1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
8
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-fsl-dspi.h>
21
22 #define DRIVER_NAME "fsl-dspi"
23
24 #define SPI_MCR 0x00
25 #define SPI_MCR_MASTER BIT(31)
26 #define SPI_MCR_PCSIS(x) ((x) << 16)
27 #define SPI_MCR_CLR_TXF BIT(11)
28 #define SPI_MCR_CLR_RXF BIT(10)
29 #define SPI_MCR_XSPI BIT(3)
30 #define SPI_MCR_DIS_TXF BIT(13)
31 #define SPI_MCR_DIS_RXF BIT(12)
32 #define SPI_MCR_HALT BIT(0)
33
34 #define SPI_TCR 0x08
35 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
36
37 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
38 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
39 #define SPI_CTAR_CPOL BIT(26)
40 #define SPI_CTAR_CPHA BIT(25)
41 #define SPI_CTAR_LSBFE BIT(24)
42 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
43 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
44 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
45 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
46 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
47 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
48 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
49 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
50 #define SPI_CTAR_SCALE_BITS 0xf
51
52 #define SPI_CTAR0_SLAVE 0x0c
53
54 #define SPI_SR 0x2c
55 #define SPI_SR_TCFQF BIT(31)
56 #define SPI_SR_TFUF BIT(27)
57 #define SPI_SR_TFFF BIT(25)
58 #define SPI_SR_CMDTCF BIT(23)
59 #define SPI_SR_SPEF BIT(21)
60 #define SPI_SR_RFOF BIT(19)
61 #define SPI_SR_TFIWF BIT(18)
62 #define SPI_SR_RFDF BIT(17)
63 #define SPI_SR_CMDFFF BIT(16)
64 #define SPI_SR_CLEAR (SPI_SR_TCFQF | \
65 SPI_SR_TFUF | SPI_SR_TFFF | \
66 SPI_SR_CMDTCF | SPI_SR_SPEF | \
67 SPI_SR_RFOF | SPI_SR_TFIWF | \
68 SPI_SR_RFDF | SPI_SR_CMDFFF)
69
70 #define SPI_RSER_TFFFE BIT(25)
71 #define SPI_RSER_TFFFD BIT(24)
72 #define SPI_RSER_RFDFE BIT(17)
73 #define SPI_RSER_RFDFD BIT(16)
74
75 #define SPI_RSER 0x30
76 #define SPI_RSER_TCFQE BIT(31)
77 #define SPI_RSER_CMDTCFE BIT(23)
78
79 #define SPI_PUSHR 0x34
80 #define SPI_PUSHR_CMD_CONT BIT(15)
81 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
82 #define SPI_PUSHR_CMD_EOQ BIT(11)
83 #define SPI_PUSHR_CMD_CTCNT BIT(10)
84 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
85
86 #define SPI_PUSHR_SLAVE 0x34
87
88 #define SPI_POPR 0x38
89
90 #define SPI_TXFR0 0x3c
91 #define SPI_TXFR1 0x40
92 #define SPI_TXFR2 0x44
93 #define SPI_TXFR3 0x48
94 #define SPI_RXFR0 0x7c
95 #define SPI_RXFR1 0x80
96 #define SPI_RXFR2 0x84
97 #define SPI_RXFR3 0x88
98
99 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
100 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
101 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
102
103 #define SPI_SREX 0x13c
104
105 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
106 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
107
108 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
109
110 struct chip_data {
111 u32 ctar_val;
112 };
113
114 enum dspi_trans_mode {
115 DSPI_XSPI_MODE,
116 DSPI_DMA_MODE,
117 };
118
119 struct fsl_dspi_devtype_data {
120 enum dspi_trans_mode trans_mode;
121 u8 max_clock_factor;
122 int fifo_size;
123 };
124
125 enum {
126 LS1021A,
127 LS1012A,
128 LS1028A,
129 LS1043A,
130 LS1046A,
131 LS2080A,
132 LS2085A,
133 LX2160A,
134 MCF5441X,
135 VF610,
136 };
137
138 static const struct fsl_dspi_devtype_data devtype_data[] = {
139 [VF610] = {
140 .trans_mode = DSPI_DMA_MODE,
141 .max_clock_factor = 2,
142 .fifo_size = 4,
143 },
144 [LS1021A] = {
145 /* Has A-011218 DMA erratum */
146 .trans_mode = DSPI_XSPI_MODE,
147 .max_clock_factor = 8,
148 .fifo_size = 4,
149 },
150 [LS1012A] = {
151 /* Has A-011218 DMA erratum */
152 .trans_mode = DSPI_XSPI_MODE,
153 .max_clock_factor = 8,
154 .fifo_size = 16,
155 },
156 [LS1028A] = {
157 .trans_mode = DSPI_XSPI_MODE,
158 .max_clock_factor = 8,
159 .fifo_size = 4,
160 },
161 [LS1043A] = {
162 /* Has A-011218 DMA erratum */
163 .trans_mode = DSPI_XSPI_MODE,
164 .max_clock_factor = 8,
165 .fifo_size = 16,
166 },
167 [LS1046A] = {
168 /* Has A-011218 DMA erratum */
169 .trans_mode = DSPI_XSPI_MODE,
170 .max_clock_factor = 8,
171 .fifo_size = 16,
172 },
173 [LS2080A] = {
174 .trans_mode = DSPI_XSPI_MODE,
175 .max_clock_factor = 8,
176 .fifo_size = 4,
177 },
178 [LS2085A] = {
179 .trans_mode = DSPI_XSPI_MODE,
180 .max_clock_factor = 8,
181 .fifo_size = 4,
182 },
183 [LX2160A] = {
184 .trans_mode = DSPI_XSPI_MODE,
185 .max_clock_factor = 8,
186 .fifo_size = 4,
187 },
188 [MCF5441X] = {
189 .trans_mode = DSPI_DMA_MODE,
190 .max_clock_factor = 8,
191 .fifo_size = 16,
192 },
193 };
194
195 struct fsl_dspi_dma {
196 u32 *tx_dma_buf;
197 struct dma_chan *chan_tx;
198 dma_addr_t tx_dma_phys;
199 struct completion cmd_tx_complete;
200 struct dma_async_tx_descriptor *tx_desc;
201
202 u32 *rx_dma_buf;
203 struct dma_chan *chan_rx;
204 dma_addr_t rx_dma_phys;
205 struct completion cmd_rx_complete;
206 struct dma_async_tx_descriptor *rx_desc;
207 };
208
209 struct fsl_dspi {
210 struct spi_controller *ctlr;
211 struct platform_device *pdev;
212
213 struct regmap *regmap;
214 struct regmap *regmap_pushr;
215 int irq;
216 struct clk *clk;
217
218 struct spi_transfer *cur_transfer;
219 struct spi_message *cur_msg;
220 struct chip_data *cur_chip;
221 size_t progress;
222 size_t len;
223 const void *tx;
224 void *rx;
225 u16 tx_cmd;
226 const struct fsl_dspi_devtype_data *devtype_data;
227
228 struct completion xfer_done;
229
230 struct fsl_dspi_dma *dma;
231
232 int oper_word_size;
233 int oper_bits_per_word;
234
235 int words_in_flight;
236
237 /*
238 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
239 * individually (in XSPI mode)
240 */
241 int pushr_cmd;
242 int pushr_tx;
243
244 void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
245 void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
246 };
247
dspi_native_host_to_dev(struct fsl_dspi * dspi,u32 * txdata)248 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
249 {
250 switch (dspi->oper_word_size) {
251 case 1:
252 *txdata = *(u8 *)dspi->tx;
253 break;
254 case 2:
255 *txdata = *(u16 *)dspi->tx;
256 break;
257 case 4:
258 *txdata = *(u32 *)dspi->tx;
259 break;
260 }
261 dspi->tx += dspi->oper_word_size;
262 }
263
dspi_native_dev_to_host(struct fsl_dspi * dspi,u32 rxdata)264 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
265 {
266 switch (dspi->oper_word_size) {
267 case 1:
268 *(u8 *)dspi->rx = rxdata;
269 break;
270 case 2:
271 *(u16 *)dspi->rx = rxdata;
272 break;
273 case 4:
274 *(u32 *)dspi->rx = rxdata;
275 break;
276 }
277 dspi->rx += dspi->oper_word_size;
278 }
279
dspi_8on32_host_to_dev(struct fsl_dspi * dspi,u32 * txdata)280 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
281 {
282 *txdata = cpu_to_be32(*(u32 *)dspi->tx);
283 dspi->tx += sizeof(u32);
284 }
285
dspi_8on32_dev_to_host(struct fsl_dspi * dspi,u32 rxdata)286 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
287 {
288 *(u32 *)dspi->rx = be32_to_cpu(rxdata);
289 dspi->rx += sizeof(u32);
290 }
291
dspi_8on16_host_to_dev(struct fsl_dspi * dspi,u32 * txdata)292 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
293 {
294 *txdata = cpu_to_be16(*(u16 *)dspi->tx);
295 dspi->tx += sizeof(u16);
296 }
297
dspi_8on16_dev_to_host(struct fsl_dspi * dspi,u32 rxdata)298 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
299 {
300 *(u16 *)dspi->rx = be16_to_cpu(rxdata);
301 dspi->rx += sizeof(u16);
302 }
303
dspi_16on32_host_to_dev(struct fsl_dspi * dspi,u32 * txdata)304 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
305 {
306 u16 hi = *(u16 *)dspi->tx;
307 u16 lo = *(u16 *)(dspi->tx + 2);
308
309 *txdata = (u32)hi << 16 | lo;
310 dspi->tx += sizeof(u32);
311 }
312
dspi_16on32_dev_to_host(struct fsl_dspi * dspi,u32 rxdata)313 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
314 {
315 u16 hi = rxdata & 0xffff;
316 u16 lo = rxdata >> 16;
317
318 *(u16 *)dspi->rx = lo;
319 *(u16 *)(dspi->rx + 2) = hi;
320 dspi->rx += sizeof(u32);
321 }
322
323 /*
324 * Pop one word from the TX buffer for pushing into the
325 * PUSHR register (TX FIFO)
326 */
dspi_pop_tx(struct fsl_dspi * dspi)327 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
328 {
329 u32 txdata = 0;
330
331 if (dspi->tx)
332 dspi->host_to_dev(dspi, &txdata);
333 dspi->len -= dspi->oper_word_size;
334 return txdata;
335 }
336
337 /* Prepare one TX FIFO entry (txdata plus cmd) */
dspi_pop_tx_pushr(struct fsl_dspi * dspi)338 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
339 {
340 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
341
342 if (spi_controller_is_slave(dspi->ctlr))
343 return data;
344
345 if (dspi->len > 0)
346 cmd |= SPI_PUSHR_CMD_CONT;
347 return cmd << 16 | data;
348 }
349
350 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
dspi_push_rx(struct fsl_dspi * dspi,u32 rxdata)351 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
352 {
353 if (!dspi->rx)
354 return;
355 dspi->dev_to_host(dspi, rxdata);
356 }
357
dspi_tx_dma_callback(void * arg)358 static void dspi_tx_dma_callback(void *arg)
359 {
360 struct fsl_dspi *dspi = arg;
361 struct fsl_dspi_dma *dma = dspi->dma;
362
363 complete(&dma->cmd_tx_complete);
364 }
365
dspi_rx_dma_callback(void * arg)366 static void dspi_rx_dma_callback(void *arg)
367 {
368 struct fsl_dspi *dspi = arg;
369 struct fsl_dspi_dma *dma = dspi->dma;
370 int i;
371
372 if (dspi->rx) {
373 for (i = 0; i < dspi->words_in_flight; i++)
374 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
375 }
376
377 complete(&dma->cmd_rx_complete);
378 }
379
dspi_next_xfer_dma_submit(struct fsl_dspi * dspi)380 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
381 {
382 struct device *dev = &dspi->pdev->dev;
383 struct fsl_dspi_dma *dma = dspi->dma;
384 int time_left;
385 int i;
386
387 for (i = 0; i < dspi->words_in_flight; i++)
388 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
389
390 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
391 dma->tx_dma_phys,
392 dspi->words_in_flight *
393 DMA_SLAVE_BUSWIDTH_4_BYTES,
394 DMA_MEM_TO_DEV,
395 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
396 if (!dma->tx_desc) {
397 dev_err(dev, "Not able to get desc for DMA xfer\n");
398 return -EIO;
399 }
400
401 dma->tx_desc->callback = dspi_tx_dma_callback;
402 dma->tx_desc->callback_param = dspi;
403 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
404 dev_err(dev, "DMA submit failed\n");
405 return -EINVAL;
406 }
407
408 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
409 dma->rx_dma_phys,
410 dspi->words_in_flight *
411 DMA_SLAVE_BUSWIDTH_4_BYTES,
412 DMA_DEV_TO_MEM,
413 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
414 if (!dma->rx_desc) {
415 dev_err(dev, "Not able to get desc for DMA xfer\n");
416 return -EIO;
417 }
418
419 dma->rx_desc->callback = dspi_rx_dma_callback;
420 dma->rx_desc->callback_param = dspi;
421 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
422 dev_err(dev, "DMA submit failed\n");
423 return -EINVAL;
424 }
425
426 reinit_completion(&dspi->dma->cmd_rx_complete);
427 reinit_completion(&dspi->dma->cmd_tx_complete);
428
429 dma_async_issue_pending(dma->chan_rx);
430 dma_async_issue_pending(dma->chan_tx);
431
432 if (spi_controller_is_slave(dspi->ctlr)) {
433 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
434 return 0;
435 }
436
437 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
438 DMA_COMPLETION_TIMEOUT);
439 if (time_left == 0) {
440 dev_err(dev, "DMA tx timeout\n");
441 dmaengine_terminate_all(dma->chan_tx);
442 dmaengine_terminate_all(dma->chan_rx);
443 return -ETIMEDOUT;
444 }
445
446 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
447 DMA_COMPLETION_TIMEOUT);
448 if (time_left == 0) {
449 dev_err(dev, "DMA rx timeout\n");
450 dmaengine_terminate_all(dma->chan_tx);
451 dmaengine_terminate_all(dma->chan_rx);
452 return -ETIMEDOUT;
453 }
454
455 return 0;
456 }
457
458 static void dspi_setup_accel(struct fsl_dspi *dspi);
459
dspi_dma_xfer(struct fsl_dspi * dspi)460 static int dspi_dma_xfer(struct fsl_dspi *dspi)
461 {
462 struct spi_message *message = dspi->cur_msg;
463 struct device *dev = &dspi->pdev->dev;
464 int ret = 0;
465
466 /*
467 * dspi->len gets decremented by dspi_pop_tx_pushr in
468 * dspi_next_xfer_dma_submit
469 */
470 while (dspi->len) {
471 /* Figure out operational bits-per-word for this chunk */
472 dspi_setup_accel(dspi);
473
474 dspi->words_in_flight = dspi->len / dspi->oper_word_size;
475 if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
476 dspi->words_in_flight = dspi->devtype_data->fifo_size;
477
478 message->actual_length += dspi->words_in_flight *
479 dspi->oper_word_size;
480
481 ret = dspi_next_xfer_dma_submit(dspi);
482 if (ret) {
483 dev_err(dev, "DMA transfer failed\n");
484 break;
485 }
486 }
487
488 return ret;
489 }
490
dspi_request_dma(struct fsl_dspi * dspi,phys_addr_t phy_addr)491 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
492 {
493 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
494 struct device *dev = &dspi->pdev->dev;
495 struct dma_slave_config cfg;
496 struct fsl_dspi_dma *dma;
497 int ret;
498
499 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
500 if (!dma)
501 return -ENOMEM;
502
503 dma->chan_rx = dma_request_chan(dev, "rx");
504 if (IS_ERR(dma->chan_rx)) {
505 dev_err(dev, "rx dma channel not available\n");
506 ret = PTR_ERR(dma->chan_rx);
507 return ret;
508 }
509
510 dma->chan_tx = dma_request_chan(dev, "tx");
511 if (IS_ERR(dma->chan_tx)) {
512 dev_err(dev, "tx dma channel not available\n");
513 ret = PTR_ERR(dma->chan_tx);
514 goto err_tx_channel;
515 }
516
517 dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
518 dma_bufsize, &dma->tx_dma_phys,
519 GFP_KERNEL);
520 if (!dma->tx_dma_buf) {
521 ret = -ENOMEM;
522 goto err_tx_dma_buf;
523 }
524
525 dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
526 dma_bufsize, &dma->rx_dma_phys,
527 GFP_KERNEL);
528 if (!dma->rx_dma_buf) {
529 ret = -ENOMEM;
530 goto err_rx_dma_buf;
531 }
532
533 memset(&cfg, 0, sizeof(cfg));
534 cfg.src_addr = phy_addr + SPI_POPR;
535 cfg.dst_addr = phy_addr + SPI_PUSHR;
536 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
537 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
538 cfg.src_maxburst = 1;
539 cfg.dst_maxburst = 1;
540
541 cfg.direction = DMA_DEV_TO_MEM;
542 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
543 if (ret) {
544 dev_err(dev, "can't configure rx dma channel\n");
545 ret = -EINVAL;
546 goto err_slave_config;
547 }
548
549 cfg.direction = DMA_MEM_TO_DEV;
550 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
551 if (ret) {
552 dev_err(dev, "can't configure tx dma channel\n");
553 ret = -EINVAL;
554 goto err_slave_config;
555 }
556
557 dspi->dma = dma;
558 init_completion(&dma->cmd_tx_complete);
559 init_completion(&dma->cmd_rx_complete);
560
561 return 0;
562
563 err_slave_config:
564 dma_free_coherent(dma->chan_rx->device->dev,
565 dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
566 err_rx_dma_buf:
567 dma_free_coherent(dma->chan_tx->device->dev,
568 dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
569 err_tx_dma_buf:
570 dma_release_channel(dma->chan_tx);
571 err_tx_channel:
572 dma_release_channel(dma->chan_rx);
573
574 devm_kfree(dev, dma);
575 dspi->dma = NULL;
576
577 return ret;
578 }
579
dspi_release_dma(struct fsl_dspi * dspi)580 static void dspi_release_dma(struct fsl_dspi *dspi)
581 {
582 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
583 struct fsl_dspi_dma *dma = dspi->dma;
584
585 if (!dma)
586 return;
587
588 if (dma->chan_tx) {
589 dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
590 dma->tx_dma_buf, dma->tx_dma_phys);
591 dma_release_channel(dma->chan_tx);
592 }
593
594 if (dma->chan_rx) {
595 dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
596 dma->rx_dma_buf, dma->rx_dma_phys);
597 dma_release_channel(dma->chan_rx);
598 }
599 }
600
hz_to_spi_baud(char * pbr,char * br,int speed_hz,unsigned long clkrate)601 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
602 unsigned long clkrate)
603 {
604 /* Valid baud rate pre-scaler values */
605 int pbr_tbl[4] = {2, 3, 5, 7};
606 int brs[16] = { 2, 4, 6, 8,
607 16, 32, 64, 128,
608 256, 512, 1024, 2048,
609 4096, 8192, 16384, 32768 };
610 int scale_needed, scale, minscale = INT_MAX;
611 int i, j;
612
613 scale_needed = clkrate / speed_hz;
614 if (clkrate % speed_hz)
615 scale_needed++;
616
617 for (i = 0; i < ARRAY_SIZE(brs); i++)
618 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
619 scale = brs[i] * pbr_tbl[j];
620 if (scale >= scale_needed) {
621 if (scale < minscale) {
622 minscale = scale;
623 *br = i;
624 *pbr = j;
625 }
626 break;
627 }
628 }
629
630 if (minscale == INT_MAX) {
631 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
632 speed_hz, clkrate);
633 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
634 *br = ARRAY_SIZE(brs) - 1;
635 }
636 }
637
ns_delay_scale(char * psc,char * sc,int delay_ns,unsigned long clkrate)638 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
639 unsigned long clkrate)
640 {
641 int scale_needed, scale, minscale = INT_MAX;
642 int pscale_tbl[4] = {1, 3, 5, 7};
643 u32 remainder;
644 int i, j;
645
646 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
647 &remainder);
648 if (remainder)
649 scale_needed++;
650
651 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
652 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
653 scale = pscale_tbl[i] * (2 << j);
654 if (scale >= scale_needed) {
655 if (scale < minscale) {
656 minscale = scale;
657 *psc = i;
658 *sc = j;
659 }
660 break;
661 }
662 }
663
664 if (minscale == INT_MAX) {
665 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
666 delay_ns, clkrate);
667 *psc = ARRAY_SIZE(pscale_tbl) - 1;
668 *sc = SPI_CTAR_SCALE_BITS;
669 }
670 }
671
dspi_pushr_cmd_write(struct fsl_dspi * dspi,u16 cmd)672 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
673 {
674 /*
675 * The only time when the PCS doesn't need continuation after this word
676 * is when it's last. We need to look ahead, because we actually call
677 * dspi_pop_tx (the function that decrements dspi->len) _after_
678 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
679 * word is enough. If there's more to transmit than that,
680 * dspi_xspi_write will know to split the FIFO writes in 2, and
681 * generate a new PUSHR command with the final word that will have PCS
682 * deasserted (not continued) here.
683 */
684 if (dspi->len > dspi->oper_word_size)
685 cmd |= SPI_PUSHR_CMD_CONT;
686 regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
687 }
688
dspi_pushr_txdata_write(struct fsl_dspi * dspi,u16 txdata)689 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
690 {
691 regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
692 }
693
dspi_xspi_fifo_write(struct fsl_dspi * dspi,int num_words)694 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
695 {
696 int num_bytes = num_words * dspi->oper_word_size;
697 u16 tx_cmd = dspi->tx_cmd;
698
699 /*
700 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
701 * and cs_change does not want the PCS to stay on), then we need a new
702 * PUSHR command, since this one (for the body of the buffer)
703 * necessarily has the CONT bit set.
704 * So send one word less during this go, to force a split and a command
705 * with a single word next time, when CONT will be unset.
706 */
707 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
708 tx_cmd |= SPI_PUSHR_CMD_EOQ;
709
710 /* Update CTARE */
711 regmap_write(dspi->regmap, SPI_CTARE(0),
712 SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
713 SPI_CTARE_DTCP(num_words));
714
715 /*
716 * Write the CMD FIFO entry first, and then the two
717 * corresponding TX FIFO entries (or one...).
718 */
719 dspi_pushr_cmd_write(dspi, tx_cmd);
720
721 /* Fill TX FIFO with as many transfers as possible */
722 while (num_words--) {
723 u32 data = dspi_pop_tx(dspi);
724
725 dspi_pushr_txdata_write(dspi, data & 0xFFFF);
726 if (dspi->oper_bits_per_word > 16)
727 dspi_pushr_txdata_write(dspi, data >> 16);
728 }
729 }
730
dspi_popr_read(struct fsl_dspi * dspi)731 static u32 dspi_popr_read(struct fsl_dspi *dspi)
732 {
733 u32 rxdata = 0;
734
735 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
736 return rxdata;
737 }
738
dspi_fifo_read(struct fsl_dspi * dspi)739 static void dspi_fifo_read(struct fsl_dspi *dspi)
740 {
741 int num_fifo_entries = dspi->words_in_flight;
742
743 /* Read one FIFO entry and push to rx buffer */
744 while (num_fifo_entries--)
745 dspi_push_rx(dspi, dspi_popr_read(dspi));
746 }
747
dspi_setup_accel(struct fsl_dspi * dspi)748 static void dspi_setup_accel(struct fsl_dspi *dspi)
749 {
750 struct spi_transfer *xfer = dspi->cur_transfer;
751 bool odd = !!(dspi->len & 1);
752
753 /* No accel for frames not multiple of 8 bits at the moment */
754 if (xfer->bits_per_word % 8)
755 goto no_accel;
756
757 if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
758 dspi->oper_bits_per_word = 16;
759 } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
760 dspi->oper_bits_per_word = 8;
761 } else {
762 /* Start off with maximum supported by hardware */
763 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
764 dspi->oper_bits_per_word = 32;
765 else
766 dspi->oper_bits_per_word = 16;
767
768 /*
769 * And go down only if the buffer can't be sent with
770 * words this big
771 */
772 do {
773 if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
774 break;
775
776 dspi->oper_bits_per_word /= 2;
777 } while (dspi->oper_bits_per_word > 8);
778 }
779
780 if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
781 dspi->dev_to_host = dspi_8on32_dev_to_host;
782 dspi->host_to_dev = dspi_8on32_host_to_dev;
783 } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
784 dspi->dev_to_host = dspi_8on16_dev_to_host;
785 dspi->host_to_dev = dspi_8on16_host_to_dev;
786 } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
787 dspi->dev_to_host = dspi_16on32_dev_to_host;
788 dspi->host_to_dev = dspi_16on32_host_to_dev;
789 } else {
790 no_accel:
791 dspi->dev_to_host = dspi_native_dev_to_host;
792 dspi->host_to_dev = dspi_native_host_to_dev;
793 dspi->oper_bits_per_word = xfer->bits_per_word;
794 }
795
796 dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
797
798 /*
799 * Update CTAR here (code is common for XSPI and DMA modes).
800 * We will update CTARE in the portion specific to XSPI, when we
801 * also know the preload value (DTCP).
802 */
803 regmap_write(dspi->regmap, SPI_CTAR(0),
804 dspi->cur_chip->ctar_val |
805 SPI_FRAME_BITS(dspi->oper_bits_per_word));
806 }
807
dspi_fifo_write(struct fsl_dspi * dspi)808 static void dspi_fifo_write(struct fsl_dspi *dspi)
809 {
810 int num_fifo_entries = dspi->devtype_data->fifo_size;
811 struct spi_transfer *xfer = dspi->cur_transfer;
812 struct spi_message *msg = dspi->cur_msg;
813 int num_words, num_bytes;
814
815 dspi_setup_accel(dspi);
816
817 /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
818 if (dspi->oper_word_size == 4)
819 num_fifo_entries /= 2;
820
821 /*
822 * Integer division intentionally trims off odd (or non-multiple of 4)
823 * numbers of bytes at the end of the buffer, which will be sent next
824 * time using a smaller oper_word_size.
825 */
826 num_words = dspi->len / dspi->oper_word_size;
827 if (num_words > num_fifo_entries)
828 num_words = num_fifo_entries;
829
830 /* Update total number of bytes that were transferred */
831 num_bytes = num_words * dspi->oper_word_size;
832 msg->actual_length += num_bytes;
833 dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
834
835 /*
836 * Update shared variable for use in the next interrupt (both in
837 * dspi_fifo_read and in dspi_fifo_write).
838 */
839 dspi->words_in_flight = num_words;
840
841 spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
842
843 dspi_xspi_fifo_write(dspi, num_words);
844 /*
845 * Everything after this point is in a potential race with the next
846 * interrupt, so we must never use dspi->words_in_flight again since it
847 * might already be modified by the next dspi_fifo_write.
848 */
849
850 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
851 dspi->progress, !dspi->irq);
852 }
853
dspi_rxtx(struct fsl_dspi * dspi)854 static int dspi_rxtx(struct fsl_dspi *dspi)
855 {
856 dspi_fifo_read(dspi);
857
858 if (!dspi->len)
859 /* Success! */
860 return 0;
861
862 dspi_fifo_write(dspi);
863
864 return -EINPROGRESS;
865 }
866
dspi_poll(struct fsl_dspi * dspi)867 static int dspi_poll(struct fsl_dspi *dspi)
868 {
869 int tries = 1000;
870 u32 spi_sr;
871
872 do {
873 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
874 regmap_write(dspi->regmap, SPI_SR, spi_sr);
875
876 if (spi_sr & SPI_SR_CMDTCF)
877 break;
878 } while (--tries);
879
880 if (!tries)
881 return -ETIMEDOUT;
882
883 return dspi_rxtx(dspi);
884 }
885
dspi_interrupt(int irq,void * dev_id)886 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
887 {
888 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
889 u32 spi_sr;
890
891 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
892 regmap_write(dspi->regmap, SPI_SR, spi_sr);
893
894 if (!(spi_sr & SPI_SR_CMDTCF))
895 return IRQ_NONE;
896
897 if (dspi_rxtx(dspi) == 0)
898 complete(&dspi->xfer_done);
899
900 return IRQ_HANDLED;
901 }
902
dspi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * message)903 static int dspi_transfer_one_message(struct spi_controller *ctlr,
904 struct spi_message *message)
905 {
906 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
907 struct spi_device *spi = message->spi;
908 struct spi_transfer *transfer;
909 int status = 0;
910
911 message->actual_length = 0;
912
913 list_for_each_entry(transfer, &message->transfers, transfer_list) {
914 dspi->cur_transfer = transfer;
915 dspi->cur_msg = message;
916 dspi->cur_chip = spi_get_ctldata(spi);
917 /* Prepare command word for CMD FIFO */
918 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
919 SPI_PUSHR_CMD_PCS(spi->chip_select);
920 if (list_is_last(&dspi->cur_transfer->transfer_list,
921 &dspi->cur_msg->transfers)) {
922 /* Leave PCS activated after last transfer when
923 * cs_change is set.
924 */
925 if (transfer->cs_change)
926 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
927 } else {
928 /* Keep PCS active between transfers in same message
929 * when cs_change is not set, and de-activate PCS
930 * between transfers in the same message when
931 * cs_change is set.
932 */
933 if (!transfer->cs_change)
934 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
935 }
936
937 dspi->tx = transfer->tx_buf;
938 dspi->rx = transfer->rx_buf;
939 dspi->len = transfer->len;
940 dspi->progress = 0;
941
942 regmap_update_bits(dspi->regmap, SPI_MCR,
943 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
944 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
945
946 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
947 dspi->progress, !dspi->irq);
948
949 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
950 status = dspi_dma_xfer(dspi);
951 } else {
952 dspi_fifo_write(dspi);
953
954 if (dspi->irq) {
955 wait_for_completion(&dspi->xfer_done);
956 reinit_completion(&dspi->xfer_done);
957 } else {
958 do {
959 status = dspi_poll(dspi);
960 } while (status == -EINPROGRESS);
961 }
962 }
963 if (status)
964 break;
965
966 spi_transfer_delay_exec(transfer);
967 }
968
969 message->status = status;
970 spi_finalize_current_message(ctlr);
971
972 return status;
973 }
974
dspi_setup(struct spi_device * spi)975 static int dspi_setup(struct spi_device *spi)
976 {
977 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
978 u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
979 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
980 u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
981 u32 cs_sck_delay = 0, sck_cs_delay = 0;
982 struct fsl_dspi_platform_data *pdata;
983 unsigned char pasc = 0, asc = 0;
984 struct chip_data *chip;
985 unsigned long clkrate;
986
987 /* Only alloc on first setup */
988 chip = spi_get_ctldata(spi);
989 if (chip == NULL) {
990 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
991 if (!chip)
992 return -ENOMEM;
993 }
994
995 pdata = dev_get_platdata(&dspi->pdev->dev);
996
997 if (!pdata) {
998 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
999 &cs_sck_delay);
1000
1001 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1002 &sck_cs_delay);
1003 } else {
1004 cs_sck_delay = pdata->cs_sck_delay;
1005 sck_cs_delay = pdata->sck_cs_delay;
1006 }
1007
1008 /* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1009 * glitches of half a cycle by never allowing tCSC + tASC to go below
1010 * half a SCK period.
1011 */
1012 if (cs_sck_delay < quarter_period_ns)
1013 cs_sck_delay = quarter_period_ns;
1014 if (sck_cs_delay < quarter_period_ns)
1015 sck_cs_delay = quarter_period_ns;
1016
1017 dev_dbg(&spi->dev,
1018 "DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1019 cs_sck_delay, sck_cs_delay);
1020
1021 clkrate = clk_get_rate(dspi->clk);
1022 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1023
1024 /* Set PCS to SCK delay scale values */
1025 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1026
1027 /* Set After SCK delay scale values */
1028 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1029
1030 chip->ctar_val = 0;
1031 if (spi->mode & SPI_CPOL)
1032 chip->ctar_val |= SPI_CTAR_CPOL;
1033 if (spi->mode & SPI_CPHA)
1034 chip->ctar_val |= SPI_CTAR_CPHA;
1035
1036 if (!spi_controller_is_slave(dspi->ctlr)) {
1037 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1038 SPI_CTAR_CSSCK(cssck) |
1039 SPI_CTAR_PASC(pasc) |
1040 SPI_CTAR_ASC(asc) |
1041 SPI_CTAR_PBR(pbr) |
1042 SPI_CTAR_BR(br);
1043
1044 if (spi->mode & SPI_LSB_FIRST)
1045 chip->ctar_val |= SPI_CTAR_LSBFE;
1046 }
1047
1048 spi_set_ctldata(spi, chip);
1049
1050 return 0;
1051 }
1052
dspi_cleanup(struct spi_device * spi)1053 static void dspi_cleanup(struct spi_device *spi)
1054 {
1055 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1056
1057 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1058 spi->controller->bus_num, spi->chip_select);
1059
1060 kfree(chip);
1061 }
1062
1063 static const struct of_device_id fsl_dspi_dt_ids[] = {
1064 {
1065 .compatible = "fsl,vf610-dspi",
1066 .data = &devtype_data[VF610],
1067 }, {
1068 .compatible = "fsl,ls1021a-v1.0-dspi",
1069 .data = &devtype_data[LS1021A],
1070 }, {
1071 .compatible = "fsl,ls1012a-dspi",
1072 .data = &devtype_data[LS1012A],
1073 }, {
1074 .compatible = "fsl,ls1028a-dspi",
1075 .data = &devtype_data[LS1028A],
1076 }, {
1077 .compatible = "fsl,ls1043a-dspi",
1078 .data = &devtype_data[LS1043A],
1079 }, {
1080 .compatible = "fsl,ls1046a-dspi",
1081 .data = &devtype_data[LS1046A],
1082 }, {
1083 .compatible = "fsl,ls2080a-dspi",
1084 .data = &devtype_data[LS2080A],
1085 }, {
1086 .compatible = "fsl,ls2085a-dspi",
1087 .data = &devtype_data[LS2085A],
1088 }, {
1089 .compatible = "fsl,lx2160a-dspi",
1090 .data = &devtype_data[LX2160A],
1091 },
1092 { /* sentinel */ }
1093 };
1094 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1095
1096 #ifdef CONFIG_PM_SLEEP
dspi_suspend(struct device * dev)1097 static int dspi_suspend(struct device *dev)
1098 {
1099 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1100
1101 if (dspi->irq)
1102 disable_irq(dspi->irq);
1103 spi_controller_suspend(dspi->ctlr);
1104 clk_disable_unprepare(dspi->clk);
1105
1106 pinctrl_pm_select_sleep_state(dev);
1107
1108 return 0;
1109 }
1110
dspi_resume(struct device * dev)1111 static int dspi_resume(struct device *dev)
1112 {
1113 struct fsl_dspi *dspi = dev_get_drvdata(dev);
1114 int ret;
1115
1116 pinctrl_pm_select_default_state(dev);
1117
1118 ret = clk_prepare_enable(dspi->clk);
1119 if (ret)
1120 return ret;
1121 spi_controller_resume(dspi->ctlr);
1122 if (dspi->irq)
1123 enable_irq(dspi->irq);
1124
1125 return 0;
1126 }
1127 #endif /* CONFIG_PM_SLEEP */
1128
1129 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1130
1131 static const struct regmap_range dspi_volatile_ranges[] = {
1132 regmap_reg_range(SPI_MCR, SPI_TCR),
1133 regmap_reg_range(SPI_SR, SPI_SR),
1134 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1135 };
1136
1137 static const struct regmap_access_table dspi_volatile_table = {
1138 .yes_ranges = dspi_volatile_ranges,
1139 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
1140 };
1141
1142 static const struct regmap_config dspi_regmap_config = {
1143 .reg_bits = 32,
1144 .val_bits = 32,
1145 .reg_stride = 4,
1146 .max_register = 0x88,
1147 .volatile_table = &dspi_volatile_table,
1148 };
1149
1150 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1151 regmap_reg_range(SPI_MCR, SPI_TCR),
1152 regmap_reg_range(SPI_SR, SPI_SR),
1153 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1154 regmap_reg_range(SPI_SREX, SPI_SREX),
1155 };
1156
1157 static const struct regmap_access_table dspi_xspi_volatile_table = {
1158 .yes_ranges = dspi_xspi_volatile_ranges,
1159 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1160 };
1161
1162 static const struct regmap_config dspi_xspi_regmap_config[] = {
1163 {
1164 .reg_bits = 32,
1165 .val_bits = 32,
1166 .reg_stride = 4,
1167 .max_register = 0x13c,
1168 .volatile_table = &dspi_xspi_volatile_table,
1169 },
1170 {
1171 .name = "pushr",
1172 .reg_bits = 16,
1173 .val_bits = 16,
1174 .reg_stride = 2,
1175 .max_register = 0x2,
1176 },
1177 };
1178
dspi_init(struct fsl_dspi * dspi)1179 static int dspi_init(struct fsl_dspi *dspi)
1180 {
1181 unsigned int mcr;
1182
1183 /* Set idle states for all chip select signals to high */
1184 mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1185
1186 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1187 mcr |= SPI_MCR_XSPI;
1188 if (!spi_controller_is_slave(dspi->ctlr))
1189 mcr |= SPI_MCR_MASTER;
1190
1191 regmap_write(dspi->regmap, SPI_MCR, mcr);
1192 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1193
1194 switch (dspi->devtype_data->trans_mode) {
1195 case DSPI_XSPI_MODE:
1196 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1197 break;
1198 case DSPI_DMA_MODE:
1199 regmap_write(dspi->regmap, SPI_RSER,
1200 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1201 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1202 break;
1203 default:
1204 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1205 dspi->devtype_data->trans_mode);
1206 return -EINVAL;
1207 }
1208
1209 return 0;
1210 }
1211
dspi_slave_abort(struct spi_master * master)1212 static int dspi_slave_abort(struct spi_master *master)
1213 {
1214 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1215
1216 /*
1217 * Terminate all pending DMA transactions for the SPI working
1218 * in SLAVE mode.
1219 */
1220 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1221 dmaengine_terminate_sync(dspi->dma->chan_rx);
1222 dmaengine_terminate_sync(dspi->dma->chan_tx);
1223 }
1224
1225 /* Clear the internal DSPI RX and TX FIFO buffers */
1226 regmap_update_bits(dspi->regmap, SPI_MCR,
1227 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1228 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1229
1230 return 0;
1231 }
1232
dspi_probe(struct platform_device * pdev)1233 static int dspi_probe(struct platform_device *pdev)
1234 {
1235 struct device_node *np = pdev->dev.of_node;
1236 const struct regmap_config *regmap_config;
1237 struct fsl_dspi_platform_data *pdata;
1238 struct spi_controller *ctlr;
1239 int ret, cs_num, bus_num = -1;
1240 struct fsl_dspi *dspi;
1241 struct resource *res;
1242 void __iomem *base;
1243 bool big_endian;
1244
1245 dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1246 if (!dspi)
1247 return -ENOMEM;
1248
1249 ctlr = spi_alloc_master(&pdev->dev, 0);
1250 if (!ctlr)
1251 return -ENOMEM;
1252
1253 spi_controller_set_devdata(ctlr, dspi);
1254 platform_set_drvdata(pdev, dspi);
1255
1256 dspi->pdev = pdev;
1257 dspi->ctlr = ctlr;
1258
1259 ctlr->setup = dspi_setup;
1260 ctlr->transfer_one_message = dspi_transfer_one_message;
1261 ctlr->dev.of_node = pdev->dev.of_node;
1262
1263 ctlr->cleanup = dspi_cleanup;
1264 ctlr->slave_abort = dspi_slave_abort;
1265 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1266
1267 pdata = dev_get_platdata(&pdev->dev);
1268 if (pdata) {
1269 ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1270 ctlr->bus_num = pdata->bus_num;
1271
1272 /* Only Coldfire uses platform data */
1273 dspi->devtype_data = &devtype_data[MCF5441X];
1274 big_endian = true;
1275 } else {
1276
1277 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1278 if (ret < 0) {
1279 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1280 goto out_ctlr_put;
1281 }
1282 ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1283
1284 of_property_read_u32(np, "bus-num", &bus_num);
1285 ctlr->bus_num = bus_num;
1286
1287 if (of_property_read_bool(np, "spi-slave"))
1288 ctlr->slave = true;
1289
1290 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1291 if (!dspi->devtype_data) {
1292 dev_err(&pdev->dev, "can't get devtype_data\n");
1293 ret = -EFAULT;
1294 goto out_ctlr_put;
1295 }
1296
1297 big_endian = of_device_is_big_endian(np);
1298 }
1299 if (big_endian) {
1300 dspi->pushr_cmd = 0;
1301 dspi->pushr_tx = 2;
1302 } else {
1303 dspi->pushr_cmd = 2;
1304 dspi->pushr_tx = 0;
1305 }
1306
1307 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1308 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1309 else
1310 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1311
1312 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1313 base = devm_ioremap_resource(&pdev->dev, res);
1314 if (IS_ERR(base)) {
1315 ret = PTR_ERR(base);
1316 goto out_ctlr_put;
1317 }
1318
1319 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1320 regmap_config = &dspi_xspi_regmap_config[0];
1321 else
1322 regmap_config = &dspi_regmap_config;
1323 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1324 if (IS_ERR(dspi->regmap)) {
1325 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1326 PTR_ERR(dspi->regmap));
1327 ret = PTR_ERR(dspi->regmap);
1328 goto out_ctlr_put;
1329 }
1330
1331 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1332 dspi->regmap_pushr = devm_regmap_init_mmio(
1333 &pdev->dev, base + SPI_PUSHR,
1334 &dspi_xspi_regmap_config[1]);
1335 if (IS_ERR(dspi->regmap_pushr)) {
1336 dev_err(&pdev->dev,
1337 "failed to init pushr regmap: %ld\n",
1338 PTR_ERR(dspi->regmap_pushr));
1339 ret = PTR_ERR(dspi->regmap_pushr);
1340 goto out_ctlr_put;
1341 }
1342 }
1343
1344 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1345 if (IS_ERR(dspi->clk)) {
1346 ret = PTR_ERR(dspi->clk);
1347 dev_err(&pdev->dev, "unable to get clock\n");
1348 goto out_ctlr_put;
1349 }
1350 ret = clk_prepare_enable(dspi->clk);
1351 if (ret)
1352 goto out_ctlr_put;
1353
1354 ret = dspi_init(dspi);
1355 if (ret)
1356 goto out_clk_put;
1357
1358 dspi->irq = platform_get_irq(pdev, 0);
1359 if (dspi->irq <= 0) {
1360 dev_info(&pdev->dev,
1361 "can't get platform irq, using poll mode\n");
1362 dspi->irq = 0;
1363 goto poll_mode;
1364 }
1365
1366 init_completion(&dspi->xfer_done);
1367
1368 ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1369 IRQF_SHARED, pdev->name, dspi);
1370 if (ret < 0) {
1371 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1372 goto out_clk_put;
1373 }
1374
1375 poll_mode:
1376
1377 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1378 ret = dspi_request_dma(dspi, res->start);
1379 if (ret < 0) {
1380 dev_err(&pdev->dev, "can't get dma channels\n");
1381 goto out_free_irq;
1382 }
1383 }
1384
1385 ctlr->max_speed_hz =
1386 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1387
1388 if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1389 ctlr->ptp_sts_supported = true;
1390
1391 ret = spi_register_controller(ctlr);
1392 if (ret != 0) {
1393 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1394 goto out_release_dma;
1395 }
1396
1397 return ret;
1398
1399 out_release_dma:
1400 dspi_release_dma(dspi);
1401 out_free_irq:
1402 if (dspi->irq)
1403 free_irq(dspi->irq, dspi);
1404 out_clk_put:
1405 clk_disable_unprepare(dspi->clk);
1406 out_ctlr_put:
1407 spi_controller_put(ctlr);
1408
1409 return ret;
1410 }
1411
dspi_remove(struct platform_device * pdev)1412 static int dspi_remove(struct platform_device *pdev)
1413 {
1414 struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1415
1416 /* Disconnect from the SPI framework */
1417 spi_unregister_controller(dspi->ctlr);
1418
1419 /* Disable RX and TX */
1420 regmap_update_bits(dspi->regmap, SPI_MCR,
1421 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1422 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1423
1424 /* Stop Running */
1425 regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1426
1427 dspi_release_dma(dspi);
1428 if (dspi->irq)
1429 free_irq(dspi->irq, dspi);
1430 clk_disable_unprepare(dspi->clk);
1431
1432 return 0;
1433 }
1434
dspi_shutdown(struct platform_device * pdev)1435 static void dspi_shutdown(struct platform_device *pdev)
1436 {
1437 dspi_remove(pdev);
1438 }
1439
1440 static struct platform_driver fsl_dspi_driver = {
1441 .driver.name = DRIVER_NAME,
1442 .driver.of_match_table = fsl_dspi_dt_ids,
1443 .driver.owner = THIS_MODULE,
1444 .driver.pm = &dspi_pm,
1445 .probe = dspi_probe,
1446 .remove = dspi_remove,
1447 .shutdown = dspi_shutdown,
1448 };
1449 module_platform_driver(fsl_dspi_driver);
1450
1451 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1452 MODULE_LICENSE("GPL");
1453 MODULE_ALIAS("platform:" DRIVER_NAME);
1454