1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
28
29 /*
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
33 */
__clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
36 {
37 XA_STATE(xas, &mapping->i_pages, index);
38
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
41 return;
42 xas_store(&xas, NULL);
43 mapping->nrexceptional--;
44 }
45
clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 void *entry)
48 {
49 xa_lock_irq(&mapping->i_pages);
50 __clear_shadow_entry(mapping, index, entry);
51 xa_unlock_irq(&mapping->i_pages);
52 }
53
54 /*
55 * Unconditionally remove exceptional entries. Usually called from truncate
56 * path. Note that the pagevec may be altered by this function by removing
57 * exceptional entries similar to what pagevec_remove_exceptionals does.
58 */
truncate_exceptional_pvec_entries(struct address_space * mapping,struct pagevec * pvec,pgoff_t * indices,pgoff_t end)59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 struct pagevec *pvec, pgoff_t *indices,
61 pgoff_t end)
62 {
63 int i, j;
64 bool dax, lock;
65
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
69
70 for (j = 0; j < pagevec_count(pvec); j++)
71 if (xa_is_value(pvec->pages[j]))
72 break;
73
74 if (j == pagevec_count(pvec))
75 return;
76
77 dax = dax_mapping(mapping);
78 lock = !dax && indices[j] < end;
79 if (lock)
80 xa_lock_irq(&mapping->i_pages);
81
82 for (i = j; i < pagevec_count(pvec); i++) {
83 struct page *page = pvec->pages[i];
84 pgoff_t index = indices[i];
85
86 if (!xa_is_value(page)) {
87 pvec->pages[j++] = page;
88 continue;
89 }
90
91 if (index >= end)
92 continue;
93
94 if (unlikely(dax)) {
95 dax_delete_mapping_entry(mapping, index);
96 continue;
97 }
98
99 __clear_shadow_entry(mapping, index, page);
100 }
101
102 if (lock)
103 xa_unlock_irq(&mapping->i_pages);
104 pvec->nr = j;
105 }
106
107 /*
108 * Invalidate exceptional entry if easily possible. This handles exceptional
109 * entries for invalidate_inode_pages().
110 */
invalidate_exceptional_entry(struct address_space * mapping,pgoff_t index,void * entry)111 static int invalidate_exceptional_entry(struct address_space *mapping,
112 pgoff_t index, void *entry)
113 {
114 /* Handled by shmem itself, or for DAX we do nothing. */
115 if (shmem_mapping(mapping) || dax_mapping(mapping))
116 return 1;
117 clear_shadow_entry(mapping, index, entry);
118 return 1;
119 }
120
121 /*
122 * Invalidate exceptional entry if clean. This handles exceptional entries for
123 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
124 */
invalidate_exceptional_entry2(struct address_space * mapping,pgoff_t index,void * entry)125 static int invalidate_exceptional_entry2(struct address_space *mapping,
126 pgoff_t index, void *entry)
127 {
128 /* Handled by shmem itself */
129 if (shmem_mapping(mapping))
130 return 1;
131 if (dax_mapping(mapping))
132 return dax_invalidate_mapping_entry_sync(mapping, index);
133 clear_shadow_entry(mapping, index, entry);
134 return 1;
135 }
136
137 /**
138 * do_invalidatepage - invalidate part or all of a page
139 * @page: the page which is affected
140 * @offset: start of the range to invalidate
141 * @length: length of the range to invalidate
142 *
143 * do_invalidatepage() is called when all or part of the page has become
144 * invalidated by a truncate operation.
145 *
146 * do_invalidatepage() does not have to release all buffers, but it must
147 * ensure that no dirty buffer is left outside @offset and that no I/O
148 * is underway against any of the blocks which are outside the truncation
149 * point. Because the caller is about to free (and possibly reuse) those
150 * blocks on-disk.
151 */
do_invalidatepage(struct page * page,unsigned int offset,unsigned int length)152 void do_invalidatepage(struct page *page, unsigned int offset,
153 unsigned int length)
154 {
155 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
156
157 invalidatepage = page->mapping->a_ops->invalidatepage;
158 #ifdef CONFIG_BLOCK
159 if (!invalidatepage)
160 invalidatepage = block_invalidatepage;
161 #endif
162 if (invalidatepage)
163 (*invalidatepage)(page, offset, length);
164 }
165
166 /*
167 * If truncate cannot remove the fs-private metadata from the page, the page
168 * becomes orphaned. It will be left on the LRU and may even be mapped into
169 * user pagetables if we're racing with filemap_fault().
170 *
171 * We need to bail out if page->mapping is no longer equal to the original
172 * mapping. This happens a) when the VM reclaimed the page while we waited on
173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175 */
truncate_cleanup_page(struct page * page)176 static void truncate_cleanup_page(struct page *page)
177 {
178 if (page_mapped(page))
179 unmap_mapping_page(page);
180
181 if (page_has_private(page))
182 do_invalidatepage(page, 0, thp_size(page));
183
184 /*
185 * Some filesystems seem to re-dirty the page even after
186 * the VM has canceled the dirty bit (eg ext3 journaling).
187 * Hence dirty accounting check is placed after invalidation.
188 */
189 cancel_dirty_page(page);
190 ClearPageMappedToDisk(page);
191 }
192
193 /*
194 * This is for invalidate_mapping_pages(). That function can be called at
195 * any time, and is not supposed to throw away dirty pages. But pages can
196 * be marked dirty at any time too, so use remove_mapping which safely
197 * discards clean, unused pages.
198 *
199 * Returns non-zero if the page was successfully invalidated.
200 */
201 static int
invalidate_complete_page(struct address_space * mapping,struct page * page)202 invalidate_complete_page(struct address_space *mapping, struct page *page)
203 {
204 int ret;
205
206 if (page->mapping != mapping)
207 return 0;
208
209 if (page_has_private(page) && !try_to_release_page(page, 0))
210 return 0;
211
212 ret = remove_mapping(mapping, page);
213
214 return ret;
215 }
216
truncate_inode_page(struct address_space * mapping,struct page * page)217 int truncate_inode_page(struct address_space *mapping, struct page *page)
218 {
219 VM_BUG_ON_PAGE(PageTail(page), page);
220
221 if (page->mapping != mapping)
222 return -EIO;
223
224 truncate_cleanup_page(page);
225 delete_from_page_cache(page);
226 return 0;
227 }
228
229 /*
230 * Used to get rid of pages on hardware memory corruption.
231 */
generic_error_remove_page(struct address_space * mapping,struct page * page)232 int generic_error_remove_page(struct address_space *mapping, struct page *page)
233 {
234 if (!mapping)
235 return -EINVAL;
236 /*
237 * Only punch for normal data pages for now.
238 * Handling other types like directories would need more auditing.
239 */
240 if (!S_ISREG(mapping->host->i_mode))
241 return -EIO;
242 return truncate_inode_page(mapping, page);
243 }
244 EXPORT_SYMBOL(generic_error_remove_page);
245
246 /*
247 * Safely invalidate one page from its pagecache mapping.
248 * It only drops clean, unused pages. The page must be locked.
249 *
250 * Returns 1 if the page is successfully invalidated, otherwise 0.
251 */
invalidate_inode_page(struct page * page)252 int invalidate_inode_page(struct page *page)
253 {
254 struct address_space *mapping = page_mapping(page);
255 if (!mapping)
256 return 0;
257 if (PageDirty(page) || PageWriteback(page))
258 return 0;
259 if (page_mapped(page))
260 return 0;
261 return invalidate_complete_page(mapping, page);
262 }
263
264 /**
265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266 * @mapping: mapping to truncate
267 * @lstart: offset from which to truncate
268 * @lend: offset to which to truncate (inclusive)
269 *
270 * Truncate the page cache, removing the pages that are between
271 * specified offsets (and zeroing out partial pages
272 * if lstart or lend + 1 is not page aligned).
273 *
274 * Truncate takes two passes - the first pass is nonblocking. It will not
275 * block on page locks and it will not block on writeback. The second pass
276 * will wait. This is to prevent as much IO as possible in the affected region.
277 * The first pass will remove most pages, so the search cost of the second pass
278 * is low.
279 *
280 * We pass down the cache-hot hint to the page freeing code. Even if the
281 * mapping is large, it is probably the case that the final pages are the most
282 * recently touched, and freeing happens in ascending file offset order.
283 *
284 * Note that since ->invalidatepage() accepts range to invalidate
285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286 * page aligned properly.
287 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)288 void truncate_inode_pages_range(struct address_space *mapping,
289 loff_t lstart, loff_t lend)
290 {
291 pgoff_t start; /* inclusive */
292 pgoff_t end; /* exclusive */
293 unsigned int partial_start; /* inclusive */
294 unsigned int partial_end; /* exclusive */
295 struct pagevec pvec;
296 pgoff_t indices[PAGEVEC_SIZE];
297 pgoff_t index;
298 int i;
299
300 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
301 goto out;
302
303 /* Offsets within partial pages */
304 partial_start = lstart & (PAGE_SIZE - 1);
305 partial_end = (lend + 1) & (PAGE_SIZE - 1);
306
307 /*
308 * 'start' and 'end' always covers the range of pages to be fully
309 * truncated. Partial pages are covered with 'partial_start' at the
310 * start of the range and 'partial_end' at the end of the range.
311 * Note that 'end' is exclusive while 'lend' is inclusive.
312 */
313 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
314 if (lend == -1)
315 /*
316 * lend == -1 indicates end-of-file so we have to set 'end'
317 * to the highest possible pgoff_t and since the type is
318 * unsigned we're using -1.
319 */
320 end = -1;
321 else
322 end = (lend + 1) >> PAGE_SHIFT;
323
324 pagevec_init(&pvec);
325 index = start;
326 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
327 min(end - index, (pgoff_t)PAGEVEC_SIZE),
328 indices)) {
329 /*
330 * Pagevec array has exceptional entries and we may also fail
331 * to lock some pages. So we store pages that can be deleted
332 * in a new pagevec.
333 */
334 struct pagevec locked_pvec;
335
336 pagevec_init(&locked_pvec);
337 for (i = 0; i < pagevec_count(&pvec); i++) {
338 struct page *page = pvec.pages[i];
339
340 /* We rely upon deletion not changing page->index */
341 index = indices[i];
342 if (index >= end)
343 break;
344
345 if (xa_is_value(page))
346 continue;
347
348 if (!trylock_page(page))
349 continue;
350 WARN_ON(page_to_index(page) != index);
351 if (PageWriteback(page)) {
352 unlock_page(page);
353 continue;
354 }
355 if (page->mapping != mapping) {
356 unlock_page(page);
357 continue;
358 }
359 pagevec_add(&locked_pvec, page);
360 }
361 for (i = 0; i < pagevec_count(&locked_pvec); i++)
362 truncate_cleanup_page(locked_pvec.pages[i]);
363 delete_from_page_cache_batch(mapping, &locked_pvec);
364 for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 unlock_page(locked_pvec.pages[i]);
366 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
367 pagevec_release(&pvec);
368 cond_resched();
369 index++;
370 }
371 if (partial_start) {
372 struct page *page = find_lock_page(mapping, start - 1);
373 if (page) {
374 unsigned int top = PAGE_SIZE;
375 if (start > end) {
376 /* Truncation within a single page */
377 top = partial_end;
378 partial_end = 0;
379 }
380 wait_on_page_writeback(page);
381 zero_user_segment(page, partial_start, top);
382 cleancache_invalidate_page(mapping, page);
383 if (page_has_private(page))
384 do_invalidatepage(page, partial_start,
385 top - partial_start);
386 unlock_page(page);
387 put_page(page);
388 }
389 }
390 if (partial_end) {
391 struct page *page = find_lock_page(mapping, end);
392 if (page) {
393 wait_on_page_writeback(page);
394 zero_user_segment(page, 0, partial_end);
395 cleancache_invalidate_page(mapping, page);
396 if (page_has_private(page))
397 do_invalidatepage(page, 0,
398 partial_end);
399 unlock_page(page);
400 put_page(page);
401 }
402 }
403 /*
404 * If the truncation happened within a single page no pages
405 * will be released, just zeroed, so we can bail out now.
406 */
407 if (start >= end)
408 goto out;
409
410 index = start;
411 for ( ; ; ) {
412 cond_resched();
413 if (!pagevec_lookup_entries(&pvec, mapping, index,
414 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
415 /* If all gone from start onwards, we're done */
416 if (index == start)
417 break;
418 /* Otherwise restart to make sure all gone */
419 index = start;
420 continue;
421 }
422 if (index == start && indices[0] >= end) {
423 /* All gone out of hole to be punched, we're done */
424 pagevec_remove_exceptionals(&pvec);
425 pagevec_release(&pvec);
426 break;
427 }
428
429 for (i = 0; i < pagevec_count(&pvec); i++) {
430 struct page *page = pvec.pages[i];
431
432 /* We rely upon deletion not changing page->index */
433 index = indices[i];
434 if (index >= end) {
435 /* Restart punch to make sure all gone */
436 index = start - 1;
437 break;
438 }
439
440 if (xa_is_value(page))
441 continue;
442
443 lock_page(page);
444 WARN_ON(page_to_index(page) != index);
445 wait_on_page_writeback(page);
446 truncate_inode_page(mapping, page);
447 unlock_page(page);
448 }
449 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
450 pagevec_release(&pvec);
451 index++;
452 }
453
454 out:
455 cleancache_invalidate_inode(mapping);
456 }
457 EXPORT_SYMBOL(truncate_inode_pages_range);
458
459 /**
460 * truncate_inode_pages - truncate *all* the pages from an offset
461 * @mapping: mapping to truncate
462 * @lstart: offset from which to truncate
463 *
464 * Called under (and serialised by) inode->i_mutex.
465 *
466 * Note: When this function returns, there can be a page in the process of
467 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
468 * mapping->nrpages can be non-zero when this function returns even after
469 * truncation of the whole mapping.
470 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)471 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
472 {
473 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
474 }
475 EXPORT_SYMBOL(truncate_inode_pages);
476
477 /**
478 * truncate_inode_pages_final - truncate *all* pages before inode dies
479 * @mapping: mapping to truncate
480 *
481 * Called under (and serialized by) inode->i_mutex.
482 *
483 * Filesystems have to use this in the .evict_inode path to inform the
484 * VM that this is the final truncate and the inode is going away.
485 */
truncate_inode_pages_final(struct address_space * mapping)486 void truncate_inode_pages_final(struct address_space *mapping)
487 {
488 unsigned long nrexceptional;
489 unsigned long nrpages;
490
491 /*
492 * Page reclaim can not participate in regular inode lifetime
493 * management (can't call iput()) and thus can race with the
494 * inode teardown. Tell it when the address space is exiting,
495 * so that it does not install eviction information after the
496 * final truncate has begun.
497 */
498 mapping_set_exiting(mapping);
499
500 /*
501 * When reclaim installs eviction entries, it increases
502 * nrexceptional first, then decreases nrpages. Make sure we see
503 * this in the right order or we might miss an entry.
504 */
505 nrpages = mapping->nrpages;
506 smp_rmb();
507 nrexceptional = mapping->nrexceptional;
508
509 if (nrpages || nrexceptional) {
510 /*
511 * As truncation uses a lockless tree lookup, cycle
512 * the tree lock to make sure any ongoing tree
513 * modification that does not see AS_EXITING is
514 * completed before starting the final truncate.
515 */
516 xa_lock_irq(&mapping->i_pages);
517 xa_unlock_irq(&mapping->i_pages);
518 }
519
520 /*
521 * Cleancache needs notification even if there are no pages or shadow
522 * entries.
523 */
524 truncate_inode_pages(mapping, 0);
525 }
526 EXPORT_SYMBOL(truncate_inode_pages_final);
527
__invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_pagevec)528 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
529 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
530 {
531 pgoff_t indices[PAGEVEC_SIZE];
532 struct pagevec pvec;
533 pgoff_t index = start;
534 unsigned long ret;
535 unsigned long count = 0;
536 int i;
537
538 pagevec_init(&pvec);
539 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
540 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
541 indices)) {
542 for (i = 0; i < pagevec_count(&pvec); i++) {
543 struct page *page = pvec.pages[i];
544
545 /* We rely upon deletion not changing page->index */
546 index = indices[i];
547 if (index > end)
548 break;
549
550 if (xa_is_value(page)) {
551 invalidate_exceptional_entry(mapping, index,
552 page);
553 continue;
554 }
555
556 if (!trylock_page(page))
557 continue;
558
559 WARN_ON(page_to_index(page) != index);
560
561 /* Middle of THP: skip */
562 if (PageTransTail(page)) {
563 unlock_page(page);
564 continue;
565 } else if (PageTransHuge(page)) {
566 index += HPAGE_PMD_NR - 1;
567 i += HPAGE_PMD_NR - 1;
568 /*
569 * 'end' is in the middle of THP. Don't
570 * invalidate the page as the part outside of
571 * 'end' could be still useful.
572 */
573 if (index > end) {
574 unlock_page(page);
575 continue;
576 }
577
578 /* Take a pin outside pagevec */
579 get_page(page);
580
581 /*
582 * Drop extra pins before trying to invalidate
583 * the huge page.
584 */
585 pagevec_remove_exceptionals(&pvec);
586 pagevec_release(&pvec);
587 }
588
589 ret = invalidate_inode_page(page);
590 unlock_page(page);
591 /*
592 * Invalidation is a hint that the page is no longer
593 * of interest and try to speed up its reclaim.
594 */
595 if (!ret) {
596 deactivate_file_page(page);
597 /* It is likely on the pagevec of a remote CPU */
598 if (nr_pagevec)
599 (*nr_pagevec)++;
600 }
601
602 if (PageTransHuge(page))
603 put_page(page);
604 count += ret;
605 }
606 pagevec_remove_exceptionals(&pvec);
607 pagevec_release(&pvec);
608 cond_resched();
609 index++;
610 }
611 return count;
612 }
613
614 /**
615 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
616 * @mapping: the address_space which holds the pages to invalidate
617 * @start: the offset 'from' which to invalidate
618 * @end: the offset 'to' which to invalidate (inclusive)
619 *
620 * This function only removes the unlocked pages, if you want to
621 * remove all the pages of one inode, you must call truncate_inode_pages.
622 *
623 * invalidate_mapping_pages() will not block on IO activity. It will not
624 * invalidate pages which are dirty, locked, under writeback or mapped into
625 * pagetables.
626 *
627 * Return: the number of the pages that were invalidated
628 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)629 unsigned long invalidate_mapping_pages(struct address_space *mapping,
630 pgoff_t start, pgoff_t end)
631 {
632 return __invalidate_mapping_pages(mapping, start, end, NULL);
633 }
634 EXPORT_SYMBOL(invalidate_mapping_pages);
635
636 /**
637 * This helper is similar with the above one, except that it accounts for pages
638 * that are likely on a pagevec and count them in @nr_pagevec, which will used by
639 * the caller.
640 */
invalidate_mapping_pagevec(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_pagevec)641 void invalidate_mapping_pagevec(struct address_space *mapping,
642 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
643 {
644 __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
645 }
646
647 /*
648 * This is like invalidate_complete_page(), except it ignores the page's
649 * refcount. We do this because invalidate_inode_pages2() needs stronger
650 * invalidation guarantees, and cannot afford to leave pages behind because
651 * shrink_page_list() has a temp ref on them, or because they're transiently
652 * sitting in the lru_cache_add() pagevecs.
653 */
654 static int
invalidate_complete_page2(struct address_space * mapping,struct page * page)655 invalidate_complete_page2(struct address_space *mapping, struct page *page)
656 {
657 unsigned long flags;
658
659 if (page->mapping != mapping)
660 return 0;
661
662 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
663 return 0;
664
665 xa_lock_irqsave(&mapping->i_pages, flags);
666 if (PageDirty(page))
667 goto failed;
668
669 BUG_ON(page_has_private(page));
670 __delete_from_page_cache(page, NULL);
671 xa_unlock_irqrestore(&mapping->i_pages, flags);
672
673 if (mapping->a_ops->freepage)
674 mapping->a_ops->freepage(page);
675
676 put_page(page); /* pagecache ref */
677 return 1;
678 failed:
679 xa_unlock_irqrestore(&mapping->i_pages, flags);
680 return 0;
681 }
682
do_launder_page(struct address_space * mapping,struct page * page)683 static int do_launder_page(struct address_space *mapping, struct page *page)
684 {
685 if (!PageDirty(page))
686 return 0;
687 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
688 return 0;
689 return mapping->a_ops->launder_page(page);
690 }
691
692 /**
693 * invalidate_inode_pages2_range - remove range of pages from an address_space
694 * @mapping: the address_space
695 * @start: the page offset 'from' which to invalidate
696 * @end: the page offset 'to' which to invalidate (inclusive)
697 *
698 * Any pages which are found to be mapped into pagetables are unmapped prior to
699 * invalidation.
700 *
701 * Return: -EBUSY if any pages could not be invalidated.
702 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)703 int invalidate_inode_pages2_range(struct address_space *mapping,
704 pgoff_t start, pgoff_t end)
705 {
706 pgoff_t indices[PAGEVEC_SIZE];
707 struct pagevec pvec;
708 pgoff_t index;
709 int i;
710 int ret = 0;
711 int ret2 = 0;
712 int did_range_unmap = 0;
713
714 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
715 goto out;
716
717 pagevec_init(&pvec);
718 index = start;
719 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
720 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
721 indices)) {
722 for (i = 0; i < pagevec_count(&pvec); i++) {
723 struct page *page = pvec.pages[i];
724
725 /* We rely upon deletion not changing page->index */
726 index = indices[i];
727 if (index > end)
728 break;
729
730 if (xa_is_value(page)) {
731 if (!invalidate_exceptional_entry2(mapping,
732 index, page))
733 ret = -EBUSY;
734 continue;
735 }
736
737 if (!did_range_unmap && page_mapped(page)) {
738 /*
739 * If page is mapped, before taking its lock,
740 * zap the rest of the file in one hit.
741 */
742 unmap_mapping_pages(mapping, index,
743 (1 + end - index), false);
744 did_range_unmap = 1;
745 }
746
747 lock_page(page);
748 WARN_ON(page_to_index(page) != index);
749 if (page->mapping != mapping) {
750 unlock_page(page);
751 continue;
752 }
753 wait_on_page_writeback(page);
754
755 if (page_mapped(page))
756 unmap_mapping_page(page);
757 BUG_ON(page_mapped(page));
758
759 ret2 = do_launder_page(mapping, page);
760 if (ret2 == 0) {
761 if (!invalidate_complete_page2(mapping, page))
762 ret2 = -EBUSY;
763 }
764 if (ret2 < 0)
765 ret = ret2;
766 unlock_page(page);
767 }
768 pagevec_remove_exceptionals(&pvec);
769 pagevec_release(&pvec);
770 cond_resched();
771 index++;
772 }
773 /*
774 * For DAX we invalidate page tables after invalidating page cache. We
775 * could invalidate page tables while invalidating each entry however
776 * that would be expensive. And doing range unmapping before doesn't
777 * work as we have no cheap way to find whether page cache entry didn't
778 * get remapped later.
779 */
780 if (dax_mapping(mapping)) {
781 unmap_mapping_pages(mapping, start, end - start + 1, false);
782 }
783 out:
784 cleancache_invalidate_inode(mapping);
785 return ret;
786 }
787 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
788
789 /**
790 * invalidate_inode_pages2 - remove all pages from an address_space
791 * @mapping: the address_space
792 *
793 * Any pages which are found to be mapped into pagetables are unmapped prior to
794 * invalidation.
795 *
796 * Return: -EBUSY if any pages could not be invalidated.
797 */
invalidate_inode_pages2(struct address_space * mapping)798 int invalidate_inode_pages2(struct address_space *mapping)
799 {
800 return invalidate_inode_pages2_range(mapping, 0, -1);
801 }
802 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
803
804 /**
805 * truncate_pagecache - unmap and remove pagecache that has been truncated
806 * @inode: inode
807 * @newsize: new file size
808 *
809 * inode's new i_size must already be written before truncate_pagecache
810 * is called.
811 *
812 * This function should typically be called before the filesystem
813 * releases resources associated with the freed range (eg. deallocates
814 * blocks). This way, pagecache will always stay logically coherent
815 * with on-disk format, and the filesystem would not have to deal with
816 * situations such as writepage being called for a page that has already
817 * had its underlying blocks deallocated.
818 */
truncate_pagecache(struct inode * inode,loff_t newsize)819 void truncate_pagecache(struct inode *inode, loff_t newsize)
820 {
821 struct address_space *mapping = inode->i_mapping;
822 loff_t holebegin = round_up(newsize, PAGE_SIZE);
823
824 /*
825 * unmap_mapping_range is called twice, first simply for
826 * efficiency so that truncate_inode_pages does fewer
827 * single-page unmaps. However after this first call, and
828 * before truncate_inode_pages finishes, it is possible for
829 * private pages to be COWed, which remain after
830 * truncate_inode_pages finishes, hence the second
831 * unmap_mapping_range call must be made for correctness.
832 */
833 unmap_mapping_range(mapping, holebegin, 0, 1);
834 truncate_inode_pages(mapping, newsize);
835 unmap_mapping_range(mapping, holebegin, 0, 1);
836 }
837 EXPORT_SYMBOL(truncate_pagecache);
838
839 /**
840 * truncate_setsize - update inode and pagecache for a new file size
841 * @inode: inode
842 * @newsize: new file size
843 *
844 * truncate_setsize updates i_size and performs pagecache truncation (if
845 * necessary) to @newsize. It will be typically be called from the filesystem's
846 * setattr function when ATTR_SIZE is passed in.
847 *
848 * Must be called with a lock serializing truncates and writes (generally
849 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
850 * specific block truncation has been performed.
851 */
truncate_setsize(struct inode * inode,loff_t newsize)852 void truncate_setsize(struct inode *inode, loff_t newsize)
853 {
854 loff_t oldsize = inode->i_size;
855
856 i_size_write(inode, newsize);
857 if (newsize > oldsize)
858 pagecache_isize_extended(inode, oldsize, newsize);
859 truncate_pagecache(inode, newsize);
860 }
861 EXPORT_SYMBOL(truncate_setsize);
862
863 /**
864 * pagecache_isize_extended - update pagecache after extension of i_size
865 * @inode: inode for which i_size was extended
866 * @from: original inode size
867 * @to: new inode size
868 *
869 * Handle extension of inode size either caused by extending truncate or by
870 * write starting after current i_size. We mark the page straddling current
871 * i_size RO so that page_mkwrite() is called on the nearest write access to
872 * the page. This way filesystem can be sure that page_mkwrite() is called on
873 * the page before user writes to the page via mmap after the i_size has been
874 * changed.
875 *
876 * The function must be called after i_size is updated so that page fault
877 * coming after we unlock the page will already see the new i_size.
878 * The function must be called while we still hold i_mutex - this not only
879 * makes sure i_size is stable but also that userspace cannot observe new
880 * i_size value before we are prepared to store mmap writes at new inode size.
881 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)882 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
883 {
884 int bsize = i_blocksize(inode);
885 loff_t rounded_from;
886 struct page *page;
887 pgoff_t index;
888
889 WARN_ON(to > inode->i_size);
890
891 if (from >= to || bsize == PAGE_SIZE)
892 return;
893 /* Page straddling @from will not have any hole block created? */
894 rounded_from = round_up(from, bsize);
895 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
896 return;
897
898 index = from >> PAGE_SHIFT;
899 page = find_lock_page(inode->i_mapping, index);
900 /* Page not cached? Nothing to do */
901 if (!page)
902 return;
903 /*
904 * See clear_page_dirty_for_io() for details why set_page_dirty()
905 * is needed.
906 */
907 if (page_mkclean(page))
908 set_page_dirty(page);
909 unlock_page(page);
910 put_page(page);
911 }
912 EXPORT_SYMBOL(pagecache_isize_extended);
913
914 /**
915 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
916 * @inode: inode
917 * @lstart: offset of beginning of hole
918 * @lend: offset of last byte of hole
919 *
920 * This function should typically be called before the filesystem
921 * releases resources associated with the freed range (eg. deallocates
922 * blocks). This way, pagecache will always stay logically coherent
923 * with on-disk format, and the filesystem would not have to deal with
924 * situations such as writepage being called for a page that has already
925 * had its underlying blocks deallocated.
926 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)927 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
928 {
929 struct address_space *mapping = inode->i_mapping;
930 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
931 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
932 /*
933 * This rounding is currently just for example: unmap_mapping_range
934 * expands its hole outwards, whereas we want it to contract the hole
935 * inwards. However, existing callers of truncate_pagecache_range are
936 * doing their own page rounding first. Note that unmap_mapping_range
937 * allows holelen 0 for all, and we allow lend -1 for end of file.
938 */
939
940 /*
941 * Unlike in truncate_pagecache, unmap_mapping_range is called only
942 * once (before truncating pagecache), and without "even_cows" flag:
943 * hole-punching should not remove private COWed pages from the hole.
944 */
945 if ((u64)unmap_end > (u64)unmap_start)
946 unmap_mapping_range(mapping, unmap_start,
947 1 + unmap_end - unmap_start, 0);
948 truncate_inode_pages_range(mapping, lstart, lend);
949 }
950 EXPORT_SYMBOL(truncate_pagecache_range);
951