• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5 
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10 
11 /*
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 
38 #define SIO_CONFIG_RA	0x398
39 #define SIO_CONFIG_RD	0x399
40 
41 #define SLOW_DOWN_IO
42 
43 /* 32 bits uses slightly different variables for the various IO
44  * bases. Most of this file only uses _IO_BASE though which we
45  * define properly based on the platform
46  */
47 #ifndef CONFIG_PCI
48 #define _IO_BASE	0
49 #define _ISA_MEM_BASE	0
50 #define PCI_DRAM_OFFSET 0
51 #elif defined(CONFIG_PPC32)
52 #define _IO_BASE	isa_io_base
53 #define _ISA_MEM_BASE	isa_mem_base
54 #define PCI_DRAM_OFFSET	pci_dram_offset
55 #else
56 #define _IO_BASE	pci_io_base
57 #define _ISA_MEM_BASE	isa_mem_base
58 #define PCI_DRAM_OFFSET	0
59 #endif
60 
61 extern unsigned long isa_io_base;
62 extern unsigned long pci_io_base;
63 extern unsigned long pci_dram_offset;
64 
65 extern resource_size_t isa_mem_base;
66 
67 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
68  * is not set or addresses cannot be translated to MMIO. This is typically
69  * set when the platform supports "special" PIO accesses via a non memory
70  * mapped mechanism, and allows things like the early udbg UART code to
71  * function.
72  */
73 extern bool isa_io_special;
74 
75 #ifdef CONFIG_PPC32
76 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
77 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
78 #endif
79 #endif
80 
81 /*
82  *
83  * Low level MMIO accessors
84  *
85  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
86  * specific and thus shouldn't be used in generic code. The accessors
87  * provided here are:
88  *
89  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
90  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
91  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
92  *
93  * Those operate directly on a kernel virtual address. Note that the prototype
94  * for the out_* accessors has the arguments in opposite order from the usual
95  * linux PCI accessors. Unlike those, they take the address first and the value
96  * next.
97  *
98  * Note: I might drop the _ns suffix on the stream operations soon as it is
99  * simply normal for stream operations to not swap in the first place.
100  *
101  */
102 
103 #define DEF_MMIO_IN_X(name, size, insn)				\
104 static inline u##size name(const volatile u##size __iomem *addr)	\
105 {									\
106 	u##size ret;							\
107 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
108 		: "=r" (ret) : "Z" (*addr) : "memory");			\
109 	return ret;							\
110 }
111 
112 #define DEF_MMIO_OUT_X(name, size, insn)				\
113 static inline void name(volatile u##size __iomem *addr, u##size val)	\
114 {									\
115 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
116 		: "=Z" (*addr) : "r" (val) : "memory");			\
117 	mmiowb_set_pending();						\
118 }
119 
120 #define DEF_MMIO_IN_D(name, size, insn)				\
121 static inline u##size name(const volatile u##size __iomem *addr)	\
122 {									\
123 	u##size ret;							\
124 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
125 		: "=r" (ret) : "m" (*addr) : "memory");			\
126 	return ret;							\
127 }
128 
129 #define DEF_MMIO_OUT_D(name, size, insn)				\
130 static inline void name(volatile u##size __iomem *addr, u##size val)	\
131 {									\
132 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
133 		: "=m" (*addr) : "r" (val) : "memory");			\
134 	mmiowb_set_pending();						\
135 }
136 
137 DEF_MMIO_IN_D(in_8,     8, lbz);
138 DEF_MMIO_OUT_D(out_8,   8, stb);
139 
140 #ifdef __BIG_ENDIAN__
141 DEF_MMIO_IN_D(in_be16, 16, lhz);
142 DEF_MMIO_IN_D(in_be32, 32, lwz);
143 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
144 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
145 
146 DEF_MMIO_OUT_D(out_be16, 16, sth);
147 DEF_MMIO_OUT_D(out_be32, 32, stw);
148 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
149 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
150 #else
151 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
152 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
153 DEF_MMIO_IN_D(in_le16, 16, lhz);
154 DEF_MMIO_IN_D(in_le32, 32, lwz);
155 
156 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
157 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
158 DEF_MMIO_OUT_D(out_le16, 16, sth);
159 DEF_MMIO_OUT_D(out_le32, 32, stw);
160 
161 #endif /* __BIG_ENDIAN */
162 
163 #ifdef __powerpc64__
164 
165 #ifdef __BIG_ENDIAN__
166 DEF_MMIO_OUT_D(out_be64, 64, std);
167 DEF_MMIO_IN_D(in_be64, 64, ld);
168 
169 /* There is no asm instructions for 64 bits reverse loads and stores */
in_le64(const volatile u64 __iomem * addr)170 static inline u64 in_le64(const volatile u64 __iomem *addr)
171 {
172 	return swab64(in_be64(addr));
173 }
174 
out_le64(volatile u64 __iomem * addr,u64 val)175 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
176 {
177 	out_be64(addr, swab64(val));
178 }
179 #else
180 DEF_MMIO_OUT_D(out_le64, 64, std);
181 DEF_MMIO_IN_D(in_le64, 64, ld);
182 
183 /* There is no asm instructions for 64 bits reverse loads and stores */
in_be64(const volatile u64 __iomem * addr)184 static inline u64 in_be64(const volatile u64 __iomem *addr)
185 {
186 	return swab64(in_le64(addr));
187 }
188 
out_be64(volatile u64 __iomem * addr,u64 val)189 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
190 {
191 	out_le64(addr, swab64(val));
192 }
193 
194 #endif
195 #endif /* __powerpc64__ */
196 
197 /*
198  * Low level IO stream instructions are defined out of line for now
199  */
200 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
201 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
202 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
203 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
204 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
205 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
206 
207 /* The _ns naming is historical and will be removed. For now, just #define
208  * the non _ns equivalent names
209  */
210 #define _insw	_insw_ns
211 #define _insl	_insl_ns
212 #define _outsw	_outsw_ns
213 #define _outsl	_outsl_ns
214 
215 
216 /*
217  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
218  */
219 
220 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
221 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
222 			   unsigned long n);
223 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
224 			 unsigned long n);
225 
226 /*
227  *
228  * PCI and standard ISA accessors
229  *
230  * Those are globally defined linux accessors for devices on PCI or ISA
231  * busses. They follow the Linux defined semantics. The current implementation
232  * for PowerPC is as close as possible to the x86 version of these, and thus
233  * provides fairly heavy weight barriers for the non-raw versions
234  *
235  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
236  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
237  * own implementation of some or all of the accessors.
238  */
239 
240 /*
241  * Include the EEH definitions when EEH is enabled only so they don't get
242  * in the way when building for 32 bits
243  */
244 #ifdef CONFIG_EEH
245 #include <asm/eeh.h>
246 #endif
247 
248 /* Shortcut to the MMIO argument pointer */
249 #define PCI_IO_ADDR	volatile void __iomem *
250 
251 /* Indirect IO address tokens:
252  *
253  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
254  * on all MMIOs. (Note that this is all 64 bits only for now)
255  *
256  * To help platforms who may need to differentiate MMIO addresses in
257  * their hooks, a bitfield is reserved for use by the platform near the
258  * top of MMIO addresses (not PIO, those have to cope the hard way).
259  *
260  * The highest address in the kernel virtual space are:
261  *
262  *  d0003fffffffffff	# with Hash MMU
263  *  c00fffffffffffff	# with Radix MMU
264  *
265  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
266  * that can be used for the field.
267  *
268  * The direct IO mapping operations will then mask off those bits
269  * before doing the actual access, though that only happen when
270  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
271  * mechanism
272  *
273  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
274  * all PIO functions call through a hook.
275  */
276 
277 #ifdef CONFIG_PPC_INDIRECT_MMIO
278 #define PCI_IO_IND_TOKEN_SHIFT	52
279 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
280 #define PCI_FIX_ADDR(addr)						\
281 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
282 #define PCI_GET_ADDR_TOKEN(addr)					\
283 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
284 		PCI_IO_IND_TOKEN_SHIFT)
285 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
286 do {									\
287 	unsigned long __a = (unsigned long)(addr);			\
288 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
289 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
290 	(addr) = (void __iomem *)__a;					\
291 } while(0)
292 #else
293 #define PCI_FIX_ADDR(addr) (addr)
294 #endif
295 
296 
297 /*
298  * Non ordered and non-swapping "raw" accessors
299  */
300 
__raw_readb(const volatile void __iomem * addr)301 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
302 {
303 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
304 }
__raw_readw(const volatile void __iomem * addr)305 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
306 {
307 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
308 }
__raw_readl(const volatile void __iomem * addr)309 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
310 {
311 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
312 }
__raw_writeb(unsigned char v,volatile void __iomem * addr)313 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
314 {
315 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
316 }
__raw_writew(unsigned short v,volatile void __iomem * addr)317 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
318 {
319 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
320 }
__raw_writel(unsigned int v,volatile void __iomem * addr)321 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
322 {
323 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
324 }
325 
326 #ifdef __powerpc64__
__raw_readq(const volatile void __iomem * addr)327 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
328 {
329 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
330 }
__raw_writeq(unsigned long v,volatile void __iomem * addr)331 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
332 {
333 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
334 }
335 
__raw_writeq_be(unsigned long v,volatile void __iomem * addr)336 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
337 {
338 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
339 }
340 
341 /*
342  * Real mode versions of the above. Those instructions are only supposed
343  * to be used in hypervisor real mode as per the architecture spec.
344  */
__raw_rm_writeb(u8 val,volatile void __iomem * paddr)345 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
346 {
347 	__asm__ __volatile__(".machine push;   \
348 			      .machine power6; \
349 			      stbcix %0,0,%1;  \
350 			      .machine pop;"
351 		: : "r" (val), "r" (paddr) : "memory");
352 }
353 
__raw_rm_writew(u16 val,volatile void __iomem * paddr)354 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
355 {
356 	__asm__ __volatile__(".machine push;   \
357 			      .machine power6; \
358 			      sthcix %0,0,%1;  \
359 			      .machine pop;"
360 		: : "r" (val), "r" (paddr) : "memory");
361 }
362 
__raw_rm_writel(u32 val,volatile void __iomem * paddr)363 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
364 {
365 	__asm__ __volatile__(".machine push;   \
366 			      .machine power6; \
367 			      stwcix %0,0,%1;  \
368 			      .machine pop;"
369 		: : "r" (val), "r" (paddr) : "memory");
370 }
371 
__raw_rm_writeq(u64 val,volatile void __iomem * paddr)372 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
373 {
374 	__asm__ __volatile__(".machine push;   \
375 			      .machine power6; \
376 			      stdcix %0,0,%1;  \
377 			      .machine pop;"
378 		: : "r" (val), "r" (paddr) : "memory");
379 }
380 
__raw_rm_writeq_be(u64 val,volatile void __iomem * paddr)381 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
382 {
383 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
384 }
385 
__raw_rm_readb(volatile void __iomem * paddr)386 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
387 {
388 	u8 ret;
389 	__asm__ __volatile__(".machine push;   \
390 			      .machine power6; \
391 			      lbzcix %0,0, %1; \
392 			      .machine pop;"
393 			     : "=r" (ret) : "r" (paddr) : "memory");
394 	return ret;
395 }
396 
__raw_rm_readw(volatile void __iomem * paddr)397 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
398 {
399 	u16 ret;
400 	__asm__ __volatile__(".machine push;   \
401 			      .machine power6; \
402 			      lhzcix %0,0, %1; \
403 			      .machine pop;"
404 			     : "=r" (ret) : "r" (paddr) : "memory");
405 	return ret;
406 }
407 
__raw_rm_readl(volatile void __iomem * paddr)408 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
409 {
410 	u32 ret;
411 	__asm__ __volatile__(".machine push;   \
412 			      .machine power6; \
413 			      lwzcix %0,0, %1; \
414 			      .machine pop;"
415 			     : "=r" (ret) : "r" (paddr) : "memory");
416 	return ret;
417 }
418 
__raw_rm_readq(volatile void __iomem * paddr)419 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
420 {
421 	u64 ret;
422 	__asm__ __volatile__(".machine push;   \
423 			      .machine power6; \
424 			      ldcix %0,0, %1;  \
425 			      .machine pop;"
426 			     : "=r" (ret) : "r" (paddr) : "memory");
427 	return ret;
428 }
429 #endif /* __powerpc64__ */
430 
431 /*
432  *
433  * PCI PIO and MMIO accessors.
434  *
435  *
436  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437  * machine checks (which they occasionally do when probing non existing
438  * IO ports on some platforms, like PowerMac and 8xx).
439  * I always found it to be of dubious reliability and I am tempted to get
440  * rid of it one of these days. So if you think it's important to keep it,
441  * please voice up asap. We never had it for 64 bits and I do not intend
442  * to port it over
443  */
444 
445 #ifdef CONFIG_PPC32
446 
447 #define __do_in_asm(name, op)				\
448 static inline unsigned int name(unsigned int port)	\
449 {							\
450 	unsigned int x;					\
451 	__asm__ __volatile__(				\
452 		"sync\n"				\
453 		"0:"	op "	%0,0,%1\n"		\
454 		"1:	twi	0,%0,0\n"		\
455 		"2:	isync\n"			\
456 		"3:	nop\n"				\
457 		"4:\n"					\
458 		".section .fixup,\"ax\"\n"		\
459 		"5:	li	%0,-1\n"		\
460 		"	b	4b\n"			\
461 		".previous\n"				\
462 		EX_TABLE(0b, 5b)			\
463 		EX_TABLE(1b, 5b)			\
464 		EX_TABLE(2b, 5b)			\
465 		EX_TABLE(3b, 5b)			\
466 		: "=&r" (x)				\
467 		: "r" (port + _IO_BASE)			\
468 		: "memory");  				\
469 	return x;					\
470 }
471 
472 #define __do_out_asm(name, op)				\
473 static inline void name(unsigned int val, unsigned int port) \
474 {							\
475 	__asm__ __volatile__(				\
476 		"sync\n"				\
477 		"0:" op " %0,0,%1\n"			\
478 		"1:	sync\n"				\
479 		"2:\n"					\
480 		EX_TABLE(0b, 2b)			\
481 		EX_TABLE(1b, 2b)			\
482 		: : "r" (val), "r" (port + _IO_BASE)	\
483 		: "memory");   	   	   		\
484 }
485 
486 __do_in_asm(_rec_inb, "lbzx")
487 __do_in_asm(_rec_inw, "lhbrx")
488 __do_in_asm(_rec_inl, "lwbrx")
489 __do_out_asm(_rec_outb, "stbx")
490 __do_out_asm(_rec_outw, "sthbrx")
491 __do_out_asm(_rec_outl, "stwbrx")
492 
493 #endif /* CONFIG_PPC32 */
494 
495 /* The "__do_*" operations below provide the actual "base" implementation
496  * for each of the defined accessors. Some of them use the out_* functions
497  * directly, some of them still use EEH, though we might change that in the
498  * future. Those macros below provide the necessary argument swapping and
499  * handling of the IO base for PIO.
500  *
501  * They are themselves used by the macros that define the actual accessors
502  * and can be used by the hooks if any.
503  *
504  * Note that PIO operations are always defined in terms of their corresonding
505  * MMIO operations. That allows platforms like iSeries who want to modify the
506  * behaviour of both to only hook on the MMIO version and get both. It's also
507  * possible to hook directly at the toplevel PIO operation if they have to
508  * be handled differently
509  */
510 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
511 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
512 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
513 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
514 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
517 
518 #ifdef CONFIG_EEH
519 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
520 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
521 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
522 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
523 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
524 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
525 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
526 #else /* CONFIG_EEH */
527 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
528 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
529 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
530 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
531 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
532 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
533 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
534 #endif /* !defined(CONFIG_EEH) */
535 
536 #ifdef CONFIG_PPC32
537 #define __do_outb(val, port)	_rec_outb(val, port)
538 #define __do_outw(val, port)	_rec_outw(val, port)
539 #define __do_outl(val, port)	_rec_outl(val, port)
540 #define __do_inb(port)		_rec_inb(port)
541 #define __do_inw(port)		_rec_inw(port)
542 #define __do_inl(port)		_rec_inl(port)
543 #else /* CONFIG_PPC32 */
544 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
548 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
549 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
550 #endif /* !CONFIG_PPC32 */
551 
552 #ifdef CONFIG_EEH
553 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556 #else /* CONFIG_EEH */
557 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
558 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
559 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
560 #endif /* !CONFIG_EEH */
561 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
562 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
563 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
564 
565 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571 
572 #define __do_memset_io(addr, c, n)	\
573 				_memset_io(PCI_FIX_ADDR(addr), c, n)
574 #define __do_memcpy_toio(dst, src, n)	\
575 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
576 
577 #ifdef CONFIG_EEH
578 #define __do_memcpy_fromio(dst, src, n)	\
579 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580 #else /* CONFIG_EEH */
581 #define __do_memcpy_fromio(dst, src, n)	\
582 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583 #endif /* !CONFIG_EEH */
584 
585 #ifdef CONFIG_PPC_INDIRECT_PIO
586 #define DEF_PCI_HOOK_pio(x)	x
587 #else
588 #define DEF_PCI_HOOK_pio(x)	NULL
589 #endif
590 
591 #ifdef CONFIG_PPC_INDIRECT_MMIO
592 #define DEF_PCI_HOOK_mem(x)	x
593 #else
594 #define DEF_PCI_HOOK_mem(x)	NULL
595 #endif
596 
597 /* Structure containing all the hooks */
598 extern struct ppc_pci_io {
599 
600 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
601 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
602 
603 #include <asm/io-defs.h>
604 
605 #undef DEF_PCI_AC_RET
606 #undef DEF_PCI_AC_NORET
607 
608 } ppc_pci_io;
609 
610 /* The inline wrappers */
611 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
612 static inline ret name at					\
613 {								\
614 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
615 		return ppc_pci_io.name al;			\
616 	return __do_##name al;					\
617 }
618 
619 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
620 static inline void name at					\
621 {								\
622 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
623 		ppc_pci_io.name al;				\
624 	else							\
625 		__do_##name al;					\
626 }
627 
628 #include <asm/io-defs.h>
629 
630 #undef DEF_PCI_AC_RET
631 #undef DEF_PCI_AC_NORET
632 
633 /* Some drivers check for the presence of readq & writeq with
634  * a #ifdef, so we make them happy here.
635  */
636 #ifdef __powerpc64__
637 #define readq	readq
638 #define writeq	writeq
639 #endif
640 
641 /*
642  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643  * access
644  */
645 #define xlate_dev_mem_ptr(p)	__va(p)
646 
647 /*
648  * Convert a virtual cached pointer to an uncached pointer
649  */
650 #define xlate_dev_kmem_ptr(p)	p
651 
652 /*
653  * We don't do relaxed operations yet, at least not with this semantic
654  */
655 #define readb_relaxed(addr)	readb(addr)
656 #define readw_relaxed(addr)	readw(addr)
657 #define readl_relaxed(addr)	readl(addr)
658 #define readq_relaxed(addr)	readq(addr)
659 #define writeb_relaxed(v, addr)	writeb(v, addr)
660 #define writew_relaxed(v, addr)	writew(v, addr)
661 #define writel_relaxed(v, addr)	writel(v, addr)
662 #define writeq_relaxed(v, addr)	writeq(v, addr)
663 
664 #include <asm-generic/iomap.h>
665 
iosync(void)666 static inline void iosync(void)
667 {
668         __asm__ __volatile__ ("sync" : : : "memory");
669 }
670 
671 /* Enforce in-order execution of data I/O.
672  * No distinction between read/write on PPC; use eieio for all three.
673  * Those are fairly week though. They don't provide a barrier between
674  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
675  * they only provide barriers between 2 __raw MMIO operations and
676  * possibly break write combining.
677  */
678 #define iobarrier_rw() eieio()
679 #define iobarrier_r()  eieio()
680 #define iobarrier_w()  eieio()
681 
682 
683 /*
684  * output pause versions need a delay at least for the
685  * w83c105 ide controller in a p610.
686  */
687 #define inb_p(port)             inb(port)
688 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
689 #define inw_p(port)             inw(port)
690 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
691 #define inl_p(port)             inl(port)
692 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
693 
694 
695 #define IO_SPACE_LIMIT ~(0UL)
696 
697 
698 /**
699  * ioremap     -   map bus memory into CPU space
700  * @address:   bus address of the memory
701  * @size:      size of the resource to map
702  *
703  * ioremap performs a platform specific sequence of operations to
704  * make bus memory CPU accessible via the readb/readw/readl/writeb/
705  * writew/writel functions and the other mmio helpers. The returned
706  * address is not guaranteed to be usable directly as a virtual
707  * address.
708  *
709  * We provide a few variations of it:
710  *
711  * * ioremap is the standard one and provides non-cacheable guarded mappings
712  *   and can be hooked by the platform via ppc_md
713  *
714  * * ioremap_prot allows to specify the page flags as an argument and can
715  *   also be hooked by the platform via ppc_md.
716  *
717  * * ioremap_wc enables write combining
718  *
719  * * ioremap_wt enables write through
720  *
721  * * ioremap_coherent maps coherent cached memory
722  *
723  * * iounmap undoes such a mapping and can be hooked
724  *
725  * * __ioremap_caller is the same as above but takes an explicit caller
726  *   reference rather than using __builtin_return_address(0)
727  *
728  */
729 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
730 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
731 				  unsigned long flags);
732 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
733 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
734 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
735 #define ioremap_uc(addr, size)		ioremap((addr), (size))
736 #define ioremap_cache(addr, size) \
737 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
738 
739 extern void iounmap(volatile void __iomem *addr);
740 
741 void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
742 
743 int early_ioremap_range(unsigned long ea, phys_addr_t pa,
744 			unsigned long size, pgprot_t prot);
745 void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
746 			 pgprot_t prot, void *caller);
747 
748 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
749 				      pgprot_t prot, void *caller);
750 
751 /*
752  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
753  * which needs some additional definitions here. They basically allow PIO
754  * space overall to be 1GB. This will work as long as we never try to use
755  * iomap to map MMIO below 1GB which should be fine on ppc64
756  */
757 #define HAVE_ARCH_PIO_SIZE		1
758 #define PIO_OFFSET			0x00000000UL
759 #define PIO_MASK			(FULL_IO_SIZE - 1)
760 #define PIO_RESERVED			(FULL_IO_SIZE)
761 
762 #define mmio_read16be(addr)		readw_be(addr)
763 #define mmio_read32be(addr)		readl_be(addr)
764 #define mmio_read64be(addr)		readq_be(addr)
765 #define mmio_write16be(val, addr)	writew_be(val, addr)
766 #define mmio_write32be(val, addr)	writel_be(val, addr)
767 #define mmio_write64be(val, addr)	writeq_be(val, addr)
768 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
769 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
770 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
771 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
772 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
773 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
774 
775 /**
776  *	virt_to_phys	-	map virtual addresses to physical
777  *	@address: address to remap
778  *
779  *	The returned physical address is the physical (CPU) mapping for
780  *	the memory address given. It is only valid to use this function on
781  *	addresses directly mapped or allocated via kmalloc.
782  *
783  *	This function does not give bus mappings for DMA transfers. In
784  *	almost all conceivable cases a device driver should not be using
785  *	this function
786  */
virt_to_phys(volatile void * address)787 static inline unsigned long virt_to_phys(volatile void * address)
788 {
789 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
790 
791 	return __pa((unsigned long)address);
792 }
793 
794 /**
795  *	phys_to_virt	-	map physical address to virtual
796  *	@address: address to remap
797  *
798  *	The returned virtual address is a current CPU mapping for
799  *	the memory address given. It is only valid to use this function on
800  *	addresses that have a kernel mapping
801  *
802  *	This function does not handle bus mappings for DMA transfers. In
803  *	almost all conceivable cases a device driver should not be using
804  *	this function
805  */
phys_to_virt(unsigned long address)806 static inline void * phys_to_virt(unsigned long address)
807 {
808 	return (void *)__va(address);
809 }
810 
811 /*
812  * Change "struct page" to physical address.
813  */
page_to_phys(struct page * page)814 static inline phys_addr_t page_to_phys(struct page *page)
815 {
816 	unsigned long pfn = page_to_pfn(page);
817 
818 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
819 
820 	return PFN_PHYS(pfn);
821 }
822 
823 /*
824  * 32 bits still uses virt_to_bus() for it's implementation of DMA
825  * mappings se we have to keep it defined here. We also have some old
826  * drivers (shame shame shame) that use bus_to_virt() and haven't been
827  * fixed yet so I need to define it here.
828  */
829 #ifdef CONFIG_PPC32
830 
virt_to_bus(volatile void * address)831 static inline unsigned long virt_to_bus(volatile void * address)
832 {
833         if (address == NULL)
834 		return 0;
835         return __pa(address) + PCI_DRAM_OFFSET;
836 }
837 
bus_to_virt(unsigned long address)838 static inline void * bus_to_virt(unsigned long address)
839 {
840         if (address == 0)
841 		return NULL;
842         return __va(address - PCI_DRAM_OFFSET);
843 }
844 
845 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
846 
847 #endif /* CONFIG_PPC32 */
848 
849 /* access ports */
850 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
851 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
852 
853 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
854 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
855 
856 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
857 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
858 
859 /* Clear and set bits in one shot.  These macros can be used to clear and
860  * set multiple bits in a register using a single read-modify-write.  These
861  * macros can also be used to set a multiple-bit bit pattern using a mask,
862  * by specifying the mask in the 'clear' parameter and the new bit pattern
863  * in the 'set' parameter.
864  */
865 
866 #define clrsetbits(type, addr, clear, set) \
867 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
868 
869 #ifdef __powerpc64__
870 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
871 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
872 #endif
873 
874 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
875 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
876 
877 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
878 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
879 
880 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
881 
882 #endif /* __KERNEL__ */
883 
884 #endif /* _ASM_POWERPC_IO_H */
885