/arch/hexagon/kernel/ |
D | vm_init_segtable.S | 40 #define X __HVM_PDE_S_INVALID macro 47 .word X,X,X,X 48 .word X,X,X,X 49 .word X,X,X,X 50 .word X,X,X,X 51 .word X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X 52 .word X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X 53 .word X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X 54 .word X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X 55 .word X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X,X [all …]
|
/arch/m68k/fpsp040/ |
D | stanh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value tanh(X) returned in floating-point register Fp0. 23 | 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. 25 | 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by 26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and 27 | tanh(X) = sgn*( z/(2+z) ). 30 | 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, 33 | 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. 35 | 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by 36 | sgn := sign(X), y := 2|X|, z := exp(Y), [all …]
|
D | sasin.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value arcsin(X) returned in floating-point register Fp0. 23 | 1. If |X| >= 1, go to 3. 25 | 2. (|X| < 1) Calculate asin(X) by 26 | z := sqrt( [1-X][1+X] ) 27 | asin(X) = atan( x / z ). 30 | 3. If |X| > 1, go to 5. 32 | 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit. 34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 57 |--ASIN(X) = X FOR DENORMALIZED X [all …]
|
D | satan.S | 11 | Output: Arctan(X) returned in floating-point register Fp0. 19 | argument X such that 1/16 < |X| < 16. For the other arguments, 23 | Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. 25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. 27 | of X with a bit-1 attached at the 6-th bit position. Define u 28 | to be u = (X-F) / (1 + X*F). 35 | Step 5. If |X| >= 16, go to Step 7. 37 | Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. 39 | Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'. 217 .set X,FP_SCR1 define [all …]
|
D | scosh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value cosh(X) returned in floating-point register Fp0. 23 | 1. If |X| > 16380 log2, go to 3. 25 | 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae 26 | y = |X|, z = exp(Y), and 27 | cosh(X) = (1/2)*( z + 1/z ). 30 | 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. 32 | 4. (16380 log2 < |X| <= 16480 log2) 33 | cosh(X) = sign(X) * exp(|X|)/2. 34 | However, invoking exp(|X|) may cause premature overflow. [all …]
|
D | slog2.S | 5 | logarithm of an input argument X. 13 | OUTPUT: log_10(X) or log_2(X) returned in floating-point 32 | Step 0. If X < 0, create a NaN and raise the invalid operation 37 | Step 1. Call slognd to obtain Y = log(X), the natural log of X. 38 | Notes: Even if X is denormalized, log(X) is always normalized. 40 | Step 2. Compute log_10(X) = log(X) * (1/log(10)). 47 | Step 0. If X < 0, create a NaN and raise the invalid operation 52 | Step 1. Call sLogN to obtain Y = log(X), the natural log of X. 54 | Step 2. Compute log_10(X) = log(X) * (1/log(10)). 61 | Step 0. If X < 0, create a NaN and raise the invalid operation [all …]
|
D | satanh.S | 9 | Input: Double-extended number X in location pointed to 12 | Output: The value arctanh(X) returned in floating-point register Fp0. 24 | 1. If |X| >= 1, go to 3. 26 | 2. (|X| < 1) Calculate atanh(X) by 27 | sgn := sign(X) 28 | y := |X| 30 | atanh(X) := sgn * (1/2) * logp1(z) 33 | 3. If |X| > 1, go to 5. 35 | 4. (|X| = 1) Generate infinity with an appropriate sign and 37 | sgn := sign(X) [all …]
|
D | ssinh.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value sinh(X) returned in floating-point register Fp0. 23 | 1. If |X| > 16380 log2, go to 3. 25 | 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae 26 | y = |X|, sgn = sign(X), and z = expm1(Y), 27 | sinh(X) = sgn*(1/2)*( z + z/(1+z) ). 30 | 3. If |X| > 16480 log2, go to 5. 32 | 4. (16380 log2 < |X| <= 16480 log2) 33 | sinh(X) = sign(X) * exp(|X|)/2. 34 | However, invoking exp(|X|) may cause premature overflow. [all …]
|
D | stwotox.S | 4 | stwotox --- 2**X 5 | stwotoxd --- 2**X for denormalized X 6 | stentox --- 10**X 7 | stentoxd --- 10**X for denormalized X 9 | Input: Double-extended number X in location pointed to 25 | 1. If |X| > 16480, go to ExpBig. 27 | 2. If |X| < 2**(-70), go to ExpSm. 29 | 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore 38 | 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. 40 | 2. If |X| < 2**(-70), go to ExpSm. [all …]
|
D | sacos.S | 8 | Input: Double-extended number X in location pointed to 11 | Output: The value arccos(X) returned in floating-point register Fp0. 23 | 1. If |X| >= 1, go to 3. 25 | 2. (|X| < 1) Calculate acos(X) by 26 | z := (1-X) / (1+X) 27 | acos(X) = 2 * atan( sqrt(z) ). 30 | 3. If |X| > 1, go to 5. 32 | 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. 34 | 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 57 |--ACOS(X) = PI/2 FOR DENORMALIZED X
|
D | slogn.S | 6 | denormalized number. slognp1 computes log(1+X), and slognp1d 7 | computes log(1+X) for denormalized X. 12 | Output: log(X) or log(1+X) returned in floating-point register Fp0. 20 | argument X such that |X-1| >= 1/16, which is the usual 27 | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in 28 | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. 30 | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven 37 | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) 42 | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in 43 | u where u = 2X/(2+X). Otherwise, move on to Step 2. [all …]
|
D | setox.S | 6 | number. setoxm1 computes exp(X)-1, and setoxm1d computes 7 | exp(X)-1 for denormalized X. 16 | exp(X) or exp(X)-1 returned in floating-point register fp0. 34 | argument X whose magnitude is less than 16380 log2, which 40 | argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes 52 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit. 60 | 1.1 If |X| >= 2^(-65), go to Step 1.3. 62 | 1.3 If |X| < 16380 log(2), go to Step 2. 66 | compact representation of |X| is used. This format is a 68 | the sign and biased exponent field of |X|; the lower 16 [all …]
|
D | ssin.S | 9 | Input: Double-extended number X in location pointed to 12 | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or 13 | COS is requested. Otherwise, for SINCOS, sin(X) is returned 14 | in Fp0, and cos(X) is returned in Fp1. 24 | input argument X such that |X| < 15Pi, which is the usual 32 | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. 34 | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let 50 | 7. If |X| > 1, go to 9. 52 | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1. 54 | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3. [all …]
|
/arch/arm64/crypto/ |
D | sha512-armv8.pl | 102 @X=map("$reg_t$_",(3..15,0..2)); 109 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]); 110 $T0=@X[$i+3] if ($i<11); 114 rev @X[$i],@X[$i] // $i 118 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ 121 ldp @X[14],@X[15],[$inp] 124 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`] 130 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`] 145 add $h,$h,@X[$i&15] // h+=X[i] 164 ror $T1,@X[($j+1)&15],#$sigma0[0] [all …]
|
/arch/sparc/include/asm/ |
D | sfp-machine_64.h | 32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y) 34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument 40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(D,R,X,Y) argument 41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument 59 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
D | sfp-machine_32.h | 34 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 38 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 39 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 41 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument 42 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 43 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument 61 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/sh/include/asm/ |
D | sfp-machine.h | 29 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 30 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 31 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 32 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 33 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 34 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 36 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) argument 37 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 38 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) argument 53 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/sparc/crypto/ |
D | des_asm.S | 308 #define DES3_LOOP_BODY(X) \ argument 309 DES_IP(X, X) \ 310 DES_ROUND(0, 2, X, X) \ 311 DES_ROUND(4, 6, X, X) \ 312 DES_ROUND(8, 10, X, X) \ 313 DES_ROUND(12, 14, X, X) \ 314 DES_ROUND(16, 18, X, X) \ 317 DES_ROUND(20, 22, X, X) \ 320 DES_ROUND(24, 26, X, X) \ 323 DES_ROUND(28, 30, X, X) \ [all …]
|
/arch/x86/um/os-Linux/ |
D | mcontext.c | 10 #define COPY2(X,Y) regs->gp[X] = mc->gregs[REG_##Y] in get_regs_from_mc() argument 11 #define COPY(X) regs->gp[X] = mc->gregs[REG_##X] in get_regs_from_mc() argument 12 #define COPY_SEG(X) regs->gp[X] = mc->gregs[REG_##X] & 0xffff; in get_regs_from_mc() argument 13 #define COPY_SEG_CPL3(X) regs->gp[X] = (mc->gregs[REG_##X] & 0xffff) | 3; in get_regs_from_mc() argument 20 #define COPY2(X,Y) regs->gp[X/sizeof(unsigned long)] = mc->gregs[REG_##Y] in get_regs_from_mc() 21 #define COPY(X) regs->gp[X/sizeof(unsigned long)] = mc->gregs[REG_##X] in get_regs_from_mc()
|
/arch/alpha/include/asm/ |
D | sfp-machine.h | 32 #define _FP_MUL_MEAT_S(R,X,Y) \ argument 33 _FP_MUL_MEAT_1_imm(_FP_WFRACBITS_S,R,X,Y) 34 #define _FP_MUL_MEAT_D(R,X,Y) \ argument 35 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 36 #define _FP_MUL_MEAT_Q(R,X,Y) \ argument 37 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_Q,R,X,Y,umul_ppmm) 39 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) argument 40 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) argument 41 #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv(Q,R,X,Y) argument 55 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument [all …]
|
/arch/arm/crypto/ |
D | sha256-armv4.pl | 291 my @X=map("q$_",(0..3)); 312 &vext_8 ($T0,@X[0],@X[1],4); # X[1..4] 316 &vext_8 ($T1,@X[2],@X[3],4); # X[9..12] 323 &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += X[9..12] 341 &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[0]); 347 &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[0]); 350 &vshr_u32 ($T5,&Dhi(@X[3]),$sigma1[2]); 353 &vadd_i32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4]) 359 &vshr_u32 ($T4,&Dhi(@X[3]),$sigma1[1]); 362 &vsli_32 ($T4,&Dhi(@X[3]),32-$sigma1[1]); [all …]
|
/arch/powerpc/include/asm/ |
D | sfp-machine.h | 82 #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) argument 83 #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) argument 85 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y) argument 86 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) argument 144 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ argument 147 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 149 R##_s = X##_s; \ 150 _FP_FRAC_COPY_##wc(R,X); \ 167 #define __FP_PACK_S(val,X) \ argument 168 ({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ [all …]
|
/arch/mips/crypto/ |
D | chacha-core.S | 31 #define X(n) X ## n macro 135 addu X ## x, NONCE_0; \ 137 addu X ## x, T0; \ 139 CPU_TO_LE32(X ## x); \ 140 xor X ## x, T1; \ 141 swl X ## x, (x*4)+MSB ## (OUT); \ 142 swr X ## x, (x*4)+LSB ## (OUT); 151 addu X ## x, NONCE_0; \ 153 addu X ## x, T0; \ 155 CPU_TO_LE32(X ## x); \ [all …]
|
/arch/nds32/include/asm/ |
D | sfp-machine.h | 15 #define _FP_MUL_MEAT_S(R, X, Y) \ argument 16 _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S, R, X, Y, umul_ppmm) 17 #define _FP_MUL_MEAT_D(R, X, Y) \ argument 18 _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D, R, X, Y, umul_ppmm) 19 #define _FP_MUL_MEAT_Q(R, X, Y) \ argument 20 _FP_MUL_MEAT_4_wide(_FP_WFRACBITS_Q, R, X, Y, umul_ppmm) 22 #define _FP_MUL_MEAT_DW_S(R, X, Y) \ argument 23 _FP_MUL_MEAT_DW_1_wide(_FP_WFRACBITS_S, R, X, Y, umul_ppmm) 24 #define _FP_MUL_MEAT_DW_D(R, X, Y) \ argument 25 _FP_MUL_MEAT_DW_2_wide(_FP_WFRACBITS_D, R, X, Y, umul_ppmm) [all …]
|
/arch/mips/include/asm/ |
D | module.h | 45 #define ELF_R_TYPE(X) ELF32_R_TYPE(X) argument 46 #define ELF_R_SYM(X) ELF32_R_SYM(X) argument 63 #define ELF_R_TYPE(X) ELF64_R_TYPE(X) argument 64 #define ELF_R_SYM(X) ELF64_R_SYM(X) argument
|