• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
touch_buffer(struct buffer_head * bh)60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
__lock_buffer(struct buffer_head * bh)67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
unlock_buffer(struct buffer_head * bh)73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
buffer_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
__wait_on_buffer(struct buffer_head * bh)120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
buffer_io_error(struct buffer_head * bh,char * msg)126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL_NS(end_buffer_write_sync, ANDROID_GKI_VFS_EXPORT_ONLY);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
end_buffer_async_read(struct buffer_head * bh,int uptodate)244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
decrypt_bh(struct work_struct * work)303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
mark_buffer_async_read(struct buffer_head * bh)405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
mark_buffer_async_write(struct buffer_head * bh)418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL_NS(mark_buffer_async_write, ANDROID_GKI_VFS_EXPORT_ONLY);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
__remove_assoc_queue(struct buffer_head * bh)477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
inode_has_buffers(struct inode * inode)484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
emergency_thaw_bdev(struct super_block * sb)524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
sync_mapping_buffers(struct address_space * mapping)541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 			     int warn)
602 {
603 	unsigned long flags;
604 
605 	xa_lock_irqsave(&mapping->i_pages, flags);
606 	if (page->mapping) {	/* Race with truncate? */
607 		WARN_ON_ONCE(warn && !PageUptodate(page));
608 		account_page_dirtied(page, mapping);
609 		__xa_set_mark(&mapping->i_pages, page_index(page),
610 				PAGECACHE_TAG_DIRTY);
611 	}
612 	xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615 
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
__set_page_dirty_buffers(struct page * page)641 int __set_page_dirty_buffers(struct page *page)
642 {
643 	int newly_dirty;
644 	struct address_space *mapping = page_mapping(page);
645 
646 	if (unlikely(!mapping))
647 		return !TestSetPageDirty(page);
648 
649 	spin_lock(&mapping->private_lock);
650 	if (page_has_buffers(page)) {
651 		struct buffer_head *head = page_buffers(page);
652 		struct buffer_head *bh = head;
653 
654 		do {
655 			set_buffer_dirty(bh);
656 			bh = bh->b_this_page;
657 		} while (bh != head);
658 	}
659 	/*
660 	 * Lock out page->mem_cgroup migration to keep PageDirty
661 	 * synchronized with per-memcg dirty page counters.
662 	 */
663 	lock_page_memcg(page);
664 	newly_dirty = !TestSetPageDirty(page);
665 	spin_unlock(&mapping->private_lock);
666 
667 	if (newly_dirty)
668 		__set_page_dirty(page, mapping, 1);
669 
670 	unlock_page_memcg(page);
671 
672 	if (newly_dirty)
673 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674 
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL_NS(__set_page_dirty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, REQ_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
invalidate_inode_buffers(struct inode * inode)786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->private_data;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
remove_inode_buffers(struct inode * inode)807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->private_data;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
alloc_page_buffers(struct page * page,unsigned long size,bool retry)839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		bool retry)
841 {
842 	struct buffer_head *bh, *head;
843 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 	long offset;
845 	struct mem_cgroup *memcg, *old_memcg;
846 
847 	if (retry)
848 		gfp |= __GFP_NOFAIL;
849 
850 	memcg = get_mem_cgroup_from_page(page);
851 	old_memcg = set_active_memcg(memcg);
852 
853 	head = NULL;
854 	offset = PAGE_SIZE;
855 	while ((offset -= size) >= 0) {
856 		bh = alloc_buffer_head(gfp);
857 		if (!bh)
858 			goto no_grow;
859 
860 		bh->b_this_page = head;
861 		bh->b_blocknr = -1;
862 		head = bh;
863 
864 		bh->b_size = size;
865 
866 		/* Link the buffer to its page */
867 		set_bh_page(bh, page, offset);
868 	}
869 out:
870 	set_active_memcg(old_memcg);
871 	mem_cgroup_put(memcg);
872 	return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877 	if (head) {
878 		do {
879 			bh = head;
880 			head = head->b_this_page;
881 			free_buffer_head(bh);
882 		} while (head);
883 	}
884 
885 	goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888 
889 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 	struct buffer_head *bh, *tail;
893 
894 	bh = head;
895 	do {
896 		tail = bh;
897 		bh = bh->b_this_page;
898 	} while (bh);
899 	tail->b_this_page = head;
900 	attach_page_private(page, head);
901 }
902 
blkdev_max_block(struct block_device * bdev,unsigned int size)903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 	sector_t retval = ~((sector_t)0);
906 	loff_t sz = i_size_read(bdev->bd_inode);
907 
908 	if (sz) {
909 		unsigned int sizebits = blksize_bits(size);
910 		retval = (sz >> sizebits);
911 	}
912 	return retval;
913 }
914 
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */
918 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)919 init_page_buffers(struct page *page, struct block_device *bdev,
920 			sector_t block, int size)
921 {
922 	struct buffer_head *head = page_buffers(page);
923 	struct buffer_head *bh = head;
924 	int uptodate = PageUptodate(page);
925 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926 
927 	do {
928 		if (!buffer_mapped(bh)) {
929 			bh->b_end_io = NULL;
930 			bh->b_private = NULL;
931 			bh->b_bdev = bdev;
932 			bh->b_blocknr = block;
933 			if (uptodate)
934 				set_buffer_uptodate(bh);
935 			if (block < end_block)
936 				set_buffer_mapped(bh);
937 		}
938 		block++;
939 		bh = bh->b_this_page;
940 	} while (bh != head);
941 
942 	/*
943 	 * Caller needs to validate requested block against end of device.
944 	 */
945 	return end_block;
946 }
947 
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits,gfp_t gfp)954 grow_dev_page(struct block_device *bdev, sector_t block,
955 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 	struct inode *inode = bdev->bd_inode;
958 	struct page *page;
959 	struct buffer_head *bh;
960 	sector_t end_block;
961 	int ret = 0;
962 	gfp_t gfp_mask;
963 
964 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965 
966 	/*
967 	 * XXX: __getblk_slow() can not really deal with failure and
968 	 * will endlessly loop on improvised global reclaim.  Prefer
969 	 * looping in the allocator rather than here, at least that
970 	 * code knows what it's doing.
971 	 */
972 	gfp_mask |= __GFP_NOFAIL;
973 
974 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975 
976 	BUG_ON(!PageLocked(page));
977 
978 	if (page_has_buffers(page)) {
979 		bh = page_buffers(page);
980 		if (bh->b_size == size) {
981 			end_block = init_page_buffers(page, bdev,
982 						(sector_t)index << sizebits,
983 						size);
984 			goto done;
985 		}
986 		if (!try_to_free_buffers(page))
987 			goto failed;
988 	}
989 
990 	/*
991 	 * Allocate some buffers for this page
992 	 */
993 	bh = alloc_page_buffers(page, size, true);
994 
995 	/*
996 	 * Link the page to the buffers and initialise them.  Take the
997 	 * lock to be atomic wrt __find_get_block(), which does not
998 	 * run under the page lock.
999 	 */
1000 	spin_lock(&inode->i_mapping->private_lock);
1001 	link_dev_buffers(page, bh);
1002 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 			size);
1004 	spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 	ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 	unlock_page(page);
1009 	put_page(page);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
grow_buffers(struct block_device * bdev,sector_t block,int size,gfp_t gfp)1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 	pgoff_t index;
1021 	int sizebits;
1022 
1023 	sizebits = -1;
1024 	do {
1025 		sizebits++;
1026 	} while ((size << sizebits) < PAGE_SIZE);
1027 
1028 	index = block >> sizebits;
1029 
1030 	/*
1031 	 * Check for a block which wants to lie outside our maximum possible
1032 	 * pagecache index.  (this comparison is done using sector_t types).
1033 	 */
1034 	if (unlikely(index != block >> sizebits)) {
1035 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036 			"device %pg\n",
1037 			__func__, (unsigned long long)block,
1038 			bdev);
1039 		return -EIO;
1040 	}
1041 
1042 	/* Create a page with the proper size buffers.. */
1043 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045 
1046 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048 	     unsigned size, gfp_t gfp)
1049 {
1050 	/* Size must be multiple of hard sectorsize */
1051 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052 			(size < 512 || size > PAGE_SIZE))) {
1053 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 					size);
1055 		printk(KERN_ERR "logical block size: %d\n",
1056 					bdev_logical_block_size(bdev));
1057 
1058 		dump_stack();
1059 		return NULL;
1060 	}
1061 
1062 	for (;;) {
1063 		struct buffer_head *bh;
1064 		int ret;
1065 
1066 		bh = __find_get_block(bdev, block, size);
1067 		if (bh)
1068 			return bh;
1069 
1070 		ret = grow_buffers(bdev, block, size, gfp);
1071 		if (ret < 0)
1072 			return NULL;
1073 	}
1074 }
1075 
1076 /*
1077  * The relationship between dirty buffers and dirty pages:
1078  *
1079  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080  * the page is tagged dirty in the page cache.
1081  *
1082  * At all times, the dirtiness of the buffers represents the dirtiness of
1083  * subsections of the page.  If the page has buffers, the page dirty bit is
1084  * merely a hint about the true dirty state.
1085  *
1086  * When a page is set dirty in its entirety, all its buffers are marked dirty
1087  * (if the page has buffers).
1088  *
1089  * When a buffer is marked dirty, its page is dirtied, but the page's other
1090  * buffers are not.
1091  *
1092  * Also.  When blockdev buffers are explicitly read with bread(), they
1093  * individually become uptodate.  But their backing page remains not
1094  * uptodate - even if all of its buffers are uptodate.  A subsequent
1095  * block_read_full_page() against that page will discover all the uptodate
1096  * buffers, will set the page uptodate and will perform no I/O.
1097  */
1098 
1099 /**
1100  * mark_buffer_dirty - mark a buffer_head as needing writeout
1101  * @bh: the buffer_head to mark dirty
1102  *
1103  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104  * its backing page dirty, then tag the page as dirty in the page cache
1105  * and then attach the address_space's inode to its superblock's dirty
1106  * inode list.
1107  *
1108  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1109  * i_pages lock and mapping->host->i_lock.
1110  */
mark_buffer_dirty(struct buffer_head * bh)1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113 	WARN_ON_ONCE(!buffer_uptodate(bh));
1114 
1115 	trace_block_dirty_buffer(bh);
1116 
1117 	/*
1118 	 * Very *carefully* optimize the it-is-already-dirty case.
1119 	 *
1120 	 * Don't let the final "is it dirty" escape to before we
1121 	 * perhaps modified the buffer.
1122 	 */
1123 	if (buffer_dirty(bh)) {
1124 		smp_mb();
1125 		if (buffer_dirty(bh))
1126 			return;
1127 	}
1128 
1129 	if (!test_set_buffer_dirty(bh)) {
1130 		struct page *page = bh->b_page;
1131 		struct address_space *mapping = NULL;
1132 
1133 		lock_page_memcg(page);
1134 		if (!TestSetPageDirty(page)) {
1135 			mapping = page_mapping(page);
1136 			if (mapping)
1137 				__set_page_dirty(page, mapping, 0);
1138 		}
1139 		unlock_page_memcg(page);
1140 		if (mapping)
1141 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142 	}
1143 }
1144 EXPORT_SYMBOL_NS(mark_buffer_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
1145 
mark_buffer_write_io_error(struct buffer_head * bh)1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148 	struct super_block *sb;
1149 
1150 	set_buffer_write_io_error(bh);
1151 	/* FIXME: do we need to set this in both places? */
1152 	if (bh->b_page && bh->b_page->mapping)
1153 		mapping_set_error(bh->b_page->mapping, -EIO);
1154 	if (bh->b_assoc_map)
1155 		mapping_set_error(bh->b_assoc_map, -EIO);
1156 	rcu_read_lock();
1157 	sb = READ_ONCE(bh->b_bdev->bd_super);
1158 	if (sb)
1159 		errseq_set(&sb->s_wb_err, -EIO);
1160 	rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL_NS(mark_buffer_write_io_error, ANDROID_GKI_VFS_EXPORT_ONLY);
1163 
1164 /*
1165  * Decrement a buffer_head's reference count.  If all buffers against a page
1166  * have zero reference count, are clean and unlocked, and if the page is clean
1167  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169  * a page but it ends up not being freed, and buffers may later be reattached).
1170  */
__brelse(struct buffer_head * buf)1171 void __brelse(struct buffer_head * buf)
1172 {
1173 	if (atomic_read(&buf->b_count)) {
1174 		put_bh(buf);
1175 		return;
1176 	}
1177 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL_NS(__brelse, ANDROID_GKI_VFS_EXPORT_ONLY);
1180 
1181 /*
1182  * bforget() is like brelse(), except it discards any
1183  * potentially dirty data.
1184  */
__bforget(struct buffer_head * bh)1185 void __bforget(struct buffer_head *bh)
1186 {
1187 	clear_buffer_dirty(bh);
1188 	if (bh->b_assoc_map) {
1189 		struct address_space *buffer_mapping = bh->b_page->mapping;
1190 
1191 		spin_lock(&buffer_mapping->private_lock);
1192 		list_del_init(&bh->b_assoc_buffers);
1193 		bh->b_assoc_map = NULL;
1194 		spin_unlock(&buffer_mapping->private_lock);
1195 	}
1196 	__brelse(bh);
1197 }
1198 EXPORT_SYMBOL_NS(__bforget, ANDROID_GKI_VFS_EXPORT_ONLY);
1199 
__bread_slow(struct buffer_head * bh)1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202 	lock_buffer(bh);
1203 	if (buffer_uptodate(bh)) {
1204 		unlock_buffer(bh);
1205 		return bh;
1206 	} else {
1207 		get_bh(bh);
1208 		bh->b_end_io = end_buffer_read_sync;
1209 		submit_bh(REQ_OP_READ, 0, bh);
1210 		wait_on_buffer(bh);
1211 		if (buffer_uptodate(bh))
1212 			return bh;
1213 	}
1214 	brelse(bh);
1215 	return NULL;
1216 }
1217 
1218 /*
1219  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223  * CPU's LRUs at the same time.
1224  *
1225  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226  * sb_find_get_block().
1227  *
1228  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229  * a local interrupt disable for that.
1230  */
1231 
1232 #define BH_LRU_SIZE	16
1233 
1234 struct bh_lru {
1235 	struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237 
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239 
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock()	local_irq_disable()
1242 #define bh_lru_unlock()	local_irq_enable()
1243 #else
1244 #define bh_lru_lock()	preempt_disable()
1245 #define bh_lru_unlock()	preempt_enable()
1246 #endif
1247 
check_irqs_on(void)1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251 	BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254 
1255 /*
1256  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1257  * inserted at the front, and the buffer_head at the back if any is evicted.
1258  * Or, if already in the LRU it is moved to the front.
1259  */
bh_lru_install(struct buffer_head * bh)1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262 	struct buffer_head *evictee = bh;
1263 	struct bh_lru *b;
1264 	int i;
1265 
1266 	check_irqs_on();
1267 	/*
1268 	 * the refcount of buffer_head in bh_lru prevents dropping the
1269 	 * attached page(i.e., try_to_free_buffers) so it could cause
1270 	 * failing page migration.
1271 	 * Skip putting upcoming bh into bh_lru until migration is done.
1272 	 */
1273 	if (lru_cache_disabled())
1274 		return;
1275 
1276 	bh_lru_lock();
1277 
1278 	b = this_cpu_ptr(&bh_lrus);
1279 	for (i = 0; i < BH_LRU_SIZE; i++) {
1280 		swap(evictee, b->bhs[i]);
1281 		if (evictee == bh) {
1282 			bh_lru_unlock();
1283 			return;
1284 		}
1285 	}
1286 
1287 	get_bh(bh);
1288 	bh_lru_unlock();
1289 	brelse(evictee);
1290 }
1291 
1292 /*
1293  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1294  */
1295 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1296 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1297 {
1298 	struct buffer_head *ret = NULL;
1299 	unsigned int i;
1300 
1301 	check_irqs_on();
1302 	bh_lru_lock();
1303 	for (i = 0; i < BH_LRU_SIZE; i++) {
1304 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1305 
1306 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1307 		    bh->b_size == size) {
1308 			if (i) {
1309 				while (i) {
1310 					__this_cpu_write(bh_lrus.bhs[i],
1311 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1312 					i--;
1313 				}
1314 				__this_cpu_write(bh_lrus.bhs[0], bh);
1315 			}
1316 			get_bh(bh);
1317 			ret = bh;
1318 			break;
1319 		}
1320 	}
1321 	bh_lru_unlock();
1322 	return ret;
1323 }
1324 
1325 /*
1326  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1327  * it in the LRU and mark it as accessed.  If it is not present then return
1328  * NULL
1329  */
1330 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334 
1335 	if (bh == NULL) {
1336 		/* __find_get_block_slow will mark the page accessed */
1337 		bh = __find_get_block_slow(bdev, block);
1338 		if (bh)
1339 			bh_lru_install(bh);
1340 	} else
1341 		touch_buffer(bh);
1342 
1343 	return bh;
1344 }
1345 EXPORT_SYMBOL(__find_get_block);
1346 
1347 /*
1348  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1349  * which corresponds to the passed block_device, block and size. The
1350  * returned buffer has its reference count incremented.
1351  *
1352  * __getblk_gfp() will lock up the machine if grow_dev_page's
1353  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1354  */
1355 struct buffer_head *
__getblk_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1356 __getblk_gfp(struct block_device *bdev, sector_t block,
1357 	     unsigned size, gfp_t gfp)
1358 {
1359 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1360 
1361 	might_sleep();
1362 	if (bh == NULL)
1363 		bh = __getblk_slow(bdev, block, size, gfp);
1364 	return bh;
1365 }
1366 EXPORT_SYMBOL(__getblk_gfp);
1367 
1368 /*
1369  * Do async read-ahead on a buffer..
1370  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1371 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1372 {
1373 	struct buffer_head *bh = __getblk(bdev, block, size);
1374 	if (likely(bh)) {
1375 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1376 		brelse(bh);
1377 	}
1378 }
1379 EXPORT_SYMBOL_NS(__breadahead, ANDROID_GKI_VFS_EXPORT_ONLY);
1380 
__breadahead_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1381 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1382 		      gfp_t gfp)
1383 {
1384 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1385 	if (likely(bh)) {
1386 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1387 		brelse(bh);
1388 	}
1389 }
1390 EXPORT_SYMBOL(__breadahead_gfp);
1391 
1392 /**
1393  *  __bread_gfp() - reads a specified block and returns the bh
1394  *  @bdev: the block_device to read from
1395  *  @block: number of block
1396  *  @size: size (in bytes) to read
1397  *  @gfp: page allocation flag
1398  *
1399  *  Reads a specified block, and returns buffer head that contains it.
1400  *  The page cache can be allocated from non-movable area
1401  *  not to prevent page migration if you set gfp to zero.
1402  *  It returns NULL if the block was unreadable.
1403  */
1404 struct buffer_head *
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1405 __bread_gfp(struct block_device *bdev, sector_t block,
1406 		   unsigned size, gfp_t gfp)
1407 {
1408 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1409 
1410 	if (likely(bh) && !buffer_uptodate(bh))
1411 		bh = __bread_slow(bh);
1412 	return bh;
1413 }
1414 EXPORT_SYMBOL_NS(__bread_gfp, ANDROID_GKI_VFS_EXPORT_ONLY);
1415 
__invalidate_bh_lrus(struct bh_lru * b)1416 static void __invalidate_bh_lrus(struct bh_lru *b)
1417 {
1418 	int i;
1419 
1420 	for (i = 0; i < BH_LRU_SIZE; i++) {
1421 		brelse(b->bhs[i]);
1422 		b->bhs[i] = NULL;
1423 	}
1424 }
1425 /*
1426  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1427  * This doesn't race because it runs in each cpu either in irq
1428  * or with preempt disabled.
1429  */
invalidate_bh_lru(void * arg)1430 static void invalidate_bh_lru(void *arg)
1431 {
1432 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1433 
1434 	__invalidate_bh_lrus(b);
1435 	put_cpu_var(bh_lrus);
1436 }
1437 
has_bh_in_lru(int cpu,void * dummy)1438 bool has_bh_in_lru(int cpu, void *dummy)
1439 {
1440 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1441 	int i;
1442 
1443 	for (i = 0; i < BH_LRU_SIZE; i++) {
1444 		if (b->bhs[i])
1445 			return true;
1446 	}
1447 
1448 	return false;
1449 }
1450 
invalidate_bh_lrus(void)1451 void invalidate_bh_lrus(void)
1452 {
1453 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1454 }
1455 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1456 
1457 /*
1458  * It's called from workqueue context so we need a bh_lru_lock to close
1459  * the race with preemption/irq.
1460  */
invalidate_bh_lrus_cpu(void)1461 void invalidate_bh_lrus_cpu(void)
1462 {
1463 	struct bh_lru *b;
1464 
1465 	bh_lru_lock();
1466 	b = this_cpu_ptr(&bh_lrus);
1467 	__invalidate_bh_lrus(b);
1468 	bh_lru_unlock();
1469 }
1470 
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1471 void set_bh_page(struct buffer_head *bh,
1472 		struct page *page, unsigned long offset)
1473 {
1474 	bh->b_page = page;
1475 	BUG_ON(offset >= PAGE_SIZE);
1476 	if (PageHighMem(page))
1477 		/*
1478 		 * This catches illegal uses and preserves the offset:
1479 		 */
1480 		bh->b_data = (char *)(0 + offset);
1481 	else
1482 		bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485 
1486 /*
1487  * Called when truncating a buffer on a page completely.
1488  */
1489 
1490 /* Bits that are cleared during an invalidate */
1491 #define BUFFER_FLAGS_DISCARD \
1492 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493 	 1 << BH_Delay | 1 << BH_Unwritten)
1494 
discard_buffer(struct buffer_head * bh)1495 static void discard_buffer(struct buffer_head * bh)
1496 {
1497 	unsigned long b_state, b_state_old;
1498 
1499 	lock_buffer(bh);
1500 	clear_buffer_dirty(bh);
1501 	bh->b_bdev = NULL;
1502 	b_state = bh->b_state;
1503 	for (;;) {
1504 		b_state_old = cmpxchg(&bh->b_state, b_state,
1505 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1506 		if (b_state_old == b_state)
1507 			break;
1508 		b_state = b_state_old;
1509 	}
1510 	unlock_buffer(bh);
1511 }
1512 
1513 /**
1514  * block_invalidatepage - invalidate part or all of a buffer-backed page
1515  *
1516  * @page: the page which is affected
1517  * @offset: start of the range to invalidate
1518  * @length: length of the range to invalidate
1519  *
1520  * block_invalidatepage() is called when all or part of the page has become
1521  * invalidated by a truncate operation.
1522  *
1523  * block_invalidatepage() does not have to release all buffers, but it must
1524  * ensure that no dirty buffer is left outside @offset and that no I/O
1525  * is underway against any of the blocks which are outside the truncation
1526  * point.  Because the caller is about to free (and possibly reuse) those
1527  * blocks on-disk.
1528  */
block_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1529 void block_invalidatepage(struct page *page, unsigned int offset,
1530 			  unsigned int length)
1531 {
1532 	struct buffer_head *head, *bh, *next;
1533 	unsigned int curr_off = 0;
1534 	unsigned int stop = length + offset;
1535 
1536 	BUG_ON(!PageLocked(page));
1537 	if (!page_has_buffers(page))
1538 		goto out;
1539 
1540 	/*
1541 	 * Check for overflow
1542 	 */
1543 	BUG_ON(stop > PAGE_SIZE || stop < length);
1544 
1545 	head = page_buffers(page);
1546 	bh = head;
1547 	do {
1548 		unsigned int next_off = curr_off + bh->b_size;
1549 		next = bh->b_this_page;
1550 
1551 		/*
1552 		 * Are we still fully in range ?
1553 		 */
1554 		if (next_off > stop)
1555 			goto out;
1556 
1557 		/*
1558 		 * is this block fully invalidated?
1559 		 */
1560 		if (offset <= curr_off)
1561 			discard_buffer(bh);
1562 		curr_off = next_off;
1563 		bh = next;
1564 	} while (bh != head);
1565 
1566 	/*
1567 	 * We release buffers only if the entire page is being invalidated.
1568 	 * The get_block cached value has been unconditionally invalidated,
1569 	 * so real IO is not possible anymore.
1570 	 */
1571 	if (length == PAGE_SIZE)
1572 		try_to_release_page(page, 0);
1573 out:
1574 	return;
1575 }
1576 EXPORT_SYMBOL_NS(block_invalidatepage, ANDROID_GKI_VFS_EXPORT_ONLY);
1577 
1578 
1579 /*
1580  * We attach and possibly dirty the buffers atomically wrt
1581  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1582  * is already excluded via the page lock.
1583  */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1584 void create_empty_buffers(struct page *page,
1585 			unsigned long blocksize, unsigned long b_state)
1586 {
1587 	struct buffer_head *bh, *head, *tail;
1588 
1589 	head = alloc_page_buffers(page, blocksize, true);
1590 	bh = head;
1591 	do {
1592 		bh->b_state |= b_state;
1593 		tail = bh;
1594 		bh = bh->b_this_page;
1595 	} while (bh);
1596 	tail->b_this_page = head;
1597 
1598 	spin_lock(&page->mapping->private_lock);
1599 	if (PageUptodate(page) || PageDirty(page)) {
1600 		bh = head;
1601 		do {
1602 			if (PageDirty(page))
1603 				set_buffer_dirty(bh);
1604 			if (PageUptodate(page))
1605 				set_buffer_uptodate(bh);
1606 			bh = bh->b_this_page;
1607 		} while (bh != head);
1608 	}
1609 	attach_page_private(page, head);
1610 	spin_unlock(&page->mapping->private_lock);
1611 }
1612 EXPORT_SYMBOL_NS(create_empty_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1613 
1614 /**
1615  * clean_bdev_aliases: clean a range of buffers in block device
1616  * @bdev: Block device to clean buffers in
1617  * @block: Start of a range of blocks to clean
1618  * @len: Number of blocks to clean
1619  *
1620  * We are taking a range of blocks for data and we don't want writeback of any
1621  * buffer-cache aliases starting from return from this function and until the
1622  * moment when something will explicitly mark the buffer dirty (hopefully that
1623  * will not happen until we will free that block ;-) We don't even need to mark
1624  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1625  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1626  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1627  * would confuse anyone who might pick it with bread() afterwards...
1628  *
1629  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1630  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1631  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1632  * need to.  That happens here.
1633  */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1634 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1635 {
1636 	struct inode *bd_inode = bdev->bd_inode;
1637 	struct address_space *bd_mapping = bd_inode->i_mapping;
1638 	struct pagevec pvec;
1639 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 	pgoff_t end;
1641 	int i, count;
1642 	struct buffer_head *bh;
1643 	struct buffer_head *head;
1644 
1645 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1646 	pagevec_init(&pvec);
1647 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1648 		count = pagevec_count(&pvec);
1649 		for (i = 0; i < count; i++) {
1650 			struct page *page = pvec.pages[i];
1651 
1652 			if (!page_has_buffers(page))
1653 				continue;
1654 			/*
1655 			 * We use page lock instead of bd_mapping->private_lock
1656 			 * to pin buffers here since we can afford to sleep and
1657 			 * it scales better than a global spinlock lock.
1658 			 */
1659 			lock_page(page);
1660 			/* Recheck when the page is locked which pins bhs */
1661 			if (!page_has_buffers(page))
1662 				goto unlock_page;
1663 			head = page_buffers(page);
1664 			bh = head;
1665 			do {
1666 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1667 					goto next;
1668 				if (bh->b_blocknr >= block + len)
1669 					break;
1670 				clear_buffer_dirty(bh);
1671 				wait_on_buffer(bh);
1672 				clear_buffer_req(bh);
1673 next:
1674 				bh = bh->b_this_page;
1675 			} while (bh != head);
1676 unlock_page:
1677 			unlock_page(page);
1678 		}
1679 		pagevec_release(&pvec);
1680 		cond_resched();
1681 		/* End of range already reached? */
1682 		if (index > end || !index)
1683 			break;
1684 	}
1685 }
1686 EXPORT_SYMBOL_NS(clean_bdev_aliases, ANDROID_GKI_VFS_EXPORT_ONLY);
1687 
1688 /*
1689  * Size is a power-of-two in the range 512..PAGE_SIZE,
1690  * and the case we care about most is PAGE_SIZE.
1691  *
1692  * So this *could* possibly be written with those
1693  * constraints in mind (relevant mostly if some
1694  * architecture has a slow bit-scan instruction)
1695  */
block_size_bits(unsigned int blocksize)1696 static inline int block_size_bits(unsigned int blocksize)
1697 {
1698 	return ilog2(blocksize);
1699 }
1700 
create_page_buffers(struct page * page,struct inode * inode,unsigned int b_state)1701 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1702 {
1703 	BUG_ON(!PageLocked(page));
1704 
1705 	if (!page_has_buffers(page))
1706 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1707 				     b_state);
1708 	return page_buffers(page);
1709 }
1710 
1711 /*
1712  * NOTE! All mapped/uptodate combinations are valid:
1713  *
1714  *	Mapped	Uptodate	Meaning
1715  *
1716  *	No	No		"unknown" - must do get_block()
1717  *	No	Yes		"hole" - zero-filled
1718  *	Yes	No		"allocated" - allocated on disk, not read in
1719  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1720  *
1721  * "Dirty" is valid only with the last case (mapped+uptodate).
1722  */
1723 
1724 /*
1725  * While block_write_full_page is writing back the dirty buffers under
1726  * the page lock, whoever dirtied the buffers may decide to clean them
1727  * again at any time.  We handle that by only looking at the buffer
1728  * state inside lock_buffer().
1729  *
1730  * If block_write_full_page() is called for regular writeback
1731  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1732  * locked buffer.   This only can happen if someone has written the buffer
1733  * directly, with submit_bh().  At the address_space level PageWriteback
1734  * prevents this contention from occurring.
1735  *
1736  * If block_write_full_page() is called with wbc->sync_mode ==
1737  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1738  * causes the writes to be flagged as synchronous writes.
1739  */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1740 int __block_write_full_page(struct inode *inode, struct page *page,
1741 			get_block_t *get_block, struct writeback_control *wbc,
1742 			bh_end_io_t *handler)
1743 {
1744 	int err;
1745 	sector_t block;
1746 	sector_t last_block;
1747 	struct buffer_head *bh, *head;
1748 	unsigned int blocksize, bbits;
1749 	int nr_underway = 0;
1750 	int write_flags = wbc_to_write_flags(wbc);
1751 
1752 	head = create_page_buffers(page, inode,
1753 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1754 
1755 	/*
1756 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1757 	 * here, and the (potentially unmapped) buffers may become dirty at
1758 	 * any time.  If a buffer becomes dirty here after we've inspected it
1759 	 * then we just miss that fact, and the page stays dirty.
1760 	 *
1761 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762 	 * handle that here by just cleaning them.
1763 	 */
1764 
1765 	bh = head;
1766 	blocksize = bh->b_size;
1767 	bbits = block_size_bits(blocksize);
1768 
1769 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1770 	last_block = (i_size_read(inode) - 1) >> bbits;
1771 
1772 	/*
1773 	 * Get all the dirty buffers mapped to disk addresses and
1774 	 * handle any aliases from the underlying blockdev's mapping.
1775 	 */
1776 	do {
1777 		if (block > last_block) {
1778 			/*
1779 			 * mapped buffers outside i_size will occur, because
1780 			 * this page can be outside i_size when there is a
1781 			 * truncate in progress.
1782 			 */
1783 			/*
1784 			 * The buffer was zeroed by block_write_full_page()
1785 			 */
1786 			clear_buffer_dirty(bh);
1787 			set_buffer_uptodate(bh);
1788 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1789 			   buffer_dirty(bh)) {
1790 			WARN_ON(bh->b_size != blocksize);
1791 			err = get_block(inode, block, bh, 1);
1792 			if (err)
1793 				goto recover;
1794 			clear_buffer_delay(bh);
1795 			if (buffer_new(bh)) {
1796 				/* blockdev mappings never come here */
1797 				clear_buffer_new(bh);
1798 				clean_bdev_bh_alias(bh);
1799 			}
1800 		}
1801 		bh = bh->b_this_page;
1802 		block++;
1803 	} while (bh != head);
1804 
1805 	do {
1806 		if (!buffer_mapped(bh))
1807 			continue;
1808 		/*
1809 		 * If it's a fully non-blocking write attempt and we cannot
1810 		 * lock the buffer then redirty the page.  Note that this can
1811 		 * potentially cause a busy-wait loop from writeback threads
1812 		 * and kswapd activity, but those code paths have their own
1813 		 * higher-level throttling.
1814 		 */
1815 		if (wbc->sync_mode != WB_SYNC_NONE) {
1816 			lock_buffer(bh);
1817 		} else if (!trylock_buffer(bh)) {
1818 			redirty_page_for_writepage(wbc, page);
1819 			continue;
1820 		}
1821 		if (test_clear_buffer_dirty(bh)) {
1822 			mark_buffer_async_write_endio(bh, handler);
1823 		} else {
1824 			unlock_buffer(bh);
1825 		}
1826 	} while ((bh = bh->b_this_page) != head);
1827 
1828 	/*
1829 	 * The page and its buffers are protected by PageWriteback(), so we can
1830 	 * drop the bh refcounts early.
1831 	 */
1832 	BUG_ON(PageWriteback(page));
1833 	set_page_writeback(page);
1834 
1835 	do {
1836 		struct buffer_head *next = bh->b_this_page;
1837 		if (buffer_async_write(bh)) {
1838 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1839 					inode->i_write_hint, wbc);
1840 			nr_underway++;
1841 		}
1842 		bh = next;
1843 	} while (bh != head);
1844 	unlock_page(page);
1845 
1846 	err = 0;
1847 done:
1848 	if (nr_underway == 0) {
1849 		/*
1850 		 * The page was marked dirty, but the buffers were
1851 		 * clean.  Someone wrote them back by hand with
1852 		 * ll_rw_block/submit_bh.  A rare case.
1853 		 */
1854 		end_page_writeback(page);
1855 
1856 		/*
1857 		 * The page and buffer_heads can be released at any time from
1858 		 * here on.
1859 		 */
1860 	}
1861 	return err;
1862 
1863 recover:
1864 	/*
1865 	 * ENOSPC, or some other error.  We may already have added some
1866 	 * blocks to the file, so we need to write these out to avoid
1867 	 * exposing stale data.
1868 	 * The page is currently locked and not marked for writeback
1869 	 */
1870 	bh = head;
1871 	/* Recovery: lock and submit the mapped buffers */
1872 	do {
1873 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1874 		    !buffer_delay(bh)) {
1875 			lock_buffer(bh);
1876 			mark_buffer_async_write_endio(bh, handler);
1877 		} else {
1878 			/*
1879 			 * The buffer may have been set dirty during
1880 			 * attachment to a dirty page.
1881 			 */
1882 			clear_buffer_dirty(bh);
1883 		}
1884 	} while ((bh = bh->b_this_page) != head);
1885 	SetPageError(page);
1886 	BUG_ON(PageWriteback(page));
1887 	mapping_set_error(page->mapping, err);
1888 	set_page_writeback(page);
1889 	do {
1890 		struct buffer_head *next = bh->b_this_page;
1891 		if (buffer_async_write(bh)) {
1892 			clear_buffer_dirty(bh);
1893 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1894 					inode->i_write_hint, wbc);
1895 			nr_underway++;
1896 		}
1897 		bh = next;
1898 	} while (bh != head);
1899 	unlock_page(page);
1900 	goto done;
1901 }
1902 EXPORT_SYMBOL(__block_write_full_page);
1903 
1904 /*
1905  * If a page has any new buffers, zero them out here, and mark them uptodate
1906  * and dirty so they'll be written out (in order to prevent uninitialised
1907  * block data from leaking). And clear the new bit.
1908  */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1909 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1910 {
1911 	unsigned int block_start, block_end;
1912 	struct buffer_head *head, *bh;
1913 
1914 	BUG_ON(!PageLocked(page));
1915 	if (!page_has_buffers(page))
1916 		return;
1917 
1918 	bh = head = page_buffers(page);
1919 	block_start = 0;
1920 	do {
1921 		block_end = block_start + bh->b_size;
1922 
1923 		if (buffer_new(bh)) {
1924 			if (block_end > from && block_start < to) {
1925 				if (!PageUptodate(page)) {
1926 					unsigned start, size;
1927 
1928 					start = max(from, block_start);
1929 					size = min(to, block_end) - start;
1930 
1931 					zero_user(page, start, size);
1932 					set_buffer_uptodate(bh);
1933 				}
1934 
1935 				clear_buffer_new(bh);
1936 				mark_buffer_dirty(bh);
1937 			}
1938 		}
1939 
1940 		block_start = block_end;
1941 		bh = bh->b_this_page;
1942 	} while (bh != head);
1943 }
1944 EXPORT_SYMBOL_NS(page_zero_new_buffers, ANDROID_GKI_VFS_EXPORT_ONLY);
1945 
1946 static void
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,struct iomap * iomap)1947 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1948 		struct iomap *iomap)
1949 {
1950 	loff_t offset = block << inode->i_blkbits;
1951 
1952 	bh->b_bdev = iomap->bdev;
1953 
1954 	/*
1955 	 * Block points to offset in file we need to map, iomap contains
1956 	 * the offset at which the map starts. If the map ends before the
1957 	 * current block, then do not map the buffer and let the caller
1958 	 * handle it.
1959 	 */
1960 	BUG_ON(offset >= iomap->offset + iomap->length);
1961 
1962 	switch (iomap->type) {
1963 	case IOMAP_HOLE:
1964 		/*
1965 		 * If the buffer is not up to date or beyond the current EOF,
1966 		 * we need to mark it as new to ensure sub-block zeroing is
1967 		 * executed if necessary.
1968 		 */
1969 		if (!buffer_uptodate(bh) ||
1970 		    (offset >= i_size_read(inode)))
1971 			set_buffer_new(bh);
1972 		break;
1973 	case IOMAP_DELALLOC:
1974 		if (!buffer_uptodate(bh) ||
1975 		    (offset >= i_size_read(inode)))
1976 			set_buffer_new(bh);
1977 		set_buffer_uptodate(bh);
1978 		set_buffer_mapped(bh);
1979 		set_buffer_delay(bh);
1980 		break;
1981 	case IOMAP_UNWRITTEN:
1982 		/*
1983 		 * For unwritten regions, we always need to ensure that regions
1984 		 * in the block we are not writing to are zeroed. Mark the
1985 		 * buffer as new to ensure this.
1986 		 */
1987 		set_buffer_new(bh);
1988 		set_buffer_unwritten(bh);
1989 		fallthrough;
1990 	case IOMAP_MAPPED:
1991 		if ((iomap->flags & IOMAP_F_NEW) ||
1992 		    offset >= i_size_read(inode))
1993 			set_buffer_new(bh);
1994 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1995 				inode->i_blkbits;
1996 		set_buffer_mapped(bh);
1997 		break;
1998 	}
1999 }
2000 
__block_write_begin_int(struct page * page,loff_t pos,unsigned len,get_block_t * get_block,struct iomap * iomap)2001 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2002 		get_block_t *get_block, struct iomap *iomap)
2003 {
2004 	unsigned from = pos & (PAGE_SIZE - 1);
2005 	unsigned to = from + len;
2006 	struct inode *inode = page->mapping->host;
2007 	unsigned block_start, block_end;
2008 	sector_t block;
2009 	int err = 0;
2010 	unsigned blocksize, bbits;
2011 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2012 
2013 	BUG_ON(!PageLocked(page));
2014 	BUG_ON(from > PAGE_SIZE);
2015 	BUG_ON(to > PAGE_SIZE);
2016 	BUG_ON(from > to);
2017 
2018 	head = create_page_buffers(page, inode, 0);
2019 	blocksize = head->b_size;
2020 	bbits = block_size_bits(blocksize);
2021 
2022 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2023 
2024 	for(bh = head, block_start = 0; bh != head || !block_start;
2025 	    block++, block_start=block_end, bh = bh->b_this_page) {
2026 		block_end = block_start + blocksize;
2027 		if (block_end <= from || block_start >= to) {
2028 			if (PageUptodate(page)) {
2029 				if (!buffer_uptodate(bh))
2030 					set_buffer_uptodate(bh);
2031 			}
2032 			continue;
2033 		}
2034 		if (buffer_new(bh))
2035 			clear_buffer_new(bh);
2036 		if (!buffer_mapped(bh)) {
2037 			WARN_ON(bh->b_size != blocksize);
2038 			if (get_block) {
2039 				err = get_block(inode, block, bh, 1);
2040 				if (err)
2041 					break;
2042 			} else {
2043 				iomap_to_bh(inode, block, bh, iomap);
2044 			}
2045 
2046 			if (buffer_new(bh)) {
2047 				clean_bdev_bh_alias(bh);
2048 				if (PageUptodate(page)) {
2049 					clear_buffer_new(bh);
2050 					set_buffer_uptodate(bh);
2051 					mark_buffer_dirty(bh);
2052 					continue;
2053 				}
2054 				if (block_end > to || block_start < from)
2055 					zero_user_segments(page,
2056 						to, block_end,
2057 						block_start, from);
2058 				continue;
2059 			}
2060 		}
2061 		if (PageUptodate(page)) {
2062 			if (!buffer_uptodate(bh))
2063 				set_buffer_uptodate(bh);
2064 			continue;
2065 		}
2066 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2067 		    !buffer_unwritten(bh) &&
2068 		     (block_start < from || block_end > to)) {
2069 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2070 			*wait_bh++=bh;
2071 		}
2072 	}
2073 	/*
2074 	 * If we issued read requests - let them complete.
2075 	 */
2076 	while(wait_bh > wait) {
2077 		wait_on_buffer(*--wait_bh);
2078 		if (!buffer_uptodate(*wait_bh))
2079 			err = -EIO;
2080 	}
2081 	if (unlikely(err))
2082 		page_zero_new_buffers(page, from, to);
2083 	return err;
2084 }
2085 
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)2086 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2087 		get_block_t *get_block)
2088 {
2089 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2090 }
2091 EXPORT_SYMBOL(__block_write_begin);
2092 
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)2093 static int __block_commit_write(struct inode *inode, struct page *page,
2094 		unsigned from, unsigned to)
2095 {
2096 	unsigned block_start, block_end;
2097 	int partial = 0;
2098 	unsigned blocksize;
2099 	struct buffer_head *bh, *head;
2100 
2101 	bh = head = page_buffers(page);
2102 	blocksize = bh->b_size;
2103 
2104 	block_start = 0;
2105 	do {
2106 		block_end = block_start + blocksize;
2107 		if (block_end <= from || block_start >= to) {
2108 			if (!buffer_uptodate(bh))
2109 				partial = 1;
2110 		} else {
2111 			set_buffer_uptodate(bh);
2112 			mark_buffer_dirty(bh);
2113 		}
2114 		clear_buffer_new(bh);
2115 
2116 		block_start = block_end;
2117 		bh = bh->b_this_page;
2118 	} while (bh != head);
2119 
2120 	/*
2121 	 * If this is a partial write which happened to make all buffers
2122 	 * uptodate then we can optimize away a bogus readpage() for
2123 	 * the next read(). Here we 'discover' whether the page went
2124 	 * uptodate as a result of this (potentially partial) write.
2125 	 */
2126 	if (!partial)
2127 		SetPageUptodate(page);
2128 	return 0;
2129 }
2130 
2131 /*
2132  * block_write_begin takes care of the basic task of block allocation and
2133  * bringing partial write blocks uptodate first.
2134  *
2135  * The filesystem needs to handle block truncation upon failure.
2136  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)2137 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2138 		unsigned flags, struct page **pagep, get_block_t *get_block)
2139 {
2140 	pgoff_t index = pos >> PAGE_SHIFT;
2141 	struct page *page;
2142 	int status;
2143 
2144 	page = grab_cache_page_write_begin(mapping, index, flags);
2145 	if (!page)
2146 		return -ENOMEM;
2147 
2148 	status = __block_write_begin(page, pos, len, get_block);
2149 	if (unlikely(status)) {
2150 		unlock_page(page);
2151 		put_page(page);
2152 		page = NULL;
2153 	}
2154 
2155 	*pagep = page;
2156 	return status;
2157 }
2158 EXPORT_SYMBOL(block_write_begin);
2159 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2160 int block_write_end(struct file *file, struct address_space *mapping,
2161 			loff_t pos, unsigned len, unsigned copied,
2162 			struct page *page, void *fsdata)
2163 {
2164 	struct inode *inode = mapping->host;
2165 	unsigned start;
2166 
2167 	start = pos & (PAGE_SIZE - 1);
2168 
2169 	if (unlikely(copied < len)) {
2170 		/*
2171 		 * The buffers that were written will now be uptodate, so we
2172 		 * don't have to worry about a readpage reading them and
2173 		 * overwriting a partial write. However if we have encountered
2174 		 * a short write and only partially written into a buffer, it
2175 		 * will not be marked uptodate, so a readpage might come in and
2176 		 * destroy our partial write.
2177 		 *
2178 		 * Do the simplest thing, and just treat any short write to a
2179 		 * non uptodate page as a zero-length write, and force the
2180 		 * caller to redo the whole thing.
2181 		 */
2182 		if (!PageUptodate(page))
2183 			copied = 0;
2184 
2185 		page_zero_new_buffers(page, start+copied, start+len);
2186 	}
2187 	flush_dcache_page(page);
2188 
2189 	/* This could be a short (even 0-length) commit */
2190 	__block_commit_write(inode, page, start, start+copied);
2191 
2192 	return copied;
2193 }
2194 EXPORT_SYMBOL(block_write_end);
2195 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2196 int generic_write_end(struct file *file, struct address_space *mapping,
2197 			loff_t pos, unsigned len, unsigned copied,
2198 			struct page *page, void *fsdata)
2199 {
2200 	struct inode *inode = mapping->host;
2201 	loff_t old_size = inode->i_size;
2202 	bool i_size_changed = false;
2203 
2204 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2205 
2206 	/*
2207 	 * No need to use i_size_read() here, the i_size cannot change under us
2208 	 * because we hold i_rwsem.
2209 	 *
2210 	 * But it's important to update i_size while still holding page lock:
2211 	 * page writeout could otherwise come in and zero beyond i_size.
2212 	 */
2213 	if (pos + copied > inode->i_size) {
2214 		i_size_write(inode, pos + copied);
2215 		i_size_changed = true;
2216 	}
2217 
2218 	unlock_page(page);
2219 	put_page(page);
2220 
2221 	if (old_size < pos)
2222 		pagecache_isize_extended(inode, old_size, pos);
2223 	/*
2224 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2225 	 * makes the holding time of page lock longer. Second, it forces lock
2226 	 * ordering of page lock and transaction start for journaling
2227 	 * filesystems.
2228 	 */
2229 	if (i_size_changed)
2230 		mark_inode_dirty(inode);
2231 	return copied;
2232 }
2233 EXPORT_SYMBOL(generic_write_end);
2234 
2235 /*
2236  * block_is_partially_uptodate checks whether buffers within a page are
2237  * uptodate or not.
2238  *
2239  * Returns true if all buffers which correspond to a file portion
2240  * we want to read are uptodate.
2241  */
block_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)2242 int block_is_partially_uptodate(struct page *page, unsigned long from,
2243 					unsigned long count)
2244 {
2245 	unsigned block_start, block_end, blocksize;
2246 	unsigned to;
2247 	struct buffer_head *bh, *head;
2248 	int ret = 1;
2249 
2250 	if (!page_has_buffers(page))
2251 		return 0;
2252 
2253 	head = page_buffers(page);
2254 	blocksize = head->b_size;
2255 	to = min_t(unsigned, PAGE_SIZE - from, count);
2256 	to = from + to;
2257 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2258 		return 0;
2259 
2260 	bh = head;
2261 	block_start = 0;
2262 	do {
2263 		block_end = block_start + blocksize;
2264 		if (block_end > from && block_start < to) {
2265 			if (!buffer_uptodate(bh)) {
2266 				ret = 0;
2267 				break;
2268 			}
2269 			if (block_end >= to)
2270 				break;
2271 		}
2272 		block_start = block_end;
2273 		bh = bh->b_this_page;
2274 	} while (bh != head);
2275 
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_NS(block_is_partially_uptodate, ANDROID_GKI_VFS_EXPORT_ONLY);
2279 
2280 /*
2281  * Generic "read page" function for block devices that have the normal
2282  * get_block functionality. This is most of the block device filesystems.
2283  * Reads the page asynchronously --- the unlock_buffer() and
2284  * set/clear_buffer_uptodate() functions propagate buffer state into the
2285  * page struct once IO has completed.
2286  */
block_read_full_page(struct page * page,get_block_t * get_block)2287 int block_read_full_page(struct page *page, get_block_t *get_block)
2288 {
2289 	struct inode *inode = page->mapping->host;
2290 	sector_t iblock, lblock;
2291 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2292 	unsigned int blocksize, bbits;
2293 	int nr, i;
2294 	int fully_mapped = 1;
2295 
2296 	head = create_page_buffers(page, inode, 0);
2297 	blocksize = head->b_size;
2298 	bbits = block_size_bits(blocksize);
2299 
2300 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2301 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2302 	bh = head;
2303 	nr = 0;
2304 	i = 0;
2305 
2306 	do {
2307 		if (buffer_uptodate(bh))
2308 			continue;
2309 
2310 		if (!buffer_mapped(bh)) {
2311 			int err = 0;
2312 
2313 			fully_mapped = 0;
2314 			if (iblock < lblock) {
2315 				WARN_ON(bh->b_size != blocksize);
2316 				err = get_block(inode, iblock, bh, 0);
2317 				if (err)
2318 					SetPageError(page);
2319 			}
2320 			if (!buffer_mapped(bh)) {
2321 				zero_user(page, i * blocksize, blocksize);
2322 				if (!err)
2323 					set_buffer_uptodate(bh);
2324 				continue;
2325 			}
2326 			/*
2327 			 * get_block() might have updated the buffer
2328 			 * synchronously
2329 			 */
2330 			if (buffer_uptodate(bh))
2331 				continue;
2332 		}
2333 		arr[nr++] = bh;
2334 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2335 
2336 	if (fully_mapped)
2337 		SetPageMappedToDisk(page);
2338 
2339 	if (!nr) {
2340 		/*
2341 		 * All buffers are uptodate - we can set the page uptodate
2342 		 * as well. But not if get_block() returned an error.
2343 		 */
2344 		if (!PageError(page))
2345 			SetPageUptodate(page);
2346 		unlock_page(page);
2347 		return 0;
2348 	}
2349 
2350 	/* Stage two: lock the buffers */
2351 	for (i = 0; i < nr; i++) {
2352 		bh = arr[i];
2353 		lock_buffer(bh);
2354 		mark_buffer_async_read(bh);
2355 	}
2356 
2357 	/*
2358 	 * Stage 3: start the IO.  Check for uptodateness
2359 	 * inside the buffer lock in case another process reading
2360 	 * the underlying blockdev brought it uptodate (the sct fix).
2361 	 */
2362 	for (i = 0; i < nr; i++) {
2363 		bh = arr[i];
2364 		if (buffer_uptodate(bh))
2365 			end_buffer_async_read(bh, 1);
2366 		else
2367 			submit_bh(REQ_OP_READ, 0, bh);
2368 	}
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL(block_read_full_page);
2372 
2373 /* utility function for filesystems that need to do work on expanding
2374  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2375  * deal with the hole.
2376  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2377 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2378 {
2379 	struct address_space *mapping = inode->i_mapping;
2380 	struct page *page;
2381 	void *fsdata = NULL;
2382 	int err;
2383 
2384 	err = inode_newsize_ok(inode, size);
2385 	if (err)
2386 		goto out;
2387 
2388 	err = pagecache_write_begin(NULL, mapping, size, 0,
2389 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2390 	if (err)
2391 		goto out;
2392 
2393 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2394 	BUG_ON(err > 0);
2395 
2396 out:
2397 	return err;
2398 }
2399 EXPORT_SYMBOL(generic_cont_expand_simple);
2400 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2401 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2402 			    loff_t pos, loff_t *bytes)
2403 {
2404 	struct inode *inode = mapping->host;
2405 	unsigned int blocksize = i_blocksize(inode);
2406 	struct page *page;
2407 	void *fsdata = NULL;
2408 	pgoff_t index, curidx;
2409 	loff_t curpos;
2410 	unsigned zerofrom, offset, len;
2411 	int err = 0;
2412 
2413 	index = pos >> PAGE_SHIFT;
2414 	offset = pos & ~PAGE_MASK;
2415 
2416 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2417 		zerofrom = curpos & ~PAGE_MASK;
2418 		if (zerofrom & (blocksize-1)) {
2419 			*bytes |= (blocksize-1);
2420 			(*bytes)++;
2421 		}
2422 		len = PAGE_SIZE - zerofrom;
2423 
2424 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425 					    &page, &fsdata);
2426 		if (err)
2427 			goto out;
2428 		zero_user(page, zerofrom, len);
2429 		err = pagecache_write_end(file, mapping, curpos, len, len,
2430 						page, fsdata);
2431 		if (err < 0)
2432 			goto out;
2433 		BUG_ON(err != len);
2434 		err = 0;
2435 
2436 		balance_dirty_pages_ratelimited(mapping);
2437 
2438 		if (fatal_signal_pending(current)) {
2439 			err = -EINTR;
2440 			goto out;
2441 		}
2442 	}
2443 
2444 	/* page covers the boundary, find the boundary offset */
2445 	if (index == curidx) {
2446 		zerofrom = curpos & ~PAGE_MASK;
2447 		/* if we will expand the thing last block will be filled */
2448 		if (offset <= zerofrom) {
2449 			goto out;
2450 		}
2451 		if (zerofrom & (blocksize-1)) {
2452 			*bytes |= (blocksize-1);
2453 			(*bytes)++;
2454 		}
2455 		len = offset - zerofrom;
2456 
2457 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2458 					    &page, &fsdata);
2459 		if (err)
2460 			goto out;
2461 		zero_user(page, zerofrom, len);
2462 		err = pagecache_write_end(file, mapping, curpos, len, len,
2463 						page, fsdata);
2464 		if (err < 0)
2465 			goto out;
2466 		BUG_ON(err != len);
2467 		err = 0;
2468 	}
2469 out:
2470 	return err;
2471 }
2472 
2473 /*
2474  * For moronic filesystems that do not allow holes in file.
2475  * We may have to extend the file.
2476  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2477 int cont_write_begin(struct file *file, struct address_space *mapping,
2478 			loff_t pos, unsigned len, unsigned flags,
2479 			struct page **pagep, void **fsdata,
2480 			get_block_t *get_block, loff_t *bytes)
2481 {
2482 	struct inode *inode = mapping->host;
2483 	unsigned int blocksize = i_blocksize(inode);
2484 	unsigned int zerofrom;
2485 	int err;
2486 
2487 	err = cont_expand_zero(file, mapping, pos, bytes);
2488 	if (err)
2489 		return err;
2490 
2491 	zerofrom = *bytes & ~PAGE_MASK;
2492 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2493 		*bytes |= (blocksize-1);
2494 		(*bytes)++;
2495 	}
2496 
2497 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2498 }
2499 EXPORT_SYMBOL(cont_write_begin);
2500 
block_commit_write(struct page * page,unsigned from,unsigned to)2501 int block_commit_write(struct page *page, unsigned from, unsigned to)
2502 {
2503 	struct inode *inode = page->mapping->host;
2504 	__block_commit_write(inode,page,from,to);
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL(block_commit_write);
2508 
2509 /*
2510  * block_page_mkwrite() is not allowed to change the file size as it gets
2511  * called from a page fault handler when a page is first dirtied. Hence we must
2512  * be careful to check for EOF conditions here. We set the page up correctly
2513  * for a written page which means we get ENOSPC checking when writing into
2514  * holes and correct delalloc and unwritten extent mapping on filesystems that
2515  * support these features.
2516  *
2517  * We are not allowed to take the i_mutex here so we have to play games to
2518  * protect against truncate races as the page could now be beyond EOF.  Because
2519  * truncate writes the inode size before removing pages, once we have the
2520  * page lock we can determine safely if the page is beyond EOF. If it is not
2521  * beyond EOF, then the page is guaranteed safe against truncation until we
2522  * unlock the page.
2523  *
2524  * Direct callers of this function should protect against filesystem freezing
2525  * using sb_start_pagefault() - sb_end_pagefault() functions.
2526  */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2527 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2528 			 get_block_t get_block)
2529 {
2530 	struct page *page = vmf->page;
2531 	struct inode *inode = file_inode(vma->vm_file);
2532 	unsigned long end;
2533 	loff_t size;
2534 	int ret;
2535 
2536 	lock_page(page);
2537 	size = i_size_read(inode);
2538 	if ((page->mapping != inode->i_mapping) ||
2539 	    (page_offset(page) > size)) {
2540 		/* We overload EFAULT to mean page got truncated */
2541 		ret = -EFAULT;
2542 		goto out_unlock;
2543 	}
2544 
2545 	/* page is wholly or partially inside EOF */
2546 	if (((page->index + 1) << PAGE_SHIFT) > size)
2547 		end = size & ~PAGE_MASK;
2548 	else
2549 		end = PAGE_SIZE;
2550 
2551 	ret = __block_write_begin(page, 0, end, get_block);
2552 	if (!ret)
2553 		ret = block_commit_write(page, 0, end);
2554 
2555 	if (unlikely(ret < 0))
2556 		goto out_unlock;
2557 	set_page_dirty(page);
2558 	wait_for_stable_page(page);
2559 	return 0;
2560 out_unlock:
2561 	unlock_page(page);
2562 	return ret;
2563 }
2564 EXPORT_SYMBOL(block_page_mkwrite);
2565 
2566 /*
2567  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2568  * immediately, while under the page lock.  So it needs a special end_io
2569  * handler which does not touch the bh after unlocking it.
2570  */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2571 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2572 {
2573 	__end_buffer_read_notouch(bh, uptodate);
2574 }
2575 
2576 /*
2577  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2578  * the page (converting it to circular linked list and taking care of page
2579  * dirty races).
2580  */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2581 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2582 {
2583 	struct buffer_head *bh;
2584 
2585 	BUG_ON(!PageLocked(page));
2586 
2587 	spin_lock(&page->mapping->private_lock);
2588 	bh = head;
2589 	do {
2590 		if (PageDirty(page))
2591 			set_buffer_dirty(bh);
2592 		if (!bh->b_this_page)
2593 			bh->b_this_page = head;
2594 		bh = bh->b_this_page;
2595 	} while (bh != head);
2596 	attach_page_private(page, head);
2597 	spin_unlock(&page->mapping->private_lock);
2598 }
2599 
2600 /*
2601  * On entry, the page is fully not uptodate.
2602  * On exit the page is fully uptodate in the areas outside (from,to)
2603  * The filesystem needs to handle block truncation upon failure.
2604  */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2605 int nobh_write_begin(struct address_space *mapping,
2606 			loff_t pos, unsigned len, unsigned flags,
2607 			struct page **pagep, void **fsdata,
2608 			get_block_t *get_block)
2609 {
2610 	struct inode *inode = mapping->host;
2611 	const unsigned blkbits = inode->i_blkbits;
2612 	const unsigned blocksize = 1 << blkbits;
2613 	struct buffer_head *head, *bh;
2614 	struct page *page;
2615 	pgoff_t index;
2616 	unsigned from, to;
2617 	unsigned block_in_page;
2618 	unsigned block_start, block_end;
2619 	sector_t block_in_file;
2620 	int nr_reads = 0;
2621 	int ret = 0;
2622 	int is_mapped_to_disk = 1;
2623 
2624 	index = pos >> PAGE_SHIFT;
2625 	from = pos & (PAGE_SIZE - 1);
2626 	to = from + len;
2627 
2628 	page = grab_cache_page_write_begin(mapping, index, flags);
2629 	if (!page)
2630 		return -ENOMEM;
2631 	*pagep = page;
2632 	*fsdata = NULL;
2633 
2634 	if (page_has_buffers(page)) {
2635 		ret = __block_write_begin(page, pos, len, get_block);
2636 		if (unlikely(ret))
2637 			goto out_release;
2638 		return ret;
2639 	}
2640 
2641 	if (PageMappedToDisk(page))
2642 		return 0;
2643 
2644 	/*
2645 	 * Allocate buffers so that we can keep track of state, and potentially
2646 	 * attach them to the page if an error occurs. In the common case of
2647 	 * no error, they will just be freed again without ever being attached
2648 	 * to the page (which is all OK, because we're under the page lock).
2649 	 *
2650 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2651 	 * than the circular one we're used to.
2652 	 */
2653 	head = alloc_page_buffers(page, blocksize, false);
2654 	if (!head) {
2655 		ret = -ENOMEM;
2656 		goto out_release;
2657 	}
2658 
2659 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2660 
2661 	/*
2662 	 * We loop across all blocks in the page, whether or not they are
2663 	 * part of the affected region.  This is so we can discover if the
2664 	 * page is fully mapped-to-disk.
2665 	 */
2666 	for (block_start = 0, block_in_page = 0, bh = head;
2667 		  block_start < PAGE_SIZE;
2668 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2669 		int create;
2670 
2671 		block_end = block_start + blocksize;
2672 		bh->b_state = 0;
2673 		create = 1;
2674 		if (block_start >= to)
2675 			create = 0;
2676 		ret = get_block(inode, block_in_file + block_in_page,
2677 					bh, create);
2678 		if (ret)
2679 			goto failed;
2680 		if (!buffer_mapped(bh))
2681 			is_mapped_to_disk = 0;
2682 		if (buffer_new(bh))
2683 			clean_bdev_bh_alias(bh);
2684 		if (PageUptodate(page)) {
2685 			set_buffer_uptodate(bh);
2686 			continue;
2687 		}
2688 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2689 			zero_user_segments(page, block_start, from,
2690 							to, block_end);
2691 			continue;
2692 		}
2693 		if (buffer_uptodate(bh))
2694 			continue;	/* reiserfs does this */
2695 		if (block_start < from || block_end > to) {
2696 			lock_buffer(bh);
2697 			bh->b_end_io = end_buffer_read_nobh;
2698 			submit_bh(REQ_OP_READ, 0, bh);
2699 			nr_reads++;
2700 		}
2701 	}
2702 
2703 	if (nr_reads) {
2704 		/*
2705 		 * The page is locked, so these buffers are protected from
2706 		 * any VM or truncate activity.  Hence we don't need to care
2707 		 * for the buffer_head refcounts.
2708 		 */
2709 		for (bh = head; bh; bh = bh->b_this_page) {
2710 			wait_on_buffer(bh);
2711 			if (!buffer_uptodate(bh))
2712 				ret = -EIO;
2713 		}
2714 		if (ret)
2715 			goto failed;
2716 	}
2717 
2718 	if (is_mapped_to_disk)
2719 		SetPageMappedToDisk(page);
2720 
2721 	*fsdata = head; /* to be released by nobh_write_end */
2722 
2723 	return 0;
2724 
2725 failed:
2726 	BUG_ON(!ret);
2727 	/*
2728 	 * Error recovery is a bit difficult. We need to zero out blocks that
2729 	 * were newly allocated, and dirty them to ensure they get written out.
2730 	 * Buffers need to be attached to the page at this point, otherwise
2731 	 * the handling of potential IO errors during writeout would be hard
2732 	 * (could try doing synchronous writeout, but what if that fails too?)
2733 	 */
2734 	attach_nobh_buffers(page, head);
2735 	page_zero_new_buffers(page, from, to);
2736 
2737 out_release:
2738 	unlock_page(page);
2739 	put_page(page);
2740 	*pagep = NULL;
2741 
2742 	return ret;
2743 }
2744 EXPORT_SYMBOL(nobh_write_begin);
2745 
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2746 int nobh_write_end(struct file *file, struct address_space *mapping,
2747 			loff_t pos, unsigned len, unsigned copied,
2748 			struct page *page, void *fsdata)
2749 {
2750 	struct inode *inode = page->mapping->host;
2751 	struct buffer_head *head = fsdata;
2752 	struct buffer_head *bh;
2753 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2754 
2755 	if (unlikely(copied < len) && head)
2756 		attach_nobh_buffers(page, head);
2757 	if (page_has_buffers(page))
2758 		return generic_write_end(file, mapping, pos, len,
2759 					copied, page, fsdata);
2760 
2761 	SetPageUptodate(page);
2762 	set_page_dirty(page);
2763 	if (pos+copied > inode->i_size) {
2764 		i_size_write(inode, pos+copied);
2765 		mark_inode_dirty(inode);
2766 	}
2767 
2768 	unlock_page(page);
2769 	put_page(page);
2770 
2771 	while (head) {
2772 		bh = head;
2773 		head = head->b_this_page;
2774 		free_buffer_head(bh);
2775 	}
2776 
2777 	return copied;
2778 }
2779 EXPORT_SYMBOL(nobh_write_end);
2780 
2781 /*
2782  * nobh_writepage() - based on block_full_write_page() except
2783  * that it tries to operate without attaching bufferheads to
2784  * the page.
2785  */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2786 int nobh_writepage(struct page *page, get_block_t *get_block,
2787 			struct writeback_control *wbc)
2788 {
2789 	struct inode * const inode = page->mapping->host;
2790 	loff_t i_size = i_size_read(inode);
2791 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2792 	unsigned offset;
2793 	int ret;
2794 
2795 	/* Is the page fully inside i_size? */
2796 	if (page->index < end_index)
2797 		goto out;
2798 
2799 	/* Is the page fully outside i_size? (truncate in progress) */
2800 	offset = i_size & (PAGE_SIZE-1);
2801 	if (page->index >= end_index+1 || !offset) {
2802 		unlock_page(page);
2803 		return 0; /* don't care */
2804 	}
2805 
2806 	/*
2807 	 * The page straddles i_size.  It must be zeroed out on each and every
2808 	 * writepage invocation because it may be mmapped.  "A file is mapped
2809 	 * in multiples of the page size.  For a file that is not a multiple of
2810 	 * the  page size, the remaining memory is zeroed when mapped, and
2811 	 * writes to that region are not written out to the file."
2812 	 */
2813 	zero_user_segment(page, offset, PAGE_SIZE);
2814 out:
2815 	ret = mpage_writepage(page, get_block, wbc);
2816 	if (ret == -EAGAIN)
2817 		ret = __block_write_full_page(inode, page, get_block, wbc,
2818 					      end_buffer_async_write);
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL(nobh_writepage);
2822 
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2823 int nobh_truncate_page(struct address_space *mapping,
2824 			loff_t from, get_block_t *get_block)
2825 {
2826 	pgoff_t index = from >> PAGE_SHIFT;
2827 	unsigned offset = from & (PAGE_SIZE-1);
2828 	unsigned blocksize;
2829 	sector_t iblock;
2830 	unsigned length, pos;
2831 	struct inode *inode = mapping->host;
2832 	struct page *page;
2833 	struct buffer_head map_bh;
2834 	int err;
2835 
2836 	blocksize = i_blocksize(inode);
2837 	length = offset & (blocksize - 1);
2838 
2839 	/* Block boundary? Nothing to do */
2840 	if (!length)
2841 		return 0;
2842 
2843 	length = blocksize - length;
2844 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2845 
2846 	page = grab_cache_page(mapping, index);
2847 	err = -ENOMEM;
2848 	if (!page)
2849 		goto out;
2850 
2851 	if (page_has_buffers(page)) {
2852 has_buffers:
2853 		unlock_page(page);
2854 		put_page(page);
2855 		return block_truncate_page(mapping, from, get_block);
2856 	}
2857 
2858 	/* Find the buffer that contains "offset" */
2859 	pos = blocksize;
2860 	while (offset >= pos) {
2861 		iblock++;
2862 		pos += blocksize;
2863 	}
2864 
2865 	map_bh.b_size = blocksize;
2866 	map_bh.b_state = 0;
2867 	err = get_block(inode, iblock, &map_bh, 0);
2868 	if (err)
2869 		goto unlock;
2870 	/* unmapped? It's a hole - nothing to do */
2871 	if (!buffer_mapped(&map_bh))
2872 		goto unlock;
2873 
2874 	/* Ok, it's mapped. Make sure it's up-to-date */
2875 	if (!PageUptodate(page)) {
2876 		err = mapping->a_ops->readpage(NULL, page);
2877 		if (err) {
2878 			put_page(page);
2879 			goto out;
2880 		}
2881 		lock_page(page);
2882 		if (!PageUptodate(page)) {
2883 			err = -EIO;
2884 			goto unlock;
2885 		}
2886 		if (page_has_buffers(page))
2887 			goto has_buffers;
2888 	}
2889 	zero_user(page, offset, length);
2890 	set_page_dirty(page);
2891 	err = 0;
2892 
2893 unlock:
2894 	unlock_page(page);
2895 	put_page(page);
2896 out:
2897 	return err;
2898 }
2899 EXPORT_SYMBOL(nobh_truncate_page);
2900 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2901 int block_truncate_page(struct address_space *mapping,
2902 			loff_t from, get_block_t *get_block)
2903 {
2904 	pgoff_t index = from >> PAGE_SHIFT;
2905 	unsigned offset = from & (PAGE_SIZE-1);
2906 	unsigned blocksize;
2907 	sector_t iblock;
2908 	unsigned length, pos;
2909 	struct inode *inode = mapping->host;
2910 	struct page *page;
2911 	struct buffer_head *bh;
2912 	int err;
2913 
2914 	blocksize = i_blocksize(inode);
2915 	length = offset & (blocksize - 1);
2916 
2917 	/* Block boundary? Nothing to do */
2918 	if (!length)
2919 		return 0;
2920 
2921 	length = blocksize - length;
2922 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2923 
2924 	page = grab_cache_page(mapping, index);
2925 	err = -ENOMEM;
2926 	if (!page)
2927 		goto out;
2928 
2929 	if (!page_has_buffers(page))
2930 		create_empty_buffers(page, blocksize, 0);
2931 
2932 	/* Find the buffer that contains "offset" */
2933 	bh = page_buffers(page);
2934 	pos = blocksize;
2935 	while (offset >= pos) {
2936 		bh = bh->b_this_page;
2937 		iblock++;
2938 		pos += blocksize;
2939 	}
2940 
2941 	err = 0;
2942 	if (!buffer_mapped(bh)) {
2943 		WARN_ON(bh->b_size != blocksize);
2944 		err = get_block(inode, iblock, bh, 0);
2945 		if (err)
2946 			goto unlock;
2947 		/* unmapped? It's a hole - nothing to do */
2948 		if (!buffer_mapped(bh))
2949 			goto unlock;
2950 	}
2951 
2952 	/* Ok, it's mapped. Make sure it's up-to-date */
2953 	if (PageUptodate(page))
2954 		set_buffer_uptodate(bh);
2955 
2956 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2957 		err = -EIO;
2958 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2959 		wait_on_buffer(bh);
2960 		/* Uhhuh. Read error. Complain and punt. */
2961 		if (!buffer_uptodate(bh))
2962 			goto unlock;
2963 	}
2964 
2965 	zero_user(page, offset, length);
2966 	mark_buffer_dirty(bh);
2967 	err = 0;
2968 
2969 unlock:
2970 	unlock_page(page);
2971 	put_page(page);
2972 out:
2973 	return err;
2974 }
2975 EXPORT_SYMBOL(block_truncate_page);
2976 
2977 /*
2978  * The generic ->writepage function for buffer-backed address_spaces
2979  */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2980 int block_write_full_page(struct page *page, get_block_t *get_block,
2981 			struct writeback_control *wbc)
2982 {
2983 	struct inode * const inode = page->mapping->host;
2984 	loff_t i_size = i_size_read(inode);
2985 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2986 	unsigned offset;
2987 
2988 	/* Is the page fully inside i_size? */
2989 	if (page->index < end_index)
2990 		return __block_write_full_page(inode, page, get_block, wbc,
2991 					       end_buffer_async_write);
2992 
2993 	/* Is the page fully outside i_size? (truncate in progress) */
2994 	offset = i_size & (PAGE_SIZE-1);
2995 	if (page->index >= end_index+1 || !offset) {
2996 		unlock_page(page);
2997 		return 0; /* don't care */
2998 	}
2999 
3000 	/*
3001 	 * The page straddles i_size.  It must be zeroed out on each and every
3002 	 * writepage invocation because it may be mmapped.  "A file is mapped
3003 	 * in multiples of the page size.  For a file that is not a multiple of
3004 	 * the  page size, the remaining memory is zeroed when mapped, and
3005 	 * writes to that region are not written out to the file."
3006 	 */
3007 	zero_user_segment(page, offset, PAGE_SIZE);
3008 	return __block_write_full_page(inode, page, get_block, wbc,
3009 							end_buffer_async_write);
3010 }
3011 EXPORT_SYMBOL(block_write_full_page);
3012 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)3013 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3014 			    get_block_t *get_block)
3015 {
3016 	struct inode *inode = mapping->host;
3017 	struct buffer_head tmp = {
3018 		.b_size = i_blocksize(inode),
3019 	};
3020 
3021 	get_block(inode, block, &tmp, 0);
3022 	return tmp.b_blocknr;
3023 }
3024 EXPORT_SYMBOL(generic_block_bmap);
3025 
end_bio_bh_io_sync(struct bio * bio)3026 static void end_bio_bh_io_sync(struct bio *bio)
3027 {
3028 	struct buffer_head *bh = bio->bi_private;
3029 
3030 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3031 		set_bit(BH_Quiet, &bh->b_state);
3032 
3033 	bh->b_end_io(bh, !bio->bi_status);
3034 	bio_put(bio);
3035 }
3036 
submit_bh_wbc(int op,int op_flags,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)3037 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3038 			 enum rw_hint write_hint, struct writeback_control *wbc)
3039 {
3040 	struct bio *bio;
3041 
3042 	BUG_ON(!buffer_locked(bh));
3043 	BUG_ON(!buffer_mapped(bh));
3044 	BUG_ON(!bh->b_end_io);
3045 	BUG_ON(buffer_delay(bh));
3046 	BUG_ON(buffer_unwritten(bh));
3047 
3048 	/*
3049 	 * Only clear out a write error when rewriting
3050 	 */
3051 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3052 		clear_buffer_write_io_error(bh);
3053 
3054 	bio = bio_alloc(GFP_NOIO, 1);
3055 
3056 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3057 
3058 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3059 	bio_set_dev(bio, bh->b_bdev);
3060 	bio->bi_write_hint = write_hint;
3061 
3062 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3063 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3064 
3065 	bio->bi_end_io = end_bio_bh_io_sync;
3066 	bio->bi_private = bh;
3067 
3068 	if (buffer_meta(bh))
3069 		op_flags |= REQ_META;
3070 	if (buffer_prio(bh))
3071 		op_flags |= REQ_PRIO;
3072 	bio_set_op_attrs(bio, op, op_flags);
3073 
3074 	/* Take care of bh's that straddle the end of the device */
3075 	guard_bio_eod(bio);
3076 
3077 	if (wbc) {
3078 		wbc_init_bio(wbc, bio);
3079 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3080 	}
3081 
3082 	submit_bio(bio);
3083 	return 0;
3084 }
3085 
submit_bh(int op,int op_flags,struct buffer_head * bh)3086 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3087 {
3088 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3089 }
3090 EXPORT_SYMBOL(submit_bh);
3091 
3092 /**
3093  * ll_rw_block: low-level access to block devices (DEPRECATED)
3094  * @op: whether to %READ or %WRITE
3095  * @op_flags: req_flag_bits
3096  * @nr: number of &struct buffer_heads in the array
3097  * @bhs: array of pointers to &struct buffer_head
3098  *
3099  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3100  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3101  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3102  * %REQ_RAHEAD.
3103  *
3104  * This function drops any buffer that it cannot get a lock on (with the
3105  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3106  * request, and any buffer that appears to be up-to-date when doing read
3107  * request.  Further it marks as clean buffers that are processed for
3108  * writing (the buffer cache won't assume that they are actually clean
3109  * until the buffer gets unlocked).
3110  *
3111  * ll_rw_block sets b_end_io to simple completion handler that marks
3112  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3113  * any waiters.
3114  *
3115  * All of the buffers must be for the same device, and must also be a
3116  * multiple of the current approved size for the device.
3117  */
ll_rw_block(int op,int op_flags,int nr,struct buffer_head * bhs[])3118 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3119 {
3120 	int i;
3121 
3122 	for (i = 0; i < nr; i++) {
3123 		struct buffer_head *bh = bhs[i];
3124 
3125 		if (!trylock_buffer(bh))
3126 			continue;
3127 		if (op == WRITE) {
3128 			if (test_clear_buffer_dirty(bh)) {
3129 				bh->b_end_io = end_buffer_write_sync;
3130 				get_bh(bh);
3131 				submit_bh(op, op_flags, bh);
3132 				continue;
3133 			}
3134 		} else {
3135 			if (!buffer_uptodate(bh)) {
3136 				bh->b_end_io = end_buffer_read_sync;
3137 				get_bh(bh);
3138 				submit_bh(op, op_flags, bh);
3139 				continue;
3140 			}
3141 		}
3142 		unlock_buffer(bh);
3143 	}
3144 }
3145 EXPORT_SYMBOL_NS(ll_rw_block, ANDROID_GKI_VFS_EXPORT_ONLY);
3146 
write_dirty_buffer(struct buffer_head * bh,int op_flags)3147 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3148 {
3149 	lock_buffer(bh);
3150 	if (!test_clear_buffer_dirty(bh)) {
3151 		unlock_buffer(bh);
3152 		return;
3153 	}
3154 	bh->b_end_io = end_buffer_write_sync;
3155 	get_bh(bh);
3156 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3157 }
3158 EXPORT_SYMBOL(write_dirty_buffer);
3159 
3160 /*
3161  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3162  * and then start new I/O and then wait upon it.  The caller must have a ref on
3163  * the buffer_head.
3164  */
__sync_dirty_buffer(struct buffer_head * bh,int op_flags)3165 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3166 {
3167 	int ret = 0;
3168 
3169 	WARN_ON(atomic_read(&bh->b_count) < 1);
3170 	lock_buffer(bh);
3171 	if (test_clear_buffer_dirty(bh)) {
3172 		/*
3173 		 * The bh should be mapped, but it might not be if the
3174 		 * device was hot-removed. Not much we can do but fail the I/O.
3175 		 */
3176 		if (!buffer_mapped(bh)) {
3177 			unlock_buffer(bh);
3178 			return -EIO;
3179 		}
3180 
3181 		get_bh(bh);
3182 		bh->b_end_io = end_buffer_write_sync;
3183 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3184 		wait_on_buffer(bh);
3185 		if (!ret && !buffer_uptodate(bh))
3186 			ret = -EIO;
3187 	} else {
3188 		unlock_buffer(bh);
3189 	}
3190 	return ret;
3191 }
3192 EXPORT_SYMBOL(__sync_dirty_buffer);
3193 
sync_dirty_buffer(struct buffer_head * bh)3194 int sync_dirty_buffer(struct buffer_head *bh)
3195 {
3196 	return __sync_dirty_buffer(bh, REQ_SYNC);
3197 }
3198 EXPORT_SYMBOL_NS(sync_dirty_buffer, ANDROID_GKI_VFS_EXPORT_ONLY);
3199 
3200 /*
3201  * try_to_free_buffers() checks if all the buffers on this particular page
3202  * are unused, and releases them if so.
3203  *
3204  * Exclusion against try_to_free_buffers may be obtained by either
3205  * locking the page or by holding its mapping's private_lock.
3206  *
3207  * If the page is dirty but all the buffers are clean then we need to
3208  * be sure to mark the page clean as well.  This is because the page
3209  * may be against a block device, and a later reattachment of buffers
3210  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3211  * filesystem data on the same device.
3212  *
3213  * The same applies to regular filesystem pages: if all the buffers are
3214  * clean then we set the page clean and proceed.  To do that, we require
3215  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3216  * private_lock.
3217  *
3218  * try_to_free_buffers() is non-blocking.
3219  */
buffer_busy(struct buffer_head * bh)3220 static inline int buffer_busy(struct buffer_head *bh)
3221 {
3222 	return atomic_read(&bh->b_count) |
3223 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3224 }
3225 
3226 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3227 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3228 {
3229 	struct buffer_head *head = page_buffers(page);
3230 	struct buffer_head *bh;
3231 
3232 	bh = head;
3233 	do {
3234 		if (buffer_busy(bh))
3235 			goto failed;
3236 		bh = bh->b_this_page;
3237 	} while (bh != head);
3238 
3239 	do {
3240 		struct buffer_head *next = bh->b_this_page;
3241 
3242 		if (bh->b_assoc_map)
3243 			__remove_assoc_queue(bh);
3244 		bh = next;
3245 	} while (bh != head);
3246 	*buffers_to_free = head;
3247 	detach_page_private(page);
3248 	return 1;
3249 failed:
3250 	return 0;
3251 }
3252 
try_to_free_buffers(struct page * page)3253 int try_to_free_buffers(struct page *page)
3254 {
3255 	struct address_space * const mapping = page->mapping;
3256 	struct buffer_head *buffers_to_free = NULL;
3257 	int ret = 0;
3258 
3259 	BUG_ON(!PageLocked(page));
3260 	if (PageWriteback(page))
3261 		return 0;
3262 
3263 	if (mapping == NULL) {		/* can this still happen? */
3264 		ret = drop_buffers(page, &buffers_to_free);
3265 		goto out;
3266 	}
3267 
3268 	spin_lock(&mapping->private_lock);
3269 	ret = drop_buffers(page, &buffers_to_free);
3270 
3271 	/*
3272 	 * If the filesystem writes its buffers by hand (eg ext3)
3273 	 * then we can have clean buffers against a dirty page.  We
3274 	 * clean the page here; otherwise the VM will never notice
3275 	 * that the filesystem did any IO at all.
3276 	 *
3277 	 * Also, during truncate, discard_buffer will have marked all
3278 	 * the page's buffers clean.  We discover that here and clean
3279 	 * the page also.
3280 	 *
3281 	 * private_lock must be held over this entire operation in order
3282 	 * to synchronise against __set_page_dirty_buffers and prevent the
3283 	 * dirty bit from being lost.
3284 	 */
3285 	if (ret)
3286 		cancel_dirty_page(page);
3287 	spin_unlock(&mapping->private_lock);
3288 out:
3289 	if (buffers_to_free) {
3290 		struct buffer_head *bh = buffers_to_free;
3291 
3292 		do {
3293 			struct buffer_head *next = bh->b_this_page;
3294 			free_buffer_head(bh);
3295 			bh = next;
3296 		} while (bh != buffers_to_free);
3297 	}
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(try_to_free_buffers);
3301 
3302 /*
3303  * There are no bdflush tunables left.  But distributions are
3304  * still running obsolete flush daemons, so we terminate them here.
3305  *
3306  * Use of bdflush() is deprecated and will be removed in a future kernel.
3307  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3308  */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3309 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3310 {
3311 	static int msg_count;
3312 
3313 	if (!capable(CAP_SYS_ADMIN))
3314 		return -EPERM;
3315 
3316 	if (msg_count < 5) {
3317 		msg_count++;
3318 		printk(KERN_INFO
3319 			"warning: process `%s' used the obsolete bdflush"
3320 			" system call\n", current->comm);
3321 		printk(KERN_INFO "Fix your initscripts?\n");
3322 	}
3323 
3324 	if (func == 1)
3325 		do_exit(0);
3326 	return 0;
3327 }
3328 
3329 /*
3330  * Buffer-head allocation
3331  */
3332 static struct kmem_cache *bh_cachep __read_mostly;
3333 
3334 /*
3335  * Once the number of bh's in the machine exceeds this level, we start
3336  * stripping them in writeback.
3337  */
3338 static unsigned long max_buffer_heads;
3339 
3340 int buffer_heads_over_limit;
3341 
3342 struct bh_accounting {
3343 	int nr;			/* Number of live bh's */
3344 	int ratelimit;		/* Limit cacheline bouncing */
3345 };
3346 
3347 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3348 
recalc_bh_state(void)3349 static void recalc_bh_state(void)
3350 {
3351 	int i;
3352 	int tot = 0;
3353 
3354 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3355 		return;
3356 	__this_cpu_write(bh_accounting.ratelimit, 0);
3357 	for_each_online_cpu(i)
3358 		tot += per_cpu(bh_accounting, i).nr;
3359 	buffer_heads_over_limit = (tot > max_buffer_heads);
3360 }
3361 
alloc_buffer_head(gfp_t gfp_flags)3362 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3363 {
3364 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3365 	if (ret) {
3366 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3367 		spin_lock_init(&ret->b_uptodate_lock);
3368 		preempt_disable();
3369 		__this_cpu_inc(bh_accounting.nr);
3370 		recalc_bh_state();
3371 		preempt_enable();
3372 	}
3373 	return ret;
3374 }
3375 EXPORT_SYMBOL(alloc_buffer_head);
3376 
free_buffer_head(struct buffer_head * bh)3377 void free_buffer_head(struct buffer_head *bh)
3378 {
3379 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3380 	kmem_cache_free(bh_cachep, bh);
3381 	preempt_disable();
3382 	__this_cpu_dec(bh_accounting.nr);
3383 	recalc_bh_state();
3384 	preempt_enable();
3385 }
3386 EXPORT_SYMBOL(free_buffer_head);
3387 
buffer_exit_cpu_dead(unsigned int cpu)3388 static int buffer_exit_cpu_dead(unsigned int cpu)
3389 {
3390 	int i;
3391 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3392 
3393 	for (i = 0; i < BH_LRU_SIZE; i++) {
3394 		brelse(b->bhs[i]);
3395 		b->bhs[i] = NULL;
3396 	}
3397 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3398 	per_cpu(bh_accounting, cpu).nr = 0;
3399 	return 0;
3400 }
3401 
3402 /**
3403  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3404  * @bh: struct buffer_head
3405  *
3406  * Return true if the buffer is up-to-date and false,
3407  * with the buffer locked, if not.
3408  */
bh_uptodate_or_lock(struct buffer_head * bh)3409 int bh_uptodate_or_lock(struct buffer_head *bh)
3410 {
3411 	if (!buffer_uptodate(bh)) {
3412 		lock_buffer(bh);
3413 		if (!buffer_uptodate(bh))
3414 			return 0;
3415 		unlock_buffer(bh);
3416 	}
3417 	return 1;
3418 }
3419 EXPORT_SYMBOL(bh_uptodate_or_lock);
3420 
3421 /**
3422  * bh_submit_read - Submit a locked buffer for reading
3423  * @bh: struct buffer_head
3424  *
3425  * Returns zero on success and -EIO on error.
3426  */
bh_submit_read(struct buffer_head * bh)3427 int bh_submit_read(struct buffer_head *bh)
3428 {
3429 	BUG_ON(!buffer_locked(bh));
3430 
3431 	if (buffer_uptodate(bh)) {
3432 		unlock_buffer(bh);
3433 		return 0;
3434 	}
3435 
3436 	get_bh(bh);
3437 	bh->b_end_io = end_buffer_read_sync;
3438 	submit_bh(REQ_OP_READ, 0, bh);
3439 	wait_on_buffer(bh);
3440 	if (buffer_uptodate(bh))
3441 		return 0;
3442 	return -EIO;
3443 }
3444 EXPORT_SYMBOL(bh_submit_read);
3445 
buffer_init(void)3446 void __init buffer_init(void)
3447 {
3448 	unsigned long nrpages;
3449 	int ret;
3450 
3451 	bh_cachep = kmem_cache_create("buffer_head",
3452 			sizeof(struct buffer_head), 0,
3453 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3454 				SLAB_MEM_SPREAD),
3455 				NULL);
3456 
3457 	/*
3458 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3459 	 */
3460 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3461 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3462 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3463 					NULL, buffer_exit_cpu_dead);
3464 	WARN_ON(ret < 0);
3465 }
3466