1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
44
45 #define INVALID_OP (~0U)
46
47 #define OP_LEN_MI 9
48 #define OP_LEN_2D 10
49 #define OP_LEN_3D_MEDIA 16
50 #define OP_LEN_MFX_VC 16
51 #define OP_LEN_VEBOX 16
52
53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
54
55 struct sub_op_bits {
56 int hi;
57 int low;
58 };
59 struct decode_info {
60 const char *name;
61 int op_len;
62 int nr_sub_op;
63 const struct sub_op_bits *sub_op;
64 };
65
66 #define MAX_CMD_BUDGET 0x7fffffff
67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
70
71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
74
75 /* Render Command Map */
76
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP 0x0
79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
80 #define OP_MI_USER_INTERRUPT 0x2
81 #define OP_MI_WAIT_FOR_EVENT 0x3
82 #define OP_MI_FLUSH 0x4
83 #define OP_MI_ARB_CHECK 0x5
84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
85 #define OP_MI_REPORT_HEAD 0x7
86 #define OP_MI_ARB_ON_OFF 0x8
87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END 0xA
89 #define OP_MI_SUSPEND_FLUSH 0xB
90 #define OP_MI_PREDICATE 0xC /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
92 #define OP_MI_SET_APPID 0xE /* IVB+ */
93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP 0x14
96 #define OP_MI_SEMAPHORE_MBOX 0x16
97 #define OP_MI_SET_CONTEXT 0x18
98 #define OP_MI_MATH 0x1A
99 #define OP_MI_URB_CLEAR 0x19
100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
102
103 #define OP_MI_STORE_DATA_IMM 0x20
104 #define OP_MI_STORE_DATA_INDEX 0x21
105 #define OP_MI_LOAD_REGISTER_IMM 0x22
106 #define OP_MI_UPDATE_GTT 0x23
107 #define OP_MI_STORE_REGISTER_MEM 0x24
108 #define OP_MI_FLUSH_DW 0x26
109 #define OP_MI_CLFLUSH 0x27
110 #define OP_MI_REPORT_PERF_COUNT 0x28
111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
116 #define OP_MI_2E 0x2E /* BDW+ */
117 #define OP_MI_2F 0x2F /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START 0x31
119
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
122
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
124
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
129
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x) ((2<<7) | x)
132
133 #define OP_XY_SETUP_BLT OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
138 #define OP_XY_TEXT_BLT OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
140 #define OP_XY_COLOR_BLT OP_2D(0x50)
141 #define OP_XY_PAT_BLT OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
145 #define OP_XY_FULL_BLT OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
157
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
161
162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
163
164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
167 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
168
169 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
170
171 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
172
173 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
174 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
175 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
176 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
177 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
178 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
179
180 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
181 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
182 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
183 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
184
185 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
186 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
187 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
188 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
189 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
190 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
191 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
192 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
193 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
194 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
195 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
196 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
197 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
198 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
199 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
200 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
201 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
202 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
203 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
204 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
205 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
206 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
207 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
208 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
209 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
210 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
211 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
212 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
214 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
215 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
216 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
221 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
226 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
227 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
228 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
229 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
230 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
235 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
241 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
243 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
245 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
250 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251
252 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
253 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
254 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
255 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
256 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
257 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
258 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
259 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
260 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
261 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
262 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263
264 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
265 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
266 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
267 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
268 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
269 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
270 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
271 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
272 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
274 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
275 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
276 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
277 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
278 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
283 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
284 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
285 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
286 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
287 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
288 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
289 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
290 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
291 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
292
293 /* VCCP Command Parser */
294
295 /*
296 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
297 * git://anongit.freedesktop.org/vaapi/intel-driver
298 * src/i965_defines.h
299 *
300 */
301
302 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
303 (3 << 13 | \
304 (pipeline) << 11 | \
305 (op) << 8 | \
306 (sub_opa) << 5 | \
307 (sub_opb))
308
309 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
310 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
311 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
312 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
313 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
314 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
315 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
316 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
317 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
318 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
319 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
320
321 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
322
323 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
324 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
325 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
326 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
327 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
328 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
329 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
330 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
331 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
332 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
333 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
334 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
335
336 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
337 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
338 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
339 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
340 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
341
342 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
343 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
344 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
345 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
346 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
347
348 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
349 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
350 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
351
352 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
353 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
354 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
355
356 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
357 (3 << 13 | \
358 (pipeline) << 11 | \
359 (op) << 8 | \
360 (sub_opa) << 5 | \
361 (sub_opb))
362
363 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
364 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
365 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
366
367 struct parser_exec_state;
368
369 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
370
371 #define GVT_CMD_HASH_BITS 7
372
373 /* which DWords need address fix */
374 #define ADDR_FIX_1(x1) (1 << (x1))
375 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
376 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
377 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
378 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379
380 #define DWORD_FIELD(dword, end, start) \
381 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382
383 #define OP_LENGTH_BIAS 2
384 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
385
gvt_check_valid_cmd_length(int len,int valid_len)386 static int gvt_check_valid_cmd_length(int len, int valid_len)
387 {
388 if (valid_len != len) {
389 gvt_err("len is not valid: len=%u valid_len=%u\n",
390 len, valid_len);
391 return -EFAULT;
392 }
393 return 0;
394 }
395
396 struct cmd_info {
397 const char *name;
398 u32 opcode;
399
400 #define F_LEN_MASK 3U
401 #define F_LEN_CONST 1U
402 #define F_LEN_VAR 0U
403 /* value is const although LEN maybe variable */
404 #define F_LEN_VAR_FIXED (1<<1)
405
406 /*
407 * command has its own ip advance logic
408 * e.g. MI_BATCH_START, MI_BATCH_END
409 */
410 #define F_IP_ADVANCE_CUSTOM (1<<2)
411 u32 flag;
412
413 #define R_RCS BIT(RCS0)
414 #define R_VCS1 BIT(VCS0)
415 #define R_VCS2 BIT(VCS1)
416 #define R_VCS (R_VCS1 | R_VCS2)
417 #define R_BCS BIT(BCS0)
418 #define R_VECS BIT(VECS0)
419 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
420 /* rings that support this cmd: BLT/RCS/VCS/VECS */
421 u16 rings;
422
423 /* devices that support this cmd: SNB/IVB/HSW/... */
424 u16 devices;
425
426 /* which DWords are address that need fix up.
427 * bit 0 means a 32-bit non address operand in command
428 * bit 1 means address operand, which could be 32-bit
429 * or 64-bit depending on different architectures.(
430 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
431 * No matter the address length, each address only takes
432 * one bit in the bitmap.
433 */
434 u16 addr_bitmap;
435
436 /* flag == F_LEN_CONST : command length
437 * flag == F_LEN_VAR : length bias bits
438 * Note: length is in DWord
439 */
440 u32 len;
441
442 parser_cmd_handler handler;
443
444 /* valid length in DWord */
445 u32 valid_len;
446 };
447
448 struct cmd_entry {
449 struct hlist_node hlist;
450 const struct cmd_info *info;
451 };
452
453 enum {
454 RING_BUFFER_INSTRUCTION,
455 BATCH_BUFFER_INSTRUCTION,
456 BATCH_BUFFER_2ND_LEVEL,
457 };
458
459 enum {
460 GTT_BUFFER,
461 PPGTT_BUFFER
462 };
463
464 struct parser_exec_state {
465 struct intel_vgpu *vgpu;
466 const struct intel_engine_cs *engine;
467
468 int buf_type;
469
470 /* batch buffer address type */
471 int buf_addr_type;
472
473 /* graphics memory address of ring buffer start */
474 unsigned long ring_start;
475 unsigned long ring_size;
476 unsigned long ring_head;
477 unsigned long ring_tail;
478
479 /* instruction graphics memory address */
480 unsigned long ip_gma;
481
482 /* mapped va of the instr_gma */
483 void *ip_va;
484 void *rb_va;
485
486 void *ret_bb_va;
487 /* next instruction when return from batch buffer to ring buffer */
488 unsigned long ret_ip_gma_ring;
489
490 /* next instruction when return from 2nd batch buffer to batch buffer */
491 unsigned long ret_ip_gma_bb;
492
493 /* batch buffer address type (GTT or PPGTT)
494 * used when ret from 2nd level batch buffer
495 */
496 int saved_buf_addr_type;
497 bool is_ctx_wa;
498
499 const struct cmd_info *info;
500
501 struct intel_vgpu_workload *workload;
502 };
503
504 #define gmadr_dw_number(s) \
505 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506
507 static unsigned long bypass_scan_mask = 0;
508
509 /* ring ALL, type = 0 */
510 static const struct sub_op_bits sub_op_mi[] = {
511 {31, 29},
512 {28, 23},
513 };
514
515 static const struct decode_info decode_info_mi = {
516 "MI",
517 OP_LEN_MI,
518 ARRAY_SIZE(sub_op_mi),
519 sub_op_mi,
520 };
521
522 /* ring RCS, command type 2 */
523 static const struct sub_op_bits sub_op_2d[] = {
524 {31, 29},
525 {28, 22},
526 };
527
528 static const struct decode_info decode_info_2d = {
529 "2D",
530 OP_LEN_2D,
531 ARRAY_SIZE(sub_op_2d),
532 sub_op_2d,
533 };
534
535 /* ring RCS, command type 3 */
536 static const struct sub_op_bits sub_op_3d_media[] = {
537 {31, 29},
538 {28, 27},
539 {26, 24},
540 {23, 16},
541 };
542
543 static const struct decode_info decode_info_3d_media = {
544 "3D_Media",
545 OP_LEN_3D_MEDIA,
546 ARRAY_SIZE(sub_op_3d_media),
547 sub_op_3d_media,
548 };
549
550 /* ring VCS, command type 3 */
551 static const struct sub_op_bits sub_op_mfx_vc[] = {
552 {31, 29},
553 {28, 27},
554 {26, 24},
555 {23, 21},
556 {20, 16},
557 };
558
559 static const struct decode_info decode_info_mfx_vc = {
560 "MFX_VC",
561 OP_LEN_MFX_VC,
562 ARRAY_SIZE(sub_op_mfx_vc),
563 sub_op_mfx_vc,
564 };
565
566 /* ring VECS, command type 3 */
567 static const struct sub_op_bits sub_op_vebox[] = {
568 {31, 29},
569 {28, 27},
570 {26, 24},
571 {23, 21},
572 {20, 16},
573 };
574
575 static const struct decode_info decode_info_vebox = {
576 "VEBOX",
577 OP_LEN_VEBOX,
578 ARRAY_SIZE(sub_op_vebox),
579 sub_op_vebox,
580 };
581
582 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
583 [RCS0] = {
584 &decode_info_mi,
585 NULL,
586 NULL,
587 &decode_info_3d_media,
588 NULL,
589 NULL,
590 NULL,
591 NULL,
592 },
593
594 [VCS0] = {
595 &decode_info_mi,
596 NULL,
597 NULL,
598 &decode_info_mfx_vc,
599 NULL,
600 NULL,
601 NULL,
602 NULL,
603 },
604
605 [BCS0] = {
606 &decode_info_mi,
607 NULL,
608 &decode_info_2d,
609 NULL,
610 NULL,
611 NULL,
612 NULL,
613 NULL,
614 },
615
616 [VECS0] = {
617 &decode_info_mi,
618 NULL,
619 NULL,
620 &decode_info_vebox,
621 NULL,
622 NULL,
623 NULL,
624 NULL,
625 },
626
627 [VCS1] = {
628 &decode_info_mi,
629 NULL,
630 NULL,
631 &decode_info_mfx_vc,
632 NULL,
633 NULL,
634 NULL,
635 NULL,
636 },
637 };
638
get_opcode(u32 cmd,const struct intel_engine_cs * engine)639 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
640 {
641 const struct decode_info *d_info;
642
643 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
644 if (d_info == NULL)
645 return INVALID_OP;
646
647 return cmd >> (32 - d_info->op_len);
648 }
649
650 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)651 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
652 const struct intel_engine_cs *engine)
653 {
654 struct cmd_entry *e;
655
656 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
657 if (opcode == e->info->opcode &&
658 e->info->rings & engine->mask)
659 return e->info;
660 }
661 return NULL;
662 }
663
664 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)665 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
666 const struct intel_engine_cs *engine)
667 {
668 u32 opcode;
669
670 opcode = get_opcode(cmd, engine);
671 if (opcode == INVALID_OP)
672 return NULL;
673
674 return find_cmd_entry(gvt, opcode, engine);
675 }
676
sub_op_val(u32 cmd,u32 hi,u32 low)677 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
678 {
679 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
680 }
681
print_opcode(u32 cmd,const struct intel_engine_cs * engine)682 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
683 {
684 const struct decode_info *d_info;
685 int i;
686
687 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
688 if (d_info == NULL)
689 return;
690
691 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
692 cmd >> (32 - d_info->op_len), d_info->name);
693
694 for (i = 0; i < d_info->nr_sub_op; i++)
695 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
696 d_info->sub_op[i].low));
697
698 pr_err("\n");
699 }
700
cmd_ptr(struct parser_exec_state * s,int index)701 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
702 {
703 return s->ip_va + (index << 2);
704 }
705
cmd_val(struct parser_exec_state * s,int index)706 static inline u32 cmd_val(struct parser_exec_state *s, int index)
707 {
708 return *cmd_ptr(s, index);
709 }
710
parser_exec_state_dump(struct parser_exec_state * s)711 static void parser_exec_state_dump(struct parser_exec_state *s)
712 {
713 int cnt = 0;
714 int i;
715
716 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
717 " ring_head(%08lx) ring_tail(%08lx)\n",
718 s->vgpu->id, s->engine->name,
719 s->ring_start, s->ring_start + s->ring_size,
720 s->ring_head, s->ring_tail);
721
722 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
723 s->buf_type == RING_BUFFER_INSTRUCTION ?
724 "RING_BUFFER" : "BATCH_BUFFER",
725 s->buf_addr_type == GTT_BUFFER ?
726 "GTT" : "PPGTT", s->ip_gma);
727
728 if (s->ip_va == NULL) {
729 gvt_dbg_cmd(" ip_va(NULL)");
730 return;
731 }
732
733 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
734 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
735 cmd_val(s, 2), cmd_val(s, 3));
736
737 print_opcode(cmd_val(s, 0), s->engine);
738
739 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
740
741 while (cnt < 1024) {
742 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
743 for (i = 0; i < 8; i++)
744 gvt_dbg_cmd("%08x ", cmd_val(s, i));
745 gvt_dbg_cmd("\n");
746
747 s->ip_va += 8 * sizeof(u32);
748 cnt += 8;
749 }
750 }
751
update_ip_va(struct parser_exec_state * s)752 static inline void update_ip_va(struct parser_exec_state *s)
753 {
754 unsigned long len = 0;
755
756 if (WARN_ON(s->ring_head == s->ring_tail))
757 return;
758
759 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
760 unsigned long ring_top = s->ring_start + s->ring_size;
761
762 if (s->ring_head > s->ring_tail) {
763 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
764 len = (s->ip_gma - s->ring_head);
765 else if (s->ip_gma >= s->ring_start &&
766 s->ip_gma <= s->ring_tail)
767 len = (ring_top - s->ring_head) +
768 (s->ip_gma - s->ring_start);
769 } else
770 len = (s->ip_gma - s->ring_head);
771
772 s->ip_va = s->rb_va + len;
773 } else {/* shadow batch buffer */
774 s->ip_va = s->ret_bb_va;
775 }
776 }
777
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)778 static inline int ip_gma_set(struct parser_exec_state *s,
779 unsigned long ip_gma)
780 {
781 WARN_ON(!IS_ALIGNED(ip_gma, 4));
782
783 s->ip_gma = ip_gma;
784 update_ip_va(s);
785 return 0;
786 }
787
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)788 static inline int ip_gma_advance(struct parser_exec_state *s,
789 unsigned int dw_len)
790 {
791 s->ip_gma += (dw_len << 2);
792
793 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
794 if (s->ip_gma >= s->ring_start + s->ring_size)
795 s->ip_gma -= s->ring_size;
796 update_ip_va(s);
797 } else {
798 s->ip_va += (dw_len << 2);
799 }
800
801 return 0;
802 }
803
get_cmd_length(const struct cmd_info * info,u32 cmd)804 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
805 {
806 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
807 return info->len;
808 else
809 return (cmd & ((1U << info->len) - 1)) + 2;
810 return 0;
811 }
812
cmd_length(struct parser_exec_state * s)813 static inline int cmd_length(struct parser_exec_state *s)
814 {
815 return get_cmd_length(s->info, cmd_val(s, 0));
816 }
817
818 /* do not remove this, some platform may need clflush here */
819 #define patch_value(s, addr, val) do { \
820 *addr = val; \
821 } while (0)
822
is_shadowed_mmio(unsigned int offset)823 static bool is_shadowed_mmio(unsigned int offset)
824 {
825 bool ret = false;
826
827 if ((offset == 0x2168) || /*BB current head register UDW */
828 (offset == 0x2140) || /*BB current header register */
829 (offset == 0x211c) || /*second BB header register UDW */
830 (offset == 0x2114)) { /*second BB header register UDW */
831 ret = true;
832 }
833 return ret;
834 }
835
is_force_nonpriv_mmio(unsigned int offset)836 static inline bool is_force_nonpriv_mmio(unsigned int offset)
837 {
838 return (offset >= 0x24d0 && offset < 0x2500);
839 }
840
force_nonpriv_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)841 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
842 unsigned int offset, unsigned int index, char *cmd)
843 {
844 struct intel_gvt *gvt = s->vgpu->gvt;
845 unsigned int data;
846 u32 ring_base;
847 u32 nopid;
848
849 if (!strcmp(cmd, "lri"))
850 data = cmd_val(s, index + 1);
851 else {
852 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
853 offset, cmd);
854 return -EINVAL;
855 }
856
857 ring_base = s->engine->mmio_base;
858 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
859
860 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
861 data != nopid) {
862 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
863 offset, data);
864 patch_value(s, cmd_ptr(s, index), nopid);
865 return 0;
866 }
867 return 0;
868 }
869
is_mocs_mmio(unsigned int offset)870 static inline bool is_mocs_mmio(unsigned int offset)
871 {
872 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
873 ((offset >= 0xb020) && (offset <= 0xb0a0));
874 }
875
mocs_cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)876 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
877 unsigned int offset, unsigned int index)
878 {
879 if (!is_mocs_mmio(offset))
880 return -EINVAL;
881 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
882 return 0;
883 }
884
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)885 static int is_cmd_update_pdps(unsigned int offset,
886 struct parser_exec_state *s)
887 {
888 u32 base = s->workload->engine->mmio_base;
889 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
890 }
891
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)892 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
893 unsigned int offset, unsigned int index)
894 {
895 struct intel_vgpu *vgpu = s->vgpu;
896 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
897 struct intel_vgpu_mm *mm;
898 u64 pdps[GEN8_3LVL_PDPES];
899
900 if (shadow_mm->ppgtt_mm.root_entry_type ==
901 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
902 pdps[0] = (u64)cmd_val(s, 2) << 32;
903 pdps[0] |= cmd_val(s, 4);
904
905 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
906 if (!mm) {
907 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
908 return -EINVAL;
909 }
910 intel_vgpu_mm_get(mm);
911 list_add_tail(&mm->ppgtt_mm.link,
912 &s->workload->lri_shadow_mm);
913 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
914 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
915 } else {
916 /* Currently all guests use PML4 table and now can't
917 * have a guest with 3-level table but uses LRI for
918 * PPGTT update. So this is simply un-testable. */
919 GEM_BUG_ON(1);
920 gvt_vgpu_err("invalid shared shadow vm type\n");
921 return -EINVAL;
922 }
923 return 0;
924 }
925
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)926 static int cmd_reg_handler(struct parser_exec_state *s,
927 unsigned int offset, unsigned int index, char *cmd)
928 {
929 struct intel_vgpu *vgpu = s->vgpu;
930 struct intel_gvt *gvt = vgpu->gvt;
931 u32 ctx_sr_ctl;
932
933 if (offset + 4 > gvt->device_info.mmio_size) {
934 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
935 cmd, offset);
936 return -EFAULT;
937 }
938
939 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
940 gvt_vgpu_err("%s access to non-render register (%x)\n",
941 cmd, offset);
942 return -EBADRQC;
943 }
944
945 if (is_shadowed_mmio(offset)) {
946 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
947 return 0;
948 }
949
950 if (is_mocs_mmio(offset) &&
951 mocs_cmd_reg_handler(s, offset, index))
952 return -EINVAL;
953
954 if (is_force_nonpriv_mmio(offset) &&
955 force_nonpriv_reg_handler(s, offset, index, cmd))
956 return -EPERM;
957
958 if (offset == i915_mmio_reg_offset(DERRMR) ||
959 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
960 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
961 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
962 }
963
964 if (is_cmd_update_pdps(offset, s) &&
965 cmd_pdp_mmio_update_handler(s, offset, index))
966 return -EINVAL;
967
968 /* TODO
969 * In order to let workload with inhibit context to generate
970 * correct image data into memory, vregs values will be loaded to
971 * hw via LRIs in the workload with inhibit context. But as
972 * indirect context is loaded prior to LRIs in workload, we don't
973 * want reg values specified in indirect context overwritten by
974 * LRIs in workloads. So, when scanning an indirect context, we
975 * update reg values in it into vregs, so LRIs in workload with
976 * inhibit context will restore with correct values
977 */
978 if (IS_GEN(s->engine->i915, 9) &&
979 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
980 !strncmp(cmd, "lri", 3)) {
981 intel_gvt_hypervisor_read_gpa(s->vgpu,
982 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
983 /* check inhibit context */
984 if (ctx_sr_ctl & 1) {
985 u32 data = cmd_val(s, index + 1);
986
987 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
988 intel_vgpu_mask_mmio_write(vgpu,
989 offset, &data, 4);
990 else
991 vgpu_vreg(vgpu, offset) = data;
992 }
993 }
994
995 return 0;
996 }
997
998 #define cmd_reg(s, i) \
999 (cmd_val(s, i) & GENMASK(22, 2))
1000
1001 #define cmd_reg_inhibit(s, i) \
1002 (cmd_val(s, i) & GENMASK(22, 18))
1003
1004 #define cmd_gma(s, i) \
1005 (cmd_val(s, i) & GENMASK(31, 2))
1006
1007 #define cmd_gma_hi(s, i) \
1008 (cmd_val(s, i) & GENMASK(15, 0))
1009
cmd_handler_lri(struct parser_exec_state * s)1010 static int cmd_handler_lri(struct parser_exec_state *s)
1011 {
1012 int i, ret = 0;
1013 int cmd_len = cmd_length(s);
1014
1015 for (i = 1; i < cmd_len; i += 2) {
1016 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1017 if (s->engine->id == BCS0 &&
1018 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1019 ret |= 0;
1020 else
1021 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1022 }
1023 if (ret)
1024 break;
1025 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1026 if (ret)
1027 break;
1028 }
1029 return ret;
1030 }
1031
cmd_handler_lrr(struct parser_exec_state * s)1032 static int cmd_handler_lrr(struct parser_exec_state *s)
1033 {
1034 int i, ret = 0;
1035 int cmd_len = cmd_length(s);
1036
1037 for (i = 1; i < cmd_len; i += 2) {
1038 if (IS_BROADWELL(s->engine->i915))
1039 ret |= ((cmd_reg_inhibit(s, i) ||
1040 (cmd_reg_inhibit(s, i + 1)))) ?
1041 -EBADRQC : 0;
1042 if (ret)
1043 break;
1044 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1045 if (ret)
1046 break;
1047 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1048 if (ret)
1049 break;
1050 }
1051 return ret;
1052 }
1053
1054 static inline int cmd_address_audit(struct parser_exec_state *s,
1055 unsigned long guest_gma, int op_size, bool index_mode);
1056
cmd_handler_lrm(struct parser_exec_state * s)1057 static int cmd_handler_lrm(struct parser_exec_state *s)
1058 {
1059 struct intel_gvt *gvt = s->vgpu->gvt;
1060 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1061 unsigned long gma;
1062 int i, ret = 0;
1063 int cmd_len = cmd_length(s);
1064
1065 for (i = 1; i < cmd_len;) {
1066 if (IS_BROADWELL(s->engine->i915))
1067 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1068 if (ret)
1069 break;
1070 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1071 if (ret)
1072 break;
1073 if (cmd_val(s, 0) & (1 << 22)) {
1074 gma = cmd_gma(s, i + 1);
1075 if (gmadr_bytes == 8)
1076 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1077 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1078 if (ret)
1079 break;
1080 }
1081 i += gmadr_dw_number(s) + 1;
1082 }
1083 return ret;
1084 }
1085
cmd_handler_srm(struct parser_exec_state * s)1086 static int cmd_handler_srm(struct parser_exec_state *s)
1087 {
1088 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1089 unsigned long gma;
1090 int i, ret = 0;
1091 int cmd_len = cmd_length(s);
1092
1093 for (i = 1; i < cmd_len;) {
1094 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1095 if (ret)
1096 break;
1097 if (cmd_val(s, 0) & (1 << 22)) {
1098 gma = cmd_gma(s, i + 1);
1099 if (gmadr_bytes == 8)
1100 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1101 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1102 if (ret)
1103 break;
1104 }
1105 i += gmadr_dw_number(s) + 1;
1106 }
1107 return ret;
1108 }
1109
1110 struct cmd_interrupt_event {
1111 int pipe_control_notify;
1112 int mi_flush_dw;
1113 int mi_user_interrupt;
1114 };
1115
1116 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1117 [RCS0] = {
1118 .pipe_control_notify = RCS_PIPE_CONTROL,
1119 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1120 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1121 },
1122 [BCS0] = {
1123 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1124 .mi_flush_dw = BCS_MI_FLUSH_DW,
1125 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1126 },
1127 [VCS0] = {
1128 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1129 .mi_flush_dw = VCS_MI_FLUSH_DW,
1130 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1131 },
1132 [VCS1] = {
1133 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1134 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1135 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1136 },
1137 [VECS0] = {
1138 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1139 .mi_flush_dw = VECS_MI_FLUSH_DW,
1140 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1141 },
1142 };
1143
cmd_handler_pipe_control(struct parser_exec_state * s)1144 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1145 {
1146 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1147 unsigned long gma;
1148 bool index_mode = false;
1149 unsigned int post_sync;
1150 int ret = 0;
1151 u32 hws_pga, val;
1152
1153 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1154
1155 /* LRI post sync */
1156 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1157 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1158 /* post sync */
1159 else if (post_sync) {
1160 if (post_sync == 2)
1161 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1162 else if (post_sync == 3)
1163 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1164 else if (post_sync == 1) {
1165 /* check ggtt*/
1166 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1167 gma = cmd_val(s, 2) & GENMASK(31, 3);
1168 if (gmadr_bytes == 8)
1169 gma |= (cmd_gma_hi(s, 3)) << 32;
1170 /* Store Data Index */
1171 if (cmd_val(s, 1) & (1 << 21))
1172 index_mode = true;
1173 ret |= cmd_address_audit(s, gma, sizeof(u64),
1174 index_mode);
1175 if (ret)
1176 return ret;
1177 if (index_mode) {
1178 hws_pga = s->vgpu->hws_pga[s->engine->id];
1179 gma = hws_pga + gma;
1180 patch_value(s, cmd_ptr(s, 2), gma);
1181 val = cmd_val(s, 1) & (~(1 << 21));
1182 patch_value(s, cmd_ptr(s, 1), val);
1183 }
1184 }
1185 }
1186 }
1187
1188 if (ret)
1189 return ret;
1190
1191 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1192 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1193 s->workload->pending_events);
1194 return 0;
1195 }
1196
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1197 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1198 {
1199 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1200 s->workload->pending_events);
1201 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1202 return 0;
1203 }
1204
cmd_advance_default(struct parser_exec_state * s)1205 static int cmd_advance_default(struct parser_exec_state *s)
1206 {
1207 return ip_gma_advance(s, cmd_length(s));
1208 }
1209
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1210 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1211 {
1212 int ret;
1213
1214 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1215 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1216 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1217 s->buf_addr_type = s->saved_buf_addr_type;
1218 } else {
1219 s->buf_type = RING_BUFFER_INSTRUCTION;
1220 s->buf_addr_type = GTT_BUFFER;
1221 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1222 s->ret_ip_gma_ring -= s->ring_size;
1223 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1224 }
1225 return ret;
1226 }
1227
1228 struct mi_display_flip_command_info {
1229 int pipe;
1230 int plane;
1231 int event;
1232 i915_reg_t stride_reg;
1233 i915_reg_t ctrl_reg;
1234 i915_reg_t surf_reg;
1235 u64 stride_val;
1236 u64 tile_val;
1237 u64 surf_val;
1238 bool async_flip;
1239 };
1240
1241 struct plane_code_mapping {
1242 int pipe;
1243 int plane;
1244 int event;
1245 };
1246
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1247 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1248 struct mi_display_flip_command_info *info)
1249 {
1250 struct drm_i915_private *dev_priv = s->engine->i915;
1251 struct plane_code_mapping gen8_plane_code[] = {
1252 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1253 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1254 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1255 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1256 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1257 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1258 };
1259 u32 dword0, dword1, dword2;
1260 u32 v;
1261
1262 dword0 = cmd_val(s, 0);
1263 dword1 = cmd_val(s, 1);
1264 dword2 = cmd_val(s, 2);
1265
1266 v = (dword0 & GENMASK(21, 19)) >> 19;
1267 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1268 return -EBADRQC;
1269
1270 info->pipe = gen8_plane_code[v].pipe;
1271 info->plane = gen8_plane_code[v].plane;
1272 info->event = gen8_plane_code[v].event;
1273 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1274 info->tile_val = (dword1 & 0x1);
1275 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1276 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1277
1278 if (info->plane == PLANE_A) {
1279 info->ctrl_reg = DSPCNTR(info->pipe);
1280 info->stride_reg = DSPSTRIDE(info->pipe);
1281 info->surf_reg = DSPSURF(info->pipe);
1282 } else if (info->plane == PLANE_B) {
1283 info->ctrl_reg = SPRCTL(info->pipe);
1284 info->stride_reg = SPRSTRIDE(info->pipe);
1285 info->surf_reg = SPRSURF(info->pipe);
1286 } else {
1287 drm_WARN_ON(&dev_priv->drm, 1);
1288 return -EBADRQC;
1289 }
1290 return 0;
1291 }
1292
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1293 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1294 struct mi_display_flip_command_info *info)
1295 {
1296 struct drm_i915_private *dev_priv = s->engine->i915;
1297 struct intel_vgpu *vgpu = s->vgpu;
1298 u32 dword0 = cmd_val(s, 0);
1299 u32 dword1 = cmd_val(s, 1);
1300 u32 dword2 = cmd_val(s, 2);
1301 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1302
1303 info->plane = PRIMARY_PLANE;
1304
1305 switch (plane) {
1306 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1307 info->pipe = PIPE_A;
1308 info->event = PRIMARY_A_FLIP_DONE;
1309 break;
1310 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1311 info->pipe = PIPE_B;
1312 info->event = PRIMARY_B_FLIP_DONE;
1313 break;
1314 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1315 info->pipe = PIPE_C;
1316 info->event = PRIMARY_C_FLIP_DONE;
1317 break;
1318
1319 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1320 info->pipe = PIPE_A;
1321 info->event = SPRITE_A_FLIP_DONE;
1322 info->plane = SPRITE_PLANE;
1323 break;
1324 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1325 info->pipe = PIPE_B;
1326 info->event = SPRITE_B_FLIP_DONE;
1327 info->plane = SPRITE_PLANE;
1328 break;
1329 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1330 info->pipe = PIPE_C;
1331 info->event = SPRITE_C_FLIP_DONE;
1332 info->plane = SPRITE_PLANE;
1333 break;
1334
1335 default:
1336 gvt_vgpu_err("unknown plane code %d\n", plane);
1337 return -EBADRQC;
1338 }
1339
1340 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1341 info->tile_val = (dword1 & GENMASK(2, 0));
1342 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1343 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1344
1345 info->ctrl_reg = DSPCNTR(info->pipe);
1346 info->stride_reg = DSPSTRIDE(info->pipe);
1347 info->surf_reg = DSPSURF(info->pipe);
1348
1349 return 0;
1350 }
1351
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1352 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1353 struct mi_display_flip_command_info *info)
1354 {
1355 u32 stride, tile;
1356
1357 if (!info->async_flip)
1358 return 0;
1359
1360 if (INTEL_GEN(s->engine->i915) >= 9) {
1361 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1362 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1363 GENMASK(12, 10)) >> 10;
1364 } else {
1365 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1366 GENMASK(15, 6)) >> 6;
1367 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1368 }
1369
1370 if (stride != info->stride_val)
1371 gvt_dbg_cmd("cannot change stride during async flip\n");
1372
1373 if (tile != info->tile_val)
1374 gvt_dbg_cmd("cannot change tile during async flip\n");
1375
1376 return 0;
1377 }
1378
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1379 static int gen8_update_plane_mmio_from_mi_display_flip(
1380 struct parser_exec_state *s,
1381 struct mi_display_flip_command_info *info)
1382 {
1383 struct drm_i915_private *dev_priv = s->engine->i915;
1384 struct intel_vgpu *vgpu = s->vgpu;
1385
1386 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1387 info->surf_val << 12);
1388 if (INTEL_GEN(dev_priv) >= 9) {
1389 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1390 info->stride_val);
1391 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1392 info->tile_val << 10);
1393 } else {
1394 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1395 info->stride_val << 6);
1396 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1397 info->tile_val << 10);
1398 }
1399
1400 if (info->plane == PLANE_PRIMARY)
1401 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1402
1403 if (info->async_flip)
1404 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1405 else
1406 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1407
1408 return 0;
1409 }
1410
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1411 static int decode_mi_display_flip(struct parser_exec_state *s,
1412 struct mi_display_flip_command_info *info)
1413 {
1414 if (IS_BROADWELL(s->engine->i915))
1415 return gen8_decode_mi_display_flip(s, info);
1416 if (INTEL_GEN(s->engine->i915) >= 9)
1417 return skl_decode_mi_display_flip(s, info);
1418
1419 return -ENODEV;
1420 }
1421
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1422 static int check_mi_display_flip(struct parser_exec_state *s,
1423 struct mi_display_flip_command_info *info)
1424 {
1425 return gen8_check_mi_display_flip(s, info);
1426 }
1427
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1428 static int update_plane_mmio_from_mi_display_flip(
1429 struct parser_exec_state *s,
1430 struct mi_display_flip_command_info *info)
1431 {
1432 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1433 }
1434
cmd_handler_mi_display_flip(struct parser_exec_state * s)1435 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1436 {
1437 struct mi_display_flip_command_info info;
1438 struct intel_vgpu *vgpu = s->vgpu;
1439 int ret;
1440 int i;
1441 int len = cmd_length(s);
1442 u32 valid_len = CMD_LEN(1);
1443
1444 /* Flip Type == Stereo 3D Flip */
1445 if (DWORD_FIELD(2, 1, 0) == 2)
1446 valid_len++;
1447 ret = gvt_check_valid_cmd_length(cmd_length(s),
1448 valid_len);
1449 if (ret)
1450 return ret;
1451
1452 ret = decode_mi_display_flip(s, &info);
1453 if (ret) {
1454 gvt_vgpu_err("fail to decode MI display flip command\n");
1455 return ret;
1456 }
1457
1458 ret = check_mi_display_flip(s, &info);
1459 if (ret) {
1460 gvt_vgpu_err("invalid MI display flip command\n");
1461 return ret;
1462 }
1463
1464 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1465 if (ret) {
1466 gvt_vgpu_err("fail to update plane mmio\n");
1467 return ret;
1468 }
1469
1470 for (i = 0; i < len; i++)
1471 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1472 return 0;
1473 }
1474
is_wait_for_flip_pending(u32 cmd)1475 static bool is_wait_for_flip_pending(u32 cmd)
1476 {
1477 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1478 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1479 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1480 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1481 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1482 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1483 }
1484
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1485 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1486 {
1487 u32 cmd = cmd_val(s, 0);
1488
1489 if (!is_wait_for_flip_pending(cmd))
1490 return 0;
1491
1492 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1493 return 0;
1494 }
1495
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1496 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1497 {
1498 unsigned long addr;
1499 unsigned long gma_high, gma_low;
1500 struct intel_vgpu *vgpu = s->vgpu;
1501 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1502
1503 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1504 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1505 return INTEL_GVT_INVALID_ADDR;
1506 }
1507
1508 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1509 if (gmadr_bytes == 4) {
1510 addr = gma_low;
1511 } else {
1512 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1513 addr = (((unsigned long)gma_high) << 32) | gma_low;
1514 }
1515 return addr;
1516 }
1517
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1518 static inline int cmd_address_audit(struct parser_exec_state *s,
1519 unsigned long guest_gma, int op_size, bool index_mode)
1520 {
1521 struct intel_vgpu *vgpu = s->vgpu;
1522 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1523 int i;
1524 int ret;
1525
1526 if (op_size > max_surface_size) {
1527 gvt_vgpu_err("command address audit fail name %s\n",
1528 s->info->name);
1529 return -EFAULT;
1530 }
1531
1532 if (index_mode) {
1533 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1534 ret = -EFAULT;
1535 goto err;
1536 }
1537 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1538 ret = -EFAULT;
1539 goto err;
1540 }
1541
1542 return 0;
1543
1544 err:
1545 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1546 s->info->name, guest_gma, op_size);
1547
1548 pr_err("cmd dump: ");
1549 for (i = 0; i < cmd_length(s); i++) {
1550 if (!(i % 4))
1551 pr_err("\n%08x ", cmd_val(s, i));
1552 else
1553 pr_err("%08x ", cmd_val(s, i));
1554 }
1555 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1556 vgpu->id,
1557 vgpu_aperture_gmadr_base(vgpu),
1558 vgpu_aperture_gmadr_end(vgpu),
1559 vgpu_hidden_gmadr_base(vgpu),
1560 vgpu_hidden_gmadr_end(vgpu));
1561 return ret;
1562 }
1563
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1564 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1565 {
1566 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1567 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1568 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1569 unsigned long gma, gma_low, gma_high;
1570 u32 valid_len = CMD_LEN(2);
1571 int ret = 0;
1572
1573 /* check ppggt */
1574 if (!(cmd_val(s, 0) & (1 << 22)))
1575 return 0;
1576
1577 /* check if QWORD */
1578 if (DWORD_FIELD(0, 21, 21))
1579 valid_len++;
1580 ret = gvt_check_valid_cmd_length(cmd_length(s),
1581 valid_len);
1582 if (ret)
1583 return ret;
1584
1585 gma = cmd_val(s, 2) & GENMASK(31, 2);
1586
1587 if (gmadr_bytes == 8) {
1588 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1589 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1590 gma = (gma_high << 32) | gma_low;
1591 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1592 }
1593 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1594 return ret;
1595 }
1596
unexpected_cmd(struct parser_exec_state * s)1597 static inline int unexpected_cmd(struct parser_exec_state *s)
1598 {
1599 struct intel_vgpu *vgpu = s->vgpu;
1600
1601 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1602
1603 return -EBADRQC;
1604 }
1605
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1606 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1607 {
1608 return unexpected_cmd(s);
1609 }
1610
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1611 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1612 {
1613 return unexpected_cmd(s);
1614 }
1615
cmd_handler_mi_op_2e(struct parser_exec_state * s)1616 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1617 {
1618 return unexpected_cmd(s);
1619 }
1620
cmd_handler_mi_op_2f(struct parser_exec_state * s)1621 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1622 {
1623 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1624 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1625 sizeof(u32);
1626 unsigned long gma, gma_high;
1627 u32 valid_len = CMD_LEN(1);
1628 int ret = 0;
1629
1630 if (!(cmd_val(s, 0) & (1 << 22)))
1631 return ret;
1632
1633 /* check inline data */
1634 if (cmd_val(s, 0) & BIT(18))
1635 valid_len = CMD_LEN(9);
1636 ret = gvt_check_valid_cmd_length(cmd_length(s),
1637 valid_len);
1638 if (ret)
1639 return ret;
1640
1641 gma = cmd_val(s, 1) & GENMASK(31, 2);
1642 if (gmadr_bytes == 8) {
1643 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1644 gma = (gma_high << 32) | gma;
1645 }
1646 ret = cmd_address_audit(s, gma, op_size, false);
1647 return ret;
1648 }
1649
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1650 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1651 {
1652 return unexpected_cmd(s);
1653 }
1654
cmd_handler_mi_clflush(struct parser_exec_state * s)1655 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1656 {
1657 return unexpected_cmd(s);
1658 }
1659
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1660 static int cmd_handler_mi_conditional_batch_buffer_end(
1661 struct parser_exec_state *s)
1662 {
1663 return unexpected_cmd(s);
1664 }
1665
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1666 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1667 {
1668 return unexpected_cmd(s);
1669 }
1670
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1671 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1672 {
1673 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1674 unsigned long gma;
1675 bool index_mode = false;
1676 int ret = 0;
1677 u32 hws_pga, val;
1678 u32 valid_len = CMD_LEN(2);
1679
1680 ret = gvt_check_valid_cmd_length(cmd_length(s),
1681 valid_len);
1682 if (ret) {
1683 /* Check again for Qword */
1684 ret = gvt_check_valid_cmd_length(cmd_length(s),
1685 ++valid_len);
1686 return ret;
1687 }
1688
1689 /* Check post-sync and ppgtt bit */
1690 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1691 gma = cmd_val(s, 1) & GENMASK(31, 3);
1692 if (gmadr_bytes == 8)
1693 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1694 /* Store Data Index */
1695 if (cmd_val(s, 0) & (1 << 21))
1696 index_mode = true;
1697 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1698 if (ret)
1699 return ret;
1700 if (index_mode) {
1701 hws_pga = s->vgpu->hws_pga[s->engine->id];
1702 gma = hws_pga + gma;
1703 patch_value(s, cmd_ptr(s, 1), gma);
1704 val = cmd_val(s, 0) & (~(1 << 21));
1705 patch_value(s, cmd_ptr(s, 0), val);
1706 }
1707 }
1708 /* Check notify bit */
1709 if ((cmd_val(s, 0) & (1 << 8)))
1710 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1711 s->workload->pending_events);
1712 return ret;
1713 }
1714
addr_type_update_snb(struct parser_exec_state * s)1715 static void addr_type_update_snb(struct parser_exec_state *s)
1716 {
1717 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1718 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1719 s->buf_addr_type = PPGTT_BUFFER;
1720 }
1721 }
1722
1723
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1724 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1725 unsigned long gma, unsigned long end_gma, void *va)
1726 {
1727 unsigned long copy_len, offset;
1728 unsigned long len = 0;
1729 unsigned long gpa;
1730
1731 while (gma != end_gma) {
1732 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1733 if (gpa == INTEL_GVT_INVALID_ADDR) {
1734 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1735 return -EFAULT;
1736 }
1737
1738 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1739
1740 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1741 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1742
1743 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1744
1745 len += copy_len;
1746 gma += copy_len;
1747 }
1748 return len;
1749 }
1750
1751
1752 /*
1753 * Check whether a batch buffer needs to be scanned. Currently
1754 * the only criteria is based on privilege.
1755 */
batch_buffer_needs_scan(struct parser_exec_state * s)1756 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1757 {
1758 /* Decide privilege based on address space */
1759 if (cmd_val(s, 0) & BIT(8) &&
1760 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1761 return 0;
1762
1763 return 1;
1764 }
1765
repr_addr_type(unsigned int type)1766 static const char *repr_addr_type(unsigned int type)
1767 {
1768 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1769 }
1770
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1771 static int find_bb_size(struct parser_exec_state *s,
1772 unsigned long *bb_size,
1773 unsigned long *bb_end_cmd_offset)
1774 {
1775 unsigned long gma = 0;
1776 const struct cmd_info *info;
1777 u32 cmd_len = 0;
1778 bool bb_end = false;
1779 struct intel_vgpu *vgpu = s->vgpu;
1780 u32 cmd;
1781 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1782 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1783
1784 *bb_size = 0;
1785 *bb_end_cmd_offset = 0;
1786
1787 /* get the start gm address of the batch buffer */
1788 gma = get_gma_bb_from_cmd(s, 1);
1789 if (gma == INTEL_GVT_INVALID_ADDR)
1790 return -EFAULT;
1791
1792 cmd = cmd_val(s, 0);
1793 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1794 if (info == NULL) {
1795 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1796 cmd, get_opcode(cmd, s->engine),
1797 repr_addr_type(s->buf_addr_type),
1798 s->engine->name, s->workload);
1799 return -EBADRQC;
1800 }
1801 do {
1802 if (copy_gma_to_hva(s->vgpu, mm,
1803 gma, gma + 4, &cmd) < 0)
1804 return -EFAULT;
1805 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1806 if (info == NULL) {
1807 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1808 cmd, get_opcode(cmd, s->engine),
1809 repr_addr_type(s->buf_addr_type),
1810 s->engine->name, s->workload);
1811 return -EBADRQC;
1812 }
1813
1814 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1815 bb_end = true;
1816 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1817 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1818 /* chained batch buffer */
1819 bb_end = true;
1820 }
1821
1822 if (bb_end)
1823 *bb_end_cmd_offset = *bb_size;
1824
1825 cmd_len = get_cmd_length(info, cmd) << 2;
1826 *bb_size += cmd_len;
1827 gma += cmd_len;
1828 } while (!bb_end);
1829
1830 return 0;
1831 }
1832
audit_bb_end(struct parser_exec_state * s,void * va)1833 static int audit_bb_end(struct parser_exec_state *s, void *va)
1834 {
1835 struct intel_vgpu *vgpu = s->vgpu;
1836 u32 cmd = *(u32 *)va;
1837 const struct cmd_info *info;
1838
1839 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1840 if (info == NULL) {
1841 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1842 cmd, get_opcode(cmd, s->engine),
1843 repr_addr_type(s->buf_addr_type),
1844 s->engine->name, s->workload);
1845 return -EBADRQC;
1846 }
1847
1848 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1849 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1850 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1851 return 0;
1852
1853 return -EBADRQC;
1854 }
1855
perform_bb_shadow(struct parser_exec_state * s)1856 static int perform_bb_shadow(struct parser_exec_state *s)
1857 {
1858 struct intel_vgpu *vgpu = s->vgpu;
1859 struct intel_vgpu_shadow_bb *bb;
1860 unsigned long gma = 0;
1861 unsigned long bb_size;
1862 unsigned long bb_end_cmd_offset;
1863 int ret = 0;
1864 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1865 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1866 unsigned long start_offset = 0;
1867
1868 /* get the start gm address of the batch buffer */
1869 gma = get_gma_bb_from_cmd(s, 1);
1870 if (gma == INTEL_GVT_INVALID_ADDR)
1871 return -EFAULT;
1872
1873 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1874 if (ret)
1875 return ret;
1876
1877 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1878 if (!bb)
1879 return -ENOMEM;
1880
1881 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1882
1883 /* the start_offset stores the batch buffer's start gma's
1884 * offset relative to page boundary. so for non-privileged batch
1885 * buffer, the shadowed gem object holds exactly the same page
1886 * layout as original gem object. This is for the convience of
1887 * replacing the whole non-privilged batch buffer page to this
1888 * shadowed one in PPGTT at the same gma address. (this replacing
1889 * action is not implemented yet now, but may be necessary in
1890 * future).
1891 * for prileged batch buffer, we just change start gma address to
1892 * that of shadowed page.
1893 */
1894 if (bb->ppgtt)
1895 start_offset = gma & ~I915_GTT_PAGE_MASK;
1896
1897 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1898 round_up(bb_size + start_offset,
1899 PAGE_SIZE));
1900 if (IS_ERR(bb->obj)) {
1901 ret = PTR_ERR(bb->obj);
1902 goto err_free_bb;
1903 }
1904
1905 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1906 if (IS_ERR(bb->va)) {
1907 ret = PTR_ERR(bb->va);
1908 goto err_free_obj;
1909 }
1910
1911 ret = copy_gma_to_hva(s->vgpu, mm,
1912 gma, gma + bb_size,
1913 bb->va + start_offset);
1914 if (ret < 0) {
1915 gvt_vgpu_err("fail to copy guest ring buffer\n");
1916 ret = -EFAULT;
1917 goto err_unmap;
1918 }
1919
1920 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1921 if (ret)
1922 goto err_unmap;
1923
1924 i915_gem_object_unlock(bb->obj);
1925 INIT_LIST_HEAD(&bb->list);
1926 list_add(&bb->list, &s->workload->shadow_bb);
1927
1928 bb->bb_start_cmd_va = s->ip_va;
1929
1930 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1931 bb->bb_offset = s->ip_va - s->rb_va;
1932 else
1933 bb->bb_offset = 0;
1934
1935 /*
1936 * ip_va saves the virtual address of the shadow batch buffer, while
1937 * ip_gma saves the graphics address of the original batch buffer.
1938 * As the shadow batch buffer is just a copy from the originial one,
1939 * it should be right to use shadow batch buffer'va and original batch
1940 * buffer's gma in pair. After all, we don't want to pin the shadow
1941 * buffer here (too early).
1942 */
1943 s->ip_va = bb->va + start_offset;
1944 s->ip_gma = gma;
1945 return 0;
1946 err_unmap:
1947 i915_gem_object_unpin_map(bb->obj);
1948 err_free_obj:
1949 i915_gem_object_put(bb->obj);
1950 err_free_bb:
1951 kfree(bb);
1952 return ret;
1953 }
1954
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1955 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1956 {
1957 bool second_level;
1958 int ret = 0;
1959 struct intel_vgpu *vgpu = s->vgpu;
1960
1961 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1962 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1963 return -EFAULT;
1964 }
1965
1966 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1967 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1968 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1969 return -EFAULT;
1970 }
1971
1972 s->saved_buf_addr_type = s->buf_addr_type;
1973 addr_type_update_snb(s);
1974 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1975 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1976 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1977 } else if (second_level) {
1978 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1979 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1980 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1981 }
1982
1983 if (batch_buffer_needs_scan(s)) {
1984 ret = perform_bb_shadow(s);
1985 if (ret < 0)
1986 gvt_vgpu_err("invalid shadow batch buffer\n");
1987 } else {
1988 /* emulate a batch buffer end to do return right */
1989 ret = cmd_handler_mi_batch_buffer_end(s);
1990 if (ret < 0)
1991 return ret;
1992 }
1993 return ret;
1994 }
1995
1996 static int mi_noop_index;
1997
1998 static const struct cmd_info cmd_info[] = {
1999 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2000
2001 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2002 0, 1, NULL},
2003
2004 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2005 0, 1, cmd_handler_mi_user_interrupt},
2006
2007 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2008 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2009
2010 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2011
2012 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2013 NULL},
2014
2015 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2016 NULL},
2017
2018 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2019 NULL},
2020
2021 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2022 NULL},
2023
2024 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2025 D_ALL, 0, 1, NULL},
2026
2027 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2028 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2029 cmd_handler_mi_batch_buffer_end},
2030
2031 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2032 0, 1, NULL},
2033
2034 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2035 NULL},
2036
2037 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2038 D_ALL, 0, 1, NULL},
2039
2040 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2041 NULL},
2042
2043 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2044 NULL},
2045
2046 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2047 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2048
2049 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2050 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2051
2052 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2053
2054 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2055 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2056
2057 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2058 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2059 NULL, CMD_LEN(0)},
2060
2061 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2062 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2063 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2064
2065 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2066 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2067
2068 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2069 0, 8, cmd_handler_mi_store_data_index},
2070
2071 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2072 D_ALL, 0, 8, cmd_handler_lri},
2073
2074 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2075 cmd_handler_mi_update_gtt},
2076
2077 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2078 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2079 cmd_handler_srm, CMD_LEN(2)},
2080
2081 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2082 cmd_handler_mi_flush_dw},
2083
2084 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2085 10, cmd_handler_mi_clflush},
2086
2087 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2088 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2089 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2090
2091 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2092 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2093 cmd_handler_lrm, CMD_LEN(2)},
2094
2095 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2096 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2097 cmd_handler_lrr, CMD_LEN(1)},
2098
2099 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2100 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2101 8, NULL, CMD_LEN(2)},
2102
2103 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2104 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2105
2106 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2107 ADDR_FIX_1(2), 8, NULL},
2108
2109 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2110 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2111
2112 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2113 8, cmd_handler_mi_op_2f},
2114
2115 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2116 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2117 cmd_handler_mi_batch_buffer_start},
2118
2119 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2120 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2121 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2122
2123 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2124 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2125
2126 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2127 ADDR_FIX_2(4, 7), 8, NULL},
2128
2129 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2130 0, 8, NULL},
2131
2132 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2133 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2134
2135 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2136
2137 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2138 0, 8, NULL},
2139
2140 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2141 ADDR_FIX_1(3), 8, NULL},
2142
2143 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2144 D_ALL, 0, 8, NULL},
2145
2146 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2147 ADDR_FIX_1(4), 8, NULL},
2148
2149 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2150 ADDR_FIX_2(4, 5), 8, NULL},
2151
2152 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2153 ADDR_FIX_1(4), 8, NULL},
2154
2155 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2156 ADDR_FIX_2(4, 7), 8, NULL},
2157
2158 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2159 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2160
2161 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2162
2163 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2164 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2165
2166 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2167 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2168
2169 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2170 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2171 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2172
2173 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2174 D_ALL, ADDR_FIX_1(4), 8, NULL},
2175
2176 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2177 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2178
2179 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2180 D_ALL, ADDR_FIX_1(4), 8, NULL},
2181
2182 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2183 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2184
2185 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2186 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2187
2188 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2189 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2190 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2191
2192 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193 ADDR_FIX_2(4, 5), 8, NULL},
2194
2195 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2196 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2197
2198 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2199 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2200 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2201
2202 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2203 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2204 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2205
2206 {"3DSTATE_BLEND_STATE_POINTERS",
2207 OP_3DSTATE_BLEND_STATE_POINTERS,
2208 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209
2210 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2211 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2212 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2213
2214 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2215 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2216 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2217
2218 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2219 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2220 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2221
2222 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2223 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2224 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2225
2226 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2227 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2228 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2229
2230 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2231 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2232 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233
2234 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2235 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2236 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237
2238 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2239 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241
2242 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2243 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245
2246 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2247 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2251 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253
2254 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2255 0, 8, NULL},
2256
2257 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2258 0, 8, NULL},
2259
2260 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2261 0, 8, NULL},
2262
2263 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2264 0, 8, NULL},
2265
2266 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2267 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2270 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271
2272 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277
2278 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2279 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2282 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2283
2284 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2285 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2286
2287 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289
2290 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2291 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2292
2293 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2294 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295
2296 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2297 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2298
2299 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2312 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2313
2314 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2315 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2316
2317 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2318 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2319
2320 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2321 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2322
2323 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2324 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2325
2326 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2327 D_BDW_PLUS, 0, 8, NULL},
2328
2329 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2330 NULL},
2331
2332 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2333 D_BDW_PLUS, 0, 8, NULL},
2334
2335 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2336 D_BDW_PLUS, 0, 8, NULL},
2337
2338 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2339 8, NULL},
2340
2341 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2342 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2343
2344 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2345 8, NULL},
2346
2347 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2348 NULL},
2349
2350 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2351 NULL},
2352
2353 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2354 NULL},
2355
2356 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2357 D_BDW_PLUS, 0, 8, NULL},
2358
2359 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2360 R_RCS, D_ALL, 0, 8, NULL},
2361
2362 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2363 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2364
2365 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2366 R_RCS, D_ALL, 0, 1, NULL},
2367
2368 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2369
2370 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2371 R_RCS, D_ALL, 0, 8, NULL},
2372
2373 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2374 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2375
2376 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377
2378 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2379
2380 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2381
2382 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2383 D_BDW_PLUS, 0, 8, NULL},
2384
2385 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2386 D_BDW_PLUS, 0, 8, NULL},
2387
2388 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2389 D_ALL, 0, 8, NULL},
2390
2391 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2392 D_BDW_PLUS, 0, 8, NULL},
2393
2394 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2395 D_BDW_PLUS, 0, 8, NULL},
2396
2397 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2398
2399 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2400
2401 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402
2403 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2404 D_ALL, 0, 8, NULL},
2405
2406 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2407
2408 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2409
2410 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2411 R_RCS, D_ALL, 0, 8, NULL},
2412
2413 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2414 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415
2416 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2417 0, 8, NULL},
2418
2419 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2420 D_ALL, ADDR_FIX_1(2), 8, NULL},
2421
2422 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2423 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2424
2425 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2426 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2427
2428 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2429 D_ALL, 0, 8, NULL},
2430
2431 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2432 D_ALL, 0, 8, NULL},
2433
2434 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2435 D_ALL, 0, 8, NULL},
2436
2437 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2438 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2441 D_BDW_PLUS, 0, 8, NULL},
2442
2443 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2444 D_ALL, ADDR_FIX_1(2), 8, NULL},
2445
2446 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2447 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2448
2449 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2450 R_RCS, D_ALL, 0, 8, NULL},
2451
2452 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2453 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2454
2455 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2456 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457
2458 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460
2461 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2462 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463
2464 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2465 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2466
2467 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2468 R_RCS, D_ALL, 0, 8, NULL},
2469
2470 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2471 D_ALL, 0, 9, NULL},
2472
2473 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2474 ADDR_FIX_2(2, 4), 8, NULL},
2475
2476 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2477 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2478 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2479
2480 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2481 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2482
2483 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2484 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2485 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2486
2487 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2488 D_BDW_PLUS, 0, 8, NULL},
2489
2490 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2491 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2492
2493 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2496 1, NULL},
2497
2498 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2499 ADDR_FIX_1(1), 8, NULL},
2500
2501 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502
2503 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2504 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2505
2506 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2507 ADDR_FIX_1(1), 8, NULL},
2508
2509 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2510 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2511
2512 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2513
2514 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2515
2516 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2517 0, 8, NULL},
2518
2519 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2520 D_SKL_PLUS, 0, 8, NULL},
2521
2522 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2523 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2524
2525 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2526 0, 16, NULL},
2527
2528 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2529 0, 16, NULL},
2530
2531 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2532 0, 16, NULL},
2533
2534 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2535
2536 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2537 0, 16, NULL},
2538
2539 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2540 0, 16, NULL},
2541
2542 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2543 0, 16, NULL},
2544
2545 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2546 0, 8, NULL},
2547
2548 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2549 NULL},
2550
2551 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2552 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2553
2554 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2555 R_VCS, D_ALL, 0, 12, NULL},
2556
2557 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2558 R_VCS, D_ALL, 0, 12, NULL},
2559
2560 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2561 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2562
2563 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2564 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2565
2566 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2567 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2568
2569 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2570
2571 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2572 R_VCS, D_ALL, 0, 12, NULL},
2573
2574 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2575 R_VCS, D_ALL, 0, 12, NULL},
2576
2577 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2578 R_VCS, D_ALL, 0, 12, NULL},
2579
2580 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2581 R_VCS, D_ALL, 0, 12, NULL},
2582
2583 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2584 R_VCS, D_ALL, 0, 12, NULL},
2585
2586 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2587 R_VCS, D_ALL, 0, 12, NULL},
2588
2589 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2590 R_VCS, D_ALL, 0, 6, NULL},
2591
2592 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2593 R_VCS, D_ALL, 0, 12, NULL},
2594
2595 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2596 R_VCS, D_ALL, 0, 12, NULL},
2597
2598 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2599 R_VCS, D_ALL, 0, 12, NULL},
2600
2601 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2602 R_VCS, D_ALL, 0, 12, NULL},
2603
2604 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2605 R_VCS, D_ALL, 0, 12, NULL},
2606
2607 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2608 R_VCS, D_ALL, 0, 12, NULL},
2609
2610 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2611 R_VCS, D_ALL, 0, 12, NULL},
2612 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2613 R_VCS, D_ALL, 0, 12, NULL},
2614
2615 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2616 R_VCS, D_ALL, 0, 12, NULL},
2617
2618 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2619 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2620
2621 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2622 R_VCS, D_ALL, 0, 12, NULL},
2623
2624 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2625 R_VCS, D_ALL, 0, 12, NULL},
2626
2627 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2628 R_VCS, D_ALL, 0, 12, NULL},
2629
2630 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2631 R_VCS, D_ALL, 0, 12, NULL},
2632
2633 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2634 R_VCS, D_ALL, 0, 12, NULL},
2635
2636 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2637 R_VCS, D_ALL, 0, 12, NULL},
2638
2639 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2640 R_VCS, D_ALL, 0, 12, NULL},
2641
2642 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2643 R_VCS, D_ALL, 0, 12, NULL},
2644
2645 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2646 R_VCS, D_ALL, 0, 12, NULL},
2647
2648 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2649 R_VCS, D_ALL, 0, 12, NULL},
2650
2651 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2652 R_VCS, D_ALL, 0, 12, NULL},
2653
2654 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2655 0, 16, NULL},
2656
2657 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2658
2659 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2660
2661 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2662 R_VCS, D_ALL, 0, 12, NULL},
2663
2664 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2665 R_VCS, D_ALL, 0, 12, NULL},
2666
2667 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2668 R_VCS, D_ALL, 0, 12, NULL},
2669
2670 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2671
2672 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2673 0, 12, NULL},
2674
2675 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2676 0, 12, NULL},
2677 };
2678
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2679 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2680 {
2681 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2682 }
2683
2684 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2685 static int cmd_parser_exec(struct parser_exec_state *s)
2686 {
2687 struct intel_vgpu *vgpu = s->vgpu;
2688 const struct cmd_info *info;
2689 u32 cmd;
2690 int ret = 0;
2691
2692 cmd = cmd_val(s, 0);
2693
2694 /* fastpath for MI_NOOP */
2695 if (cmd == MI_NOOP)
2696 info = &cmd_info[mi_noop_index];
2697 else
2698 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2699
2700 if (info == NULL) {
2701 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2702 cmd, get_opcode(cmd, s->engine),
2703 repr_addr_type(s->buf_addr_type),
2704 s->engine->name, s->workload);
2705 return -EBADRQC;
2706 }
2707
2708 s->info = info;
2709
2710 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2711 cmd_length(s), s->buf_type, s->buf_addr_type,
2712 s->workload, info->name);
2713
2714 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2715 ret = gvt_check_valid_cmd_length(cmd_length(s),
2716 info->valid_len);
2717 if (ret)
2718 return ret;
2719 }
2720
2721 if (info->handler) {
2722 ret = info->handler(s);
2723 if (ret < 0) {
2724 gvt_vgpu_err("%s handler error\n", info->name);
2725 return ret;
2726 }
2727 }
2728
2729 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2730 ret = cmd_advance_default(s);
2731 if (ret) {
2732 gvt_vgpu_err("%s IP advance error\n", info->name);
2733 return ret;
2734 }
2735 }
2736 return 0;
2737 }
2738
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2739 static inline bool gma_out_of_range(unsigned long gma,
2740 unsigned long gma_head, unsigned int gma_tail)
2741 {
2742 if (gma_tail >= gma_head)
2743 return (gma < gma_head) || (gma > gma_tail);
2744 else
2745 return (gma > gma_tail) && (gma < gma_head);
2746 }
2747
2748 /* Keep the consistent return type, e.g EBADRQC for unknown
2749 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2750 * works as the input of VM healthy status.
2751 */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2752 static int command_scan(struct parser_exec_state *s,
2753 unsigned long rb_head, unsigned long rb_tail,
2754 unsigned long rb_start, unsigned long rb_len)
2755 {
2756
2757 unsigned long gma_head, gma_tail, gma_bottom;
2758 int ret = 0;
2759 struct intel_vgpu *vgpu = s->vgpu;
2760
2761 gma_head = rb_start + rb_head;
2762 gma_tail = rb_start + rb_tail;
2763 gma_bottom = rb_start + rb_len;
2764
2765 while (s->ip_gma != gma_tail) {
2766 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2767 if (!(s->ip_gma >= rb_start) ||
2768 !(s->ip_gma < gma_bottom)) {
2769 gvt_vgpu_err("ip_gma %lx out of ring scope."
2770 "(base:0x%lx, bottom: 0x%lx)\n",
2771 s->ip_gma, rb_start,
2772 gma_bottom);
2773 parser_exec_state_dump(s);
2774 return -EFAULT;
2775 }
2776 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2777 gvt_vgpu_err("ip_gma %lx out of range."
2778 "base 0x%lx head 0x%lx tail 0x%lx\n",
2779 s->ip_gma, rb_start,
2780 rb_head, rb_tail);
2781 parser_exec_state_dump(s);
2782 break;
2783 }
2784 }
2785 ret = cmd_parser_exec(s);
2786 if (ret) {
2787 gvt_vgpu_err("cmd parser error\n");
2788 parser_exec_state_dump(s);
2789 break;
2790 }
2791 }
2792
2793 return ret;
2794 }
2795
scan_workload(struct intel_vgpu_workload * workload)2796 static int scan_workload(struct intel_vgpu_workload *workload)
2797 {
2798 unsigned long gma_head, gma_tail, gma_bottom;
2799 struct parser_exec_state s;
2800 int ret = 0;
2801
2802 /* ring base is page aligned */
2803 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2804 return -EINVAL;
2805
2806 gma_head = workload->rb_start + workload->rb_head;
2807 gma_tail = workload->rb_start + workload->rb_tail;
2808 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2809
2810 s.buf_type = RING_BUFFER_INSTRUCTION;
2811 s.buf_addr_type = GTT_BUFFER;
2812 s.vgpu = workload->vgpu;
2813 s.engine = workload->engine;
2814 s.ring_start = workload->rb_start;
2815 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2816 s.ring_head = gma_head;
2817 s.ring_tail = gma_tail;
2818 s.rb_va = workload->shadow_ring_buffer_va;
2819 s.workload = workload;
2820 s.is_ctx_wa = false;
2821
2822 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2823 return 0;
2824
2825 ret = ip_gma_set(&s, gma_head);
2826 if (ret)
2827 goto out;
2828
2829 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2830 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2831
2832 out:
2833 return ret;
2834 }
2835
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2836 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2837 {
2838
2839 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2840 struct parser_exec_state s;
2841 int ret = 0;
2842 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2843 struct intel_vgpu_workload,
2844 wa_ctx);
2845
2846 /* ring base is page aligned */
2847 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2848 I915_GTT_PAGE_SIZE)))
2849 return -EINVAL;
2850
2851 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2852 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2853 PAGE_SIZE);
2854 gma_head = wa_ctx->indirect_ctx.guest_gma;
2855 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2856 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2857
2858 s.buf_type = RING_BUFFER_INSTRUCTION;
2859 s.buf_addr_type = GTT_BUFFER;
2860 s.vgpu = workload->vgpu;
2861 s.engine = workload->engine;
2862 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2863 s.ring_size = ring_size;
2864 s.ring_head = gma_head;
2865 s.ring_tail = gma_tail;
2866 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2867 s.workload = workload;
2868 s.is_ctx_wa = true;
2869
2870 ret = ip_gma_set(&s, gma_head);
2871 if (ret)
2872 goto out;
2873
2874 ret = command_scan(&s, 0, ring_tail,
2875 wa_ctx->indirect_ctx.guest_gma, ring_size);
2876 out:
2877 return ret;
2878 }
2879
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2880 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2881 {
2882 struct intel_vgpu *vgpu = workload->vgpu;
2883 struct intel_vgpu_submission *s = &vgpu->submission;
2884 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2885 void *shadow_ring_buffer_va;
2886 int ret;
2887
2888 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2889
2890 /* calculate workload ring buffer size */
2891 workload->rb_len = (workload->rb_tail + guest_rb_size -
2892 workload->rb_head) % guest_rb_size;
2893
2894 gma_head = workload->rb_start + workload->rb_head;
2895 gma_tail = workload->rb_start + workload->rb_tail;
2896 gma_top = workload->rb_start + guest_rb_size;
2897
2898 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2899 void *p;
2900
2901 /* realloc the new ring buffer if needed */
2902 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2903 workload->rb_len, GFP_KERNEL);
2904 if (!p) {
2905 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2906 return -ENOMEM;
2907 }
2908 s->ring_scan_buffer[workload->engine->id] = p;
2909 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2910 }
2911
2912 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2913
2914 /* get shadow ring buffer va */
2915 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2916
2917 /* head > tail --> copy head <-> top */
2918 if (gma_head > gma_tail) {
2919 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2920 gma_head, gma_top, shadow_ring_buffer_va);
2921 if (ret < 0) {
2922 gvt_vgpu_err("fail to copy guest ring buffer\n");
2923 return ret;
2924 }
2925 shadow_ring_buffer_va += ret;
2926 gma_head = workload->rb_start;
2927 }
2928
2929 /* copy head or start <-> tail */
2930 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2931 shadow_ring_buffer_va);
2932 if (ret < 0) {
2933 gvt_vgpu_err("fail to copy guest ring buffer\n");
2934 return ret;
2935 }
2936 return 0;
2937 }
2938
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2939 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2940 {
2941 int ret;
2942 struct intel_vgpu *vgpu = workload->vgpu;
2943
2944 ret = shadow_workload_ring_buffer(workload);
2945 if (ret) {
2946 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2947 return ret;
2948 }
2949
2950 ret = scan_workload(workload);
2951 if (ret) {
2952 gvt_vgpu_err("scan workload error\n");
2953 return ret;
2954 }
2955 return 0;
2956 }
2957
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2958 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2959 {
2960 int ctx_size = wa_ctx->indirect_ctx.size;
2961 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2962 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2963 struct intel_vgpu_workload,
2964 wa_ctx);
2965 struct intel_vgpu *vgpu = workload->vgpu;
2966 struct drm_i915_gem_object *obj;
2967 int ret = 0;
2968 void *map;
2969
2970 obj = i915_gem_object_create_shmem(workload->engine->i915,
2971 roundup(ctx_size + CACHELINE_BYTES,
2972 PAGE_SIZE));
2973 if (IS_ERR(obj))
2974 return PTR_ERR(obj);
2975
2976 /* get the va of the shadow batch buffer */
2977 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2978 if (IS_ERR(map)) {
2979 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2980 ret = PTR_ERR(map);
2981 goto put_obj;
2982 }
2983
2984 i915_gem_object_lock(obj, NULL);
2985 ret = i915_gem_object_set_to_cpu_domain(obj, false);
2986 i915_gem_object_unlock(obj);
2987 if (ret) {
2988 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2989 goto unmap_src;
2990 }
2991
2992 ret = copy_gma_to_hva(workload->vgpu,
2993 workload->vgpu->gtt.ggtt_mm,
2994 guest_gma, guest_gma + ctx_size,
2995 map);
2996 if (ret < 0) {
2997 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2998 goto unmap_src;
2999 }
3000
3001 wa_ctx->indirect_ctx.obj = obj;
3002 wa_ctx->indirect_ctx.shadow_va = map;
3003 return 0;
3004
3005 unmap_src:
3006 i915_gem_object_unpin_map(obj);
3007 put_obj:
3008 i915_gem_object_put(obj);
3009 return ret;
3010 }
3011
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3012 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3013 {
3014 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3015 unsigned char *bb_start_sva;
3016
3017 if (!wa_ctx->per_ctx.valid)
3018 return 0;
3019
3020 per_ctx_start[0] = 0x18800001;
3021 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3022
3023 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3024 wa_ctx->indirect_ctx.size;
3025
3026 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3027
3028 return 0;
3029 }
3030
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3031 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3032 {
3033 int ret;
3034 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3035 struct intel_vgpu_workload,
3036 wa_ctx);
3037 struct intel_vgpu *vgpu = workload->vgpu;
3038
3039 if (wa_ctx->indirect_ctx.size == 0)
3040 return 0;
3041
3042 ret = shadow_indirect_ctx(wa_ctx);
3043 if (ret) {
3044 gvt_vgpu_err("fail to shadow indirect ctx\n");
3045 return ret;
3046 }
3047
3048 combine_wa_ctx(wa_ctx);
3049
3050 ret = scan_wa_ctx(wa_ctx);
3051 if (ret) {
3052 gvt_vgpu_err("scan wa ctx error\n");
3053 return ret;
3054 }
3055
3056 return 0;
3057 }
3058
init_cmd_table(struct intel_gvt * gvt)3059 static int init_cmd_table(struct intel_gvt *gvt)
3060 {
3061 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3062 int i;
3063
3064 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3065 struct cmd_entry *e;
3066
3067 if (!(cmd_info[i].devices & gen_type))
3068 continue;
3069
3070 e = kzalloc(sizeof(*e), GFP_KERNEL);
3071 if (!e)
3072 return -ENOMEM;
3073
3074 e->info = &cmd_info[i];
3075 if (cmd_info[i].opcode == OP_MI_NOOP)
3076 mi_noop_index = i;
3077
3078 INIT_HLIST_NODE(&e->hlist);
3079 add_cmd_entry(gvt, e);
3080 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3081 e->info->name, e->info->opcode, e->info->flag,
3082 e->info->devices, e->info->rings);
3083 }
3084
3085 return 0;
3086 }
3087
clean_cmd_table(struct intel_gvt * gvt)3088 static void clean_cmd_table(struct intel_gvt *gvt)
3089 {
3090 struct hlist_node *tmp;
3091 struct cmd_entry *e;
3092 int i;
3093
3094 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3095 kfree(e);
3096
3097 hash_init(gvt->cmd_table);
3098 }
3099
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3100 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3101 {
3102 clean_cmd_table(gvt);
3103 }
3104
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3105 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3106 {
3107 int ret;
3108
3109 ret = init_cmd_table(gvt);
3110 if (ret) {
3111 intel_gvt_clean_cmd_parser(gvt);
3112 return ret;
3113 }
3114 return 0;
3115 }
3116