• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35 
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40 
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46 
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49 
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 	if (size == 0)
57 		return vgpu_gmadr_is_valid(vgpu, addr);
58 
59 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 		return true;
62 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 		return true;
65 
66 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 		     addr, size);
68 	return false;
69 }
70 
71 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75 
76 	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 		     "invalid guest gmadr %llx\n", g_addr))
78 		return -EACCES;
79 
80 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
82 			  + (g_addr - vgpu_aperture_offset(vgpu));
83 	else
84 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
85 			  + (g_addr - vgpu_hidden_offset(vgpu));
86 	return 0;
87 }
88 
89 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93 
94 	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 		     "invalid host gmadr %llx\n", h_addr))
96 		return -EACCES;
97 
98 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
100 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101 	else
102 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
103 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104 	return 0;
105 }
106 
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 			     unsigned long *h_index)
109 {
110 	u64 h_addr;
111 	int ret;
112 
113 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114 				       &h_addr);
115 	if (ret)
116 		return ret;
117 
118 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119 	return 0;
120 }
121 
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 			     unsigned long *g_index)
124 {
125 	u64 g_addr;
126 	int ret;
127 
128 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129 				       &g_addr);
130 	if (ret)
131 		return ret;
132 
133 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134 	return 0;
135 }
136 
137 #define gtt_type_is_entry(type) \
138 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141 
142 #define gtt_type_is_pt(type) \
143 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144 
145 #define gtt_type_is_pte_pt(type) \
146 	(type == GTT_TYPE_PPGTT_PTE_PT)
147 
148 #define gtt_type_is_root_pointer(type) \
149 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150 
151 #define gtt_init_entry(e, t, p, v) do { \
152 	(e)->type = t; \
153 	(e)->pdev = p; \
154 	memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156 
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172 
173 struct gtt_type_table_entry {
174 	int entry_type;
175 	int pt_type;
176 	int next_pt_type;
177 	int pse_entry_type;
178 };
179 
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181 	[type] = { \
182 		.entry_type = e_type, \
183 		.pt_type = cpt_type, \
184 		.next_pt_type = npt_type, \
185 		.pse_entry_type = pse_type, \
186 	}
187 
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 			GTT_TYPE_INVALID,
192 			GTT_TYPE_PPGTT_PML4_PT,
193 			GTT_TYPE_INVALID),
194 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 			GTT_TYPE_PPGTT_PML4_ENTRY,
196 			GTT_TYPE_PPGTT_PML4_PT,
197 			GTT_TYPE_PPGTT_PDP_PT,
198 			GTT_TYPE_INVALID),
199 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 			GTT_TYPE_PPGTT_PML4_ENTRY,
201 			GTT_TYPE_PPGTT_PML4_PT,
202 			GTT_TYPE_PPGTT_PDP_PT,
203 			GTT_TYPE_INVALID),
204 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 			GTT_TYPE_PPGTT_PDP_ENTRY,
206 			GTT_TYPE_PPGTT_PDP_PT,
207 			GTT_TYPE_PPGTT_PDE_PT,
208 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 			GTT_TYPE_INVALID,
212 			GTT_TYPE_PPGTT_PDE_PT,
213 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 			GTT_TYPE_PPGTT_PDP_ENTRY,
216 			GTT_TYPE_PPGTT_PDP_PT,
217 			GTT_TYPE_PPGTT_PDE_PT,
218 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 			GTT_TYPE_PPGTT_PDE_ENTRY,
221 			GTT_TYPE_PPGTT_PDE_PT,
222 			GTT_TYPE_PPGTT_PTE_PT,
223 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 			GTT_TYPE_PPGTT_PDE_ENTRY,
226 			GTT_TYPE_PPGTT_PDE_PT,
227 			GTT_TYPE_PPGTT_PTE_PT,
228 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 	/* We take IPS bit as 'PSE' for PTE level. */
230 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 			GTT_TYPE_PPGTT_PTE_PT,
233 			GTT_TYPE_INVALID,
234 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 			GTT_TYPE_PPGTT_PTE_PT,
238 			GTT_TYPE_INVALID,
239 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 			GTT_TYPE_PPGTT_PTE_PT,
243 			GTT_TYPE_INVALID,
244 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 			GTT_TYPE_PPGTT_PDE_ENTRY,
247 			GTT_TYPE_PPGTT_PDE_PT,
248 			GTT_TYPE_INVALID,
249 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 			GTT_TYPE_PPGTT_PDP_ENTRY,
252 			GTT_TYPE_PPGTT_PDP_PT,
253 			GTT_TYPE_INVALID,
254 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256 			GTT_TYPE_GGTT_PTE,
257 			GTT_TYPE_INVALID,
258 			GTT_TYPE_INVALID,
259 			GTT_TYPE_INVALID),
260 };
261 
get_next_pt_type(int type)262 static inline int get_next_pt_type(int type)
263 {
264 	return gtt_type_table[type].next_pt_type;
265 }
266 
get_pt_type(int type)267 static inline int get_pt_type(int type)
268 {
269 	return gtt_type_table[type].pt_type;
270 }
271 
get_entry_type(int type)272 static inline int get_entry_type(int type)
273 {
274 	return gtt_type_table[type].entry_type;
275 }
276 
get_pse_type(int type)277 static inline int get_pse_type(int type)
278 {
279 	return gtt_type_table[type].pse_entry_type;
280 }
281 
read_pte64(struct i915_ggtt * ggtt,unsigned long index)282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285 
286 	return readq(addr);
287 }
288 
ggtt_invalidate(struct intel_gt * gt)289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291 	mmio_hw_access_pre(gt);
292 	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 	mmio_hw_access_post(gt);
294 }
295 
write_pte64(struct i915_ggtt * ggtt,unsigned long index,u64 pte)296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298 	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299 
300 	writeq(pte, addr);
301 }
302 
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)303 static inline int gtt_get_entry64(void *pt,
304 		struct intel_gvt_gtt_entry *e,
305 		unsigned long index, bool hypervisor_access, unsigned long gpa,
306 		struct intel_vgpu *vgpu)
307 {
308 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309 	int ret;
310 
311 	if (WARN_ON(info->gtt_entry_size != 8))
312 		return -EINVAL;
313 
314 	if (hypervisor_access) {
315 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 				(index << info->gtt_entry_size_shift),
317 				&e->val64, 8);
318 		if (WARN_ON(ret))
319 			return ret;
320 	} else if (!pt) {
321 		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322 	} else {
323 		e->val64 = *((u64 *)pt + index);
324 	}
325 	return 0;
326 }
327 
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)328 static inline int gtt_set_entry64(void *pt,
329 		struct intel_gvt_gtt_entry *e,
330 		unsigned long index, bool hypervisor_access, unsigned long gpa,
331 		struct intel_vgpu *vgpu)
332 {
333 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334 	int ret;
335 
336 	if (WARN_ON(info->gtt_entry_size != 8))
337 		return -EINVAL;
338 
339 	if (hypervisor_access) {
340 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 				(index << info->gtt_entry_size_shift),
342 				&e->val64, 8);
343 		if (WARN_ON(ret))
344 			return ret;
345 	} else if (!pt) {
346 		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347 	} else {
348 		*((u64 *)pt + index) = e->val64;
349 	}
350 	return 0;
351 }
352 
353 #define GTT_HAW 46
354 
355 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
359 
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362 
363 #define GTT_64K_PTE_STRIDE 16
364 
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367 	unsigned long pfn;
368 
369 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375 	else
376 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377 	return pfn;
378 }
379 
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 		e->val64 &= ~ADDR_1G_MASK;
384 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 		e->val64 &= ~ADDR_2M_MASK;
387 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 		e->val64 &= ~ADDR_64K_MASK;
390 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391 	} else {
392 		e->val64 &= ~ADDR_4K_MASK;
393 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394 	}
395 
396 	e->val64 |= (pfn << PAGE_SHIFT);
397 }
398 
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401 	return !!(e->val64 & _PAGE_PSE);
402 }
403 
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406 	if (gen8_gtt_test_pse(e)) {
407 		switch (e->type) {
408 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 			e->val64 &= ~_PAGE_PSE;
410 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411 			break;
412 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 			e->val64 &= ~_PAGE_PSE;
415 			break;
416 		default:
417 			WARN_ON(1);
418 		}
419 	}
420 }
421 
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425 		return false;
426 
427 	return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429 
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433 		return;
434 
435 	e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437 
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440 	/*
441 	 * i915 writes PDP root pointer registers without present bit,
442 	 * it also works, so we need to treat root pointer entry
443 	 * specifically.
444 	 */
445 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 		return (e->val64 != 0);
448 	else
449 		return (e->val64 & _PAGE_PRESENT);
450 }
451 
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454 	e->val64 &= ~_PAGE_PRESENT;
455 }
456 
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459 	e->val64 |= _PAGE_PRESENT;
460 }
461 
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466 
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471 
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476 
477 /*
478  * Per-platform GMA routines.
479  */
gma_to_ggtt_pte_index(unsigned long gma)480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483 
484 	trace_gma_index(__func__, gma, x);
485 	return x;
486 }
487 
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491 	unsigned long x = (exp); \
492 	trace_gma_index(__func__, gma, x); \
493 	return x; \
494 }
495 
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501 
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 	.get_entry = gtt_get_entry64,
504 	.set_entry = gtt_set_entry64,
505 	.clear_present = gtt_entry_clear_present,
506 	.set_present = gtt_entry_set_present,
507 	.test_present = gen8_gtt_test_present,
508 	.test_pse = gen8_gtt_test_pse,
509 	.clear_pse = gen8_gtt_clear_pse,
510 	.clear_ips = gen8_gtt_clear_ips,
511 	.test_ips = gen8_gtt_test_ips,
512 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
513 	.set_64k_splited = gen8_gtt_set_64k_splited,
514 	.test_64k_splited = gen8_gtt_test_64k_splited,
515 	.get_pfn = gen8_gtt_get_pfn,
516 	.set_pfn = gen8_gtt_set_pfn,
517 };
518 
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 	.gma_to_pte_index = gen8_gma_to_pte_index,
522 	.gma_to_pde_index = gen8_gma_to_pde_index,
523 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527 
528 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 	struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532 	switch (entry->type) {
533 	case GTT_TYPE_PPGTT_PDE_ENTRY:
534 	case GTT_TYPE_PPGTT_PDP_ENTRY:
535 		if (pte_ops->test_pse(entry))
536 			entry->type = get_pse_type(entry->type);
537 		break;
538 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539 		if (ips)
540 			entry->type = get_pse_type(entry->type);
541 		break;
542 	default:
543 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544 	}
545 
546 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548 
549 /*
550  * MM helpers.
551  */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 		struct intel_gvt_gtt_entry *entry, unsigned long index,
554 		bool guest)
555 {
556 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557 
558 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559 
560 	entry->type = mm->ppgtt_mm.root_entry_type;
561 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 			   mm->ppgtt_mm.shadow_pdps,
563 			   entry, index, false, 0, mm->vgpu);
564 	update_entry_type_for_real(pte_ops, entry, false);
565 }
566 
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 		struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570 	_ppgtt_get_root_entry(mm, entry, index, true);
571 }
572 
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 		struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576 	_ppgtt_get_root_entry(mm, entry, index, false);
577 }
578 
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 		struct intel_gvt_gtt_entry *entry, unsigned long index,
581 		bool guest)
582 {
583 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584 
585 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 			   mm->ppgtt_mm.shadow_pdps,
587 			   entry, index, false, 0, mm->vgpu);
588 }
589 
ppgtt_set_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 		struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593 	_ppgtt_set_root_entry(mm, entry, index, true);
594 }
595 
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 		struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599 	_ppgtt_set_root_entry(mm, entry, index, false);
600 }
601 
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 		struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606 
607 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608 
609 	entry->type = GTT_TYPE_GGTT_PTE;
610 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611 			   false, 0, mm->vgpu);
612 }
613 
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 		struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618 
619 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620 
621 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622 			   false, 0, mm->vgpu);
623 }
624 
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 		struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629 
630 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631 
632 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634 
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 		struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639 	unsigned long offset = index;
640 
641 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
642 
643 	if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
644 		offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
645 		mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
646 	} else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
647 		offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
648 		mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
649 	}
650 
651 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
652 }
653 
654 /*
655  * PPGTT shadow page table helpers.
656  */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)657 static inline int ppgtt_spt_get_entry(
658 		struct intel_vgpu_ppgtt_spt *spt,
659 		void *page_table, int type,
660 		struct intel_gvt_gtt_entry *e, unsigned long index,
661 		bool guest)
662 {
663 	struct intel_gvt *gvt = spt->vgpu->gvt;
664 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
665 	int ret;
666 
667 	e->type = get_entry_type(type);
668 
669 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
670 		return -EINVAL;
671 
672 	ret = ops->get_entry(page_table, e, index, guest,
673 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
674 			spt->vgpu);
675 	if (ret)
676 		return ret;
677 
678 	update_entry_type_for_real(ops, e, guest ?
679 				   spt->guest_page.pde_ips : false);
680 
681 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
682 		    type, e->type, index, e->val64);
683 	return 0;
684 }
685 
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)686 static inline int ppgtt_spt_set_entry(
687 		struct intel_vgpu_ppgtt_spt *spt,
688 		void *page_table, int type,
689 		struct intel_gvt_gtt_entry *e, unsigned long index,
690 		bool guest)
691 {
692 	struct intel_gvt *gvt = spt->vgpu->gvt;
693 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
694 
695 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
696 		return -EINVAL;
697 
698 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
699 		    type, e->type, index, e->val64);
700 
701 	return ops->set_entry(page_table, e, index, guest,
702 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
703 			spt->vgpu);
704 }
705 
706 #define ppgtt_get_guest_entry(spt, e, index) \
707 	ppgtt_spt_get_entry(spt, NULL, \
708 		spt->guest_page.type, e, index, true)
709 
710 #define ppgtt_set_guest_entry(spt, e, index) \
711 	ppgtt_spt_set_entry(spt, NULL, \
712 		spt->guest_page.type, e, index, true)
713 
714 #define ppgtt_get_shadow_entry(spt, e, index) \
715 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
716 		spt->shadow_page.type, e, index, false)
717 
718 #define ppgtt_set_shadow_entry(spt, e, index) \
719 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
720 		spt->shadow_page.type, e, index, false)
721 
alloc_spt(gfp_t gfp_mask)722 static void *alloc_spt(gfp_t gfp_mask)
723 {
724 	struct intel_vgpu_ppgtt_spt *spt;
725 
726 	spt = kzalloc(sizeof(*spt), gfp_mask);
727 	if (!spt)
728 		return NULL;
729 
730 	spt->shadow_page.page = alloc_page(gfp_mask);
731 	if (!spt->shadow_page.page) {
732 		kfree(spt);
733 		return NULL;
734 	}
735 	return spt;
736 }
737 
free_spt(struct intel_vgpu_ppgtt_spt * spt)738 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740 	__free_page(spt->shadow_page.page);
741 	kfree(spt);
742 }
743 
744 static int detach_oos_page(struct intel_vgpu *vgpu,
745 		struct intel_vgpu_oos_page *oos_page);
746 
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)747 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
748 {
749 	struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
750 
751 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
752 
753 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
754 		       PCI_DMA_BIDIRECTIONAL);
755 
756 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
757 
758 	if (spt->guest_page.gfn) {
759 		if (spt->guest_page.oos_page)
760 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
761 
762 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
763 	}
764 
765 	list_del_init(&spt->post_shadow_list);
766 	free_spt(spt);
767 }
768 
ppgtt_free_all_spt(struct intel_vgpu * vgpu)769 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
770 {
771 	struct intel_vgpu_ppgtt_spt *spt, *spn;
772 	struct radix_tree_iter iter;
773 	LIST_HEAD(all_spt);
774 	void __rcu **slot;
775 
776 	rcu_read_lock();
777 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
778 		spt = radix_tree_deref_slot(slot);
779 		list_move(&spt->post_shadow_list, &all_spt);
780 	}
781 	rcu_read_unlock();
782 
783 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
784 		ppgtt_free_spt(spt);
785 }
786 
787 static int ppgtt_handle_guest_write_page_table_bytes(
788 		struct intel_vgpu_ppgtt_spt *spt,
789 		u64 pa, void *p_data, int bytes);
790 
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)791 static int ppgtt_write_protection_handler(
792 		struct intel_vgpu_page_track *page_track,
793 		u64 gpa, void *data, int bytes)
794 {
795 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
796 
797 	int ret;
798 
799 	if (bytes != 4 && bytes != 8)
800 		return -EINVAL;
801 
802 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
803 	if (ret)
804 		return ret;
805 	return ret;
806 }
807 
808 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)809 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
810 		struct intel_vgpu *vgpu, unsigned long gfn)
811 {
812 	struct intel_vgpu_page_track *track;
813 
814 	track = intel_vgpu_find_page_track(vgpu, gfn);
815 	if (track && track->handler == ppgtt_write_protection_handler)
816 		return track->priv_data;
817 
818 	return NULL;
819 }
820 
821 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)822 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
823 		struct intel_vgpu *vgpu, unsigned long mfn)
824 {
825 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
826 }
827 
828 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
829 
830 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)831 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
832 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
833 {
834 	struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
835 	struct intel_vgpu_ppgtt_spt *spt = NULL;
836 	dma_addr_t daddr;
837 	int ret;
838 
839 retry:
840 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
841 	if (!spt) {
842 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
843 			goto retry;
844 
845 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
846 		return ERR_PTR(-ENOMEM);
847 	}
848 
849 	spt->vgpu = vgpu;
850 	atomic_set(&spt->refcount, 1);
851 	INIT_LIST_HEAD(&spt->post_shadow_list);
852 
853 	/*
854 	 * Init shadow_page.
855 	 */
856 	spt->shadow_page.type = type;
857 	daddr = dma_map_page(kdev, spt->shadow_page.page,
858 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
859 	if (dma_mapping_error(kdev, daddr)) {
860 		gvt_vgpu_err("fail to map dma addr\n");
861 		ret = -EINVAL;
862 		goto err_free_spt;
863 	}
864 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
865 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
866 
867 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
868 	if (ret)
869 		goto err_unmap_dma;
870 
871 	return spt;
872 
873 err_unmap_dma:
874 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
875 err_free_spt:
876 	free_spt(spt);
877 	return ERR_PTR(ret);
878 }
879 
880 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)881 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
882 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
883 		unsigned long gfn, bool guest_pde_ips)
884 {
885 	struct intel_vgpu_ppgtt_spt *spt;
886 	int ret;
887 
888 	spt = ppgtt_alloc_spt(vgpu, type);
889 	if (IS_ERR(spt))
890 		return spt;
891 
892 	/*
893 	 * Init guest_page.
894 	 */
895 	ret = intel_vgpu_register_page_track(vgpu, gfn,
896 			ppgtt_write_protection_handler, spt);
897 	if (ret) {
898 		ppgtt_free_spt(spt);
899 		return ERR_PTR(ret);
900 	}
901 
902 	spt->guest_page.type = type;
903 	spt->guest_page.gfn = gfn;
904 	spt->guest_page.pde_ips = guest_pde_ips;
905 
906 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
907 
908 	return spt;
909 }
910 
911 #define pt_entry_size_shift(spt) \
912 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
913 
914 #define pt_entries(spt) \
915 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
916 
917 #define for_each_present_guest_entry(spt, e, i) \
918 	for (i = 0; i < pt_entries(spt); \
919 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
920 		if (!ppgtt_get_guest_entry(spt, e, i) && \
921 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
922 
923 #define for_each_present_shadow_entry(spt, e, i) \
924 	for (i = 0; i < pt_entries(spt); \
925 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
926 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
927 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
928 
929 #define for_each_shadow_entry(spt, e, i) \
930 	for (i = 0; i < pt_entries(spt); \
931 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
932 		if (!ppgtt_get_shadow_entry(spt, e, i))
933 
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)934 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
935 {
936 	int v = atomic_read(&spt->refcount);
937 
938 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
939 	atomic_inc(&spt->refcount);
940 }
941 
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)942 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
943 {
944 	int v = atomic_read(&spt->refcount);
945 
946 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
947 	return atomic_dec_return(&spt->refcount);
948 }
949 
950 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
951 
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)952 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
953 		struct intel_gvt_gtt_entry *e)
954 {
955 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
956 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
957 	struct intel_vgpu_ppgtt_spt *s;
958 	enum intel_gvt_gtt_type cur_pt_type;
959 
960 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
961 
962 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
963 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
964 		cur_pt_type = get_next_pt_type(e->type);
965 
966 		if (!gtt_type_is_pt(cur_pt_type) ||
967 				!gtt_type_is_pt(cur_pt_type + 1)) {
968 			drm_WARN(&i915->drm, 1,
969 				 "Invalid page table type, cur_pt_type is: %d\n",
970 				 cur_pt_type);
971 			return -EINVAL;
972 		}
973 
974 		cur_pt_type += 1;
975 
976 		if (ops->get_pfn(e) ==
977 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
978 			return 0;
979 	}
980 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
981 	if (!s) {
982 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
983 				ops->get_pfn(e));
984 		return -ENXIO;
985 	}
986 	return ppgtt_invalidate_spt(s);
987 }
988 
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)989 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
990 		struct intel_gvt_gtt_entry *entry)
991 {
992 	struct intel_vgpu *vgpu = spt->vgpu;
993 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
994 	unsigned long pfn;
995 	int type;
996 
997 	pfn = ops->get_pfn(entry);
998 	type = spt->shadow_page.type;
999 
1000 	/* Uninitialized spte or unshadowed spte. */
1001 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
1002 		return;
1003 
1004 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
1005 }
1006 
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)1007 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1008 {
1009 	struct intel_vgpu *vgpu = spt->vgpu;
1010 	struct intel_gvt_gtt_entry e;
1011 	unsigned long index;
1012 	int ret;
1013 
1014 	trace_spt_change(spt->vgpu->id, "die", spt,
1015 			spt->guest_page.gfn, spt->shadow_page.type);
1016 
1017 	if (ppgtt_put_spt(spt) > 0)
1018 		return 0;
1019 
1020 	for_each_present_shadow_entry(spt, &e, index) {
1021 		switch (e.type) {
1022 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1023 			gvt_vdbg_mm("invalidate 4K entry\n");
1024 			ppgtt_invalidate_pte(spt, &e);
1025 			break;
1026 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1027 			/* We don't setup 64K shadow entry so far. */
1028 			WARN(1, "suspicious 64K gtt entry\n");
1029 			continue;
1030 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1031 			gvt_vdbg_mm("invalidate 2M entry\n");
1032 			continue;
1033 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1034 			WARN(1, "GVT doesn't support 1GB page\n");
1035 			continue;
1036 		case GTT_TYPE_PPGTT_PML4_ENTRY:
1037 		case GTT_TYPE_PPGTT_PDP_ENTRY:
1038 		case GTT_TYPE_PPGTT_PDE_ENTRY:
1039 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1040 			ret = ppgtt_invalidate_spt_by_shadow_entry(
1041 					spt->vgpu, &e);
1042 			if (ret)
1043 				goto fail;
1044 			break;
1045 		default:
1046 			GEM_BUG_ON(1);
1047 		}
1048 	}
1049 
1050 	trace_spt_change(spt->vgpu->id, "release", spt,
1051 			 spt->guest_page.gfn, spt->shadow_page.type);
1052 	ppgtt_free_spt(spt);
1053 	return 0;
1054 fail:
1055 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1056 			spt, e.val64, e.type);
1057 	return ret;
1058 }
1059 
vgpu_ips_enabled(struct intel_vgpu * vgpu)1060 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1061 {
1062 	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1063 
1064 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1065 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1066 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1067 
1068 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1069 	} else if (INTEL_GEN(dev_priv) >= 11) {
1070 		/* 64K paging only controlled by IPS bit in PTE now. */
1071 		return true;
1072 	} else
1073 		return false;
1074 }
1075 
1076 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1077 
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1078 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1079 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1080 {
1081 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1082 	struct intel_vgpu_ppgtt_spt *spt = NULL;
1083 	bool ips = false;
1084 	int ret;
1085 
1086 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1087 
1088 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1089 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1090 
1091 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1092 	if (spt) {
1093 		ppgtt_get_spt(spt);
1094 
1095 		if (ips != spt->guest_page.pde_ips) {
1096 			spt->guest_page.pde_ips = ips;
1097 
1098 			gvt_dbg_mm("reshadow PDE since ips changed\n");
1099 			clear_page(spt->shadow_page.vaddr);
1100 			ret = ppgtt_populate_spt(spt);
1101 			if (ret) {
1102 				ppgtt_put_spt(spt);
1103 				goto err;
1104 			}
1105 		}
1106 	} else {
1107 		int type = get_next_pt_type(we->type);
1108 
1109 		if (!gtt_type_is_pt(type)) {
1110 			ret = -EINVAL;
1111 			goto err;
1112 		}
1113 
1114 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1115 		if (IS_ERR(spt)) {
1116 			ret = PTR_ERR(spt);
1117 			goto err;
1118 		}
1119 
1120 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1121 		if (ret)
1122 			goto err_free_spt;
1123 
1124 		ret = ppgtt_populate_spt(spt);
1125 		if (ret)
1126 			goto err_free_spt;
1127 
1128 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1129 				 spt->shadow_page.type);
1130 	}
1131 	return spt;
1132 
1133 err_free_spt:
1134 	ppgtt_free_spt(spt);
1135 	spt = NULL;
1136 err:
1137 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1138 		     spt, we->val64, we->type);
1139 	return ERR_PTR(ret);
1140 }
1141 
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1142 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1143 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1144 {
1145 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1146 
1147 	se->type = ge->type;
1148 	se->val64 = ge->val64;
1149 
1150 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1151 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1152 		ops->clear_ips(se);
1153 
1154 	ops->set_pfn(se, s->shadow_page.mfn);
1155 }
1156 
1157 /**
1158  * Check if can do 2M page
1159  * @vgpu: target vgpu
1160  * @entry: target pfn's gtt entry
1161  *
1162  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1163  * negtive if found err.
1164  */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1165 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1166 	struct intel_gvt_gtt_entry *entry)
1167 {
1168 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1169 	unsigned long pfn;
1170 
1171 	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1172 		return 0;
1173 
1174 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1175 	if (pfn == INTEL_GVT_INVALID_ADDR)
1176 		return -EINVAL;
1177 
1178 	return PageTransHuge(pfn_to_page(pfn));
1179 }
1180 
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1181 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1182 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1183 	struct intel_gvt_gtt_entry *se)
1184 {
1185 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1186 	struct intel_vgpu_ppgtt_spt *sub_spt;
1187 	struct intel_gvt_gtt_entry sub_se;
1188 	unsigned long start_gfn;
1189 	dma_addr_t dma_addr;
1190 	unsigned long sub_index;
1191 	int ret;
1192 
1193 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1194 
1195 	start_gfn = ops->get_pfn(se);
1196 
1197 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1198 	if (IS_ERR(sub_spt))
1199 		return PTR_ERR(sub_spt);
1200 
1201 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1202 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1204 		if (ret)
1205 			goto err;
1206 		sub_se.val64 = se->val64;
1207 
1208 		/* Copy the PAT field from PDE. */
1209 		sub_se.val64 &= ~_PAGE_PAT;
1210 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1211 
1212 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1213 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1214 	}
1215 
1216 	/* Clear dirty field. */
1217 	se->val64 &= ~_PAGE_DIRTY;
1218 
1219 	ops->clear_pse(se);
1220 	ops->clear_ips(se);
1221 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1222 	ppgtt_set_shadow_entry(spt, se, index);
1223 	return 0;
1224 err:
1225 	/* Cancel the existing addess mappings of DMA addr. */
1226 	for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1227 		gvt_vdbg_mm("invalidate 4K entry\n");
1228 		ppgtt_invalidate_pte(sub_spt, &sub_se);
1229 	}
1230 	/* Release the new allocated spt. */
1231 	trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1232 		sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1233 	ppgtt_free_spt(sub_spt);
1234 	return ret;
1235 }
1236 
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1237 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1238 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1239 	struct intel_gvt_gtt_entry *se)
1240 {
1241 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1242 	struct intel_gvt_gtt_entry entry = *se;
1243 	unsigned long start_gfn;
1244 	dma_addr_t dma_addr;
1245 	int i, ret;
1246 
1247 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1248 
1249 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1250 
1251 	start_gfn = ops->get_pfn(se);
1252 
1253 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1254 	ops->set_64k_splited(&entry);
1255 
1256 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1257 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1258 					start_gfn + i, PAGE_SIZE, &dma_addr);
1259 		if (ret)
1260 			return ret;
1261 
1262 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1263 		ppgtt_set_shadow_entry(spt, &entry, index + i);
1264 	}
1265 	return 0;
1266 }
1267 
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1268 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1269 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1270 	struct intel_gvt_gtt_entry *ge)
1271 {
1272 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1273 	struct intel_gvt_gtt_entry se = *ge;
1274 	unsigned long gfn, page_size = PAGE_SIZE;
1275 	dma_addr_t dma_addr;
1276 	int ret;
1277 
1278 	if (!pte_ops->test_present(ge))
1279 		return 0;
1280 
1281 	gfn = pte_ops->get_pfn(ge);
1282 
1283 	switch (ge->type) {
1284 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1285 		gvt_vdbg_mm("shadow 4K gtt entry\n");
1286 		break;
1287 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1288 		gvt_vdbg_mm("shadow 64K gtt entry\n");
1289 		/*
1290 		 * The layout of 64K page is special, the page size is
1291 		 * controlled by uper PDE. To be simple, we always split
1292 		 * 64K page to smaller 4K pages in shadow PT.
1293 		 */
1294 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1295 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1296 		gvt_vdbg_mm("shadow 2M gtt entry\n");
1297 		ret = is_2MB_gtt_possible(vgpu, ge);
1298 		if (ret == 0)
1299 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1300 		else if (ret < 0)
1301 			return ret;
1302 		page_size = I915_GTT_PAGE_SIZE_2M;
1303 		break;
1304 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1305 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1306 		return -EINVAL;
1307 	default:
1308 		GEM_BUG_ON(1);
1309 	}
1310 
1311 	/* direct shadow */
1312 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1313 						      &dma_addr);
1314 	if (ret)
1315 		return -ENXIO;
1316 
1317 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1318 	ppgtt_set_shadow_entry(spt, &se, index);
1319 	return 0;
1320 }
1321 
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1322 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1323 {
1324 	struct intel_vgpu *vgpu = spt->vgpu;
1325 	struct intel_gvt *gvt = vgpu->gvt;
1326 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1327 	struct intel_vgpu_ppgtt_spt *s;
1328 	struct intel_gvt_gtt_entry se, ge;
1329 	unsigned long gfn, i;
1330 	int ret;
1331 
1332 	trace_spt_change(spt->vgpu->id, "born", spt,
1333 			 spt->guest_page.gfn, spt->shadow_page.type);
1334 
1335 	for_each_present_guest_entry(spt, &ge, i) {
1336 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1337 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1338 			if (IS_ERR(s)) {
1339 				ret = PTR_ERR(s);
1340 				goto fail;
1341 			}
1342 			ppgtt_get_shadow_entry(spt, &se, i);
1343 			ppgtt_generate_shadow_entry(&se, s, &ge);
1344 			ppgtt_set_shadow_entry(spt, &se, i);
1345 		} else {
1346 			gfn = ops->get_pfn(&ge);
1347 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1348 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1349 				ppgtt_set_shadow_entry(spt, &se, i);
1350 				continue;
1351 			}
1352 
1353 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1354 			if (ret)
1355 				goto fail;
1356 		}
1357 	}
1358 	return 0;
1359 fail:
1360 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361 			spt, ge.val64, ge.type);
1362 	return ret;
1363 }
1364 
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1365 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1366 		struct intel_gvt_gtt_entry *se, unsigned long index)
1367 {
1368 	struct intel_vgpu *vgpu = spt->vgpu;
1369 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1370 	int ret;
1371 
1372 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1373 			       spt->shadow_page.type, se->val64, index);
1374 
1375 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1376 		    se->type, index, se->val64);
1377 
1378 	if (!ops->test_present(se))
1379 		return 0;
1380 
1381 	if (ops->get_pfn(se) ==
1382 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1383 		return 0;
1384 
1385 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1386 		struct intel_vgpu_ppgtt_spt *s =
1387 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1388 		if (!s) {
1389 			gvt_vgpu_err("fail to find guest page\n");
1390 			ret = -ENXIO;
1391 			goto fail;
1392 		}
1393 		ret = ppgtt_invalidate_spt(s);
1394 		if (ret)
1395 			goto fail;
1396 	} else {
1397 		/* We don't setup 64K shadow entry so far. */
1398 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1399 		     "suspicious 64K entry\n");
1400 		ppgtt_invalidate_pte(spt, se);
1401 	}
1402 
1403 	return 0;
1404 fail:
1405 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1406 			spt, se->val64, se->type);
1407 	return ret;
1408 }
1409 
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1410 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1411 		struct intel_gvt_gtt_entry *we, unsigned long index)
1412 {
1413 	struct intel_vgpu *vgpu = spt->vgpu;
1414 	struct intel_gvt_gtt_entry m;
1415 	struct intel_vgpu_ppgtt_spt *s;
1416 	int ret;
1417 
1418 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1419 			       we->val64, index);
1420 
1421 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1422 		    we->type, index, we->val64);
1423 
1424 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1425 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1426 		if (IS_ERR(s)) {
1427 			ret = PTR_ERR(s);
1428 			goto fail;
1429 		}
1430 		ppgtt_get_shadow_entry(spt, &m, index);
1431 		ppgtt_generate_shadow_entry(&m, s, we);
1432 		ppgtt_set_shadow_entry(spt, &m, index);
1433 	} else {
1434 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1435 		if (ret)
1436 			goto fail;
1437 	}
1438 	return 0;
1439 fail:
1440 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1441 		spt, we->val64, we->type);
1442 	return ret;
1443 }
1444 
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1445 static int sync_oos_page(struct intel_vgpu *vgpu,
1446 		struct intel_vgpu_oos_page *oos_page)
1447 {
1448 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1449 	struct intel_gvt *gvt = vgpu->gvt;
1450 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1451 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1452 	struct intel_gvt_gtt_entry old, new;
1453 	int index;
1454 	int ret;
1455 
1456 	trace_oos_change(vgpu->id, "sync", oos_page->id,
1457 			 spt, spt->guest_page.type);
1458 
1459 	old.type = new.type = get_entry_type(spt->guest_page.type);
1460 	old.val64 = new.val64 = 0;
1461 
1462 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1463 				info->gtt_entry_size_shift); index++) {
1464 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1465 		ops->get_entry(NULL, &new, index, true,
1466 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1467 
1468 		if (old.val64 == new.val64
1469 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1470 			continue;
1471 
1472 		trace_oos_sync(vgpu->id, oos_page->id,
1473 				spt, spt->guest_page.type,
1474 				new.val64, index);
1475 
1476 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1477 		if (ret)
1478 			return ret;
1479 
1480 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1481 	}
1482 
1483 	spt->guest_page.write_cnt = 0;
1484 	list_del_init(&spt->post_shadow_list);
1485 	return 0;
1486 }
1487 
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1488 static int detach_oos_page(struct intel_vgpu *vgpu,
1489 		struct intel_vgpu_oos_page *oos_page)
1490 {
1491 	struct intel_gvt *gvt = vgpu->gvt;
1492 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1493 
1494 	trace_oos_change(vgpu->id, "detach", oos_page->id,
1495 			 spt, spt->guest_page.type);
1496 
1497 	spt->guest_page.write_cnt = 0;
1498 	spt->guest_page.oos_page = NULL;
1499 	oos_page->spt = NULL;
1500 
1501 	list_del_init(&oos_page->vm_list);
1502 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1503 
1504 	return 0;
1505 }
1506 
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1507 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1508 		struct intel_vgpu_ppgtt_spt *spt)
1509 {
1510 	struct intel_gvt *gvt = spt->vgpu->gvt;
1511 	int ret;
1512 
1513 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1514 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1515 			oos_page->mem, I915_GTT_PAGE_SIZE);
1516 	if (ret)
1517 		return ret;
1518 
1519 	oos_page->spt = spt;
1520 	spt->guest_page.oos_page = oos_page;
1521 
1522 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1523 
1524 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1525 			 spt, spt->guest_page.type);
1526 	return 0;
1527 }
1528 
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1529 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1530 {
1531 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532 	int ret;
1533 
1534 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1535 	if (ret)
1536 		return ret;
1537 
1538 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1539 			 spt, spt->guest_page.type);
1540 
1541 	list_del_init(&oos_page->vm_list);
1542 	return sync_oos_page(spt->vgpu, oos_page);
1543 }
1544 
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1545 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1546 {
1547 	struct intel_gvt *gvt = spt->vgpu->gvt;
1548 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1549 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1550 	int ret;
1551 
1552 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1553 
1554 	if (list_empty(&gtt->oos_page_free_list_head)) {
1555 		oos_page = container_of(gtt->oos_page_use_list_head.next,
1556 			struct intel_vgpu_oos_page, list);
1557 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1558 		if (ret)
1559 			return ret;
1560 		ret = detach_oos_page(spt->vgpu, oos_page);
1561 		if (ret)
1562 			return ret;
1563 	} else
1564 		oos_page = container_of(gtt->oos_page_free_list_head.next,
1565 			struct intel_vgpu_oos_page, list);
1566 	return attach_oos_page(oos_page, spt);
1567 }
1568 
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1569 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1570 {
1571 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1572 
1573 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1574 		return -EINVAL;
1575 
1576 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1577 			 spt, spt->guest_page.type);
1578 
1579 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1580 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1581 }
1582 
1583 /**
1584  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1585  * @vgpu: a vGPU
1586  *
1587  * This function is called before submitting a guest workload to host,
1588  * to sync all the out-of-synced shadow for vGPU
1589  *
1590  * Returns:
1591  * Zero on success, negative error code if failed.
1592  */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1593 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1594 {
1595 	struct list_head *pos, *n;
1596 	struct intel_vgpu_oos_page *oos_page;
1597 	int ret;
1598 
1599 	if (!enable_out_of_sync)
1600 		return 0;
1601 
1602 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1603 		oos_page = container_of(pos,
1604 				struct intel_vgpu_oos_page, vm_list);
1605 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1606 		if (ret)
1607 			return ret;
1608 	}
1609 	return 0;
1610 }
1611 
1612 /*
1613  * The heart of PPGTT shadow page table.
1614  */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1615 static int ppgtt_handle_guest_write_page_table(
1616 		struct intel_vgpu_ppgtt_spt *spt,
1617 		struct intel_gvt_gtt_entry *we, unsigned long index)
1618 {
1619 	struct intel_vgpu *vgpu = spt->vgpu;
1620 	int type = spt->shadow_page.type;
1621 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1622 	struct intel_gvt_gtt_entry old_se;
1623 	int new_present;
1624 	int i, ret;
1625 
1626 	new_present = ops->test_present(we);
1627 
1628 	/*
1629 	 * Adding the new entry first and then removing the old one, that can
1630 	 * guarantee the ppgtt table is validated during the window between
1631 	 * adding and removal.
1632 	 */
1633 	ppgtt_get_shadow_entry(spt, &old_se, index);
1634 
1635 	if (new_present) {
1636 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1637 		if (ret)
1638 			goto fail;
1639 	}
1640 
1641 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1642 	if (ret)
1643 		goto fail;
1644 
1645 	if (!new_present) {
1646 		/* For 64KB splited entries, we need clear them all. */
1647 		if (ops->test_64k_splited(&old_se) &&
1648 		    !(index % GTT_64K_PTE_STRIDE)) {
1649 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1650 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1651 				ops->clear_64k_splited(&old_se);
1652 				ops->set_pfn(&old_se,
1653 					vgpu->gtt.scratch_pt[type].page_mfn);
1654 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1655 			}
1656 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1657 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1658 			ops->clear_pse(&old_se);
1659 			ops->set_pfn(&old_se,
1660 				     vgpu->gtt.scratch_pt[type].page_mfn);
1661 			ppgtt_set_shadow_entry(spt, &old_se, index);
1662 		} else {
1663 			ops->set_pfn(&old_se,
1664 				     vgpu->gtt.scratch_pt[type].page_mfn);
1665 			ppgtt_set_shadow_entry(spt, &old_se, index);
1666 		}
1667 	}
1668 
1669 	return 0;
1670 fail:
1671 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1672 			spt, we->val64, we->type);
1673 	return ret;
1674 }
1675 
1676 
1677 
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1678 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1679 {
1680 	return enable_out_of_sync
1681 		&& gtt_type_is_pte_pt(spt->guest_page.type)
1682 		&& spt->guest_page.write_cnt >= 2;
1683 }
1684 
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1685 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1686 		unsigned long index)
1687 {
1688 	set_bit(index, spt->post_shadow_bitmap);
1689 	if (!list_empty(&spt->post_shadow_list))
1690 		return;
1691 
1692 	list_add_tail(&spt->post_shadow_list,
1693 			&spt->vgpu->gtt.post_shadow_list_head);
1694 }
1695 
1696 /**
1697  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1698  * @vgpu: a vGPU
1699  *
1700  * This function is called before submitting a guest workload to host,
1701  * to flush all the post shadows for a vGPU.
1702  *
1703  * Returns:
1704  * Zero on success, negative error code if failed.
1705  */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1706 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1707 {
1708 	struct list_head *pos, *n;
1709 	struct intel_vgpu_ppgtt_spt *spt;
1710 	struct intel_gvt_gtt_entry ge;
1711 	unsigned long index;
1712 	int ret;
1713 
1714 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1715 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1716 				post_shadow_list);
1717 
1718 		for_each_set_bit(index, spt->post_shadow_bitmap,
1719 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1720 			ppgtt_get_guest_entry(spt, &ge, index);
1721 
1722 			ret = ppgtt_handle_guest_write_page_table(spt,
1723 							&ge, index);
1724 			if (ret)
1725 				return ret;
1726 			clear_bit(index, spt->post_shadow_bitmap);
1727 		}
1728 		list_del_init(&spt->post_shadow_list);
1729 	}
1730 	return 0;
1731 }
1732 
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1733 static int ppgtt_handle_guest_write_page_table_bytes(
1734 		struct intel_vgpu_ppgtt_spt *spt,
1735 		u64 pa, void *p_data, int bytes)
1736 {
1737 	struct intel_vgpu *vgpu = spt->vgpu;
1738 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1739 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1740 	struct intel_gvt_gtt_entry we, se;
1741 	unsigned long index;
1742 	int ret;
1743 
1744 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1745 
1746 	ppgtt_get_guest_entry(spt, &we, index);
1747 
1748 	/*
1749 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1750 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1751 	 * ignored.
1752 	 */
1753 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1754 	    (index % GTT_64K_PTE_STRIDE)) {
1755 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1756 			    index);
1757 		return 0;
1758 	}
1759 
1760 	if (bytes == info->gtt_entry_size) {
1761 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1762 		if (ret)
1763 			return ret;
1764 	} else {
1765 		if (!test_bit(index, spt->post_shadow_bitmap)) {
1766 			int type = spt->shadow_page.type;
1767 
1768 			ppgtt_get_shadow_entry(spt, &se, index);
1769 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1770 			if (ret)
1771 				return ret;
1772 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1773 			ppgtt_set_shadow_entry(spt, &se, index);
1774 		}
1775 		ppgtt_set_post_shadow(spt, index);
1776 	}
1777 
1778 	if (!enable_out_of_sync)
1779 		return 0;
1780 
1781 	spt->guest_page.write_cnt++;
1782 
1783 	if (spt->guest_page.oos_page)
1784 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1785 				false, 0, vgpu);
1786 
1787 	if (can_do_out_of_sync(spt)) {
1788 		if (!spt->guest_page.oos_page)
1789 			ppgtt_allocate_oos_page(spt);
1790 
1791 		ret = ppgtt_set_guest_page_oos(spt);
1792 		if (ret < 0)
1793 			return ret;
1794 	}
1795 	return 0;
1796 }
1797 
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1798 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1799 {
1800 	struct intel_vgpu *vgpu = mm->vgpu;
1801 	struct intel_gvt *gvt = vgpu->gvt;
1802 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1803 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1804 	struct intel_gvt_gtt_entry se;
1805 	int index;
1806 
1807 	if (!mm->ppgtt_mm.shadowed)
1808 		return;
1809 
1810 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1811 		ppgtt_get_shadow_root_entry(mm, &se, index);
1812 
1813 		if (!ops->test_present(&se))
1814 			continue;
1815 
1816 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1817 		se.val64 = 0;
1818 		ppgtt_set_shadow_root_entry(mm, &se, index);
1819 
1820 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1821 				       NULL, se.type, se.val64, index);
1822 	}
1823 
1824 	mm->ppgtt_mm.shadowed = false;
1825 }
1826 
1827 
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1828 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1829 {
1830 	struct intel_vgpu *vgpu = mm->vgpu;
1831 	struct intel_gvt *gvt = vgpu->gvt;
1832 	struct intel_gvt_gtt *gtt = &gvt->gtt;
1833 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1834 	struct intel_vgpu_ppgtt_spt *spt;
1835 	struct intel_gvt_gtt_entry ge, se;
1836 	int index, ret;
1837 
1838 	if (mm->ppgtt_mm.shadowed)
1839 		return 0;
1840 
1841 	mm->ppgtt_mm.shadowed = true;
1842 
1843 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1844 		ppgtt_get_guest_root_entry(mm, &ge, index);
1845 
1846 		if (!ops->test_present(&ge))
1847 			continue;
1848 
1849 		trace_spt_guest_change(vgpu->id, __func__, NULL,
1850 				       ge.type, ge.val64, index);
1851 
1852 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1853 		if (IS_ERR(spt)) {
1854 			gvt_vgpu_err("fail to populate guest root pointer\n");
1855 			ret = PTR_ERR(spt);
1856 			goto fail;
1857 		}
1858 		ppgtt_generate_shadow_entry(&se, spt, &ge);
1859 		ppgtt_set_shadow_root_entry(mm, &se, index);
1860 
1861 		trace_spt_guest_change(vgpu->id, "populate root pointer",
1862 				       NULL, se.type, se.val64, index);
1863 	}
1864 
1865 	return 0;
1866 fail:
1867 	invalidate_ppgtt_mm(mm);
1868 	return ret;
1869 }
1870 
vgpu_alloc_mm(struct intel_vgpu * vgpu)1871 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1872 {
1873 	struct intel_vgpu_mm *mm;
1874 
1875 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1876 	if (!mm)
1877 		return NULL;
1878 
1879 	mm->vgpu = vgpu;
1880 	kref_init(&mm->ref);
1881 	atomic_set(&mm->pincount, 0);
1882 
1883 	return mm;
1884 }
1885 
vgpu_free_mm(struct intel_vgpu_mm * mm)1886 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1887 {
1888 	kfree(mm);
1889 }
1890 
1891 /**
1892  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1893  * @vgpu: a vGPU
1894  * @root_entry_type: ppgtt root entry type
1895  * @pdps: guest pdps.
1896  *
1897  * This function is used to create a ppgtt mm object for a vGPU.
1898  *
1899  * Returns:
1900  * Zero on success, negative error code in pointer if failed.
1901  */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1902 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1903 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1904 {
1905 	struct intel_gvt *gvt = vgpu->gvt;
1906 	struct intel_vgpu_mm *mm;
1907 	int ret;
1908 
1909 	mm = vgpu_alloc_mm(vgpu);
1910 	if (!mm)
1911 		return ERR_PTR(-ENOMEM);
1912 
1913 	mm->type = INTEL_GVT_MM_PPGTT;
1914 
1915 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1916 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1917 	mm->ppgtt_mm.root_entry_type = root_entry_type;
1918 
1919 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1920 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1921 	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1922 
1923 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1924 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1925 	else
1926 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1927 		       sizeof(mm->ppgtt_mm.guest_pdps));
1928 
1929 	ret = shadow_ppgtt_mm(mm);
1930 	if (ret) {
1931 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1932 		vgpu_free_mm(mm);
1933 		return ERR_PTR(ret);
1934 	}
1935 
1936 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1937 
1938 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1939 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1940 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1941 
1942 	return mm;
1943 }
1944 
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1945 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1946 {
1947 	struct intel_vgpu_mm *mm;
1948 	unsigned long nr_entries;
1949 
1950 	mm = vgpu_alloc_mm(vgpu);
1951 	if (!mm)
1952 		return ERR_PTR(-ENOMEM);
1953 
1954 	mm->type = INTEL_GVT_MM_GGTT;
1955 
1956 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1957 	mm->ggtt_mm.virtual_ggtt =
1958 		vzalloc(array_size(nr_entries,
1959 				   vgpu->gvt->device_info.gtt_entry_size));
1960 	if (!mm->ggtt_mm.virtual_ggtt) {
1961 		vgpu_free_mm(mm);
1962 		return ERR_PTR(-ENOMEM);
1963 	}
1964 
1965 	mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1966 	if (!mm->ggtt_mm.host_ggtt_aperture) {
1967 		vfree(mm->ggtt_mm.virtual_ggtt);
1968 		vgpu_free_mm(mm);
1969 		return ERR_PTR(-ENOMEM);
1970 	}
1971 
1972 	mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1973 	if (!mm->ggtt_mm.host_ggtt_hidden) {
1974 		vfree(mm->ggtt_mm.host_ggtt_aperture);
1975 		vfree(mm->ggtt_mm.virtual_ggtt);
1976 		vgpu_free_mm(mm);
1977 		return ERR_PTR(-ENOMEM);
1978 	}
1979 
1980 	return mm;
1981 }
1982 
1983 /**
1984  * _intel_vgpu_mm_release - destroy a mm object
1985  * @mm_ref: a kref object
1986  *
1987  * This function is used to destroy a mm object for vGPU
1988  *
1989  */
_intel_vgpu_mm_release(struct kref * mm_ref)1990 void _intel_vgpu_mm_release(struct kref *mm_ref)
1991 {
1992 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1993 
1994 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1995 		gvt_err("vgpu mm pin count bug detected\n");
1996 
1997 	if (mm->type == INTEL_GVT_MM_PPGTT) {
1998 		list_del(&mm->ppgtt_mm.list);
1999 
2000 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2001 		list_del(&mm->ppgtt_mm.lru_list);
2002 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2003 
2004 		invalidate_ppgtt_mm(mm);
2005 	} else {
2006 		vfree(mm->ggtt_mm.virtual_ggtt);
2007 		vfree(mm->ggtt_mm.host_ggtt_aperture);
2008 		vfree(mm->ggtt_mm.host_ggtt_hidden);
2009 	}
2010 
2011 	vgpu_free_mm(mm);
2012 }
2013 
2014 /**
2015  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
2016  * @mm: a vGPU mm object
2017  *
2018  * This function is called when user doesn't want to use a vGPU mm object
2019  */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)2020 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
2021 {
2022 	atomic_dec_if_positive(&mm->pincount);
2023 }
2024 
2025 /**
2026  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
2027  * @mm: target vgpu mm
2028  *
2029  * This function is called when user wants to use a vGPU mm object. If this
2030  * mm object hasn't been shadowed yet, the shadow will be populated at this
2031  * time.
2032  *
2033  * Returns:
2034  * Zero on success, negative error code if failed.
2035  */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)2036 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2037 {
2038 	int ret;
2039 
2040 	atomic_inc(&mm->pincount);
2041 
2042 	if (mm->type == INTEL_GVT_MM_PPGTT) {
2043 		ret = shadow_ppgtt_mm(mm);
2044 		if (ret)
2045 			return ret;
2046 
2047 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2048 		list_move_tail(&mm->ppgtt_mm.lru_list,
2049 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2050 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2051 	}
2052 
2053 	return 0;
2054 }
2055 
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2056 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2057 {
2058 	struct intel_vgpu_mm *mm;
2059 	struct list_head *pos, *n;
2060 
2061 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2062 
2063 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2064 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2065 
2066 		if (atomic_read(&mm->pincount))
2067 			continue;
2068 
2069 		list_del_init(&mm->ppgtt_mm.lru_list);
2070 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2071 		invalidate_ppgtt_mm(mm);
2072 		return 1;
2073 	}
2074 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2075 	return 0;
2076 }
2077 
2078 /*
2079  * GMA translation APIs.
2080  */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2081 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2082 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2083 {
2084 	struct intel_vgpu *vgpu = mm->vgpu;
2085 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2086 	struct intel_vgpu_ppgtt_spt *s;
2087 
2088 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2089 	if (!s)
2090 		return -ENXIO;
2091 
2092 	if (!guest)
2093 		ppgtt_get_shadow_entry(s, e, index);
2094 	else
2095 		ppgtt_get_guest_entry(s, e, index);
2096 	return 0;
2097 }
2098 
2099 /**
2100  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2101  * @mm: mm object. could be a PPGTT or GGTT mm object
2102  * @gma: graphics memory address in this mm object
2103  *
2104  * This function is used to translate a graphics memory address in specific
2105  * graphics memory space to guest physical address.
2106  *
2107  * Returns:
2108  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2109  */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2110 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2111 {
2112 	struct intel_vgpu *vgpu = mm->vgpu;
2113 	struct intel_gvt *gvt = vgpu->gvt;
2114 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2115 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2116 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2117 	unsigned long gma_index[4];
2118 	struct intel_gvt_gtt_entry e;
2119 	int i, levels = 0;
2120 	int ret;
2121 
2122 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2123 		   mm->type != INTEL_GVT_MM_PPGTT);
2124 
2125 	if (mm->type == INTEL_GVT_MM_GGTT) {
2126 		if (!vgpu_gmadr_is_valid(vgpu, gma))
2127 			goto err;
2128 
2129 		ggtt_get_guest_entry(mm, &e,
2130 			gma_ops->gma_to_ggtt_pte_index(gma));
2131 
2132 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2133 			+ (gma & ~I915_GTT_PAGE_MASK);
2134 
2135 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2136 	} else {
2137 		switch (mm->ppgtt_mm.root_entry_type) {
2138 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2139 			ppgtt_get_shadow_root_entry(mm, &e, 0);
2140 
2141 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2142 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2143 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2144 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2145 			levels = 4;
2146 			break;
2147 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2148 			ppgtt_get_shadow_root_entry(mm, &e,
2149 					gma_ops->gma_to_l3_pdp_index(gma));
2150 
2151 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2152 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2153 			levels = 2;
2154 			break;
2155 		default:
2156 			GEM_BUG_ON(1);
2157 		}
2158 
2159 		/* walk the shadow page table and get gpa from guest entry */
2160 		for (i = 0; i < levels; i++) {
2161 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2162 				(i == levels - 1));
2163 			if (ret)
2164 				goto err;
2165 
2166 			if (!pte_ops->test_present(&e)) {
2167 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2168 				goto err;
2169 			}
2170 		}
2171 
2172 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2173 					(gma & ~I915_GTT_PAGE_MASK);
2174 		trace_gma_translate(vgpu->id, "ppgtt", 0,
2175 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2176 	}
2177 
2178 	return gpa;
2179 err:
2180 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2181 	return INTEL_GVT_INVALID_ADDR;
2182 }
2183 
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2184 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2185 	unsigned int off, void *p_data, unsigned int bytes)
2186 {
2187 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2188 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2189 	unsigned long index = off >> info->gtt_entry_size_shift;
2190 	unsigned long gma;
2191 	struct intel_gvt_gtt_entry e;
2192 
2193 	if (bytes != 4 && bytes != 8)
2194 		return -EINVAL;
2195 
2196 	gma = index << I915_GTT_PAGE_SHIFT;
2197 	if (!intel_gvt_ggtt_validate_range(vgpu,
2198 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2199 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2200 		memset(p_data, 0, bytes);
2201 		return 0;
2202 	}
2203 
2204 	ggtt_get_guest_entry(ggtt_mm, &e, index);
2205 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2206 			bytes);
2207 	return 0;
2208 }
2209 
2210 /**
2211  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2212  * @vgpu: a vGPU
2213  * @off: register offset
2214  * @p_data: data will be returned to guest
2215  * @bytes: data length
2216  *
2217  * This function is used to emulate the GTT MMIO register read
2218  *
2219  * Returns:
2220  * Zero on success, error code if failed.
2221  */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2222 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2223 	void *p_data, unsigned int bytes)
2224 {
2225 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2226 	int ret;
2227 
2228 	if (bytes != 4 && bytes != 8)
2229 		return -EINVAL;
2230 
2231 	off -= info->gtt_start_offset;
2232 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2233 	return ret;
2234 }
2235 
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2236 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2237 		struct intel_gvt_gtt_entry *entry)
2238 {
2239 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2240 	unsigned long pfn;
2241 
2242 	pfn = pte_ops->get_pfn(entry);
2243 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2244 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2245 						pfn << PAGE_SHIFT);
2246 }
2247 
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2248 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2249 	void *p_data, unsigned int bytes)
2250 {
2251 	struct intel_gvt *gvt = vgpu->gvt;
2252 	const struct intel_gvt_device_info *info = &gvt->device_info;
2253 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2254 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2255 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2256 	unsigned long gma, gfn;
2257 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2258 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2259 	dma_addr_t dma_addr;
2260 	int ret;
2261 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2262 	bool partial_update = false;
2263 
2264 	if (bytes != 4 && bytes != 8)
2265 		return -EINVAL;
2266 
2267 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2268 
2269 	/* the VM may configure the whole GM space when ballooning is used */
2270 	if (!vgpu_gmadr_is_valid(vgpu, gma))
2271 		return 0;
2272 
2273 	e.type = GTT_TYPE_GGTT_PTE;
2274 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2275 			bytes);
2276 
2277 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2278 	 * write, save the first 4 bytes in a list and update virtual
2279 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2280 	 */
2281 	if (bytes < info->gtt_entry_size) {
2282 		bool found = false;
2283 
2284 		list_for_each_entry_safe(pos, n,
2285 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2286 			if (g_gtt_index == pos->offset >>
2287 					info->gtt_entry_size_shift) {
2288 				if (off != pos->offset) {
2289 					/* the second partial part*/
2290 					int last_off = pos->offset &
2291 						(info->gtt_entry_size - 1);
2292 
2293 					memcpy((void *)&e.val64 + last_off,
2294 						(void *)&pos->data + last_off,
2295 						bytes);
2296 
2297 					list_del(&pos->list);
2298 					kfree(pos);
2299 					found = true;
2300 					break;
2301 				}
2302 
2303 				/* update of the first partial part */
2304 				pos->data = e.val64;
2305 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2306 				return 0;
2307 			}
2308 		}
2309 
2310 		if (!found) {
2311 			/* the first partial part */
2312 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2313 			if (!partial_pte)
2314 				return -ENOMEM;
2315 			partial_pte->offset = off;
2316 			partial_pte->data = e.val64;
2317 			list_add_tail(&partial_pte->list,
2318 				&ggtt_mm->ggtt_mm.partial_pte_list);
2319 			partial_update = true;
2320 		}
2321 	}
2322 
2323 	if (!partial_update && (ops->test_present(&e))) {
2324 		gfn = ops->get_pfn(&e);
2325 		m.val64 = e.val64;
2326 		m.type = e.type;
2327 
2328 		/* one PTE update may be issued in multiple writes and the
2329 		 * first write may not construct a valid gfn
2330 		 */
2331 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2332 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2333 			goto out;
2334 		}
2335 
2336 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2337 							PAGE_SIZE, &dma_addr);
2338 		if (ret) {
2339 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2340 			/* guest driver may read/write the entry when partial
2341 			 * update the entry in this situation p2m will fail
2342 			 * settting the shadow entry to point to a scratch page
2343 			 */
2344 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2345 		} else
2346 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2347 	} else {
2348 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2349 		ops->clear_present(&m);
2350 	}
2351 
2352 out:
2353 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2354 
2355 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2356 	ggtt_invalidate_pte(vgpu, &e);
2357 
2358 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2359 	ggtt_invalidate(gvt->gt);
2360 	return 0;
2361 }
2362 
2363 /*
2364  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2365  * @vgpu: a vGPU
2366  * @off: register offset
2367  * @p_data: data from guest write
2368  * @bytes: data length
2369  *
2370  * This function is used to emulate the GTT MMIO register write
2371  *
2372  * Returns:
2373  * Zero on success, error code if failed.
2374  */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2375 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2376 		unsigned int off, void *p_data, unsigned int bytes)
2377 {
2378 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2379 	int ret;
2380 	struct intel_vgpu_submission *s = &vgpu->submission;
2381 	struct intel_engine_cs *engine;
2382 	int i;
2383 
2384 	if (bytes != 4 && bytes != 8)
2385 		return -EINVAL;
2386 
2387 	off -= info->gtt_start_offset;
2388 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2389 
2390 	/* if ggtt of last submitted context is written,
2391 	 * that context is probably got unpinned.
2392 	 * Set last shadowed ctx to invalid.
2393 	 */
2394 	for_each_engine(engine, vgpu->gvt->gt, i) {
2395 		if (!s->last_ctx[i].valid)
2396 			continue;
2397 
2398 		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2399 			s->last_ctx[i].valid = false;
2400 	}
2401 	return ret;
2402 }
2403 
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2404 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2405 		enum intel_gvt_gtt_type type)
2406 {
2407 	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2408 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2409 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2410 	int page_entry_num = I915_GTT_PAGE_SIZE >>
2411 				vgpu->gvt->device_info.gtt_entry_size_shift;
2412 	void *scratch_pt;
2413 	int i;
2414 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2415 	dma_addr_t daddr;
2416 
2417 	if (drm_WARN_ON(&i915->drm,
2418 			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2419 		return -EINVAL;
2420 
2421 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2422 	if (!scratch_pt) {
2423 		gvt_vgpu_err("fail to allocate scratch page\n");
2424 		return -ENOMEM;
2425 	}
2426 
2427 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2428 			4096, PCI_DMA_BIDIRECTIONAL);
2429 	if (dma_mapping_error(dev, daddr)) {
2430 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2431 		__free_page(virt_to_page(scratch_pt));
2432 		return -ENOMEM;
2433 	}
2434 	gtt->scratch_pt[type].page_mfn =
2435 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2436 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2437 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2438 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2439 
2440 	/* Build the tree by full filled the scratch pt with the entries which
2441 	 * point to the next level scratch pt or scratch page. The
2442 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2443 	 * 'type' pt.
2444 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2445 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2446 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2447 	 */
2448 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2449 		struct intel_gvt_gtt_entry se;
2450 
2451 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2452 		se.type = get_entry_type(type - 1);
2453 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2454 
2455 		/* The entry parameters like present/writeable/cache type
2456 		 * set to the same as i915's scratch page tree.
2457 		 */
2458 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2459 		if (type == GTT_TYPE_PPGTT_PDE_PT)
2460 			se.val64 |= PPAT_CACHED;
2461 
2462 		for (i = 0; i < page_entry_num; i++)
2463 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2464 	}
2465 
2466 	return 0;
2467 }
2468 
release_scratch_page_tree(struct intel_vgpu * vgpu)2469 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2470 {
2471 	int i;
2472 	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2473 	dma_addr_t daddr;
2474 
2475 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2476 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2477 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2478 					I915_GTT_PAGE_SHIFT);
2479 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2480 			__free_page(vgpu->gtt.scratch_pt[i].page);
2481 			vgpu->gtt.scratch_pt[i].page = NULL;
2482 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2483 		}
2484 	}
2485 
2486 	return 0;
2487 }
2488 
create_scratch_page_tree(struct intel_vgpu * vgpu)2489 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2490 {
2491 	int i, ret;
2492 
2493 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2494 		ret = alloc_scratch_pages(vgpu, i);
2495 		if (ret)
2496 			goto err;
2497 	}
2498 
2499 	return 0;
2500 
2501 err:
2502 	release_scratch_page_tree(vgpu);
2503 	return ret;
2504 }
2505 
2506 /**
2507  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2508  * @vgpu: a vGPU
2509  *
2510  * This function is used to initialize per-vGPU graphics memory virtualization
2511  * components.
2512  *
2513  * Returns:
2514  * Zero on success, error code if failed.
2515  */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2516 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2517 {
2518 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2519 
2520 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2521 
2522 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2523 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2524 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2525 
2526 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2527 	if (IS_ERR(gtt->ggtt_mm)) {
2528 		gvt_vgpu_err("fail to create mm for ggtt.\n");
2529 		return PTR_ERR(gtt->ggtt_mm);
2530 	}
2531 
2532 	intel_vgpu_reset_ggtt(vgpu, false);
2533 
2534 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2535 
2536 	return create_scratch_page_tree(vgpu);
2537 }
2538 
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2539 void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2540 {
2541 	struct list_head *pos, *n;
2542 	struct intel_vgpu_mm *mm;
2543 
2544 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2545 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2546 		intel_vgpu_destroy_mm(mm);
2547 	}
2548 
2549 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2550 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2551 
2552 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2553 		gvt_err("Why we still has spt not freed?\n");
2554 		ppgtt_free_all_spt(vgpu);
2555 	}
2556 }
2557 
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2558 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2559 {
2560 	struct intel_gvt_partial_pte *pos, *next;
2561 
2562 	list_for_each_entry_safe(pos, next,
2563 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2564 				 list) {
2565 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2566 			pos->offset, pos->data);
2567 		kfree(pos);
2568 	}
2569 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2570 	vgpu->gtt.ggtt_mm = NULL;
2571 }
2572 
2573 /**
2574  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2575  * @vgpu: a vGPU
2576  *
2577  * This function is used to clean up per-vGPU graphics memory virtualization
2578  * components.
2579  *
2580  * Returns:
2581  * Zero on success, error code if failed.
2582  */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2583 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2584 {
2585 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2586 	intel_vgpu_destroy_ggtt_mm(vgpu);
2587 	release_scratch_page_tree(vgpu);
2588 }
2589 
clean_spt_oos(struct intel_gvt * gvt)2590 static void clean_spt_oos(struct intel_gvt *gvt)
2591 {
2592 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2593 	struct list_head *pos, *n;
2594 	struct intel_vgpu_oos_page *oos_page;
2595 
2596 	WARN(!list_empty(&gtt->oos_page_use_list_head),
2597 		"someone is still using oos page\n");
2598 
2599 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2600 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2601 		list_del(&oos_page->list);
2602 		free_page((unsigned long)oos_page->mem);
2603 		kfree(oos_page);
2604 	}
2605 }
2606 
setup_spt_oos(struct intel_gvt * gvt)2607 static int setup_spt_oos(struct intel_gvt *gvt)
2608 {
2609 	struct intel_gvt_gtt *gtt = &gvt->gtt;
2610 	struct intel_vgpu_oos_page *oos_page;
2611 	int i;
2612 	int ret;
2613 
2614 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2615 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2616 
2617 	for (i = 0; i < preallocated_oos_pages; i++) {
2618 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2619 		if (!oos_page) {
2620 			ret = -ENOMEM;
2621 			goto fail;
2622 		}
2623 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2624 		if (!oos_page->mem) {
2625 			ret = -ENOMEM;
2626 			kfree(oos_page);
2627 			goto fail;
2628 		}
2629 
2630 		INIT_LIST_HEAD(&oos_page->list);
2631 		INIT_LIST_HEAD(&oos_page->vm_list);
2632 		oos_page->id = i;
2633 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2634 	}
2635 
2636 	gvt_dbg_mm("%d oos pages preallocated\n", i);
2637 
2638 	return 0;
2639 fail:
2640 	clean_spt_oos(gvt);
2641 	return ret;
2642 }
2643 
2644 /**
2645  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2646  * @vgpu: a vGPU
2647  * @pdps: pdp root array
2648  *
2649  * This function is used to find a PPGTT mm object from mm object pool
2650  *
2651  * Returns:
2652  * pointer to mm object on success, NULL if failed.
2653  */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2654 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2655 		u64 pdps[])
2656 {
2657 	struct intel_vgpu_mm *mm;
2658 	struct list_head *pos;
2659 
2660 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2661 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2662 
2663 		switch (mm->ppgtt_mm.root_entry_type) {
2664 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2665 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2666 				return mm;
2667 			break;
2668 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2669 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2670 				    sizeof(mm->ppgtt_mm.guest_pdps)))
2671 				return mm;
2672 			break;
2673 		default:
2674 			GEM_BUG_ON(1);
2675 		}
2676 	}
2677 	return NULL;
2678 }
2679 
2680 /**
2681  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2682  * @vgpu: a vGPU
2683  * @root_entry_type: ppgtt root entry type
2684  * @pdps: guest pdps
2685  *
2686  * This function is used to find or create a PPGTT mm object from a guest.
2687  *
2688  * Returns:
2689  * Zero on success, negative error code if failed.
2690  */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2691 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2692 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2693 {
2694 	struct intel_vgpu_mm *mm;
2695 
2696 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2697 	if (mm) {
2698 		intel_vgpu_mm_get(mm);
2699 	} else {
2700 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2701 		if (IS_ERR(mm))
2702 			gvt_vgpu_err("fail to create mm\n");
2703 	}
2704 	return mm;
2705 }
2706 
2707 /**
2708  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2709  * @vgpu: a vGPU
2710  * @pdps: guest pdps
2711  *
2712  * This function is used to find a PPGTT mm object from a guest and destroy it.
2713  *
2714  * Returns:
2715  * Zero on success, negative error code if failed.
2716  */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2717 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2718 {
2719 	struct intel_vgpu_mm *mm;
2720 
2721 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2722 	if (!mm) {
2723 		gvt_vgpu_err("fail to find ppgtt instance.\n");
2724 		return -EINVAL;
2725 	}
2726 	intel_vgpu_mm_put(mm);
2727 	return 0;
2728 }
2729 
2730 /**
2731  * intel_gvt_init_gtt - initialize mm components of a GVT device
2732  * @gvt: GVT device
2733  *
2734  * This function is called at the initialization stage, to initialize
2735  * the mm components of a GVT device.
2736  *
2737  * Returns:
2738  * zero on success, negative error code if failed.
2739  */
intel_gvt_init_gtt(struct intel_gvt * gvt)2740 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2741 {
2742 	int ret;
2743 	void *page;
2744 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2745 	dma_addr_t daddr;
2746 
2747 	gvt_dbg_core("init gtt\n");
2748 
2749 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2750 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2751 
2752 	page = (void *)get_zeroed_page(GFP_KERNEL);
2753 	if (!page) {
2754 		gvt_err("fail to allocate scratch ggtt page\n");
2755 		return -ENOMEM;
2756 	}
2757 
2758 	daddr = dma_map_page(dev, virt_to_page(page), 0,
2759 			4096, PCI_DMA_BIDIRECTIONAL);
2760 	if (dma_mapping_error(dev, daddr)) {
2761 		gvt_err("fail to dmamap scratch ggtt page\n");
2762 		__free_page(virt_to_page(page));
2763 		return -ENOMEM;
2764 	}
2765 
2766 	gvt->gtt.scratch_page = virt_to_page(page);
2767 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2768 
2769 	if (enable_out_of_sync) {
2770 		ret = setup_spt_oos(gvt);
2771 		if (ret) {
2772 			gvt_err("fail to initialize SPT oos\n");
2773 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2774 			__free_page(gvt->gtt.scratch_page);
2775 			return ret;
2776 		}
2777 	}
2778 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2779 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2780 	return 0;
2781 }
2782 
2783 /**
2784  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2785  * @gvt: GVT device
2786  *
2787  * This function is called at the driver unloading stage, to clean up the
2788  * the mm components of a GVT device.
2789  *
2790  */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2791 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2792 {
2793 	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2794 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2795 					I915_GTT_PAGE_SHIFT);
2796 
2797 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2798 
2799 	__free_page(gvt->gtt.scratch_page);
2800 
2801 	if (enable_out_of_sync)
2802 		clean_spt_oos(gvt);
2803 }
2804 
2805 /**
2806  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2807  * @vgpu: a vGPU
2808  *
2809  * This function is called when invalidate all PPGTT instances of a vGPU.
2810  *
2811  */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2812 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2813 {
2814 	struct list_head *pos, *n;
2815 	struct intel_vgpu_mm *mm;
2816 
2817 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2818 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2819 		if (mm->type == INTEL_GVT_MM_PPGTT) {
2820 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2821 			list_del_init(&mm->ppgtt_mm.lru_list);
2822 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2823 			if (mm->ppgtt_mm.shadowed)
2824 				invalidate_ppgtt_mm(mm);
2825 		}
2826 	}
2827 }
2828 
2829 /**
2830  * intel_vgpu_reset_ggtt - reset the GGTT entry
2831  * @vgpu: a vGPU
2832  * @invalidate_old: invalidate old entries
2833  *
2834  * This function is called at the vGPU create stage
2835  * to reset all the GGTT entries.
2836  *
2837  */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2838 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2839 {
2840 	struct intel_gvt *gvt = vgpu->gvt;
2841 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2842 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2843 	struct intel_gvt_gtt_entry old_entry;
2844 	u32 index;
2845 	u32 num_entries;
2846 
2847 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2848 	pte_ops->set_present(&entry);
2849 
2850 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2851 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2852 	while (num_entries--) {
2853 		if (invalidate_old) {
2854 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2855 			ggtt_invalidate_pte(vgpu, &old_entry);
2856 		}
2857 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2858 	}
2859 
2860 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2861 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2862 	while (num_entries--) {
2863 		if (invalidate_old) {
2864 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2865 			ggtt_invalidate_pte(vgpu, &old_entry);
2866 		}
2867 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2868 	}
2869 
2870 	ggtt_invalidate(gvt->gt);
2871 }
2872 
2873 /**
2874  * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2875  * @gvt: intel gvt device
2876  *
2877  * This function is called at driver resume stage to restore
2878  * GGTT entries of every vGPU.
2879  *
2880  */
intel_gvt_restore_ggtt(struct intel_gvt * gvt)2881 void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2882 {
2883 	struct intel_vgpu *vgpu;
2884 	struct intel_vgpu_mm *mm;
2885 	int id;
2886 	gen8_pte_t pte;
2887 	u32 idx, num_low, num_hi, offset;
2888 
2889 	/* Restore dirty host ggtt for all vGPUs */
2890 	idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2891 		mm = vgpu->gtt.ggtt_mm;
2892 
2893 		num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2894 		offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2895 		for (idx = 0; idx < num_low; idx++) {
2896 			pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2897 			if (pte & _PAGE_PRESENT)
2898 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2899 		}
2900 
2901 		num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2902 		offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2903 		for (idx = 0; idx < num_hi; idx++) {
2904 			pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2905 			if (pte & _PAGE_PRESENT)
2906 				write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
2907 		}
2908 	}
2909 }
2910