL;
215 avc = NULL;
216 }
217 spin_unlock(&mm->page_table_lock);
218 anon_vma_unlock_write(anon_vma);
219
220 if (unlikely(allocated))
221 put_anon_vma(allocated);
222 if (unlikely(avc))
223 anon_vma_chain_free(avc);
224
225 return 0;
226
227 out_enomem_free_avc:
228 anon_vma_chain_free(avc);
229 out_enomem:
230 return -ENOMEM;
231 }
232
233 /*
234 * This is a useful helper function for locking the anon_vma root as
235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * have the same vma.
237 *
238 * Such anon_vma's should have the same root, so you'd expect to see
239 * just a single mutex_lock for the whole traversal.
240 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)241 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
242 {
243 struct anon_vma *new_root = anon_vma->root;
244 if (new_root != root) {
245 if (WARN_ON_ONCE(root))
246 up_write(&root->rwsem);
247 root = new_root;
248 down_write(&root->rwsem);
249 }
250 return root;
251 }
252
unlock_anon_vma_root(struct anon_vma * root)253 static inline void unlock_anon_vma_root(struct anon_vma *root)
254 {
255 if (root)
256 up_write(&root->rwsem);
257 }
258
259 /*
260 * Attach the anon_vmas from src to dst.
261 * Returns 0 on success, -ENOMEM on failure.
262 *
263 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
264 * anon_vma_fork(). The first three want an exact copy of src, while the last
265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
268 *
269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271 * This prevents degradation of anon_vma hierarchy to endless linear chain in
272 * case of constantly forking task. On the other hand, an anon_vma with more
273 * than one child isn't reused even if there was no alive vma, thus rmap
274 * walker has a good chance of avoiding scanning the whole hierarchy when it
275 * searches where page is mapped.
276 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)277 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
278 {
279 struct anon_vma_chain *avc, *pavc;
280 struct anon_vma *root = NULL;
281
282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
283 struct anon_vma *anon_vma;
284
285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 if (unlikely(!avc)) {
287 unlock_anon_vma_root(root);
288 root = NULL;
289 avc = anon_vma_chain_alloc(GFP_KERNEL);
290 if (!avc)
291 goto enomem_failure;
292 }
293 anon_vma = pavc->anon_vma;
294 root = lock_anon_vma_root(root, anon_vma);
295 anon_vma_chain_link(dst, avc, anon_vma);
296
297 /*
298 * Reuse existing anon_vma if it has no vma and only one
299 * anon_vma child.
300 *
301 * Root anon_vma is never reused:
302 * it has self-parent reference and at least one child.
303 */
304 if (!dst->anon_vma && src->anon_vma &&
305 anon_vma->num_children < 2 &&
306 anon_vma->num_active_vmas == 0)
307 dst->anon_vma = anon_vma;
308 }
309 if (dst->anon_vma)
310 dst->anon_vma->num_active_vmas++;
311 unlock_anon_vma_root(root);
312 return 0;
313
314 enomem_failure:
315 /*
316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 * decremented in unlink_anon_vmas().
318 * We can safely do this because callers of anon_vma_clone() don't care
319 * about dst->anon_vma if anon_vma_clone() failed.
320 */
321 dst->anon_vma = NULL;
322 unlink_anon_vmas(dst);
323 return -ENOMEM;
324 }
325
326 /*
327 * Attach vma to its own anon_vma, as well as to the anon_vmas that
328 * the corresponding VMA in the parent process is attached to.
329 * Returns 0 on success, non-zero on failure.
330 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)331 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
332 {
333 struct anon_vma_chain *avc;
334 struct anon_vma *anon_vma;
335 int error;
336
337 /* Don't bother if the parent process has no anon_vma here. */
338 if (!pvma->anon_vma)
339 return 0;
340
341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 vma->anon_vma = NULL;
343
344 /*
345 * First, attach the new VMA to the parent VMA's anon_vmas,
346 * so rmap can find non-COWed pages in child processes.
347 */
348 error = anon_vma_clone(vma, pvma);
349 if (error)
350 return error;
351
352 /* An existing anon_vma has been reused, all done then. */
353 if (vma->anon_vma)
354 return 0;
355
356 /* Then add our own anon_vma. */
357 anon_vma = anon_vma_alloc();
358 if (!anon_vma)
359 goto out_error;
360 anon_vma->num_active_vmas++;
361 avc = anon_vma_chain_alloc(GFP_KERNEL);
362 if (!avc)
363 goto out_error_free_anon_vma;
364
365 /*
366 * The root anon_vma's spinlock is the lock actually used when we
367 * lock any of the anon_vmas in this anon_vma tree.
368 */
369 anon_vma->root = pvma->anon_vma->root;
370 anon_vma->parent = pvma->anon_vma;
371 /*
372 * With refcounts, an anon_vma can stay around longer than the
373 * process it belongs to. The root anon_vma needs to be pinned until
374 * this anon_vma is freed, because the lock lives in the root.
375 */
376 get_anon_vma(anon_vma->root);
377 /* Mark this anon_vma as the one where our new (COWed) pages go. */
378 vma->anon_vma = anon_vma;
379 anon_vma_lock_write(anon_vma);
380 anon_vma_chain_link(vma, avc, anon_vma);
381 anon_vma->parent->num_children++;
382 anon_vma_unlock_write(anon_vma);
383
384 return 0;
385
386 out_error_free_anon_vma:
387 put_anon_vma(anon_vma);
388 out_error:
389 unlink_anon_vmas(vma);
390 return -ENOMEM;
391 }
392
unlink_anon_vmas(struct vm_area_struct * vma)393 void unlink_anon_vmas(struct vm_area_struct *vma)
394 {
395 struct anon_vma_chain *avc, *next;
396 struct anon_vma *root = NULL;
397
398 /*
399 * Unlink each anon_vma chained to the VMA. This list is ordered
400 * from newest to oldest, ensuring the root anon_vma gets freed last.
401 */
402 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
403 struct anon_vma *anon_vma = avc->anon_vma;
404
405 root = lock_anon_vma_root(root, anon_vma);
406 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
407
408 /*
409 * Leave empty anon_vmas on the list - we'll need
410 * to free them outside the lock.
411 */
412 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
413 anon_vma->parent->num_children--;
414 continue;
415 }
416
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
419 }
420 if (vma->anon_vma)
421 vma->anon_vma->num_active_vmas--;
422
423 unlock_anon_vma_root(root);
424
425 /*
426 * Iterate the list once more, it now only contains empty and unlinked
427 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
428 * needing to write-acquire the anon_vma->root->rwsem.
429 */
430 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
431 struct anon_vma *anon_vma = avc->anon_vma;
432
433 VM_WARN_ON(anon_vma->num_children);
434 VM_WARN_ON(anon_vma->num_active_vmas);
435 put_anon_vma(anon_vma);
436
437 list_del(&avc->same_vma);
438 anon_vma_chain_free(avc);
439 }
440 }
441
anon_vma_ctor(void * data)442 static void anon_vma_ctor(void *data)
443 {
444 struct anon_vma *anon_vma = data;
445
446 init_rwsem(&anon_vma->rwsem);
447 atomic_set(&anon_vma->refcount, 0);
448 anon_vma->rb_root = RB_ROOT_CACHED;
449 }
450
anon_vma_init(void)451 void __init anon_vma_init(void)
452 {
453 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
454 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
455 anon_vma_ctor);
456 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
457 SLAB_PANIC|SLAB_ACCOUNT);
458 }
459
460 /*
461 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
462 *
463 * Since there is no serialization what so ever against page_remove_rmap()
464 * the best this function can do is return a locked anon_vma that might
465 * have been relevant to this page.
466 *
467 * The page might have been remapped to a different anon_vma or the anon_vma
468 * returned may already be freed (and even reused).
469 *
470 * In case it was remapped to a different anon_vma, the new anon_vma will be a
471 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
472 * ensure that any anon_vma obtained from the page will still be valid for as
473 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
474 *
475 * All users of this function must be very careful when walking the anon_vma
476 * chain and verify that the page in question is indeed mapped in it
477 * [ something equivalent to page_mapped_in_vma() ].
478 *
479 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
480 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
481 * if there is a mapcount, we can dereference the anon_vma after observing
482 * those.
483 */
page_get_anon_vma(struct page * page)484 struct anon_vma *page_get_anon_vma(struct page *page)
485 {
486 struct anon_vma *anon_vma = NULL;
487 unsigned long anon_mapping;
488
489 rcu_read_lock();
490 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
491 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
492 goto out;
493 if (!page_mapped(page))
494 goto out;
495
496 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
497 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
498 anon_vma = NULL;
499 goto out;
500 }
501
502 /*
503 * If this page is still mapped, then its anon_vma cannot have been
504 * freed. But if it has been unmapped, we have no security against the
505 * anon_vma structure being freed and reused (for another anon_vma:
506 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
507 * above cannot corrupt).
508 */
509 if (!page_mapped(page)) {
510 rcu_read_unlock();
511 put_anon_vma(anon_vma);
512 return NULL;
513 }
514 out:
515 rcu_read_unlock();
516
517 return anon_vma;
518 }
519
520 /*
521 * Similar to page_get_anon_vma() except it locks the anon_vma.
522 *
523 * Its a little more complex as it tries to keep the fast path to a single
524 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
525 * reference like with page_get_anon_vma() and then block on the mutex
526 * on !rwc->try_lock case.
527 */
page_lock_anon_vma_read(struct page * page,struct rmap_walk_control * rwc)528 struct anon_vma *page_lock_anon_vma_read(struct page *page,
529 struct rmap_walk_control *rwc)
530 {
531 struct anon_vma *anon_vma = NULL;
532 struct anon_vma *root_anon_vma;
533 unsigned long anon_mapping;
534 bool success = false;
535
536 rcu_read_lock();
537 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
538 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
539 goto out;
540 if (!page_mapped(page))
541 goto out;
542
543 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
544 root_anon_vma = READ_ONCE(anon_vma->root);
545 if (down_read_trylock(&root_anon_vma->rwsem)) {
546 /*
547 * If the page is still mapped, then this anon_vma is still
548 * its anon_vma, and holding the mutex ensures that it will
549 * not go away, see anon_vma_free().
550 */
551 if (!page_mapped(page)) {
552 up_read(&root_anon_vma->rwsem);
553 anon_vma = NULL;
554 }
555 goto out;
556 }
557 trace_android_vh_do_page_trylock(page, NULL, NULL, &success);
558 if (success) {
559 anon_vma = NULL;
560 goto out;
561 }
562
563 if (rwc && rwc->try_lock) {
564 anon_vma = NULL;
565 rwc->contended = true;
566 goto out;
567 }
568
569 /* trylock failed, we got to sleep */
570 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
571 anon_vma = NULL;
572 goto out;
573 }
574
575 if (!page_mapped(page)) {
576 rcu_read_unlock();
577 put_anon_vma(anon_vma);
578 return NULL;
579 }
580
581 /* we pinned the anon_vma, its safe to sleep */
582 rcu_read_unlock();
583 anon_vma_lock_read(anon_vma);
584
585 if (atomic_dec_and_test(&anon_vma->refcount)) {
586 /*
587 * Oops, we held the last refcount, release the lock
588 * and bail -- can't simply use put_anon_vma() because
589 * we'll deadlock on the anon_vma_lock_write() recursion.
590 */
591 anon_vma_unlock_read(anon_vma);
592 __put_anon_vma(anon_vma);
593 anon_vma = NULL;
594 }
595
596 return anon_vma;
597
598 out:
599 rcu_read_unlock();
600 return anon_vma;
601 }
602
page_unlock_anon_vma_read(struct anon_vma * anon_vma)603 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
604 {
605 anon_vma_unlock_read(anon_vma);
606 }
607
608 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
609 /*
610 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
611 * important if a PTE was dirty when it was unmapped that it's flushed
612 * before any IO is initiated on the page to prevent lost writes. Similarly,
613 * it must be flushed before freeing to prevent data leakage.
614 */
try_to_unmap_flush(void)615 void try_to_unmap_flush(void)
616 {
617 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
618
619 if (!tlb_ubc->flush_required)
620 return;
621
622 arch_tlbbatch_flush(&tlb_ubc->arch);
623 tlb_ubc->flush_required = false;
624 tlb_ubc->writable = false;
625 }
626
627 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)628 void try_to_unmap_flush_dirty(void)
629 {
630 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
631
632 if (tlb_ubc->writable)
633 try_to_unmap_flush();
634 }
635
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)636 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
637 {
638 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
639
640 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
641 tlb_ubc->flush_required = true;
642
643 /*
644 * Ensure compiler does not re-order the setting of tlb_flush_batched
645 * before the PTE is cleared.
646 */
647 barrier();
648 mm->tlb_flush_batched = true;
649
650 /*
651 * If the PTE was dirty then it's best to assume it's writable. The
652 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
653 * before the page is queued for IO.
654 */
655 if (writable)
656 tlb_ubc->writable = true;
657 }
658
659 /*
660 * Returns true if the TLB flush should be deferred to the end of a batch of
661 * unmap operations to reduce IPIs.
662 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)663 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
664 {
665 bool should_defer = false;
666
667 if (!(flags & TTU_BATCH_FLUSH))
668 return false;
669
670 /* If remote CPUs need to be flushed then defer batch the flush */
671 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
672 should_defer = true;
673 put_cpu();
674
675 return should_defer;
676 }
677
678 /*
679 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
680 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
681 * operation such as mprotect or munmap to race between reclaim unmapping
682 * the page and flushing the page. If this race occurs, it potentially allows
683 * access to data via a stale TLB entry. Tracking all mm's that have TLB
684 * batching in flight would be expensive during reclaim so instead track
685 * whether TLB batching occurred in the past and if so then do a flush here
686 * if required. This will cost one additional flush per reclaim cycle paid
687 * by the first operation at risk such as mprotect and mumap.
688 *
689 * This must be called under the PTL so that an access to tlb_flush_batched
690 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
691 * via the PTL.
692 */
flush_tlb_batched_pending(struct mm_struct * mm)693 void flush_tlb_batched_pending(struct mm_struct *mm)
694 {
695 if (data_race(mm->tlb_flush_batched)) {
696 flush_tlb_mm(mm);
697
698 /*
699 * Do not allow the compiler to re-order the clearing of
700 * tlb_flush_batched before the tlb is flushed.
701 */
702 barrier();
703 mm->tlb_flush_batched = false;
704 }
705 }
706 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)707 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
708 {
709 }
710
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)711 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
712 {
713 return false;
714 }
715 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
716
717 /*
718 * At what user virtual address is page expected in vma?
719 * Caller should check the page is actually part of the vma.
720 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)721 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
722 {
723 if (PageAnon(page)) {
724 struct anon_vma *page__anon_vma = page_anon_vma(page);
725 /*
726 * Note: swapoff's unuse_vma() is more efficient with this
727 * check, and needs it to match anon_vma when KSM is active.
728 */
729 if (!vma->anon_vma || !page__anon_vma ||
730 vma->anon_vma->root != page__anon_vma->root)
731 return -EFAULT;
732 } else if (!vma->vm_file) {
733 return -EFAULT;
734 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
735 return -EFAULT;
736 }
737
738 return vma_address(page, vma);
739 }
740
mm_find_pmd(struct mm_struct * mm,unsigned long address)741 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
742 {
743 pgd_t *pgd;
744 p4d_t *p4d;
745 pud_t *pud;
746 pmd_t *pmd = NULL;
747 pmd_t pmde;
748
749 pgd = pgd_offset(mm, address);
750 if (!pgd_present(*pgd))
751 goto out;
752
753 p4d = p4d_offset(pgd, address);
754 if (!p4d_present(*p4d))
755 goto out;
756
757 pud = pud_offset(p4d, address);
758 if (!pud_present(*pud))
759 goto out;
760
761 pmd = pmd_offset(pud, address);
762 /*
763 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
764 * without holding anon_vma lock for write. So when looking for a
765 * genuine pmde (in which to find pte), test present and !THP together.
766 */
767 pmde = *pmd;
768 barrier();
769 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
770 pmd = NULL;
771 out:
772 return pmd;
773 }
774
775 struct page_referenced_arg {
776 int mapcount;
777 int referenced;
778 unsigned long vm_flags;
779 struct mem_cgroup *memcg;
780 };
781 /*
782 * arg: page_referenced_arg will be passed
783 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)784 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
785 unsigned long address, void *arg)
786 {
787 struct page_referenced_arg *pra = arg;
788 struct page_vma_mapped_walk pvmw = {
789 .page = page,
790 .vma = vma,
791 .address = address,
792 };
793 int referenced = 0;
794
795 while (page_vma_mapped_walk(&pvmw)) {
796 address = pvmw.address;
797
798 if (vma->vm_flags & VM_LOCKED) {
799 page_vma_mapped_walk_done(&pvmw);
800 pra->vm_flags |= VM_LOCKED;
801 return false; /* To break the loop */
802 }
803
804 if (pvmw.pte) {
805 trace_android_vh_look_around(&pvmw, page, vma, &referenced);
806 if (ptep_clear_flush_young_notify(vma, address,
807 pvmw.pte)) {
808 /*
809 * Don't treat a reference through
810 * a sequentially read mapping as such.
811 * If the page has been used in another mapping,
812 * we will catch it; if this other mapping is
813 * already gone, the unmap path will have set
814 * PG_referenced or activated the page.
815 */
816 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
817 referenced++;
818 }
819 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
820 if (pmdp_clear_flush_young_notify(vma, address,
821 pvmw.pmd))
822 referenced++;
823 } else {
824 /* unexpected pmd-mapped page? */
825 WARN_ON_ONCE(1);
826 }
827
828 pra->mapcount--;
829 }
830
831 if (referenced)
832 clear_page_idle(page);
833 if (test_and_clear_page_young(page))
834 referenced++;
835
836 if (referenced) {
837 pra->referenced++;
838 pra->vm_flags |= vma->vm_flags;
839 }
840
841 trace_android_vh_page_referenced_one_end(vma, page, referenced);
842 if (!pra->mapcount)
843 return false; /* To break the loop */
844
845 return true;
846 }
847
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)848 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
849 {
850 struct page_referenced_arg *pra = arg;
851 struct mem_cgroup *memcg = pra->memcg;
852
853 if (!mm_match_cgroup(vma->vm_mm, memcg))
854 return true;
855
856 return false;
857 }
858
859 /**
860 * page_referenced - test if the page was referenced
861 * @page: the page to test
862 * @is_locked: caller holds lock on the page
863 * @memcg: target memory cgroup
864 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
865 *
866 * Quick test_and_clear_referenced for all mappings of a page,
867 *
868 * Return: The number of mappings which referenced the page. Return -1 if
869 * the function bailed out due to rmap lock contention.
870 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)871 int page_referenced(struct page *page,
872 int is_locked,
873 struct mem_cgroup *memcg,
874 unsigned long *vm_flags)
875 {
876 int we_locked = 0;
877 struct page_referenced_arg pra = {
878 .mapcount = total_mapcount(page),
879 .memcg = memcg,
880 };
881 struct rmap_walk_control rwc = {
882 .rmap_one = page_referenced_one,
883 .arg = (void *)&pra,
884 .anon_lock = page_lock_anon_vma_read,
885 .try_lock = true,
886 };
887
888 *vm_flags = 0;
889 if (!pra.mapcount)
890 return 0;
891
892 if (!page_rmapping(page))
893 return 0;
894
895 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
896 we_locked = trylock_page(page);
897 if (!we_locked)
898 return 1;
899 }
900
901 /*
902 * If we are reclaiming on behalf of a cgroup, skip
903 * counting on behalf of references from different
904 * cgroups
905 */
906 if (memcg) {
907 rwc.invalid_vma = invalid_page_referenced_vma;
908 }
909
910 rmap_walk(page, &rwc);
911 *vm_flags = pra.vm_flags;
912
913 if (we_locked)
914 unlock_page(page);
915
916 return rwc.contended ? -1 : pra.referenced;
917 }
918 EXPORT_SYMBOL_GPL(page_referenced);
919
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)920 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
921 unsigned long address, void *arg)
922 {
923 struct page_vma_mapped_walk pvmw = {
924 .page = page,
925 .vma = vma,
926 .address = address,
927 .flags = PVMW_SYNC,
928 };
929 struct mmu_notifier_range range;
930 int *cleaned = arg;
931
932 /*
933 * We have to assume the worse case ie pmd for invalidation. Note that
934 * the page can not be free from this function.
935 */
936 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
937 0, vma, vma->vm_mm, address,
938 vma_address_end(page, vma));
939 mmu_notifier_invalidate_range_start(&range);
940
941 while (page_vma_mapped_walk(&pvmw)) {
942 int ret = 0;
943
944 address = pvmw.address;
945 if (pvmw.pte) {
946 pte_t entry;
947 pte_t *pte = pvmw.pte;
948
949 if (!pte_dirty(*pte) && !pte_write(*pte))
950 continue;
951
952 flush_cache_page(vma, address, pte_pfn(*pte));
953 entry = ptep_clear_flush(vma, address, pte);
954 entry = pte_wrprotect(entry);
955 entry = pte_mkclean(entry);
956 set_pte_at(vma->vm_mm, address, pte, entry);
957 ret = 1;
958 } else {
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
960 pmd_t *pmd = pvmw.pmd;
961 pmd_t entry;
962
963 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
964 continue;
965
966 flush_cache_page(vma, address, page_to_pfn(page));
967 entry = pmdp_invalidate(vma, address, pmd);
968 entry = pmd_wrprotect(entry);
969 entry = pmd_mkclean(entry);
970 set_pmd_at(vma->vm_mm, address, pmd, entry);
971 ret = 1;
972 #else
973 /* unexpected pmd-mapped page? */
974 WARN_ON_ONCE(1);
975 #endif
976 }
977
978 /*
979 * No need to call mmu_notifier_invalidate_range() as we are
980 * downgrading page table protection not changing it to point
981 * to a new page.
982 *
983 * See Documentation/vm/mmu_notifier.rst
984 */
985 if (ret)
986 (*cleaned)++;
987 }
988
989 mmu_notifier_invalidate_range_end(&range);
990
991 return true;
992 }
993
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)994 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
995 {
996 if (vma->vm_flags & VM_SHARED)
997 return false;
998
999 return true;
1000 }
1001
page_mkclean(struct page * page)1002 int page_mkclean(struct page *page)
1003 {
1004 int cleaned = 0;
1005 struct address_space *mapping;
1006 struct rmap_walk_control rwc = {
1007 .arg = (void *)&cleaned,
1008 .rmap_one = page_mkclean_one,
1009 .invalid_vma = invalid_mkclean_vma,
1010 };
1011
1012 BUG_ON(!PageLocked(page));
1013
1014 if (!page_mapped(page))
1015 return 0;
1016
1017 mapping = page_mapping(page);
1018 if (!mapping)
1019 return 0;
1020
1021 rmap_walk(page, &rwc);
1022
1023 return cleaned;
1024 }
1025 EXPORT_SYMBOL_GPL(page_mkclean);
1026
1027 /**
1028 * page_move_anon_rmap - move a page to our anon_vma
1029 * @page: the page to move to our anon_vma
1030 * @vma: the vma the page belongs to
1031 *
1032 * When a page belongs exclusively to one process after a COW event,
1033 * that page can be moved into the anon_vma that belongs to just that
1034 * process, so the rmap code will not search the parent or sibling
1035 * processes.
1036 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1037 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1038 {
1039 struct anon_vma *anon_vma = vma->anon_vma;
1040
1041 page = compound_head(page);
1042
1043 VM_BUG_ON_PAGE(!PageLocked(page), page);
1044 VM_BUG_ON_VMA(!anon_vma, vma);
1045
1046 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1047 /*
1048 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1049 * simultaneously, so a concurrent reader (eg page_referenced()'s
1050 * PageAnon()) will not see one without the other.
1051 */
1052 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1053 }
1054
1055 /**
1056 * __page_set_anon_rmap - set up new anonymous rmap
1057 * @page: Page or Hugepage to add to rmap
1058 * @vma: VM area to add page to.
1059 * @address: User virtual address of the mapping
1060 * @exclusive: the page is exclusively owned by the current process
1061 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1062 static void __page_set_anon_rmap(struct page *page,
1063 struct vm_area_struct *vma, unsigned long address, int exclusive)
1064 {
1065 struct anon_vma *anon_vma = vma->anon_vma;
1066
1067 BUG_ON(!anon_vma);
1068
1069 if (PageAnon(page))
1070 return;
1071
1072 /*
1073 * If the page isn't exclusively mapped into this vma,
1074 * we must use the _oldest_ possible anon_vma for the
1075 * page mapping!
1076 */
1077 if (!exclusive)
1078 anon_vma = anon_vma->root;
1079
1080 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1081 page->mapping = (struct address_space *) anon_vma;
1082 page->index = linear_page_index(vma, address);
1083 }
1084
1085 /**
1086 * __page_check_anon_rmap - sanity check anonymous rmap addition
1087 * @page: the page to add the mapping to
1088 * @vma: the vm area in which the mapping is added
1089 * @address: the user virtual address mapped
1090 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1091 static void __page_check_anon_rmap(struct page *page,
1092 struct vm_area_struct *vma, unsigned long address)
1093 {
1094 /*
1095 * The page's anon-rmap details (mapping and index) are guaranteed to
1096 * be set up correctly at this point.
1097 *
1098 * We have exclusion against page_add_anon_rmap because the caller
1099 * always holds the page locked, except if called from page_dup_rmap,
1100 * in which case the page is already known to be setup.
1101 *
1102 * We have exclusion against page_add_new_anon_rmap because those pages
1103 * are initially only visible via the pagetables, and the pte is locked
1104 * over the call to page_add_new_anon_rmap.
1105 */
1106 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1107 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1108 page);
1109 }
1110
1111 /**
1112 * page_add_anon_rmap - add pte mapping to an anonymous page
1113 * @page: the page to add the mapping to
1114 * @vma: the vm area in which the mapping is added
1115 * @address: the user virtual address mapped
1116 * @compound: charge the page as compound or small page
1117 *
1118 * The caller needs to hold the pte lock, and the page must be locked in
1119 * the anon_vma case: to serialize mapping,index checking after setting,
1120 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1121 * (but PageKsm is never downgraded to PageAnon).
1122 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1123 void page_add_anon_rmap(struct page *page,
1124 struct vm_area_struct *vma, unsigned long address, bool compound)
1125 {
1126 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1127 }
1128
1129 /*
1130 * Special version of the above for do_swap_page, which often runs
1131 * into pages that are exclusively owned by the current process.
1132 * Everybody else should continue to use page_add_anon_rmap above.
1133 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1134 void do_page_add_anon_rmap(struct page *page,
1135 struct vm_area_struct *vma, unsigned long address, int flags)
1136 {
1137 bool compound = flags & RMAP_COMPOUND;
1138 bool first;
1139 bool success = false;
1140
1141 if (unlikely(PageKsm(page)))
1142 lock_page_memcg(page);
1143 else
1144 VM_BUG_ON_PAGE(!PageLocked(page), page);
1145
1146 if (compound) {
1147 atomic_t *mapcount;
1148 VM_BUG_ON_PAGE(!PageLocked(page), page);
1149 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1150 mapcount = compound_mapcount_ptr(page);
1151 first = atomic_inc_and_test(mapcount);
1152 } else {
1153 trace_android_vh_update_page_mapcount(page, true, compound,
1154 &first, &success);
1155 if (!success)
1156 first = atomic_inc_and_test(&page->_mapcount);
1157 }
1158
1159 if (first) {
1160 int nr = compound ? thp_nr_pages(page) : 1;
1161 /*
1162 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1163 * these counters are not modified in interrupt context, and
1164 * pte lock(a spinlock) is held, which implies preemption
1165 * disabled.
1166 */
1167 if (compound)
1168 __inc_lruvec_page_state(page, NR_ANON_THPS);
1169 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1170 }
1171
1172 if (unlikely(PageKsm(page))) {
1173 unlock_page_memcg(page);
1174 return;
1175 }
1176
1177 /* address might be in next vma when migration races vma_adjust */
1178 if (first)
1179 __page_set_anon_rmap(page, vma, address,
1180 flags & RMAP_EXCLUSIVE);
1181 else
1182 __page_check_anon_rmap(page, vma, address);
1183 }
1184
1185 /**
1186 * __page_add_new_anon_rmap - add pte mapping to a new anonymous page
1187 * @page: the page to add the mapping to
1188 * @vma: the vm area in which the mapping is added
1189 * @address: the user virtual address mapped
1190 * @compound: charge the page as compound or small page
1191 *
1192 * Same as page_add_anon_rmap but must only be called on *new* pages.
1193 * This means the inc-and-test can be bypassed.
1194 * Page does not have to be locked.
1195 */
__page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1196 void __page_add_new_anon_rmap(struct page *page,
1197 struct vm_area_struct *vma, unsigned long address, bool compound)
1198 {
1199 int nr = compound ? thp_nr_pages(page) : 1;
1200
1201 __SetPageSwapBacked(page);
1202 if (compound) {
1203 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1204 /* increment count (starts at -1) */
1205 atomic_set(compound_mapcount_ptr(page), 0);
1206 if (hpage_pincount_available(page))
1207 atomic_set(compound_pincount_ptr(page), 0);
1208
1209 __inc_lruvec_page_state(page, NR_ANON_THPS);
1210 } else {
1211 /* Anon THP always mapped first with PMD */
1212 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1213 /* increment count (starts at -1) */
1214 atomic_set(&page->_mapcount, 0);
1215 }
1216 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1217 __page_set_anon_rmap(page, vma, address, 1);
1218 }
1219
1220 /**
1221 * page_add_file_rmap - add pte mapping to a file page
1222 * @page: the page to add the mapping to
1223 * @compound: charge the page as compound or small page
1224 *
1225 * The caller needs to hold the pte lock.
1226 */
page_add_file_rmap(struct page * page,bool compound)1227 void page_add_file_rmap(struct page *page, bool compound)
1228 {
1229 int i, nr = 1;
1230 bool first_mapping;
1231 bool success = false;
1232
1233 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1234 lock_page_memcg(page);
1235 if (compound && PageTransHuge(page)) {
1236 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1237 trace_android_vh_update_page_mapcount(&page[i], true,
1238 compound, &first_mapping, &success);
1239 if ((success)) {
1240 if (first_mapping)
1241 nr++;
1242 } else {
1243 if (atomic_inc_and_test(&page[i]._mapcount))
1244 nr++;
1245 }
1246 }
1247 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1248 goto out;
1249 if (PageSwapBacked(page))
1250 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1251 else
1252 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1253 } else {
1254 if (PageTransCompound(page) && page_mapping(page)) {
1255 VM_WARN_ON_ONCE(!PageLocked(page));
1256
1257 SetPageDoubleMap(compound_head(page));
1258 if (PageMlocked(page))
1259 clear_page_mlock(compound_head(page));
1260 }
1261 trace_android_vh_update_page_mapcount(page, true,
1262 compound, &first_mapping, &success);
1263 if (success) {
1264 if (!first_mapping)
1265 goto out;
1266 } else {
1267 if (!atomic_inc_and_test(&page->_mapcount))
1268 goto out;
1269 }
1270 }
1271 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1272 out:
1273 unlock_page_memcg(page);
1274 }
1275
page_remove_file_rmap(struct page * page,bool compound)1276 static void page_remove_file_rmap(struct page *page, bool compound)
1277 {
1278 int i, nr = 1;
1279 bool first_mapping;
1280 bool success = false;
1281
1282 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1283
1284 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1285 if (unlikely(PageHuge(page))) {
1286 /* hugetlb pages are always mapped with pmds */
1287 atomic_dec(compound_mapcount_ptr(page));
1288 return;
1289 }
1290
1291 /* page still mapped by someone else? */
1292 if (compound && PageTransHuge(page)) {
1293 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1294 trace_android_vh_update_page_mapcount(&page[i], false,
1295 compound, &first_mapping, &success);
1296 if (success) {
1297 if (first_mapping)
1298 nr++;
1299 } else {
1300 if (atomic_add_negative(-1, &page[i]._mapcount))
1301 nr++;
1302 }
1303 }
1304 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1305 return;
1306 if (PageSwapBacked(page))
1307 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1308 else
1309 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1310 } else {
1311 trace_android_vh_update_page_mapcount(page, false,
1312 compound, &first_mapping, &success);
1313 if (success) {
1314 if (!first_mapping)
1315 return;
1316 } else {
1317 if (!atomic_add_negative(-1, &page->_mapcount))
1318 return;
1319 }
1320 }
1321
1322 /*
1323 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1324 * these counters are not modified in interrupt context, and
1325 * pte lock(a spinlock) is held, which implies preemption disabled.
1326 */
1327 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1328
1329 if (unlikely(PageMlocked(page)))
1330 clear_page_mlock(page);
1331 }
1332
page_remove_anon_compound_rmap(struct page * page)1333 static void page_remove_anon_compound_rmap(struct page *page)
1334 {
1335 int i, nr;
1336 bool first_mapping;
1337 bool success = false;
1338
1339 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1340 return;
1341
1342 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1343 if (unlikely(PageHuge(page)))
1344 return;
1345
1346 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1347 return;
1348
1349 __dec_lruvec_page_state(page, NR_ANON_THPS);
1350
1351 if (TestClearPageDoubleMap(page)) {
1352 /*
1353 * Subpages can be mapped with PTEs too. Check how many of
1354 * them are still mapped.
1355 */
1356 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1357 trace_android_vh_update_page_mapcount(&page[i], false,
1358 false, &first_mapping, &success);
1359 if (success) {
1360 if (first_mapping)
1361 nr++;
1362 } else {
1363 if (atomic_add_negative(-1, &page[i]._mapcount))
1364 nr++;
1365 }
1366 }
1367
1368 /*
1369 * Queue the page for deferred split if at least one small
1370 * page of the compound page is unmapped, but at least one
1371 * small page is still mapped.
1372 */
1373 if (nr && nr < thp_nr_pages(page))
1374 deferred_split_huge_page(page);
1375 } else {
1376 nr = thp_nr_pages(page);
1377 }
1378
1379 if (unlikely(PageMlocked(page)))
1380 clear_page_mlock(page);
1381
1382 if (nr)
1383 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1384 }
1385
1386 /**
1387 * page_remove_rmap - take down pte mapping from a page
1388 * @page: page to remove mapping from
1389 * @compound: uncharge the page as compound or small page
1390 *
1391 * The caller needs to hold the pte lock.
1392 */
page_remove_rmap(struct page * page,bool compound)1393 void page_remove_rmap(struct page *page, bool compound)
1394 {
1395 bool first_mapping;
1396 bool success = false;
1397 lock_page_memcg(page);
1398
1399 if (!PageAnon(page)) {
1400 page_remove_file_rmap(page, compound);
1401 goto out;
1402 }
1403
1404 if (compound) {
1405 page_remove_anon_compound_rmap(page);
1406 goto out;
1407 }
1408
1409 trace_android_vh_update_page_mapcount(page, false,
1410 compound, &first_mapping, &success);
1411 if (success) {
1412 if (!first_mapping)
1413 goto out;
1414 } else {
1415 /* page still mapped by someone else? */
1416 if (!atomic_add_negative(-1, &page->_mapcount))
1417 goto out;
1418 }
1419 /*
1420 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1421 * these counters are not modified in interrupt context, and
1422 * pte lock(a spinlock) is held, which implies preemption disabled.
1423 */
1424 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1425
1426 if (unlikely(PageMlocked(page)))
1427 clear_page_mlock(page);
1428
1429 if (PageTransCompound(page))
1430 deferred_split_huge_page(compound_head(page));
1431
1432 /*
1433 * It would be tidy to reset the PageAnon mapping here,
1434 * but that might overwrite a racing page_add_anon_rmap
1435 * which increments mapcount after us but sets mapping
1436 * before us: so leave the reset to free_unref_page,
1437 * and remember that it's only reliable while mapped.
1438 * Leaving it set also helps swapoff to reinstate ptes
1439 * faster for those pages still in swapcache.
1440 */
1441 out:
1442 unlock_page_memcg(page);
1443 }
1444
1445 /*
1446 * @arg: enum ttu_flags will be passed to this argument
1447 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1448 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1449 unsigned long address, void *arg)
1450 {
1451 struct mm_struct *mm = vma->vm_mm;
1452 struct page_vma_mapped_walk pvmw = {
1453 .page = page,
1454 .vma = vma,
1455 .address = address,
1456 };
1457 pte_t pteval;
1458 struct page *subpage;
1459 bool ret = true;
1460 struct mmu_notifier_range range;
1461 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1462
1463 /*
1464 * When racing against e.g. zap_pte_range() on another cpu,
1465 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1466 * try_to_unmap() may return false when it is about to become true,
1467 * if page table locking is skipped: use TTU_SYNC to wait for that.
1468 */
1469 if (flags & TTU_SYNC)
1470 pvmw.flags = PVMW_SYNC;
1471
1472 /* munlock has nothing to gain from examining un-locked vmas */
1473 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1474 return true;
1475
1476 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1477 is_zone_device_page(page) && !is_device_private_page(page))
1478 return true;
1479
1480 if (flags & TTU_SPLIT_HUGE_PMD) {
1481 split_huge_pmd_address(vma, address,
1482 flags & TTU_SPLIT_FREEZE, page);
1483 }
1484
1485 /*
1486 * For THP, we have to assume the worse case ie pmd for invalidation.
1487 * For hugetlb, it could be much worse if we need to do pud
1488 * invalidation in the case of pmd sharing.
1489 *
1490 * Note that the page can not be free in this function as call of
1491 * try_to_unmap() must hold a reference on the page.
1492 */
1493 range.end = PageKsm(page) ?
1494 address + PAGE_SIZE : vma_address_end(page, vma);
1495 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1496 address, range.end);
1497 if (PageHuge(page)) {
1498 /*
1499 * If sharing is possible, start and end will be adjusted
1500 * accordingly.
1501 */
1502 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1503 &range.end);
1504 }
1505 mmu_notifier_invalidate_range_start(&range);
1506
1507 while (page_vma_mapped_walk(&pvmw)) {
1508 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1509 /* PMD-mapped THP migration entry */
1510 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1511 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1512
1513 set_pmd_migration_entry(&pvmw, page);
1514 continue;
1515 }
1516 #endif
1517
1518 /*
1519 * If the page is mlock()d, we cannot swap it out.
1520 * If it's recently referenced (perhaps page_referenced
1521 * skipped over this mm) then we should reactivate it.
1522 */
1523 if (!(flags & TTU_IGNORE_MLOCK)) {
1524 if (vma->vm_flags & VM_LOCKED) {
1525 /* PTE-mapped THP are never mlocked */
1526 if (!PageTransCompound(page)) {
1527 /*
1528 * Holding pte lock, we do *not* need
1529 * mmap_lock here
1530 */
1531 mlock_vma_page(page);
1532 }
1533 ret = false;
1534 page_vma_mapped_walk_done(&pvmw);
1535 break;
1536 }
1537 if (flags & TTU_MUNLOCK)
1538 continue;
1539 }
1540
1541 /* Unexpected PMD-mapped THP? */
1542 VM_BUG_ON_PAGE(!pvmw.pte, page);
1543
1544 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1545 address = pvmw.address;
1546
1547 if (PageHuge(page) && !PageAnon(page)) {
1548 /*
1549 * To call huge_pmd_unshare, i_mmap_rwsem must be
1550 * held in write mode. Caller needs to explicitly
1551 * do this outside rmap routines.
1552 */
1553 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1554 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1555 /*
1556 * huge_pmd_unshare unmapped an entire PMD
1557 * page. There is no way of knowing exactly
1558 * which PMDs may be cached for this mm, so
1559 * we must flush them all. start/end were
1560 * already adjusted above to cover this range.
1561 */
1562 flush_cache_range(vma, range.start, range.end);
1563 flush_tlb_range(vma, range.start, range.end);
1564 mmu_notifier_invalidate_range(mm, range.start,
1565 range.end);
1566
1567 /*
1568 * The ref count of the PMD page was dropped
1569 * which is part of the way map counting
1570 * is done for shared PMDs. Return 'true'
1571 * here. When there is no other sharing,
1572 * huge_pmd_unshare returns false and we will
1573 * unmap the actual page and drop map count
1574 * to zero.
1575 */
1576 page_vma_mapped_walk_done(&pvmw);
1577 break;
1578 }
1579 }
1580
1581 if (IS_ENABLED(CONFIG_MIGRATION) &&
1582 (flags & TTU_MIGRATION) &&
1583 is_zone_device_page(page)) {
1584 swp_entry_t entry;
1585 pte_t swp_pte;
1586
1587 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1588
1589 /*
1590 * Store the pfn of the page in a special migration
1591 * pte. do_swap_page() will wait until the migration
1592 * pte is removed and then restart fault handling.
1593 */
1594 entry = make_migration_entry(page, 0);
1595 swp_pte = swp_entry_to_pte(entry);
1596
1597 /*
1598 * pteval maps a zone device page and is therefore
1599 * a swap pte.
1600 */
1601 if (pte_swp_soft_dirty(pteval))
1602 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1603 if (pte_swp_uffd_wp(pteval))
1604 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1605 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1606 /*
1607 * No need to invalidate here it will synchronize on
1608 * against the special swap migration pte.
1609 *
1610 * The assignment to subpage above was computed from a
1611 * swap PTE which results in an invalid pointer.
1612 * Since only PAGE_SIZE pages can currently be
1613 * migrated, just set it to page. This will need to be
1614 * changed when hugepage migrations to device private
1615 * memory are supported.
1616 */
1617 subpage = page;
1618 goto discard;
1619 }
1620
1621 /* Nuke the page table entry. */
1622 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1623 if (should_defer_flush(mm, flags)) {
1624 /*
1625 * We clear the PTE but do not flush so potentially
1626 * a remote CPU could still be writing to the page.
1627 * If the entry was previously clean then the
1628 * architecture must guarantee that a clear->dirty
1629 * transition on a cached TLB entry is written through
1630 * and traps if the PTE is unmapped.
1631 */
1632 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1633
1634 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1635 } else {
1636 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1637 }
1638
1639 /* Move the dirty bit to the page. Now the pte is gone. */
1640 if (pte_dirty(pteval))
1641 set_page_dirty(page);
1642
1643 /* Update high watermark before we lower rss */
1644 update_hiwater_rss(mm);
1645
1646 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1647 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1648 if (PageHuge(page)) {
1649 hugetlb_count_sub(compound_nr(page), mm);
1650 set_huge_swap_pte_at(mm, address,
1651 pvmw.pte, pteval,
1652 vma_mmu_pagesize(vma));
1653 } else {
1654 dec_mm_counter(mm, mm_counter(page));
1655 set_pte_at(mm, address, pvmw.pte, pteval);
1656 }
1657
1658 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1659 /*
1660 * The guest indicated that the page content is of no
1661 * interest anymore. Simply discard the pte, vmscan
1662 * will take care of the rest.
1663 * A future reference will then fault in a new zero
1664 * page. When userfaultfd is active, we must not drop
1665 * this page though, as its main user (postcopy
1666 * migration) will not expect userfaults on already
1667 * copied pages.
1668 */
1669 dec_mm_counter(mm, mm_counter(page));
1670 /* We have to invalidate as we cleared the pte */
1671 mmu_notifier_invalidate_range(mm, address,
1672 address + PAGE_SIZE);
1673 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1674 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1675 swp_entry_t entry;
1676 pte_t swp_pte;
1677
1678 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1679 set_pte_at(mm, address, pvmw.pte, pteval);
1680 ret = false;
1681 page_vma_mapped_walk_done(&pvmw);
1682 break;
1683 }
1684
1685 /*
1686 * Store the pfn of the page in a special migration
1687 * pte. do_swap_page() will wait until the migration
1688 * pte is removed and then restart fault handling.
1689 */
1690 entry = make_migration_entry(subpage,
1691 pte_write(pteval));
1692 swp_pte = swp_entry_to_pte(entry);
1693 if (pte_soft_dirty(pteval))
1694 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1695 if (pte_uffd_wp(pteval))
1696 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1697 set_pte_at(mm, address, pvmw.pte, swp_pte);
1698 /*
1699 * No need to invalidate here it will synchronize on
1700 * against the special swap migration pte.
1701 */
1702 } else if (PageAnon(page)) {
1703 swp_entry_t entry = { .val = page_private(subpage) };
1704 pte_t swp_pte;
1705 /*
1706 * Store the swap location in the pte.
1707 * See handle_pte_fault() ...
1708 */
1709 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1710 WARN_ON_ONCE(1);
1711 ret = false;
1712 /* We have to invalidate as we cleared the pte */
1713 mmu_notifier_invalidate_range(mm, address,
1714 address + PAGE_SIZE);
1715 page_vma_mapped_walk_done(&pvmw);
1716 break;
1717 }
1718
1719 /* MADV_FREE page check */
1720 if (!PageSwapBacked(page)) {
1721 int ref_count, map_count;
1722
1723 /*
1724 * Synchronize with gup_pte_range():
1725 * - clear PTE; barrier; read refcount
1726 * - inc refcount; barrier; read PTE
1727 */
1728 smp_mb();
1729
1730 ref_count = page_ref_count(page);
1731 map_count = page_mapcount(page);
1732
1733 /*
1734 * Order reads for page refcount and dirty flag
1735 * (see comments in __remove_mapping()).
1736 */
1737 smp_rmb();
1738
1739 /*
1740 * The only page refs must be one from isolation
1741 * plus the rmap(s) (dropped by discard:).
1742 */
1743 if (ref_count == 1 + map_count &&
1744 !PageDirty(page)) {
1745 /* Invalidate as we cleared the pte */
1746 mmu_notifier_invalidate_range(mm,
1747 address, address + PAGE_SIZE);
1748 dec_mm_counter(mm, MM_ANONPAGES);
1749 goto discard;
1750 }
1751
1752 /*
1753 * If the page was redirtied, it cannot be
1754 * discarded. Remap the page to page table.
1755 */
1756 set_pte_at(mm, address, pvmw.pte, pteval);
1757 SetPageSwapBacked(page);
1758 ret = false;
1759 page_vma_mapped_walk_done(&pvmw);
1760 break;
1761 }
1762
1763 if (swap_duplicate(entry) < 0) {
1764 set_pte_at(mm, address, pvmw.pte, pteval);
1765 ret = false;
1766 page_vma_mapped_walk_done(&pvmw);
1767 break;
1768 }
1769 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1770 set_pte_at(mm, address, pvmw.pte, pteval);
1771 ret = false;
1772 page_vma_mapped_walk_done(&pvmw);
1773 break;
1774 }
1775 if (list_empty(&mm->mmlist)) {
1776 spin_lock(&mmlist_lock);
1777 if (list_empty(&mm->mmlist))
1778 list_add(&mm->mmlist, &init_mm.mmlist);
1779 spin_unlock(&mmlist_lock);
1780 }
1781 dec_mm_counter(mm, MM_ANONPAGES);
1782 inc_mm_counter(mm, MM_SWAPENTS);
1783 swp_pte = swp_entry_to_pte(entry);
1784 if (pte_soft_dirty(pteval))
1785 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1786 if (pte_uffd_wp(pteval))
1787 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1788 set_pte_at(mm, address, pvmw.pte, swp_pte);
1789 /* Invalidate as we cleared the pte */
1790 mmu_notifier_invalidate_range(mm, address,
1791 address + PAGE_SIZE);
1792 } else {
1793 /*
1794 * This is a locked file-backed page, thus it cannot
1795 * be removed from the page cache and replaced by a new
1796 * page before mmu_notifier_invalidate_range_end, so no
1797 * concurrent thread might update its page table to
1798 * point at new page while a device still is using this
1799 * page.
1800 *
1801 * See Documentation/vm/mmu_notifier.rst
1802 */
1803 dec_mm_counter(mm, mm_counter_file(page));
1804 }
1805 discard:
1806 /*
1807 * No need to call mmu_notifier_invalidate_range() it has be
1808 * done above for all cases requiring it to happen under page
1809 * table lock before mmu_notifier_invalidate_range_end()
1810 *
1811 * See Documentation/vm/mmu_notifier.rst
1812 */
1813 page_remove_rmap(subpage, PageHuge(page));
1814 put_page(page);
1815 }
1816
1817 mmu_notifier_invalidate_range_end(&range);
1818 trace_android_vh_try_to_unmap_one(vma, page, address, ret);
1819
1820 return ret;
1821 }
1822
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1823 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1824 {
1825 return vma_is_temporary_stack(vma);
1826 }
1827
page_not_mapped(struct page * page)1828 static int page_not_mapped(struct page *page)
1829 {
1830 return !page_mapped(page);
1831 }
1832
1833 /**
1834 * try_to_unmap - try to remove all page table mappings to a page
1835 * @page: the page to get unmapped
1836 * @flags: action and flags
1837 *
1838 * Tries to remove all the page table entries which are mapping this
1839 * page, used in the pageout path. Caller must hold the page lock.
1840 *
1841 * If unmap is successful, return true. Otherwise, false.
1842 */
try_to_unmap(struct page * page,enum ttu_flags flags)1843 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1844 {
1845 struct rmap_walk_control rwc = {
1846 .rmap_one = try_to_unmap_one,
1847 .arg = (void *)flags,
1848 .done = page_not_mapped,
1849 .anon_lock = page_lock_anon_vma_read,
1850 };
1851
1852 /*
1853 * During exec, a temporary VMA is setup and later moved.
1854 * The VMA is moved under the anon_vma lock but not the
1855 * page tables leading to a race where migration cannot
1856 * find the migration ptes. Rather than increasing the
1857 * locking requirements of exec(), migration skips
1858 * temporary VMAs until after exec() completes.
1859 */
1860 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1861 && !PageKsm(page) && PageAnon(page))
1862 rwc.invalid_vma = invalid_migration_vma;
1863
1864 if (flags & TTU_RMAP_LOCKED)
1865 rmap_walk_locked(page, &rwc);
1866 else
1867 rmap_walk(page, &rwc);
1868
1869 /*
1870 * When racing against e.g. zap_pte_range() on another cpu,
1871 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1872 * try_to_unmap() may return false when it is about to become true,
1873 * if page table locking is skipped: use TTU_SYNC to wait for that.
1874 */
1875 return !page_mapcount(page);
1876 }
1877
1878 /**
1879 * try_to_munlock - try to munlock a page
1880 * @page: the page to be munlocked
1881 *
1882 * Called from munlock code. Checks all of the VMAs mapping the page
1883 * to make sure nobody else has this page mlocked. The page will be
1884 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1885 */
1886
try_to_munlock(struct page * page)1887 void try_to_munlock(struct page *page)
1888 {
1889 struct rmap_walk_control rwc = {
1890 .rmap_one = try_to_unmap_one,
1891 .arg = (void *)TTU_MUNLOCK,
1892 .done = page_not_mapped,
1893 .anon_lock = page_lock_anon_vma_read,
1894
1895 };
1896
1897 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1898 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1899
1900 rmap_walk(page, &rwc);
1901 }
1902
__put_anon_vma(struct anon_vma * anon_vma)1903 void __put_anon_vma(struct anon_vma *anon_vma)
1904 {
1905 struct anon_vma *root = anon_vma->root;
1906
1907 anon_vma_free(anon_vma);
1908 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1909 anon_vma_free(root);
1910 }
1911
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1912 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1913 struct rmap_walk_control *rwc)
1914 {
1915 struct anon_vma *anon_vma;
1916
1917 if (rwc->anon_lock)
1918 return rwc->anon_lock(page, rwc);
1919
1920 /*
1921 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1922 * because that depends on page_mapped(); but not all its usages
1923 * are holding mmap_lock. Users without mmap_lock are required to
1924 * take a reference count to prevent the anon_vma disappearing
1925 */
1926 anon_vma = page_anon_vma(page);
1927 if (!anon_vma)
1928 return NULL;
1929
1930 if (anon_vma_trylock_read(anon_vma))
1931 goto out;
1932
1933 if (rwc->try_lock) {
1934 anon_vma = NULL;
1935 rwc->contended = true;
1936 goto out;
1937 }
1938
1939 anon_vma_lock_read(anon_vma);
1940 out:
1941 return anon_vma;
1942 }
1943
1944 /*
1945 * rmap_walk_anon - do something to anonymous page using the object-based
1946 * rmap method
1947 * @page: the page to be handled
1948 * @rwc: control variable according to each walk type
1949 *
1950 * Find all the mappings of a page using the mapping pointer and the vma chains
1951 * contained in the anon_vma struct it points to.
1952 *
1953 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1954 * where the page was found will be held for write. So, we won't recheck
1955 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1956 * LOCKED.
1957 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1958 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1959 bool locked)
1960 {
1961 struct anon_vma *anon_vma;
1962 pgoff_t pgoff_start, pgoff_end;
1963 struct anon_vma_chain *avc;
1964
1965 if (locked) {
1966 anon_vma = page_anon_vma(page);
1967 /* anon_vma disappear under us? */
1968 VM_BUG_ON_PAGE(!anon_vma, page);
1969 } else {
1970 anon_vma = rmap_walk_anon_lock(page, rwc);
1971 }
1972 if (!anon_vma)
1973 return;
1974
1975 pgoff_start = page_to_pgoff(page);
1976 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1977 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1978 pgoff_start, pgoff_end) {
1979 struct vm_area_struct *vma = avc->vma;
1980 unsigned long address = vma_address(page, vma);
1981
1982 VM_BUG_ON_VMA(address == -EFAULT, vma);
1983 cond_resched();
1984
1985 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1986 continue;
1987
1988 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1989 break;
1990 if (rwc->done && rwc->done(page))
1991 break;
1992 }
1993
1994 if (!locked)
1995 anon_vma_unlock_read(anon_vma);
1996 }
1997
1998 /*
1999 * rmap_walk_file - do something to file page using the object-based rmap method
2000 * @page: the page to be handled
2001 * @rwc: control variable according to each walk type
2002 *
2003 * Find all the mappings of a page using the mapping pointer and the vma chains
2004 * contained in the address_space struct it points to.
2005 *
2006 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
2007 * where the page was found will be held for write. So, we won't recheck
2008 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2009 * LOCKED.
2010 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)2011 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2012 bool locked)
2013 {
2014 struct address_space *mapping = page_mapping(page);
2015 pgoff_t pgoff_start, pgoff_end;
2016 struct vm_area_struct *vma;
2017 bool got_lock = false, success = false;
2018
2019 /*
2020 * The page lock not only makes sure that page->mapping cannot
2021 * suddenly be NULLified by truncation, it makes sure that the
2022 * structure at mapping cannot be freed and reused yet,
2023 * so we can safely take mapping->i_mmap_rwsem.
2024 */
2025 VM_BUG_ON_PAGE(!PageLocked(page), page);
2026
2027 if (!mapping)
2028 return;
2029
2030 pgoff_start = page_to_pgoff(page);
2031 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2032 if (!locked) {
2033 trace_android_vh_do_page_trylock(page,
2034 &mapping->i_mmap_rwsem, &got_lock, &success);
2035 if (success) {
2036 if (!got_lock)
2037 return;
2038 } else {
2039 if (i_mmap_trylock_read(mapping))
2040 goto lookup;
2041
2042 if (rwc->try_lock) {
2043 rwc->contended = true;
2044 return;
2045 }
2046
2047 i_mmap_lock_read(mapping);
2048 }
2049 }
2050 lookup:
2051 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2052 pgoff_start, pgoff_end) {
2053 unsigned long address = vma_address(page, vma);
2054
2055 VM_BUG_ON_VMA(address == -EFAULT, vma);
2056 cond_resched();
2057
2058 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2059 continue;
2060
2061 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2062 goto done;
2063 if (rwc->done && rwc->done(page))
2064 goto done;
2065 }
2066
2067 done:
2068 if (!locked)
2069 i_mmap_unlock_read(mapping);
2070 }
2071
rmap_walk(struct page * page,struct rmap_walk_control * rwc)2072 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2073 {
2074 if (unlikely(PageKsm(page)))
2075 rmap_walk_ksm(page, rwc);
2076 else if (PageAnon(page))
2077 rmap_walk_anon(page, rwc, false);
2078 else
2079 rmap_walk_file(page, rwc, false);
2080 }
2081
2082 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)2083 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2084 {
2085 /* no ksm support for now */
2086 VM_BUG_ON_PAGE(PageKsm(page), page);
2087 if (PageAnon(page))
2088 rmap_walk_anon(page, rwc, true);
2089 else
2090 rmap_walk_file(page, rwc, true);
2091 }
2092
2093 #ifdef CONFIG_HUGETLB_PAGE
2094 /*
2095 * The following two functions are for anonymous (private mapped) hugepages.
2096 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2097 * and no lru code, because we handle hugepages differently from common pages.
2098 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2099 void hugepage_add_anon_rmap(struct page *page,
2100 struct vm_area_struct *vma, unsigned long address)
2101 {
2102 struct anon_vma *anon_vma = vma->anon_vma;
2103 int first;
2104
2105 BUG_ON(!PageLocked(page));
2106 BUG_ON(!anon_vma);
2107 /* address might be in next vma when migration races vma_adjust */
2108 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2109 if (first)
2110 __page_set_anon_rmap(page, vma, address, 0);
2111 }
2112
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2113 void hugepage_add_new_anon_rmap(struct page *page,
2114 struct vm_area_struct *vma, unsigned long address)
2115 {
2116 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2117 atomic_set(compound_mapcount_ptr(page), 0);
2118 if (hpage_pincount_available(page))
2119 atomic_set(compound_pincount_ptr(page), 0);
2120
2121 __page_set_anon_rmap(page, vma, address, 1);
2122 }
2123 #endif /* CONFIG_HUGETLB_PAGE */
2124