1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * QLogic QLA41xx NIC HBA Driver
4 * Copyright (c) 2003-2006 QLogic Corporation
5 */
6 #ifndef _QLGE_H_
7 #define _QLGE_H_
8
9 #include <linux/interrupt.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/rtnetlink.h>
13 #include <linux/if_vlan.h>
14
15 /*
16 * General definitions...
17 */
18 #define DRV_NAME "qlge"
19 #define DRV_STRING "QLogic 10 Gigabit PCI-E Ethernet Driver "
20 #define DRV_VERSION "1.00.00.35"
21
22 #define WQ_ADDR_ALIGN 0x3 /* 4 byte alignment */
23
24 #define QLGE_VENDOR_ID 0x1077
25 #define QLGE_DEVICE_ID_8012 0x8012
26 #define QLGE_DEVICE_ID_8000 0x8000
27 #define QLGE_MEZZ_SSYS_ID_068 0x0068
28 #define QLGE_MEZZ_SSYS_ID_180 0x0180
29 #define MAX_CPUS 8
30 #define MAX_TX_RINGS MAX_CPUS
31 #define MAX_RX_RINGS ((MAX_CPUS * 2) + 1)
32
33 #define NUM_TX_RING_ENTRIES 256
34 #define NUM_RX_RING_ENTRIES 256
35
36 /* Use the same len for sbq and lbq. Note that it seems like the device might
37 * support different sizes.
38 */
39 #define QLGE_BQ_SHIFT 9
40 #define QLGE_BQ_LEN BIT(QLGE_BQ_SHIFT)
41 #define QLGE_BQ_SIZE (QLGE_BQ_LEN * sizeof(__le64))
42
43 #define DB_PAGE_SIZE 4096
44
45 /* Calculate the number of (4k) pages required to
46 * contain a buffer queue of the given length.
47 */
48 #define MAX_DB_PAGES_PER_BQ(x) \
49 (((x * sizeof(u64)) / DB_PAGE_SIZE) + \
50 (((x * sizeof(u64)) % DB_PAGE_SIZE) ? 1 : 0))
51
52 #define RX_RING_SHADOW_SPACE (sizeof(u64) + \
53 MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN) * sizeof(u64) + \
54 MAX_DB_PAGES_PER_BQ(QLGE_BQ_LEN) * sizeof(u64))
55 #define LARGE_BUFFER_MAX_SIZE 8192
56 #define LARGE_BUFFER_MIN_SIZE 2048
57
58 #define MAX_CQ 128
59 #define DFLT_COALESCE_WAIT 100 /* 100 usec wait for coalescing */
60 #define MAX_INTER_FRAME_WAIT 10 /* 10 usec max interframe-wait for coalescing */
61 #define DFLT_INTER_FRAME_WAIT (MAX_INTER_FRAME_WAIT / 2)
62 #define UDELAY_COUNT 3
63 #define UDELAY_DELAY 100
64
65 #define TX_DESC_PER_IOCB 8
66
67 #if ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2) > 0
68 #define TX_DESC_PER_OAL ((MAX_SKB_FRAGS - TX_DESC_PER_IOCB) + 2)
69 #else /* all other page sizes */
70 #define TX_DESC_PER_OAL 0
71 #endif
72
73 /* Word shifting for converting 64-bit
74 * address to a series of 16-bit words.
75 * This is used for some MPI firmware
76 * mailbox commands.
77 */
78 #define LSW(x) ((u16)(x))
79 #define MSW(x) ((u16)((u32)(x) >> 16))
80 #define LSD(x) ((u32)((u64)(x)))
81 #define MSD(x) ((u32)((((u64)(x)) >> 32)))
82
83 /* In some cases, the device interprets a value of 0x0000 as 65536. These
84 * cases are marked using the following macro.
85 */
86 #define QLGE_FIT16(value) ((u16)(value))
87
88 /* MPI test register definitions. This register
89 * is used for determining alternate NIC function's
90 * PCI->func number.
91 */
92 enum {
93 MPI_TEST_FUNC_PORT_CFG = 0x1002,
94 MPI_TEST_FUNC_PRB_CTL = 0x100e,
95 MPI_TEST_FUNC_PRB_EN = 0x18a20000,
96 MPI_TEST_FUNC_RST_STS = 0x100a,
97 MPI_TEST_FUNC_RST_FRC = 0x00000003,
98 MPI_TEST_NIC_FUNC_MASK = 0x00000007,
99 MPI_TEST_NIC1_FUNCTION_ENABLE = (1 << 0),
100 MPI_TEST_NIC1_FUNCTION_MASK = 0x0000000e,
101 MPI_TEST_NIC1_FUNC_SHIFT = 1,
102 MPI_TEST_NIC2_FUNCTION_ENABLE = (1 << 4),
103 MPI_TEST_NIC2_FUNCTION_MASK = 0x000000e0,
104 MPI_TEST_NIC2_FUNC_SHIFT = 5,
105 MPI_TEST_FC1_FUNCTION_ENABLE = (1 << 8),
106 MPI_TEST_FC1_FUNCTION_MASK = 0x00000e00,
107 MPI_TEST_FC1_FUNCTION_SHIFT = 9,
108 MPI_TEST_FC2_FUNCTION_ENABLE = (1 << 12),
109 MPI_TEST_FC2_FUNCTION_MASK = 0x0000e000,
110 MPI_TEST_FC2_FUNCTION_SHIFT = 13,
111
112 MPI_NIC_READ = 0x00000000,
113 MPI_NIC_REG_BLOCK = 0x00020000,
114 MPI_NIC_FUNCTION_SHIFT = 6,
115 };
116
117 /*
118 * Processor Address Register (PROC_ADDR) bit definitions.
119 */
120 enum {
121 /* Misc. stuff */
122 MAILBOX_COUNT = 16,
123 MAILBOX_TIMEOUT = 5,
124
125 PROC_ADDR_RDY = (1 << 31),
126 PROC_ADDR_R = (1 << 30),
127 PROC_ADDR_ERR = (1 << 29),
128 PROC_ADDR_DA = (1 << 28),
129 PROC_ADDR_FUNC0_MBI = 0x00001180,
130 PROC_ADDR_FUNC0_MBO = (PROC_ADDR_FUNC0_MBI + MAILBOX_COUNT),
131 PROC_ADDR_FUNC0_CTL = 0x000011a1,
132 PROC_ADDR_FUNC2_MBI = 0x00001280,
133 PROC_ADDR_FUNC2_MBO = (PROC_ADDR_FUNC2_MBI + MAILBOX_COUNT),
134 PROC_ADDR_FUNC2_CTL = 0x000012a1,
135 PROC_ADDR_MPI_RISC = 0x00000000,
136 PROC_ADDR_MDE = 0x00010000,
137 PROC_ADDR_REGBLOCK = 0x00020000,
138 PROC_ADDR_RISC_REG = 0x00030000,
139 };
140
141 /*
142 * System Register (SYS) bit definitions.
143 */
144 enum {
145 SYS_EFE = (1 << 0),
146 SYS_FAE = (1 << 1),
147 SYS_MDC = (1 << 2),
148 SYS_DST = (1 << 3),
149 SYS_DWC = (1 << 4),
150 SYS_EVW = (1 << 5),
151 SYS_OMP_DLY_MASK = 0x3f000000,
152 /*
153 * There are no values defined as of edit #15.
154 */
155 SYS_ODI = (1 << 14),
156 };
157
158 /*
159 * Reset/Failover Register (RST_FO) bit definitions.
160 */
161 enum {
162 RST_FO_TFO = (1 << 0),
163 RST_FO_RR_MASK = 0x00060000,
164 RST_FO_RR_CQ_CAM = 0x00000000,
165 RST_FO_RR_DROP = 0x00000002,
166 RST_FO_RR_DQ = 0x00000004,
167 RST_FO_RR_RCV_FUNC_CQ = 0x00000006,
168 RST_FO_FRB = (1 << 12),
169 RST_FO_MOP = (1 << 13),
170 RST_FO_REG = (1 << 14),
171 RST_FO_FR = (1 << 15),
172 };
173
174 /*
175 * Function Specific Control Register (FSC) bit definitions.
176 */
177 enum {
178 FSC_DBRST_MASK = 0x00070000,
179 FSC_DBRST_256 = 0x00000000,
180 FSC_DBRST_512 = 0x00000001,
181 FSC_DBRST_768 = 0x00000002,
182 FSC_DBRST_1024 = 0x00000003,
183 FSC_DBL_MASK = 0x00180000,
184 FSC_DBL_DBRST = 0x00000000,
185 FSC_DBL_MAX_PLD = 0x00000008,
186 FSC_DBL_MAX_BRST = 0x00000010,
187 FSC_DBL_128_BYTES = 0x00000018,
188 FSC_EC = (1 << 5),
189 FSC_EPC_MASK = 0x00c00000,
190 FSC_EPC_INBOUND = (1 << 6),
191 FSC_EPC_OUTBOUND = (1 << 7),
192 FSC_VM_PAGESIZE_MASK = 0x07000000,
193 FSC_VM_PAGE_2K = 0x00000100,
194 FSC_VM_PAGE_4K = 0x00000200,
195 FSC_VM_PAGE_8K = 0x00000300,
196 FSC_VM_PAGE_64K = 0x00000600,
197 FSC_SH = (1 << 11),
198 FSC_DSB = (1 << 12),
199 FSC_STE = (1 << 13),
200 FSC_FE = (1 << 15),
201 };
202
203 /*
204 * Host Command Status Register (CSR) bit definitions.
205 */
206 enum {
207 CSR_ERR_STS_MASK = 0x0000003f,
208 /*
209 * There are no valued defined as of edit #15.
210 */
211 CSR_RR = (1 << 8),
212 CSR_HRI = (1 << 9),
213 CSR_RP = (1 << 10),
214 CSR_CMD_PARM_SHIFT = 22,
215 CSR_CMD_NOP = 0x00000000,
216 CSR_CMD_SET_RST = 0x10000000,
217 CSR_CMD_CLR_RST = 0x20000000,
218 CSR_CMD_SET_PAUSE = 0x30000000,
219 CSR_CMD_CLR_PAUSE = 0x40000000,
220 CSR_CMD_SET_H2R_INT = 0x50000000,
221 CSR_CMD_CLR_H2R_INT = 0x60000000,
222 CSR_CMD_PAR_EN = 0x70000000,
223 CSR_CMD_SET_BAD_PAR = 0x80000000,
224 CSR_CMD_CLR_BAD_PAR = 0x90000000,
225 CSR_CMD_CLR_R2PCI_INT = 0xa0000000,
226 };
227
228 /*
229 * Configuration Register (CFG) bit definitions.
230 */
231 enum {
232 CFG_LRQ = (1 << 0),
233 CFG_DRQ = (1 << 1),
234 CFG_LR = (1 << 2),
235 CFG_DR = (1 << 3),
236 CFG_LE = (1 << 5),
237 CFG_LCQ = (1 << 6),
238 CFG_DCQ = (1 << 7),
239 CFG_Q_SHIFT = 8,
240 CFG_Q_MASK = 0x7f000000,
241 };
242
243 /*
244 * Status Register (STS) bit definitions.
245 */
246 enum {
247 STS_FE = (1 << 0),
248 STS_PI = (1 << 1),
249 STS_PL0 = (1 << 2),
250 STS_PL1 = (1 << 3),
251 STS_PI0 = (1 << 4),
252 STS_PI1 = (1 << 5),
253 STS_FUNC_ID_MASK = 0x000000c0,
254 STS_FUNC_ID_SHIFT = 6,
255 STS_F0E = (1 << 8),
256 STS_F1E = (1 << 9),
257 STS_F2E = (1 << 10),
258 STS_F3E = (1 << 11),
259 STS_NFE = (1 << 12),
260 };
261
262 /*
263 * Interrupt Enable Register (INTR_EN) bit definitions.
264 */
265 enum {
266 INTR_EN_INTR_MASK = 0x007f0000,
267 INTR_EN_TYPE_MASK = 0x03000000,
268 INTR_EN_TYPE_ENABLE = 0x00000100,
269 INTR_EN_TYPE_DISABLE = 0x00000200,
270 INTR_EN_TYPE_READ = 0x00000300,
271 INTR_EN_IHD = (1 << 13),
272 INTR_EN_IHD_MASK = (INTR_EN_IHD << 16),
273 INTR_EN_EI = (1 << 14),
274 INTR_EN_EN = (1 << 15),
275 };
276
277 /*
278 * Interrupt Mask Register (INTR_MASK) bit definitions.
279 */
280 enum {
281 INTR_MASK_PI = (1 << 0),
282 INTR_MASK_HL0 = (1 << 1),
283 INTR_MASK_LH0 = (1 << 2),
284 INTR_MASK_HL1 = (1 << 3),
285 INTR_MASK_LH1 = (1 << 4),
286 INTR_MASK_SE = (1 << 5),
287 INTR_MASK_LSC = (1 << 6),
288 INTR_MASK_MC = (1 << 7),
289 INTR_MASK_LINK_IRQS = INTR_MASK_LSC | INTR_MASK_SE | INTR_MASK_MC,
290 };
291
292 /*
293 * Register (REV_ID) bit definitions.
294 */
295 enum {
296 REV_ID_MASK = 0x0000000f,
297 REV_ID_NICROLL_SHIFT = 0,
298 REV_ID_NICREV_SHIFT = 4,
299 REV_ID_XGROLL_SHIFT = 8,
300 REV_ID_XGREV_SHIFT = 12,
301 REV_ID_CHIPREV_SHIFT = 28,
302 };
303
304 /*
305 * Force ECC Error Register (FRC_ECC_ERR) bit definitions.
306 */
307 enum {
308 FRC_ECC_ERR_VW = (1 << 12),
309 FRC_ECC_ERR_VB = (1 << 13),
310 FRC_ECC_ERR_NI = (1 << 14),
311 FRC_ECC_ERR_NO = (1 << 15),
312 FRC_ECC_PFE_SHIFT = 16,
313 FRC_ECC_ERR_DO = (1 << 18),
314 FRC_ECC_P14 = (1 << 19),
315 };
316
317 /*
318 * Error Status Register (ERR_STS) bit definitions.
319 */
320 enum {
321 ERR_STS_NOF = (1 << 0),
322 ERR_STS_NIF = (1 << 1),
323 ERR_STS_DRP = (1 << 2),
324 ERR_STS_XGP = (1 << 3),
325 ERR_STS_FOU = (1 << 4),
326 ERR_STS_FOC = (1 << 5),
327 ERR_STS_FOF = (1 << 6),
328 ERR_STS_FIU = (1 << 7),
329 ERR_STS_FIC = (1 << 8),
330 ERR_STS_FIF = (1 << 9),
331 ERR_STS_MOF = (1 << 10),
332 ERR_STS_TA = (1 << 11),
333 ERR_STS_MA = (1 << 12),
334 ERR_STS_MPE = (1 << 13),
335 ERR_STS_SCE = (1 << 14),
336 ERR_STS_STE = (1 << 15),
337 ERR_STS_FOW = (1 << 16),
338 ERR_STS_UE = (1 << 17),
339 ERR_STS_MCH = (1 << 26),
340 ERR_STS_LOC_SHIFT = 27,
341 };
342
343 /*
344 * RAM Debug Address Register (RAM_DBG_ADDR) bit definitions.
345 */
346 enum {
347 RAM_DBG_ADDR_FW = (1 << 30),
348 RAM_DBG_ADDR_FR = (1 << 31),
349 };
350
351 /*
352 * Semaphore Register (SEM) bit definitions.
353 */
354 enum {
355 /*
356 * Example:
357 * reg = SEM_XGMAC0_MASK | (SEM_SET << SEM_XGMAC0_SHIFT)
358 */
359 SEM_CLEAR = 0,
360 SEM_SET = 1,
361 SEM_FORCE = 3,
362 SEM_XGMAC0_SHIFT = 0,
363 SEM_XGMAC1_SHIFT = 2,
364 SEM_ICB_SHIFT = 4,
365 SEM_MAC_ADDR_SHIFT = 6,
366 SEM_FLASH_SHIFT = 8,
367 SEM_PROBE_SHIFT = 10,
368 SEM_RT_IDX_SHIFT = 12,
369 SEM_PROC_REG_SHIFT = 14,
370 SEM_XGMAC0_MASK = 0x00030000,
371 SEM_XGMAC1_MASK = 0x000c0000,
372 SEM_ICB_MASK = 0x00300000,
373 SEM_MAC_ADDR_MASK = 0x00c00000,
374 SEM_FLASH_MASK = 0x03000000,
375 SEM_PROBE_MASK = 0x0c000000,
376 SEM_RT_IDX_MASK = 0x30000000,
377 SEM_PROC_REG_MASK = 0xc0000000,
378 };
379
380 /*
381 * 10G MAC Address Register (XGMAC_ADDR) bit definitions.
382 */
383 enum {
384 XGMAC_ADDR_RDY = (1 << 31),
385 XGMAC_ADDR_R = (1 << 30),
386 XGMAC_ADDR_XME = (1 << 29),
387
388 /* XGMAC control registers */
389 PAUSE_SRC_LO = 0x00000100,
390 PAUSE_SRC_HI = 0x00000104,
391 GLOBAL_CFG = 0x00000108,
392 GLOBAL_CFG_RESET = (1 << 0),
393 GLOBAL_CFG_JUMBO = (1 << 6),
394 GLOBAL_CFG_TX_STAT_EN = (1 << 10),
395 GLOBAL_CFG_RX_STAT_EN = (1 << 11),
396 TX_CFG = 0x0000010c,
397 TX_CFG_RESET = (1 << 0),
398 TX_CFG_EN = (1 << 1),
399 TX_CFG_PREAM = (1 << 2),
400 RX_CFG = 0x00000110,
401 RX_CFG_RESET = (1 << 0),
402 RX_CFG_EN = (1 << 1),
403 RX_CFG_PREAM = (1 << 2),
404 FLOW_CTL = 0x0000011c,
405 PAUSE_OPCODE = 0x00000120,
406 PAUSE_TIMER = 0x00000124,
407 PAUSE_FRM_DEST_LO = 0x00000128,
408 PAUSE_FRM_DEST_HI = 0x0000012c,
409 MAC_TX_PARAMS = 0x00000134,
410 MAC_TX_PARAMS_JUMBO = (1 << 31),
411 MAC_TX_PARAMS_SIZE_SHIFT = 16,
412 MAC_RX_PARAMS = 0x00000138,
413 MAC_SYS_INT = 0x00000144,
414 MAC_SYS_INT_MASK = 0x00000148,
415 MAC_MGMT_INT = 0x0000014c,
416 MAC_MGMT_IN_MASK = 0x00000150,
417 EXT_ARB_MODE = 0x000001fc,
418
419 /* XGMAC TX statistics registers */
420 TX_PKTS = 0x00000200,
421 TX_BYTES = 0x00000208,
422 TX_MCAST_PKTS = 0x00000210,
423 TX_BCAST_PKTS = 0x00000218,
424 TX_UCAST_PKTS = 0x00000220,
425 TX_CTL_PKTS = 0x00000228,
426 TX_PAUSE_PKTS = 0x00000230,
427 TX_64_PKT = 0x00000238,
428 TX_65_TO_127_PKT = 0x00000240,
429 TX_128_TO_255_PKT = 0x00000248,
430 TX_256_511_PKT = 0x00000250,
431 TX_512_TO_1023_PKT = 0x00000258,
432 TX_1024_TO_1518_PKT = 0x00000260,
433 TX_1519_TO_MAX_PKT = 0x00000268,
434 TX_UNDERSIZE_PKT = 0x00000270,
435 TX_OVERSIZE_PKT = 0x00000278,
436
437 /* XGMAC statistics control registers */
438 RX_HALF_FULL_DET = 0x000002a0,
439 TX_HALF_FULL_DET = 0x000002a4,
440 RX_OVERFLOW_DET = 0x000002a8,
441 TX_OVERFLOW_DET = 0x000002ac,
442 RX_HALF_FULL_MASK = 0x000002b0,
443 TX_HALF_FULL_MASK = 0x000002b4,
444 RX_OVERFLOW_MASK = 0x000002b8,
445 TX_OVERFLOW_MASK = 0x000002bc,
446 STAT_CNT_CTL = 0x000002c0,
447 STAT_CNT_CTL_CLEAR_TX = (1 << 0),
448 STAT_CNT_CTL_CLEAR_RX = (1 << 1),
449 AUX_RX_HALF_FULL_DET = 0x000002d0,
450 AUX_TX_HALF_FULL_DET = 0x000002d4,
451 AUX_RX_OVERFLOW_DET = 0x000002d8,
452 AUX_TX_OVERFLOW_DET = 0x000002dc,
453 AUX_RX_HALF_FULL_MASK = 0x000002f0,
454 AUX_TX_HALF_FULL_MASK = 0x000002f4,
455 AUX_RX_OVERFLOW_MASK = 0x000002f8,
456 AUX_TX_OVERFLOW_MASK = 0x000002fc,
457
458 /* XGMAC RX statistics registers */
459 RX_BYTES = 0x00000300,
460 RX_BYTES_OK = 0x00000308,
461 RX_PKTS = 0x00000310,
462 RX_PKTS_OK = 0x00000318,
463 RX_BCAST_PKTS = 0x00000320,
464 RX_MCAST_PKTS = 0x00000328,
465 RX_UCAST_PKTS = 0x00000330,
466 RX_UNDERSIZE_PKTS = 0x00000338,
467 RX_OVERSIZE_PKTS = 0x00000340,
468 RX_JABBER_PKTS = 0x00000348,
469 RX_UNDERSIZE_FCERR_PKTS = 0x00000350,
470 RX_DROP_EVENTS = 0x00000358,
471 RX_FCERR_PKTS = 0x00000360,
472 RX_ALIGN_ERR = 0x00000368,
473 RX_SYMBOL_ERR = 0x00000370,
474 RX_MAC_ERR = 0x00000378,
475 RX_CTL_PKTS = 0x00000380,
476 RX_PAUSE_PKTS = 0x00000388,
477 RX_64_PKTS = 0x00000390,
478 RX_65_TO_127_PKTS = 0x00000398,
479 RX_128_255_PKTS = 0x000003a0,
480 RX_256_511_PKTS = 0x000003a8,
481 RX_512_TO_1023_PKTS = 0x000003b0,
482 RX_1024_TO_1518_PKTS = 0x000003b8,
483 RX_1519_TO_MAX_PKTS = 0x000003c0,
484 RX_LEN_ERR_PKTS = 0x000003c8,
485
486 /* XGMAC MDIO control registers */
487 MDIO_TX_DATA = 0x00000400,
488 MDIO_RX_DATA = 0x00000410,
489 MDIO_CMD = 0x00000420,
490 MDIO_PHY_ADDR = 0x00000430,
491 MDIO_PORT = 0x00000440,
492 MDIO_STATUS = 0x00000450,
493
494 XGMAC_REGISTER_END = 0x00000740,
495 };
496
497 /*
498 * Enhanced Transmission Schedule Registers (NIC_ETS,CNA_ETS) bit definitions.
499 */
500 enum {
501 ETS_QUEUE_SHIFT = 29,
502 ETS_REF = (1 << 26),
503 ETS_RS = (1 << 27),
504 ETS_P = (1 << 28),
505 ETS_FC_COS_SHIFT = 23,
506 };
507
508 /*
509 * Flash Address Register (FLASH_ADDR) bit definitions.
510 */
511 enum {
512 FLASH_ADDR_RDY = (1 << 31),
513 FLASH_ADDR_R = (1 << 30),
514 FLASH_ADDR_ERR = (1 << 29),
515 };
516
517 /*
518 * Stop CQ Processing Register (CQ_STOP) bit definitions.
519 */
520 enum {
521 CQ_STOP_QUEUE_MASK = (0x007f0000),
522 CQ_STOP_TYPE_MASK = (0x03000000),
523 CQ_STOP_TYPE_START = 0x00000100,
524 CQ_STOP_TYPE_STOP = 0x00000200,
525 CQ_STOP_TYPE_READ = 0x00000300,
526 CQ_STOP_EN = (1 << 15),
527 };
528
529 /*
530 * MAC Protocol Address Index Register (MAC_ADDR_IDX) bit definitions.
531 */
532 enum {
533 MAC_ADDR_IDX_SHIFT = 4,
534 MAC_ADDR_TYPE_SHIFT = 16,
535 MAC_ADDR_TYPE_COUNT = 10,
536 MAC_ADDR_TYPE_MASK = 0x000f0000,
537 MAC_ADDR_TYPE_CAM_MAC = 0x00000000,
538 MAC_ADDR_TYPE_MULTI_MAC = 0x00010000,
539 MAC_ADDR_TYPE_VLAN = 0x00020000,
540 MAC_ADDR_TYPE_MULTI_FLTR = 0x00030000,
541 MAC_ADDR_TYPE_FC_MAC = 0x00040000,
542 MAC_ADDR_TYPE_MGMT_MAC = 0x00050000,
543 MAC_ADDR_TYPE_MGMT_VLAN = 0x00060000,
544 MAC_ADDR_TYPE_MGMT_V4 = 0x00070000,
545 MAC_ADDR_TYPE_MGMT_V6 = 0x00080000,
546 MAC_ADDR_TYPE_MGMT_TU_DP = 0x00090000,
547 MAC_ADDR_ADR = (1 << 25),
548 MAC_ADDR_RS = (1 << 26),
549 MAC_ADDR_E = (1 << 27),
550 MAC_ADDR_MR = (1 << 30),
551 MAC_ADDR_MW = (1 << 31),
552 MAX_MULTICAST_ENTRIES = 32,
553
554 /* Entry count and words per entry
555 * for each address type in the filter.
556 */
557 MAC_ADDR_MAX_CAM_ENTRIES = 512,
558 MAC_ADDR_MAX_CAM_WCOUNT = 3,
559 MAC_ADDR_MAX_MULTICAST_ENTRIES = 32,
560 MAC_ADDR_MAX_MULTICAST_WCOUNT = 2,
561 MAC_ADDR_MAX_VLAN_ENTRIES = 4096,
562 MAC_ADDR_MAX_VLAN_WCOUNT = 1,
563 MAC_ADDR_MAX_MCAST_FLTR_ENTRIES = 4096,
564 MAC_ADDR_MAX_MCAST_FLTR_WCOUNT = 1,
565 MAC_ADDR_MAX_FC_MAC_ENTRIES = 4,
566 MAC_ADDR_MAX_FC_MAC_WCOUNT = 2,
567 MAC_ADDR_MAX_MGMT_MAC_ENTRIES = 8,
568 MAC_ADDR_MAX_MGMT_MAC_WCOUNT = 2,
569 MAC_ADDR_MAX_MGMT_VLAN_ENTRIES = 16,
570 MAC_ADDR_MAX_MGMT_VLAN_WCOUNT = 1,
571 MAC_ADDR_MAX_MGMT_V4_ENTRIES = 4,
572 MAC_ADDR_MAX_MGMT_V4_WCOUNT = 1,
573 MAC_ADDR_MAX_MGMT_V6_ENTRIES = 4,
574 MAC_ADDR_MAX_MGMT_V6_WCOUNT = 4,
575 MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES = 4,
576 MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT = 1,
577 };
578
579 /*
580 * MAC Protocol Address Index Register (SPLT_HDR) bit definitions.
581 */
582 enum {
583 SPLT_HDR_EP = (1 << 31),
584 };
585
586 /*
587 * FCoE Receive Configuration Register (FC_RCV_CFG) bit definitions.
588 */
589 enum {
590 FC_RCV_CFG_ECT = (1 << 15),
591 FC_RCV_CFG_DFH = (1 << 20),
592 FC_RCV_CFG_DVF = (1 << 21),
593 FC_RCV_CFG_RCE = (1 << 27),
594 FC_RCV_CFG_RFE = (1 << 28),
595 FC_RCV_CFG_TEE = (1 << 29),
596 FC_RCV_CFG_TCE = (1 << 30),
597 FC_RCV_CFG_TFE = (1 << 31),
598 };
599
600 /*
601 * NIC Receive Configuration Register (NIC_RCV_CFG) bit definitions.
602 */
603 enum {
604 NIC_RCV_CFG_PPE = (1 << 0),
605 NIC_RCV_CFG_VLAN_MASK = 0x00060000,
606 NIC_RCV_CFG_VLAN_ALL = 0x00000000,
607 NIC_RCV_CFG_VLAN_MATCH_ONLY = 0x00000002,
608 NIC_RCV_CFG_VLAN_MATCH_AND_NON = 0x00000004,
609 NIC_RCV_CFG_VLAN_NONE_AND_NON = 0x00000006,
610 NIC_RCV_CFG_RV = (1 << 3),
611 NIC_RCV_CFG_DFQ_MASK = (0x7f000000),
612 NIC_RCV_CFG_DFQ_SHIFT = 8,
613 NIC_RCV_CFG_DFQ = 0, /* HARDCODE default queue to 0. */
614 };
615
616 /*
617 * Mgmt Receive Configuration Register (MGMT_RCV_CFG) bit definitions.
618 */
619 enum {
620 MGMT_RCV_CFG_ARP = (1 << 0),
621 MGMT_RCV_CFG_DHC = (1 << 1),
622 MGMT_RCV_CFG_DHS = (1 << 2),
623 MGMT_RCV_CFG_NP = (1 << 3),
624 MGMT_RCV_CFG_I6N = (1 << 4),
625 MGMT_RCV_CFG_I6R = (1 << 5),
626 MGMT_RCV_CFG_DH6 = (1 << 6),
627 MGMT_RCV_CFG_UD1 = (1 << 7),
628 MGMT_RCV_CFG_UD0 = (1 << 8),
629 MGMT_RCV_CFG_BCT = (1 << 9),
630 MGMT_RCV_CFG_MCT = (1 << 10),
631 MGMT_RCV_CFG_DM = (1 << 11),
632 MGMT_RCV_CFG_RM = (1 << 12),
633 MGMT_RCV_CFG_STL = (1 << 13),
634 MGMT_RCV_CFG_VLAN_MASK = 0xc0000000,
635 MGMT_RCV_CFG_VLAN_ALL = 0x00000000,
636 MGMT_RCV_CFG_VLAN_MATCH_ONLY = 0x00004000,
637 MGMT_RCV_CFG_VLAN_MATCH_AND_NON = 0x00008000,
638 MGMT_RCV_CFG_VLAN_NONE_AND_NON = 0x0000c000,
639 };
640
641 /*
642 * Routing Index Register (RT_IDX) bit definitions.
643 */
644 enum {
645 RT_IDX_IDX_SHIFT = 8,
646 RT_IDX_TYPE_MASK = 0x000f0000,
647 RT_IDX_TYPE_SHIFT = 16,
648 RT_IDX_TYPE_RT = 0x00000000,
649 RT_IDX_TYPE_RT_INV = 0x00010000,
650 RT_IDX_TYPE_NICQ = 0x00020000,
651 RT_IDX_TYPE_NICQ_INV = 0x00030000,
652 RT_IDX_DST_MASK = 0x00700000,
653 RT_IDX_DST_RSS = 0x00000000,
654 RT_IDX_DST_CAM_Q = 0x00100000,
655 RT_IDX_DST_COS_Q = 0x00200000,
656 RT_IDX_DST_DFLT_Q = 0x00300000,
657 RT_IDX_DST_DEST_Q = 0x00400000,
658 RT_IDX_RS = (1 << 26),
659 RT_IDX_E = (1 << 27),
660 RT_IDX_MR = (1 << 30),
661 RT_IDX_MW = (1 << 31),
662
663 /* Nic Queue format - type 2 bits */
664 RT_IDX_BCAST = (1 << 0),
665 RT_IDX_MCAST = (1 << 1),
666 RT_IDX_MCAST_MATCH = (1 << 2),
667 RT_IDX_MCAST_REG_MATCH = (1 << 3),
668 RT_IDX_MCAST_HASH_MATCH = (1 << 4),
669 RT_IDX_FC_MACH = (1 << 5),
670 RT_IDX_ETH_FCOE = (1 << 6),
671 RT_IDX_CAM_HIT = (1 << 7),
672 RT_IDX_CAM_BIT0 = (1 << 8),
673 RT_IDX_CAM_BIT1 = (1 << 9),
674 RT_IDX_VLAN_TAG = (1 << 10),
675 RT_IDX_VLAN_MATCH = (1 << 11),
676 RT_IDX_VLAN_FILTER = (1 << 12),
677 RT_IDX_ETH_SKIP1 = (1 << 13),
678 RT_IDX_ETH_SKIP2 = (1 << 14),
679 RT_IDX_BCAST_MCAST_MATCH = (1 << 15),
680 RT_IDX_802_3 = (1 << 16),
681 RT_IDX_LLDP = (1 << 17),
682 RT_IDX_UNUSED018 = (1 << 18),
683 RT_IDX_UNUSED019 = (1 << 19),
684 RT_IDX_UNUSED20 = (1 << 20),
685 RT_IDX_UNUSED21 = (1 << 21),
686 RT_IDX_ERR = (1 << 22),
687 RT_IDX_VALID = (1 << 23),
688 RT_IDX_TU_CSUM_ERR = (1 << 24),
689 RT_IDX_IP_CSUM_ERR = (1 << 25),
690 RT_IDX_MAC_ERR = (1 << 26),
691 RT_IDX_RSS_TCP6 = (1 << 27),
692 RT_IDX_RSS_TCP4 = (1 << 28),
693 RT_IDX_RSS_IPV6 = (1 << 29),
694 RT_IDX_RSS_IPV4 = (1 << 30),
695 RT_IDX_RSS_MATCH = (1 << 31),
696
697 /* Hierarchy for the NIC Queue Mask */
698 RT_IDX_ALL_ERR_SLOT = 0,
699 RT_IDX_MAC_ERR_SLOT = 0,
700 RT_IDX_IP_CSUM_ERR_SLOT = 1,
701 RT_IDX_TCP_UDP_CSUM_ERR_SLOT = 2,
702 RT_IDX_BCAST_SLOT = 3,
703 RT_IDX_MCAST_MATCH_SLOT = 4,
704 RT_IDX_ALLMULTI_SLOT = 5,
705 RT_IDX_UNUSED6_SLOT = 6,
706 RT_IDX_UNUSED7_SLOT = 7,
707 RT_IDX_RSS_MATCH_SLOT = 8,
708 RT_IDX_RSS_IPV4_SLOT = 8,
709 RT_IDX_RSS_IPV6_SLOT = 9,
710 RT_IDX_RSS_TCP4_SLOT = 10,
711 RT_IDX_RSS_TCP6_SLOT = 11,
712 RT_IDX_CAM_HIT_SLOT = 12,
713 RT_IDX_UNUSED013 = 13,
714 RT_IDX_UNUSED014 = 14,
715 RT_IDX_PROMISCUOUS_SLOT = 15,
716 RT_IDX_MAX_RT_SLOTS = 8,
717 RT_IDX_MAX_NIC_SLOTS = 16,
718 };
719
720 /*
721 * Serdes Address Register (XG_SERDES_ADDR) bit definitions.
722 */
723 enum {
724 XG_SERDES_ADDR_RDY = (1 << 31),
725 XG_SERDES_ADDR_R = (1 << 30),
726
727 XG_SERDES_ADDR_STS = 0x00001E06,
728 XG_SERDES_ADDR_XFI1_PWR_UP = 0x00000005,
729 XG_SERDES_ADDR_XFI2_PWR_UP = 0x0000000a,
730 XG_SERDES_ADDR_XAUI_PWR_DOWN = 0x00000001,
731
732 /* Serdes coredump definitions. */
733 XG_SERDES_XAUI_AN_START = 0x00000000,
734 XG_SERDES_XAUI_AN_END = 0x00000034,
735 XG_SERDES_XAUI_HSS_PCS_START = 0x00000800,
736 XG_SERDES_XAUI_HSS_PCS_END = 0x0000880,
737 XG_SERDES_XFI_AN_START = 0x00001000,
738 XG_SERDES_XFI_AN_END = 0x00001034,
739 XG_SERDES_XFI_TRAIN_START = 0x10001050,
740 XG_SERDES_XFI_TRAIN_END = 0x1000107C,
741 XG_SERDES_XFI_HSS_PCS_START = 0x00001800,
742 XG_SERDES_XFI_HSS_PCS_END = 0x00001838,
743 XG_SERDES_XFI_HSS_TX_START = 0x00001c00,
744 XG_SERDES_XFI_HSS_TX_END = 0x00001c1f,
745 XG_SERDES_XFI_HSS_RX_START = 0x00001c40,
746 XG_SERDES_XFI_HSS_RX_END = 0x00001c5f,
747 XG_SERDES_XFI_HSS_PLL_START = 0x00001e00,
748 XG_SERDES_XFI_HSS_PLL_END = 0x00001e1f,
749 };
750
751 /*
752 * NIC Probe Mux Address Register (PRB_MX_ADDR) bit definitions.
753 */
754 enum {
755 PRB_MX_ADDR_ARE = (1 << 16),
756 PRB_MX_ADDR_UP = (1 << 15),
757 PRB_MX_ADDR_SWP = (1 << 14),
758
759 /* Module select values. */
760 PRB_MX_ADDR_MAX_MODS = 21,
761 PRB_MX_ADDR_MOD_SEL_SHIFT = 9,
762 PRB_MX_ADDR_MOD_SEL_TBD = 0,
763 PRB_MX_ADDR_MOD_SEL_IDE1 = 1,
764 PRB_MX_ADDR_MOD_SEL_IDE2 = 2,
765 PRB_MX_ADDR_MOD_SEL_FRB = 3,
766 PRB_MX_ADDR_MOD_SEL_ODE1 = 4,
767 PRB_MX_ADDR_MOD_SEL_ODE2 = 5,
768 PRB_MX_ADDR_MOD_SEL_DA1 = 6,
769 PRB_MX_ADDR_MOD_SEL_DA2 = 7,
770 PRB_MX_ADDR_MOD_SEL_IMP1 = 8,
771 PRB_MX_ADDR_MOD_SEL_IMP2 = 9,
772 PRB_MX_ADDR_MOD_SEL_OMP1 = 10,
773 PRB_MX_ADDR_MOD_SEL_OMP2 = 11,
774 PRB_MX_ADDR_MOD_SEL_ORS1 = 12,
775 PRB_MX_ADDR_MOD_SEL_ORS2 = 13,
776 PRB_MX_ADDR_MOD_SEL_REG = 14,
777 PRB_MX_ADDR_MOD_SEL_MAC1 = 16,
778 PRB_MX_ADDR_MOD_SEL_MAC2 = 17,
779 PRB_MX_ADDR_MOD_SEL_VQM1 = 18,
780 PRB_MX_ADDR_MOD_SEL_VQM2 = 19,
781 PRB_MX_ADDR_MOD_SEL_MOP = 20,
782 /* Bit fields indicating which modules
783 * are valid for each clock domain.
784 */
785 PRB_MX_ADDR_VALID_SYS_MOD = 0x000f7ff7,
786 PRB_MX_ADDR_VALID_PCI_MOD = 0x000040c1,
787 PRB_MX_ADDR_VALID_XGM_MOD = 0x00037309,
788 PRB_MX_ADDR_VALID_FC_MOD = 0x00003001,
789 PRB_MX_ADDR_VALID_TOTAL = 34,
790
791 /* Clock domain values. */
792 PRB_MX_ADDR_CLOCK_SHIFT = 6,
793 PRB_MX_ADDR_SYS_CLOCK = 0,
794 PRB_MX_ADDR_PCI_CLOCK = 2,
795 PRB_MX_ADDR_FC_CLOCK = 5,
796 PRB_MX_ADDR_XGM_CLOCK = 6,
797
798 PRB_MX_ADDR_MAX_MUX = 64,
799 };
800
801 /*
802 * Control Register Set Map
803 */
804 enum {
805 PROC_ADDR = 0, /* Use semaphore */
806 PROC_DATA = 0x04, /* Use semaphore */
807 SYS = 0x08,
808 RST_FO = 0x0c,
809 FSC = 0x10,
810 CSR = 0x14,
811 LED = 0x18,
812 ICB_RID = 0x1c, /* Use semaphore */
813 ICB_L = 0x20, /* Use semaphore */
814 ICB_H = 0x24, /* Use semaphore */
815 CFG = 0x28,
816 BIOS_ADDR = 0x2c,
817 STS = 0x30,
818 INTR_EN = 0x34,
819 INTR_MASK = 0x38,
820 ISR1 = 0x3c,
821 ISR2 = 0x40,
822 ISR3 = 0x44,
823 ISR4 = 0x48,
824 REV_ID = 0x4c,
825 FRC_ECC_ERR = 0x50,
826 ERR_STS = 0x54,
827 RAM_DBG_ADDR = 0x58,
828 RAM_DBG_DATA = 0x5c,
829 ECC_ERR_CNT = 0x60,
830 SEM = 0x64,
831 GPIO_1 = 0x68, /* Use semaphore */
832 GPIO_2 = 0x6c, /* Use semaphore */
833 GPIO_3 = 0x70, /* Use semaphore */
834 RSVD2 = 0x74,
835 XGMAC_ADDR = 0x78, /* Use semaphore */
836 XGMAC_DATA = 0x7c, /* Use semaphore */
837 NIC_ETS = 0x80,
838 CNA_ETS = 0x84,
839 FLASH_ADDR = 0x88, /* Use semaphore */
840 FLASH_DATA = 0x8c, /* Use semaphore */
841 CQ_STOP = 0x90,
842 PAGE_TBL_RID = 0x94,
843 WQ_PAGE_TBL_LO = 0x98,
844 WQ_PAGE_TBL_HI = 0x9c,
845 CQ_PAGE_TBL_LO = 0xa0,
846 CQ_PAGE_TBL_HI = 0xa4,
847 MAC_ADDR_IDX = 0xa8, /* Use semaphore */
848 MAC_ADDR_DATA = 0xac, /* Use semaphore */
849 COS_DFLT_CQ1 = 0xb0,
850 COS_DFLT_CQ2 = 0xb4,
851 ETYPE_SKIP1 = 0xb8,
852 ETYPE_SKIP2 = 0xbc,
853 SPLT_HDR = 0xc0,
854 FC_PAUSE_THRES = 0xc4,
855 NIC_PAUSE_THRES = 0xc8,
856 FC_ETHERTYPE = 0xcc,
857 FC_RCV_CFG = 0xd0,
858 NIC_RCV_CFG = 0xd4,
859 FC_COS_TAGS = 0xd8,
860 NIC_COS_TAGS = 0xdc,
861 MGMT_RCV_CFG = 0xe0,
862 RT_IDX = 0xe4,
863 RT_DATA = 0xe8,
864 RSVD7 = 0xec,
865 XG_SERDES_ADDR = 0xf0,
866 XG_SERDES_DATA = 0xf4,
867 PRB_MX_ADDR = 0xf8, /* Use semaphore */
868 PRB_MX_DATA = 0xfc, /* Use semaphore */
869 };
870
871 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
872 #define SMALL_BUFFER_SIZE 256
873 #define SMALL_BUF_MAP_SIZE SMALL_BUFFER_SIZE
874 #define SPLT_SETTING FSC_DBRST_1024
875 #define SPLT_LEN 0
876 #define QLGE_SB_PAD 0
877 #else
878 #define SMALL_BUFFER_SIZE 512
879 #define SMALL_BUF_MAP_SIZE (SMALL_BUFFER_SIZE / 2)
880 #define SPLT_SETTING FSC_SH
881 #define SPLT_LEN (SPLT_HDR_EP | \
882 min(SMALL_BUF_MAP_SIZE, 1023))
883 #define QLGE_SB_PAD 32
884 #endif
885
886 /*
887 * CAM output format.
888 */
889 enum {
890 CAM_OUT_ROUTE_FC = 0,
891 CAM_OUT_ROUTE_NIC = 1,
892 CAM_OUT_FUNC_SHIFT = 2,
893 CAM_OUT_RV = (1 << 4),
894 CAM_OUT_SH = (1 << 15),
895 CAM_OUT_CQ_ID_SHIFT = 5,
896 };
897
898 /*
899 * Mailbox definitions
900 */
901 enum {
902 /* Asynchronous Event Notifications */
903 AEN_SYS_ERR = 0x00008002,
904 AEN_LINK_UP = 0x00008011,
905 AEN_LINK_DOWN = 0x00008012,
906 AEN_IDC_CMPLT = 0x00008100,
907 AEN_IDC_REQ = 0x00008101,
908 AEN_IDC_EXT = 0x00008102,
909 AEN_DCBX_CHG = 0x00008110,
910 AEN_AEN_LOST = 0x00008120,
911 AEN_AEN_SFP_IN = 0x00008130,
912 AEN_AEN_SFP_OUT = 0x00008131,
913 AEN_FW_INIT_DONE = 0x00008400,
914 AEN_FW_INIT_FAIL = 0x00008401,
915
916 /* Mailbox Command Opcodes. */
917 MB_CMD_NOP = 0x00000000,
918 MB_CMD_EX_FW = 0x00000002,
919 MB_CMD_MB_TEST = 0x00000006,
920 MB_CMD_CSUM_TEST = 0x00000007, /* Verify Checksum */
921 MB_CMD_ABOUT_FW = 0x00000008,
922 MB_CMD_COPY_RISC_RAM = 0x0000000a,
923 MB_CMD_LOAD_RISC_RAM = 0x0000000b,
924 MB_CMD_DUMP_RISC_RAM = 0x0000000c,
925 MB_CMD_WRITE_RAM = 0x0000000d,
926 MB_CMD_INIT_RISC_RAM = 0x0000000e,
927 MB_CMD_READ_RAM = 0x0000000f,
928 MB_CMD_STOP_FW = 0x00000014,
929 MB_CMD_MAKE_SYS_ERR = 0x0000002a,
930 MB_CMD_WRITE_SFP = 0x00000030,
931 MB_CMD_READ_SFP = 0x00000031,
932 MB_CMD_INIT_FW = 0x00000060,
933 MB_CMD_GET_IFCB = 0x00000061,
934 MB_CMD_GET_FW_STATE = 0x00000069,
935 MB_CMD_IDC_REQ = 0x00000100, /* Inter-Driver Communication */
936 MB_CMD_IDC_ACK = 0x00000101, /* Inter-Driver Communication */
937 MB_CMD_SET_WOL_MODE = 0x00000110, /* Wake On Lan */
938 MB_WOL_DISABLE = 0,
939 MB_WOL_MAGIC_PKT = (1 << 1),
940 MB_WOL_FLTR = (1 << 2),
941 MB_WOL_UCAST = (1 << 3),
942 MB_WOL_MCAST = (1 << 4),
943 MB_WOL_BCAST = (1 << 5),
944 MB_WOL_LINK_UP = (1 << 6),
945 MB_WOL_LINK_DOWN = (1 << 7),
946 MB_WOL_MODE_ON = (1 << 16), /* Wake on Lan Mode on */
947 MB_CMD_SET_WOL_FLTR = 0x00000111, /* Wake On Lan Filter */
948 MB_CMD_CLEAR_WOL_FLTR = 0x00000112, /* Wake On Lan Filter */
949 MB_CMD_SET_WOL_MAGIC = 0x00000113, /* Wake On Lan Magic Packet */
950 MB_CMD_CLEAR_WOL_MAGIC = 0x00000114,/* Wake On Lan Magic Packet */
951 MB_CMD_SET_WOL_IMMED = 0x00000115,
952 MB_CMD_PORT_RESET = 0x00000120,
953 MB_CMD_SET_PORT_CFG = 0x00000122,
954 MB_CMD_GET_PORT_CFG = 0x00000123,
955 MB_CMD_GET_LINK_STS = 0x00000124,
956 MB_CMD_SET_LED_CFG = 0x00000125, /* Set LED Configuration Register */
957 QL_LED_BLINK = 0x03e803e8,
958 MB_CMD_GET_LED_CFG = 0x00000126, /* Get LED Configuration Register */
959 MB_CMD_SET_MGMNT_TFK_CTL = 0x00000160, /* Set Mgmnt Traffic Control */
960 MB_SET_MPI_TFK_STOP = (1 << 0),
961 MB_SET_MPI_TFK_RESUME = (1 << 1),
962 MB_CMD_GET_MGMNT_TFK_CTL = 0x00000161, /* Get Mgmnt Traffic Control */
963 MB_GET_MPI_TFK_STOPPED = (1 << 0),
964 MB_GET_MPI_TFK_FIFO_EMPTY = (1 << 1),
965 /* Sub-commands for IDC request.
966 * This describes the reason for the
967 * IDC request.
968 */
969 MB_CMD_IOP_NONE = 0x0000,
970 MB_CMD_IOP_PREP_UPDATE_MPI = 0x0001,
971 MB_CMD_IOP_COMP_UPDATE_MPI = 0x0002,
972 MB_CMD_IOP_PREP_LINK_DOWN = 0x0010,
973 MB_CMD_IOP_DVR_START = 0x0100,
974 MB_CMD_IOP_FLASH_ACC = 0x0101,
975 MB_CMD_IOP_RESTART_MPI = 0x0102,
976 MB_CMD_IOP_CORE_DUMP_MPI = 0x0103,
977
978 /* Mailbox Command Status. */
979 MB_CMD_STS_GOOD = 0x00004000, /* Success. */
980 MB_CMD_STS_INTRMDT = 0x00001000, /* Intermediate Complete. */
981 MB_CMD_STS_INVLD_CMD = 0x00004001, /* Invalid. */
982 MB_CMD_STS_XFC_ERR = 0x00004002, /* Interface Error. */
983 MB_CMD_STS_CSUM_ERR = 0x00004003, /* Csum Error. */
984 MB_CMD_STS_ERR = 0x00004005, /* System Error. */
985 MB_CMD_STS_PARAM_ERR = 0x00004006, /* Parameter Error. */
986 };
987
988 struct mbox_params {
989 u32 mbox_in[MAILBOX_COUNT];
990 u32 mbox_out[MAILBOX_COUNT];
991 int in_count;
992 int out_count;
993 };
994
995 struct flash_params_8012 {
996 u8 dev_id_str[4];
997 __le16 size;
998 __le16 csum;
999 __le16 ver;
1000 __le16 sub_dev_id;
1001 u8 mac_addr[6];
1002 __le16 res;
1003 };
1004
1005 /* 8000 device's flash is a different structure
1006 * at a different offset in flash.
1007 */
1008 #define FUNC0_FLASH_OFFSET 0x140200
1009 #define FUNC1_FLASH_OFFSET 0x140600
1010
1011 /* Flash related data structures. */
1012 struct flash_params_8000 {
1013 u8 dev_id_str[4]; /* "8000" */
1014 __le16 ver;
1015 __le16 size;
1016 __le16 csum;
1017 __le16 reserved0;
1018 __le16 total_size;
1019 __le16 entry_count;
1020 u8 data_type0;
1021 u8 data_size0;
1022 u8 mac_addr[6];
1023 u8 data_type1;
1024 u8 data_size1;
1025 u8 mac_addr1[6];
1026 u8 data_type2;
1027 u8 data_size2;
1028 __le16 vlan_id;
1029 u8 data_type3;
1030 u8 data_size3;
1031 __le16 last;
1032 u8 reserved1[464];
1033 __le16 subsys_ven_id;
1034 __le16 subsys_dev_id;
1035 u8 reserved2[4];
1036 };
1037
1038 union flash_params {
1039 struct flash_params_8012 flash_params_8012;
1040 struct flash_params_8000 flash_params_8000;
1041 };
1042
1043 /*
1044 * doorbell space for the rx ring context
1045 */
1046 struct rx_doorbell_context {
1047 u32 cnsmr_idx; /* 0x00 */
1048 u32 valid; /* 0x04 */
1049 u32 reserved[4]; /* 0x08-0x14 */
1050 u32 lbq_prod_idx; /* 0x18 */
1051 u32 sbq_prod_idx; /* 0x1c */
1052 };
1053
1054 /*
1055 * doorbell space for the tx ring context
1056 */
1057 struct tx_doorbell_context {
1058 u32 prod_idx; /* 0x00 */
1059 u32 valid; /* 0x04 */
1060 u32 reserved[4]; /* 0x08-0x14 */
1061 u32 lbq_prod_idx; /* 0x18 */
1062 u32 sbq_prod_idx; /* 0x1c */
1063 };
1064
1065 /* DATA STRUCTURES SHARED WITH HARDWARE. */
1066 struct tx_buf_desc {
1067 __le64 addr;
1068 __le32 len;
1069 #define TX_DESC_LEN_MASK 0x000fffff
1070 #define TX_DESC_C 0x40000000
1071 #define TX_DESC_E 0x80000000
1072 } __packed;
1073
1074 /*
1075 * IOCB Definitions...
1076 */
1077
1078 #define OPCODE_OB_MAC_IOCB 0x01
1079 #define OPCODE_OB_MAC_TSO_IOCB 0x02
1080 #define OPCODE_IB_MAC_IOCB 0x20
1081 #define OPCODE_IB_MPI_IOCB 0x21
1082 #define OPCODE_IB_AE_IOCB 0x3f
1083
1084 struct ob_mac_iocb_req {
1085 u8 opcode;
1086 u8 flags1;
1087 #define OB_MAC_IOCB_REQ_OI 0x01
1088 #define OB_MAC_IOCB_REQ_I 0x02
1089 #define OB_MAC_IOCB_REQ_D 0x08
1090 #define OB_MAC_IOCB_REQ_F 0x10
1091 u8 flags2;
1092 u8 flags3;
1093 #define OB_MAC_IOCB_DFP 0x02
1094 #define OB_MAC_IOCB_V 0x04
1095 __le32 reserved1[2];
1096 __le16 frame_len;
1097 #define OB_MAC_IOCB_LEN_MASK 0x3ffff
1098 __le16 reserved2;
1099 u32 tid;
1100 u32 txq_idx;
1101 __le32 reserved3;
1102 __le16 vlan_tci;
1103 __le16 reserved4;
1104 struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
1105 } __packed;
1106
1107 struct ob_mac_iocb_rsp {
1108 u8 opcode; /* */
1109 u8 flags1; /* */
1110 #define OB_MAC_IOCB_RSP_OI 0x01 /* */
1111 #define OB_MAC_IOCB_RSP_I 0x02 /* */
1112 #define OB_MAC_IOCB_RSP_E 0x08 /* */
1113 #define OB_MAC_IOCB_RSP_S 0x10 /* too Short */
1114 #define OB_MAC_IOCB_RSP_L 0x20 /* too Large */
1115 #define OB_MAC_IOCB_RSP_P 0x40 /* Padded */
1116 u8 flags2; /* */
1117 u8 flags3; /* */
1118 #define OB_MAC_IOCB_RSP_B 0x80 /* */
1119 u32 tid;
1120 u32 txq_idx;
1121 __le32 reserved[13];
1122 } __packed;
1123
1124 struct ob_mac_tso_iocb_req {
1125 u8 opcode;
1126 u8 flags1;
1127 #define OB_MAC_TSO_IOCB_OI 0x01
1128 #define OB_MAC_TSO_IOCB_I 0x02
1129 #define OB_MAC_TSO_IOCB_D 0x08
1130 #define OB_MAC_TSO_IOCB_IP4 0x40
1131 #define OB_MAC_TSO_IOCB_IP6 0x80
1132 u8 flags2;
1133 #define OB_MAC_TSO_IOCB_LSO 0x20
1134 #define OB_MAC_TSO_IOCB_UC 0x40
1135 #define OB_MAC_TSO_IOCB_TC 0x80
1136 u8 flags3;
1137 #define OB_MAC_TSO_IOCB_IC 0x01
1138 #define OB_MAC_TSO_IOCB_DFP 0x02
1139 #define OB_MAC_TSO_IOCB_V 0x04
1140 __le32 reserved1[2];
1141 __le32 frame_len;
1142 u32 tid;
1143 u32 txq_idx;
1144 __le16 total_hdrs_len;
1145 __le16 net_trans_offset;
1146 #define OB_MAC_TRANSPORT_HDR_SHIFT 6
1147 __le16 vlan_tci;
1148 __le16 mss;
1149 struct tx_buf_desc tbd[TX_DESC_PER_IOCB];
1150 } __packed;
1151
1152 struct ob_mac_tso_iocb_rsp {
1153 u8 opcode;
1154 u8 flags1;
1155 #define OB_MAC_TSO_IOCB_RSP_OI 0x01
1156 #define OB_MAC_TSO_IOCB_RSP_I 0x02
1157 #define OB_MAC_TSO_IOCB_RSP_E 0x08
1158 #define OB_MAC_TSO_IOCB_RSP_S 0x10
1159 #define OB_MAC_TSO_IOCB_RSP_L 0x20
1160 #define OB_MAC_TSO_IOCB_RSP_P 0x40
1161 u8 flags2; /* */
1162 u8 flags3; /* */
1163 #define OB_MAC_TSO_IOCB_RSP_B 0x8000
1164 u32 tid;
1165 u32 txq_idx;
1166 __le32 reserved2[13];
1167 } __packed;
1168
1169 struct ib_mac_iocb_rsp {
1170 u8 opcode; /* 0x20 */
1171 u8 flags1;
1172 #define IB_MAC_IOCB_RSP_OI 0x01 /* Override intr delay */
1173 #define IB_MAC_IOCB_RSP_I 0x02 /* Disable Intr Generation */
1174 #define IB_MAC_CSUM_ERR_MASK 0x1c /* A mask to use for csum errs */
1175 #define IB_MAC_IOCB_RSP_TE 0x04 /* Checksum error */
1176 #define IB_MAC_IOCB_RSP_NU 0x08 /* No checksum rcvd */
1177 #define IB_MAC_IOCB_RSP_IE 0x10 /* IPv4 checksum error */
1178 #define IB_MAC_IOCB_RSP_M_MASK 0x60 /* Multicast info */
1179 #define IB_MAC_IOCB_RSP_M_NONE 0x00 /* Not mcast frame */
1180 #define IB_MAC_IOCB_RSP_M_HASH 0x20 /* HASH mcast frame */
1181 #define IB_MAC_IOCB_RSP_M_REG 0x40 /* Registered mcast frame */
1182 #define IB_MAC_IOCB_RSP_M_PROM 0x60 /* Promiscuous mcast frame */
1183 #define IB_MAC_IOCB_RSP_B 0x80 /* Broadcast frame */
1184 u8 flags2;
1185 #define IB_MAC_IOCB_RSP_P 0x01 /* Promiscuous frame */
1186 #define IB_MAC_IOCB_RSP_V 0x02 /* Vlan tag present */
1187 #define IB_MAC_IOCB_RSP_ERR_MASK 0x1c /* */
1188 #define IB_MAC_IOCB_RSP_ERR_CODE_ERR 0x04
1189 #define IB_MAC_IOCB_RSP_ERR_OVERSIZE 0x08
1190 #define IB_MAC_IOCB_RSP_ERR_UNDERSIZE 0x10
1191 #define IB_MAC_IOCB_RSP_ERR_PREAMBLE 0x14
1192 #define IB_MAC_IOCB_RSP_ERR_FRAME_LEN 0x18
1193 #define IB_MAC_IOCB_RSP_ERR_CRC 0x1c
1194 #define IB_MAC_IOCB_RSP_U 0x20 /* UDP packet */
1195 #define IB_MAC_IOCB_RSP_T 0x40 /* TCP packet */
1196 #define IB_MAC_IOCB_RSP_FO 0x80 /* Failover port */
1197 u8 flags3;
1198 #define IB_MAC_IOCB_RSP_RSS_MASK 0x07 /* RSS mask */
1199 #define IB_MAC_IOCB_RSP_M_NONE 0x00 /* No RSS match */
1200 #define IB_MAC_IOCB_RSP_M_IPV4 0x04 /* IPv4 RSS match */
1201 #define IB_MAC_IOCB_RSP_M_IPV6 0x02 /* IPv6 RSS match */
1202 #define IB_MAC_IOCB_RSP_M_TCP_V4 0x05 /* TCP with IPv4 */
1203 #define IB_MAC_IOCB_RSP_M_TCP_V6 0x03 /* TCP with IPv6 */
1204 #define IB_MAC_IOCB_RSP_V4 0x08 /* IPV4 */
1205 #define IB_MAC_IOCB_RSP_V6 0x10 /* IPV6 */
1206 #define IB_MAC_IOCB_RSP_IH 0x20 /* Split after IP header */
1207 #define IB_MAC_IOCB_RSP_DS 0x40 /* data is in small buffer */
1208 #define IB_MAC_IOCB_RSP_DL 0x80 /* data is in large buffer */
1209 __le32 data_len; /* */
1210 __le64 data_addr; /* */
1211 __le32 rss; /* */
1212 __le16 vlan_id; /* 12 bits */
1213 #define IB_MAC_IOCB_RSP_C 0x1000 /* VLAN CFI bit */
1214 #define IB_MAC_IOCB_RSP_COS_SHIFT 12 /* class of service value */
1215 #define IB_MAC_IOCB_RSP_VLAN_MASK 0x0ffff
1216
1217 __le16 reserved1;
1218 __le32 reserved2[6];
1219 u8 reserved3[3];
1220 u8 flags4;
1221 #define IB_MAC_IOCB_RSP_HV 0x20
1222 #define IB_MAC_IOCB_RSP_HS 0x40
1223 #define IB_MAC_IOCB_RSP_HL 0x80
1224 __le32 hdr_len; /* */
1225 __le64 hdr_addr; /* */
1226 } __packed;
1227
1228 struct ib_ae_iocb_rsp {
1229 u8 opcode;
1230 u8 flags1;
1231 #define IB_AE_IOCB_RSP_OI 0x01
1232 #define IB_AE_IOCB_RSP_I 0x02
1233 u8 event;
1234 #define LINK_UP_EVENT 0x00
1235 #define LINK_DOWN_EVENT 0x01
1236 #define CAM_LOOKUP_ERR_EVENT 0x06
1237 #define SOFT_ECC_ERROR_EVENT 0x07
1238 #define MGMT_ERR_EVENT 0x08
1239 #define TEN_GIG_MAC_EVENT 0x09
1240 #define GPI0_H2L_EVENT 0x10
1241 #define GPI0_L2H_EVENT 0x20
1242 #define GPI1_H2L_EVENT 0x11
1243 #define GPI1_L2H_EVENT 0x21
1244 #define PCI_ERR_ANON_BUF_RD 0x40
1245 u8 q_id;
1246 __le32 reserved[15];
1247 } __packed;
1248
1249 /*
1250 * These three structures are for generic
1251 * handling of ib and ob iocbs.
1252 */
1253 struct ql_net_rsp_iocb {
1254 u8 opcode;
1255 u8 flags0;
1256 __le16 length;
1257 __le32 tid;
1258 __le32 reserved[14];
1259 } __packed;
1260
1261 struct net_req_iocb {
1262 u8 opcode;
1263 u8 flags0;
1264 __le16 flags1;
1265 __le32 tid;
1266 __le32 reserved1[30];
1267 } __packed;
1268
1269 /*
1270 * tx ring initialization control block for chip.
1271 * It is defined as:
1272 * "Work Queue Initialization Control Block"
1273 */
1274 struct wqicb {
1275 __le16 len;
1276 #define Q_LEN_V (1 << 4)
1277 #define Q_LEN_CPP_CONT 0x0000
1278 #define Q_LEN_CPP_16 0x0001
1279 #define Q_LEN_CPP_32 0x0002
1280 #define Q_LEN_CPP_64 0x0003
1281 #define Q_LEN_CPP_512 0x0006
1282 __le16 flags;
1283 #define Q_PRI_SHIFT 1
1284 #define Q_FLAGS_LC 0x1000
1285 #define Q_FLAGS_LB 0x2000
1286 #define Q_FLAGS_LI 0x4000
1287 #define Q_FLAGS_LO 0x8000
1288 __le16 cq_id_rss;
1289 #define Q_CQ_ID_RSS_RV 0x8000
1290 __le16 rid;
1291 __le64 addr;
1292 __le64 cnsmr_idx_addr;
1293 } __packed;
1294
1295 /*
1296 * rx ring initialization control block for chip.
1297 * It is defined as:
1298 * "Completion Queue Initialization Control Block"
1299 */
1300 struct cqicb {
1301 u8 msix_vect;
1302 u8 reserved1;
1303 u8 reserved2;
1304 u8 flags;
1305 #define FLAGS_LV 0x08
1306 #define FLAGS_LS 0x10
1307 #define FLAGS_LL 0x20
1308 #define FLAGS_LI 0x40
1309 #define FLAGS_LC 0x80
1310 __le16 len;
1311 #define LEN_V (1 << 4)
1312 #define LEN_CPP_CONT 0x0000
1313 #define LEN_CPP_32 0x0001
1314 #define LEN_CPP_64 0x0002
1315 #define LEN_CPP_128 0x0003
1316 __le16 rid;
1317 __le64 addr;
1318 __le64 prod_idx_addr;
1319 __le16 pkt_delay;
1320 __le16 irq_delay;
1321 __le64 lbq_addr;
1322 __le16 lbq_buf_size;
1323 __le16 lbq_len; /* entry count */
1324 __le64 sbq_addr;
1325 __le16 sbq_buf_size;
1326 __le16 sbq_len; /* entry count */
1327 } __packed;
1328
1329 struct ricb {
1330 u8 base_cq;
1331 #define RSS_L4K 0x80
1332 u8 flags;
1333 #define RSS_L6K 0x01
1334 #define RSS_LI 0x02
1335 #define RSS_LB 0x04
1336 #define RSS_LM 0x08
1337 #define RSS_RI4 0x10
1338 #define RSS_RT4 0x20
1339 #define RSS_RI6 0x40
1340 #define RSS_RT6 0x80
1341 __le16 mask;
1342 u8 hash_cq_id[1024];
1343 __le32 ipv6_hash_key[10];
1344 __le32 ipv4_hash_key[4];
1345 } __packed;
1346
1347 /* SOFTWARE/DRIVER DATA STRUCTURES. */
1348
1349 struct oal {
1350 struct tx_buf_desc oal[TX_DESC_PER_OAL];
1351 };
1352
1353 struct map_list {
1354 DEFINE_DMA_UNMAP_ADDR(mapaddr);
1355 DEFINE_DMA_UNMAP_LEN(maplen);
1356 };
1357
1358 struct tx_ring_desc {
1359 struct sk_buff *skb;
1360 struct ob_mac_iocb_req *queue_entry;
1361 u32 index;
1362 struct oal oal;
1363 struct map_list map[MAX_SKB_FRAGS + 2];
1364 int map_cnt;
1365 struct tx_ring_desc *next;
1366 };
1367
1368 #define QL_TXQ_IDX(qdev, skb) (smp_processor_id() % (qdev->tx_ring_count))
1369
1370 struct tx_ring {
1371 /*
1372 * queue info.
1373 */
1374 struct wqicb wqicb; /* structure used to inform chip of new queue */
1375 void *wq_base; /* pci_alloc:virtual addr for tx */
1376 dma_addr_t wq_base_dma; /* pci_alloc:dma addr for tx */
1377 __le32 *cnsmr_idx_sh_reg; /* shadow copy of consumer idx */
1378 dma_addr_t cnsmr_idx_sh_reg_dma; /* dma-shadow copy of consumer */
1379 u32 wq_size; /* size in bytes of queue area */
1380 u32 wq_len; /* number of entries in queue */
1381 void __iomem *prod_idx_db_reg; /* doorbell area index reg at offset 0x00 */
1382 void __iomem *valid_db_reg; /* doorbell area valid reg at offset 0x04 */
1383 u16 prod_idx; /* current value for prod idx */
1384 u16 cq_id; /* completion (rx) queue for tx completions */
1385 u8 wq_id; /* queue id for this entry */
1386 u8 reserved1[3];
1387 struct tx_ring_desc *q; /* descriptor list for the queue */
1388 spinlock_t lock;
1389 atomic_t tx_count; /* counts down for every outstanding IO */
1390 struct delayed_work tx_work;
1391 struct ql_adapter *qdev;
1392 u64 tx_packets;
1393 u64 tx_bytes;
1394 u64 tx_errors;
1395 };
1396
1397 struct qlge_page_chunk {
1398 struct page *page;
1399 void *va; /* virt addr including offset */
1400 unsigned int offset;
1401 };
1402
1403 struct qlge_bq_desc {
1404 union {
1405 /* for large buffers */
1406 struct qlge_page_chunk pg_chunk;
1407 /* for small buffers */
1408 struct sk_buff *skb;
1409 } p;
1410 dma_addr_t dma_addr;
1411 /* address in ring where the buffer address is written for the device */
1412 __le64 *buf_ptr;
1413 u32 index;
1414 };
1415
1416 /* buffer queue */
1417 struct qlge_bq {
1418 __le64 *base;
1419 dma_addr_t base_dma;
1420 __le64 *base_indirect;
1421 dma_addr_t base_indirect_dma;
1422 struct qlge_bq_desc *queue;
1423 /* prod_idx is the index of the first buffer that may NOT be used by
1424 * hw, ie. one after the last. Advanced by sw.
1425 */
1426 void __iomem *prod_idx_db_reg;
1427 /* next index where sw should refill a buffer for hw */
1428 u16 next_to_use;
1429 /* next index where sw expects to find a buffer filled by hw */
1430 u16 next_to_clean;
1431 enum {
1432 QLGE_SB, /* small buffer */
1433 QLGE_LB, /* large buffer */
1434 } type;
1435 };
1436
1437 #define QLGE_BQ_CONTAINER(bq) \
1438 ({ \
1439 typeof(bq) _bq = bq; \
1440 (struct rx_ring *)((char *)_bq - (_bq->type == QLGE_SB ? \
1441 offsetof(struct rx_ring, sbq) : \
1442 offsetof(struct rx_ring, lbq))); \
1443 })
1444
1445 /* Experience shows that the device ignores the low 4 bits of the tail index.
1446 * Refill up to a x16 multiple.
1447 */
1448 #define QLGE_BQ_ALIGN(index) ALIGN_DOWN(index, 16)
1449
1450 #define QLGE_BQ_WRAP(index) ((index) & (QLGE_BQ_LEN - 1))
1451
1452 #define QLGE_BQ_HW_OWNED(bq) \
1453 ({ \
1454 typeof(bq) _bq = bq; \
1455 QLGE_BQ_WRAP(QLGE_BQ_ALIGN((_bq)->next_to_use) - \
1456 (_bq)->next_to_clean); \
1457 })
1458
1459 struct rx_ring {
1460 struct cqicb cqicb; /* The chip's completion queue init control block. */
1461
1462 /* Completion queue elements. */
1463 void *cq_base;
1464 dma_addr_t cq_base_dma;
1465 u32 cq_size;
1466 u32 cq_len;
1467 u16 cq_id;
1468 __le32 *prod_idx_sh_reg; /* Shadowed producer register. */
1469 dma_addr_t prod_idx_sh_reg_dma;
1470 void __iomem *cnsmr_idx_db_reg; /* PCI doorbell mem area + 0 */
1471 u32 cnsmr_idx; /* current sw idx */
1472 struct ql_net_rsp_iocb *curr_entry; /* next entry on queue */
1473 void __iomem *valid_db_reg; /* PCI doorbell mem area + 0x04 */
1474
1475 /* Large buffer queue elements. */
1476 struct qlge_bq lbq;
1477 struct qlge_page_chunk master_chunk;
1478 dma_addr_t chunk_dma_addr;
1479
1480 /* Small buffer queue elements. */
1481 struct qlge_bq sbq;
1482
1483 /* Misc. handler elements. */
1484 u32 irq; /* Which vector this ring is assigned. */
1485 u32 cpu; /* Which CPU this should run on. */
1486 struct delayed_work refill_work;
1487 char name[IFNAMSIZ + 5];
1488 struct napi_struct napi;
1489 u8 reserved;
1490 struct ql_adapter *qdev;
1491 u64 rx_packets;
1492 u64 rx_multicast;
1493 u64 rx_bytes;
1494 u64 rx_dropped;
1495 u64 rx_errors;
1496 };
1497
1498 /*
1499 * RSS Initialization Control Block
1500 */
1501 struct hash_id {
1502 u8 value[4];
1503 };
1504
1505 struct nic_stats {
1506 /*
1507 * These stats come from offset 200h to 278h
1508 * in the XGMAC register.
1509 */
1510 u64 tx_pkts;
1511 u64 tx_bytes;
1512 u64 tx_mcast_pkts;
1513 u64 tx_bcast_pkts;
1514 u64 tx_ucast_pkts;
1515 u64 tx_ctl_pkts;
1516 u64 tx_pause_pkts;
1517 u64 tx_64_pkt;
1518 u64 tx_65_to_127_pkt;
1519 u64 tx_128_to_255_pkt;
1520 u64 tx_256_511_pkt;
1521 u64 tx_512_to_1023_pkt;
1522 u64 tx_1024_to_1518_pkt;
1523 u64 tx_1519_to_max_pkt;
1524 u64 tx_undersize_pkt;
1525 u64 tx_oversize_pkt;
1526
1527 /*
1528 * These stats come from offset 300h to 3C8h
1529 * in the XGMAC register.
1530 */
1531 u64 rx_bytes;
1532 u64 rx_bytes_ok;
1533 u64 rx_pkts;
1534 u64 rx_pkts_ok;
1535 u64 rx_bcast_pkts;
1536 u64 rx_mcast_pkts;
1537 u64 rx_ucast_pkts;
1538 u64 rx_undersize_pkts;
1539 u64 rx_oversize_pkts;
1540 u64 rx_jabber_pkts;
1541 u64 rx_undersize_fcerr_pkts;
1542 u64 rx_drop_events;
1543 u64 rx_fcerr_pkts;
1544 u64 rx_align_err;
1545 u64 rx_symbol_err;
1546 u64 rx_mac_err;
1547 u64 rx_ctl_pkts;
1548 u64 rx_pause_pkts;
1549 u64 rx_64_pkts;
1550 u64 rx_65_to_127_pkts;
1551 u64 rx_128_255_pkts;
1552 u64 rx_256_511_pkts;
1553 u64 rx_512_to_1023_pkts;
1554 u64 rx_1024_to_1518_pkts;
1555 u64 rx_1519_to_max_pkts;
1556 u64 rx_len_err_pkts;
1557 /* Receive Mac Err stats */
1558 u64 rx_code_err;
1559 u64 rx_oversize_err;
1560 u64 rx_undersize_err;
1561 u64 rx_preamble_err;
1562 u64 rx_frame_len_err;
1563 u64 rx_crc_err;
1564 u64 rx_err_count;
1565 /*
1566 * These stats come from offset 500h to 5C8h
1567 * in the XGMAC register.
1568 */
1569 u64 tx_cbfc_pause_frames0;
1570 u64 tx_cbfc_pause_frames1;
1571 u64 tx_cbfc_pause_frames2;
1572 u64 tx_cbfc_pause_frames3;
1573 u64 tx_cbfc_pause_frames4;
1574 u64 tx_cbfc_pause_frames5;
1575 u64 tx_cbfc_pause_frames6;
1576 u64 tx_cbfc_pause_frames7;
1577 u64 rx_cbfc_pause_frames0;
1578 u64 rx_cbfc_pause_frames1;
1579 u64 rx_cbfc_pause_frames2;
1580 u64 rx_cbfc_pause_frames3;
1581 u64 rx_cbfc_pause_frames4;
1582 u64 rx_cbfc_pause_frames5;
1583 u64 rx_cbfc_pause_frames6;
1584 u64 rx_cbfc_pause_frames7;
1585 u64 rx_nic_fifo_drop;
1586 };
1587
1588 /* Firmware coredump internal register address/length pairs. */
1589 enum {
1590 MPI_CORE_REGS_ADDR = 0x00030000,
1591 MPI_CORE_REGS_CNT = 127,
1592 MPI_CORE_SH_REGS_CNT = 16,
1593 TEST_REGS_ADDR = 0x00001000,
1594 TEST_REGS_CNT = 23,
1595 RMII_REGS_ADDR = 0x00001040,
1596 RMII_REGS_CNT = 64,
1597 FCMAC1_REGS_ADDR = 0x00001080,
1598 FCMAC2_REGS_ADDR = 0x000010c0,
1599 FCMAC_REGS_CNT = 64,
1600 FC1_MBX_REGS_ADDR = 0x00001100,
1601 FC2_MBX_REGS_ADDR = 0x00001240,
1602 FC_MBX_REGS_CNT = 64,
1603 IDE_REGS_ADDR = 0x00001140,
1604 IDE_REGS_CNT = 64,
1605 NIC1_MBX_REGS_ADDR = 0x00001180,
1606 NIC2_MBX_REGS_ADDR = 0x00001280,
1607 NIC_MBX_REGS_CNT = 64,
1608 SMBUS_REGS_ADDR = 0x00001200,
1609 SMBUS_REGS_CNT = 64,
1610 I2C_REGS_ADDR = 0x00001fc0,
1611 I2C_REGS_CNT = 64,
1612 MEMC_REGS_ADDR = 0x00003000,
1613 MEMC_REGS_CNT = 256,
1614 PBUS_REGS_ADDR = 0x00007c00,
1615 PBUS_REGS_CNT = 256,
1616 MDE_REGS_ADDR = 0x00010000,
1617 MDE_REGS_CNT = 6,
1618 CODE_RAM_ADDR = 0x00020000,
1619 CODE_RAM_CNT = 0x2000,
1620 MEMC_RAM_ADDR = 0x00100000,
1621 MEMC_RAM_CNT = 0x2000,
1622 };
1623
1624 #define MPI_COREDUMP_COOKIE 0x5555aaaa
1625 struct mpi_coredump_global_header {
1626 u32 cookie;
1627 u8 id_string[16];
1628 u32 time_lo;
1629 u32 time_hi;
1630 u32 image_size;
1631 u32 header_size;
1632 u8 info[220];
1633 };
1634
1635 struct mpi_coredump_segment_header {
1636 u32 cookie;
1637 u32 seg_num;
1638 u32 seg_size;
1639 u32 extra;
1640 u8 description[16];
1641 };
1642
1643 /* Firmware coredump header segment numbers. */
1644 enum {
1645 CORE_SEG_NUM = 1,
1646 TEST_LOGIC_SEG_NUM = 2,
1647 RMII_SEG_NUM = 3,
1648 FCMAC1_SEG_NUM = 4,
1649 FCMAC2_SEG_NUM = 5,
1650 FC1_MBOX_SEG_NUM = 6,
1651 IDE_SEG_NUM = 7,
1652 NIC1_MBOX_SEG_NUM = 8,
1653 SMBUS_SEG_NUM = 9,
1654 FC2_MBOX_SEG_NUM = 10,
1655 NIC2_MBOX_SEG_NUM = 11,
1656 I2C_SEG_NUM = 12,
1657 MEMC_SEG_NUM = 13,
1658 PBUS_SEG_NUM = 14,
1659 MDE_SEG_NUM = 15,
1660 NIC1_CONTROL_SEG_NUM = 16,
1661 NIC2_CONTROL_SEG_NUM = 17,
1662 NIC1_XGMAC_SEG_NUM = 18,
1663 NIC2_XGMAC_SEG_NUM = 19,
1664 WCS_RAM_SEG_NUM = 20,
1665 MEMC_RAM_SEG_NUM = 21,
1666 XAUI_AN_SEG_NUM = 22,
1667 XAUI_HSS_PCS_SEG_NUM = 23,
1668 XFI_AN_SEG_NUM = 24,
1669 XFI_TRAIN_SEG_NUM = 25,
1670 XFI_HSS_PCS_SEG_NUM = 26,
1671 XFI_HSS_TX_SEG_NUM = 27,
1672 XFI_HSS_RX_SEG_NUM = 28,
1673 XFI_HSS_PLL_SEG_NUM = 29,
1674 MISC_NIC_INFO_SEG_NUM = 30,
1675 INTR_STATES_SEG_NUM = 31,
1676 CAM_ENTRIES_SEG_NUM = 32,
1677 ROUTING_WORDS_SEG_NUM = 33,
1678 ETS_SEG_NUM = 34,
1679 PROBE_DUMP_SEG_NUM = 35,
1680 ROUTING_INDEX_SEG_NUM = 36,
1681 MAC_PROTOCOL_SEG_NUM = 37,
1682 XAUI2_AN_SEG_NUM = 38,
1683 XAUI2_HSS_PCS_SEG_NUM = 39,
1684 XFI2_AN_SEG_NUM = 40,
1685 XFI2_TRAIN_SEG_NUM = 41,
1686 XFI2_HSS_PCS_SEG_NUM = 42,
1687 XFI2_HSS_TX_SEG_NUM = 43,
1688 XFI2_HSS_RX_SEG_NUM = 44,
1689 XFI2_HSS_PLL_SEG_NUM = 45,
1690 SEM_REGS_SEG_NUM = 50
1691
1692 };
1693
1694 /* There are 64 generic NIC registers. */
1695 #define NIC_REGS_DUMP_WORD_COUNT 64
1696 /* XGMAC word count. */
1697 #define XGMAC_DUMP_WORD_COUNT (XGMAC_REGISTER_END / 4)
1698 /* Word counts for the SERDES blocks. */
1699 #define XG_SERDES_XAUI_AN_COUNT 14
1700 #define XG_SERDES_XAUI_HSS_PCS_COUNT 33
1701 #define XG_SERDES_XFI_AN_COUNT 14
1702 #define XG_SERDES_XFI_TRAIN_COUNT 12
1703 #define XG_SERDES_XFI_HSS_PCS_COUNT 15
1704 #define XG_SERDES_XFI_HSS_TX_COUNT 32
1705 #define XG_SERDES_XFI_HSS_RX_COUNT 32
1706 #define XG_SERDES_XFI_HSS_PLL_COUNT 32
1707
1708 /* There are 2 CNA ETS and 8 NIC ETS registers. */
1709 #define ETS_REGS_DUMP_WORD_COUNT 10
1710
1711 /* Each probe mux entry stores the probe type plus 64 entries
1712 * that are each each 64-bits in length. There are a total of
1713 * 34 (PRB_MX_ADDR_VALID_TOTAL) valid probes.
1714 */
1715 #define PRB_MX_ADDR_PRB_WORD_COUNT (1 + (PRB_MX_ADDR_MAX_MUX * 2))
1716 #define PRB_MX_DUMP_TOT_COUNT (PRB_MX_ADDR_PRB_WORD_COUNT * \
1717 PRB_MX_ADDR_VALID_TOTAL)
1718 /* Each routing entry consists of 4 32-bit words.
1719 * They are route type, index, index word, and result.
1720 * There are 2 route blocks with 8 entries each and
1721 * 2 NIC blocks with 16 entries each.
1722 * The totol entries is 48 with 4 words each.
1723 */
1724 #define RT_IDX_DUMP_ENTRIES 48
1725 #define RT_IDX_DUMP_WORDS_PER_ENTRY 4
1726 #define RT_IDX_DUMP_TOT_WORDS (RT_IDX_DUMP_ENTRIES * \
1727 RT_IDX_DUMP_WORDS_PER_ENTRY)
1728 /* There are 10 address blocks in filter, each with
1729 * different entry counts and different word-count-per-entry.
1730 */
1731 #define MAC_ADDR_DUMP_ENTRIES \
1732 ((MAC_ADDR_MAX_CAM_ENTRIES * MAC_ADDR_MAX_CAM_WCOUNT) + \
1733 (MAC_ADDR_MAX_MULTICAST_ENTRIES * MAC_ADDR_MAX_MULTICAST_WCOUNT) + \
1734 (MAC_ADDR_MAX_VLAN_ENTRIES * MAC_ADDR_MAX_VLAN_WCOUNT) + \
1735 (MAC_ADDR_MAX_MCAST_FLTR_ENTRIES * MAC_ADDR_MAX_MCAST_FLTR_WCOUNT) + \
1736 (MAC_ADDR_MAX_FC_MAC_ENTRIES * MAC_ADDR_MAX_FC_MAC_WCOUNT) + \
1737 (MAC_ADDR_MAX_MGMT_MAC_ENTRIES * MAC_ADDR_MAX_MGMT_MAC_WCOUNT) + \
1738 (MAC_ADDR_MAX_MGMT_VLAN_ENTRIES * MAC_ADDR_MAX_MGMT_VLAN_WCOUNT) + \
1739 (MAC_ADDR_MAX_MGMT_V4_ENTRIES * MAC_ADDR_MAX_MGMT_V4_WCOUNT) + \
1740 (MAC_ADDR_MAX_MGMT_V6_ENTRIES * MAC_ADDR_MAX_MGMT_V6_WCOUNT) + \
1741 (MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES * MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT))
1742 #define MAC_ADDR_DUMP_WORDS_PER_ENTRY 2
1743 #define MAC_ADDR_DUMP_TOT_WORDS (MAC_ADDR_DUMP_ENTRIES * \
1744 MAC_ADDR_DUMP_WORDS_PER_ENTRY)
1745 /* Maximum of 4 functions whose semaphore registeres are
1746 * in the coredump.
1747 */
1748 #define MAX_SEMAPHORE_FUNCTIONS 4
1749 /* Defines for access the MPI shadow registers. */
1750 #define RISC_124 0x0003007c
1751 #define RISC_127 0x0003007f
1752 #define SHADOW_OFFSET 0xb0000000
1753 #define SHADOW_REG_SHIFT 20
1754
1755 struct ql_nic_misc {
1756 u32 rx_ring_count;
1757 u32 tx_ring_count;
1758 u32 intr_count;
1759 u32 function;
1760 };
1761
1762 struct ql_reg_dump {
1763 /* segment 0 */
1764 struct mpi_coredump_global_header mpi_global_header;
1765
1766 /* segment 16 */
1767 struct mpi_coredump_segment_header nic_regs_seg_hdr;
1768 u32 nic_regs[64];
1769
1770 /* segment 30 */
1771 struct mpi_coredump_segment_header misc_nic_seg_hdr;
1772 struct ql_nic_misc misc_nic_info;
1773
1774 /* segment 31 */
1775 /* one interrupt state for each CQ */
1776 struct mpi_coredump_segment_header intr_states_seg_hdr;
1777 u32 intr_states[MAX_CPUS];
1778
1779 /* segment 32 */
1780 /* 3 cam words each for 16 unicast,
1781 * 2 cam words for each of 32 multicast.
1782 */
1783 struct mpi_coredump_segment_header cam_entries_seg_hdr;
1784 u32 cam_entries[(16 * 3) + (32 * 3)];
1785
1786 /* segment 33 */
1787 struct mpi_coredump_segment_header nic_routing_words_seg_hdr;
1788 u32 nic_routing_words[16];
1789
1790 /* segment 34 */
1791 struct mpi_coredump_segment_header ets_seg_hdr;
1792 u32 ets[8 + 2];
1793 };
1794
1795 struct ql_mpi_coredump {
1796 /* segment 0 */
1797 struct mpi_coredump_global_header mpi_global_header;
1798
1799 /* segment 1 */
1800 struct mpi_coredump_segment_header core_regs_seg_hdr;
1801 u32 mpi_core_regs[MPI_CORE_REGS_CNT];
1802 u32 mpi_core_sh_regs[MPI_CORE_SH_REGS_CNT];
1803
1804 /* segment 2 */
1805 struct mpi_coredump_segment_header test_logic_regs_seg_hdr;
1806 u32 test_logic_regs[TEST_REGS_CNT];
1807
1808 /* segment 3 */
1809 struct mpi_coredump_segment_header rmii_regs_seg_hdr;
1810 u32 rmii_regs[RMII_REGS_CNT];
1811
1812 /* segment 4 */
1813 struct mpi_coredump_segment_header fcmac1_regs_seg_hdr;
1814 u32 fcmac1_regs[FCMAC_REGS_CNT];
1815
1816 /* segment 5 */
1817 struct mpi_coredump_segment_header fcmac2_regs_seg_hdr;
1818 u32 fcmac2_regs[FCMAC_REGS_CNT];
1819
1820 /* segment 6 */
1821 struct mpi_coredump_segment_header fc1_mbx_regs_seg_hdr;
1822 u32 fc1_mbx_regs[FC_MBX_REGS_CNT];
1823
1824 /* segment 7 */
1825 struct mpi_coredump_segment_header ide_regs_seg_hdr;
1826 u32 ide_regs[IDE_REGS_CNT];
1827
1828 /* segment 8 */
1829 struct mpi_coredump_segment_header nic1_mbx_regs_seg_hdr;
1830 u32 nic1_mbx_regs[NIC_MBX_REGS_CNT];
1831
1832 /* segment 9 */
1833 struct mpi_coredump_segment_header smbus_regs_seg_hdr;
1834 u32 smbus_regs[SMBUS_REGS_CNT];
1835
1836 /* segment 10 */
1837 struct mpi_coredump_segment_header fc2_mbx_regs_seg_hdr;
1838 u32 fc2_mbx_regs[FC_MBX_REGS_CNT];
1839
1840 /* segment 11 */
1841 struct mpi_coredump_segment_header nic2_mbx_regs_seg_hdr;
1842 u32 nic2_mbx_regs[NIC_MBX_REGS_CNT];
1843
1844 /* segment 12 */
1845 struct mpi_coredump_segment_header i2c_regs_seg_hdr;
1846 u32 i2c_regs[I2C_REGS_CNT];
1847 /* segment 13 */
1848 struct mpi_coredump_segment_header memc_regs_seg_hdr;
1849 u32 memc_regs[MEMC_REGS_CNT];
1850
1851 /* segment 14 */
1852 struct mpi_coredump_segment_header pbus_regs_seg_hdr;
1853 u32 pbus_regs[PBUS_REGS_CNT];
1854
1855 /* segment 15 */
1856 struct mpi_coredump_segment_header mde_regs_seg_hdr;
1857 u32 mde_regs[MDE_REGS_CNT];
1858
1859 /* segment 16 */
1860 struct mpi_coredump_segment_header nic_regs_seg_hdr;
1861 u32 nic_regs[NIC_REGS_DUMP_WORD_COUNT];
1862
1863 /* segment 17 */
1864 struct mpi_coredump_segment_header nic2_regs_seg_hdr;
1865 u32 nic2_regs[NIC_REGS_DUMP_WORD_COUNT];
1866
1867 /* segment 18 */
1868 struct mpi_coredump_segment_header xgmac1_seg_hdr;
1869 u32 xgmac1[XGMAC_DUMP_WORD_COUNT];
1870
1871 /* segment 19 */
1872 struct mpi_coredump_segment_header xgmac2_seg_hdr;
1873 u32 xgmac2[XGMAC_DUMP_WORD_COUNT];
1874
1875 /* segment 20 */
1876 struct mpi_coredump_segment_header code_ram_seg_hdr;
1877 u32 code_ram[CODE_RAM_CNT];
1878
1879 /* segment 21 */
1880 struct mpi_coredump_segment_header memc_ram_seg_hdr;
1881 u32 memc_ram[MEMC_RAM_CNT];
1882
1883 /* segment 22 */
1884 struct mpi_coredump_segment_header xaui_an_hdr;
1885 u32 serdes_xaui_an[XG_SERDES_XAUI_AN_COUNT];
1886
1887 /* segment 23 */
1888 struct mpi_coredump_segment_header xaui_hss_pcs_hdr;
1889 u32 serdes_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT];
1890
1891 /* segment 24 */
1892 struct mpi_coredump_segment_header xfi_an_hdr;
1893 u32 serdes_xfi_an[XG_SERDES_XFI_AN_COUNT];
1894
1895 /* segment 25 */
1896 struct mpi_coredump_segment_header xfi_train_hdr;
1897 u32 serdes_xfi_train[XG_SERDES_XFI_TRAIN_COUNT];
1898
1899 /* segment 26 */
1900 struct mpi_coredump_segment_header xfi_hss_pcs_hdr;
1901 u32 serdes_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT];
1902
1903 /* segment 27 */
1904 struct mpi_coredump_segment_header xfi_hss_tx_hdr;
1905 u32 serdes_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT];
1906
1907 /* segment 28 */
1908 struct mpi_coredump_segment_header xfi_hss_rx_hdr;
1909 u32 serdes_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT];
1910
1911 /* segment 29 */
1912 struct mpi_coredump_segment_header xfi_hss_pll_hdr;
1913 u32 serdes_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT];
1914
1915 /* segment 30 */
1916 struct mpi_coredump_segment_header misc_nic_seg_hdr;
1917 struct ql_nic_misc misc_nic_info;
1918
1919 /* segment 31 */
1920 /* one interrupt state for each CQ */
1921 struct mpi_coredump_segment_header intr_states_seg_hdr;
1922 u32 intr_states[MAX_RX_RINGS];
1923
1924 /* segment 32 */
1925 /* 3 cam words each for 16 unicast,
1926 * 2 cam words for each of 32 multicast.
1927 */
1928 struct mpi_coredump_segment_header cam_entries_seg_hdr;
1929 u32 cam_entries[(16 * 3) + (32 * 3)];
1930
1931 /* segment 33 */
1932 struct mpi_coredump_segment_header nic_routing_words_seg_hdr;
1933 u32 nic_routing_words[16];
1934 /* segment 34 */
1935 struct mpi_coredump_segment_header ets_seg_hdr;
1936 u32 ets[ETS_REGS_DUMP_WORD_COUNT];
1937
1938 /* segment 35 */
1939 struct mpi_coredump_segment_header probe_dump_seg_hdr;
1940 u32 probe_dump[PRB_MX_DUMP_TOT_COUNT];
1941
1942 /* segment 36 */
1943 struct mpi_coredump_segment_header routing_reg_seg_hdr;
1944 u32 routing_regs[RT_IDX_DUMP_TOT_WORDS];
1945
1946 /* segment 37 */
1947 struct mpi_coredump_segment_header mac_prot_reg_seg_hdr;
1948 u32 mac_prot_regs[MAC_ADDR_DUMP_TOT_WORDS];
1949
1950 /* segment 38 */
1951 struct mpi_coredump_segment_header xaui2_an_hdr;
1952 u32 serdes2_xaui_an[XG_SERDES_XAUI_AN_COUNT];
1953
1954 /* segment 39 */
1955 struct mpi_coredump_segment_header xaui2_hss_pcs_hdr;
1956 u32 serdes2_xaui_hss_pcs[XG_SERDES_XAUI_HSS_PCS_COUNT];
1957
1958 /* segment 40 */
1959 struct mpi_coredump_segment_header xfi2_an_hdr;
1960 u32 serdes2_xfi_an[XG_SERDES_XFI_AN_COUNT];
1961
1962 /* segment 41 */
1963 struct mpi_coredump_segment_header xfi2_train_hdr;
1964 u32 serdes2_xfi_train[XG_SERDES_XFI_TRAIN_COUNT];
1965
1966 /* segment 42 */
1967 struct mpi_coredump_segment_header xfi2_hss_pcs_hdr;
1968 u32 serdes2_xfi_hss_pcs[XG_SERDES_XFI_HSS_PCS_COUNT];
1969
1970 /* segment 43 */
1971 struct mpi_coredump_segment_header xfi2_hss_tx_hdr;
1972 u32 serdes2_xfi_hss_tx[XG_SERDES_XFI_HSS_TX_COUNT];
1973
1974 /* segment 44 */
1975 struct mpi_coredump_segment_header xfi2_hss_rx_hdr;
1976 u32 serdes2_xfi_hss_rx[XG_SERDES_XFI_HSS_RX_COUNT];
1977
1978 /* segment 45 */
1979 struct mpi_coredump_segment_header xfi2_hss_pll_hdr;
1980 u32 serdes2_xfi_hss_pll[XG_SERDES_XFI_HSS_PLL_COUNT];
1981
1982 /* segment 50 */
1983 /* semaphore register for all 5 functions */
1984 struct mpi_coredump_segment_header sem_regs_seg_hdr;
1985 u32 sem_regs[MAX_SEMAPHORE_FUNCTIONS];
1986 };
1987
1988 /*
1989 * intr_context structure is used during initialization
1990 * to hook the interrupts. It is also used in a single
1991 * irq environment as a context to the ISR.
1992 */
1993 struct intr_context {
1994 struct ql_adapter *qdev;
1995 u32 intr;
1996 u32 irq_mask; /* Mask of which rings the vector services. */
1997 u32 hooked;
1998 u32 intr_en_mask; /* value/mask used to enable this intr */
1999 u32 intr_dis_mask; /* value/mask used to disable this intr */
2000 u32 intr_read_mask; /* value/mask used to read this intr */
2001 char name[IFNAMSIZ * 2];
2002 irq_handler_t handler;
2003 };
2004
2005 /* adapter flags definitions. */
2006 enum {
2007 QL_ADAPTER_UP = 0, /* Adapter has been brought up. */
2008 QL_LEGACY_ENABLED = 1,
2009 QL_MSI_ENABLED = 2,
2010 QL_MSIX_ENABLED = 3,
2011 QL_DMA64 = 4,
2012 QL_PROMISCUOUS = 5,
2013 QL_ALLMULTI = 6,
2014 QL_PORT_CFG = 7,
2015 QL_CAM_RT_SET = 8,
2016 QL_SELFTEST = 9,
2017 QL_LB_LINK_UP = 10,
2018 QL_FRC_COREDUMP = 11,
2019 QL_EEH_FATAL = 12,
2020 QL_ASIC_RECOVERY = 14, /* We are in ascic recovery. */
2021 };
2022
2023 /* link_status bit definitions */
2024 enum {
2025 STS_LOOPBACK_MASK = 0x00000700,
2026 STS_LOOPBACK_PCS = 0x00000100,
2027 STS_LOOPBACK_HSS = 0x00000200,
2028 STS_LOOPBACK_EXT = 0x00000300,
2029 STS_PAUSE_MASK = 0x000000c0,
2030 STS_PAUSE_STD = 0x00000040,
2031 STS_PAUSE_PRI = 0x00000080,
2032 STS_SPEED_MASK = 0x00000038,
2033 STS_SPEED_100Mb = 0x00000000,
2034 STS_SPEED_1Gb = 0x00000008,
2035 STS_SPEED_10Gb = 0x00000010,
2036 STS_LINK_TYPE_MASK = 0x00000007,
2037 STS_LINK_TYPE_XFI = 0x00000001,
2038 STS_LINK_TYPE_XAUI = 0x00000002,
2039 STS_LINK_TYPE_XFI_BP = 0x00000003,
2040 STS_LINK_TYPE_XAUI_BP = 0x00000004,
2041 STS_LINK_TYPE_10GBASET = 0x00000005,
2042 };
2043
2044 /* link_config bit definitions */
2045 enum {
2046 CFG_JUMBO_FRAME_SIZE = 0x00010000,
2047 CFG_PAUSE_MASK = 0x00000060,
2048 CFG_PAUSE_STD = 0x00000020,
2049 CFG_PAUSE_PRI = 0x00000040,
2050 CFG_DCBX = 0x00000010,
2051 CFG_LOOPBACK_MASK = 0x00000007,
2052 CFG_LOOPBACK_PCS = 0x00000002,
2053 CFG_LOOPBACK_HSS = 0x00000004,
2054 CFG_LOOPBACK_EXT = 0x00000006,
2055 CFG_DEFAULT_MAX_FRAME_SIZE = 0x00002580,
2056 };
2057
2058 struct nic_operations {
2059 int (*get_flash)(struct ql_adapter *qdev);
2060 int (*port_initialize)(struct ql_adapter *qdev);
2061 };
2062
2063 /*
2064 * The main Adapter structure definition.
2065 * This structure has all fields relevant to the hardware.
2066 */
2067 struct ql_adapter {
2068 struct ricb ricb;
2069 unsigned long flags;
2070 u32 wol;
2071
2072 struct nic_stats nic_stats;
2073
2074 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
2075
2076 /* PCI Configuration information for this device */
2077 struct pci_dev *pdev;
2078 struct net_device *ndev; /* Parent NET device */
2079
2080 /* Hardware information */
2081 u32 chip_rev_id;
2082 u32 fw_rev_id;
2083 u32 func; /* PCI function for this adapter */
2084 u32 alt_func; /* PCI function for alternate adapter */
2085 u32 port; /* Port number this adapter */
2086
2087 spinlock_t adapter_lock;
2088 spinlock_t stats_lock;
2089
2090 /* PCI Bus Relative Register Addresses */
2091 void __iomem *reg_base;
2092 void __iomem *doorbell_area;
2093 u32 doorbell_area_size;
2094
2095 u32 msg_enable;
2096
2097 /* Page for Shadow Registers */
2098 void *rx_ring_shadow_reg_area;
2099 dma_addr_t rx_ring_shadow_reg_dma;
2100 void *tx_ring_shadow_reg_area;
2101 dma_addr_t tx_ring_shadow_reg_dma;
2102
2103 u32 mailbox_in;
2104 u32 mailbox_out;
2105 struct mbox_params idc_mbc;
2106 struct mutex mpi_mutex;
2107
2108 int tx_ring_size;
2109 int rx_ring_size;
2110 u32 intr_count;
2111 struct msix_entry *msi_x_entry;
2112 struct intr_context intr_context[MAX_RX_RINGS];
2113
2114 int tx_ring_count; /* One per online CPU. */
2115 u32 rss_ring_count; /* One per irq vector. */
2116 /*
2117 * rx_ring_count =
2118 * (CPU count * outbound completion rx_ring) +
2119 * (irq_vector_cnt * inbound (RSS) completion rx_ring)
2120 */
2121 int rx_ring_count;
2122 int ring_mem_size;
2123 void *ring_mem;
2124
2125 struct rx_ring rx_ring[MAX_RX_RINGS];
2126 struct tx_ring tx_ring[MAX_TX_RINGS];
2127 unsigned int lbq_buf_order;
2128 u32 lbq_buf_size;
2129
2130 int rx_csum;
2131 u32 default_rx_queue;
2132
2133 u16 rx_coalesce_usecs; /* cqicb->int_delay */
2134 u16 rx_max_coalesced_frames; /* cqicb->pkt_int_delay */
2135 u16 tx_coalesce_usecs; /* cqicb->int_delay */
2136 u16 tx_max_coalesced_frames; /* cqicb->pkt_int_delay */
2137
2138 u32 xg_sem_mask;
2139 u32 port_link_up;
2140 u32 port_init;
2141 u32 link_status;
2142 struct ql_mpi_coredump *mpi_coredump;
2143 u32 core_is_dumped;
2144 u32 link_config;
2145 u32 led_config;
2146 u32 max_frame_size;
2147
2148 union flash_params flash;
2149
2150 struct workqueue_struct *workqueue;
2151 struct delayed_work asic_reset_work;
2152 struct delayed_work mpi_reset_work;
2153 struct delayed_work mpi_work;
2154 struct delayed_work mpi_port_cfg_work;
2155 struct delayed_work mpi_idc_work;
2156 struct delayed_work mpi_core_to_log;
2157 struct completion ide_completion;
2158 const struct nic_operations *nic_ops;
2159 u16 device_id;
2160 struct timer_list timer;
2161 atomic_t lb_count;
2162 /* Keep local copy of current mac address. */
2163 char current_mac_addr[ETH_ALEN];
2164 };
2165
2166 /*
2167 * Typical Register accessor for memory mapped device.
2168 */
ql_read32(const struct ql_adapter * qdev,int reg)2169 static inline u32 ql_read32(const struct ql_adapter *qdev, int reg)
2170 {
2171 return readl(qdev->reg_base + reg);
2172 }
2173
2174 /*
2175 * Typical Register accessor for memory mapped device.
2176 */
ql_write32(const struct ql_adapter * qdev,int reg,u32 val)2177 static inline void ql_write32(const struct ql_adapter *qdev, int reg, u32 val)
2178 {
2179 writel(val, qdev->reg_base + reg);
2180 }
2181
2182 /*
2183 * Doorbell Registers:
2184 * Doorbell registers are virtual registers in the PCI memory space.
2185 * The space is allocated by the chip during PCI initialization. The
2186 * device driver finds the doorbell address in BAR 3 in PCI config space.
2187 * The registers are used to control outbound and inbound queues. For
2188 * example, the producer index for an outbound queue. Each queue uses
2189 * 1 4k chunk of memory. The lower half of the space is for outbound
2190 * queues. The upper half is for inbound queues.
2191 */
ql_write_db_reg(u32 val,void __iomem * addr)2192 static inline void ql_write_db_reg(u32 val, void __iomem *addr)
2193 {
2194 writel(val, addr);
2195 }
2196
2197 /*
2198 * Doorbell Registers:
2199 * Doorbell registers are virtual registers in the PCI memory space.
2200 * The space is allocated by the chip during PCI initialization. The
2201 * device driver finds the doorbell address in BAR 3 in PCI config space.
2202 * The registers are used to control outbound and inbound queues. For
2203 * example, the producer index for an outbound queue. Each queue uses
2204 * 1 4k chunk of memory. The lower half of the space is for outbound
2205 * queues. The upper half is for inbound queues.
2206 * Caller has to guarantee ordering.
2207 */
ql_write_db_reg_relaxed(u32 val,void __iomem * addr)2208 static inline void ql_write_db_reg_relaxed(u32 val, void __iomem *addr)
2209 {
2210 writel_relaxed(val, addr);
2211 }
2212
2213 /*
2214 * Shadow Registers:
2215 * Outbound queues have a consumer index that is maintained by the chip.
2216 * Inbound queues have a producer index that is maintained by the chip.
2217 * For lower overhead, these registers are "shadowed" to host memory
2218 * which allows the device driver to track the queue progress without
2219 * PCI reads. When an entry is placed on an inbound queue, the chip will
2220 * update the relevant index register and then copy the value to the
2221 * shadow register in host memory.
2222 */
ql_read_sh_reg(__le32 * addr)2223 static inline u32 ql_read_sh_reg(__le32 *addr)
2224 {
2225 u32 reg;
2226
2227 reg = le32_to_cpu(*addr);
2228 rmb();
2229 return reg;
2230 }
2231
2232 extern char qlge_driver_name[];
2233 extern const char qlge_driver_version[];
2234 extern const struct ethtool_ops qlge_ethtool_ops;
2235
2236 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask);
2237 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask);
2238 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
2239 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
2240 u32 *value);
2241 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value);
2242 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
2243 u16 q_id);
2244 void ql_queue_fw_error(struct ql_adapter *qdev);
2245 void ql_mpi_work(struct work_struct *work);
2246 void ql_mpi_reset_work(struct work_struct *work);
2247 void ql_mpi_core_to_log(struct work_struct *work);
2248 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 ebit);
2249 void ql_queue_asic_error(struct ql_adapter *qdev);
2250 void ql_set_ethtool_ops(struct net_device *ndev);
2251 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data);
2252 void ql_mpi_idc_work(struct work_struct *work);
2253 void ql_mpi_port_cfg_work(struct work_struct *work);
2254 int ql_mb_get_fw_state(struct ql_adapter *qdev);
2255 int ql_cam_route_initialize(struct ql_adapter *qdev);
2256 int ql_read_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 *data);
2257 int ql_write_mpi_reg(struct ql_adapter *qdev, u32 reg, u32 data);
2258 int ql_unpause_mpi_risc(struct ql_adapter *qdev);
2259 int ql_pause_mpi_risc(struct ql_adapter *qdev);
2260 int ql_hard_reset_mpi_risc(struct ql_adapter *qdev);
2261 int ql_soft_reset_mpi_risc(struct ql_adapter *qdev);
2262 int ql_dump_risc_ram_area(struct ql_adapter *qdev, void *buf, u32 ram_addr,
2263 int word_count);
2264 int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump);
2265 int ql_mb_about_fw(struct ql_adapter *qdev);
2266 int ql_mb_wol_set_magic(struct ql_adapter *qdev, u32 enable_wol);
2267 int ql_mb_wol_mode(struct ql_adapter *qdev, u32 wol);
2268 int ql_mb_set_led_cfg(struct ql_adapter *qdev, u32 led_config);
2269 int ql_mb_get_led_cfg(struct ql_adapter *qdev);
2270 void ql_link_on(struct ql_adapter *qdev);
2271 void ql_link_off(struct ql_adapter *qdev);
2272 int ql_mb_set_mgmnt_traffic_ctl(struct ql_adapter *qdev, u32 control);
2273 int ql_mb_get_port_cfg(struct ql_adapter *qdev);
2274 int ql_mb_set_port_cfg(struct ql_adapter *qdev);
2275 int ql_wait_fifo_empty(struct ql_adapter *qdev);
2276 void ql_get_dump(struct ql_adapter *qdev, void *buff);
2277 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev);
2278 void ql_check_lb_frame(struct ql_adapter *qdev, struct sk_buff *skb);
2279 int ql_own_firmware(struct ql_adapter *qdev);
2280 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget);
2281
2282 /* #define QL_ALL_DUMP */
2283 /* #define QL_REG_DUMP */
2284 /* #define QL_DEV_DUMP */
2285 /* #define QL_CB_DUMP */
2286 /* #define QL_IB_DUMP */
2287 /* #define QL_OB_DUMP */
2288
2289 #ifdef QL_REG_DUMP
2290 void ql_dump_xgmac_control_regs(struct ql_adapter *qdev);
2291 void ql_dump_routing_entries(struct ql_adapter *qdev);
2292 void ql_dump_regs(struct ql_adapter *qdev);
2293 #define QL_DUMP_REGS(qdev) ql_dump_regs(qdev)
2294 #define QL_DUMP_ROUTE(qdev) ql_dump_routing_entries(qdev)
2295 #define QL_DUMP_XGMAC_CONTROL_REGS(qdev) ql_dump_xgmac_control_regs(qdev)
2296 #else
2297 #define QL_DUMP_REGS(qdev)
2298 #define QL_DUMP_ROUTE(qdev)
2299 #define QL_DUMP_XGMAC_CONTROL_REGS(qdev)
2300 #endif
2301
2302 #ifdef QL_STAT_DUMP
2303 void ql_dump_stat(struct ql_adapter *qdev);
2304 #define QL_DUMP_STAT(qdev) ql_dump_stat(qdev)
2305 #else
2306 #define QL_DUMP_STAT(qdev)
2307 #endif
2308
2309 #ifdef QL_DEV_DUMP
2310 void ql_dump_qdev(struct ql_adapter *qdev);
2311 #define QL_DUMP_QDEV(qdev) ql_dump_qdev(qdev)
2312 #else
2313 #define QL_DUMP_QDEV(qdev)
2314 #endif
2315
2316 #ifdef QL_CB_DUMP
2317 void ql_dump_wqicb(struct wqicb *wqicb);
2318 void ql_dump_tx_ring(struct tx_ring *tx_ring);
2319 void ql_dump_ricb(struct ricb *ricb);
2320 void ql_dump_cqicb(struct cqicb *cqicb);
2321 void ql_dump_rx_ring(struct rx_ring *rx_ring);
2322 void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id);
2323 #define QL_DUMP_RICB(ricb) ql_dump_ricb(ricb)
2324 #define QL_DUMP_WQICB(wqicb) ql_dump_wqicb(wqicb)
2325 #define QL_DUMP_TX_RING(tx_ring) ql_dump_tx_ring(tx_ring)
2326 #define QL_DUMP_CQICB(cqicb) ql_dump_cqicb(cqicb)
2327 #define QL_DUMP_RX_RING(rx_ring) ql_dump_rx_ring(rx_ring)
2328 #define QL_DUMP_HW_CB(qdev, size, bit, q_id) \
2329 ql_dump_hw_cb(qdev, size, bit, q_id)
2330 #else
2331 #define QL_DUMP_RICB(ricb)
2332 #define QL_DUMP_WQICB(wqicb)
2333 #define QL_DUMP_TX_RING(tx_ring)
2334 #define QL_DUMP_CQICB(cqicb)
2335 #define QL_DUMP_RX_RING(rx_ring)
2336 #define QL_DUMP_HW_CB(qdev, size, bit, q_id)
2337 #endif
2338
2339 #ifdef QL_OB_DUMP
2340 void ql_dump_tx_desc(struct ql_adapter *qdev, struct tx_buf_desc *tbd);
2341 void ql_dump_ob_mac_iocb(struct ql_adapter *qdev, struct ob_mac_iocb_req *ob_mac_iocb);
2342 void ql_dump_ob_mac_rsp(struct ql_adapter *qdev, struct ob_mac_iocb_rsp *ob_mac_rsp);
2343 #define QL_DUMP_OB_MAC_IOCB(qdev, ob_mac_iocb) ql_dump_ob_mac_iocb(qdev, ob_mac_iocb)
2344 #define QL_DUMP_OB_MAC_RSP(qdev, ob_mac_rsp) ql_dump_ob_mac_rsp(qdev, ob_mac_rsp)
2345 #else
2346 #define QL_DUMP_OB_MAC_IOCB(qdev, ob_mac_iocb)
2347 #define QL_DUMP_OB_MAC_RSP(qdev, ob_mac_rsp)
2348 #endif
2349
2350 #ifdef QL_IB_DUMP
2351 void ql_dump_ib_mac_rsp(struct ql_adapter *qdev, struct ib_mac_iocb_rsp *ib_mac_rsp);
2352 #define QL_DUMP_IB_MAC_RSP(qdev, ib_mac_rsp) ql_dump_ib_mac_rsp(qdev, ib_mac_rsp)
2353 #else
2354 #define QL_DUMP_IB_MAC_RSP(qdev, ib_mac_rsp)
2355 #endif
2356
2357 #ifdef QL_ALL_DUMP
2358 void ql_dump_all(struct ql_adapter *qdev);
2359 #define QL_DUMP_ALL(qdev) ql_dump_all(qdev)
2360 #else
2361 #define QL_DUMP_ALL(qdev)
2362 #endif
2363
2364 #endif /* _QLGE_H_ */
2365