1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
m_hash(struct vfsmount * mnt,struct dentry * dentry)90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
mp_hash(struct dentry * dentry)98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
mnt_alloc_id(struct mount * mnt)105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
mnt_free_id(struct mount * mnt)115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
mnt_alloc_group_id(struct mount * mnt)123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
mnt_release_group_id(struct mount * mnt)136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
mnt_add_count(struct mount * mnt,int n)145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
mnt_get_count(struct mount * mnt)159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
alloc_vfsmnt(const char * name)175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
__mnt_is_readonly(struct vfsmount * mnt)246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
mnt_inc_writers(struct mount * mnt)252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 mnt->mnt_writers++;
258 #endif
259 }
260
mnt_dec_writers(struct mount * mnt)261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 mnt->mnt_writers--;
267 #endif
268 }
269
mnt_get_writers(struct mount * mnt)270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281 #else
282 return mnt->mnt_writers;
283 #endif
284 }
285
mnt_is_readonly(struct vfsmount * mnt)286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293 }
294
295 /*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301 /**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
__mnt_want_write(struct vfsmount * m)311 int __mnt_want_write(struct vfsmount *m)
312 {
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339 }
340
341 /**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
mnt_want_write(struct vfsmount * m)350 int mnt_want_write(struct vfsmount *m)
351 {
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361
362 /**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
mnt_clone_write(struct vfsmount * mnt)374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386 /**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
__mnt_want_write_file(struct file * file)393 int __mnt_want_write_file(struct file *file)
394 {
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399 }
400
401 /**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
mnt_want_write_file(struct file * file)408 int mnt_want_write_file(struct file *file)
409 {
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417 }
418 EXPORT_SYMBOL_NS_GPL(mnt_want_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
419
420 /**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
__mnt_drop_write(struct vfsmount * mnt)428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433 }
434
435 /**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
mnt_drop_write(struct vfsmount * mnt)443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449
__mnt_drop_write_file(struct file * file)450 void __mnt_drop_write_file(struct file *file)
451 {
452 __mnt_drop_write(file->f_path.mnt);
453 }
454
mnt_drop_write_file(struct file * file)455 void mnt_drop_write_file(struct file *file)
456 {
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL_NS(mnt_drop_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
461
mnt_make_readonly(struct mount * mnt)462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502 }
503
__mnt_unmake_readonly(struct mount * mnt)504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
509 return 0;
510 }
511
sb_prepare_remount_readonly(struct super_block * sb)512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546 }
547
free_vfsmnt(struct mount * mnt)548 static void free_vfsmnt(struct mount *mnt)
549 {
550 kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553 #endif
554 kmem_cache_free(mnt_cache, mnt);
555 }
556
delayed_free_vfsmnt(struct rcu_head * head)557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561
562 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588 }
589
590 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602 }
603
604 /*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617 }
618
619 /*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
lookup_mnt(const struct path * path)635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649 }
650
lock_ns_list(struct mnt_namespace * ns)651 static inline void lock_ns_list(struct mnt_namespace *ns)
652 {
653 spin_lock(&ns->ns_lock);
654 }
655
unlock_ns_list(struct mnt_namespace * ns)656 static inline void unlock_ns_list(struct mnt_namespace *ns)
657 {
658 spin_unlock(&ns->ns_lock);
659 }
660
mnt_is_cursor(struct mount * mnt)661 static inline bool mnt_is_cursor(struct mount *mnt)
662 {
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
664 }
665
666 /*
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
669 *
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
674 * is a mountpoint.
675 *
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
679 * parent mount.
680 */
__is_local_mountpoint(struct dentry * dentry)681 bool __is_local_mountpoint(struct dentry *dentry)
682 {
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 struct mount *mnt;
685 bool is_covered = false;
686
687 down_read(&namespace_sem);
688 lock_ns_list(ns);
689 list_for_each_entry(mnt, &ns->list, mnt_list) {
690 if (mnt_is_cursor(mnt))
691 continue;
692 is_covered = (mnt->mnt_mountpoint == dentry);
693 if (is_covered)
694 break;
695 }
696 unlock_ns_list(ns);
697 up_read(&namespace_sem);
698
699 return is_covered;
700 }
701
lookup_mountpoint(struct dentry * dentry)702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
703 {
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
706
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
709 mp->m_count++;
710 return mp;
711 }
712 }
713 return NULL;
714 }
715
get_mountpoint(struct dentry * dentry)716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
717 {
718 struct mountpoint *mp, *new = NULL;
719 int ret;
720
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725 mountpoint:
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
729 if (mp)
730 goto done;
731 }
732
733 if (!new)
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
735 if (!new)
736 return ERR_PTR(-ENOMEM);
737
738
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
741
742 /* Someone else set d_mounted? */
743 if (ret == -EBUSY)
744 goto mountpoint;
745
746 /* The dentry is not available as a mountpoint? */
747 mp = ERR_PTR(ret);
748 if (ret)
749 goto done;
750
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
753 new->m_dentry = dget(dentry);
754 new->m_count = 1;
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
758
759 mp = new;
760 new = NULL;
761 done:
762 kfree(new);
763 return mp;
764 }
765
766 /*
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
769 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
771 {
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 dput_to_list(dentry, list);
779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782 }
783
784 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)785 static void put_mountpoint(struct mountpoint *mp)
786 {
787 __put_mountpoint(mp, &ex_mountpoints);
788 }
789
check_mnt(struct mount * mnt)790 static inline int check_mnt(struct mount *mnt)
791 {
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
touch_mnt_namespace(struct mnt_namespace * ns)798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 if (ns) {
801 ns->event = ++event;
802 wake_up_interruptible(&ns->poll);
803 }
804 }
805
806 /*
807 * vfsmount lock must be held for write
808 */
__touch_mnt_namespace(struct mnt_namespace * ns)809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 if (ns && ns->event != event) {
812 ns->event = event;
813 wake_up_interruptible(&ns->poll);
814 }
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
unhash_mnt(struct mount * mnt)820 static struct mountpoint *unhash_mnt(struct mount *mnt)
821 {
822 struct mountpoint *mp;
823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
828 mp = mnt->mnt_mp;
829 mnt->mnt_mp = NULL;
830 return mp;
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
umount_mnt(struct mount * mnt)836 static void umount_mnt(struct mount *mnt)
837 {
838 put_mountpoint(unhash_mnt(mnt));
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
847 {
848 mp->m_count++;
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854 }
855
__attach_mnt(struct mount * mnt,struct mount * parent)856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
857 {
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
869 {
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
872 }
873
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875 {
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
887 }
888
889 /*
890 * vfsmount lock must be held for write
891 */
commit_tree(struct mount * mnt)892 static void commit_tree(struct mount *mnt)
893 {
894 struct mount *parent = mnt->mnt_parent;
895 struct mount *m;
896 LIST_HEAD(head);
897 struct mnt_namespace *n = parent->mnt_ns;
898
899 BUG_ON(parent == mnt);
900
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
903 m->mnt_ns = n;
904
905 list_splice(&head, n->list.prev);
906
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
912 }
913
next_mnt(struct mount * p,struct mount * root)914 static struct mount *next_mnt(struct mount *p, struct mount *root)
915 {
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
918 while (1) {
919 if (p == root)
920 return NULL;
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
923 break;
924 p = p->mnt_parent;
925 }
926 }
927 return list_entry(next, struct mount, mnt_child);
928 }
929
skip_mnt_tree(struct mount * p)930 static struct mount *skip_mnt_tree(struct mount *p)
931 {
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
936 }
937 return p;
938 }
939
940 /**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
vfs_create_mount(struct fs_context * fc)949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
950 {
951 struct mount *mnt;
952
953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
955
956 mnt = alloc_vfsmnt(fc->source ?: "none");
957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
962
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
968
969 lock_mount_hash();
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
971 unlock_mount_hash();
972 return &mnt->mnt;
973 }
974 EXPORT_SYMBOL(vfs_create_mount);
975
fc_mount(struct fs_context * fc)976 struct vfsmount *fc_mount(struct fs_context *fc)
977 {
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL(fc_mount);
986
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
990 {
991 struct fs_context *fc;
992 struct vfsmount *mnt;
993 int ret = 0;
994
995 if (!type)
996 return ERR_PTR(-EINVAL);
997
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
1011
1012 put_fs_context(fc);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020 {
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1031
clone_mnt(struct mount * old,struct dentry * root,int flag)1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 int flag)
1034 {
1035 struct super_block *sb = old->mnt.mnt_sb;
1036 struct mount *mnt;
1037 int err;
1038
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1062 lock_mount_hash();
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1065
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
1090 return mnt;
1091
1092 out_free:
1093 mnt_free_id(mnt);
1094 free_vfsmnt(mnt);
1095 return ERR_PTR(err);
1096 }
1097
cleanup_mnt(struct mount * mnt)1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 struct hlist_node *p;
1101 struct mount *m;
1102 /*
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1108 */
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1114 mntput(&m->mnt);
1115 }
1116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1119 mnt_free_id(mnt);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121 }
1122
__cleanup_mnt(struct rcu_head * head)1123 static void __cleanup_mnt(struct rcu_head *head)
1124 {
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126 }
1127
1128 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1129 static void delayed_mntput(struct work_struct *unused)
1130 {
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1133
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1135 cleanup_mnt(m);
1136 }
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
mntput_no_expire(struct mount * mnt)1139 static void mntput_no_expire(struct mount *mnt)
1140 {
1141 LIST_HEAD(list);
1142 int count;
1143
1144 rcu_read_lock();
1145 if (likely(READ_ONCE(mnt->mnt_ns))) {
1146 /*
1147 * Since we don't do lock_mount_hash() here,
1148 * ->mnt_ns can change under us. However, if it's
1149 * non-NULL, then there's a reference that won't
1150 * be dropped until after an RCU delay done after
1151 * turning ->mnt_ns NULL. So if we observe it
1152 * non-NULL under rcu_read_lock(), the reference
1153 * we are dropping is not the final one.
1154 */
1155 mnt_add_count(mnt, -1);
1156 rcu_read_unlock();
1157 return;
1158 }
1159 lock_mount_hash();
1160 /*
1161 * make sure that if __legitimize_mnt() has not seen us grab
1162 * mount_lock, we'll see their refcount increment here.
1163 */
1164 smp_mb();
1165 mnt_add_count(mnt, -1);
1166 count = mnt_get_count(mnt);
1167 if (count != 0) {
1168 WARN_ON(count < 0);
1169 rcu_read_unlock();
1170 unlock_mount_hash();
1171 return;
1172 }
1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1174 rcu_read_unlock();
1175 unlock_mount_hash();
1176 return;
1177 }
1178 mnt->mnt.mnt_flags |= MNT_DOOMED;
1179 rcu_read_unlock();
1180
1181 list_del(&mnt->mnt_instance);
1182
1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 struct mount *p, *tmp;
1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1186 __put_mountpoint(unhash_mnt(p), &list);
1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1188 }
1189 }
1190 unlock_mount_hash();
1191 shrink_dentry_list(&list);
1192
1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 struct task_struct *task = current;
1195 if (likely(!(task->flags & PF_KTHREAD))) {
1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1197 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1198 return;
1199 }
1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 schedule_delayed_work(&delayed_mntput_work, 1);
1202 return;
1203 }
1204 cleanup_mnt(mnt);
1205 }
1206
mntput(struct vfsmount * mnt)1207 void mntput(struct vfsmount *mnt)
1208 {
1209 if (mnt) {
1210 struct mount *m = real_mount(mnt);
1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1212 if (unlikely(m->mnt_expiry_mark))
1213 m->mnt_expiry_mark = 0;
1214 mntput_no_expire(m);
1215 }
1216 }
1217 EXPORT_SYMBOL(mntput);
1218
mntget(struct vfsmount * mnt)1219 struct vfsmount *mntget(struct vfsmount *mnt)
1220 {
1221 if (mnt)
1222 mnt_add_count(real_mount(mnt), 1);
1223 return mnt;
1224 }
1225 EXPORT_SYMBOL(mntget);
1226
1227 /* path_is_mountpoint() - Check if path is a mount in the current
1228 * namespace.
1229 *
1230 * d_mountpoint() can only be used reliably to establish if a dentry is
1231 * not mounted in any namespace and that common case is handled inline.
1232 * d_mountpoint() isn't aware of the possibility there may be multiple
1233 * mounts using a given dentry in a different namespace. This function
1234 * checks if the passed in path is a mountpoint rather than the dentry
1235 * alone.
1236 */
path_is_mountpoint(const struct path * path)1237 bool path_is_mountpoint(const struct path *path)
1238 {
1239 unsigned seq;
1240 bool res;
1241
1242 if (!d_mountpoint(path->dentry))
1243 return false;
1244
1245 rcu_read_lock();
1246 do {
1247 seq = read_seqbegin(&mount_lock);
1248 res = __path_is_mountpoint(path);
1249 } while (read_seqretry(&mount_lock, seq));
1250 rcu_read_unlock();
1251
1252 return res;
1253 }
1254 EXPORT_SYMBOL(path_is_mountpoint);
1255
mnt_clone_internal(const struct path * path)1256 struct vfsmount *mnt_clone_internal(const struct path *path)
1257 {
1258 struct mount *p;
1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1260 if (IS_ERR(p))
1261 return ERR_CAST(p);
1262 p->mnt.mnt_flags |= MNT_INTERNAL;
1263 return &p->mnt;
1264 }
1265
1266 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1267 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 struct list_head *p)
1269 {
1270 struct mount *mnt, *ret = NULL;
1271
1272 lock_ns_list(ns);
1273 list_for_each_continue(p, &ns->list) {
1274 mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 if (!mnt_is_cursor(mnt)) {
1276 ret = mnt;
1277 break;
1278 }
1279 }
1280 unlock_ns_list(ns);
1281
1282 return ret;
1283 }
1284
1285 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1286 static void *m_start(struct seq_file *m, loff_t *pos)
1287 {
1288 struct proc_mounts *p = m->private;
1289 struct list_head *prev;
1290
1291 down_read(&namespace_sem);
1292 if (!*pos) {
1293 prev = &p->ns->list;
1294 } else {
1295 prev = &p->cursor.mnt_list;
1296
1297 /* Read after we'd reached the end? */
1298 if (list_empty(prev))
1299 return NULL;
1300 }
1301
1302 return mnt_list_next(p->ns, prev);
1303 }
1304
m_next(struct seq_file * m,void * v,loff_t * pos)1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306 {
1307 struct proc_mounts *p = m->private;
1308 struct mount *mnt = v;
1309
1310 ++*pos;
1311 return mnt_list_next(p->ns, &mnt->mnt_list);
1312 }
1313
m_stop(struct seq_file * m,void * v)1314 static void m_stop(struct seq_file *m, void *v)
1315 {
1316 struct proc_mounts *p = m->private;
1317 struct mount *mnt = v;
1318
1319 lock_ns_list(p->ns);
1320 if (mnt)
1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1322 else
1323 list_del_init(&p->cursor.mnt_list);
1324 unlock_ns_list(p->ns);
1325 up_read(&namespace_sem);
1326 }
1327
m_show(struct seq_file * m,void * v)1328 static int m_show(struct seq_file *m, void *v)
1329 {
1330 struct proc_mounts *p = m->private;
1331 struct mount *r = v;
1332 return p->show(m, &r->mnt);
1333 }
1334
1335 const struct seq_operations mounts_op = {
1336 .start = m_start,
1337 .next = m_next,
1338 .stop = m_stop,
1339 .show = m_show,
1340 };
1341
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1343 {
1344 down_read(&namespace_sem);
1345 lock_ns_list(ns);
1346 list_del(&cursor->mnt_list);
1347 unlock_ns_list(ns);
1348 up_read(&namespace_sem);
1349 }
1350 #endif /* CONFIG_PROC_FS */
1351
1352 /**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
may_umount_tree(struct vfsmount * m)1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1365 struct mount *p;
1366 BUG_ON(!m);
1367
1368 /* write lock needed for mnt_get_count */
1369 lock_mount_hash();
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1372 minimum_refs += 2;
1373 }
1374 unlock_mount_hash();
1375
1376 if (actual_refs > minimum_refs)
1377 return 0;
1378
1379 return 1;
1380 }
1381
1382 EXPORT_SYMBOL(may_umount_tree);
1383
1384 /**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
may_umount(struct vfsmount * mnt)1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 int ret = 1;
1400 down_read(&namespace_sem);
1401 lock_mount_hash();
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1403 ret = 0;
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1406 return ret;
1407 }
1408
1409 EXPORT_SYMBOL(may_umount);
1410
namespace_unlock(void)1411 static void namespace_unlock(void)
1412 {
1413 struct hlist_head head;
1414 struct hlist_node *p;
1415 struct mount *m;
1416 LIST_HEAD(list);
1417
1418 hlist_move_list(&unmounted, &head);
1419 list_splice_init(&ex_mountpoints, &list);
1420
1421 up_write(&namespace_sem);
1422
1423 shrink_dentry_list(&list);
1424
1425 if (likely(hlist_empty(&head)))
1426 return;
1427
1428 synchronize_rcu_expedited();
1429
1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 hlist_del(&m->mnt_umount);
1432 mntput(&m->mnt);
1433 }
1434 }
1435
namespace_lock(void)1436 static inline void namespace_lock(void)
1437 {
1438 down_write(&namespace_sem);
1439 }
1440
1441 enum umount_tree_flags {
1442 UMOUNT_SYNC = 1,
1443 UMOUNT_PROPAGATE = 2,
1444 UMOUNT_CONNECTED = 4,
1445 };
1446
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448 {
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1451 return true;
1452
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1455 return true;
1456
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1460 */
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 return true;
1463
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1466 return false;
1467
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1470 return false;
1471
1472 /* By default disconnect the mount */
1473 return true;
1474 }
1475
1476 /*
1477 * mount_lock must be held
1478 * namespace_sem must be held for write
1479 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1481 {
1482 LIST_HEAD(tmp_list);
1483 struct mount *p;
1484
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1487
1488 /* Gather the mounts to umount */
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
1491 list_move(&p->mnt_list, &tmp_list);
1492 }
1493
1494 /* Hide the mounts from mnt_mounts */
1495 list_for_each_entry(p, &tmp_list, mnt_list) {
1496 list_del_init(&p->mnt_child);
1497 }
1498
1499 /* Add propogated mounts to the tmp_list */
1500 if (how & UMOUNT_PROPAGATE)
1501 propagate_umount(&tmp_list);
1502
1503 while (!list_empty(&tmp_list)) {
1504 struct mnt_namespace *ns;
1505 bool disconnect;
1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 list_del_init(&p->mnt_expire);
1508 list_del_init(&p->mnt_list);
1509 ns = p->mnt_ns;
1510 if (ns) {
1511 ns->mounts--;
1512 __touch_mnt_namespace(ns);
1513 }
1514 p->mnt_ns = NULL;
1515 if (how & UMOUNT_SYNC)
1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1517
1518 disconnect = disconnect_mount(p, how);
1519 if (mnt_has_parent(p)) {
1520 mnt_add_count(p->mnt_parent, -1);
1521 if (!disconnect) {
1522 /* Don't forget about p */
1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1524 } else {
1525 umount_mnt(p);
1526 }
1527 }
1528 change_mnt_propagation(p, MS_PRIVATE);
1529 if (disconnect)
1530 hlist_add_head(&p->mnt_umount, &unmounted);
1531 }
1532 }
1533
1534 static void shrink_submounts(struct mount *mnt);
1535
do_umount_root(struct super_block * sb)1536 static int do_umount_root(struct super_block *sb)
1537 {
1538 int ret = 0;
1539
1540 down_write(&sb->s_umount);
1541 if (!sb_rdonly(sb)) {
1542 struct fs_context *fc;
1543
1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1545 SB_RDONLY);
1546 if (IS_ERR(fc)) {
1547 ret = PTR_ERR(fc);
1548 } else {
1549 ret = parse_monolithic_mount_data(fc, NULL);
1550 if (!ret)
1551 ret = reconfigure_super(fc);
1552 put_fs_context(fc);
1553 }
1554 }
1555 up_write(&sb->s_umount);
1556 return ret;
1557 }
1558
do_umount(struct mount * mnt,int flags)1559 static int do_umount(struct mount *mnt, int flags)
1560 {
1561 struct super_block *sb = mnt->mnt.mnt_sb;
1562 int retval;
1563
1564 retval = security_sb_umount(&mnt->mnt, flags);
1565 if (retval)
1566 return retval;
1567
1568 /*
1569 * Allow userspace to request a mountpoint be expired rather than
1570 * unmounting unconditionally. Unmount only happens if:
1571 * (1) the mark is already set (the mark is cleared by mntput())
1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1573 */
1574 if (flags & MNT_EXPIRE) {
1575 if (&mnt->mnt == current->fs->root.mnt ||
1576 flags & (MNT_FORCE | MNT_DETACH))
1577 return -EINVAL;
1578
1579 /*
1580 * probably don't strictly need the lock here if we examined
1581 * all race cases, but it's a slowpath.
1582 */
1583 lock_mount_hash();
1584 if (mnt_get_count(mnt) != 2) {
1585 unlock_mount_hash();
1586 return -EBUSY;
1587 }
1588 unlock_mount_hash();
1589
1590 if (!xchg(&mnt->mnt_expiry_mark, 1))
1591 return -EAGAIN;
1592 }
1593
1594 /*
1595 * If we may have to abort operations to get out of this
1596 * mount, and they will themselves hold resources we must
1597 * allow the fs to do things. In the Unix tradition of
1598 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 * might fail to complete on the first run through as other tasks
1600 * must return, and the like. Thats for the mount program to worry
1601 * about for the moment.
1602 */
1603
1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1605 sb->s_op->umount_begin(sb);
1606 }
1607
1608 /*
1609 * No sense to grab the lock for this test, but test itself looks
1610 * somewhat bogus. Suggestions for better replacement?
1611 * Ho-hum... In principle, we might treat that as umount + switch
1612 * to rootfs. GC would eventually take care of the old vfsmount.
1613 * Actually it makes sense, especially if rootfs would contain a
1614 * /reboot - static binary that would close all descriptors and
1615 * call reboot(9). Then init(8) could umount root and exec /reboot.
1616 */
1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1618 /*
1619 * Special case for "unmounting" root ...
1620 * we just try to remount it readonly.
1621 */
1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1623 return -EPERM;
1624 return do_umount_root(sb);
1625 }
1626
1627 namespace_lock();
1628 lock_mount_hash();
1629
1630 /* Recheck MNT_LOCKED with the locks held */
1631 retval = -EINVAL;
1632 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 goto out;
1634
1635 event++;
1636 if (flags & MNT_DETACH) {
1637 if (!list_empty(&mnt->mnt_list))
1638 umount_tree(mnt, UMOUNT_PROPAGATE);
1639 retval = 0;
1640 } else {
1641 shrink_submounts(mnt);
1642 retval = -EBUSY;
1643 if (!propagate_mount_busy(mnt, 2)) {
1644 if (!list_empty(&mnt->mnt_list))
1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1646 retval = 0;
1647 }
1648 }
1649 out:
1650 unlock_mount_hash();
1651 namespace_unlock();
1652 return retval;
1653 }
1654
1655 /*
1656 * __detach_mounts - lazily unmount all mounts on the specified dentry
1657 *
1658 * During unlink, rmdir, and d_drop it is possible to loose the path
1659 * to an existing mountpoint, and wind up leaking the mount.
1660 * detach_mounts allows lazily unmounting those mounts instead of
1661 * leaking them.
1662 *
1663 * The caller may hold dentry->d_inode->i_mutex.
1664 */
__detach_mounts(struct dentry * dentry)1665 void __detach_mounts(struct dentry *dentry)
1666 {
1667 struct mountpoint *mp;
1668 struct mount *mnt;
1669
1670 namespace_lock();
1671 lock_mount_hash();
1672 mp = lookup_mountpoint(dentry);
1673 if (!mp)
1674 goto out_unlock;
1675
1676 event++;
1677 while (!hlist_empty(&mp->m_list)) {
1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1680 umount_mnt(mnt);
1681 hlist_add_head(&mnt->mnt_umount, &unmounted);
1682 }
1683 else umount_tree(mnt, UMOUNT_CONNECTED);
1684 }
1685 put_mountpoint(mp);
1686 out_unlock:
1687 unlock_mount_hash();
1688 namespace_unlock();
1689 }
1690
1691 /*
1692 * Is the caller allowed to modify his namespace?
1693 */
may_mount(void)1694 static inline bool may_mount(void)
1695 {
1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1697 }
1698
1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING
may_mandlock(void)1700 static bool may_mandlock(void)
1701 {
1702 pr_warn_once("======================================================\n"
1703 "WARNING: the mand mount option is being deprecated and\n"
1704 " will be removed in v5.15!\n"
1705 "======================================================\n");
1706 return capable(CAP_SYS_ADMIN);
1707 }
1708 #else
may_mandlock(void)1709 static inline bool may_mandlock(void)
1710 {
1711 pr_warn("VFS: \"mand\" mount option not supported");
1712 return false;
1713 }
1714 #endif
1715
can_umount(const struct path * path,int flags)1716 static int can_umount(const struct path *path, int flags)
1717 {
1718 struct mount *mnt = real_mount(path->mnt);
1719
1720 if (!may_mount())
1721 return -EPERM;
1722 if (path->dentry != path->mnt->mnt_root)
1723 return -EINVAL;
1724 if (!check_mnt(mnt))
1725 return -EINVAL;
1726 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1727 return -EINVAL;
1728 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1729 return -EPERM;
1730 return 0;
1731 }
1732
1733 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1734 int path_umount(struct path *path, int flags)
1735 {
1736 struct mount *mnt = real_mount(path->mnt);
1737 int ret;
1738
1739 ret = can_umount(path, flags);
1740 if (!ret)
1741 ret = do_umount(mnt, flags);
1742
1743 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1744 dput(path->dentry);
1745 mntput_no_expire(mnt);
1746 return ret;
1747 }
1748
ksys_umount(char __user * name,int flags)1749 static int ksys_umount(char __user *name, int flags)
1750 {
1751 int lookup_flags = LOOKUP_MOUNTPOINT;
1752 struct path path;
1753 int ret;
1754
1755 // basic validity checks done first
1756 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1757 return -EINVAL;
1758
1759 if (!(flags & UMOUNT_NOFOLLOW))
1760 lookup_flags |= LOOKUP_FOLLOW;
1761 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1762 if (ret)
1763 return ret;
1764 return path_umount(&path, flags);
1765 }
1766
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1767 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1768 {
1769 return ksys_umount(name, flags);
1770 }
1771
1772 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1773
1774 /*
1775 * The 2.0 compatible umount. No flags.
1776 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1777 SYSCALL_DEFINE1(oldumount, char __user *, name)
1778 {
1779 return ksys_umount(name, 0);
1780 }
1781
1782 #endif
1783
is_mnt_ns_file(struct dentry * dentry)1784 static bool is_mnt_ns_file(struct dentry *dentry)
1785 {
1786 /* Is this a proxy for a mount namespace? */
1787 return dentry->d_op == &ns_dentry_operations &&
1788 dentry->d_fsdata == &mntns_operations;
1789 }
1790
to_mnt_ns(struct ns_common * ns)1791 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1792 {
1793 return container_of(ns, struct mnt_namespace, ns);
1794 }
1795
from_mnt_ns(struct mnt_namespace * mnt)1796 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1797 {
1798 return &mnt->ns;
1799 }
1800
mnt_ns_loop(struct dentry * dentry)1801 static bool mnt_ns_loop(struct dentry *dentry)
1802 {
1803 /* Could bind mounting the mount namespace inode cause a
1804 * mount namespace loop?
1805 */
1806 struct mnt_namespace *mnt_ns;
1807 if (!is_mnt_ns_file(dentry))
1808 return false;
1809
1810 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1811 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1812 }
1813
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1814 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1815 int flag)
1816 {
1817 struct mount *res, *p, *q, *r, *parent;
1818
1819 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1820 return ERR_PTR(-EINVAL);
1821
1822 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1823 return ERR_PTR(-EINVAL);
1824
1825 res = q = clone_mnt(mnt, dentry, flag);
1826 if (IS_ERR(q))
1827 return q;
1828
1829 q->mnt_mountpoint = mnt->mnt_mountpoint;
1830
1831 p = mnt;
1832 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1833 struct mount *s;
1834 if (!is_subdir(r->mnt_mountpoint, dentry))
1835 continue;
1836
1837 for (s = r; s; s = next_mnt(s, r)) {
1838 if (!(flag & CL_COPY_UNBINDABLE) &&
1839 IS_MNT_UNBINDABLE(s)) {
1840 if (s->mnt.mnt_flags & MNT_LOCKED) {
1841 /* Both unbindable and locked. */
1842 q = ERR_PTR(-EPERM);
1843 goto out;
1844 } else {
1845 s = skip_mnt_tree(s);
1846 continue;
1847 }
1848 }
1849 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1850 is_mnt_ns_file(s->mnt.mnt_root)) {
1851 s = skip_mnt_tree(s);
1852 continue;
1853 }
1854 while (p != s->mnt_parent) {
1855 p = p->mnt_parent;
1856 q = q->mnt_parent;
1857 }
1858 p = s;
1859 parent = q;
1860 q = clone_mnt(p, p->mnt.mnt_root, flag);
1861 if (IS_ERR(q))
1862 goto out;
1863 lock_mount_hash();
1864 list_add_tail(&q->mnt_list, &res->mnt_list);
1865 attach_mnt(q, parent, p->mnt_mp);
1866 unlock_mount_hash();
1867 }
1868 }
1869 return res;
1870 out:
1871 if (res) {
1872 lock_mount_hash();
1873 umount_tree(res, UMOUNT_SYNC);
1874 unlock_mount_hash();
1875 }
1876 return q;
1877 }
1878
1879 /* Caller should check returned pointer for errors */
1880
collect_mounts(const struct path * path)1881 struct vfsmount *collect_mounts(const struct path *path)
1882 {
1883 struct mount *tree;
1884 namespace_lock();
1885 if (!check_mnt(real_mount(path->mnt)))
1886 tree = ERR_PTR(-EINVAL);
1887 else
1888 tree = copy_tree(real_mount(path->mnt), path->dentry,
1889 CL_COPY_ALL | CL_PRIVATE);
1890 namespace_unlock();
1891 if (IS_ERR(tree))
1892 return ERR_CAST(tree);
1893 return &tree->mnt;
1894 }
1895
1896 static void free_mnt_ns(struct mnt_namespace *);
1897 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1898
dissolve_on_fput(struct vfsmount * mnt)1899 void dissolve_on_fput(struct vfsmount *mnt)
1900 {
1901 struct mnt_namespace *ns;
1902 namespace_lock();
1903 lock_mount_hash();
1904 ns = real_mount(mnt)->mnt_ns;
1905 if (ns) {
1906 if (is_anon_ns(ns))
1907 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1908 else
1909 ns = NULL;
1910 }
1911 unlock_mount_hash();
1912 namespace_unlock();
1913 if (ns)
1914 free_mnt_ns(ns);
1915 }
1916
drop_collected_mounts(struct vfsmount * mnt)1917 void drop_collected_mounts(struct vfsmount *mnt)
1918 {
1919 namespace_lock();
1920 lock_mount_hash();
1921 umount_tree(real_mount(mnt), 0);
1922 unlock_mount_hash();
1923 namespace_unlock();
1924 }
1925
has_locked_children(struct mount * mnt,struct dentry * dentry)1926 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1927 {
1928 struct mount *child;
1929
1930 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1931 if (!is_subdir(child->mnt_mountpoint, dentry))
1932 continue;
1933
1934 if (child->mnt.mnt_flags & MNT_LOCKED)
1935 return true;
1936 }
1937 return false;
1938 }
1939
1940 /**
1941 * clone_private_mount - create a private clone of a path
1942 *
1943 * This creates a new vfsmount, which will be the clone of @path. The new will
1944 * not be attached anywhere in the namespace and will be private (i.e. changes
1945 * to the originating mount won't be propagated into this).
1946 *
1947 * Release with mntput().
1948 */
clone_private_mount(const struct path * path)1949 struct vfsmount *clone_private_mount(const struct path *path)
1950 {
1951 struct mount *old_mnt = real_mount(path->mnt);
1952 struct mount *new_mnt;
1953
1954 down_read(&namespace_sem);
1955 if (IS_MNT_UNBINDABLE(old_mnt))
1956 goto invalid;
1957
1958 if (!check_mnt(old_mnt))
1959 goto invalid;
1960
1961 if (has_locked_children(old_mnt, path->dentry))
1962 goto invalid;
1963
1964 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1965 up_read(&namespace_sem);
1966
1967 if (IS_ERR(new_mnt))
1968 return ERR_CAST(new_mnt);
1969
1970 /* Longterm mount to be removed by kern_unmount*() */
1971 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1972
1973 return &new_mnt->mnt;
1974
1975 invalid:
1976 up_read(&namespace_sem);
1977 return ERR_PTR(-EINVAL);
1978 }
1979 EXPORT_SYMBOL_GPL(clone_private_mount);
1980
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1981 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1982 struct vfsmount *root)
1983 {
1984 struct mount *mnt;
1985 int res = f(root, arg);
1986 if (res)
1987 return res;
1988 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1989 res = f(&mnt->mnt, arg);
1990 if (res)
1991 return res;
1992 }
1993 return 0;
1994 }
1995
lock_mnt_tree(struct mount * mnt)1996 static void lock_mnt_tree(struct mount *mnt)
1997 {
1998 struct mount *p;
1999
2000 for (p = mnt; p; p = next_mnt(p, mnt)) {
2001 int flags = p->mnt.mnt_flags;
2002 /* Don't allow unprivileged users to change mount flags */
2003 flags |= MNT_LOCK_ATIME;
2004
2005 if (flags & MNT_READONLY)
2006 flags |= MNT_LOCK_READONLY;
2007
2008 if (flags & MNT_NODEV)
2009 flags |= MNT_LOCK_NODEV;
2010
2011 if (flags & MNT_NOSUID)
2012 flags |= MNT_LOCK_NOSUID;
2013
2014 if (flags & MNT_NOEXEC)
2015 flags |= MNT_LOCK_NOEXEC;
2016 /* Don't allow unprivileged users to reveal what is under a mount */
2017 if (list_empty(&p->mnt_expire))
2018 flags |= MNT_LOCKED;
2019 p->mnt.mnt_flags = flags;
2020 }
2021 }
2022
cleanup_group_ids(struct mount * mnt,struct mount * end)2023 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2024 {
2025 struct mount *p;
2026
2027 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2028 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2029 mnt_release_group_id(p);
2030 }
2031 }
2032
invent_group_ids(struct mount * mnt,bool recurse)2033 static int invent_group_ids(struct mount *mnt, bool recurse)
2034 {
2035 struct mount *p;
2036
2037 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2038 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2039 int err = mnt_alloc_group_id(p);
2040 if (err) {
2041 cleanup_group_ids(mnt, p);
2042 return err;
2043 }
2044 }
2045 }
2046
2047 return 0;
2048 }
2049
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2050 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2051 {
2052 unsigned int max = READ_ONCE(sysctl_mount_max);
2053 unsigned int mounts = 0, old, pending, sum;
2054 struct mount *p;
2055
2056 for (p = mnt; p; p = next_mnt(p, mnt))
2057 mounts++;
2058
2059 old = ns->mounts;
2060 pending = ns->pending_mounts;
2061 sum = old + pending;
2062 if ((old > sum) ||
2063 (pending > sum) ||
2064 (max < sum) ||
2065 (mounts > (max - sum)))
2066 return -ENOSPC;
2067
2068 ns->pending_mounts = pending + mounts;
2069 return 0;
2070 }
2071
2072 /*
2073 * @source_mnt : mount tree to be attached
2074 * @nd : place the mount tree @source_mnt is attached
2075 * @parent_nd : if non-null, detach the source_mnt from its parent and
2076 * store the parent mount and mountpoint dentry.
2077 * (done when source_mnt is moved)
2078 *
2079 * NOTE: in the table below explains the semantics when a source mount
2080 * of a given type is attached to a destination mount of a given type.
2081 * ---------------------------------------------------------------------------
2082 * | BIND MOUNT OPERATION |
2083 * |**************************************************************************
2084 * | source-->| shared | private | slave | unbindable |
2085 * | dest | | | | |
2086 * | | | | | | |
2087 * | v | | | | |
2088 * |**************************************************************************
2089 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2090 * | | | | | |
2091 * |non-shared| shared (+) | private | slave (*) | invalid |
2092 * ***************************************************************************
2093 * A bind operation clones the source mount and mounts the clone on the
2094 * destination mount.
2095 *
2096 * (++) the cloned mount is propagated to all the mounts in the propagation
2097 * tree of the destination mount and the cloned mount is added to
2098 * the peer group of the source mount.
2099 * (+) the cloned mount is created under the destination mount and is marked
2100 * as shared. The cloned mount is added to the peer group of the source
2101 * mount.
2102 * (+++) the mount is propagated to all the mounts in the propagation tree
2103 * of the destination mount and the cloned mount is made slave
2104 * of the same master as that of the source mount. The cloned mount
2105 * is marked as 'shared and slave'.
2106 * (*) the cloned mount is made a slave of the same master as that of the
2107 * source mount.
2108 *
2109 * ---------------------------------------------------------------------------
2110 * | MOVE MOUNT OPERATION |
2111 * |**************************************************************************
2112 * | source-->| shared | private | slave | unbindable |
2113 * | dest | | | | |
2114 * | | | | | | |
2115 * | v | | | | |
2116 * |**************************************************************************
2117 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2118 * | | | | | |
2119 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2120 * ***************************************************************************
2121 *
2122 * (+) the mount is moved to the destination. And is then propagated to
2123 * all the mounts in the propagation tree of the destination mount.
2124 * (+*) the mount is moved to the destination.
2125 * (+++) the mount is moved to the destination and is then propagated to
2126 * all the mounts belonging to the destination mount's propagation tree.
2127 * the mount is marked as 'shared and slave'.
2128 * (*) the mount continues to be a slave at the new location.
2129 *
2130 * if the source mount is a tree, the operations explained above is
2131 * applied to each mount in the tree.
2132 * Must be called without spinlocks held, since this function can sleep
2133 * in allocations.
2134 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2135 static int attach_recursive_mnt(struct mount *source_mnt,
2136 struct mount *dest_mnt,
2137 struct mountpoint *dest_mp,
2138 bool moving)
2139 {
2140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2141 HLIST_HEAD(tree_list);
2142 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2143 struct mountpoint *smp;
2144 struct mount *child, *p;
2145 struct hlist_node *n;
2146 int err;
2147
2148 /* Preallocate a mountpoint in case the new mounts need
2149 * to be tucked under other mounts.
2150 */
2151 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2152 if (IS_ERR(smp))
2153 return PTR_ERR(smp);
2154
2155 /* Is there space to add these mounts to the mount namespace? */
2156 if (!moving) {
2157 err = count_mounts(ns, source_mnt);
2158 if (err)
2159 goto out;
2160 }
2161
2162 if (IS_MNT_SHARED(dest_mnt)) {
2163 err = invent_group_ids(source_mnt, true);
2164 if (err)
2165 goto out;
2166 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2167 lock_mount_hash();
2168 if (err)
2169 goto out_cleanup_ids;
2170 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2171 set_mnt_shared(p);
2172 } else {
2173 lock_mount_hash();
2174 }
2175 if (moving) {
2176 unhash_mnt(source_mnt);
2177 attach_mnt(source_mnt, dest_mnt, dest_mp);
2178 touch_mnt_namespace(source_mnt->mnt_ns);
2179 } else {
2180 if (source_mnt->mnt_ns) {
2181 /* move from anon - the caller will destroy */
2182 list_del_init(&source_mnt->mnt_ns->list);
2183 }
2184 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2185 commit_tree(source_mnt);
2186 }
2187
2188 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2189 struct mount *q;
2190 hlist_del_init(&child->mnt_hash);
2191 q = __lookup_mnt(&child->mnt_parent->mnt,
2192 child->mnt_mountpoint);
2193 if (q)
2194 mnt_change_mountpoint(child, smp, q);
2195 /* Notice when we are propagating across user namespaces */
2196 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2197 lock_mnt_tree(child);
2198 child->mnt.mnt_flags &= ~MNT_LOCKED;
2199 commit_tree(child);
2200 }
2201 put_mountpoint(smp);
2202 unlock_mount_hash();
2203
2204 return 0;
2205
2206 out_cleanup_ids:
2207 while (!hlist_empty(&tree_list)) {
2208 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2209 child->mnt_parent->mnt_ns->pending_mounts = 0;
2210 umount_tree(child, UMOUNT_SYNC);
2211 }
2212 unlock_mount_hash();
2213 cleanup_group_ids(source_mnt, NULL);
2214 out:
2215 ns->pending_mounts = 0;
2216
2217 read_seqlock_excl(&mount_lock);
2218 put_mountpoint(smp);
2219 read_sequnlock_excl(&mount_lock);
2220
2221 return err;
2222 }
2223
lock_mount(struct path * path)2224 static struct mountpoint *lock_mount(struct path *path)
2225 {
2226 struct vfsmount *mnt;
2227 struct dentry *dentry = path->dentry;
2228 retry:
2229 inode_lock(dentry->d_inode);
2230 if (unlikely(cant_mount(dentry))) {
2231 inode_unlock(dentry->d_inode);
2232 return ERR_PTR(-ENOENT);
2233 }
2234 namespace_lock();
2235 mnt = lookup_mnt(path);
2236 if (likely(!mnt)) {
2237 struct mountpoint *mp = get_mountpoint(dentry);
2238 if (IS_ERR(mp)) {
2239 namespace_unlock();
2240 inode_unlock(dentry->d_inode);
2241 return mp;
2242 }
2243 return mp;
2244 }
2245 namespace_unlock();
2246 inode_unlock(path->dentry->d_inode);
2247 path_put(path);
2248 path->mnt = mnt;
2249 dentry = path->dentry = dget(mnt->mnt_root);
2250 goto retry;
2251 }
2252
unlock_mount(struct mountpoint * where)2253 static void unlock_mount(struct mountpoint *where)
2254 {
2255 struct dentry *dentry = where->m_dentry;
2256
2257 read_seqlock_excl(&mount_lock);
2258 put_mountpoint(where);
2259 read_sequnlock_excl(&mount_lock);
2260
2261 namespace_unlock();
2262 inode_unlock(dentry->d_inode);
2263 }
2264
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2265 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2266 {
2267 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2268 return -EINVAL;
2269
2270 if (d_is_dir(mp->m_dentry) !=
2271 d_is_dir(mnt->mnt.mnt_root))
2272 return -ENOTDIR;
2273
2274 return attach_recursive_mnt(mnt, p, mp, false);
2275 }
2276
2277 /*
2278 * Sanity check the flags to change_mnt_propagation.
2279 */
2280
flags_to_propagation_type(int ms_flags)2281 static int flags_to_propagation_type(int ms_flags)
2282 {
2283 int type = ms_flags & ~(MS_REC | MS_SILENT);
2284
2285 /* Fail if any non-propagation flags are set */
2286 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2287 return 0;
2288 /* Only one propagation flag should be set */
2289 if (!is_power_of_2(type))
2290 return 0;
2291 return type;
2292 }
2293
2294 /*
2295 * recursively change the type of the mountpoint.
2296 */
do_change_type(struct path * path,int ms_flags)2297 static int do_change_type(struct path *path, int ms_flags)
2298 {
2299 struct mount *m;
2300 struct mount *mnt = real_mount(path->mnt);
2301 int recurse = ms_flags & MS_REC;
2302 int type;
2303 int err = 0;
2304
2305 if (path->dentry != path->mnt->mnt_root)
2306 return -EINVAL;
2307
2308 type = flags_to_propagation_type(ms_flags);
2309 if (!type)
2310 return -EINVAL;
2311
2312 namespace_lock();
2313 if (type == MS_SHARED) {
2314 err = invent_group_ids(mnt, recurse);
2315 if (err)
2316 goto out_unlock;
2317 }
2318
2319 lock_mount_hash();
2320 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2321 change_mnt_propagation(m, type);
2322 unlock_mount_hash();
2323
2324 out_unlock:
2325 namespace_unlock();
2326 return err;
2327 }
2328
__do_loopback(struct path * old_path,int recurse)2329 static struct mount *__do_loopback(struct path *old_path, int recurse)
2330 {
2331 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2332
2333 if (IS_MNT_UNBINDABLE(old))
2334 return mnt;
2335
2336 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2337 return mnt;
2338
2339 if (!recurse && has_locked_children(old, old_path->dentry))
2340 return mnt;
2341
2342 if (recurse)
2343 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2344 else
2345 mnt = clone_mnt(old, old_path->dentry, 0);
2346
2347 if (!IS_ERR(mnt))
2348 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2349
2350 return mnt;
2351 }
2352
2353 /*
2354 * do loopback mount.
2355 */
do_loopback(struct path * path,const char * old_name,int recurse)2356 static int do_loopback(struct path *path, const char *old_name,
2357 int recurse)
2358 {
2359 struct path old_path;
2360 struct mount *mnt = NULL, *parent;
2361 struct mountpoint *mp;
2362 int err;
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2365 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2366 if (err)
2367 return err;
2368
2369 err = -EINVAL;
2370 if (mnt_ns_loop(old_path.dentry))
2371 goto out;
2372
2373 mp = lock_mount(path);
2374 if (IS_ERR(mp)) {
2375 err = PTR_ERR(mp);
2376 goto out;
2377 }
2378
2379 parent = real_mount(path->mnt);
2380 if (!check_mnt(parent))
2381 goto out2;
2382
2383 mnt = __do_loopback(&old_path, recurse);
2384 if (IS_ERR(mnt)) {
2385 err = PTR_ERR(mnt);
2386 goto out2;
2387 }
2388
2389 err = graft_tree(mnt, parent, mp);
2390 if (err) {
2391 lock_mount_hash();
2392 umount_tree(mnt, UMOUNT_SYNC);
2393 unlock_mount_hash();
2394 }
2395 out2:
2396 unlock_mount(mp);
2397 out:
2398 path_put(&old_path);
2399 return err;
2400 }
2401
open_detached_copy(struct path * path,bool recursive)2402 static struct file *open_detached_copy(struct path *path, bool recursive)
2403 {
2404 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2405 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2406 struct mount *mnt, *p;
2407 struct file *file;
2408
2409 if (IS_ERR(ns))
2410 return ERR_CAST(ns);
2411
2412 namespace_lock();
2413 mnt = __do_loopback(path, recursive);
2414 if (IS_ERR(mnt)) {
2415 namespace_unlock();
2416 free_mnt_ns(ns);
2417 return ERR_CAST(mnt);
2418 }
2419
2420 lock_mount_hash();
2421 for (p = mnt; p; p = next_mnt(p, mnt)) {
2422 p->mnt_ns = ns;
2423 ns->mounts++;
2424 }
2425 ns->root = mnt;
2426 list_add_tail(&ns->list, &mnt->mnt_list);
2427 mntget(&mnt->mnt);
2428 unlock_mount_hash();
2429 namespace_unlock();
2430
2431 mntput(path->mnt);
2432 path->mnt = &mnt->mnt;
2433 file = dentry_open(path, O_PATH, current_cred());
2434 if (IS_ERR(file))
2435 dissolve_on_fput(path->mnt);
2436 else
2437 file->f_mode |= FMODE_NEED_UNMOUNT;
2438 return file;
2439 }
2440
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2441 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2442 {
2443 struct file *file;
2444 struct path path;
2445 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2446 bool detached = flags & OPEN_TREE_CLONE;
2447 int error;
2448 int fd;
2449
2450 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2451
2452 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2453 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2454 OPEN_TREE_CLOEXEC))
2455 return -EINVAL;
2456
2457 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2458 return -EINVAL;
2459
2460 if (flags & AT_NO_AUTOMOUNT)
2461 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2462 if (flags & AT_SYMLINK_NOFOLLOW)
2463 lookup_flags &= ~LOOKUP_FOLLOW;
2464 if (flags & AT_EMPTY_PATH)
2465 lookup_flags |= LOOKUP_EMPTY;
2466
2467 if (detached && !may_mount())
2468 return -EPERM;
2469
2470 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2471 if (fd < 0)
2472 return fd;
2473
2474 error = user_path_at(dfd, filename, lookup_flags, &path);
2475 if (unlikely(error)) {
2476 file = ERR_PTR(error);
2477 } else {
2478 if (detached)
2479 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2480 else
2481 file = dentry_open(&path, O_PATH, current_cred());
2482 path_put(&path);
2483 }
2484 if (IS_ERR(file)) {
2485 put_unused_fd(fd);
2486 return PTR_ERR(file);
2487 }
2488 fd_install(fd, file);
2489 return fd;
2490 }
2491
2492 /*
2493 * Don't allow locked mount flags to be cleared.
2494 *
2495 * No locks need to be held here while testing the various MNT_LOCK
2496 * flags because those flags can never be cleared once they are set.
2497 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2498 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2499 {
2500 unsigned int fl = mnt->mnt.mnt_flags;
2501
2502 if ((fl & MNT_LOCK_READONLY) &&
2503 !(mnt_flags & MNT_READONLY))
2504 return false;
2505
2506 if ((fl & MNT_LOCK_NODEV) &&
2507 !(mnt_flags & MNT_NODEV))
2508 return false;
2509
2510 if ((fl & MNT_LOCK_NOSUID) &&
2511 !(mnt_flags & MNT_NOSUID))
2512 return false;
2513
2514 if ((fl & MNT_LOCK_NOEXEC) &&
2515 !(mnt_flags & MNT_NOEXEC))
2516 return false;
2517
2518 if ((fl & MNT_LOCK_ATIME) &&
2519 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2520 return false;
2521
2522 return true;
2523 }
2524
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2525 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2526 {
2527 bool readonly_request = (mnt_flags & MNT_READONLY);
2528
2529 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2530 return 0;
2531
2532 if (readonly_request)
2533 return mnt_make_readonly(mnt);
2534
2535 return __mnt_unmake_readonly(mnt);
2536 }
2537
2538 /*
2539 * Update the user-settable attributes on a mount. The caller must hold
2540 * sb->s_umount for writing.
2541 */
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2542 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2543 {
2544 lock_mount_hash();
2545 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2546 mnt->mnt.mnt_flags = mnt_flags;
2547 touch_mnt_namespace(mnt->mnt_ns);
2548 unlock_mount_hash();
2549 }
2550
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2551 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2552 {
2553 struct super_block *sb = mnt->mnt_sb;
2554
2555 if (!__mnt_is_readonly(mnt) &&
2556 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2557 char *buf = (char *)__get_free_page(GFP_KERNEL);
2558 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2559 struct tm tm;
2560
2561 time64_to_tm(sb->s_time_max, 0, &tm);
2562
2563 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2564 sb->s_type->name,
2565 is_mounted(mnt) ? "remounted" : "mounted",
2566 mntpath,
2567 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2568
2569 free_page((unsigned long)buf);
2570 }
2571 }
2572
2573 /*
2574 * Handle reconfiguration of the mountpoint only without alteration of the
2575 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2576 * to mount(2).
2577 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2578 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2579 {
2580 struct super_block *sb = path->mnt->mnt_sb;
2581 struct mount *mnt = real_mount(path->mnt);
2582 int ret;
2583
2584 if (!check_mnt(mnt))
2585 return -EINVAL;
2586
2587 if (path->dentry != mnt->mnt.mnt_root)
2588 return -EINVAL;
2589
2590 if (!can_change_locked_flags(mnt, mnt_flags))
2591 return -EPERM;
2592
2593 down_write(&sb->s_umount);
2594 ret = change_mount_ro_state(mnt, mnt_flags);
2595 if (ret == 0)
2596 set_mount_attributes(mnt, mnt_flags);
2597 up_write(&sb->s_umount);
2598
2599 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2600
2601 return ret;
2602 }
2603
2604 /*
2605 * change filesystem flags. dir should be a physical root of filesystem.
2606 * If you've mounted a non-root directory somewhere and want to do remount
2607 * on it - tough luck.
2608 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2609 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2610 int mnt_flags, void *data)
2611 {
2612 int err;
2613 struct super_block *sb = path->mnt->mnt_sb;
2614 struct mount *mnt = real_mount(path->mnt);
2615 struct fs_context *fc;
2616
2617 if (!check_mnt(mnt))
2618 return -EINVAL;
2619
2620 if (path->dentry != path->mnt->mnt_root)
2621 return -EINVAL;
2622
2623 if (!can_change_locked_flags(mnt, mnt_flags))
2624 return -EPERM;
2625
2626 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2627 if (IS_ERR(fc))
2628 return PTR_ERR(fc);
2629
2630 /*
2631 * Indicate to the filesystem that the remount request is coming
2632 * from the legacy mount system call.
2633 */
2634 fc->oldapi = true;
2635
2636 err = parse_monolithic_mount_data(fc, data);
2637 if (!err) {
2638 down_write(&sb->s_umount);
2639 err = -EPERM;
2640 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2641 err = reconfigure_super(fc);
2642 if (!err)
2643 set_mount_attributes(mnt, mnt_flags);
2644 }
2645 up_write(&sb->s_umount);
2646 }
2647
2648 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2649
2650 put_fs_context(fc);
2651 return err;
2652 }
2653
tree_contains_unbindable(struct mount * mnt)2654 static inline int tree_contains_unbindable(struct mount *mnt)
2655 {
2656 struct mount *p;
2657 for (p = mnt; p; p = next_mnt(p, mnt)) {
2658 if (IS_MNT_UNBINDABLE(p))
2659 return 1;
2660 }
2661 return 0;
2662 }
2663
2664 /*
2665 * Check that there aren't references to earlier/same mount namespaces in the
2666 * specified subtree. Such references can act as pins for mount namespaces
2667 * that aren't checked by the mount-cycle checking code, thereby allowing
2668 * cycles to be made.
2669 */
check_for_nsfs_mounts(struct mount * subtree)2670 static bool check_for_nsfs_mounts(struct mount *subtree)
2671 {
2672 struct mount *p;
2673 bool ret = false;
2674
2675 lock_mount_hash();
2676 for (p = subtree; p; p = next_mnt(p, subtree))
2677 if (mnt_ns_loop(p->mnt.mnt_root))
2678 goto out;
2679
2680 ret = true;
2681 out:
2682 unlock_mount_hash();
2683 return ret;
2684 }
2685
do_move_mount(struct path * old_path,struct path * new_path)2686 static int do_move_mount(struct path *old_path, struct path *new_path)
2687 {
2688 struct mnt_namespace *ns;
2689 struct mount *p;
2690 struct mount *old;
2691 struct mount *parent;
2692 struct mountpoint *mp, *old_mp;
2693 int err;
2694 bool attached;
2695
2696 mp = lock_mount(new_path);
2697 if (IS_ERR(mp))
2698 return PTR_ERR(mp);
2699
2700 old = real_mount(old_path->mnt);
2701 p = real_mount(new_path->mnt);
2702 parent = old->mnt_parent;
2703 attached = mnt_has_parent(old);
2704 old_mp = old->mnt_mp;
2705 ns = old->mnt_ns;
2706
2707 err = -EINVAL;
2708 /* The mountpoint must be in our namespace. */
2709 if (!check_mnt(p))
2710 goto out;
2711
2712 /* The thing moved must be mounted... */
2713 if (!is_mounted(&old->mnt))
2714 goto out;
2715
2716 /* ... and either ours or the root of anon namespace */
2717 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2718 goto out;
2719
2720 if (old->mnt.mnt_flags & MNT_LOCKED)
2721 goto out;
2722
2723 if (old_path->dentry != old_path->mnt->mnt_root)
2724 goto out;
2725
2726 if (d_is_dir(new_path->dentry) !=
2727 d_is_dir(old_path->dentry))
2728 goto out;
2729 /*
2730 * Don't move a mount residing in a shared parent.
2731 */
2732 if (attached && IS_MNT_SHARED(parent))
2733 goto out;
2734 /*
2735 * Don't move a mount tree containing unbindable mounts to a destination
2736 * mount which is shared.
2737 */
2738 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2739 goto out;
2740 err = -ELOOP;
2741 if (!check_for_nsfs_mounts(old))
2742 goto out;
2743 for (; mnt_has_parent(p); p = p->mnt_parent)
2744 if (p == old)
2745 goto out;
2746
2747 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2748 attached);
2749 if (err)
2750 goto out;
2751
2752 /* if the mount is moved, it should no longer be expire
2753 * automatically */
2754 list_del_init(&old->mnt_expire);
2755 if (attached)
2756 put_mountpoint(old_mp);
2757 out:
2758 unlock_mount(mp);
2759 if (!err) {
2760 if (attached)
2761 mntput_no_expire(parent);
2762 else
2763 free_mnt_ns(ns);
2764 }
2765 return err;
2766 }
2767
do_move_mount_old(struct path * path,const char * old_name)2768 static int do_move_mount_old(struct path *path, const char *old_name)
2769 {
2770 struct path old_path;
2771 int err;
2772
2773 if (!old_name || !*old_name)
2774 return -EINVAL;
2775
2776 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2777 if (err)
2778 return err;
2779
2780 err = do_move_mount(&old_path, path);
2781 path_put(&old_path);
2782 return err;
2783 }
2784
2785 /*
2786 * add a mount into a namespace's mount tree
2787 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,struct path * path,int mnt_flags)2788 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2789 struct path *path, int mnt_flags)
2790 {
2791 struct mount *parent = real_mount(path->mnt);
2792
2793 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2794
2795 if (unlikely(!check_mnt(parent))) {
2796 /* that's acceptable only for automounts done in private ns */
2797 if (!(mnt_flags & MNT_SHRINKABLE))
2798 return -EINVAL;
2799 /* ... and for those we'd better have mountpoint still alive */
2800 if (!parent->mnt_ns)
2801 return -EINVAL;
2802 }
2803
2804 /* Refuse the same filesystem on the same mount point */
2805 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2806 path->mnt->mnt_root == path->dentry)
2807 return -EBUSY;
2808
2809 if (d_is_symlink(newmnt->mnt.mnt_root))
2810 return -EINVAL;
2811
2812 newmnt->mnt.mnt_flags = mnt_flags;
2813 return graft_tree(newmnt, parent, mp);
2814 }
2815
2816 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2817
2818 /*
2819 * Create a new mount using a superblock configuration and request it
2820 * be added to the namespace tree.
2821 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2822 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2823 unsigned int mnt_flags)
2824 {
2825 struct vfsmount *mnt;
2826 struct mountpoint *mp;
2827 struct super_block *sb = fc->root->d_sb;
2828 int error;
2829
2830 error = security_sb_kern_mount(sb);
2831 if (!error && mount_too_revealing(sb, &mnt_flags))
2832 error = -EPERM;
2833
2834 if (unlikely(error)) {
2835 fc_drop_locked(fc);
2836 return error;
2837 }
2838
2839 up_write(&sb->s_umount);
2840
2841 mnt = vfs_create_mount(fc);
2842 if (IS_ERR(mnt))
2843 return PTR_ERR(mnt);
2844
2845 mnt_warn_timestamp_expiry(mountpoint, mnt);
2846
2847 mp = lock_mount(mountpoint);
2848 if (IS_ERR(mp)) {
2849 mntput(mnt);
2850 return PTR_ERR(mp);
2851 }
2852 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2853 unlock_mount(mp);
2854 if (error < 0)
2855 mntput(mnt);
2856 return error;
2857 }
2858
2859 /*
2860 * create a new mount for userspace and request it to be added into the
2861 * namespace's tree
2862 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2863 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2864 int mnt_flags, const char *name, void *data)
2865 {
2866 struct file_system_type *type;
2867 struct fs_context *fc;
2868 const char *subtype = NULL;
2869 int err = 0;
2870
2871 if (!fstype)
2872 return -EINVAL;
2873
2874 type = get_fs_type(fstype);
2875 if (!type)
2876 return -ENODEV;
2877
2878 if (type->fs_flags & FS_HAS_SUBTYPE) {
2879 subtype = strchr(fstype, '.');
2880 if (subtype) {
2881 subtype++;
2882 if (!*subtype) {
2883 put_filesystem(type);
2884 return -EINVAL;
2885 }
2886 }
2887 }
2888
2889 fc = fs_context_for_mount(type, sb_flags);
2890 put_filesystem(type);
2891 if (IS_ERR(fc))
2892 return PTR_ERR(fc);
2893
2894 /*
2895 * Indicate to the filesystem that the mount request is coming
2896 * from the legacy mount system call.
2897 */
2898 fc->oldapi = true;
2899
2900 if (subtype)
2901 err = vfs_parse_fs_string(fc, "subtype",
2902 subtype, strlen(subtype));
2903 if (!err && name)
2904 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2905 if (!err)
2906 err = parse_monolithic_mount_data(fc, data);
2907 if (!err && !mount_capable(fc))
2908 err = -EPERM;
2909 if (!err)
2910 err = vfs_get_tree(fc);
2911 if (!err)
2912 err = do_new_mount_fc(fc, path, mnt_flags);
2913
2914 put_fs_context(fc);
2915 return err;
2916 }
2917
finish_automount(struct vfsmount * m,struct path * path)2918 int finish_automount(struct vfsmount *m, struct path *path)
2919 {
2920 struct dentry *dentry = path->dentry;
2921 struct mountpoint *mp;
2922 struct mount *mnt;
2923 int err;
2924
2925 if (!m)
2926 return 0;
2927 if (IS_ERR(m))
2928 return PTR_ERR(m);
2929
2930 mnt = real_mount(m);
2931 /* The new mount record should have at least 2 refs to prevent it being
2932 * expired before we get a chance to add it
2933 */
2934 BUG_ON(mnt_get_count(mnt) < 2);
2935
2936 if (m->mnt_sb == path->mnt->mnt_sb &&
2937 m->mnt_root == dentry) {
2938 err = -ELOOP;
2939 goto discard;
2940 }
2941
2942 /*
2943 * we don't want to use lock_mount() - in this case finding something
2944 * that overmounts our mountpoint to be means "quitely drop what we've
2945 * got", not "try to mount it on top".
2946 */
2947 inode_lock(dentry->d_inode);
2948 namespace_lock();
2949 if (unlikely(cant_mount(dentry))) {
2950 err = -ENOENT;
2951 goto discard_locked;
2952 }
2953 rcu_read_lock();
2954 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2955 rcu_read_unlock();
2956 err = 0;
2957 goto discard_locked;
2958 }
2959 rcu_read_unlock();
2960 mp = get_mountpoint(dentry);
2961 if (IS_ERR(mp)) {
2962 err = PTR_ERR(mp);
2963 goto discard_locked;
2964 }
2965
2966 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2967 unlock_mount(mp);
2968 if (unlikely(err))
2969 goto discard;
2970 mntput(m);
2971 return 0;
2972
2973 discard_locked:
2974 namespace_unlock();
2975 inode_unlock(dentry->d_inode);
2976 discard:
2977 /* remove m from any expiration list it may be on */
2978 if (!list_empty(&mnt->mnt_expire)) {
2979 namespace_lock();
2980 list_del_init(&mnt->mnt_expire);
2981 namespace_unlock();
2982 }
2983 mntput(m);
2984 mntput(m);
2985 return err;
2986 }
2987
2988 /**
2989 * mnt_set_expiry - Put a mount on an expiration list
2990 * @mnt: The mount to list.
2991 * @expiry_list: The list to add the mount to.
2992 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2993 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2994 {
2995 namespace_lock();
2996
2997 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2998
2999 namespace_unlock();
3000 }
3001 EXPORT_SYMBOL(mnt_set_expiry);
3002
3003 /*
3004 * process a list of expirable mountpoints with the intent of discarding any
3005 * mountpoints that aren't in use and haven't been touched since last we came
3006 * here
3007 */
mark_mounts_for_expiry(struct list_head * mounts)3008 void mark_mounts_for_expiry(struct list_head *mounts)
3009 {
3010 struct mount *mnt, *next;
3011 LIST_HEAD(graveyard);
3012
3013 if (list_empty(mounts))
3014 return;
3015
3016 namespace_lock();
3017 lock_mount_hash();
3018
3019 /* extract from the expiration list every vfsmount that matches the
3020 * following criteria:
3021 * - only referenced by its parent vfsmount
3022 * - still marked for expiry (marked on the last call here; marks are
3023 * cleared by mntput())
3024 */
3025 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3026 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3027 propagate_mount_busy(mnt, 1))
3028 continue;
3029 list_move(&mnt->mnt_expire, &graveyard);
3030 }
3031 while (!list_empty(&graveyard)) {
3032 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3033 touch_mnt_namespace(mnt->mnt_ns);
3034 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3035 }
3036 unlock_mount_hash();
3037 namespace_unlock();
3038 }
3039
3040 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3041
3042 /*
3043 * Ripoff of 'select_parent()'
3044 *
3045 * search the list of submounts for a given mountpoint, and move any
3046 * shrinkable submounts to the 'graveyard' list.
3047 */
select_submounts(struct mount * parent,struct list_head * graveyard)3048 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3049 {
3050 struct mount *this_parent = parent;
3051 struct list_head *next;
3052 int found = 0;
3053
3054 repeat:
3055 next = this_parent->mnt_mounts.next;
3056 resume:
3057 while (next != &this_parent->mnt_mounts) {
3058 struct list_head *tmp = next;
3059 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3060
3061 next = tmp->next;
3062 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3063 continue;
3064 /*
3065 * Descend a level if the d_mounts list is non-empty.
3066 */
3067 if (!list_empty(&mnt->mnt_mounts)) {
3068 this_parent = mnt;
3069 goto repeat;
3070 }
3071
3072 if (!propagate_mount_busy(mnt, 1)) {
3073 list_move_tail(&mnt->mnt_expire, graveyard);
3074 found++;
3075 }
3076 }
3077 /*
3078 * All done at this level ... ascend and resume the search
3079 */
3080 if (this_parent != parent) {
3081 next = this_parent->mnt_child.next;
3082 this_parent = this_parent->mnt_parent;
3083 goto resume;
3084 }
3085 return found;
3086 }
3087
3088 /*
3089 * process a list of expirable mountpoints with the intent of discarding any
3090 * submounts of a specific parent mountpoint
3091 *
3092 * mount_lock must be held for write
3093 */
shrink_submounts(struct mount * mnt)3094 static void shrink_submounts(struct mount *mnt)
3095 {
3096 LIST_HEAD(graveyard);
3097 struct mount *m;
3098
3099 /* extract submounts of 'mountpoint' from the expiration list */
3100 while (select_submounts(mnt, &graveyard)) {
3101 while (!list_empty(&graveyard)) {
3102 m = list_first_entry(&graveyard, struct mount,
3103 mnt_expire);
3104 touch_mnt_namespace(m->mnt_ns);
3105 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3106 }
3107 }
3108 }
3109
copy_mount_options(const void __user * data)3110 static void *copy_mount_options(const void __user * data)
3111 {
3112 char *copy;
3113 unsigned left, offset;
3114
3115 if (!data)
3116 return NULL;
3117
3118 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3119 if (!copy)
3120 return ERR_PTR(-ENOMEM);
3121
3122 left = copy_from_user(copy, data, PAGE_SIZE);
3123
3124 /*
3125 * Not all architectures have an exact copy_from_user(). Resort to
3126 * byte at a time.
3127 */
3128 offset = PAGE_SIZE - left;
3129 while (left) {
3130 char c;
3131 if (get_user(c, (const char __user *)data + offset))
3132 break;
3133 copy[offset] = c;
3134 left--;
3135 offset++;
3136 }
3137
3138 if (left == PAGE_SIZE) {
3139 kfree(copy);
3140 return ERR_PTR(-EFAULT);
3141 }
3142
3143 return copy;
3144 }
3145
copy_mount_string(const void __user * data)3146 static char *copy_mount_string(const void __user *data)
3147 {
3148 return data ? strndup_user(data, PATH_MAX) : NULL;
3149 }
3150
3151 /*
3152 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3153 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3154 *
3155 * data is a (void *) that can point to any structure up to
3156 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3157 * information (or be NULL).
3158 *
3159 * Pre-0.97 versions of mount() didn't have a flags word.
3160 * When the flags word was introduced its top half was required
3161 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3162 * Therefore, if this magic number is present, it carries no information
3163 * and must be discarded.
3164 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3165 int path_mount(const char *dev_name, struct path *path,
3166 const char *type_page, unsigned long flags, void *data_page)
3167 {
3168 unsigned int mnt_flags = 0, sb_flags;
3169 int ret;
3170
3171 /* Discard magic */
3172 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3173 flags &= ~MS_MGC_MSK;
3174
3175 /* Basic sanity checks */
3176 if (data_page)
3177 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3178
3179 if (flags & MS_NOUSER)
3180 return -EINVAL;
3181
3182 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3183 if (ret)
3184 return ret;
3185 if (!may_mount())
3186 return -EPERM;
3187 if ((flags & SB_MANDLOCK) && !may_mandlock())
3188 return -EPERM;
3189
3190 /* Default to relatime unless overriden */
3191 if (!(flags & MS_NOATIME))
3192 mnt_flags |= MNT_RELATIME;
3193
3194 /* Separate the per-mountpoint flags */
3195 if (flags & MS_NOSUID)
3196 mnt_flags |= MNT_NOSUID;
3197 if (flags & MS_NODEV)
3198 mnt_flags |= MNT_NODEV;
3199 if (flags & MS_NOEXEC)
3200 mnt_flags |= MNT_NOEXEC;
3201 if (flags & MS_NOATIME)
3202 mnt_flags |= MNT_NOATIME;
3203 if (flags & MS_NODIRATIME)
3204 mnt_flags |= MNT_NODIRATIME;
3205 if (flags & MS_STRICTATIME)
3206 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3207 if (flags & MS_RDONLY)
3208 mnt_flags |= MNT_READONLY;
3209 if (flags & MS_NOSYMFOLLOW)
3210 mnt_flags |= MNT_NOSYMFOLLOW;
3211
3212 /* The default atime for remount is preservation */
3213 if ((flags & MS_REMOUNT) &&
3214 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3215 MS_STRICTATIME)) == 0)) {
3216 mnt_flags &= ~MNT_ATIME_MASK;
3217 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3218 }
3219
3220 sb_flags = flags & (SB_RDONLY |
3221 SB_SYNCHRONOUS |
3222 SB_MANDLOCK |
3223 SB_DIRSYNC |
3224 SB_SILENT |
3225 SB_POSIXACL |
3226 SB_LAZYTIME |
3227 SB_I_VERSION);
3228
3229 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3230 return do_reconfigure_mnt(path, mnt_flags);
3231 if (flags & MS_REMOUNT)
3232 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3233 if (flags & MS_BIND)
3234 return do_loopback(path, dev_name, flags & MS_REC);
3235 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3236 return do_change_type(path, flags);
3237 if (flags & MS_MOVE)
3238 return do_move_mount_old(path, dev_name);
3239
3240 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3241 data_page);
3242 }
3243
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3244 long do_mount(const char *dev_name, const char __user *dir_name,
3245 const char *type_page, unsigned long flags, void *data_page)
3246 {
3247 struct path path;
3248 int ret;
3249
3250 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3251 if (ret)
3252 return ret;
3253 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3254 path_put(&path);
3255 return ret;
3256 }
3257
inc_mnt_namespaces(struct user_namespace * ns)3258 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3259 {
3260 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3261 }
3262
dec_mnt_namespaces(struct ucounts * ucounts)3263 static void dec_mnt_namespaces(struct ucounts *ucounts)
3264 {
3265 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3266 }
3267
free_mnt_ns(struct mnt_namespace * ns)3268 static void free_mnt_ns(struct mnt_namespace *ns)
3269 {
3270 if (!is_anon_ns(ns))
3271 ns_free_inum(&ns->ns);
3272 dec_mnt_namespaces(ns->ucounts);
3273 put_user_ns(ns->user_ns);
3274 kfree(ns);
3275 }
3276
3277 /*
3278 * Assign a sequence number so we can detect when we attempt to bind
3279 * mount a reference to an older mount namespace into the current
3280 * mount namespace, preventing reference counting loops. A 64bit
3281 * number incrementing at 10Ghz will take 12,427 years to wrap which
3282 * is effectively never, so we can ignore the possibility.
3283 */
3284 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3285
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3286 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3287 {
3288 struct mnt_namespace *new_ns;
3289 struct ucounts *ucounts;
3290 int ret;
3291
3292 ucounts = inc_mnt_namespaces(user_ns);
3293 if (!ucounts)
3294 return ERR_PTR(-ENOSPC);
3295
3296 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3297 if (!new_ns) {
3298 dec_mnt_namespaces(ucounts);
3299 return ERR_PTR(-ENOMEM);
3300 }
3301 if (!anon) {
3302 ret = ns_alloc_inum(&new_ns->ns);
3303 if (ret) {
3304 kfree(new_ns);
3305 dec_mnt_namespaces(ucounts);
3306 return ERR_PTR(ret);
3307 }
3308 }
3309 new_ns->ns.ops = &mntns_operations;
3310 if (!anon)
3311 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3312 atomic_set(&new_ns->count, 1);
3313 INIT_LIST_HEAD(&new_ns->list);
3314 init_waitqueue_head(&new_ns->poll);
3315 spin_lock_init(&new_ns->ns_lock);
3316 new_ns->user_ns = get_user_ns(user_ns);
3317 new_ns->ucounts = ucounts;
3318 return new_ns;
3319 }
3320
3321 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3322 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3323 struct user_namespace *user_ns, struct fs_struct *new_fs)
3324 {
3325 struct mnt_namespace *new_ns;
3326 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3327 struct mount *p, *q;
3328 struct mount *old;
3329 struct mount *new;
3330 int copy_flags;
3331
3332 BUG_ON(!ns);
3333
3334 if (likely(!(flags & CLONE_NEWNS))) {
3335 get_mnt_ns(ns);
3336 return ns;
3337 }
3338
3339 old = ns->root;
3340
3341 new_ns = alloc_mnt_ns(user_ns, false);
3342 if (IS_ERR(new_ns))
3343 return new_ns;
3344
3345 namespace_lock();
3346 /* First pass: copy the tree topology */
3347 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3348 if (user_ns != ns->user_ns)
3349 copy_flags |= CL_SHARED_TO_SLAVE;
3350 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3351 if (IS_ERR(new)) {
3352 namespace_unlock();
3353 free_mnt_ns(new_ns);
3354 return ERR_CAST(new);
3355 }
3356 if (user_ns != ns->user_ns) {
3357 lock_mount_hash();
3358 lock_mnt_tree(new);
3359 unlock_mount_hash();
3360 }
3361 new_ns->root = new;
3362 list_add_tail(&new_ns->list, &new->mnt_list);
3363
3364 /*
3365 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3366 * as belonging to new namespace. We have already acquired a private
3367 * fs_struct, so tsk->fs->lock is not needed.
3368 */
3369 p = old;
3370 q = new;
3371 while (p) {
3372 q->mnt_ns = new_ns;
3373 new_ns->mounts++;
3374 if (new_fs) {
3375 if (&p->mnt == new_fs->root.mnt) {
3376 new_fs->root.mnt = mntget(&q->mnt);
3377 rootmnt = &p->mnt;
3378 }
3379 if (&p->mnt == new_fs->pwd.mnt) {
3380 new_fs->pwd.mnt = mntget(&q->mnt);
3381 pwdmnt = &p->mnt;
3382 }
3383 }
3384 p = next_mnt(p, old);
3385 q = next_mnt(q, new);
3386 if (!q)
3387 break;
3388 while (p->mnt.mnt_root != q->mnt.mnt_root)
3389 p = next_mnt(p, old);
3390 }
3391 namespace_unlock();
3392
3393 if (rootmnt)
3394 mntput(rootmnt);
3395 if (pwdmnt)
3396 mntput(pwdmnt);
3397
3398 return new_ns;
3399 }
3400
mount_subtree(struct vfsmount * m,const char * name)3401 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3402 {
3403 struct mount *mnt = real_mount(m);
3404 struct mnt_namespace *ns;
3405 struct super_block *s;
3406 struct path path;
3407 int err;
3408
3409 ns = alloc_mnt_ns(&init_user_ns, true);
3410 if (IS_ERR(ns)) {
3411 mntput(m);
3412 return ERR_CAST(ns);
3413 }
3414 mnt->mnt_ns = ns;
3415 ns->root = mnt;
3416 ns->mounts++;
3417 list_add(&mnt->mnt_list, &ns->list);
3418
3419 err = vfs_path_lookup(m->mnt_root, m,
3420 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3421
3422 put_mnt_ns(ns);
3423
3424 if (err)
3425 return ERR_PTR(err);
3426
3427 /* trade a vfsmount reference for active sb one */
3428 s = path.mnt->mnt_sb;
3429 atomic_inc(&s->s_active);
3430 mntput(path.mnt);
3431 /* lock the sucker */
3432 down_write(&s->s_umount);
3433 /* ... and return the root of (sub)tree on it */
3434 return path.dentry;
3435 }
3436 EXPORT_SYMBOL(mount_subtree);
3437
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3438 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3439 char __user *, type, unsigned long, flags, void __user *, data)
3440 {
3441 int ret;
3442 char *kernel_type;
3443 char *kernel_dev;
3444 void *options;
3445
3446 kernel_type = copy_mount_string(type);
3447 ret = PTR_ERR(kernel_type);
3448 if (IS_ERR(kernel_type))
3449 goto out_type;
3450
3451 kernel_dev = copy_mount_string(dev_name);
3452 ret = PTR_ERR(kernel_dev);
3453 if (IS_ERR(kernel_dev))
3454 goto out_dev;
3455
3456 options = copy_mount_options(data);
3457 ret = PTR_ERR(options);
3458 if (IS_ERR(options))
3459 goto out_data;
3460
3461 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3462
3463 kfree(options);
3464 out_data:
3465 kfree(kernel_dev);
3466 out_dev:
3467 kfree(kernel_type);
3468 out_type:
3469 return ret;
3470 }
3471
3472 /*
3473 * Create a kernel mount representation for a new, prepared superblock
3474 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3475 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3476 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3477 unsigned int, attr_flags)
3478 {
3479 struct mnt_namespace *ns;
3480 struct fs_context *fc;
3481 struct file *file;
3482 struct path newmount;
3483 struct mount *mnt;
3484 struct fd f;
3485 unsigned int mnt_flags = 0;
3486 long ret;
3487
3488 if (!may_mount())
3489 return -EPERM;
3490
3491 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3492 return -EINVAL;
3493
3494 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3495 MOUNT_ATTR_NOSUID |
3496 MOUNT_ATTR_NODEV |
3497 MOUNT_ATTR_NOEXEC |
3498 MOUNT_ATTR__ATIME |
3499 MOUNT_ATTR_NODIRATIME))
3500 return -EINVAL;
3501
3502 if (attr_flags & MOUNT_ATTR_RDONLY)
3503 mnt_flags |= MNT_READONLY;
3504 if (attr_flags & MOUNT_ATTR_NOSUID)
3505 mnt_flags |= MNT_NOSUID;
3506 if (attr_flags & MOUNT_ATTR_NODEV)
3507 mnt_flags |= MNT_NODEV;
3508 if (attr_flags & MOUNT_ATTR_NOEXEC)
3509 mnt_flags |= MNT_NOEXEC;
3510 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3511 mnt_flags |= MNT_NODIRATIME;
3512
3513 switch (attr_flags & MOUNT_ATTR__ATIME) {
3514 case MOUNT_ATTR_STRICTATIME:
3515 break;
3516 case MOUNT_ATTR_NOATIME:
3517 mnt_flags |= MNT_NOATIME;
3518 break;
3519 case MOUNT_ATTR_RELATIME:
3520 mnt_flags |= MNT_RELATIME;
3521 break;
3522 default:
3523 return -EINVAL;
3524 }
3525
3526 f = fdget(fs_fd);
3527 if (!f.file)
3528 return -EBADF;
3529
3530 ret = -EINVAL;
3531 if (f.file->f_op != &fscontext_fops)
3532 goto err_fsfd;
3533
3534 fc = f.file->private_data;
3535
3536 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3537 if (ret < 0)
3538 goto err_fsfd;
3539
3540 /* There must be a valid superblock or we can't mount it */
3541 ret = -EINVAL;
3542 if (!fc->root)
3543 goto err_unlock;
3544
3545 ret = -EPERM;
3546 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3547 pr_warn("VFS: Mount too revealing\n");
3548 goto err_unlock;
3549 }
3550
3551 ret = -EBUSY;
3552 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3553 goto err_unlock;
3554
3555 ret = -EPERM;
3556 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3557 goto err_unlock;
3558
3559 newmount.mnt = vfs_create_mount(fc);
3560 if (IS_ERR(newmount.mnt)) {
3561 ret = PTR_ERR(newmount.mnt);
3562 goto err_unlock;
3563 }
3564 newmount.dentry = dget(fc->root);
3565 newmount.mnt->mnt_flags = mnt_flags;
3566
3567 /* We've done the mount bit - now move the file context into more or
3568 * less the same state as if we'd done an fspick(). We don't want to
3569 * do any memory allocation or anything like that at this point as we
3570 * don't want to have to handle any errors incurred.
3571 */
3572 vfs_clean_context(fc);
3573
3574 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3575 if (IS_ERR(ns)) {
3576 ret = PTR_ERR(ns);
3577 goto err_path;
3578 }
3579 mnt = real_mount(newmount.mnt);
3580 mnt->mnt_ns = ns;
3581 ns->root = mnt;
3582 ns->mounts = 1;
3583 list_add(&mnt->mnt_list, &ns->list);
3584 mntget(newmount.mnt);
3585
3586 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3587 * it, not just simply put it.
3588 */
3589 file = dentry_open(&newmount, O_PATH, fc->cred);
3590 if (IS_ERR(file)) {
3591 dissolve_on_fput(newmount.mnt);
3592 ret = PTR_ERR(file);
3593 goto err_path;
3594 }
3595 file->f_mode |= FMODE_NEED_UNMOUNT;
3596
3597 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3598 if (ret >= 0)
3599 fd_install(ret, file);
3600 else
3601 fput(file);
3602
3603 err_path:
3604 path_put(&newmount);
3605 err_unlock:
3606 mutex_unlock(&fc->uapi_mutex);
3607 err_fsfd:
3608 fdput(f);
3609 return ret;
3610 }
3611
3612 /*
3613 * Move a mount from one place to another. In combination with
3614 * fsopen()/fsmount() this is used to install a new mount and in combination
3615 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3616 * a mount subtree.
3617 *
3618 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3619 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)3620 SYSCALL_DEFINE5(move_mount,
3621 int, from_dfd, const char __user *, from_pathname,
3622 int, to_dfd, const char __user *, to_pathname,
3623 unsigned int, flags)
3624 {
3625 struct path from_path, to_path;
3626 unsigned int lflags;
3627 int ret = 0;
3628
3629 if (!may_mount())
3630 return -EPERM;
3631
3632 if (flags & ~MOVE_MOUNT__MASK)
3633 return -EINVAL;
3634
3635 /* If someone gives a pathname, they aren't permitted to move
3636 * from an fd that requires unmount as we can't get at the flag
3637 * to clear it afterwards.
3638 */
3639 lflags = 0;
3640 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3641 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3642 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3643
3644 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3645 if (ret < 0)
3646 return ret;
3647
3648 lflags = 0;
3649 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3650 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3651 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3652
3653 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3654 if (ret < 0)
3655 goto out_from;
3656
3657 ret = security_move_mount(&from_path, &to_path);
3658 if (ret < 0)
3659 goto out_to;
3660
3661 ret = do_move_mount(&from_path, &to_path);
3662
3663 out_to:
3664 path_put(&to_path);
3665 out_from:
3666 path_put(&from_path);
3667 return ret;
3668 }
3669
3670 /*
3671 * Return true if path is reachable from root
3672 *
3673 * namespace_sem or mount_lock is held
3674 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3675 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3676 const struct path *root)
3677 {
3678 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3679 dentry = mnt->mnt_mountpoint;
3680 mnt = mnt->mnt_parent;
3681 }
3682 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3683 }
3684
path_is_under(const struct path * path1,const struct path * path2)3685 bool path_is_under(const struct path *path1, const struct path *path2)
3686 {
3687 bool res;
3688 read_seqlock_excl(&mount_lock);
3689 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3690 read_sequnlock_excl(&mount_lock);
3691 return res;
3692 }
3693 EXPORT_SYMBOL(path_is_under);
3694
3695 /*
3696 * pivot_root Semantics:
3697 * Moves the root file system of the current process to the directory put_old,
3698 * makes new_root as the new root file system of the current process, and sets
3699 * root/cwd of all processes which had them on the current root to new_root.
3700 *
3701 * Restrictions:
3702 * The new_root and put_old must be directories, and must not be on the
3703 * same file system as the current process root. The put_old must be
3704 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3705 * pointed to by put_old must yield the same directory as new_root. No other
3706 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3707 *
3708 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3709 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3710 * in this situation.
3711 *
3712 * Notes:
3713 * - we don't move root/cwd if they are not at the root (reason: if something
3714 * cared enough to change them, it's probably wrong to force them elsewhere)
3715 * - it's okay to pick a root that isn't the root of a file system, e.g.
3716 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3717 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3718 * first.
3719 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3720 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3721 const char __user *, put_old)
3722 {
3723 struct path new, old, root;
3724 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3725 struct mountpoint *old_mp, *root_mp;
3726 int error;
3727
3728 if (!may_mount())
3729 return -EPERM;
3730
3731 error = user_path_at(AT_FDCWD, new_root,
3732 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3733 if (error)
3734 goto out0;
3735
3736 error = user_path_at(AT_FDCWD, put_old,
3737 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3738 if (error)
3739 goto out1;
3740
3741 error = security_sb_pivotroot(&old, &new);
3742 if (error)
3743 goto out2;
3744
3745 get_fs_root(current->fs, &root);
3746 old_mp = lock_mount(&old);
3747 error = PTR_ERR(old_mp);
3748 if (IS_ERR(old_mp))
3749 goto out3;
3750
3751 error = -EINVAL;
3752 new_mnt = real_mount(new.mnt);
3753 root_mnt = real_mount(root.mnt);
3754 old_mnt = real_mount(old.mnt);
3755 ex_parent = new_mnt->mnt_parent;
3756 root_parent = root_mnt->mnt_parent;
3757 if (IS_MNT_SHARED(old_mnt) ||
3758 IS_MNT_SHARED(ex_parent) ||
3759 IS_MNT_SHARED(root_parent))
3760 goto out4;
3761 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3762 goto out4;
3763 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3764 goto out4;
3765 error = -ENOENT;
3766 if (d_unlinked(new.dentry))
3767 goto out4;
3768 error = -EBUSY;
3769 if (new_mnt == root_mnt || old_mnt == root_mnt)
3770 goto out4; /* loop, on the same file system */
3771 error = -EINVAL;
3772 if (root.mnt->mnt_root != root.dentry)
3773 goto out4; /* not a mountpoint */
3774 if (!mnt_has_parent(root_mnt))
3775 goto out4; /* not attached */
3776 if (new.mnt->mnt_root != new.dentry)
3777 goto out4; /* not a mountpoint */
3778 if (!mnt_has_parent(new_mnt))
3779 goto out4; /* not attached */
3780 /* make sure we can reach put_old from new_root */
3781 if (!is_path_reachable(old_mnt, old.dentry, &new))
3782 goto out4;
3783 /* make certain new is below the root */
3784 if (!is_path_reachable(new_mnt, new.dentry, &root))
3785 goto out4;
3786 lock_mount_hash();
3787 umount_mnt(new_mnt);
3788 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3789 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3790 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3791 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3792 }
3793 /* mount old root on put_old */
3794 attach_mnt(root_mnt, old_mnt, old_mp);
3795 /* mount new_root on / */
3796 attach_mnt(new_mnt, root_parent, root_mp);
3797 mnt_add_count(root_parent, -1);
3798 touch_mnt_namespace(current->nsproxy->mnt_ns);
3799 /* A moved mount should not expire automatically */
3800 list_del_init(&new_mnt->mnt_expire);
3801 put_mountpoint(root_mp);
3802 unlock_mount_hash();
3803 chroot_fs_refs(&root, &new);
3804 error = 0;
3805 out4:
3806 unlock_mount(old_mp);
3807 if (!error)
3808 mntput_no_expire(ex_parent);
3809 out3:
3810 path_put(&root);
3811 out2:
3812 path_put(&old);
3813 out1:
3814 path_put(&new);
3815 out0:
3816 return error;
3817 }
3818
init_mount_tree(void)3819 static void __init init_mount_tree(void)
3820 {
3821 struct vfsmount *mnt;
3822 struct mount *m;
3823 struct mnt_namespace *ns;
3824 struct path root;
3825
3826 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3827 if (IS_ERR(mnt))
3828 panic("Can't create rootfs");
3829
3830 ns = alloc_mnt_ns(&init_user_ns, false);
3831 if (IS_ERR(ns))
3832 panic("Can't allocate initial namespace");
3833 m = real_mount(mnt);
3834 m->mnt_ns = ns;
3835 ns->root = m;
3836 ns->mounts = 1;
3837 list_add(&m->mnt_list, &ns->list);
3838 init_task.nsproxy->mnt_ns = ns;
3839 get_mnt_ns(ns);
3840
3841 root.mnt = mnt;
3842 root.dentry = mnt->mnt_root;
3843 mnt->mnt_flags |= MNT_LOCKED;
3844
3845 set_fs_pwd(current->fs, &root);
3846 set_fs_root(current->fs, &root);
3847 }
3848
mnt_init(void)3849 void __init mnt_init(void)
3850 {
3851 int err;
3852
3853 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3854 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3855
3856 mount_hashtable = alloc_large_system_hash("Mount-cache",
3857 sizeof(struct hlist_head),
3858 mhash_entries, 19,
3859 HASH_ZERO,
3860 &m_hash_shift, &m_hash_mask, 0, 0);
3861 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3862 sizeof(struct hlist_head),
3863 mphash_entries, 19,
3864 HASH_ZERO,
3865 &mp_hash_shift, &mp_hash_mask, 0, 0);
3866
3867 if (!mount_hashtable || !mountpoint_hashtable)
3868 panic("Failed to allocate mount hash table\n");
3869
3870 kernfs_init();
3871
3872 err = sysfs_init();
3873 if (err)
3874 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3875 __func__, err);
3876 fs_kobj = kobject_create_and_add("fs", NULL);
3877 if (!fs_kobj)
3878 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3879 shmem_init();
3880 init_rootfs();
3881 init_mount_tree();
3882 }
3883
put_mnt_ns(struct mnt_namespace * ns)3884 void put_mnt_ns(struct mnt_namespace *ns)
3885 {
3886 if (!atomic_dec_and_test(&ns->count))
3887 return;
3888 drop_collected_mounts(&ns->root->mnt);
3889 free_mnt_ns(ns);
3890 }
3891
kern_mount(struct file_system_type * type)3892 struct vfsmount *kern_mount(struct file_system_type *type)
3893 {
3894 struct vfsmount *mnt;
3895 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3896 if (!IS_ERR(mnt)) {
3897 /*
3898 * it is a longterm mount, don't release mnt until
3899 * we unmount before file sys is unregistered
3900 */
3901 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3902 }
3903 return mnt;
3904 }
3905 EXPORT_SYMBOL_GPL(kern_mount);
3906
kern_unmount(struct vfsmount * mnt)3907 void kern_unmount(struct vfsmount *mnt)
3908 {
3909 /* release long term mount so mount point can be released */
3910 if (!IS_ERR_OR_NULL(mnt)) {
3911 real_mount(mnt)->mnt_ns = NULL;
3912 synchronize_rcu(); /* yecchhh... */
3913 mntput(mnt);
3914 }
3915 }
3916 EXPORT_SYMBOL(kern_unmount);
3917
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)3918 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3919 {
3920 unsigned int i;
3921
3922 for (i = 0; i < num; i++)
3923 if (mnt[i])
3924 real_mount(mnt[i])->mnt_ns = NULL;
3925 synchronize_rcu_expedited();
3926 for (i = 0; i < num; i++)
3927 mntput(mnt[i]);
3928 }
3929 EXPORT_SYMBOL(kern_unmount_array);
3930
our_mnt(struct vfsmount * mnt)3931 bool our_mnt(struct vfsmount *mnt)
3932 {
3933 return check_mnt(real_mount(mnt));
3934 }
3935
current_chrooted(void)3936 bool current_chrooted(void)
3937 {
3938 /* Does the current process have a non-standard root */
3939 struct path ns_root;
3940 struct path fs_root;
3941 bool chrooted;
3942
3943 /* Find the namespace root */
3944 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3945 ns_root.dentry = ns_root.mnt->mnt_root;
3946 path_get(&ns_root);
3947 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3948 ;
3949
3950 get_fs_root(current->fs, &fs_root);
3951
3952 chrooted = !path_equal(&fs_root, &ns_root);
3953
3954 path_put(&fs_root);
3955 path_put(&ns_root);
3956
3957 return chrooted;
3958 }
3959
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)3960 static bool mnt_already_visible(struct mnt_namespace *ns,
3961 const struct super_block *sb,
3962 int *new_mnt_flags)
3963 {
3964 int new_flags = *new_mnt_flags;
3965 struct mount *mnt;
3966 bool visible = false;
3967
3968 down_read(&namespace_sem);
3969 lock_ns_list(ns);
3970 list_for_each_entry(mnt, &ns->list, mnt_list) {
3971 struct mount *child;
3972 int mnt_flags;
3973
3974 if (mnt_is_cursor(mnt))
3975 continue;
3976
3977 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3978 continue;
3979
3980 /* This mount is not fully visible if it's root directory
3981 * is not the root directory of the filesystem.
3982 */
3983 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3984 continue;
3985
3986 /* A local view of the mount flags */
3987 mnt_flags = mnt->mnt.mnt_flags;
3988
3989 /* Don't miss readonly hidden in the superblock flags */
3990 if (sb_rdonly(mnt->mnt.mnt_sb))
3991 mnt_flags |= MNT_LOCK_READONLY;
3992
3993 /* Verify the mount flags are equal to or more permissive
3994 * than the proposed new mount.
3995 */
3996 if ((mnt_flags & MNT_LOCK_READONLY) &&
3997 !(new_flags & MNT_READONLY))
3998 continue;
3999 if ((mnt_flags & MNT_LOCK_ATIME) &&
4000 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4001 continue;
4002
4003 /* This mount is not fully visible if there are any
4004 * locked child mounts that cover anything except for
4005 * empty directories.
4006 */
4007 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4008 struct inode *inode = child->mnt_mountpoint->d_inode;
4009 /* Only worry about locked mounts */
4010 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4011 continue;
4012 /* Is the directory permanetly empty? */
4013 if (!is_empty_dir_inode(inode))
4014 goto next;
4015 }
4016 /* Preserve the locked attributes */
4017 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4018 MNT_LOCK_ATIME);
4019 visible = true;
4020 goto found;
4021 next: ;
4022 }
4023 found:
4024 unlock_ns_list(ns);
4025 up_read(&namespace_sem);
4026 return visible;
4027 }
4028
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4029 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4030 {
4031 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4032 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4033 unsigned long s_iflags;
4034
4035 if (ns->user_ns == &init_user_ns)
4036 return false;
4037
4038 /* Can this filesystem be too revealing? */
4039 s_iflags = sb->s_iflags;
4040 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4041 return false;
4042
4043 if ((s_iflags & required_iflags) != required_iflags) {
4044 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4045 required_iflags);
4046 return true;
4047 }
4048
4049 return !mnt_already_visible(ns, sb, new_mnt_flags);
4050 }
4051
mnt_may_suid(struct vfsmount * mnt)4052 bool mnt_may_suid(struct vfsmount *mnt)
4053 {
4054 /*
4055 * Foreign mounts (accessed via fchdir or through /proc
4056 * symlinks) are always treated as if they are nosuid. This
4057 * prevents namespaces from trusting potentially unsafe
4058 * suid/sgid bits, file caps, or security labels that originate
4059 * in other namespaces.
4060 */
4061 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4062 current_in_userns(mnt->mnt_sb->s_user_ns);
4063 }
4064
mntns_get(struct task_struct * task)4065 static struct ns_common *mntns_get(struct task_struct *task)
4066 {
4067 struct ns_common *ns = NULL;
4068 struct nsproxy *nsproxy;
4069
4070 task_lock(task);
4071 nsproxy = task->nsproxy;
4072 if (nsproxy) {
4073 ns = &nsproxy->mnt_ns->ns;
4074 get_mnt_ns(to_mnt_ns(ns));
4075 }
4076 task_unlock(task);
4077
4078 return ns;
4079 }
4080
mntns_put(struct ns_common * ns)4081 static void mntns_put(struct ns_common *ns)
4082 {
4083 put_mnt_ns(to_mnt_ns(ns));
4084 }
4085
mntns_install(struct nsset * nsset,struct ns_common * ns)4086 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4087 {
4088 struct nsproxy *nsproxy = nsset->nsproxy;
4089 struct fs_struct *fs = nsset->fs;
4090 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4091 struct user_namespace *user_ns = nsset->cred->user_ns;
4092 struct path root;
4093 int err;
4094
4095 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4096 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4097 !ns_capable(user_ns, CAP_SYS_ADMIN))
4098 return -EPERM;
4099
4100 if (is_anon_ns(mnt_ns))
4101 return -EINVAL;
4102
4103 if (fs->users != 1)
4104 return -EINVAL;
4105
4106 get_mnt_ns(mnt_ns);
4107 old_mnt_ns = nsproxy->mnt_ns;
4108 nsproxy->mnt_ns = mnt_ns;
4109
4110 /* Find the root */
4111 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4112 "/", LOOKUP_DOWN, &root);
4113 if (err) {
4114 /* revert to old namespace */
4115 nsproxy->mnt_ns = old_mnt_ns;
4116 put_mnt_ns(mnt_ns);
4117 return err;
4118 }
4119
4120 put_mnt_ns(old_mnt_ns);
4121
4122 /* Update the pwd and root */
4123 set_fs_pwd(fs, &root);
4124 set_fs_root(fs, &root);
4125
4126 path_put(&root);
4127 return 0;
4128 }
4129
mntns_owner(struct ns_common * ns)4130 static struct user_namespace *mntns_owner(struct ns_common *ns)
4131 {
4132 return to_mnt_ns(ns)->user_ns;
4133 }
4134
4135 const struct proc_ns_operations mntns_operations = {
4136 .name = "mnt",
4137 .type = CLONE_NEWNS,
4138 .get = mntns_get,
4139 .put = mntns_put,
4140 .install = mntns_install,
4141 .owner = mntns_owner,
4142 };
4143