• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 
23 #include <trace/events/block.h>
24 #include <trace/hooks/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 /*
29  * Test patch to inline a certain number of bi_io_vec's inside the bio
30  * itself, to shrink a bio data allocation from two mempool calls to one
31  */
32 #define BIO_INLINE_VECS		4
33 
34 /*
35  * if you change this list, also change bvec_alloc or things will
36  * break badly! cannot be bigger than what you can fit into an
37  * unsigned short
38  */
39 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
40 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
41 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
42 };
43 #undef BV
44 
45 /*
46  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
47  * IO code that does not need private memory pools.
48  */
49 struct bio_set fs_bio_set;
50 EXPORT_SYMBOL(fs_bio_set);
51 
52 /*
53  * Our slab pool management
54  */
55 struct bio_slab {
56 	struct kmem_cache *slab;
57 	unsigned int slab_ref;
58 	unsigned int slab_size;
59 	char name[8];
60 };
61 static DEFINE_MUTEX(bio_slab_lock);
62 static struct bio_slab *bio_slabs;
63 static unsigned int bio_slab_nr, bio_slab_max;
64 
bio_find_or_create_slab(unsigned int extra_size)65 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
66 {
67 	unsigned int sz = sizeof(struct bio) + extra_size;
68 	struct kmem_cache *slab = NULL;
69 	struct bio_slab *bslab, *new_bio_slabs;
70 	unsigned int new_bio_slab_max;
71 	unsigned int i, entry = -1;
72 
73 	mutex_lock(&bio_slab_lock);
74 
75 	i = 0;
76 	while (i < bio_slab_nr) {
77 		bslab = &bio_slabs[i];
78 
79 		if (!bslab->slab && entry == -1)
80 			entry = i;
81 		else if (bslab->slab_size == sz) {
82 			slab = bslab->slab;
83 			bslab->slab_ref++;
84 			break;
85 		}
86 		i++;
87 	}
88 
89 	if (slab)
90 		goto out_unlock;
91 
92 	if (bio_slab_nr == bio_slab_max && entry == -1) {
93 		new_bio_slab_max = bio_slab_max << 1;
94 		new_bio_slabs = krealloc(bio_slabs,
95 					 new_bio_slab_max * sizeof(struct bio_slab),
96 					 GFP_KERNEL);
97 		if (!new_bio_slabs)
98 			goto out_unlock;
99 		bio_slab_max = new_bio_slab_max;
100 		bio_slabs = new_bio_slabs;
101 	}
102 	if (entry == -1)
103 		entry = bio_slab_nr++;
104 
105 	bslab = &bio_slabs[entry];
106 
107 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
108 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
109 				 SLAB_HWCACHE_ALIGN, NULL);
110 	if (!slab)
111 		goto out_unlock;
112 
113 	bslab->slab = slab;
114 	bslab->slab_ref = 1;
115 	bslab->slab_size = sz;
116 out_unlock:
117 	mutex_unlock(&bio_slab_lock);
118 	return slab;
119 }
120 
bio_put_slab(struct bio_set * bs)121 static void bio_put_slab(struct bio_set *bs)
122 {
123 	struct bio_slab *bslab = NULL;
124 	unsigned int i;
125 
126 	mutex_lock(&bio_slab_lock);
127 
128 	for (i = 0; i < bio_slab_nr; i++) {
129 		if (bs->bio_slab == bio_slabs[i].slab) {
130 			bslab = &bio_slabs[i];
131 			break;
132 		}
133 	}
134 
135 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
136 		goto out;
137 
138 	WARN_ON(!bslab->slab_ref);
139 
140 	if (--bslab->slab_ref)
141 		goto out;
142 
143 	kmem_cache_destroy(bslab->slab);
144 	bslab->slab = NULL;
145 
146 out:
147 	mutex_unlock(&bio_slab_lock);
148 }
149 
bvec_nr_vecs(unsigned short idx)150 unsigned int bvec_nr_vecs(unsigned short idx)
151 {
152 	return bvec_slabs[--idx].nr_vecs;
153 }
154 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)155 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
156 {
157 	if (!idx)
158 		return;
159 	idx--;
160 
161 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
162 
163 	if (idx == BVEC_POOL_MAX) {
164 		mempool_free(bv, pool);
165 	} else {
166 		struct biovec_slab *bvs = bvec_slabs + idx;
167 
168 		kmem_cache_free(bvs->slab, bv);
169 	}
170 }
171 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)172 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
173 			   mempool_t *pool)
174 {
175 	struct bio_vec *bvl;
176 
177 	/*
178 	 * see comment near bvec_array define!
179 	 */
180 	switch (nr) {
181 	case 1:
182 		*idx = 0;
183 		break;
184 	case 2 ... 4:
185 		*idx = 1;
186 		break;
187 	case 5 ... 16:
188 		*idx = 2;
189 		break;
190 	case 17 ... 64:
191 		*idx = 3;
192 		break;
193 	case 65 ... 128:
194 		*idx = 4;
195 		break;
196 	case 129 ... BIO_MAX_PAGES:
197 		*idx = 5;
198 		break;
199 	default:
200 		return NULL;
201 	}
202 
203 	/*
204 	 * idx now points to the pool we want to allocate from. only the
205 	 * 1-vec entry pool is mempool backed.
206 	 */
207 	if (*idx == BVEC_POOL_MAX) {
208 fallback:
209 		bvl = mempool_alloc(pool, gfp_mask);
210 	} else {
211 		struct biovec_slab *bvs = bvec_slabs + *idx;
212 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
213 
214 		/*
215 		 * Make this allocation restricted and don't dump info on
216 		 * allocation failures, since we'll fallback to the mempool
217 		 * in case of failure.
218 		 */
219 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
220 
221 		/*
222 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
223 		 * is set, retry with the 1-entry mempool
224 		 */
225 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
226 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
227 			*idx = BVEC_POOL_MAX;
228 			goto fallback;
229 		}
230 	}
231 
232 	(*idx)++;
233 	return bvl;
234 }
235 
bio_uninit(struct bio * bio)236 void bio_uninit(struct bio *bio)
237 {
238 #ifdef CONFIG_BLK_CGROUP
239 	if (bio->bi_blkg) {
240 		blkg_put(bio->bi_blkg);
241 		bio->bi_blkg = NULL;
242 	}
243 #endif
244 	if (bio_integrity(bio))
245 		bio_integrity_free(bio);
246 
247 	bio_crypt_free_ctx(bio);
248 }
249 EXPORT_SYMBOL(bio_uninit);
250 
bio_free(struct bio * bio)251 static void bio_free(struct bio *bio)
252 {
253 	struct bio_set *bs = bio->bi_pool;
254 	void *p;
255 
256 	trace_android_vh_bio_free(bio);
257 	bio_uninit(bio);
258 
259 	if (bs) {
260 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
261 
262 		/*
263 		 * If we have front padding, adjust the bio pointer before freeing
264 		 */
265 		p = bio;
266 		p -= bs->front_pad;
267 
268 		mempool_free(p, &bs->bio_pool);
269 	} else {
270 		/* Bio was allocated by bio_kmalloc() */
271 		kfree(bio);
272 	}
273 }
274 
275 /*
276  * Users of this function have their own bio allocation. Subsequently,
277  * they must remember to pair any call to bio_init() with bio_uninit()
278  * when IO has completed, or when the bio is released.
279  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)280 void bio_init(struct bio *bio, struct bio_vec *table,
281 	      unsigned short max_vecs)
282 {
283 	memset(bio, 0, sizeof(*bio));
284 	atomic_set(&bio->__bi_remaining, 1);
285 	atomic_set(&bio->__bi_cnt, 1);
286 
287 	bio->bi_io_vec = table;
288 	bio->bi_max_vecs = max_vecs;
289 }
290 EXPORT_SYMBOL(bio_init);
291 
292 /**
293  * bio_reset - reinitialize a bio
294  * @bio:	bio to reset
295  *
296  * Description:
297  *   After calling bio_reset(), @bio will be in the same state as a freshly
298  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
299  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
300  *   comment in struct bio.
301  */
bio_reset(struct bio * bio)302 void bio_reset(struct bio *bio)
303 {
304 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305 
306 	bio_uninit(bio);
307 
308 	memset(bio, 0, BIO_RESET_BYTES);
309 	bio->bi_flags = flags;
310 	atomic_set(&bio->__bi_remaining, 1);
311 }
312 EXPORT_SYMBOL(bio_reset);
313 
__bio_chain_endio(struct bio * bio)314 static struct bio *__bio_chain_endio(struct bio *bio)
315 {
316 	struct bio *parent = bio->bi_private;
317 
318 	if (bio->bi_status && !parent->bi_status)
319 		parent->bi_status = bio->bi_status;
320 	bio_put(bio);
321 	return parent;
322 }
323 
bio_chain_endio(struct bio * bio)324 static void bio_chain_endio(struct bio *bio)
325 {
326 	bio_endio(__bio_chain_endio(bio));
327 }
328 
329 /**
330  * bio_chain - chain bio completions
331  * @bio: the target bio
332  * @parent: the parent bio of @bio
333  *
334  * The caller won't have a bi_end_io called when @bio completes - instead,
335  * @parent's bi_end_io won't be called until both @parent and @bio have
336  * completed; the chained bio will also be freed when it completes.
337  *
338  * The caller must not set bi_private or bi_end_io in @bio.
339  */
bio_chain(struct bio * bio,struct bio * parent)340 void bio_chain(struct bio *bio, struct bio *parent)
341 {
342 	BUG_ON(bio->bi_private || bio->bi_end_io);
343 
344 	bio->bi_private = parent;
345 	bio->bi_end_io	= bio_chain_endio;
346 	bio_inc_remaining(parent);
347 }
348 EXPORT_SYMBOL(bio_chain);
349 
bio_alloc_rescue(struct work_struct * work)350 static void bio_alloc_rescue(struct work_struct *work)
351 {
352 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
353 	struct bio *bio;
354 
355 	while (1) {
356 		spin_lock(&bs->rescue_lock);
357 		bio = bio_list_pop(&bs->rescue_list);
358 		spin_unlock(&bs->rescue_lock);
359 
360 		if (!bio)
361 			break;
362 
363 		submit_bio_noacct(bio);
364 	}
365 }
366 
punt_bios_to_rescuer(struct bio_set * bs)367 static void punt_bios_to_rescuer(struct bio_set *bs)
368 {
369 	struct bio_list punt, nopunt;
370 	struct bio *bio;
371 
372 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
373 		return;
374 	/*
375 	 * In order to guarantee forward progress we must punt only bios that
376 	 * were allocated from this bio_set; otherwise, if there was a bio on
377 	 * there for a stacking driver higher up in the stack, processing it
378 	 * could require allocating bios from this bio_set, and doing that from
379 	 * our own rescuer would be bad.
380 	 *
381 	 * Since bio lists are singly linked, pop them all instead of trying to
382 	 * remove from the middle of the list:
383 	 */
384 
385 	bio_list_init(&punt);
386 	bio_list_init(&nopunt);
387 
388 	while ((bio = bio_list_pop(&current->bio_list[0])))
389 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
390 	current->bio_list[0] = nopunt;
391 
392 	bio_list_init(&nopunt);
393 	while ((bio = bio_list_pop(&current->bio_list[1])))
394 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
395 	current->bio_list[1] = nopunt;
396 
397 	spin_lock(&bs->rescue_lock);
398 	bio_list_merge(&bs->rescue_list, &punt);
399 	spin_unlock(&bs->rescue_lock);
400 
401 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
402 }
403 
404 /**
405  * bio_alloc_bioset - allocate a bio for I/O
406  * @gfp_mask:   the GFP_* mask given to the slab allocator
407  * @nr_iovecs:	number of iovecs to pre-allocate
408  * @bs:		the bio_set to allocate from.
409  *
410  * Description:
411  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
412  *   backed by the @bs's mempool.
413  *
414  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
415  *   always be able to allocate a bio. This is due to the mempool guarantees.
416  *   To make this work, callers must never allocate more than 1 bio at a time
417  *   from this pool. Callers that need to allocate more than 1 bio must always
418  *   submit the previously allocated bio for IO before attempting to allocate
419  *   a new one. Failure to do so can cause deadlocks under memory pressure.
420  *
421  *   Note that when running under submit_bio_noacct() (i.e. any block
422  *   driver), bios are not submitted until after you return - see the code in
423  *   submit_bio_noacct() that converts recursion into iteration, to prevent
424  *   stack overflows.
425  *
426  *   This would normally mean allocating multiple bios under
427  *   submit_bio_noacct() would be susceptible to deadlocks, but we have
428  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
429  *   thread.
430  *
431  *   However, we do not guarantee forward progress for allocations from other
432  *   mempools. Doing multiple allocations from the same mempool under
433  *   submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
434  *   for per bio allocations.
435  *
436  *   RETURNS:
437  *   Pointer to new bio on success, NULL on failure.
438  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)439 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
440 			     struct bio_set *bs)
441 {
442 	gfp_t saved_gfp = gfp_mask;
443 	unsigned front_pad;
444 	unsigned inline_vecs;
445 	struct bio_vec *bvl = NULL;
446 	struct bio *bio;
447 	void *p;
448 
449 	if (!bs) {
450 		if (nr_iovecs > UIO_MAXIOV)
451 			return NULL;
452 
453 		p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
454 		front_pad = 0;
455 		inline_vecs = nr_iovecs;
456 	} else {
457 		/* should not use nobvec bioset for nr_iovecs > 0 */
458 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
459 				 nr_iovecs > 0))
460 			return NULL;
461 		/*
462 		 * submit_bio_noacct() converts recursion to iteration; this
463 		 * means if we're running beneath it, any bios we allocate and
464 		 * submit will not be submitted (and thus freed) until after we
465 		 * return.
466 		 *
467 		 * This exposes us to a potential deadlock if we allocate
468 		 * multiple bios from the same bio_set() while running
469 		 * underneath submit_bio_noacct(). If we were to allocate
470 		 * multiple bios (say a stacking block driver that was splitting
471 		 * bios), we would deadlock if we exhausted the mempool's
472 		 * reserve.
473 		 *
474 		 * We solve this, and guarantee forward progress, with a rescuer
475 		 * workqueue per bio_set. If we go to allocate and there are
476 		 * bios on current->bio_list, we first try the allocation
477 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
478 		 * bios we would be blocking to the rescuer workqueue before
479 		 * we retry with the original gfp_flags.
480 		 */
481 
482 		if (current->bio_list &&
483 		    (!bio_list_empty(&current->bio_list[0]) ||
484 		     !bio_list_empty(&current->bio_list[1])) &&
485 		    bs->rescue_workqueue)
486 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
487 
488 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
489 		if (!p && gfp_mask != saved_gfp) {
490 			punt_bios_to_rescuer(bs);
491 			gfp_mask = saved_gfp;
492 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 		}
494 
495 		front_pad = bs->front_pad;
496 		inline_vecs = BIO_INLINE_VECS;
497 	}
498 
499 	if (unlikely(!p))
500 		return NULL;
501 
502 	bio = p + front_pad;
503 	bio_init(bio, NULL, 0);
504 
505 	if (nr_iovecs > inline_vecs) {
506 		unsigned long idx = 0;
507 
508 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
509 		if (!bvl && gfp_mask != saved_gfp) {
510 			punt_bios_to_rescuer(bs);
511 			gfp_mask = saved_gfp;
512 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
513 		}
514 
515 		if (unlikely(!bvl))
516 			goto err_free;
517 
518 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
519 	} else if (nr_iovecs) {
520 		bvl = bio->bi_inline_vecs;
521 	}
522 
523 	bio->bi_pool = bs;
524 	bio->bi_max_vecs = nr_iovecs;
525 	bio->bi_io_vec = bvl;
526 	return bio;
527 
528 err_free:
529 	mempool_free(p, &bs->bio_pool);
530 	return NULL;
531 }
532 EXPORT_SYMBOL(bio_alloc_bioset);
533 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)534 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
535 {
536 	unsigned long flags;
537 	struct bio_vec bv;
538 	struct bvec_iter iter;
539 
540 	__bio_for_each_segment(bv, bio, iter, start) {
541 		char *data = bvec_kmap_irq(&bv, &flags);
542 		memset(data, 0, bv.bv_len);
543 		flush_dcache_page(bv.bv_page);
544 		bvec_kunmap_irq(data, &flags);
545 	}
546 }
547 EXPORT_SYMBOL(zero_fill_bio_iter);
548 
549 /**
550  * bio_truncate - truncate the bio to small size of @new_size
551  * @bio:	the bio to be truncated
552  * @new_size:	new size for truncating the bio
553  *
554  * Description:
555  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
556  *   REQ_OP_READ, zero the truncated part. This function should only
557  *   be used for handling corner cases, such as bio eod.
558  */
bio_truncate(struct bio * bio,unsigned new_size)559 void bio_truncate(struct bio *bio, unsigned new_size)
560 {
561 	struct bio_vec bv;
562 	struct bvec_iter iter;
563 	unsigned int done = 0;
564 	bool truncated = false;
565 
566 	if (new_size >= bio->bi_iter.bi_size)
567 		return;
568 
569 	if (bio_op(bio) != REQ_OP_READ)
570 		goto exit;
571 
572 	bio_for_each_segment(bv, bio, iter) {
573 		if (done + bv.bv_len > new_size) {
574 			unsigned offset;
575 
576 			if (!truncated)
577 				offset = new_size - done;
578 			else
579 				offset = 0;
580 			zero_user(bv.bv_page, bv.bv_offset + offset,
581 				  bv.bv_len - offset);
582 			truncated = true;
583 		}
584 		done += bv.bv_len;
585 	}
586 
587  exit:
588 	/*
589 	 * Don't touch bvec table here and make it really immutable, since
590 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
591 	 * in its .end_bio() callback.
592 	 *
593 	 * It is enough to truncate bio by updating .bi_size since we can make
594 	 * correct bvec with the updated .bi_size for drivers.
595 	 */
596 	bio->bi_iter.bi_size = new_size;
597 }
598 
599 /**
600  * guard_bio_eod - truncate a BIO to fit the block device
601  * @bio:	bio to truncate
602  *
603  * This allows us to do IO even on the odd last sectors of a device, even if the
604  * block size is some multiple of the physical sector size.
605  *
606  * We'll just truncate the bio to the size of the device, and clear the end of
607  * the buffer head manually.  Truly out-of-range accesses will turn into actual
608  * I/O errors, this only handles the "we need to be able to do I/O at the final
609  * sector" case.
610  */
guard_bio_eod(struct bio * bio)611 void guard_bio_eod(struct bio *bio)
612 {
613 	sector_t maxsector;
614 	struct hd_struct *part;
615 
616 	rcu_read_lock();
617 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
618 	if (part)
619 		maxsector = part_nr_sects_read(part);
620 	else
621 		maxsector = get_capacity(bio->bi_disk);
622 	rcu_read_unlock();
623 
624 	if (!maxsector)
625 		return;
626 
627 	/*
628 	 * If the *whole* IO is past the end of the device,
629 	 * let it through, and the IO layer will turn it into
630 	 * an EIO.
631 	 */
632 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
633 		return;
634 
635 	maxsector -= bio->bi_iter.bi_sector;
636 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
637 		return;
638 
639 	bio_truncate(bio, maxsector << 9);
640 }
641 
642 /**
643  * bio_put - release a reference to a bio
644  * @bio:   bio to release reference to
645  *
646  * Description:
647  *   Put a reference to a &struct bio, either one you have gotten with
648  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
649  **/
bio_put(struct bio * bio)650 void bio_put(struct bio *bio)
651 {
652 	if (!bio_flagged(bio, BIO_REFFED))
653 		bio_free(bio);
654 	else {
655 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
656 
657 		/*
658 		 * last put frees it
659 		 */
660 		if (atomic_dec_and_test(&bio->__bi_cnt))
661 			bio_free(bio);
662 	}
663 }
664 EXPORT_SYMBOL(bio_put);
665 
666 /**
667  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
668  * 	@bio: destination bio
669  * 	@bio_src: bio to clone
670  *
671  *	Clone a &bio. Caller will own the returned bio, but not
672  *	the actual data it points to. Reference count of returned
673  * 	bio will be one.
674  *
675  * 	Caller must ensure that @bio_src is not freed before @bio.
676  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)677 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
678 {
679 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
680 
681 	/*
682 	 * most users will be overriding ->bi_disk with a new target,
683 	 * so we don't set nor calculate new physical/hw segment counts here
684 	 */
685 	bio->bi_disk = bio_src->bi_disk;
686 	bio->bi_partno = bio_src->bi_partno;
687 	bio_set_flag(bio, BIO_CLONED);
688 	if (bio_flagged(bio_src, BIO_THROTTLED))
689 		bio_set_flag(bio, BIO_THROTTLED);
690 	bio->bi_opf = bio_src->bi_opf;
691 	bio->bi_ioprio = bio_src->bi_ioprio;
692 	bio->bi_write_hint = bio_src->bi_write_hint;
693 	bio->bi_iter = bio_src->bi_iter;
694 	bio->bi_io_vec = bio_src->bi_io_vec;
695 
696 	bio_clone_blkg_association(bio, bio_src);
697 	blkcg_bio_issue_init(bio);
698 }
699 EXPORT_SYMBOL(__bio_clone_fast);
700 
701 /**
702  *	bio_clone_fast - clone a bio that shares the original bio's biovec
703  *	@bio: bio to clone
704  *	@gfp_mask: allocation priority
705  *	@bs: bio_set to allocate from
706  *
707  * 	Like __bio_clone_fast, only also allocates the returned bio
708  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)709 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
710 {
711 	struct bio *b;
712 
713 	b = bio_alloc_bioset(gfp_mask, 0, bs);
714 	if (!b)
715 		return NULL;
716 
717 	__bio_clone_fast(b, bio);
718 
719 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
720 		goto err_put;
721 
722 	if (bio_integrity(bio) &&
723 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
724 		goto err_put;
725 
726 	return b;
727 
728 err_put:
729 	bio_put(b);
730 	return NULL;
731 }
732 EXPORT_SYMBOL(bio_clone_fast);
733 
bio_devname(struct bio * bio,char * buf)734 const char *bio_devname(struct bio *bio, char *buf)
735 {
736 	return disk_name(bio->bi_disk, bio->bi_partno, buf);
737 }
738 EXPORT_SYMBOL(bio_devname);
739 
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)740 static inline bool page_is_mergeable(const struct bio_vec *bv,
741 		struct page *page, unsigned int len, unsigned int off,
742 		bool *same_page)
743 {
744 	size_t bv_end = bv->bv_offset + bv->bv_len;
745 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
746 	phys_addr_t page_addr = page_to_phys(page);
747 
748 	if (vec_end_addr + 1 != page_addr + off)
749 		return false;
750 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
751 		return false;
752 
753 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
754 	if (*same_page)
755 		return true;
756 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
757 }
758 
759 /*
760  * Try to merge a page into a segment, while obeying the hardware segment
761  * size limit.  This is not for normal read/write bios, but for passthrough
762  * or Zone Append operations that we can't split.
763  */
bio_try_merge_hw_seg(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)764 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
765 				 struct page *page, unsigned len,
766 				 unsigned offset, bool *same_page)
767 {
768 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
769 	unsigned long mask = queue_segment_boundary(q);
770 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
771 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
772 
773 	if ((addr1 | mask) != (addr2 | mask))
774 		return false;
775 	if (len > queue_max_segment_size(q) - bv->bv_len)
776 		return false;
777 	return __bio_try_merge_page(bio, page, len, offset, same_page);
778 }
779 
780 /**
781  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
782  * @q: the target queue
783  * @bio: destination bio
784  * @page: page to add
785  * @len: vec entry length
786  * @offset: vec entry offset
787  * @max_sectors: maximum number of sectors that can be added
788  * @same_page: return if the segment has been merged inside the same page
789  *
790  * Add a page to a bio while respecting the hardware max_sectors, max_segment
791  * and gap limitations.
792  */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)793 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
794 		struct page *page, unsigned int len, unsigned int offset,
795 		unsigned int max_sectors, bool *same_page)
796 {
797 	struct bio_vec *bvec;
798 
799 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
800 		return 0;
801 
802 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
803 		return 0;
804 
805 	if (bio->bi_vcnt > 0) {
806 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
807 			return len;
808 
809 		/*
810 		 * If the queue doesn't support SG gaps and adding this segment
811 		 * would create a gap, disallow it.
812 		 */
813 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
814 		if (bvec_gap_to_prev(q, bvec, offset))
815 			return 0;
816 	}
817 
818 	if (bio_full(bio, len))
819 		return 0;
820 
821 	if (bio->bi_vcnt >= queue_max_segments(q))
822 		return 0;
823 
824 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
825 	bvec->bv_page = page;
826 	bvec->bv_len = len;
827 	bvec->bv_offset = offset;
828 	bio->bi_vcnt++;
829 	bio->bi_iter.bi_size += len;
830 	return len;
831 }
832 
833 /**
834  * bio_add_pc_page	- attempt to add page to passthrough bio
835  * @q: the target queue
836  * @bio: destination bio
837  * @page: page to add
838  * @len: vec entry length
839  * @offset: vec entry offset
840  *
841  * Attempt to add a page to the bio_vec maplist. This can fail for a
842  * number of reasons, such as the bio being full or target block device
843  * limitations. The target block device must allow bio's up to PAGE_SIZE,
844  * so it is always possible to add a single page to an empty bio.
845  *
846  * This should only be used by passthrough bios.
847  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)848 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
849 		struct page *page, unsigned int len, unsigned int offset)
850 {
851 	bool same_page = false;
852 	return bio_add_hw_page(q, bio, page, len, offset,
853 			queue_max_hw_sectors(q), &same_page);
854 }
855 EXPORT_SYMBOL(bio_add_pc_page);
856 
857 /**
858  * __bio_try_merge_page - try appending data to an existing bvec.
859  * @bio: destination bio
860  * @page: start page to add
861  * @len: length of the data to add
862  * @off: offset of the data relative to @page
863  * @same_page: return if the segment has been merged inside the same page
864  *
865  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
866  * useful optimisation for file systems with a block size smaller than the
867  * page size.
868  *
869  * Warn if (@len, @off) crosses pages in case that @same_page is true.
870  *
871  * Return %true on success or %false on failure.
872  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)873 bool __bio_try_merge_page(struct bio *bio, struct page *page,
874 		unsigned int len, unsigned int off, bool *same_page)
875 {
876 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
877 		return false;
878 
879 	if (bio->bi_vcnt > 0) {
880 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
881 
882 		if (page_is_mergeable(bv, page, len, off, same_page)) {
883 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
884 				*same_page = false;
885 				return false;
886 			}
887 			bv->bv_len += len;
888 			bio->bi_iter.bi_size += len;
889 			return true;
890 		}
891 	}
892 	return false;
893 }
894 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
895 
896 /**
897  * __bio_add_page - add page(s) to a bio in a new segment
898  * @bio: destination bio
899  * @page: start page to add
900  * @len: length of the data to add, may cross pages
901  * @off: offset of the data relative to @page, may cross pages
902  *
903  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
904  * that @bio has space for another bvec.
905  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)906 void __bio_add_page(struct bio *bio, struct page *page,
907 		unsigned int len, unsigned int off)
908 {
909 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
910 
911 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
912 	WARN_ON_ONCE(bio_full(bio, len));
913 
914 	bv->bv_page = page;
915 	bv->bv_offset = off;
916 	bv->bv_len = len;
917 
918 	bio->bi_iter.bi_size += len;
919 	bio->bi_vcnt++;
920 
921 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
922 		bio_set_flag(bio, BIO_WORKINGSET);
923 }
924 EXPORT_SYMBOL_GPL(__bio_add_page);
925 
926 /**
927  *	bio_add_page	-	attempt to add page(s) to bio
928  *	@bio: destination bio
929  *	@page: start page to add
930  *	@len: vec entry length, may cross pages
931  *	@offset: vec entry offset relative to @page, may cross pages
932  *
933  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
934  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
935  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)936 int bio_add_page(struct bio *bio, struct page *page,
937 		 unsigned int len, unsigned int offset)
938 {
939 	bool same_page = false;
940 
941 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
942 		if (bio_full(bio, len))
943 			return 0;
944 		__bio_add_page(bio, page, len, offset);
945 	}
946 	return len;
947 }
948 EXPORT_SYMBOL(bio_add_page);
949 
bio_release_pages(struct bio * bio,bool mark_dirty)950 void bio_release_pages(struct bio *bio, bool mark_dirty)
951 {
952 	struct bvec_iter_all iter_all;
953 	struct bio_vec *bvec;
954 
955 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
956 		return;
957 
958 	bio_for_each_segment_all(bvec, bio, iter_all) {
959 		if (mark_dirty)
960 			set_page_dirty_lock(bvec->bv_page);
961 		put_page(bvec->bv_page);
962 	}
963 }
964 EXPORT_SYMBOL_GPL(bio_release_pages);
965 
__bio_iov_bvec_add_pages(struct bio * bio,struct iov_iter * iter)966 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
967 {
968 	const struct bio_vec *bv = iter->bvec;
969 	unsigned int len;
970 	size_t size;
971 
972 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
973 		return -EINVAL;
974 
975 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
976 	size = bio_add_page(bio, bv->bv_page, len,
977 				bv->bv_offset + iter->iov_offset);
978 	if (unlikely(size != len))
979 		return -EINVAL;
980 	iov_iter_advance(iter, size);
981 	return 0;
982 }
983 
bio_put_pages(struct page ** pages,size_t size,size_t off)984 static void bio_put_pages(struct page **pages, size_t size, size_t off)
985 {
986 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
987 
988 	for (i = 0; i < nr; i++)
989 		put_page(pages[i]);
990 }
991 
992 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
993 
994 /**
995  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
996  * @bio: bio to add pages to
997  * @iter: iov iterator describing the region to be mapped
998  *
999  * Pins pages from *iter and appends them to @bio's bvec array. The
1000  * pages will have to be released using put_page() when done.
1001  * For multi-segment *iter, this function only adds pages from the
1002  * next non-empty segment of the iov iterator.
1003  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1004 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1005 {
1006 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1007 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1008 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1009 	struct page **pages = (struct page **)bv;
1010 	bool same_page = false;
1011 	ssize_t size, left;
1012 	unsigned len, i;
1013 	size_t offset;
1014 
1015 	/*
1016 	 * Move page array up in the allocated memory for the bio vecs as far as
1017 	 * possible so that we can start filling biovecs from the beginning
1018 	 * without overwriting the temporary page array.
1019 	*/
1020 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1021 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1022 
1023 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1024 	if (unlikely(size <= 0))
1025 		return size ? size : -EFAULT;
1026 
1027 	for (left = size, i = 0; left > 0; left -= len, i++) {
1028 		struct page *page = pages[i];
1029 
1030 		len = min_t(size_t, PAGE_SIZE - offset, left);
1031 
1032 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1033 			if (same_page)
1034 				put_page(page);
1035 		} else {
1036 			if (WARN_ON_ONCE(bio_full(bio, len))) {
1037 				bio_put_pages(pages + i, left, offset);
1038 				return -EINVAL;
1039 			}
1040 			__bio_add_page(bio, page, len, offset);
1041 		}
1042 		offset = 0;
1043 	}
1044 
1045 	iov_iter_advance(iter, size);
1046 	return 0;
1047 }
1048 
__bio_iov_append_get_pages(struct bio * bio,struct iov_iter * iter)1049 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1050 {
1051 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1052 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1053 	struct request_queue *q = bio->bi_disk->queue;
1054 	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1055 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1056 	struct page **pages = (struct page **)bv;
1057 	ssize_t size, left;
1058 	unsigned len, i;
1059 	size_t offset;
1060 	int ret = 0;
1061 
1062 	/*
1063 	 * Move page array up in the allocated memory for the bio vecs as far as
1064 	 * possible so that we can start filling biovecs from the beginning
1065 	 * without overwriting the temporary page array.
1066 	 */
1067 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1068 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1069 
1070 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1071 	if (unlikely(size <= 0))
1072 		return size ? size : -EFAULT;
1073 
1074 	for (left = size, i = 0; left > 0; left -= len, i++) {
1075 		struct page *page = pages[i];
1076 		bool same_page = false;
1077 
1078 		len = min_t(size_t, PAGE_SIZE - offset, left);
1079 		if (bio_add_hw_page(q, bio, page, len, offset,
1080 				max_append_sectors, &same_page) != len) {
1081 			bio_put_pages(pages + i, left, offset);
1082 			ret = -EINVAL;
1083 			break;
1084 		}
1085 		if (same_page)
1086 			put_page(page);
1087 		offset = 0;
1088 	}
1089 
1090 	iov_iter_advance(iter, size - left);
1091 	return ret;
1092 }
1093 
1094 /**
1095  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1096  * @bio: bio to add pages to
1097  * @iter: iov iterator describing the region to be added
1098  *
1099  * This takes either an iterator pointing to user memory, or one pointing to
1100  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1101  * map them into the kernel. On IO completion, the caller should put those
1102  * pages. If we're adding kernel pages, and the caller told us it's safe to
1103  * do so, we just have to add the pages to the bio directly. We don't grab an
1104  * extra reference to those pages (the user should already have that), and we
1105  * don't put the page on IO completion. The caller needs to check if the bio is
1106  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1107  * released.
1108  *
1109  * The function tries, but does not guarantee, to pin as many pages as
1110  * fit into the bio, or are requested in @iter, whatever is smaller. If
1111  * MM encounters an error pinning the requested pages, it stops. Error
1112  * is returned only if 0 pages could be pinned.
1113  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1114 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1115 {
1116 	const bool is_bvec = iov_iter_is_bvec(iter);
1117 	int ret;
1118 
1119 	if (WARN_ON_ONCE(bio->bi_vcnt))
1120 		return -EINVAL;
1121 
1122 	do {
1123 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1124 			if (WARN_ON_ONCE(is_bvec))
1125 				return -EINVAL;
1126 			ret = __bio_iov_append_get_pages(bio, iter);
1127 		} else {
1128 			if (is_bvec)
1129 				ret = __bio_iov_bvec_add_pages(bio, iter);
1130 			else
1131 				ret = __bio_iov_iter_get_pages(bio, iter);
1132 		}
1133 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1134 
1135 	if (is_bvec)
1136 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1137 	return bio->bi_vcnt ? 0 : ret;
1138 }
1139 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1140 
submit_bio_wait_endio(struct bio * bio)1141 static void submit_bio_wait_endio(struct bio *bio)
1142 {
1143 	complete(bio->bi_private);
1144 }
1145 
1146 /**
1147  * submit_bio_wait - submit a bio, and wait until it completes
1148  * @bio: The &struct bio which describes the I/O
1149  *
1150  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1151  * bio_endio() on failure.
1152  *
1153  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1154  * result in bio reference to be consumed. The caller must drop the reference
1155  * on his own.
1156  */
submit_bio_wait(struct bio * bio)1157 int submit_bio_wait(struct bio *bio)
1158 {
1159 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1160 	unsigned long hang_check;
1161 
1162 	bio->bi_private = &done;
1163 	bio->bi_end_io = submit_bio_wait_endio;
1164 	bio->bi_opf |= REQ_SYNC;
1165 	submit_bio(bio);
1166 
1167 	/* Prevent hang_check timer from firing at us during very long I/O */
1168 	hang_check = sysctl_hung_task_timeout_secs;
1169 	if (hang_check)
1170 		while (!wait_for_completion_io_timeout(&done,
1171 					hang_check * (HZ/2)))
1172 			;
1173 	else
1174 		wait_for_completion_io(&done);
1175 
1176 	return blk_status_to_errno(bio->bi_status);
1177 }
1178 EXPORT_SYMBOL(submit_bio_wait);
1179 
1180 /**
1181  * bio_advance - increment/complete a bio by some number of bytes
1182  * @bio:	bio to advance
1183  * @bytes:	number of bytes to complete
1184  *
1185  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1186  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1187  * be updated on the last bvec as well.
1188  *
1189  * @bio will then represent the remaining, uncompleted portion of the io.
1190  */
bio_advance(struct bio * bio,unsigned bytes)1191 void bio_advance(struct bio *bio, unsigned bytes)
1192 {
1193 	if (bio_integrity(bio))
1194 		bio_integrity_advance(bio, bytes);
1195 
1196 	bio_crypt_advance(bio, bytes);
1197 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1198 }
1199 EXPORT_SYMBOL(bio_advance);
1200 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1201 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1202 			struct bio *src, struct bvec_iter *src_iter)
1203 {
1204 	struct bio_vec src_bv, dst_bv;
1205 	void *src_p, *dst_p;
1206 	unsigned bytes;
1207 
1208 	while (src_iter->bi_size && dst_iter->bi_size) {
1209 		src_bv = bio_iter_iovec(src, *src_iter);
1210 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1211 
1212 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1213 
1214 		src_p = kmap_atomic(src_bv.bv_page);
1215 		dst_p = kmap_atomic(dst_bv.bv_page);
1216 
1217 		memcpy(dst_p + dst_bv.bv_offset,
1218 		       src_p + src_bv.bv_offset,
1219 		       bytes);
1220 
1221 		kunmap_atomic(dst_p);
1222 		kunmap_atomic(src_p);
1223 
1224 		flush_dcache_page(dst_bv.bv_page);
1225 
1226 		bio_advance_iter(src, src_iter, bytes);
1227 		bio_advance_iter(dst, dst_iter, bytes);
1228 	}
1229 }
1230 EXPORT_SYMBOL(bio_copy_data_iter);
1231 
1232 /**
1233  * bio_copy_data - copy contents of data buffers from one bio to another
1234  * @src: source bio
1235  * @dst: destination bio
1236  *
1237  * Stops when it reaches the end of either @src or @dst - that is, copies
1238  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1239  */
bio_copy_data(struct bio * dst,struct bio * src)1240 void bio_copy_data(struct bio *dst, struct bio *src)
1241 {
1242 	struct bvec_iter src_iter = src->bi_iter;
1243 	struct bvec_iter dst_iter = dst->bi_iter;
1244 
1245 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1246 }
1247 EXPORT_SYMBOL(bio_copy_data);
1248 
1249 /**
1250  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1251  * another
1252  * @src: source bio list
1253  * @dst: destination bio list
1254  *
1255  * Stops when it reaches the end of either the @src list or @dst list - that is,
1256  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1257  * bios).
1258  */
bio_list_copy_data(struct bio * dst,struct bio * src)1259 void bio_list_copy_data(struct bio *dst, struct bio *src)
1260 {
1261 	struct bvec_iter src_iter = src->bi_iter;
1262 	struct bvec_iter dst_iter = dst->bi_iter;
1263 
1264 	while (1) {
1265 		if (!src_iter.bi_size) {
1266 			src = src->bi_next;
1267 			if (!src)
1268 				break;
1269 
1270 			src_iter = src->bi_iter;
1271 		}
1272 
1273 		if (!dst_iter.bi_size) {
1274 			dst = dst->bi_next;
1275 			if (!dst)
1276 				break;
1277 
1278 			dst_iter = dst->bi_iter;
1279 		}
1280 
1281 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1282 	}
1283 }
1284 EXPORT_SYMBOL(bio_list_copy_data);
1285 
bio_free_pages(struct bio * bio)1286 void bio_free_pages(struct bio *bio)
1287 {
1288 	struct bio_vec *bvec;
1289 	struct bvec_iter_all iter_all;
1290 
1291 	bio_for_each_segment_all(bvec, bio, iter_all)
1292 		__free_page(bvec->bv_page);
1293 }
1294 EXPORT_SYMBOL(bio_free_pages);
1295 
1296 /*
1297  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1298  * for performing direct-IO in BIOs.
1299  *
1300  * The problem is that we cannot run set_page_dirty() from interrupt context
1301  * because the required locks are not interrupt-safe.  So what we can do is to
1302  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1303  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1304  * in process context.
1305  *
1306  * We special-case compound pages here: normally this means reads into hugetlb
1307  * pages.  The logic in here doesn't really work right for compound pages
1308  * because the VM does not uniformly chase down the head page in all cases.
1309  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1310  * handle them at all.  So we skip compound pages here at an early stage.
1311  *
1312  * Note that this code is very hard to test under normal circumstances because
1313  * direct-io pins the pages with get_user_pages().  This makes
1314  * is_page_cache_freeable return false, and the VM will not clean the pages.
1315  * But other code (eg, flusher threads) could clean the pages if they are mapped
1316  * pagecache.
1317  *
1318  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1319  * deferred bio dirtying paths.
1320  */
1321 
1322 /*
1323  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1324  */
bio_set_pages_dirty(struct bio * bio)1325 void bio_set_pages_dirty(struct bio *bio)
1326 {
1327 	struct bio_vec *bvec;
1328 	struct bvec_iter_all iter_all;
1329 
1330 	bio_for_each_segment_all(bvec, bio, iter_all) {
1331 		set_page_dirty_lock(bvec->bv_page);
1332 	}
1333 }
1334 
1335 /*
1336  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1337  * If they are, then fine.  If, however, some pages are clean then they must
1338  * have been written out during the direct-IO read.  So we take another ref on
1339  * the BIO and re-dirty the pages in process context.
1340  *
1341  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1342  * here on.  It will run one put_page() against each page and will run one
1343  * bio_put() against the BIO.
1344  */
1345 
1346 static void bio_dirty_fn(struct work_struct *work);
1347 
1348 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1349 static DEFINE_SPINLOCK(bio_dirty_lock);
1350 static struct bio *bio_dirty_list;
1351 
1352 /*
1353  * This runs in process context
1354  */
bio_dirty_fn(struct work_struct * work)1355 static void bio_dirty_fn(struct work_struct *work)
1356 {
1357 	struct bio *bio, *next;
1358 
1359 	spin_lock_irq(&bio_dirty_lock);
1360 	next = bio_dirty_list;
1361 	bio_dirty_list = NULL;
1362 	spin_unlock_irq(&bio_dirty_lock);
1363 
1364 	while ((bio = next) != NULL) {
1365 		next = bio->bi_private;
1366 
1367 		bio_release_pages(bio, true);
1368 		bio_put(bio);
1369 	}
1370 }
1371 
bio_check_pages_dirty(struct bio * bio)1372 void bio_check_pages_dirty(struct bio *bio)
1373 {
1374 	struct bio_vec *bvec;
1375 	unsigned long flags;
1376 	struct bvec_iter_all iter_all;
1377 
1378 	bio_for_each_segment_all(bvec, bio, iter_all) {
1379 		if (!PageDirty(bvec->bv_page))
1380 			goto defer;
1381 	}
1382 
1383 	bio_release_pages(bio, false);
1384 	bio_put(bio);
1385 	return;
1386 defer:
1387 	spin_lock_irqsave(&bio_dirty_lock, flags);
1388 	bio->bi_private = bio_dirty_list;
1389 	bio_dirty_list = bio;
1390 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1391 	schedule_work(&bio_dirty_work);
1392 }
1393 
bio_remaining_done(struct bio * bio)1394 static inline bool bio_remaining_done(struct bio *bio)
1395 {
1396 	/*
1397 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1398 	 * we always end io on the first invocation.
1399 	 */
1400 	if (!bio_flagged(bio, BIO_CHAIN))
1401 		return true;
1402 
1403 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1404 
1405 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1406 		bio_clear_flag(bio, BIO_CHAIN);
1407 		return true;
1408 	}
1409 
1410 	return false;
1411 }
1412 
1413 /**
1414  * bio_endio - end I/O on a bio
1415  * @bio:	bio
1416  *
1417  * Description:
1418  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1419  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1420  *   bio unless they own it and thus know that it has an end_io function.
1421  *
1422  *   bio_endio() can be called several times on a bio that has been chained
1423  *   using bio_chain().  The ->bi_end_io() function will only be called the
1424  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1425  *   generated if BIO_TRACE_COMPLETION is set.
1426  **/
bio_endio(struct bio * bio)1427 void bio_endio(struct bio *bio)
1428 {
1429 again:
1430 	if (!bio_remaining_done(bio))
1431 		return;
1432 	if (!bio_integrity_endio(bio))
1433 		return;
1434 
1435 	if (bio->bi_disk)
1436 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1437 
1438 	/*
1439 	 * Need to have a real endio function for chained bios, otherwise
1440 	 * various corner cases will break (like stacking block devices that
1441 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1442 	 * recursion and blowing the stack. Tail call optimization would
1443 	 * handle this, but compiling with frame pointers also disables
1444 	 * gcc's sibling call optimization.
1445 	 */
1446 	if (bio->bi_end_io == bio_chain_endio) {
1447 		bio = __bio_chain_endio(bio);
1448 		goto again;
1449 	}
1450 
1451 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1452 		trace_block_bio_complete(bio->bi_disk->queue, bio);
1453 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1454 	}
1455 
1456 	blk_throtl_bio_endio(bio);
1457 	/* release cgroup info */
1458 	bio_uninit(bio);
1459 	if (bio->bi_end_io)
1460 		bio->bi_end_io(bio);
1461 }
1462 EXPORT_SYMBOL(bio_endio);
1463 
1464 /**
1465  * bio_split - split a bio
1466  * @bio:	bio to split
1467  * @sectors:	number of sectors to split from the front of @bio
1468  * @gfp:	gfp mask
1469  * @bs:		bio set to allocate from
1470  *
1471  * Allocates and returns a new bio which represents @sectors from the start of
1472  * @bio, and updates @bio to represent the remaining sectors.
1473  *
1474  * Unless this is a discard request the newly allocated bio will point
1475  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1476  * neither @bio nor @bs are freed before the split bio.
1477  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1478 struct bio *bio_split(struct bio *bio, int sectors,
1479 		      gfp_t gfp, struct bio_set *bs)
1480 {
1481 	struct bio *split;
1482 
1483 	BUG_ON(sectors <= 0);
1484 	BUG_ON(sectors >= bio_sectors(bio));
1485 
1486 	/* Zone append commands cannot be split */
1487 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1488 		return NULL;
1489 
1490 	split = bio_clone_fast(bio, gfp, bs);
1491 	if (!split)
1492 		return NULL;
1493 
1494 	split->bi_iter.bi_size = sectors << 9;
1495 
1496 	if (bio_integrity(split))
1497 		bio_integrity_trim(split);
1498 
1499 	bio_advance(bio, split->bi_iter.bi_size);
1500 
1501 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1502 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1503 
1504 	return split;
1505 }
1506 EXPORT_SYMBOL(bio_split);
1507 
1508 /**
1509  * bio_trim - trim a bio
1510  * @bio:	bio to trim
1511  * @offset:	number of sectors to trim from the front of @bio
1512  * @size:	size we want to trim @bio to, in sectors
1513  */
bio_trim(struct bio * bio,int offset,int size)1514 void bio_trim(struct bio *bio, int offset, int size)
1515 {
1516 	/* 'bio' is a cloned bio which we need to trim to match
1517 	 * the given offset and size.
1518 	 */
1519 
1520 	size <<= 9;
1521 	if (offset == 0 && size == bio->bi_iter.bi_size)
1522 		return;
1523 
1524 	bio_advance(bio, offset << 9);
1525 	bio->bi_iter.bi_size = size;
1526 
1527 	if (bio_integrity(bio))
1528 		bio_integrity_trim(bio);
1529 
1530 }
1531 EXPORT_SYMBOL_GPL(bio_trim);
1532 
1533 /*
1534  * create memory pools for biovec's in a bio_set.
1535  * use the global biovec slabs created for general use.
1536  */
biovec_init_pool(mempool_t * pool,int pool_entries)1537 int biovec_init_pool(mempool_t *pool, int pool_entries)
1538 {
1539 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1540 
1541 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1542 }
1543 
1544 /*
1545  * bioset_exit - exit a bioset initialized with bioset_init()
1546  *
1547  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1548  * kzalloc()).
1549  */
bioset_exit(struct bio_set * bs)1550 void bioset_exit(struct bio_set *bs)
1551 {
1552 	if (bs->rescue_workqueue)
1553 		destroy_workqueue(bs->rescue_workqueue);
1554 	bs->rescue_workqueue = NULL;
1555 
1556 	mempool_exit(&bs->bio_pool);
1557 	mempool_exit(&bs->bvec_pool);
1558 
1559 	bioset_integrity_free(bs);
1560 	if (bs->bio_slab)
1561 		bio_put_slab(bs);
1562 	bs->bio_slab = NULL;
1563 }
1564 EXPORT_SYMBOL(bioset_exit);
1565 
1566 /**
1567  * bioset_init - Initialize a bio_set
1568  * @bs:		pool to initialize
1569  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1570  * @front_pad:	Number of bytes to allocate in front of the returned bio
1571  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1572  *              and %BIOSET_NEED_RESCUER
1573  *
1574  * Description:
1575  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1576  *    to ask for a number of bytes to be allocated in front of the bio.
1577  *    Front pad allocation is useful for embedding the bio inside
1578  *    another structure, to avoid allocating extra data to go with the bio.
1579  *    Note that the bio must be embedded at the END of that structure always,
1580  *    or things will break badly.
1581  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1582  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1583  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1584  *    dispatch queued requests when the mempool runs out of space.
1585  *
1586  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1587 int bioset_init(struct bio_set *bs,
1588 		unsigned int pool_size,
1589 		unsigned int front_pad,
1590 		int flags)
1591 {
1592 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1593 
1594 	bs->front_pad = front_pad;
1595 
1596 	spin_lock_init(&bs->rescue_lock);
1597 	bio_list_init(&bs->rescue_list);
1598 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1599 
1600 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1601 	if (!bs->bio_slab)
1602 		return -ENOMEM;
1603 
1604 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1605 		goto bad;
1606 
1607 	if ((flags & BIOSET_NEED_BVECS) &&
1608 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1609 		goto bad;
1610 
1611 	if (!(flags & BIOSET_NEED_RESCUER))
1612 		return 0;
1613 
1614 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1615 	if (!bs->rescue_workqueue)
1616 		goto bad;
1617 
1618 	return 0;
1619 bad:
1620 	bioset_exit(bs);
1621 	return -ENOMEM;
1622 }
1623 EXPORT_SYMBOL(bioset_init);
1624 
1625 /*
1626  * Initialize and setup a new bio_set, based on the settings from
1627  * another bio_set.
1628  */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1629 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1630 {
1631 	int flags;
1632 
1633 	flags = 0;
1634 	if (src->bvec_pool.min_nr)
1635 		flags |= BIOSET_NEED_BVECS;
1636 	if (src->rescue_workqueue)
1637 		flags |= BIOSET_NEED_RESCUER;
1638 
1639 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1640 }
1641 EXPORT_SYMBOL(bioset_init_from_src);
1642 
biovec_init_slabs(void)1643 static void __init biovec_init_slabs(void)
1644 {
1645 	int i;
1646 
1647 	for (i = 0; i < BVEC_POOL_NR; i++) {
1648 		int size;
1649 		struct biovec_slab *bvs = bvec_slabs + i;
1650 
1651 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1652 			bvs->slab = NULL;
1653 			continue;
1654 		}
1655 
1656 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1657 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1658                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1659 	}
1660 }
1661 
init_bio(void)1662 static int __init init_bio(void)
1663 {
1664 	bio_slab_max = 2;
1665 	bio_slab_nr = 0;
1666 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1667 			    GFP_KERNEL);
1668 
1669 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1670 
1671 	if (!bio_slabs)
1672 		panic("bio: can't allocate bios\n");
1673 
1674 	bio_integrity_init();
1675 	biovec_init_slabs();
1676 
1677 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1678 		panic("bio: can't allocate bios\n");
1679 
1680 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1681 		panic("bio: can't create integrity pool\n");
1682 
1683 	return 0;
1684 }
1685 subsys_initcall(init_bio);
1686