1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
sysfs_deprecated_setup(char * arg)41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49 static LIST_HEAD(deferred_sync);
50 static unsigned int defer_sync_state_count = 1;
51 static DEFINE_MUTEX(fwnode_link_lock);
52 static bool fw_devlink_is_permissive(void);
53
54 /**
55 * fwnode_link_add - Create a link between two fwnode_handles.
56 * @con: Consumer end of the link.
57 * @sup: Supplier end of the link.
58 *
59 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
60 * represents the detail that the firmware lists @sup fwnode as supplying a
61 * resource to @con.
62 *
63 * The driver core will use the fwnode link to create a device link between the
64 * two device objects corresponding to @con and @sup when they are created. The
65 * driver core will automatically delete the fwnode link between @con and @sup
66 * after doing that.
67 *
68 * Attempts to create duplicate links between the same pair of fwnode handles
69 * are ignored and there is no reference counting.
70 */
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)71 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
72 {
73 struct fwnode_link *link;
74 int ret = 0;
75
76 mutex_lock(&fwnode_link_lock);
77
78 list_for_each_entry(link, &sup->consumers, s_hook)
79 if (link->consumer == con)
80 goto out;
81
82 link = kzalloc(sizeof(*link), GFP_KERNEL);
83 if (!link) {
84 ret = -ENOMEM;
85 goto out;
86 }
87
88 link->supplier = sup;
89 INIT_LIST_HEAD(&link->s_hook);
90 link->consumer = con;
91 INIT_LIST_HEAD(&link->c_hook);
92
93 list_add(&link->s_hook, &sup->consumers);
94 list_add(&link->c_hook, &con->suppliers);
95 out:
96 mutex_unlock(&fwnode_link_lock);
97
98 return ret;
99 }
100
101 /**
102 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
103 * @fwnode: fwnode whose supplier links need to be deleted
104 *
105 * Deletes all supplier links connecting directly to @fwnode.
106 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)107 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
108 {
109 struct fwnode_link *link, *tmp;
110
111 mutex_lock(&fwnode_link_lock);
112 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
113 list_del(&link->s_hook);
114 list_del(&link->c_hook);
115 kfree(link);
116 }
117 mutex_unlock(&fwnode_link_lock);
118 }
119
120 /**
121 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
122 * @fwnode: fwnode whose consumer links need to be deleted
123 *
124 * Deletes all consumer links connecting directly to @fwnode.
125 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)126 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
127 {
128 struct fwnode_link *link, *tmp;
129
130 mutex_lock(&fwnode_link_lock);
131 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
132 list_del(&link->s_hook);
133 list_del(&link->c_hook);
134 kfree(link);
135 }
136 mutex_unlock(&fwnode_link_lock);
137 }
138
139 /**
140 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
141 * @fwnode: fwnode whose links needs to be deleted
142 *
143 * Deletes all links connecting directly to a fwnode.
144 */
fwnode_links_purge(struct fwnode_handle * fwnode)145 void fwnode_links_purge(struct fwnode_handle *fwnode)
146 {
147 fwnode_links_purge_suppliers(fwnode);
148 fwnode_links_purge_consumers(fwnode);
149 }
150
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)151 static void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
152 {
153 struct fwnode_handle *child;
154
155 /* Don't purge consumer links of an added child */
156 if (fwnode->dev)
157 return;
158
159 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
160 fwnode_links_purge_consumers(fwnode);
161
162 fwnode_for_each_available_child_node(fwnode, child)
163 fw_devlink_purge_absent_suppliers(child);
164 }
165
166 #ifdef CONFIG_SRCU
167 static DEFINE_MUTEX(device_links_lock);
168 DEFINE_STATIC_SRCU(device_links_srcu);
169
device_links_write_lock(void)170 static inline void device_links_write_lock(void)
171 {
172 mutex_lock(&device_links_lock);
173 }
174
device_links_write_unlock(void)175 static inline void device_links_write_unlock(void)
176 {
177 mutex_unlock(&device_links_lock);
178 }
179
device_links_read_lock(void)180 int device_links_read_lock(void) __acquires(&device_links_srcu)
181 {
182 return srcu_read_lock(&device_links_srcu);
183 }
184
device_links_read_unlock(int idx)185 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
186 {
187 srcu_read_unlock(&device_links_srcu, idx);
188 }
189
device_links_read_lock_held(void)190 int device_links_read_lock_held(void)
191 {
192 return srcu_read_lock_held(&device_links_srcu);
193 }
194
device_link_synchronize_removal(void)195 static void device_link_synchronize_removal(void)
196 {
197 synchronize_srcu(&device_links_srcu);
198 }
199
device_link_remove_from_lists(struct device_link * link)200 static void device_link_remove_from_lists(struct device_link *link)
201 {
202 list_del_rcu(&link->s_node);
203 list_del_rcu(&link->c_node);
204 }
205 #else /* !CONFIG_SRCU */
206 static DECLARE_RWSEM(device_links_lock);
207
device_links_write_lock(void)208 static inline void device_links_write_lock(void)
209 {
210 down_write(&device_links_lock);
211 }
212
device_links_write_unlock(void)213 static inline void device_links_write_unlock(void)
214 {
215 up_write(&device_links_lock);
216 }
217
device_links_read_lock(void)218 int device_links_read_lock(void)
219 {
220 down_read(&device_links_lock);
221 return 0;
222 }
223
device_links_read_unlock(int not_used)224 void device_links_read_unlock(int not_used)
225 {
226 up_read(&device_links_lock);
227 }
228
229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)230 int device_links_read_lock_held(void)
231 {
232 return lockdep_is_held(&device_links_lock);
233 }
234 #endif
235
device_link_synchronize_removal(void)236 static inline void device_link_synchronize_removal(void)
237 {
238 }
239
device_link_remove_from_lists(struct device_link * link)240 static void device_link_remove_from_lists(struct device_link *link)
241 {
242 list_del(&link->s_node);
243 list_del(&link->c_node);
244 }
245 #endif /* !CONFIG_SRCU */
246
device_is_ancestor(struct device * dev,struct device * target)247 static bool device_is_ancestor(struct device *dev, struct device *target)
248 {
249 while (target->parent) {
250 target = target->parent;
251 if (dev == target)
252 return true;
253 }
254 return false;
255 }
256
257 /**
258 * device_is_dependent - Check if one device depends on another one
259 * @dev: Device to check dependencies for.
260 * @target: Device to check against.
261 *
262 * Check if @target depends on @dev or any device dependent on it (its child or
263 * its consumer etc). Return 1 if that is the case or 0 otherwise.
264 */
device_is_dependent(struct device * dev,void * target)265 int device_is_dependent(struct device *dev, void *target)
266 {
267 struct device_link *link;
268 int ret;
269
270 /*
271 * The "ancestors" check is needed to catch the case when the target
272 * device has not been completely initialized yet and it is still
273 * missing from the list of children of its parent device.
274 */
275 if (dev == target || device_is_ancestor(dev, target))
276 return 1;
277
278 ret = device_for_each_child(dev, target, device_is_dependent);
279 if (ret)
280 return ret;
281
282 list_for_each_entry(link, &dev->links.consumers, s_node) {
283 if ((link->flags & ~DL_FLAG_INFERRED) ==
284 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
285 continue;
286
287 if (link->consumer == target)
288 return 1;
289
290 ret = device_is_dependent(link->consumer, target);
291 if (ret)
292 break;
293 }
294 return ret;
295 }
296
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)297 static void device_link_init_status(struct device_link *link,
298 struct device *consumer,
299 struct device *supplier)
300 {
301 switch (supplier->links.status) {
302 case DL_DEV_PROBING:
303 switch (consumer->links.status) {
304 case DL_DEV_PROBING:
305 /*
306 * A consumer driver can create a link to a supplier
307 * that has not completed its probing yet as long as it
308 * knows that the supplier is already functional (for
309 * example, it has just acquired some resources from the
310 * supplier).
311 */
312 link->status = DL_STATE_CONSUMER_PROBE;
313 break;
314 default:
315 link->status = DL_STATE_DORMANT;
316 break;
317 }
318 break;
319 case DL_DEV_DRIVER_BOUND:
320 switch (consumer->links.status) {
321 case DL_DEV_PROBING:
322 link->status = DL_STATE_CONSUMER_PROBE;
323 break;
324 case DL_DEV_DRIVER_BOUND:
325 link->status = DL_STATE_ACTIVE;
326 break;
327 default:
328 link->status = DL_STATE_AVAILABLE;
329 break;
330 }
331 break;
332 case DL_DEV_UNBINDING:
333 link->status = DL_STATE_SUPPLIER_UNBIND;
334 break;
335 default:
336 link->status = DL_STATE_DORMANT;
337 break;
338 }
339 }
340
device_reorder_to_tail(struct device * dev,void * not_used)341 static int device_reorder_to_tail(struct device *dev, void *not_used)
342 {
343 struct device_link *link;
344
345 /*
346 * Devices that have not been registered yet will be put to the ends
347 * of the lists during the registration, so skip them here.
348 */
349 if (device_is_registered(dev))
350 devices_kset_move_last(dev);
351
352 if (device_pm_initialized(dev))
353 device_pm_move_last(dev);
354
355 device_for_each_child(dev, NULL, device_reorder_to_tail);
356 list_for_each_entry(link, &dev->links.consumers, s_node) {
357 if ((link->flags & ~DL_FLAG_INFERRED) ==
358 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
359 continue;
360 device_reorder_to_tail(link->consumer, NULL);
361 }
362
363 return 0;
364 }
365
366 /**
367 * device_pm_move_to_tail - Move set of devices to the end of device lists
368 * @dev: Device to move
369 *
370 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
371 *
372 * It moves the @dev along with all of its children and all of its consumers
373 * to the ends of the device_kset and dpm_list, recursively.
374 */
device_pm_move_to_tail(struct device * dev)375 void device_pm_move_to_tail(struct device *dev)
376 {
377 int idx;
378
379 idx = device_links_read_lock();
380 device_pm_lock();
381 device_reorder_to_tail(dev, NULL);
382 device_pm_unlock();
383 device_links_read_unlock(idx);
384 }
385
386 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
387
status_show(struct device * dev,struct device_attribute * attr,char * buf)388 static ssize_t status_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 const char *output;
392
393 switch (to_devlink(dev)->status) {
394 case DL_STATE_NONE:
395 output = "not tracked";
396 break;
397 case DL_STATE_DORMANT:
398 output = "dormant";
399 break;
400 case DL_STATE_AVAILABLE:
401 output = "available";
402 break;
403 case DL_STATE_CONSUMER_PROBE:
404 output = "consumer probing";
405 break;
406 case DL_STATE_ACTIVE:
407 output = "active";
408 break;
409 case DL_STATE_SUPPLIER_UNBIND:
410 output = "supplier unbinding";
411 break;
412 default:
413 output = "unknown";
414 break;
415 }
416
417 return sysfs_emit(buf, "%s\n", output);
418 }
419 static DEVICE_ATTR_RO(status);
420
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)421 static ssize_t auto_remove_on_show(struct device *dev,
422 struct device_attribute *attr, char *buf)
423 {
424 struct device_link *link = to_devlink(dev);
425 const char *output;
426
427 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
428 output = "supplier unbind";
429 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
430 output = "consumer unbind";
431 else
432 output = "never";
433
434 return sysfs_emit(buf, "%s\n", output);
435 }
436 static DEVICE_ATTR_RO(auto_remove_on);
437
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t runtime_pm_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct device_link *link = to_devlink(dev);
442
443 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
444 }
445 static DEVICE_ATTR_RO(runtime_pm);
446
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)447 static ssize_t sync_state_only_show(struct device *dev,
448 struct device_attribute *attr, char *buf)
449 {
450 struct device_link *link = to_devlink(dev);
451
452 return sysfs_emit(buf, "%d\n",
453 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
454 }
455 static DEVICE_ATTR_RO(sync_state_only);
456
457 static struct attribute *devlink_attrs[] = {
458 &dev_attr_status.attr,
459 &dev_attr_auto_remove_on.attr,
460 &dev_attr_runtime_pm.attr,
461 &dev_attr_sync_state_only.attr,
462 NULL,
463 };
464 ATTRIBUTE_GROUPS(devlink);
465
device_link_release_fn(struct work_struct * work)466 static void device_link_release_fn(struct work_struct *work)
467 {
468 struct device_link *link = container_of(work, struct device_link, rm_work);
469
470 /* Ensure that all references to the link object have been dropped. */
471 device_link_synchronize_removal();
472
473 pm_runtime_release_supplier(link);
474 pm_request_idle(link->supplier);
475
476 put_device(link->consumer);
477 put_device(link->supplier);
478 kfree(link);
479 }
480
devlink_dev_release(struct device * dev)481 static void devlink_dev_release(struct device *dev)
482 {
483 struct device_link *link = to_devlink(dev);
484
485 INIT_WORK(&link->rm_work, device_link_release_fn);
486 /*
487 * It may take a while to complete this work because of the SRCU
488 * synchronization in device_link_release_fn() and if the consumer or
489 * supplier devices get deleted when it runs, so put it into the "long"
490 * workqueue.
491 */
492 queue_work(system_long_wq, &link->rm_work);
493 }
494
495 static struct class devlink_class = {
496 .name = "devlink",
497 .owner = THIS_MODULE,
498 .dev_groups = devlink_groups,
499 .dev_release = devlink_dev_release,
500 };
501
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)502 static int devlink_add_symlinks(struct device *dev,
503 struct class_interface *class_intf)
504 {
505 int ret;
506 size_t len;
507 struct device_link *link = to_devlink(dev);
508 struct device *sup = link->supplier;
509 struct device *con = link->consumer;
510 char *buf;
511
512 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
513 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
514 len += strlen(":");
515 len += strlen("supplier:") + 1;
516 buf = kzalloc(len, GFP_KERNEL);
517 if (!buf)
518 return -ENOMEM;
519
520 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
521 if (ret)
522 goto out;
523
524 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
525 if (ret)
526 goto err_con;
527
528 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
529 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
530 if (ret)
531 goto err_con_dev;
532
533 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
534 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
535 if (ret)
536 goto err_sup_dev;
537
538 goto out;
539
540 err_sup_dev:
541 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
542 sysfs_remove_link(&sup->kobj, buf);
543 err_con_dev:
544 sysfs_remove_link(&link->link_dev.kobj, "consumer");
545 err_con:
546 sysfs_remove_link(&link->link_dev.kobj, "supplier");
547 out:
548 kfree(buf);
549 return ret;
550 }
551
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)552 static void devlink_remove_symlinks(struct device *dev,
553 struct class_interface *class_intf)
554 {
555 struct device_link *link = to_devlink(dev);
556 size_t len;
557 struct device *sup = link->supplier;
558 struct device *con = link->consumer;
559 char *buf;
560
561 sysfs_remove_link(&link->link_dev.kobj, "consumer");
562 sysfs_remove_link(&link->link_dev.kobj, "supplier");
563
564 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
565 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
566 len += strlen(":");
567 len += strlen("supplier:") + 1;
568 buf = kzalloc(len, GFP_KERNEL);
569 if (!buf) {
570 WARN(1, "Unable to properly free device link symlinks!\n");
571 return;
572 }
573
574 if (device_is_registered(con)) {
575 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
576 sysfs_remove_link(&con->kobj, buf);
577 }
578 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
579 sysfs_remove_link(&sup->kobj, buf);
580 kfree(buf);
581 }
582
583 static struct class_interface devlink_class_intf = {
584 .class = &devlink_class,
585 .add_dev = devlink_add_symlinks,
586 .remove_dev = devlink_remove_symlinks,
587 };
588
devlink_class_init(void)589 static int __init devlink_class_init(void)
590 {
591 int ret;
592
593 ret = class_register(&devlink_class);
594 if (ret)
595 return ret;
596
597 ret = class_interface_register(&devlink_class_intf);
598 if (ret)
599 class_unregister(&devlink_class);
600
601 return ret;
602 }
603 postcore_initcall(devlink_class_init);
604
605 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
606 DL_FLAG_AUTOREMOVE_SUPPLIER | \
607 DL_FLAG_AUTOPROBE_CONSUMER | \
608 DL_FLAG_SYNC_STATE_ONLY | \
609 DL_FLAG_INFERRED)
610
611 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
612 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
613
614 /**
615 * device_link_add - Create a link between two devices.
616 * @consumer: Consumer end of the link.
617 * @supplier: Supplier end of the link.
618 * @flags: Link flags.
619 *
620 * The caller is responsible for the proper synchronization of the link creation
621 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
622 * runtime PM framework to take the link into account. Second, if the
623 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
624 * be forced into the active metastate and reference-counted upon the creation
625 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
626 * ignored.
627 *
628 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
629 * expected to release the link returned by it directly with the help of either
630 * device_link_del() or device_link_remove().
631 *
632 * If that flag is not set, however, the caller of this function is handing the
633 * management of the link over to the driver core entirely and its return value
634 * can only be used to check whether or not the link is present. In that case,
635 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
636 * flags can be used to indicate to the driver core when the link can be safely
637 * deleted. Namely, setting one of them in @flags indicates to the driver core
638 * that the link is not going to be used (by the given caller of this function)
639 * after unbinding the consumer or supplier driver, respectively, from its
640 * device, so the link can be deleted at that point. If none of them is set,
641 * the link will be maintained until one of the devices pointed to by it (either
642 * the consumer or the supplier) is unregistered.
643 *
644 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
645 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
646 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
647 * be used to request the driver core to automaticall probe for a consmer
648 * driver after successfully binding a driver to the supplier device.
649 *
650 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
651 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
652 * the same time is invalid and will cause NULL to be returned upfront.
653 * However, if a device link between the given @consumer and @supplier pair
654 * exists already when this function is called for them, the existing link will
655 * be returned regardless of its current type and status (the link's flags may
656 * be modified then). The caller of this function is then expected to treat
657 * the link as though it has just been created, so (in particular) if
658 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
659 * explicitly when not needed any more (as stated above).
660 *
661 * A side effect of the link creation is re-ordering of dpm_list and the
662 * devices_kset list by moving the consumer device and all devices depending
663 * on it to the ends of these lists (that does not happen to devices that have
664 * not been registered when this function is called).
665 *
666 * The supplier device is required to be registered when this function is called
667 * and NULL will be returned if that is not the case. The consumer device need
668 * not be registered, however.
669 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)670 struct device_link *device_link_add(struct device *consumer,
671 struct device *supplier, u32 flags)
672 {
673 struct device_link *link;
674
675 if (!consumer || !supplier || consumer == supplier ||
676 flags & ~DL_ADD_VALID_FLAGS ||
677 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
678 (flags & DL_FLAG_SYNC_STATE_ONLY &&
679 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
680 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
681 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
682 DL_FLAG_AUTOREMOVE_SUPPLIER)))
683 return NULL;
684
685 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
686 if (pm_runtime_get_sync(supplier) < 0) {
687 pm_runtime_put_noidle(supplier);
688 return NULL;
689 }
690 }
691
692 if (!(flags & DL_FLAG_STATELESS))
693 flags |= DL_FLAG_MANAGED;
694
695 device_links_write_lock();
696 device_pm_lock();
697
698 /*
699 * If the supplier has not been fully registered yet or there is a
700 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
701 * the supplier already in the graph, return NULL. If the link is a
702 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
703 * because it only affects sync_state() callbacks.
704 */
705 if (!device_pm_initialized(supplier)
706 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
707 device_is_dependent(consumer, supplier))) {
708 link = NULL;
709 goto out;
710 }
711
712 /*
713 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
714 * So, only create it if the consumer hasn't probed yet.
715 */
716 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
717 consumer->links.status != DL_DEV_NO_DRIVER &&
718 consumer->links.status != DL_DEV_PROBING) {
719 link = NULL;
720 goto out;
721 }
722
723 /*
724 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
725 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
726 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
727 */
728 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
729 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
730
731 list_for_each_entry(link, &supplier->links.consumers, s_node) {
732 if (link->consumer != consumer)
733 continue;
734
735 if (link->flags & DL_FLAG_INFERRED &&
736 !(flags & DL_FLAG_INFERRED))
737 link->flags &= ~DL_FLAG_INFERRED;
738
739 if (flags & DL_FLAG_PM_RUNTIME) {
740 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
741 pm_runtime_new_link(consumer);
742 link->flags |= DL_FLAG_PM_RUNTIME;
743 }
744 if (flags & DL_FLAG_RPM_ACTIVE)
745 refcount_inc(&link->rpm_active);
746 }
747
748 if (flags & DL_FLAG_STATELESS) {
749 kref_get(&link->kref);
750 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
751 !(link->flags & DL_FLAG_STATELESS)) {
752 link->flags |= DL_FLAG_STATELESS;
753 goto reorder;
754 } else {
755 link->flags |= DL_FLAG_STATELESS;
756 goto out;
757 }
758 }
759
760 /*
761 * If the life time of the link following from the new flags is
762 * longer than indicated by the flags of the existing link,
763 * update the existing link to stay around longer.
764 */
765 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
766 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
767 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
768 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
769 }
770 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
771 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
772 DL_FLAG_AUTOREMOVE_SUPPLIER);
773 }
774 if (!(link->flags & DL_FLAG_MANAGED)) {
775 kref_get(&link->kref);
776 link->flags |= DL_FLAG_MANAGED;
777 device_link_init_status(link, consumer, supplier);
778 }
779 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
780 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
781 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
782 goto reorder;
783 }
784
785 goto out;
786 }
787
788 link = kzalloc(sizeof(*link), GFP_KERNEL);
789 if (!link)
790 goto out;
791
792 refcount_set(&link->rpm_active, 1);
793
794 get_device(supplier);
795 link->supplier = supplier;
796 INIT_LIST_HEAD(&link->s_node);
797 get_device(consumer);
798 link->consumer = consumer;
799 INIT_LIST_HEAD(&link->c_node);
800 link->flags = flags;
801 kref_init(&link->kref);
802
803 link->link_dev.class = &devlink_class;
804 device_set_pm_not_required(&link->link_dev);
805 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
806 dev_bus_name(supplier), dev_name(supplier),
807 dev_bus_name(consumer), dev_name(consumer));
808 if (device_register(&link->link_dev)) {
809 put_device(&link->link_dev);
810 link = NULL;
811 goto out;
812 }
813
814 if (flags & DL_FLAG_PM_RUNTIME) {
815 if (flags & DL_FLAG_RPM_ACTIVE)
816 refcount_inc(&link->rpm_active);
817
818 pm_runtime_new_link(consumer);
819 }
820
821 /* Determine the initial link state. */
822 if (flags & DL_FLAG_STATELESS)
823 link->status = DL_STATE_NONE;
824 else
825 device_link_init_status(link, consumer, supplier);
826
827 /*
828 * Some callers expect the link creation during consumer driver probe to
829 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
830 */
831 if (link->status == DL_STATE_CONSUMER_PROBE &&
832 flags & DL_FLAG_PM_RUNTIME)
833 pm_runtime_resume(supplier);
834
835 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
836 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
837
838 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
839 dev_dbg(consumer,
840 "Linked as a sync state only consumer to %s\n",
841 dev_name(supplier));
842 goto out;
843 }
844
845 reorder:
846 /*
847 * Move the consumer and all of the devices depending on it to the end
848 * of dpm_list and the devices_kset list.
849 *
850 * It is necessary to hold dpm_list locked throughout all that or else
851 * we may end up suspending with a wrong ordering of it.
852 */
853 device_reorder_to_tail(consumer, NULL);
854
855 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
856
857 out:
858 device_pm_unlock();
859 device_links_write_unlock();
860
861 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
862 pm_runtime_put(supplier);
863
864 return link;
865 }
866 EXPORT_SYMBOL_GPL(device_link_add);
867
__device_link_del(struct kref * kref)868 static void __device_link_del(struct kref *kref)
869 {
870 struct device_link *link = container_of(kref, struct device_link, kref);
871
872 dev_dbg(link->consumer, "Dropping the link to %s\n",
873 dev_name(link->supplier));
874
875 pm_runtime_drop_link(link);
876
877 device_link_remove_from_lists(link);
878 device_unregister(&link->link_dev);
879 }
880
device_link_put_kref(struct device_link * link)881 static void device_link_put_kref(struct device_link *link)
882 {
883 if (link->flags & DL_FLAG_STATELESS)
884 kref_put(&link->kref, __device_link_del);
885 else
886 WARN(1, "Unable to drop a managed device link reference\n");
887 }
888
889 /**
890 * device_link_del - Delete a stateless link between two devices.
891 * @link: Device link to delete.
892 *
893 * The caller must ensure proper synchronization of this function with runtime
894 * PM. If the link was added multiple times, it needs to be deleted as often.
895 * Care is required for hotplugged devices: Their links are purged on removal
896 * and calling device_link_del() is then no longer allowed.
897 */
device_link_del(struct device_link * link)898 void device_link_del(struct device_link *link)
899 {
900 device_links_write_lock();
901 device_link_put_kref(link);
902 device_links_write_unlock();
903 }
904 EXPORT_SYMBOL_GPL(device_link_del);
905
906 /**
907 * device_link_remove - Delete a stateless link between two devices.
908 * @consumer: Consumer end of the link.
909 * @supplier: Supplier end of the link.
910 *
911 * The caller must ensure proper synchronization of this function with runtime
912 * PM.
913 */
device_link_remove(void * consumer,struct device * supplier)914 void device_link_remove(void *consumer, struct device *supplier)
915 {
916 struct device_link *link;
917
918 if (WARN_ON(consumer == supplier))
919 return;
920
921 device_links_write_lock();
922
923 list_for_each_entry(link, &supplier->links.consumers, s_node) {
924 if (link->consumer == consumer) {
925 device_link_put_kref(link);
926 break;
927 }
928 }
929
930 device_links_write_unlock();
931 }
932 EXPORT_SYMBOL_GPL(device_link_remove);
933
device_links_missing_supplier(struct device * dev)934 static void device_links_missing_supplier(struct device *dev)
935 {
936 struct device_link *link;
937
938 list_for_each_entry(link, &dev->links.suppliers, c_node) {
939 if (link->status != DL_STATE_CONSUMER_PROBE)
940 continue;
941
942 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
943 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
944 } else {
945 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
946 WRITE_ONCE(link->status, DL_STATE_DORMANT);
947 }
948 }
949 }
950
951 /**
952 * device_links_check_suppliers - Check presence of supplier drivers.
953 * @dev: Consumer device.
954 *
955 * Check links from this device to any suppliers. Walk the list of the device's
956 * links to suppliers and see if all of them are available. If not, simply
957 * return -EPROBE_DEFER.
958 *
959 * We need to guarantee that the supplier will not go away after the check has
960 * been positive here. It only can go away in __device_release_driver() and
961 * that function checks the device's links to consumers. This means we need to
962 * mark the link as "consumer probe in progress" to make the supplier removal
963 * wait for us to complete (or bad things may happen).
964 *
965 * Links without the DL_FLAG_MANAGED flag set are ignored.
966 */
device_links_check_suppliers(struct device * dev)967 int device_links_check_suppliers(struct device *dev)
968 {
969 struct device_link *link;
970 int ret = 0;
971
972 /*
973 * Device waiting for supplier to become available is not allowed to
974 * probe.
975 */
976 mutex_lock(&fwnode_link_lock);
977 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
978 !fw_devlink_is_permissive()) {
979 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
980 list_first_entry(&dev->fwnode->suppliers,
981 struct fwnode_link,
982 c_hook)->supplier);
983 mutex_unlock(&fwnode_link_lock);
984 return -EPROBE_DEFER;
985 }
986 mutex_unlock(&fwnode_link_lock);
987
988 device_links_write_lock();
989
990 list_for_each_entry(link, &dev->links.suppliers, c_node) {
991 if (!(link->flags & DL_FLAG_MANAGED))
992 continue;
993
994 if (link->status != DL_STATE_AVAILABLE &&
995 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
996 device_links_missing_supplier(dev);
997 dev_dbg(dev, "probe deferral - supplier %s not ready\n",
998 dev_name(link->supplier));
999 ret = -EPROBE_DEFER;
1000 break;
1001 }
1002 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1003 }
1004 dev->links.status = DL_DEV_PROBING;
1005
1006 device_links_write_unlock();
1007 return ret;
1008 }
1009
1010 /**
1011 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1012 * @dev: Device to call sync_state() on
1013 * @list: List head to queue the @dev on
1014 *
1015 * Queues a device for a sync_state() callback when the device links write lock
1016 * isn't held. This allows the sync_state() execution flow to use device links
1017 * APIs. The caller must ensure this function is called with
1018 * device_links_write_lock() held.
1019 *
1020 * This function does a get_device() to make sure the device is not freed while
1021 * on this list.
1022 *
1023 * So the caller must also ensure that device_links_flush_sync_list() is called
1024 * as soon as the caller releases device_links_write_lock(). This is necessary
1025 * to make sure the sync_state() is called in a timely fashion and the
1026 * put_device() is called on this device.
1027 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1028 static void __device_links_queue_sync_state(struct device *dev,
1029 struct list_head *list)
1030 {
1031 struct device_link *link;
1032
1033 if (!dev_has_sync_state(dev))
1034 return;
1035 if (dev->state_synced)
1036 return;
1037
1038 list_for_each_entry(link, &dev->links.consumers, s_node) {
1039 if (!(link->flags & DL_FLAG_MANAGED))
1040 continue;
1041 if (link->status != DL_STATE_ACTIVE)
1042 return;
1043 }
1044
1045 /*
1046 * Set the flag here to avoid adding the same device to a list more
1047 * than once. This can happen if new consumers get added to the device
1048 * and probed before the list is flushed.
1049 */
1050 dev->state_synced = true;
1051
1052 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1053 return;
1054
1055 get_device(dev);
1056 list_add_tail(&dev->links.defer_sync, list);
1057 }
1058
1059 /**
1060 * device_links_flush_sync_list - Call sync_state() on a list of devices
1061 * @list: List of devices to call sync_state() on
1062 * @dont_lock_dev: Device for which lock is already held by the caller
1063 *
1064 * Calls sync_state() on all the devices that have been queued for it. This
1065 * function is used in conjunction with __device_links_queue_sync_state(). The
1066 * @dont_lock_dev parameter is useful when this function is called from a
1067 * context where a device lock is already held.
1068 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1069 static void device_links_flush_sync_list(struct list_head *list,
1070 struct device *dont_lock_dev)
1071 {
1072 struct device *dev, *tmp;
1073
1074 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1075 list_del_init(&dev->links.defer_sync);
1076
1077 if (dev != dont_lock_dev)
1078 device_lock(dev);
1079
1080 if (dev->bus->sync_state)
1081 dev->bus->sync_state(dev);
1082 else if (dev->driver && dev->driver->sync_state)
1083 dev->driver->sync_state(dev);
1084
1085 if (dev != dont_lock_dev)
1086 device_unlock(dev);
1087
1088 put_device(dev);
1089 }
1090 }
1091
device_links_supplier_sync_state_pause(void)1092 void device_links_supplier_sync_state_pause(void)
1093 {
1094 device_links_write_lock();
1095 defer_sync_state_count++;
1096 device_links_write_unlock();
1097 }
1098
device_links_supplier_sync_state_resume(void)1099 void device_links_supplier_sync_state_resume(void)
1100 {
1101 struct device *dev, *tmp;
1102 LIST_HEAD(sync_list);
1103
1104 device_links_write_lock();
1105 if (!defer_sync_state_count) {
1106 WARN(true, "Unmatched sync_state pause/resume!");
1107 goto out;
1108 }
1109 defer_sync_state_count--;
1110 if (defer_sync_state_count)
1111 goto out;
1112
1113 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1114 /*
1115 * Delete from deferred_sync list before queuing it to
1116 * sync_list because defer_sync is used for both lists.
1117 */
1118 list_del_init(&dev->links.defer_sync);
1119 __device_links_queue_sync_state(dev, &sync_list);
1120 }
1121 out:
1122 device_links_write_unlock();
1123
1124 device_links_flush_sync_list(&sync_list, NULL);
1125 }
1126
sync_state_resume_initcall(void)1127 static int sync_state_resume_initcall(void)
1128 {
1129 device_links_supplier_sync_state_resume();
1130 return 0;
1131 }
1132 late_initcall(sync_state_resume_initcall);
1133
__device_links_supplier_defer_sync(struct device * sup)1134 static void __device_links_supplier_defer_sync(struct device *sup)
1135 {
1136 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1137 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1138 }
1139
device_link_drop_managed(struct device_link * link)1140 static void device_link_drop_managed(struct device_link *link)
1141 {
1142 link->flags &= ~DL_FLAG_MANAGED;
1143 WRITE_ONCE(link->status, DL_STATE_NONE);
1144 kref_put(&link->kref, __device_link_del);
1145 }
1146
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1147 static ssize_t waiting_for_supplier_show(struct device *dev,
1148 struct device_attribute *attr,
1149 char *buf)
1150 {
1151 bool val;
1152
1153 device_lock(dev);
1154 val = !list_empty(&dev->fwnode->suppliers);
1155 device_unlock(dev);
1156 return sysfs_emit(buf, "%u\n", val);
1157 }
1158 static DEVICE_ATTR_RO(waiting_for_supplier);
1159
1160 /**
1161 * device_links_driver_bound - Update device links after probing its driver.
1162 * @dev: Device to update the links for.
1163 *
1164 * The probe has been successful, so update links from this device to any
1165 * consumers by changing their status to "available".
1166 *
1167 * Also change the status of @dev's links to suppliers to "active".
1168 *
1169 * Links without the DL_FLAG_MANAGED flag set are ignored.
1170 */
device_links_driver_bound(struct device * dev)1171 void device_links_driver_bound(struct device *dev)
1172 {
1173 struct device_link *link, *ln;
1174 LIST_HEAD(sync_list);
1175
1176 /*
1177 * If a device binds successfully, it's expected to have created all
1178 * the device links it needs to or make new device links as it needs
1179 * them. So, fw_devlink no longer needs to create device links to any
1180 * of the device's suppliers.
1181 *
1182 * Also, if a child firmware node of this bound device is not added as
1183 * a device by now, assume it is never going to be added and make sure
1184 * other devices don't defer probe indefinitely by waiting for such a
1185 * child device.
1186 */
1187 if (dev->fwnode && dev->fwnode->dev == dev) {
1188 struct fwnode_handle *child;
1189 fwnode_links_purge_suppliers(dev->fwnode);
1190 fwnode_for_each_available_child_node(dev->fwnode, child)
1191 fw_devlink_purge_absent_suppliers(child);
1192 }
1193 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1194
1195 device_links_write_lock();
1196
1197 list_for_each_entry(link, &dev->links.consumers, s_node) {
1198 if (!(link->flags & DL_FLAG_MANAGED))
1199 continue;
1200
1201 /*
1202 * Links created during consumer probe may be in the "consumer
1203 * probe" state to start with if the supplier is still probing
1204 * when they are created and they may become "active" if the
1205 * consumer probe returns first. Skip them here.
1206 */
1207 if (link->status == DL_STATE_CONSUMER_PROBE ||
1208 link->status == DL_STATE_ACTIVE)
1209 continue;
1210
1211 WARN_ON(link->status != DL_STATE_DORMANT);
1212 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1213
1214 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1215 driver_deferred_probe_add(link->consumer);
1216 }
1217
1218 if (defer_sync_state_count)
1219 __device_links_supplier_defer_sync(dev);
1220 else
1221 __device_links_queue_sync_state(dev, &sync_list);
1222
1223 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1224 struct device *supplier;
1225
1226 if (!(link->flags & DL_FLAG_MANAGED))
1227 continue;
1228
1229 supplier = link->supplier;
1230 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1231 /*
1232 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1233 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1234 * save to drop the managed link completely.
1235 */
1236 device_link_drop_managed(link);
1237 } else {
1238 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1239 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1240 }
1241
1242 /*
1243 * This needs to be done even for the deleted
1244 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1245 * device link that was preventing the supplier from getting a
1246 * sync_state() call.
1247 */
1248 if (defer_sync_state_count)
1249 __device_links_supplier_defer_sync(supplier);
1250 else
1251 __device_links_queue_sync_state(supplier, &sync_list);
1252 }
1253
1254 dev->links.status = DL_DEV_DRIVER_BOUND;
1255
1256 device_links_write_unlock();
1257
1258 device_links_flush_sync_list(&sync_list, dev);
1259 }
1260
1261 /**
1262 * __device_links_no_driver - Update links of a device without a driver.
1263 * @dev: Device without a drvier.
1264 *
1265 * Delete all non-persistent links from this device to any suppliers.
1266 *
1267 * Persistent links stay around, but their status is changed to "available",
1268 * unless they already are in the "supplier unbind in progress" state in which
1269 * case they need not be updated.
1270 *
1271 * Links without the DL_FLAG_MANAGED flag set are ignored.
1272 */
__device_links_no_driver(struct device * dev)1273 static void __device_links_no_driver(struct device *dev)
1274 {
1275 struct device_link *link, *ln;
1276
1277 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1278 if (!(link->flags & DL_FLAG_MANAGED))
1279 continue;
1280
1281 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1282 device_link_drop_managed(link);
1283 continue;
1284 }
1285
1286 if (link->status != DL_STATE_CONSUMER_PROBE &&
1287 link->status != DL_STATE_ACTIVE)
1288 continue;
1289
1290 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1291 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1292 } else {
1293 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1294 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1295 }
1296 }
1297
1298 dev->links.status = DL_DEV_NO_DRIVER;
1299 }
1300
1301 /**
1302 * device_links_no_driver - Update links after failing driver probe.
1303 * @dev: Device whose driver has just failed to probe.
1304 *
1305 * Clean up leftover links to consumers for @dev and invoke
1306 * %__device_links_no_driver() to update links to suppliers for it as
1307 * appropriate.
1308 *
1309 * Links without the DL_FLAG_MANAGED flag set are ignored.
1310 */
device_links_no_driver(struct device * dev)1311 void device_links_no_driver(struct device *dev)
1312 {
1313 struct device_link *link;
1314
1315 device_links_write_lock();
1316
1317 list_for_each_entry(link, &dev->links.consumers, s_node) {
1318 if (!(link->flags & DL_FLAG_MANAGED))
1319 continue;
1320
1321 /*
1322 * The probe has failed, so if the status of the link is
1323 * "consumer probe" or "active", it must have been added by
1324 * a probing consumer while this device was still probing.
1325 * Change its state to "dormant", as it represents a valid
1326 * relationship, but it is not functionally meaningful.
1327 */
1328 if (link->status == DL_STATE_CONSUMER_PROBE ||
1329 link->status == DL_STATE_ACTIVE)
1330 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1331 }
1332
1333 __device_links_no_driver(dev);
1334
1335 device_links_write_unlock();
1336 }
1337
1338 /**
1339 * device_links_driver_cleanup - Update links after driver removal.
1340 * @dev: Device whose driver has just gone away.
1341 *
1342 * Update links to consumers for @dev by changing their status to "dormant" and
1343 * invoke %__device_links_no_driver() to update links to suppliers for it as
1344 * appropriate.
1345 *
1346 * Links without the DL_FLAG_MANAGED flag set are ignored.
1347 */
device_links_driver_cleanup(struct device * dev)1348 void device_links_driver_cleanup(struct device *dev)
1349 {
1350 struct device_link *link, *ln;
1351
1352 device_links_write_lock();
1353
1354 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1355 if (!(link->flags & DL_FLAG_MANAGED))
1356 continue;
1357
1358 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1359 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1360
1361 /*
1362 * autoremove the links between this @dev and its consumer
1363 * devices that are not active, i.e. where the link state
1364 * has moved to DL_STATE_SUPPLIER_UNBIND.
1365 */
1366 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1367 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1368 device_link_drop_managed(link);
1369
1370 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1371 }
1372
1373 list_del_init(&dev->links.defer_sync);
1374 __device_links_no_driver(dev);
1375
1376 device_links_write_unlock();
1377 }
1378
1379 /**
1380 * device_links_busy - Check if there are any busy links to consumers.
1381 * @dev: Device to check.
1382 *
1383 * Check each consumer of the device and return 'true' if its link's status
1384 * is one of "consumer probe" or "active" (meaning that the given consumer is
1385 * probing right now or its driver is present). Otherwise, change the link
1386 * state to "supplier unbind" to prevent the consumer from being probed
1387 * successfully going forward.
1388 *
1389 * Return 'false' if there are no probing or active consumers.
1390 *
1391 * Links without the DL_FLAG_MANAGED flag set are ignored.
1392 */
device_links_busy(struct device * dev)1393 bool device_links_busy(struct device *dev)
1394 {
1395 struct device_link *link;
1396 bool ret = false;
1397
1398 device_links_write_lock();
1399
1400 list_for_each_entry(link, &dev->links.consumers, s_node) {
1401 if (!(link->flags & DL_FLAG_MANAGED))
1402 continue;
1403
1404 if (link->status == DL_STATE_CONSUMER_PROBE
1405 || link->status == DL_STATE_ACTIVE) {
1406 ret = true;
1407 break;
1408 }
1409 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1410 }
1411
1412 dev->links.status = DL_DEV_UNBINDING;
1413
1414 device_links_write_unlock();
1415 return ret;
1416 }
1417
1418 /**
1419 * device_links_unbind_consumers - Force unbind consumers of the given device.
1420 * @dev: Device to unbind the consumers of.
1421 *
1422 * Walk the list of links to consumers for @dev and if any of them is in the
1423 * "consumer probe" state, wait for all device probes in progress to complete
1424 * and start over.
1425 *
1426 * If that's not the case, change the status of the link to "supplier unbind"
1427 * and check if the link was in the "active" state. If so, force the consumer
1428 * driver to unbind and start over (the consumer will not re-probe as we have
1429 * changed the state of the link already).
1430 *
1431 * Links without the DL_FLAG_MANAGED flag set are ignored.
1432 */
device_links_unbind_consumers(struct device * dev)1433 void device_links_unbind_consumers(struct device *dev)
1434 {
1435 struct device_link *link;
1436
1437 start:
1438 device_links_write_lock();
1439
1440 list_for_each_entry(link, &dev->links.consumers, s_node) {
1441 enum device_link_state status;
1442
1443 if (!(link->flags & DL_FLAG_MANAGED) ||
1444 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1445 continue;
1446
1447 status = link->status;
1448 if (status == DL_STATE_CONSUMER_PROBE) {
1449 device_links_write_unlock();
1450
1451 wait_for_device_probe();
1452 goto start;
1453 }
1454 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1455 if (status == DL_STATE_ACTIVE) {
1456 struct device *consumer = link->consumer;
1457
1458 get_device(consumer);
1459
1460 device_links_write_unlock();
1461
1462 device_release_driver_internal(consumer, NULL,
1463 consumer->parent);
1464 put_device(consumer);
1465 goto start;
1466 }
1467 }
1468
1469 device_links_write_unlock();
1470 }
1471
1472 /**
1473 * device_links_purge - Delete existing links to other devices.
1474 * @dev: Target device.
1475 */
device_links_purge(struct device * dev)1476 static void device_links_purge(struct device *dev)
1477 {
1478 struct device_link *link, *ln;
1479
1480 if (dev->class == &devlink_class)
1481 return;
1482
1483 /*
1484 * Delete all of the remaining links from this device to any other
1485 * devices (either consumers or suppliers).
1486 */
1487 device_links_write_lock();
1488
1489 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1490 WARN_ON(link->status == DL_STATE_ACTIVE);
1491 __device_link_del(&link->kref);
1492 }
1493
1494 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1495 WARN_ON(link->status != DL_STATE_DORMANT &&
1496 link->status != DL_STATE_NONE);
1497 __device_link_del(&link->kref);
1498 }
1499
1500 device_links_write_unlock();
1501 }
1502
1503 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1504 DL_FLAG_SYNC_STATE_ONLY)
1505 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1506 DL_FLAG_AUTOPROBE_CONSUMER)
1507 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1508 DL_FLAG_PM_RUNTIME)
1509
1510 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1511 static int __init fw_devlink_setup(char *arg)
1512 {
1513 if (!arg)
1514 return -EINVAL;
1515
1516 if (strcmp(arg, "off") == 0) {
1517 fw_devlink_flags = 0;
1518 } else if (strcmp(arg, "permissive") == 0) {
1519 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1520 } else if (strcmp(arg, "on") == 0) {
1521 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1522 } else if (strcmp(arg, "rpm") == 0) {
1523 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1524 }
1525 return 0;
1526 }
1527 early_param("fw_devlink", fw_devlink_setup);
1528
1529 static bool fw_devlink_strict = true;
fw_devlink_strict_setup(char * arg)1530 static int __init fw_devlink_strict_setup(char *arg)
1531 {
1532 return strtobool(arg, &fw_devlink_strict);
1533 }
1534 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1535
fw_devlink_get_flags(void)1536 u32 fw_devlink_get_flags(void)
1537 {
1538 return fw_devlink_flags;
1539 }
1540
fw_devlink_is_permissive(void)1541 static bool fw_devlink_is_permissive(void)
1542 {
1543 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1544 }
1545
fw_devlink_is_strict(void)1546 bool fw_devlink_is_strict(void)
1547 {
1548 return fw_devlink_strict && !fw_devlink_is_permissive();
1549 }
1550
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1551 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1552 {
1553 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1554 return;
1555
1556 fwnode_call_int_op(fwnode, add_links);
1557 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1558 }
1559
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1560 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1561 {
1562 struct fwnode_handle *child = NULL;
1563
1564 fw_devlink_parse_fwnode(fwnode);
1565
1566 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1567 fw_devlink_parse_fwtree(child);
1568 }
1569
1570 /**
1571 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1572 * @con: Device to check dependencies for.
1573 * @sup: Device to check against.
1574 *
1575 * Check if @sup depends on @con or any device dependent on it (its child or
1576 * its consumer etc). When such a cyclic dependency is found, convert all
1577 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1578 * This is the equivalent of doing fw_devlink=permissive just between the
1579 * devices in the cycle. We need to do this because, at this point, fw_devlink
1580 * can't tell which of these dependencies is not a real dependency.
1581 *
1582 * Return 1 if a cycle is found. Otherwise, return 0.
1583 */
fw_devlink_relax_cycle(struct device * con,void * sup)1584 int fw_devlink_relax_cycle(struct device *con, void *sup)
1585 {
1586 struct device_link *link;
1587 int ret;
1588
1589 if (con == sup)
1590 return 1;
1591
1592 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1593 if (ret)
1594 return ret;
1595
1596 list_for_each_entry(link, &con->links.consumers, s_node) {
1597 if ((link->flags & ~DL_FLAG_INFERRED) ==
1598 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1599 continue;
1600
1601 if (!fw_devlink_relax_cycle(link->consumer, sup))
1602 continue;
1603
1604 ret = 1;
1605
1606 if (!(link->flags & DL_FLAG_INFERRED))
1607 continue;
1608
1609 pm_runtime_drop_link(link);
1610 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1611 dev_dbg(link->consumer, "Relaxing link with %s\n",
1612 dev_name(link->supplier));
1613 }
1614 return ret;
1615 }
1616
1617 /**
1618 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1619 * @con - Consumer device for the device link
1620 * @sup_handle - fwnode handle of supplier
1621 *
1622 * This function will try to create a device link between the consumer device
1623 * @con and the supplier device represented by @sup_handle.
1624 *
1625 * The supplier has to be provided as a fwnode because incorrect cycles in
1626 * fwnode links can sometimes cause the supplier device to never be created.
1627 * This function detects such cases and returns an error if it cannot create a
1628 * device link from the consumer to a missing supplier.
1629 *
1630 * Returns,
1631 * 0 on successfully creating a device link
1632 * -EINVAL if the device link cannot be created as expected
1633 * -EAGAIN if the device link cannot be created right now, but it may be
1634 * possible to do that in the future
1635 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,u32 flags)1636 static int fw_devlink_create_devlink(struct device *con,
1637 struct fwnode_handle *sup_handle, u32 flags)
1638 {
1639 struct device *sup_dev;
1640 int ret = 0;
1641
1642 sup_dev = get_dev_from_fwnode(sup_handle);
1643 if (sup_dev) {
1644 /*
1645 * If it's one of those drivers that don't actually bind to
1646 * their device using driver core, then don't wait on this
1647 * supplier device indefinitely.
1648 */
1649 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1650 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
1655 /*
1656 * If this fails, it is due to cycles in device links. Just
1657 * give up on this link and treat it as invalid.
1658 */
1659 if (!device_link_add(con, sup_dev, flags) &&
1660 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1661 dev_info(con, "Fixing up cyclic dependency with %s\n",
1662 dev_name(sup_dev));
1663 device_links_write_lock();
1664 fw_devlink_relax_cycle(con, sup_dev);
1665 device_links_write_unlock();
1666 device_link_add(con, sup_dev,
1667 FW_DEVLINK_FLAGS_PERMISSIVE);
1668 ret = -EINVAL;
1669 }
1670
1671 goto out;
1672 }
1673
1674 /* Supplier that's already initialized without a struct device. */
1675 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1676 return -EINVAL;
1677
1678 /*
1679 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1680 * cycles. So cycle detection isn't necessary and shouldn't be
1681 * done.
1682 */
1683 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1684 return -EAGAIN;
1685
1686 /*
1687 * If we can't find the supplier device from its fwnode, it might be
1688 * due to a cyclic dependency between fwnodes. Some of these cycles can
1689 * be broken by applying logic. Check for these types of cycles and
1690 * break them so that devices in the cycle probe properly.
1691 *
1692 * If the supplier's parent is dependent on the consumer, then the
1693 * consumer and supplier have a cyclic dependency. Since fw_devlink
1694 * can't tell which of the inferred dependencies are incorrect, don't
1695 * enforce probe ordering between any of the devices in this cyclic
1696 * dependency. Do this by relaxing all the fw_devlink device links in
1697 * this cycle and by treating the fwnode link between the consumer and
1698 * the supplier as an invalid dependency.
1699 */
1700 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1701 if (sup_dev && device_is_dependent(con, sup_dev)) {
1702 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1703 sup_handle, dev_name(sup_dev));
1704 device_links_write_lock();
1705 fw_devlink_relax_cycle(con, sup_dev);
1706 device_links_write_unlock();
1707 ret = -EINVAL;
1708 } else {
1709 /*
1710 * Can't check for cycles or no cycles. So let's try
1711 * again later.
1712 */
1713 ret = -EAGAIN;
1714 }
1715
1716 out:
1717 put_device(sup_dev);
1718 return ret;
1719 }
1720
1721 /**
1722 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1723 * @dev - Device that needs to be linked to its consumers
1724 *
1725 * This function looks at all the consumer fwnodes of @dev and creates device
1726 * links between the consumer device and @dev (supplier).
1727 *
1728 * If the consumer device has not been added yet, then this function creates a
1729 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1730 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1731 * sync_state() callback before the real consumer device gets to be added and
1732 * then probed.
1733 *
1734 * Once device links are created from the real consumer to @dev (supplier), the
1735 * fwnode links are deleted.
1736 */
__fw_devlink_link_to_consumers(struct device * dev)1737 static void __fw_devlink_link_to_consumers(struct device *dev)
1738 {
1739 struct fwnode_handle *fwnode = dev->fwnode;
1740 struct fwnode_link *link, *tmp;
1741
1742 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1743 u32 dl_flags = fw_devlink_get_flags();
1744 struct device *con_dev;
1745 bool own_link = true;
1746 int ret;
1747
1748 con_dev = get_dev_from_fwnode(link->consumer);
1749 /*
1750 * If consumer device is not available yet, make a "proxy"
1751 * SYNC_STATE_ONLY link from the consumer's parent device to
1752 * the supplier device. This is necessary to make sure the
1753 * supplier doesn't get a sync_state() callback before the real
1754 * consumer can create a device link to the supplier.
1755 *
1756 * This proxy link step is needed to handle the case where the
1757 * consumer's parent device is added before the supplier.
1758 */
1759 if (!con_dev) {
1760 con_dev = fwnode_get_next_parent_dev(link->consumer);
1761 /*
1762 * However, if the consumer's parent device is also the
1763 * parent of the supplier, don't create a
1764 * consumer-supplier link from the parent to its child
1765 * device. Such a dependency is impossible.
1766 */
1767 if (con_dev &&
1768 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1769 put_device(con_dev);
1770 con_dev = NULL;
1771 } else {
1772 own_link = false;
1773 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1774 }
1775 }
1776
1777 if (!con_dev)
1778 continue;
1779
1780 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1781 put_device(con_dev);
1782 if (!own_link || ret == -EAGAIN)
1783 continue;
1784
1785 list_del(&link->s_hook);
1786 list_del(&link->c_hook);
1787 kfree(link);
1788 }
1789 }
1790
1791 /**
1792 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1793 * @dev - The consumer device that needs to be linked to its suppliers
1794 * @fwnode - Root of the fwnode tree that is used to create device links
1795 *
1796 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1797 * @fwnode and creates device links between @dev (consumer) and all the
1798 * supplier devices of the entire fwnode tree at @fwnode.
1799 *
1800 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1801 * and the real suppliers of @dev. Once these device links are created, the
1802 * fwnode links are deleted. When such device links are successfully created,
1803 * this function is called recursively on those supplier devices. This is
1804 * needed to detect and break some invalid cycles in fwnode links. See
1805 * fw_devlink_create_devlink() for more details.
1806 *
1807 * In addition, it also looks at all the suppliers of the entire fwnode tree
1808 * because some of the child devices of @dev that have not been added yet
1809 * (because @dev hasn't probed) might already have their suppliers added to
1810 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1811 * @dev (consumer) and these suppliers to make sure they don't execute their
1812 * sync_state() callbacks before these child devices have a chance to create
1813 * their device links. The fwnode links that correspond to the child devices
1814 * aren't delete because they are needed later to create the device links
1815 * between the real consumer and supplier devices.
1816 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)1817 static void __fw_devlink_link_to_suppliers(struct device *dev,
1818 struct fwnode_handle *fwnode)
1819 {
1820 bool own_link = (dev->fwnode == fwnode);
1821 struct fwnode_link *link, *tmp;
1822 struct fwnode_handle *child = NULL;
1823 u32 dl_flags;
1824
1825 if (own_link)
1826 dl_flags = fw_devlink_get_flags();
1827 else
1828 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1829
1830 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1831 int ret;
1832 struct device *sup_dev;
1833 struct fwnode_handle *sup = link->supplier;
1834
1835 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1836 if (!own_link || ret == -EAGAIN)
1837 continue;
1838
1839 list_del(&link->s_hook);
1840 list_del(&link->c_hook);
1841 kfree(link);
1842
1843 /* If no device link was created, nothing more to do. */
1844 if (ret)
1845 continue;
1846
1847 /*
1848 * If a device link was successfully created to a supplier, we
1849 * now need to try and link the supplier to all its suppliers.
1850 *
1851 * This is needed to detect and delete false dependencies in
1852 * fwnode links that haven't been converted to a device link
1853 * yet. See comments in fw_devlink_create_devlink() for more
1854 * details on the false dependency.
1855 *
1856 * Without deleting these false dependencies, some devices will
1857 * never probe because they'll keep waiting for their false
1858 * dependency fwnode links to be converted to device links.
1859 */
1860 sup_dev = get_dev_from_fwnode(sup);
1861 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1862 put_device(sup_dev);
1863 }
1864
1865 /*
1866 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1867 * all the descendants. This proxy link step is needed to handle the
1868 * case where the supplier is added before the consumer's parent device
1869 * (@dev).
1870 */
1871 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1872 __fw_devlink_link_to_suppliers(dev, child);
1873 }
1874
fw_devlink_link_device(struct device * dev)1875 static void fw_devlink_link_device(struct device *dev)
1876 {
1877 struct fwnode_handle *fwnode = dev->fwnode;
1878
1879 if (!fw_devlink_flags)
1880 return;
1881
1882 fw_devlink_parse_fwtree(fwnode);
1883
1884 mutex_lock(&fwnode_link_lock);
1885 __fw_devlink_link_to_consumers(dev);
1886 __fw_devlink_link_to_suppliers(dev, fwnode);
1887 mutex_unlock(&fwnode_link_lock);
1888 }
1889
1890 /* Device links support end. */
1891
1892 int (*platform_notify)(struct device *dev) = NULL;
1893 int (*platform_notify_remove)(struct device *dev) = NULL;
1894 static struct kobject *dev_kobj;
1895 struct kobject *sysfs_dev_char_kobj;
1896 struct kobject *sysfs_dev_block_kobj;
1897
1898 static DEFINE_MUTEX(device_hotplug_lock);
1899
lock_device_hotplug(void)1900 void lock_device_hotplug(void)
1901 {
1902 mutex_lock(&device_hotplug_lock);
1903 }
1904
unlock_device_hotplug(void)1905 void unlock_device_hotplug(void)
1906 {
1907 mutex_unlock(&device_hotplug_lock);
1908 }
1909
lock_device_hotplug_sysfs(void)1910 int lock_device_hotplug_sysfs(void)
1911 {
1912 if (mutex_trylock(&device_hotplug_lock))
1913 return 0;
1914
1915 /* Avoid busy looping (5 ms of sleep should do). */
1916 msleep(5);
1917 return restart_syscall();
1918 }
1919
1920 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)1921 static inline int device_is_not_partition(struct device *dev)
1922 {
1923 return !(dev->type == &part_type);
1924 }
1925 #else
device_is_not_partition(struct device * dev)1926 static inline int device_is_not_partition(struct device *dev)
1927 {
1928 return 1;
1929 }
1930 #endif
1931
1932 static int
device_platform_notify(struct device * dev,enum kobject_action action)1933 device_platform_notify(struct device *dev, enum kobject_action action)
1934 {
1935 int ret;
1936
1937 ret = acpi_platform_notify(dev, action);
1938 if (ret)
1939 return ret;
1940
1941 ret = software_node_notify(dev, action);
1942 if (ret)
1943 return ret;
1944
1945 if (platform_notify && action == KOBJ_ADD)
1946 platform_notify(dev);
1947 else if (platform_notify_remove && action == KOBJ_REMOVE)
1948 platform_notify_remove(dev);
1949 return 0;
1950 }
1951
1952 /**
1953 * dev_driver_string - Return a device's driver name, if at all possible
1954 * @dev: struct device to get the name of
1955 *
1956 * Will return the device's driver's name if it is bound to a device. If
1957 * the device is not bound to a driver, it will return the name of the bus
1958 * it is attached to. If it is not attached to a bus either, an empty
1959 * string will be returned.
1960 */
dev_driver_string(const struct device * dev)1961 const char *dev_driver_string(const struct device *dev)
1962 {
1963 struct device_driver *drv;
1964
1965 /* dev->driver can change to NULL underneath us because of unbinding,
1966 * so be careful about accessing it. dev->bus and dev->class should
1967 * never change once they are set, so they don't need special care.
1968 */
1969 drv = READ_ONCE(dev->driver);
1970 return drv ? drv->name : dev_bus_name(dev);
1971 }
1972 EXPORT_SYMBOL(dev_driver_string);
1973
1974 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1975
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1976 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1977 char *buf)
1978 {
1979 struct device_attribute *dev_attr = to_dev_attr(attr);
1980 struct device *dev = kobj_to_dev(kobj);
1981 ssize_t ret = -EIO;
1982
1983 if (dev_attr->show)
1984 ret = dev_attr->show(dev, dev_attr, buf);
1985 if (ret >= (ssize_t)PAGE_SIZE) {
1986 printk("dev_attr_show: %pS returned bad count\n",
1987 dev_attr->show);
1988 }
1989 return ret;
1990 }
1991
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1992 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1993 const char *buf, size_t count)
1994 {
1995 struct device_attribute *dev_attr = to_dev_attr(attr);
1996 struct device *dev = kobj_to_dev(kobj);
1997 ssize_t ret = -EIO;
1998
1999 if (dev_attr->store)
2000 ret = dev_attr->store(dev, dev_attr, buf, count);
2001 return ret;
2002 }
2003
2004 static const struct sysfs_ops dev_sysfs_ops = {
2005 .show = dev_attr_show,
2006 .store = dev_attr_store,
2007 };
2008
2009 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2010
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2011 ssize_t device_store_ulong(struct device *dev,
2012 struct device_attribute *attr,
2013 const char *buf, size_t size)
2014 {
2015 struct dev_ext_attribute *ea = to_ext_attr(attr);
2016 int ret;
2017 unsigned long new;
2018
2019 ret = kstrtoul(buf, 0, &new);
2020 if (ret)
2021 return ret;
2022 *(unsigned long *)(ea->var) = new;
2023 /* Always return full write size even if we didn't consume all */
2024 return size;
2025 }
2026 EXPORT_SYMBOL_GPL(device_store_ulong);
2027
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2028 ssize_t device_show_ulong(struct device *dev,
2029 struct device_attribute *attr,
2030 char *buf)
2031 {
2032 struct dev_ext_attribute *ea = to_ext_attr(attr);
2033 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2034 }
2035 EXPORT_SYMBOL_GPL(device_show_ulong);
2036
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2037 ssize_t device_store_int(struct device *dev,
2038 struct device_attribute *attr,
2039 const char *buf, size_t size)
2040 {
2041 struct dev_ext_attribute *ea = to_ext_attr(attr);
2042 int ret;
2043 long new;
2044
2045 ret = kstrtol(buf, 0, &new);
2046 if (ret)
2047 return ret;
2048
2049 if (new > INT_MAX || new < INT_MIN)
2050 return -EINVAL;
2051 *(int *)(ea->var) = new;
2052 /* Always return full write size even if we didn't consume all */
2053 return size;
2054 }
2055 EXPORT_SYMBOL_GPL(device_store_int);
2056
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2057 ssize_t device_show_int(struct device *dev,
2058 struct device_attribute *attr,
2059 char *buf)
2060 {
2061 struct dev_ext_attribute *ea = to_ext_attr(attr);
2062
2063 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2064 }
2065 EXPORT_SYMBOL_GPL(device_show_int);
2066
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2067 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2068 const char *buf, size_t size)
2069 {
2070 struct dev_ext_attribute *ea = to_ext_attr(attr);
2071
2072 if (strtobool(buf, ea->var) < 0)
2073 return -EINVAL;
2074
2075 return size;
2076 }
2077 EXPORT_SYMBOL_GPL(device_store_bool);
2078
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2079 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2080 char *buf)
2081 {
2082 struct dev_ext_attribute *ea = to_ext_attr(attr);
2083
2084 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2085 }
2086 EXPORT_SYMBOL_GPL(device_show_bool);
2087
2088 /**
2089 * device_release - free device structure.
2090 * @kobj: device's kobject.
2091 *
2092 * This is called once the reference count for the object
2093 * reaches 0. We forward the call to the device's release
2094 * method, which should handle actually freeing the structure.
2095 */
device_release(struct kobject * kobj)2096 static void device_release(struct kobject *kobj)
2097 {
2098 struct device *dev = kobj_to_dev(kobj);
2099 struct device_private *p = dev->p;
2100
2101 /*
2102 * Some platform devices are driven without driver attached
2103 * and managed resources may have been acquired. Make sure
2104 * all resources are released.
2105 *
2106 * Drivers still can add resources into device after device
2107 * is deleted but alive, so release devres here to avoid
2108 * possible memory leak.
2109 */
2110 devres_release_all(dev);
2111
2112 kfree(dev->dma_range_map);
2113
2114 if (dev->release)
2115 dev->release(dev);
2116 else if (dev->type && dev->type->release)
2117 dev->type->release(dev);
2118 else if (dev->class && dev->class->dev_release)
2119 dev->class->dev_release(dev);
2120 else
2121 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2122 dev_name(dev));
2123 kfree(p);
2124 }
2125
device_namespace(struct kobject * kobj)2126 static const void *device_namespace(struct kobject *kobj)
2127 {
2128 struct device *dev = kobj_to_dev(kobj);
2129 const void *ns = NULL;
2130
2131 if (dev->class && dev->class->ns_type)
2132 ns = dev->class->namespace(dev);
2133
2134 return ns;
2135 }
2136
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)2137 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2138 {
2139 struct device *dev = kobj_to_dev(kobj);
2140
2141 if (dev->class && dev->class->get_ownership)
2142 dev->class->get_ownership(dev, uid, gid);
2143 }
2144
2145 static struct kobj_type device_ktype = {
2146 .release = device_release,
2147 .sysfs_ops = &dev_sysfs_ops,
2148 .namespace = device_namespace,
2149 .get_ownership = device_get_ownership,
2150 };
2151
2152
dev_uevent_filter(struct kset * kset,struct kobject * kobj)2153 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2154 {
2155 struct kobj_type *ktype = get_ktype(kobj);
2156
2157 if (ktype == &device_ktype) {
2158 struct device *dev = kobj_to_dev(kobj);
2159 if (dev->bus)
2160 return 1;
2161 if (dev->class)
2162 return 1;
2163 }
2164 return 0;
2165 }
2166
dev_uevent_name(struct kset * kset,struct kobject * kobj)2167 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2168 {
2169 struct device *dev = kobj_to_dev(kobj);
2170
2171 if (dev->bus)
2172 return dev->bus->name;
2173 if (dev->class)
2174 return dev->class->name;
2175 return NULL;
2176 }
2177
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)2178 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2179 struct kobj_uevent_env *env)
2180 {
2181 struct device *dev = kobj_to_dev(kobj);
2182 int retval = 0;
2183
2184 /* add device node properties if present */
2185 if (MAJOR(dev->devt)) {
2186 const char *tmp;
2187 const char *name;
2188 umode_t mode = 0;
2189 kuid_t uid = GLOBAL_ROOT_UID;
2190 kgid_t gid = GLOBAL_ROOT_GID;
2191
2192 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2193 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2194 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2195 if (name) {
2196 add_uevent_var(env, "DEVNAME=%s", name);
2197 if (mode)
2198 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2199 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2200 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2201 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2202 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2203 kfree(tmp);
2204 }
2205 }
2206
2207 if (dev->type && dev->type->name)
2208 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2209
2210 if (dev->driver)
2211 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2212
2213 /* Add common DT information about the device */
2214 of_device_uevent(dev, env);
2215
2216 /* have the bus specific function add its stuff */
2217 if (dev->bus && dev->bus->uevent) {
2218 retval = dev->bus->uevent(dev, env);
2219 if (retval)
2220 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2221 dev_name(dev), __func__, retval);
2222 }
2223
2224 /* have the class specific function add its stuff */
2225 if (dev->class && dev->class->dev_uevent) {
2226 retval = dev->class->dev_uevent(dev, env);
2227 if (retval)
2228 pr_debug("device: '%s': %s: class uevent() "
2229 "returned %d\n", dev_name(dev),
2230 __func__, retval);
2231 }
2232
2233 /* have the device type specific function add its stuff */
2234 if (dev->type && dev->type->uevent) {
2235 retval = dev->type->uevent(dev, env);
2236 if (retval)
2237 pr_debug("device: '%s': %s: dev_type uevent() "
2238 "returned %d\n", dev_name(dev),
2239 __func__, retval);
2240 }
2241
2242 return retval;
2243 }
2244
2245 static const struct kset_uevent_ops device_uevent_ops = {
2246 .filter = dev_uevent_filter,
2247 .name = dev_uevent_name,
2248 .uevent = dev_uevent,
2249 };
2250
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2251 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2252 char *buf)
2253 {
2254 struct kobject *top_kobj;
2255 struct kset *kset;
2256 struct kobj_uevent_env *env = NULL;
2257 int i;
2258 int len = 0;
2259 int retval;
2260
2261 /* search the kset, the device belongs to */
2262 top_kobj = &dev->kobj;
2263 while (!top_kobj->kset && top_kobj->parent)
2264 top_kobj = top_kobj->parent;
2265 if (!top_kobj->kset)
2266 goto out;
2267
2268 kset = top_kobj->kset;
2269 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2270 goto out;
2271
2272 /* respect filter */
2273 if (kset->uevent_ops && kset->uevent_ops->filter)
2274 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2275 goto out;
2276
2277 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2278 if (!env)
2279 return -ENOMEM;
2280
2281 /* let the kset specific function add its keys */
2282 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2283 if (retval)
2284 goto out;
2285
2286 /* copy keys to file */
2287 for (i = 0; i < env->envp_idx; i++)
2288 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2289 out:
2290 kfree(env);
2291 return len;
2292 }
2293
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2294 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2295 const char *buf, size_t count)
2296 {
2297 int rc;
2298
2299 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2300
2301 if (rc) {
2302 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2303 return rc;
2304 }
2305
2306 return count;
2307 }
2308 static DEVICE_ATTR_RW(uevent);
2309
online_show(struct device * dev,struct device_attribute * attr,char * buf)2310 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2311 char *buf)
2312 {
2313 bool val;
2314
2315 device_lock(dev);
2316 val = !dev->offline;
2317 device_unlock(dev);
2318 return sysfs_emit(buf, "%u\n", val);
2319 }
2320
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2321 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2322 const char *buf, size_t count)
2323 {
2324 bool val;
2325 int ret;
2326
2327 ret = strtobool(buf, &val);
2328 if (ret < 0)
2329 return ret;
2330
2331 ret = lock_device_hotplug_sysfs();
2332 if (ret)
2333 return ret;
2334
2335 ret = val ? device_online(dev) : device_offline(dev);
2336 unlock_device_hotplug();
2337 return ret < 0 ? ret : count;
2338 }
2339 static DEVICE_ATTR_RW(online);
2340
device_add_groups(struct device * dev,const struct attribute_group ** groups)2341 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2342 {
2343 return sysfs_create_groups(&dev->kobj, groups);
2344 }
2345 EXPORT_SYMBOL_GPL(device_add_groups);
2346
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2347 void device_remove_groups(struct device *dev,
2348 const struct attribute_group **groups)
2349 {
2350 sysfs_remove_groups(&dev->kobj, groups);
2351 }
2352 EXPORT_SYMBOL_GPL(device_remove_groups);
2353
2354 union device_attr_group_devres {
2355 const struct attribute_group *group;
2356 const struct attribute_group **groups;
2357 };
2358
devm_attr_group_match(struct device * dev,void * res,void * data)2359 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2360 {
2361 return ((union device_attr_group_devres *)res)->group == data;
2362 }
2363
devm_attr_group_remove(struct device * dev,void * res)2364 static void devm_attr_group_remove(struct device *dev, void *res)
2365 {
2366 union device_attr_group_devres *devres = res;
2367 const struct attribute_group *group = devres->group;
2368
2369 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2370 sysfs_remove_group(&dev->kobj, group);
2371 }
2372
devm_attr_groups_remove(struct device * dev,void * res)2373 static void devm_attr_groups_remove(struct device *dev, void *res)
2374 {
2375 union device_attr_group_devres *devres = res;
2376 const struct attribute_group **groups = devres->groups;
2377
2378 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2379 sysfs_remove_groups(&dev->kobj, groups);
2380 }
2381
2382 /**
2383 * devm_device_add_group - given a device, create a managed attribute group
2384 * @dev: The device to create the group for
2385 * @grp: The attribute group to create
2386 *
2387 * This function creates a group for the first time. It will explicitly
2388 * warn and error if any of the attribute files being created already exist.
2389 *
2390 * Returns 0 on success or error code on failure.
2391 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2392 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2393 {
2394 union device_attr_group_devres *devres;
2395 int error;
2396
2397 devres = devres_alloc(devm_attr_group_remove,
2398 sizeof(*devres), GFP_KERNEL);
2399 if (!devres)
2400 return -ENOMEM;
2401
2402 error = sysfs_create_group(&dev->kobj, grp);
2403 if (error) {
2404 devres_free(devres);
2405 return error;
2406 }
2407
2408 devres->group = grp;
2409 devres_add(dev, devres);
2410 return 0;
2411 }
2412 EXPORT_SYMBOL_GPL(devm_device_add_group);
2413
2414 /**
2415 * devm_device_remove_group: remove a managed group from a device
2416 * @dev: device to remove the group from
2417 * @grp: group to remove
2418 *
2419 * This function removes a group of attributes from a device. The attributes
2420 * previously have to have been created for this group, otherwise it will fail.
2421 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2422 void devm_device_remove_group(struct device *dev,
2423 const struct attribute_group *grp)
2424 {
2425 WARN_ON(devres_release(dev, devm_attr_group_remove,
2426 devm_attr_group_match,
2427 /* cast away const */ (void *)grp));
2428 }
2429 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2430
2431 /**
2432 * devm_device_add_groups - create a bunch of managed attribute groups
2433 * @dev: The device to create the group for
2434 * @groups: The attribute groups to create, NULL terminated
2435 *
2436 * This function creates a bunch of managed attribute groups. If an error
2437 * occurs when creating a group, all previously created groups will be
2438 * removed, unwinding everything back to the original state when this
2439 * function was called. It will explicitly warn and error if any of the
2440 * attribute files being created already exist.
2441 *
2442 * Returns 0 on success or error code from sysfs_create_group on failure.
2443 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2444 int devm_device_add_groups(struct device *dev,
2445 const struct attribute_group **groups)
2446 {
2447 union device_attr_group_devres *devres;
2448 int error;
2449
2450 devres = devres_alloc(devm_attr_groups_remove,
2451 sizeof(*devres), GFP_KERNEL);
2452 if (!devres)
2453 return -ENOMEM;
2454
2455 error = sysfs_create_groups(&dev->kobj, groups);
2456 if (error) {
2457 devres_free(devres);
2458 return error;
2459 }
2460
2461 devres->groups = groups;
2462 devres_add(dev, devres);
2463 return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2466
2467 /**
2468 * devm_device_remove_groups - remove a list of managed groups
2469 *
2470 * @dev: The device for the groups to be removed from
2471 * @groups: NULL terminated list of groups to be removed
2472 *
2473 * If groups is not NULL, remove the specified groups from the device.
2474 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2475 void devm_device_remove_groups(struct device *dev,
2476 const struct attribute_group **groups)
2477 {
2478 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2479 devm_attr_group_match,
2480 /* cast away const */ (void *)groups));
2481 }
2482 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2483
device_add_attrs(struct device * dev)2484 static int device_add_attrs(struct device *dev)
2485 {
2486 struct class *class = dev->class;
2487 const struct device_type *type = dev->type;
2488 int error;
2489
2490 if (class) {
2491 error = device_add_groups(dev, class->dev_groups);
2492 if (error)
2493 return error;
2494 }
2495
2496 if (type) {
2497 error = device_add_groups(dev, type->groups);
2498 if (error)
2499 goto err_remove_class_groups;
2500 }
2501
2502 error = device_add_groups(dev, dev->groups);
2503 if (error)
2504 goto err_remove_type_groups;
2505
2506 if (device_supports_offline(dev) && !dev->offline_disabled) {
2507 error = device_create_file(dev, &dev_attr_online);
2508 if (error)
2509 goto err_remove_dev_groups;
2510 }
2511
2512 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2513 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2514 if (error)
2515 goto err_remove_dev_online;
2516 }
2517
2518 return 0;
2519
2520 err_remove_dev_online:
2521 device_remove_file(dev, &dev_attr_online);
2522 err_remove_dev_groups:
2523 device_remove_groups(dev, dev->groups);
2524 err_remove_type_groups:
2525 if (type)
2526 device_remove_groups(dev, type->groups);
2527 err_remove_class_groups:
2528 if (class)
2529 device_remove_groups(dev, class->dev_groups);
2530
2531 return error;
2532 }
2533
device_remove_attrs(struct device * dev)2534 static void device_remove_attrs(struct device *dev)
2535 {
2536 struct class *class = dev->class;
2537 const struct device_type *type = dev->type;
2538
2539 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2540 device_remove_file(dev, &dev_attr_online);
2541 device_remove_groups(dev, dev->groups);
2542
2543 if (type)
2544 device_remove_groups(dev, type->groups);
2545
2546 if (class)
2547 device_remove_groups(dev, class->dev_groups);
2548 }
2549
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2550 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2551 char *buf)
2552 {
2553 return print_dev_t(buf, dev->devt);
2554 }
2555 static DEVICE_ATTR_RO(dev);
2556
2557 /* /sys/devices/ */
2558 struct kset *devices_kset;
2559
2560 /**
2561 * devices_kset_move_before - Move device in the devices_kset's list.
2562 * @deva: Device to move.
2563 * @devb: Device @deva should come before.
2564 */
devices_kset_move_before(struct device * deva,struct device * devb)2565 static void devices_kset_move_before(struct device *deva, struct device *devb)
2566 {
2567 if (!devices_kset)
2568 return;
2569 pr_debug("devices_kset: Moving %s before %s\n",
2570 dev_name(deva), dev_name(devb));
2571 spin_lock(&devices_kset->list_lock);
2572 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2573 spin_unlock(&devices_kset->list_lock);
2574 }
2575
2576 /**
2577 * devices_kset_move_after - Move device in the devices_kset's list.
2578 * @deva: Device to move
2579 * @devb: Device @deva should come after.
2580 */
devices_kset_move_after(struct device * deva,struct device * devb)2581 static void devices_kset_move_after(struct device *deva, struct device *devb)
2582 {
2583 if (!devices_kset)
2584 return;
2585 pr_debug("devices_kset: Moving %s after %s\n",
2586 dev_name(deva), dev_name(devb));
2587 spin_lock(&devices_kset->list_lock);
2588 list_move(&deva->kobj.entry, &devb->kobj.entry);
2589 spin_unlock(&devices_kset->list_lock);
2590 }
2591
2592 /**
2593 * devices_kset_move_last - move the device to the end of devices_kset's list.
2594 * @dev: device to move
2595 */
devices_kset_move_last(struct device * dev)2596 void devices_kset_move_last(struct device *dev)
2597 {
2598 if (!devices_kset)
2599 return;
2600 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2601 spin_lock(&devices_kset->list_lock);
2602 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2603 spin_unlock(&devices_kset->list_lock);
2604 }
2605
2606 /**
2607 * device_create_file - create sysfs attribute file for device.
2608 * @dev: device.
2609 * @attr: device attribute descriptor.
2610 */
device_create_file(struct device * dev,const struct device_attribute * attr)2611 int device_create_file(struct device *dev,
2612 const struct device_attribute *attr)
2613 {
2614 int error = 0;
2615
2616 if (dev) {
2617 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2618 "Attribute %s: write permission without 'store'\n",
2619 attr->attr.name);
2620 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2621 "Attribute %s: read permission without 'show'\n",
2622 attr->attr.name);
2623 error = sysfs_create_file(&dev->kobj, &attr->attr);
2624 }
2625
2626 return error;
2627 }
2628 EXPORT_SYMBOL_GPL(device_create_file);
2629
2630 /**
2631 * device_remove_file - remove sysfs attribute file.
2632 * @dev: device.
2633 * @attr: device attribute descriptor.
2634 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2635 void device_remove_file(struct device *dev,
2636 const struct device_attribute *attr)
2637 {
2638 if (dev)
2639 sysfs_remove_file(&dev->kobj, &attr->attr);
2640 }
2641 EXPORT_SYMBOL_GPL(device_remove_file);
2642
2643 /**
2644 * device_remove_file_self - remove sysfs attribute file from its own method.
2645 * @dev: device.
2646 * @attr: device attribute descriptor.
2647 *
2648 * See kernfs_remove_self() for details.
2649 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2650 bool device_remove_file_self(struct device *dev,
2651 const struct device_attribute *attr)
2652 {
2653 if (dev)
2654 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2655 else
2656 return false;
2657 }
2658 EXPORT_SYMBOL_GPL(device_remove_file_self);
2659
2660 /**
2661 * device_create_bin_file - create sysfs binary attribute file for device.
2662 * @dev: device.
2663 * @attr: device binary attribute descriptor.
2664 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2665 int device_create_bin_file(struct device *dev,
2666 const struct bin_attribute *attr)
2667 {
2668 int error = -EINVAL;
2669 if (dev)
2670 error = sysfs_create_bin_file(&dev->kobj, attr);
2671 return error;
2672 }
2673 EXPORT_SYMBOL_GPL(device_create_bin_file);
2674
2675 /**
2676 * device_remove_bin_file - remove sysfs binary attribute file
2677 * @dev: device.
2678 * @attr: device binary attribute descriptor.
2679 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2680 void device_remove_bin_file(struct device *dev,
2681 const struct bin_attribute *attr)
2682 {
2683 if (dev)
2684 sysfs_remove_bin_file(&dev->kobj, attr);
2685 }
2686 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2687
klist_children_get(struct klist_node * n)2688 static void klist_children_get(struct klist_node *n)
2689 {
2690 struct device_private *p = to_device_private_parent(n);
2691 struct device *dev = p->device;
2692
2693 get_device(dev);
2694 }
2695
klist_children_put(struct klist_node * n)2696 static void klist_children_put(struct klist_node *n)
2697 {
2698 struct device_private *p = to_device_private_parent(n);
2699 struct device *dev = p->device;
2700
2701 put_device(dev);
2702 }
2703
2704 /**
2705 * device_initialize - init device structure.
2706 * @dev: device.
2707 *
2708 * This prepares the device for use by other layers by initializing
2709 * its fields.
2710 * It is the first half of device_register(), if called by
2711 * that function, though it can also be called separately, so one
2712 * may use @dev's fields. In particular, get_device()/put_device()
2713 * may be used for reference counting of @dev after calling this
2714 * function.
2715 *
2716 * All fields in @dev must be initialized by the caller to 0, except
2717 * for those explicitly set to some other value. The simplest
2718 * approach is to use kzalloc() to allocate the structure containing
2719 * @dev.
2720 *
2721 * NOTE: Use put_device() to give up your reference instead of freeing
2722 * @dev directly once you have called this function.
2723 */
device_initialize(struct device * dev)2724 void device_initialize(struct device *dev)
2725 {
2726 dev->kobj.kset = devices_kset;
2727 kobject_init(&dev->kobj, &device_ktype);
2728 INIT_LIST_HEAD(&dev->dma_pools);
2729 mutex_init(&dev->mutex);
2730 #ifdef CONFIG_PROVE_LOCKING
2731 mutex_init(&dev->lockdep_mutex);
2732 #endif
2733 lockdep_set_novalidate_class(&dev->mutex);
2734 spin_lock_init(&dev->devres_lock);
2735 INIT_LIST_HEAD(&dev->devres_head);
2736 device_pm_init(dev);
2737 set_dev_node(dev, -1);
2738 #ifdef CONFIG_GENERIC_MSI_IRQ
2739 INIT_LIST_HEAD(&dev->msi_list);
2740 #endif
2741 INIT_LIST_HEAD(&dev->links.consumers);
2742 INIT_LIST_HEAD(&dev->links.suppliers);
2743 INIT_LIST_HEAD(&dev->links.defer_sync);
2744 dev->links.status = DL_DEV_NO_DRIVER;
2745 }
2746 EXPORT_SYMBOL_GPL(device_initialize);
2747
virtual_device_parent(struct device * dev)2748 struct kobject *virtual_device_parent(struct device *dev)
2749 {
2750 static struct kobject *virtual_dir = NULL;
2751
2752 if (!virtual_dir)
2753 virtual_dir = kobject_create_and_add("virtual",
2754 &devices_kset->kobj);
2755
2756 return virtual_dir;
2757 }
2758
2759 struct class_dir {
2760 struct kobject kobj;
2761 struct class *class;
2762 };
2763
2764 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2765
class_dir_release(struct kobject * kobj)2766 static void class_dir_release(struct kobject *kobj)
2767 {
2768 struct class_dir *dir = to_class_dir(kobj);
2769 kfree(dir);
2770 }
2771
2772 static const
class_dir_child_ns_type(struct kobject * kobj)2773 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2774 {
2775 struct class_dir *dir = to_class_dir(kobj);
2776 return dir->class->ns_type;
2777 }
2778
2779 static struct kobj_type class_dir_ktype = {
2780 .release = class_dir_release,
2781 .sysfs_ops = &kobj_sysfs_ops,
2782 .child_ns_type = class_dir_child_ns_type
2783 };
2784
2785 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2786 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2787 {
2788 struct class_dir *dir;
2789 int retval;
2790
2791 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2792 if (!dir)
2793 return ERR_PTR(-ENOMEM);
2794
2795 dir->class = class;
2796 kobject_init(&dir->kobj, &class_dir_ktype);
2797
2798 dir->kobj.kset = &class->p->glue_dirs;
2799
2800 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2801 if (retval < 0) {
2802 kobject_put(&dir->kobj);
2803 return ERR_PTR(retval);
2804 }
2805 return &dir->kobj;
2806 }
2807
2808 static DEFINE_MUTEX(gdp_mutex);
2809
get_device_parent(struct device * dev,struct device * parent)2810 static struct kobject *get_device_parent(struct device *dev,
2811 struct device *parent)
2812 {
2813 if (dev->class) {
2814 struct kobject *kobj = NULL;
2815 struct kobject *parent_kobj;
2816 struct kobject *k;
2817
2818 #ifdef CONFIG_BLOCK
2819 /* block disks show up in /sys/block */
2820 if (sysfs_deprecated && dev->class == &block_class) {
2821 if (parent && parent->class == &block_class)
2822 return &parent->kobj;
2823 return &block_class.p->subsys.kobj;
2824 }
2825 #endif
2826
2827 /*
2828 * If we have no parent, we live in "virtual".
2829 * Class-devices with a non class-device as parent, live
2830 * in a "glue" directory to prevent namespace collisions.
2831 */
2832 if (parent == NULL)
2833 parent_kobj = virtual_device_parent(dev);
2834 else if (parent->class && !dev->class->ns_type)
2835 return &parent->kobj;
2836 else
2837 parent_kobj = &parent->kobj;
2838
2839 mutex_lock(&gdp_mutex);
2840
2841 /* find our class-directory at the parent and reference it */
2842 spin_lock(&dev->class->p->glue_dirs.list_lock);
2843 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2844 if (k->parent == parent_kobj) {
2845 kobj = kobject_get(k);
2846 break;
2847 }
2848 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2849 if (kobj) {
2850 mutex_unlock(&gdp_mutex);
2851 return kobj;
2852 }
2853
2854 /* or create a new class-directory at the parent device */
2855 k = class_dir_create_and_add(dev->class, parent_kobj);
2856 /* do not emit an uevent for this simple "glue" directory */
2857 mutex_unlock(&gdp_mutex);
2858 return k;
2859 }
2860
2861 /* subsystems can specify a default root directory for their devices */
2862 if (!parent && dev->bus && dev->bus->dev_root)
2863 return &dev->bus->dev_root->kobj;
2864
2865 if (parent)
2866 return &parent->kobj;
2867 return NULL;
2868 }
2869
live_in_glue_dir(struct kobject * kobj,struct device * dev)2870 static inline bool live_in_glue_dir(struct kobject *kobj,
2871 struct device *dev)
2872 {
2873 if (!kobj || !dev->class ||
2874 kobj->kset != &dev->class->p->glue_dirs)
2875 return false;
2876 return true;
2877 }
2878
get_glue_dir(struct device * dev)2879 static inline struct kobject *get_glue_dir(struct device *dev)
2880 {
2881 return dev->kobj.parent;
2882 }
2883
2884 /*
2885 * make sure cleaning up dir as the last step, we need to make
2886 * sure .release handler of kobject is run with holding the
2887 * global lock
2888 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)2889 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2890 {
2891 unsigned int ref;
2892
2893 /* see if we live in a "glue" directory */
2894 if (!live_in_glue_dir(glue_dir, dev))
2895 return;
2896
2897 mutex_lock(&gdp_mutex);
2898 /**
2899 * There is a race condition between removing glue directory
2900 * and adding a new device under the glue directory.
2901 *
2902 * CPU1: CPU2:
2903 *
2904 * device_add()
2905 * get_device_parent()
2906 * class_dir_create_and_add()
2907 * kobject_add_internal()
2908 * create_dir() // create glue_dir
2909 *
2910 * device_add()
2911 * get_device_parent()
2912 * kobject_get() // get glue_dir
2913 *
2914 * device_del()
2915 * cleanup_glue_dir()
2916 * kobject_del(glue_dir)
2917 *
2918 * kobject_add()
2919 * kobject_add_internal()
2920 * create_dir() // in glue_dir
2921 * sysfs_create_dir_ns()
2922 * kernfs_create_dir_ns(sd)
2923 *
2924 * sysfs_remove_dir() // glue_dir->sd=NULL
2925 * sysfs_put() // free glue_dir->sd
2926 *
2927 * // sd is freed
2928 * kernfs_new_node(sd)
2929 * kernfs_get(glue_dir)
2930 * kernfs_add_one()
2931 * kernfs_put()
2932 *
2933 * Before CPU1 remove last child device under glue dir, if CPU2 add
2934 * a new device under glue dir, the glue_dir kobject reference count
2935 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2936 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2937 * and sysfs_put(). This result in glue_dir->sd is freed.
2938 *
2939 * Then the CPU2 will see a stale "empty" but still potentially used
2940 * glue dir around in kernfs_new_node().
2941 *
2942 * In order to avoid this happening, we also should make sure that
2943 * kernfs_node for glue_dir is released in CPU1 only when refcount
2944 * for glue_dir kobj is 1.
2945 */
2946 ref = kref_read(&glue_dir->kref);
2947 if (!kobject_has_children(glue_dir) && !--ref)
2948 kobject_del(glue_dir);
2949 kobject_put(glue_dir);
2950 mutex_unlock(&gdp_mutex);
2951 }
2952
device_add_class_symlinks(struct device * dev)2953 static int device_add_class_symlinks(struct device *dev)
2954 {
2955 struct device_node *of_node = dev_of_node(dev);
2956 int error;
2957
2958 if (of_node) {
2959 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2960 if (error)
2961 dev_warn(dev, "Error %d creating of_node link\n",error);
2962 /* An error here doesn't warrant bringing down the device */
2963 }
2964
2965 if (!dev->class)
2966 return 0;
2967
2968 error = sysfs_create_link(&dev->kobj,
2969 &dev->class->p->subsys.kobj,
2970 "subsystem");
2971 if (error)
2972 goto out_devnode;
2973
2974 if (dev->parent && device_is_not_partition(dev)) {
2975 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2976 "device");
2977 if (error)
2978 goto out_subsys;
2979 }
2980
2981 #ifdef CONFIG_BLOCK
2982 /* /sys/block has directories and does not need symlinks */
2983 if (sysfs_deprecated && dev->class == &block_class)
2984 return 0;
2985 #endif
2986
2987 /* link in the class directory pointing to the device */
2988 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2989 &dev->kobj, dev_name(dev));
2990 if (error)
2991 goto out_device;
2992
2993 return 0;
2994
2995 out_device:
2996 sysfs_remove_link(&dev->kobj, "device");
2997
2998 out_subsys:
2999 sysfs_remove_link(&dev->kobj, "subsystem");
3000 out_devnode:
3001 sysfs_remove_link(&dev->kobj, "of_node");
3002 return error;
3003 }
3004
device_remove_class_symlinks(struct device * dev)3005 static void device_remove_class_symlinks(struct device *dev)
3006 {
3007 if (dev_of_node(dev))
3008 sysfs_remove_link(&dev->kobj, "of_node");
3009
3010 if (!dev->class)
3011 return;
3012
3013 if (dev->parent && device_is_not_partition(dev))
3014 sysfs_remove_link(&dev->kobj, "device");
3015 sysfs_remove_link(&dev->kobj, "subsystem");
3016 #ifdef CONFIG_BLOCK
3017 if (sysfs_deprecated && dev->class == &block_class)
3018 return;
3019 #endif
3020 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3021 }
3022
3023 /**
3024 * dev_set_name - set a device name
3025 * @dev: device
3026 * @fmt: format string for the device's name
3027 */
dev_set_name(struct device * dev,const char * fmt,...)3028 int dev_set_name(struct device *dev, const char *fmt, ...)
3029 {
3030 va_list vargs;
3031 int err;
3032
3033 va_start(vargs, fmt);
3034 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3035 va_end(vargs);
3036 return err;
3037 }
3038 EXPORT_SYMBOL_GPL(dev_set_name);
3039
3040 /**
3041 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3042 * @dev: device
3043 *
3044 * By default we select char/ for new entries. Setting class->dev_obj
3045 * to NULL prevents an entry from being created. class->dev_kobj must
3046 * be set (or cleared) before any devices are registered to the class
3047 * otherwise device_create_sys_dev_entry() and
3048 * device_remove_sys_dev_entry() will disagree about the presence of
3049 * the link.
3050 */
device_to_dev_kobj(struct device * dev)3051 static struct kobject *device_to_dev_kobj(struct device *dev)
3052 {
3053 struct kobject *kobj;
3054
3055 if (dev->class)
3056 kobj = dev->class->dev_kobj;
3057 else
3058 kobj = sysfs_dev_char_kobj;
3059
3060 return kobj;
3061 }
3062
device_create_sys_dev_entry(struct device * dev)3063 static int device_create_sys_dev_entry(struct device *dev)
3064 {
3065 struct kobject *kobj = device_to_dev_kobj(dev);
3066 int error = 0;
3067 char devt_str[15];
3068
3069 if (kobj) {
3070 format_dev_t(devt_str, dev->devt);
3071 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3072 }
3073
3074 return error;
3075 }
3076
device_remove_sys_dev_entry(struct device * dev)3077 static void device_remove_sys_dev_entry(struct device *dev)
3078 {
3079 struct kobject *kobj = device_to_dev_kobj(dev);
3080 char devt_str[15];
3081
3082 if (kobj) {
3083 format_dev_t(devt_str, dev->devt);
3084 sysfs_remove_link(kobj, devt_str);
3085 }
3086 }
3087
device_private_init(struct device * dev)3088 static int device_private_init(struct device *dev)
3089 {
3090 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3091 if (!dev->p)
3092 return -ENOMEM;
3093 dev->p->device = dev;
3094 klist_init(&dev->p->klist_children, klist_children_get,
3095 klist_children_put);
3096 INIT_LIST_HEAD(&dev->p->deferred_probe);
3097 return 0;
3098 }
3099
3100 /**
3101 * device_add - add device to device hierarchy.
3102 * @dev: device.
3103 *
3104 * This is part 2 of device_register(), though may be called
3105 * separately _iff_ device_initialize() has been called separately.
3106 *
3107 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3108 * to the global and sibling lists for the device, then
3109 * adds it to the other relevant subsystems of the driver model.
3110 *
3111 * Do not call this routine or device_register() more than once for
3112 * any device structure. The driver model core is not designed to work
3113 * with devices that get unregistered and then spring back to life.
3114 * (Among other things, it's very hard to guarantee that all references
3115 * to the previous incarnation of @dev have been dropped.) Allocate
3116 * and register a fresh new struct device instead.
3117 *
3118 * NOTE: _Never_ directly free @dev after calling this function, even
3119 * if it returned an error! Always use put_device() to give up your
3120 * reference instead.
3121 *
3122 * Rule of thumb is: if device_add() succeeds, you should call
3123 * device_del() when you want to get rid of it. If device_add() has
3124 * *not* succeeded, use *only* put_device() to drop the reference
3125 * count.
3126 */
device_add(struct device * dev)3127 int device_add(struct device *dev)
3128 {
3129 struct device *parent;
3130 struct kobject *kobj;
3131 struct class_interface *class_intf;
3132 int error = -EINVAL;
3133 struct kobject *glue_dir = NULL;
3134
3135 dev = get_device(dev);
3136 if (!dev)
3137 goto done;
3138
3139 if (!dev->p) {
3140 error = device_private_init(dev);
3141 if (error)
3142 goto done;
3143 }
3144
3145 /*
3146 * for statically allocated devices, which should all be converted
3147 * some day, we need to initialize the name. We prevent reading back
3148 * the name, and force the use of dev_name()
3149 */
3150 if (dev->init_name) {
3151 dev_set_name(dev, "%s", dev->init_name);
3152 dev->init_name = NULL;
3153 }
3154
3155 /* subsystems can specify simple device enumeration */
3156 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3157 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3158
3159 if (!dev_name(dev)) {
3160 error = -EINVAL;
3161 goto name_error;
3162 }
3163
3164 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3165
3166 parent = get_device(dev->parent);
3167 kobj = get_device_parent(dev, parent);
3168 if (IS_ERR(kobj)) {
3169 error = PTR_ERR(kobj);
3170 goto parent_error;
3171 }
3172 if (kobj)
3173 dev->kobj.parent = kobj;
3174
3175 /* use parent numa_node */
3176 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3177 set_dev_node(dev, dev_to_node(parent));
3178
3179 /* first, register with generic layer. */
3180 /* we require the name to be set before, and pass NULL */
3181 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3182 if (error) {
3183 glue_dir = get_glue_dir(dev);
3184 goto Error;
3185 }
3186
3187 /* notify platform of device entry */
3188 error = device_platform_notify(dev, KOBJ_ADD);
3189 if (error)
3190 goto platform_error;
3191
3192 error = device_create_file(dev, &dev_attr_uevent);
3193 if (error)
3194 goto attrError;
3195
3196 error = device_add_class_symlinks(dev);
3197 if (error)
3198 goto SymlinkError;
3199 error = device_add_attrs(dev);
3200 if (error)
3201 goto AttrsError;
3202 error = bus_add_device(dev);
3203 if (error)
3204 goto BusError;
3205 error = dpm_sysfs_add(dev);
3206 if (error)
3207 goto DPMError;
3208 device_pm_add(dev);
3209
3210 if (MAJOR(dev->devt)) {
3211 error = device_create_file(dev, &dev_attr_dev);
3212 if (error)
3213 goto DevAttrError;
3214
3215 error = device_create_sys_dev_entry(dev);
3216 if (error)
3217 goto SysEntryError;
3218
3219 devtmpfs_create_node(dev);
3220 }
3221
3222 /* Notify clients of device addition. This call must come
3223 * after dpm_sysfs_add() and before kobject_uevent().
3224 */
3225 if (dev->bus)
3226 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3227 BUS_NOTIFY_ADD_DEVICE, dev);
3228
3229 kobject_uevent(&dev->kobj, KOBJ_ADD);
3230
3231 /*
3232 * Check if any of the other devices (consumers) have been waiting for
3233 * this device (supplier) to be added so that they can create a device
3234 * link to it.
3235 *
3236 * This needs to happen after device_pm_add() because device_link_add()
3237 * requires the supplier be registered before it's called.
3238 *
3239 * But this also needs to happen before bus_probe_device() to make sure
3240 * waiting consumers can link to it before the driver is bound to the
3241 * device and the driver sync_state callback is called for this device.
3242 */
3243 if (dev->fwnode && !dev->fwnode->dev) {
3244 dev->fwnode->dev = dev;
3245 fw_devlink_link_device(dev);
3246 }
3247
3248 bus_probe_device(dev);
3249 if (parent)
3250 klist_add_tail(&dev->p->knode_parent,
3251 &parent->p->klist_children);
3252
3253 if (dev->class) {
3254 mutex_lock(&dev->class->p->mutex);
3255 /* tie the class to the device */
3256 klist_add_tail(&dev->p->knode_class,
3257 &dev->class->p->klist_devices);
3258
3259 /* notify any interfaces that the device is here */
3260 list_for_each_entry(class_intf,
3261 &dev->class->p->interfaces, node)
3262 if (class_intf->add_dev)
3263 class_intf->add_dev(dev, class_intf);
3264 mutex_unlock(&dev->class->p->mutex);
3265 }
3266 done:
3267 put_device(dev);
3268 return error;
3269 SysEntryError:
3270 if (MAJOR(dev->devt))
3271 device_remove_file(dev, &dev_attr_dev);
3272 DevAttrError:
3273 device_pm_remove(dev);
3274 dpm_sysfs_remove(dev);
3275 DPMError:
3276 bus_remove_device(dev);
3277 BusError:
3278 device_remove_attrs(dev);
3279 AttrsError:
3280 device_remove_class_symlinks(dev);
3281 SymlinkError:
3282 device_remove_file(dev, &dev_attr_uevent);
3283 attrError:
3284 device_platform_notify(dev, KOBJ_REMOVE);
3285 platform_error:
3286 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3287 glue_dir = get_glue_dir(dev);
3288 kobject_del(&dev->kobj);
3289 Error:
3290 cleanup_glue_dir(dev, glue_dir);
3291 parent_error:
3292 put_device(parent);
3293 name_error:
3294 kfree(dev->p);
3295 dev->p = NULL;
3296 goto done;
3297 }
3298 EXPORT_SYMBOL_GPL(device_add);
3299
3300 /**
3301 * device_register - register a device with the system.
3302 * @dev: pointer to the device structure
3303 *
3304 * This happens in two clean steps - initialize the device
3305 * and add it to the system. The two steps can be called
3306 * separately, but this is the easiest and most common.
3307 * I.e. you should only call the two helpers separately if
3308 * have a clearly defined need to use and refcount the device
3309 * before it is added to the hierarchy.
3310 *
3311 * For more information, see the kerneldoc for device_initialize()
3312 * and device_add().
3313 *
3314 * NOTE: _Never_ directly free @dev after calling this function, even
3315 * if it returned an error! Always use put_device() to give up the
3316 * reference initialized in this function instead.
3317 */
device_register(struct device * dev)3318 int device_register(struct device *dev)
3319 {
3320 device_initialize(dev);
3321 return device_add(dev);
3322 }
3323 EXPORT_SYMBOL_GPL(device_register);
3324
3325 /**
3326 * get_device - increment reference count for device.
3327 * @dev: device.
3328 *
3329 * This simply forwards the call to kobject_get(), though
3330 * we do take care to provide for the case that we get a NULL
3331 * pointer passed in.
3332 */
get_device(struct device * dev)3333 struct device *get_device(struct device *dev)
3334 {
3335 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3336 }
3337 EXPORT_SYMBOL_GPL(get_device);
3338
3339 /**
3340 * put_device - decrement reference count.
3341 * @dev: device in question.
3342 */
put_device(struct device * dev)3343 void put_device(struct device *dev)
3344 {
3345 /* might_sleep(); */
3346 if (dev)
3347 kobject_put(&dev->kobj);
3348 }
3349 EXPORT_SYMBOL_GPL(put_device);
3350
kill_device(struct device * dev)3351 bool kill_device(struct device *dev)
3352 {
3353 /*
3354 * Require the device lock and set the "dead" flag to guarantee that
3355 * the update behavior is consistent with the other bitfields near
3356 * it and that we cannot have an asynchronous probe routine trying
3357 * to run while we are tearing out the bus/class/sysfs from
3358 * underneath the device.
3359 */
3360 lockdep_assert_held(&dev->mutex);
3361
3362 if (dev->p->dead)
3363 return false;
3364 dev->p->dead = true;
3365 return true;
3366 }
3367 EXPORT_SYMBOL_GPL(kill_device);
3368
3369 /**
3370 * device_del - delete device from system.
3371 * @dev: device.
3372 *
3373 * This is the first part of the device unregistration
3374 * sequence. This removes the device from the lists we control
3375 * from here, has it removed from the other driver model
3376 * subsystems it was added to in device_add(), and removes it
3377 * from the kobject hierarchy.
3378 *
3379 * NOTE: this should be called manually _iff_ device_add() was
3380 * also called manually.
3381 */
device_del(struct device * dev)3382 void device_del(struct device *dev)
3383 {
3384 struct device *parent = dev->parent;
3385 struct kobject *glue_dir = NULL;
3386 struct class_interface *class_intf;
3387 unsigned int noio_flag;
3388
3389 device_lock(dev);
3390 kill_device(dev);
3391 device_unlock(dev);
3392
3393 if (dev->fwnode && dev->fwnode->dev == dev)
3394 dev->fwnode->dev = NULL;
3395
3396 /* Notify clients of device removal. This call must come
3397 * before dpm_sysfs_remove().
3398 */
3399 noio_flag = memalloc_noio_save();
3400 if (dev->bus)
3401 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3402 BUS_NOTIFY_DEL_DEVICE, dev);
3403
3404 dpm_sysfs_remove(dev);
3405 if (parent)
3406 klist_del(&dev->p->knode_parent);
3407 if (MAJOR(dev->devt)) {
3408 devtmpfs_delete_node(dev);
3409 device_remove_sys_dev_entry(dev);
3410 device_remove_file(dev, &dev_attr_dev);
3411 }
3412 if (dev->class) {
3413 device_remove_class_symlinks(dev);
3414
3415 mutex_lock(&dev->class->p->mutex);
3416 /* notify any interfaces that the device is now gone */
3417 list_for_each_entry(class_intf,
3418 &dev->class->p->interfaces, node)
3419 if (class_intf->remove_dev)
3420 class_intf->remove_dev(dev, class_intf);
3421 /* remove the device from the class list */
3422 klist_del(&dev->p->knode_class);
3423 mutex_unlock(&dev->class->p->mutex);
3424 }
3425 device_remove_file(dev, &dev_attr_uevent);
3426 device_remove_attrs(dev);
3427 bus_remove_device(dev);
3428 device_pm_remove(dev);
3429 driver_deferred_probe_del(dev);
3430 device_platform_notify(dev, KOBJ_REMOVE);
3431 device_remove_properties(dev);
3432 device_links_purge(dev);
3433
3434 if (dev->bus)
3435 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3436 BUS_NOTIFY_REMOVED_DEVICE, dev);
3437 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3438 glue_dir = get_glue_dir(dev);
3439 kobject_del(&dev->kobj);
3440 cleanup_glue_dir(dev, glue_dir);
3441 memalloc_noio_restore(noio_flag);
3442 put_device(parent);
3443 }
3444 EXPORT_SYMBOL_GPL(device_del);
3445
3446 /**
3447 * device_unregister - unregister device from system.
3448 * @dev: device going away.
3449 *
3450 * We do this in two parts, like we do device_register(). First,
3451 * we remove it from all the subsystems with device_del(), then
3452 * we decrement the reference count via put_device(). If that
3453 * is the final reference count, the device will be cleaned up
3454 * via device_release() above. Otherwise, the structure will
3455 * stick around until the final reference to the device is dropped.
3456 */
device_unregister(struct device * dev)3457 void device_unregister(struct device *dev)
3458 {
3459 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3460 device_del(dev);
3461 put_device(dev);
3462 }
3463 EXPORT_SYMBOL_GPL(device_unregister);
3464
prev_device(struct klist_iter * i)3465 static struct device *prev_device(struct klist_iter *i)
3466 {
3467 struct klist_node *n = klist_prev(i);
3468 struct device *dev = NULL;
3469 struct device_private *p;
3470
3471 if (n) {
3472 p = to_device_private_parent(n);
3473 dev = p->device;
3474 }
3475 return dev;
3476 }
3477
next_device(struct klist_iter * i)3478 static struct device *next_device(struct klist_iter *i)
3479 {
3480 struct klist_node *n = klist_next(i);
3481 struct device *dev = NULL;
3482 struct device_private *p;
3483
3484 if (n) {
3485 p = to_device_private_parent(n);
3486 dev = p->device;
3487 }
3488 return dev;
3489 }
3490
3491 /**
3492 * device_get_devnode - path of device node file
3493 * @dev: device
3494 * @mode: returned file access mode
3495 * @uid: returned file owner
3496 * @gid: returned file group
3497 * @tmp: possibly allocated string
3498 *
3499 * Return the relative path of a possible device node.
3500 * Non-default names may need to allocate a memory to compose
3501 * a name. This memory is returned in tmp and needs to be
3502 * freed by the caller.
3503 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3504 const char *device_get_devnode(struct device *dev,
3505 umode_t *mode, kuid_t *uid, kgid_t *gid,
3506 const char **tmp)
3507 {
3508 char *s;
3509
3510 *tmp = NULL;
3511
3512 /* the device type may provide a specific name */
3513 if (dev->type && dev->type->devnode)
3514 *tmp = dev->type->devnode(dev, mode, uid, gid);
3515 if (*tmp)
3516 return *tmp;
3517
3518 /* the class may provide a specific name */
3519 if (dev->class && dev->class->devnode)
3520 *tmp = dev->class->devnode(dev, mode);
3521 if (*tmp)
3522 return *tmp;
3523
3524 /* return name without allocation, tmp == NULL */
3525 if (strchr(dev_name(dev), '!') == NULL)
3526 return dev_name(dev);
3527
3528 /* replace '!' in the name with '/' */
3529 s = kstrdup(dev_name(dev), GFP_KERNEL);
3530 if (!s)
3531 return NULL;
3532 strreplace(s, '!', '/');
3533 return *tmp = s;
3534 }
3535
3536 /**
3537 * device_for_each_child - device child iterator.
3538 * @parent: parent struct device.
3539 * @fn: function to be called for each device.
3540 * @data: data for the callback.
3541 *
3542 * Iterate over @parent's child devices, and call @fn for each,
3543 * passing it @data.
3544 *
3545 * We check the return of @fn each time. If it returns anything
3546 * other than 0, we break out and return that value.
3547 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3548 int device_for_each_child(struct device *parent, void *data,
3549 int (*fn)(struct device *dev, void *data))
3550 {
3551 struct klist_iter i;
3552 struct device *child;
3553 int error = 0;
3554
3555 if (!parent->p)
3556 return 0;
3557
3558 klist_iter_init(&parent->p->klist_children, &i);
3559 while (!error && (child = next_device(&i)))
3560 error = fn(child, data);
3561 klist_iter_exit(&i);
3562 return error;
3563 }
3564 EXPORT_SYMBOL_GPL(device_for_each_child);
3565
3566 /**
3567 * device_for_each_child_reverse - device child iterator in reversed order.
3568 * @parent: parent struct device.
3569 * @fn: function to be called for each device.
3570 * @data: data for the callback.
3571 *
3572 * Iterate over @parent's child devices, and call @fn for each,
3573 * passing it @data.
3574 *
3575 * We check the return of @fn each time. If it returns anything
3576 * other than 0, we break out and return that value.
3577 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3578 int device_for_each_child_reverse(struct device *parent, void *data,
3579 int (*fn)(struct device *dev, void *data))
3580 {
3581 struct klist_iter i;
3582 struct device *child;
3583 int error = 0;
3584
3585 if (!parent->p)
3586 return 0;
3587
3588 klist_iter_init(&parent->p->klist_children, &i);
3589 while ((child = prev_device(&i)) && !error)
3590 error = fn(child, data);
3591 klist_iter_exit(&i);
3592 return error;
3593 }
3594 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3595
3596 /**
3597 * device_find_child - device iterator for locating a particular device.
3598 * @parent: parent struct device
3599 * @match: Callback function to check device
3600 * @data: Data to pass to match function
3601 *
3602 * This is similar to the device_for_each_child() function above, but it
3603 * returns a reference to a device that is 'found' for later use, as
3604 * determined by the @match callback.
3605 *
3606 * The callback should return 0 if the device doesn't match and non-zero
3607 * if it does. If the callback returns non-zero and a reference to the
3608 * current device can be obtained, this function will return to the caller
3609 * and not iterate over any more devices.
3610 *
3611 * NOTE: you will need to drop the reference with put_device() after use.
3612 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3613 struct device *device_find_child(struct device *parent, void *data,
3614 int (*match)(struct device *dev, void *data))
3615 {
3616 struct klist_iter i;
3617 struct device *child;
3618
3619 if (!parent)
3620 return NULL;
3621
3622 klist_iter_init(&parent->p->klist_children, &i);
3623 while ((child = next_device(&i)))
3624 if (match(child, data) && get_device(child))
3625 break;
3626 klist_iter_exit(&i);
3627 return child;
3628 }
3629 EXPORT_SYMBOL_GPL(device_find_child);
3630
3631 /**
3632 * device_find_child_by_name - device iterator for locating a child device.
3633 * @parent: parent struct device
3634 * @name: name of the child device
3635 *
3636 * This is similar to the device_find_child() function above, but it
3637 * returns a reference to a device that has the name @name.
3638 *
3639 * NOTE: you will need to drop the reference with put_device() after use.
3640 */
device_find_child_by_name(struct device * parent,const char * name)3641 struct device *device_find_child_by_name(struct device *parent,
3642 const char *name)
3643 {
3644 struct klist_iter i;
3645 struct device *child;
3646
3647 if (!parent)
3648 return NULL;
3649
3650 klist_iter_init(&parent->p->klist_children, &i);
3651 while ((child = next_device(&i)))
3652 if (sysfs_streq(dev_name(child), name) && get_device(child))
3653 break;
3654 klist_iter_exit(&i);
3655 return child;
3656 }
3657 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3658
devices_init(void)3659 int __init devices_init(void)
3660 {
3661 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3662 if (!devices_kset)
3663 return -ENOMEM;
3664 dev_kobj = kobject_create_and_add("dev", NULL);
3665 if (!dev_kobj)
3666 goto dev_kobj_err;
3667 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3668 if (!sysfs_dev_block_kobj)
3669 goto block_kobj_err;
3670 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3671 if (!sysfs_dev_char_kobj)
3672 goto char_kobj_err;
3673
3674 return 0;
3675
3676 char_kobj_err:
3677 kobject_put(sysfs_dev_block_kobj);
3678 block_kobj_err:
3679 kobject_put(dev_kobj);
3680 dev_kobj_err:
3681 kset_unregister(devices_kset);
3682 return -ENOMEM;
3683 }
3684
device_check_offline(struct device * dev,void * not_used)3685 static int device_check_offline(struct device *dev, void *not_used)
3686 {
3687 int ret;
3688
3689 ret = device_for_each_child(dev, NULL, device_check_offline);
3690 if (ret)
3691 return ret;
3692
3693 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3694 }
3695
3696 /**
3697 * device_offline - Prepare the device for hot-removal.
3698 * @dev: Device to be put offline.
3699 *
3700 * Execute the device bus type's .offline() callback, if present, to prepare
3701 * the device for a subsequent hot-removal. If that succeeds, the device must
3702 * not be used until either it is removed or its bus type's .online() callback
3703 * is executed.
3704 *
3705 * Call under device_hotplug_lock.
3706 */
device_offline(struct device * dev)3707 int device_offline(struct device *dev)
3708 {
3709 int ret;
3710
3711 if (dev->offline_disabled)
3712 return -EPERM;
3713
3714 ret = device_for_each_child(dev, NULL, device_check_offline);
3715 if (ret)
3716 return ret;
3717
3718 device_lock(dev);
3719 if (device_supports_offline(dev)) {
3720 if (dev->offline) {
3721 ret = 1;
3722 } else {
3723 ret = dev->bus->offline(dev);
3724 if (!ret) {
3725 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3726 dev->offline = true;
3727 }
3728 }
3729 }
3730 device_unlock(dev);
3731
3732 return ret;
3733 }
3734
3735 /**
3736 * device_online - Put the device back online after successful device_offline().
3737 * @dev: Device to be put back online.
3738 *
3739 * If device_offline() has been successfully executed for @dev, but the device
3740 * has not been removed subsequently, execute its bus type's .online() callback
3741 * to indicate that the device can be used again.
3742 *
3743 * Call under device_hotplug_lock.
3744 */
device_online(struct device * dev)3745 int device_online(struct device *dev)
3746 {
3747 int ret = 0;
3748
3749 device_lock(dev);
3750 if (device_supports_offline(dev)) {
3751 if (dev->offline) {
3752 ret = dev->bus->online(dev);
3753 if (!ret) {
3754 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3755 dev->offline = false;
3756 }
3757 } else {
3758 ret = 1;
3759 }
3760 }
3761 device_unlock(dev);
3762
3763 return ret;
3764 }
3765
3766 struct root_device {
3767 struct device dev;
3768 struct module *owner;
3769 };
3770
to_root_device(struct device * d)3771 static inline struct root_device *to_root_device(struct device *d)
3772 {
3773 return container_of(d, struct root_device, dev);
3774 }
3775
root_device_release(struct device * dev)3776 static void root_device_release(struct device *dev)
3777 {
3778 kfree(to_root_device(dev));
3779 }
3780
3781 /**
3782 * __root_device_register - allocate and register a root device
3783 * @name: root device name
3784 * @owner: owner module of the root device, usually THIS_MODULE
3785 *
3786 * This function allocates a root device and registers it
3787 * using device_register(). In order to free the returned
3788 * device, use root_device_unregister().
3789 *
3790 * Root devices are dummy devices which allow other devices
3791 * to be grouped under /sys/devices. Use this function to
3792 * allocate a root device and then use it as the parent of
3793 * any device which should appear under /sys/devices/{name}
3794 *
3795 * The /sys/devices/{name} directory will also contain a
3796 * 'module' symlink which points to the @owner directory
3797 * in sysfs.
3798 *
3799 * Returns &struct device pointer on success, or ERR_PTR() on error.
3800 *
3801 * Note: You probably want to use root_device_register().
3802 */
__root_device_register(const char * name,struct module * owner)3803 struct device *__root_device_register(const char *name, struct module *owner)
3804 {
3805 struct root_device *root;
3806 int err = -ENOMEM;
3807
3808 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3809 if (!root)
3810 return ERR_PTR(err);
3811
3812 err = dev_set_name(&root->dev, "%s", name);
3813 if (err) {
3814 kfree(root);
3815 return ERR_PTR(err);
3816 }
3817
3818 root->dev.release = root_device_release;
3819
3820 err = device_register(&root->dev);
3821 if (err) {
3822 put_device(&root->dev);
3823 return ERR_PTR(err);
3824 }
3825
3826 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3827 if (owner) {
3828 struct module_kobject *mk = &owner->mkobj;
3829
3830 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3831 if (err) {
3832 device_unregister(&root->dev);
3833 return ERR_PTR(err);
3834 }
3835 root->owner = owner;
3836 }
3837 #endif
3838
3839 return &root->dev;
3840 }
3841 EXPORT_SYMBOL_GPL(__root_device_register);
3842
3843 /**
3844 * root_device_unregister - unregister and free a root device
3845 * @dev: device going away
3846 *
3847 * This function unregisters and cleans up a device that was created by
3848 * root_device_register().
3849 */
root_device_unregister(struct device * dev)3850 void root_device_unregister(struct device *dev)
3851 {
3852 struct root_device *root = to_root_device(dev);
3853
3854 if (root->owner)
3855 sysfs_remove_link(&root->dev.kobj, "module");
3856
3857 device_unregister(dev);
3858 }
3859 EXPORT_SYMBOL_GPL(root_device_unregister);
3860
3861
device_create_release(struct device * dev)3862 static void device_create_release(struct device *dev)
3863 {
3864 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3865 kfree(dev);
3866 }
3867
3868 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)3869 device_create_groups_vargs(struct class *class, struct device *parent,
3870 dev_t devt, void *drvdata,
3871 const struct attribute_group **groups,
3872 const char *fmt, va_list args)
3873 {
3874 struct device *dev = NULL;
3875 int retval = -ENODEV;
3876
3877 if (class == NULL || IS_ERR(class))
3878 goto error;
3879
3880 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3881 if (!dev) {
3882 retval = -ENOMEM;
3883 goto error;
3884 }
3885
3886 device_initialize(dev);
3887 dev->devt = devt;
3888 dev->class = class;
3889 dev->parent = parent;
3890 dev->groups = groups;
3891 dev->release = device_create_release;
3892 dev_set_drvdata(dev, drvdata);
3893
3894 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3895 if (retval)
3896 goto error;
3897
3898 retval = device_add(dev);
3899 if (retval)
3900 goto error;
3901
3902 return dev;
3903
3904 error:
3905 put_device(dev);
3906 return ERR_PTR(retval);
3907 }
3908
3909 /**
3910 * device_create - creates a device and registers it with sysfs
3911 * @class: pointer to the struct class that this device should be registered to
3912 * @parent: pointer to the parent struct device of this new device, if any
3913 * @devt: the dev_t for the char device to be added
3914 * @drvdata: the data to be added to the device for callbacks
3915 * @fmt: string for the device's name
3916 *
3917 * This function can be used by char device classes. A struct device
3918 * will be created in sysfs, registered to the specified class.
3919 *
3920 * A "dev" file will be created, showing the dev_t for the device, if
3921 * the dev_t is not 0,0.
3922 * If a pointer to a parent struct device is passed in, the newly created
3923 * struct device will be a child of that device in sysfs.
3924 * The pointer to the struct device will be returned from the call.
3925 * Any further sysfs files that might be required can be created using this
3926 * pointer.
3927 *
3928 * Returns &struct device pointer on success, or ERR_PTR() on error.
3929 *
3930 * Note: the struct class passed to this function must have previously
3931 * been created with a call to class_create().
3932 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)3933 struct device *device_create(struct class *class, struct device *parent,
3934 dev_t devt, void *drvdata, const char *fmt, ...)
3935 {
3936 va_list vargs;
3937 struct device *dev;
3938
3939 va_start(vargs, fmt);
3940 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3941 fmt, vargs);
3942 va_end(vargs);
3943 return dev;
3944 }
3945 EXPORT_SYMBOL_GPL(device_create);
3946
3947 /**
3948 * device_create_with_groups - creates a device and registers it with sysfs
3949 * @class: pointer to the struct class that this device should be registered to
3950 * @parent: pointer to the parent struct device of this new device, if any
3951 * @devt: the dev_t for the char device to be added
3952 * @drvdata: the data to be added to the device for callbacks
3953 * @groups: NULL-terminated list of attribute groups to be created
3954 * @fmt: string for the device's name
3955 *
3956 * This function can be used by char device classes. A struct device
3957 * will be created in sysfs, registered to the specified class.
3958 * Additional attributes specified in the groups parameter will also
3959 * be created automatically.
3960 *
3961 * A "dev" file will be created, showing the dev_t for the device, if
3962 * the dev_t is not 0,0.
3963 * If a pointer to a parent struct device is passed in, the newly created
3964 * struct device will be a child of that device in sysfs.
3965 * The pointer to the struct device will be returned from the call.
3966 * Any further sysfs files that might be required can be created using this
3967 * pointer.
3968 *
3969 * Returns &struct device pointer on success, or ERR_PTR() on error.
3970 *
3971 * Note: the struct class passed to this function must have previously
3972 * been created with a call to class_create().
3973 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)3974 struct device *device_create_with_groups(struct class *class,
3975 struct device *parent, dev_t devt,
3976 void *drvdata,
3977 const struct attribute_group **groups,
3978 const char *fmt, ...)
3979 {
3980 va_list vargs;
3981 struct device *dev;
3982
3983 va_start(vargs, fmt);
3984 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3985 fmt, vargs);
3986 va_end(vargs);
3987 return dev;
3988 }
3989 EXPORT_SYMBOL_GPL(device_create_with_groups);
3990
3991 /**
3992 * device_destroy - removes a device that was created with device_create()
3993 * @class: pointer to the struct class that this device was registered with
3994 * @devt: the dev_t of the device that was previously registered
3995 *
3996 * This call unregisters and cleans up a device that was created with a
3997 * call to device_create().
3998 */
device_destroy(struct class * class,dev_t devt)3999 void device_destroy(struct class *class, dev_t devt)
4000 {
4001 struct device *dev;
4002
4003 dev = class_find_device_by_devt(class, devt);
4004 if (dev) {
4005 put_device(dev);
4006 device_unregister(dev);
4007 }
4008 }
4009 EXPORT_SYMBOL_GPL(device_destroy);
4010
4011 /**
4012 * device_rename - renames a device
4013 * @dev: the pointer to the struct device to be renamed
4014 * @new_name: the new name of the device
4015 *
4016 * It is the responsibility of the caller to provide mutual
4017 * exclusion between two different calls of device_rename
4018 * on the same device to ensure that new_name is valid and
4019 * won't conflict with other devices.
4020 *
4021 * Note: Don't call this function. Currently, the networking layer calls this
4022 * function, but that will change. The following text from Kay Sievers offers
4023 * some insight:
4024 *
4025 * Renaming devices is racy at many levels, symlinks and other stuff are not
4026 * replaced atomically, and you get a "move" uevent, but it's not easy to
4027 * connect the event to the old and new device. Device nodes are not renamed at
4028 * all, there isn't even support for that in the kernel now.
4029 *
4030 * In the meantime, during renaming, your target name might be taken by another
4031 * driver, creating conflicts. Or the old name is taken directly after you
4032 * renamed it -- then you get events for the same DEVPATH, before you even see
4033 * the "move" event. It's just a mess, and nothing new should ever rely on
4034 * kernel device renaming. Besides that, it's not even implemented now for
4035 * other things than (driver-core wise very simple) network devices.
4036 *
4037 * We are currently about to change network renaming in udev to completely
4038 * disallow renaming of devices in the same namespace as the kernel uses,
4039 * because we can't solve the problems properly, that arise with swapping names
4040 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4041 * be allowed to some other name than eth[0-9]*, for the aforementioned
4042 * reasons.
4043 *
4044 * Make up a "real" name in the driver before you register anything, or add
4045 * some other attributes for userspace to find the device, or use udev to add
4046 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4047 * don't even want to get into that and try to implement the missing pieces in
4048 * the core. We really have other pieces to fix in the driver core mess. :)
4049 */
device_rename(struct device * dev,const char * new_name)4050 int device_rename(struct device *dev, const char *new_name)
4051 {
4052 struct kobject *kobj = &dev->kobj;
4053 char *old_device_name = NULL;
4054 int error;
4055
4056 dev = get_device(dev);
4057 if (!dev)
4058 return -EINVAL;
4059
4060 dev_dbg(dev, "renaming to %s\n", new_name);
4061
4062 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4063 if (!old_device_name) {
4064 error = -ENOMEM;
4065 goto out;
4066 }
4067
4068 if (dev->class) {
4069 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4070 kobj, old_device_name,
4071 new_name, kobject_namespace(kobj));
4072 if (error)
4073 goto out;
4074 }
4075
4076 error = kobject_rename(kobj, new_name);
4077 if (error)
4078 goto out;
4079
4080 out:
4081 put_device(dev);
4082
4083 kfree(old_device_name);
4084
4085 return error;
4086 }
4087 EXPORT_SYMBOL_GPL(device_rename);
4088
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4089 static int device_move_class_links(struct device *dev,
4090 struct device *old_parent,
4091 struct device *new_parent)
4092 {
4093 int error = 0;
4094
4095 if (old_parent)
4096 sysfs_remove_link(&dev->kobj, "device");
4097 if (new_parent)
4098 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4099 "device");
4100 return error;
4101 }
4102
4103 /**
4104 * device_move - moves a device to a new parent
4105 * @dev: the pointer to the struct device to be moved
4106 * @new_parent: the new parent of the device (can be NULL)
4107 * @dpm_order: how to reorder the dpm_list
4108 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4109 int device_move(struct device *dev, struct device *new_parent,
4110 enum dpm_order dpm_order)
4111 {
4112 int error;
4113 struct device *old_parent;
4114 struct kobject *new_parent_kobj;
4115
4116 dev = get_device(dev);
4117 if (!dev)
4118 return -EINVAL;
4119
4120 device_pm_lock();
4121 new_parent = get_device(new_parent);
4122 new_parent_kobj = get_device_parent(dev, new_parent);
4123 if (IS_ERR(new_parent_kobj)) {
4124 error = PTR_ERR(new_parent_kobj);
4125 put_device(new_parent);
4126 goto out;
4127 }
4128
4129 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4130 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4131 error = kobject_move(&dev->kobj, new_parent_kobj);
4132 if (error) {
4133 cleanup_glue_dir(dev, new_parent_kobj);
4134 put_device(new_parent);
4135 goto out;
4136 }
4137 old_parent = dev->parent;
4138 dev->parent = new_parent;
4139 if (old_parent)
4140 klist_remove(&dev->p->knode_parent);
4141 if (new_parent) {
4142 klist_add_tail(&dev->p->knode_parent,
4143 &new_parent->p->klist_children);
4144 set_dev_node(dev, dev_to_node(new_parent));
4145 }
4146
4147 if (dev->class) {
4148 error = device_move_class_links(dev, old_parent, new_parent);
4149 if (error) {
4150 /* We ignore errors on cleanup since we're hosed anyway... */
4151 device_move_class_links(dev, new_parent, old_parent);
4152 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4153 if (new_parent)
4154 klist_remove(&dev->p->knode_parent);
4155 dev->parent = old_parent;
4156 if (old_parent) {
4157 klist_add_tail(&dev->p->knode_parent,
4158 &old_parent->p->klist_children);
4159 set_dev_node(dev, dev_to_node(old_parent));
4160 }
4161 }
4162 cleanup_glue_dir(dev, new_parent_kobj);
4163 put_device(new_parent);
4164 goto out;
4165 }
4166 }
4167 switch (dpm_order) {
4168 case DPM_ORDER_NONE:
4169 break;
4170 case DPM_ORDER_DEV_AFTER_PARENT:
4171 device_pm_move_after(dev, new_parent);
4172 devices_kset_move_after(dev, new_parent);
4173 break;
4174 case DPM_ORDER_PARENT_BEFORE_DEV:
4175 device_pm_move_before(new_parent, dev);
4176 devices_kset_move_before(new_parent, dev);
4177 break;
4178 case DPM_ORDER_DEV_LAST:
4179 device_pm_move_last(dev);
4180 devices_kset_move_last(dev);
4181 break;
4182 }
4183
4184 put_device(old_parent);
4185 out:
4186 device_pm_unlock();
4187 put_device(dev);
4188 return error;
4189 }
4190 EXPORT_SYMBOL_GPL(device_move);
4191
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4192 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4193 kgid_t kgid)
4194 {
4195 struct kobject *kobj = &dev->kobj;
4196 struct class *class = dev->class;
4197 const struct device_type *type = dev->type;
4198 int error;
4199
4200 if (class) {
4201 /*
4202 * Change the device groups of the device class for @dev to
4203 * @kuid/@kgid.
4204 */
4205 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4206 kgid);
4207 if (error)
4208 return error;
4209 }
4210
4211 if (type) {
4212 /*
4213 * Change the device groups of the device type for @dev to
4214 * @kuid/@kgid.
4215 */
4216 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4217 kgid);
4218 if (error)
4219 return error;
4220 }
4221
4222 /* Change the device groups of @dev to @kuid/@kgid. */
4223 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4224 if (error)
4225 return error;
4226
4227 if (device_supports_offline(dev) && !dev->offline_disabled) {
4228 /* Change online device attributes of @dev to @kuid/@kgid. */
4229 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4230 kuid, kgid);
4231 if (error)
4232 return error;
4233 }
4234
4235 return 0;
4236 }
4237
4238 /**
4239 * device_change_owner - change the owner of an existing device.
4240 * @dev: device.
4241 * @kuid: new owner's kuid
4242 * @kgid: new owner's kgid
4243 *
4244 * This changes the owner of @dev and its corresponding sysfs entries to
4245 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4246 * core.
4247 *
4248 * Returns 0 on success or error code on failure.
4249 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4250 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4251 {
4252 int error;
4253 struct kobject *kobj = &dev->kobj;
4254
4255 dev = get_device(dev);
4256 if (!dev)
4257 return -EINVAL;
4258
4259 /*
4260 * Change the kobject and the default attributes and groups of the
4261 * ktype associated with it to @kuid/@kgid.
4262 */
4263 error = sysfs_change_owner(kobj, kuid, kgid);
4264 if (error)
4265 goto out;
4266
4267 /*
4268 * Change the uevent file for @dev to the new owner. The uevent file
4269 * was created in a separate step when @dev got added and we mirror
4270 * that step here.
4271 */
4272 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4273 kgid);
4274 if (error)
4275 goto out;
4276
4277 /*
4278 * Change the device groups, the device groups associated with the
4279 * device class, and the groups associated with the device type of @dev
4280 * to @kuid/@kgid.
4281 */
4282 error = device_attrs_change_owner(dev, kuid, kgid);
4283 if (error)
4284 goto out;
4285
4286 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4287 if (error)
4288 goto out;
4289
4290 #ifdef CONFIG_BLOCK
4291 if (sysfs_deprecated && dev->class == &block_class)
4292 goto out;
4293 #endif
4294
4295 /*
4296 * Change the owner of the symlink located in the class directory of
4297 * the device class associated with @dev which points to the actual
4298 * directory entry for @dev to @kuid/@kgid. This ensures that the
4299 * symlink shows the same permissions as its target.
4300 */
4301 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4302 dev_name(dev), kuid, kgid);
4303 if (error)
4304 goto out;
4305
4306 out:
4307 put_device(dev);
4308 return error;
4309 }
4310 EXPORT_SYMBOL_GPL(device_change_owner);
4311
4312 /**
4313 * device_shutdown - call ->shutdown() on each device to shutdown.
4314 */
device_shutdown(void)4315 void device_shutdown(void)
4316 {
4317 struct device *dev, *parent;
4318
4319 wait_for_device_probe();
4320 device_block_probing();
4321
4322 cpufreq_suspend();
4323
4324 spin_lock(&devices_kset->list_lock);
4325 /*
4326 * Walk the devices list backward, shutting down each in turn.
4327 * Beware that device unplug events may also start pulling
4328 * devices offline, even as the system is shutting down.
4329 */
4330 while (!list_empty(&devices_kset->list)) {
4331 dev = list_entry(devices_kset->list.prev, struct device,
4332 kobj.entry);
4333
4334 /*
4335 * hold reference count of device's parent to
4336 * prevent it from being freed because parent's
4337 * lock is to be held
4338 */
4339 parent = get_device(dev->parent);
4340 get_device(dev);
4341 /*
4342 * Make sure the device is off the kset list, in the
4343 * event that dev->*->shutdown() doesn't remove it.
4344 */
4345 list_del_init(&dev->kobj.entry);
4346 spin_unlock(&devices_kset->list_lock);
4347
4348 /* hold lock to avoid race with probe/release */
4349 if (parent)
4350 device_lock(parent);
4351 device_lock(dev);
4352
4353 /* Don't allow any more runtime suspends */
4354 pm_runtime_get_noresume(dev);
4355 pm_runtime_barrier(dev);
4356
4357 if (dev->class && dev->class->shutdown_pre) {
4358 if (initcall_debug)
4359 dev_info(dev, "shutdown_pre\n");
4360 dev->class->shutdown_pre(dev);
4361 }
4362 if (dev->bus && dev->bus->shutdown) {
4363 if (initcall_debug)
4364 dev_info(dev, "shutdown\n");
4365 dev->bus->shutdown(dev);
4366 } else if (dev->driver && dev->driver->shutdown) {
4367 if (initcall_debug)
4368 dev_info(dev, "shutdown\n");
4369 dev->driver->shutdown(dev);
4370 }
4371
4372 device_unlock(dev);
4373 if (parent)
4374 device_unlock(parent);
4375
4376 put_device(dev);
4377 put_device(parent);
4378
4379 spin_lock(&devices_kset->list_lock);
4380 }
4381 spin_unlock(&devices_kset->list_lock);
4382 }
4383
4384 /*
4385 * Device logging functions
4386 */
4387
4388 #ifdef CONFIG_PRINTK
4389 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4390 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4391 {
4392 const char *subsys;
4393
4394 memset(dev_info, 0, sizeof(*dev_info));
4395
4396 if (dev->class)
4397 subsys = dev->class->name;
4398 else if (dev->bus)
4399 subsys = dev->bus->name;
4400 else
4401 return;
4402
4403 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4404
4405 /*
4406 * Add device identifier DEVICE=:
4407 * b12:8 block dev_t
4408 * c127:3 char dev_t
4409 * n8 netdev ifindex
4410 * +sound:card0 subsystem:devname
4411 */
4412 if (MAJOR(dev->devt)) {
4413 char c;
4414
4415 if (strcmp(subsys, "block") == 0)
4416 c = 'b';
4417 else
4418 c = 'c';
4419
4420 snprintf(dev_info->device, sizeof(dev_info->device),
4421 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4422 } else if (strcmp(subsys, "net") == 0) {
4423 struct net_device *net = to_net_dev(dev);
4424
4425 snprintf(dev_info->device, sizeof(dev_info->device),
4426 "n%u", net->ifindex);
4427 } else {
4428 snprintf(dev_info->device, sizeof(dev_info->device),
4429 "+%s:%s", subsys, dev_name(dev));
4430 }
4431 }
4432
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4433 int dev_vprintk_emit(int level, const struct device *dev,
4434 const char *fmt, va_list args)
4435 {
4436 struct dev_printk_info dev_info;
4437
4438 set_dev_info(dev, &dev_info);
4439
4440 return vprintk_emit(0, level, &dev_info, fmt, args);
4441 }
4442 EXPORT_SYMBOL(dev_vprintk_emit);
4443
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4444 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4445 {
4446 va_list args;
4447 int r;
4448
4449 va_start(args, fmt);
4450
4451 r = dev_vprintk_emit(level, dev, fmt, args);
4452
4453 va_end(args);
4454
4455 return r;
4456 }
4457 EXPORT_SYMBOL(dev_printk_emit);
4458
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4459 static void __dev_printk(const char *level, const struct device *dev,
4460 struct va_format *vaf)
4461 {
4462 if (dev)
4463 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4464 dev_driver_string(dev), dev_name(dev), vaf);
4465 else
4466 printk("%s(NULL device *): %pV", level, vaf);
4467 }
4468
dev_printk(const char * level,const struct device * dev,const char * fmt,...)4469 void dev_printk(const char *level, const struct device *dev,
4470 const char *fmt, ...)
4471 {
4472 struct va_format vaf;
4473 va_list args;
4474
4475 va_start(args, fmt);
4476
4477 vaf.fmt = fmt;
4478 vaf.va = &args;
4479
4480 __dev_printk(level, dev, &vaf);
4481
4482 va_end(args);
4483 }
4484 EXPORT_SYMBOL(dev_printk);
4485
4486 #define define_dev_printk_level(func, kern_level) \
4487 void func(const struct device *dev, const char *fmt, ...) \
4488 { \
4489 struct va_format vaf; \
4490 va_list args; \
4491 \
4492 va_start(args, fmt); \
4493 \
4494 vaf.fmt = fmt; \
4495 vaf.va = &args; \
4496 \
4497 __dev_printk(kern_level, dev, &vaf); \
4498 \
4499 va_end(args); \
4500 } \
4501 EXPORT_SYMBOL(func);
4502
4503 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4504 define_dev_printk_level(_dev_alert, KERN_ALERT);
4505 define_dev_printk_level(_dev_crit, KERN_CRIT);
4506 define_dev_printk_level(_dev_err, KERN_ERR);
4507 define_dev_printk_level(_dev_warn, KERN_WARNING);
4508 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4509 define_dev_printk_level(_dev_info, KERN_INFO);
4510
4511 #endif
4512
4513 /**
4514 * dev_err_probe - probe error check and log helper
4515 * @dev: the pointer to the struct device
4516 * @err: error value to test
4517 * @fmt: printf-style format string
4518 * @...: arguments as specified in the format string
4519 *
4520 * This helper implements common pattern present in probe functions for error
4521 * checking: print debug or error message depending if the error value is
4522 * -EPROBE_DEFER and propagate error upwards.
4523 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4524 * checked later by reading devices_deferred debugfs attribute.
4525 * It replaces code sequence::
4526 *
4527 * if (err != -EPROBE_DEFER)
4528 * dev_err(dev, ...);
4529 * else
4530 * dev_dbg(dev, ...);
4531 * return err;
4532 *
4533 * with::
4534 *
4535 * return dev_err_probe(dev, err, ...);
4536 *
4537 * Returns @err.
4538 *
4539 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4540 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4541 {
4542 struct va_format vaf;
4543 va_list args;
4544
4545 va_start(args, fmt);
4546 vaf.fmt = fmt;
4547 vaf.va = &args;
4548
4549 if (err != -EPROBE_DEFER) {
4550 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4551 } else {
4552 device_set_deferred_probe_reason(dev, &vaf);
4553 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4554 }
4555
4556 va_end(args);
4557
4558 return err;
4559 }
4560 EXPORT_SYMBOL_GPL(dev_err_probe);
4561
fwnode_is_primary(struct fwnode_handle * fwnode)4562 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4563 {
4564 return fwnode && !IS_ERR(fwnode->secondary);
4565 }
4566
4567 /**
4568 * set_primary_fwnode - Change the primary firmware node of a given device.
4569 * @dev: Device to handle.
4570 * @fwnode: New primary firmware node of the device.
4571 *
4572 * Set the device's firmware node pointer to @fwnode, but if a secondary
4573 * firmware node of the device is present, preserve it.
4574 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4575 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4576 {
4577 struct device *parent = dev->parent;
4578 struct fwnode_handle *fn = dev->fwnode;
4579
4580 if (fwnode) {
4581 if (fwnode_is_primary(fn))
4582 fn = fn->secondary;
4583
4584 if (fn) {
4585 WARN_ON(fwnode->secondary);
4586 fwnode->secondary = fn;
4587 }
4588 dev->fwnode = fwnode;
4589 } else {
4590 if (fwnode_is_primary(fn)) {
4591 dev->fwnode = fn->secondary;
4592 if (!(parent && fn == parent->fwnode))
4593 fn->secondary = NULL;
4594 } else {
4595 dev->fwnode = NULL;
4596 }
4597 }
4598 }
4599 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4600
4601 /**
4602 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4603 * @dev: Device to handle.
4604 * @fwnode: New secondary firmware node of the device.
4605 *
4606 * If a primary firmware node of the device is present, set its secondary
4607 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4608 * @fwnode.
4609 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4610 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4611 {
4612 if (fwnode)
4613 fwnode->secondary = ERR_PTR(-ENODEV);
4614
4615 if (fwnode_is_primary(dev->fwnode))
4616 dev->fwnode->secondary = fwnode;
4617 else
4618 dev->fwnode = fwnode;
4619 }
4620 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4621
4622 /**
4623 * device_set_of_node_from_dev - reuse device-tree node of another device
4624 * @dev: device whose device-tree node is being set
4625 * @dev2: device whose device-tree node is being reused
4626 *
4627 * Takes another reference to the new device-tree node after first dropping
4628 * any reference held to the old node.
4629 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4630 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4631 {
4632 of_node_put(dev->of_node);
4633 dev->of_node = of_node_get(dev2->of_node);
4634 dev->of_node_reused = true;
4635 }
4636 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4637
device_set_node(struct device * dev,struct fwnode_handle * fwnode)4638 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4639 {
4640 dev->fwnode = fwnode;
4641 dev->of_node = to_of_node(fwnode);
4642 }
4643 EXPORT_SYMBOL_GPL(device_set_node);
4644
device_match_name(struct device * dev,const void * name)4645 int device_match_name(struct device *dev, const void *name)
4646 {
4647 return sysfs_streq(dev_name(dev), name);
4648 }
4649 EXPORT_SYMBOL_GPL(device_match_name);
4650
device_match_of_node(struct device * dev,const void * np)4651 int device_match_of_node(struct device *dev, const void *np)
4652 {
4653 return dev->of_node == np;
4654 }
4655 EXPORT_SYMBOL_GPL(device_match_of_node);
4656
device_match_fwnode(struct device * dev,const void * fwnode)4657 int device_match_fwnode(struct device *dev, const void *fwnode)
4658 {
4659 return dev_fwnode(dev) == fwnode;
4660 }
4661 EXPORT_SYMBOL_GPL(device_match_fwnode);
4662
device_match_devt(struct device * dev,const void * pdevt)4663 int device_match_devt(struct device *dev, const void *pdevt)
4664 {
4665 return dev->devt == *(dev_t *)pdevt;
4666 }
4667 EXPORT_SYMBOL_GPL(device_match_devt);
4668
device_match_acpi_dev(struct device * dev,const void * adev)4669 int device_match_acpi_dev(struct device *dev, const void *adev)
4670 {
4671 return ACPI_COMPANION(dev) == adev;
4672 }
4673 EXPORT_SYMBOL(device_match_acpi_dev);
4674
device_match_any(struct device * dev,const void * unused)4675 int device_match_any(struct device *dev, const void *unused)
4676 {
4677 return 1;
4678 }
4679 EXPORT_SYMBOL_GPL(device_match_any);
4680