1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 /* start node id of a node block dedicated to the given node id */
9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES 8
16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE 8
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* check pinned file's alignment status of physical blocks */
42 #define FILE_NOT_ALIGNED 1
43
44 /* For flag in struct node_info */
45 enum {
46 IS_CHECKPOINTED, /* is it checkpointed before? */
47 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
48 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
49 IS_DIRTY, /* this nat entry is dirty? */
50 IS_PREALLOC, /* nat entry is preallocated */
51 };
52
53 /*
54 * For node information
55 */
56 struct node_info {
57 nid_t nid; /* node id */
58 nid_t ino; /* inode number of the node's owner */
59 block_t blk_addr; /* block address of the node */
60 unsigned char version; /* version of the node */
61 unsigned char flag; /* for node information bits */
62 };
63
64 struct nat_entry {
65 struct list_head list; /* for clean or dirty nat list */
66 struct node_info ni; /* in-memory node information */
67 };
68
69 #define nat_get_nid(nat) ((nat)->ni.nid)
70 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
71 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
72 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
73 #define nat_get_ino(nat) ((nat)->ni.ino)
74 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
75 #define nat_get_version(nat) ((nat)->ni.version)
76 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
77
78 #define inc_node_version(version) (++(version))
79
copy_node_info(struct node_info * dst,struct node_info * src)80 static inline void copy_node_info(struct node_info *dst,
81 struct node_info *src)
82 {
83 dst->nid = src->nid;
84 dst->ino = src->ino;
85 dst->blk_addr = src->blk_addr;
86 dst->version = src->version;
87 /* should not copy flag here */
88 }
89
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)90 static inline void set_nat_flag(struct nat_entry *ne,
91 unsigned int type, bool set)
92 {
93 unsigned char mask = 0x01 << type;
94 if (set)
95 ne->ni.flag |= mask;
96 else
97 ne->ni.flag &= ~mask;
98 }
99
get_nat_flag(struct nat_entry * ne,unsigned int type)100 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
101 {
102 unsigned char mask = 0x01 << type;
103 return ne->ni.flag & mask;
104 }
105
nat_reset_flag(struct nat_entry * ne)106 static inline void nat_reset_flag(struct nat_entry *ne)
107 {
108 /* these states can be set only after checkpoint was done */
109 set_nat_flag(ne, IS_CHECKPOINTED, true);
110 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111 set_nat_flag(ne, HAS_LAST_FSYNC, true);
112 }
113
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)114 static inline void node_info_from_raw_nat(struct node_info *ni,
115 struct f2fs_nat_entry *raw_ne)
116 {
117 ni->ino = le32_to_cpu(raw_ne->ino);
118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119 ni->version = raw_ne->version;
120 }
121
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)122 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123 struct node_info *ni)
124 {
125 raw_ne->ino = cpu_to_le32(ni->ino);
126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127 raw_ne->version = ni->version;
128 }
129
excess_dirty_nats(struct f2fs_sb_info * sbi)130 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131 {
132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133 NM_I(sbi)->dirty_nats_ratio / 100;
134 }
135
excess_cached_nats(struct f2fs_sb_info * sbi)136 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137 {
138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139 }
140
excess_dirty_nodes(struct f2fs_sb_info * sbi)141 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
142 {
143 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
144 }
145
146 enum mem_type {
147 FREE_NIDS, /* indicates the free nid list */
148 NAT_ENTRIES, /* indicates the cached nat entry */
149 DIRTY_DENTS, /* indicates dirty dentry pages */
150 INO_ENTRIES, /* indicates inode entries */
151 READ_EXTENT_CACHE, /* indicates read extent cache */
152 AGE_EXTENT_CACHE, /* indicates age extent cache */
153 INMEM_PAGES, /* indicates inmemory pages */
154 DISCARD_CACHE, /* indicates memory of cached discard cmds */
155 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
156 BASE_CHECK, /* check kernel status */
157 };
158
159 struct nat_entry_set {
160 struct list_head set_list; /* link with other nat sets */
161 struct list_head entry_list; /* link with dirty nat entries */
162 nid_t set; /* set number*/
163 unsigned int entry_cnt; /* the # of nat entries in set */
164 };
165
166 struct free_nid {
167 struct list_head list; /* for free node id list */
168 nid_t nid; /* node id */
169 int state; /* in use or not: FREE_NID or PREALLOC_NID */
170 };
171
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)172 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
173 {
174 struct f2fs_nm_info *nm_i = NM_I(sbi);
175 struct free_nid *fnid;
176
177 spin_lock(&nm_i->nid_list_lock);
178 if (nm_i->nid_cnt[FREE_NID] <= 0) {
179 spin_unlock(&nm_i->nid_list_lock);
180 return;
181 }
182 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
183 *nid = fnid->nid;
184 spin_unlock(&nm_i->nid_list_lock);
185 }
186
187 /*
188 * inline functions
189 */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)190 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193
194 #ifdef CONFIG_F2FS_CHECK_FS
195 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
196 nm_i->bitmap_size))
197 f2fs_bug_on(sbi, 1);
198 #endif
199 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
200 }
201
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)202 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
203 {
204 struct f2fs_nm_info *nm_i = NM_I(sbi);
205 pgoff_t block_off;
206 pgoff_t block_addr;
207
208 /*
209 * block_off = segment_off * 512 + off_in_segment
210 * OLD = (segment_off * 512) * 2 + off_in_segment
211 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
212 */
213 block_off = NAT_BLOCK_OFFSET(start);
214
215 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
216 (block_off << 1) -
217 (block_off & (sbi->blocks_per_seg - 1)));
218
219 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
220 block_addr += sbi->blocks_per_seg;
221
222 return block_addr;
223 }
224
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)225 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
226 pgoff_t block_addr)
227 {
228 struct f2fs_nm_info *nm_i = NM_I(sbi);
229
230 block_addr -= nm_i->nat_blkaddr;
231 block_addr ^= 1 << sbi->log_blocks_per_seg;
232 return block_addr + nm_i->nat_blkaddr;
233 }
234
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)235 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
236 {
237 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
238
239 f2fs_change_bit(block_off, nm_i->nat_bitmap);
240 #ifdef CONFIG_F2FS_CHECK_FS
241 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
242 #endif
243 }
244
ino_of_node(struct page * node_page)245 static inline nid_t ino_of_node(struct page *node_page)
246 {
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.ino);
249 }
250
nid_of_node(struct page * node_page)251 static inline nid_t nid_of_node(struct page *node_page)
252 {
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 return le32_to_cpu(rn->footer.nid);
255 }
256
ofs_of_node(struct page * node_page)257 static inline unsigned int ofs_of_node(struct page *node_page)
258 {
259 struct f2fs_node *rn = F2FS_NODE(node_page);
260 unsigned flag = le32_to_cpu(rn->footer.flag);
261 return flag >> OFFSET_BIT_SHIFT;
262 }
263
cpver_of_node(struct page * node_page)264 static inline __u64 cpver_of_node(struct page *node_page)
265 {
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le64_to_cpu(rn->footer.cp_ver);
268 }
269
next_blkaddr_of_node(struct page * node_page)270 static inline block_t next_blkaddr_of_node(struct page *node_page)
271 {
272 struct f2fs_node *rn = F2FS_NODE(node_page);
273 return le32_to_cpu(rn->footer.next_blkaddr);
274 }
275
fill_node_footer(struct page * page,nid_t nid,nid_t ino,unsigned int ofs,bool reset)276 static inline void fill_node_footer(struct page *page, nid_t nid,
277 nid_t ino, unsigned int ofs, bool reset)
278 {
279 struct f2fs_node *rn = F2FS_NODE(page);
280 unsigned int old_flag = 0;
281
282 if (reset)
283 memset(rn, 0, sizeof(*rn));
284 else
285 old_flag = le32_to_cpu(rn->footer.flag);
286
287 rn->footer.nid = cpu_to_le32(nid);
288 rn->footer.ino = cpu_to_le32(ino);
289
290 /* should remain old flag bits such as COLD_BIT_SHIFT */
291 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
292 (old_flag & OFFSET_BIT_MASK));
293 }
294
copy_node_footer(struct page * dst,struct page * src)295 static inline void copy_node_footer(struct page *dst, struct page *src)
296 {
297 struct f2fs_node *src_rn = F2FS_NODE(src);
298 struct f2fs_node *dst_rn = F2FS_NODE(dst);
299 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
300 }
301
fill_node_footer_blkaddr(struct page * page,block_t blkaddr)302 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
303 {
304 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
305 struct f2fs_node *rn = F2FS_NODE(page);
306 __u64 cp_ver = cur_cp_version(ckpt);
307
308 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
309 cp_ver |= (cur_cp_crc(ckpt) << 32);
310
311 rn->footer.cp_ver = cpu_to_le64(cp_ver);
312 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
313 }
314
is_recoverable_dnode(struct page * page)315 static inline bool is_recoverable_dnode(struct page *page)
316 {
317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
318 __u64 cp_ver = cur_cp_version(ckpt);
319
320 /* Don't care crc part, if fsck.f2fs sets it. */
321 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
322 return (cp_ver << 32) == (cpver_of_node(page) << 32);
323
324 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
325 cp_ver |= (cur_cp_crc(ckpt) << 32);
326
327 return cp_ver == cpver_of_node(page);
328 }
329
330 /*
331 * f2fs assigns the following node offsets described as (num).
332 * N = NIDS_PER_BLOCK
333 *
334 * Inode block (0)
335 * |- direct node (1)
336 * |- direct node (2)
337 * |- indirect node (3)
338 * | `- direct node (4 => 4 + N - 1)
339 * |- indirect node (4 + N)
340 * | `- direct node (5 + N => 5 + 2N - 1)
341 * `- double indirect node (5 + 2N)
342 * `- indirect node (6 + 2N)
343 * `- direct node
344 * ......
345 * `- indirect node ((6 + 2N) + x(N + 1))
346 * `- direct node
347 * ......
348 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
349 * `- direct node
350 */
IS_DNODE(struct page * node_page)351 static inline bool IS_DNODE(struct page *node_page)
352 {
353 unsigned int ofs = ofs_of_node(node_page);
354
355 if (f2fs_has_xattr_block(ofs))
356 return true;
357
358 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
359 ofs == 5 + 2 * NIDS_PER_BLOCK)
360 return false;
361 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
362 ofs -= 6 + 2 * NIDS_PER_BLOCK;
363 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
364 return false;
365 }
366 return true;
367 }
368
set_nid(struct page * p,int off,nid_t nid,bool i)369 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
370 {
371 struct f2fs_node *rn = F2FS_NODE(p);
372
373 f2fs_wait_on_page_writeback(p, NODE, true, true);
374
375 if (i)
376 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
377 else
378 rn->in.nid[off] = cpu_to_le32(nid);
379 return set_page_dirty(p);
380 }
381
get_nid(struct page * p,int off,bool i)382 static inline nid_t get_nid(struct page *p, int off, bool i)
383 {
384 struct f2fs_node *rn = F2FS_NODE(p);
385
386 if (i)
387 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
388 return le32_to_cpu(rn->in.nid[off]);
389 }
390
391 /*
392 * Coldness identification:
393 * - Mark cold files in f2fs_inode_info
394 * - Mark cold node blocks in their node footer
395 * - Mark cold data pages in page cache
396 */
397
is_node(struct page * page,int type)398 static inline int is_node(struct page *page, int type)
399 {
400 struct f2fs_node *rn = F2FS_NODE(page);
401 return le32_to_cpu(rn->footer.flag) & (1 << type);
402 }
403
404 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
405 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
406 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
407
set_cold_node(struct page * page,bool is_dir)408 static inline void set_cold_node(struct page *page, bool is_dir)
409 {
410 struct f2fs_node *rn = F2FS_NODE(page);
411 unsigned int flag = le32_to_cpu(rn->footer.flag);
412
413 if (is_dir)
414 flag &= ~(0x1 << COLD_BIT_SHIFT);
415 else
416 flag |= (0x1 << COLD_BIT_SHIFT);
417 rn->footer.flag = cpu_to_le32(flag);
418 }
419
set_mark(struct page * page,int mark,int type)420 static inline void set_mark(struct page *page, int mark, int type)
421 {
422 struct f2fs_node *rn = F2FS_NODE(page);
423 unsigned int flag = le32_to_cpu(rn->footer.flag);
424 if (mark)
425 flag |= (0x1 << type);
426 else
427 flag &= ~(0x1 << type);
428 rn->footer.flag = cpu_to_le32(flag);
429
430 #ifdef CONFIG_F2FS_CHECK_FS
431 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
432 #endif
433 }
434 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
435 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
436