• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71 
72 #include <trace/events/task.h>
73 #include "internal.h"
74 
75 #include <trace/events/sched.h>
76 
77 EXPORT_TRACEPOINT_SYMBOL_GPL(task_rename);
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
__register_binfmt(struct linux_binfmt * fmt,int insert)86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	BUG_ON(!fmt);
89 	if (WARN_ON(!fmt->load_binary))
90 		return;
91 	write_lock(&binfmt_lock);
92 	insert ? list_add(&fmt->lh, &formats) :
93 		 list_add_tail(&fmt->lh, &formats);
94 	write_unlock(&binfmt_lock);
95 }
96 
97 EXPORT_SYMBOL(__register_binfmt);
98 
unregister_binfmt(struct linux_binfmt * fmt)99 void unregister_binfmt(struct linux_binfmt * fmt)
100 {
101 	write_lock(&binfmt_lock);
102 	list_del(&fmt->lh);
103 	write_unlock(&binfmt_lock);
104 }
105 
106 EXPORT_SYMBOL(unregister_binfmt);
107 
put_binfmt(struct linux_binfmt * fmt)108 static inline void put_binfmt(struct linux_binfmt * fmt)
109 {
110 	module_put(fmt->module);
111 }
112 
path_noexec(const struct path * path)113 bool path_noexec(const struct path *path)
114 {
115 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
116 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
117 }
118 
119 #ifdef CONFIG_USELIB
120 /*
121  * Note that a shared library must be both readable and executable due to
122  * security reasons.
123  *
124  * Also note that we take the address to load from from the file itself.
125  */
SYSCALL_DEFINE1(uselib,const char __user *,library)126 SYSCALL_DEFINE1(uselib, const char __user *, library)
127 {
128 	struct linux_binfmt *fmt;
129 	struct file *file;
130 	struct filename *tmp = getname(library);
131 	int error = PTR_ERR(tmp);
132 	static const struct open_flags uselib_flags = {
133 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
134 		.acc_mode = MAY_READ | MAY_EXEC,
135 		.intent = LOOKUP_OPEN,
136 		.lookup_flags = LOOKUP_FOLLOW,
137 	};
138 
139 	if (IS_ERR(tmp))
140 		goto out;
141 
142 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
143 	putname(tmp);
144 	error = PTR_ERR(file);
145 	if (IS_ERR(file))
146 		goto out;
147 
148 	/*
149 	 * may_open() has already checked for this, so it should be
150 	 * impossible to trip now. But we need to be extra cautious
151 	 * and check again at the very end too.
152 	 */
153 	error = -EACCES;
154 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
155 			 path_noexec(&file->f_path)))
156 		goto exit;
157 
158 	fsnotify_open(file);
159 
160 	error = -ENOEXEC;
161 
162 	read_lock(&binfmt_lock);
163 	list_for_each_entry(fmt, &formats, lh) {
164 		if (!fmt->load_shlib)
165 			continue;
166 		if (!try_module_get(fmt->module))
167 			continue;
168 		read_unlock(&binfmt_lock);
169 		error = fmt->load_shlib(file);
170 		read_lock(&binfmt_lock);
171 		put_binfmt(fmt);
172 		if (error != -ENOEXEC)
173 			break;
174 	}
175 	read_unlock(&binfmt_lock);
176 exit:
177 	fput(file);
178 out:
179   	return error;
180 }
181 #endif /* #ifdef CONFIG_USELIB */
182 
183 #ifdef CONFIG_MMU
184 /*
185  * The nascent bprm->mm is not visible until exec_mmap() but it can
186  * use a lot of memory, account these pages in current->mm temporary
187  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
188  * change the counter back via acct_arg_size(0).
189  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)190 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
191 {
192 	struct mm_struct *mm = current->mm;
193 	long diff = (long)(pages - bprm->vma_pages);
194 
195 	if (!mm || !diff)
196 		return;
197 
198 	bprm->vma_pages = pages;
199 	add_mm_counter(mm, MM_ANONPAGES, diff);
200 }
201 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)202 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 		int write)
204 {
205 	struct page *page;
206 	int ret;
207 	unsigned int gup_flags = FOLL_FORCE;
208 
209 #ifdef CONFIG_STACK_GROWSUP
210 	if (write) {
211 		ret = expand_downwards(bprm->vma, pos);
212 		if (ret < 0)
213 			return NULL;
214 	}
215 #endif
216 
217 	if (write)
218 		gup_flags |= FOLL_WRITE;
219 
220 	/*
221 	 * We are doing an exec().  'current' is the process
222 	 * doing the exec and bprm->mm is the new process's mm.
223 	 */
224 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
225 			&page, NULL, NULL);
226 	if (ret <= 0)
227 		return NULL;
228 
229 	if (write)
230 		acct_arg_size(bprm, vma_pages(bprm->vma));
231 
232 	return page;
233 }
234 
put_arg_page(struct page * page)235 static void put_arg_page(struct page *page)
236 {
237 	put_user_page(page);
238 }
239 
free_arg_pages(struct linux_binprm * bprm)240 static void free_arg_pages(struct linux_binprm *bprm)
241 {
242 }
243 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)244 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
245 		struct page *page)
246 {
247 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
248 }
249 
__bprm_mm_init(struct linux_binprm * bprm)250 static int __bprm_mm_init(struct linux_binprm *bprm)
251 {
252 	int err;
253 	struct vm_area_struct *vma = NULL;
254 	struct mm_struct *mm = bprm->mm;
255 
256 	bprm->vma = vma = vm_area_alloc(mm);
257 	if (!vma)
258 		return -ENOMEM;
259 	vma_set_anonymous(vma);
260 
261 	if (mmap_write_lock_killable(mm)) {
262 		err = -EINTR;
263 		goto err_free;
264 	}
265 
266 	/*
267 	 * Place the stack at the largest stack address the architecture
268 	 * supports. Later, we'll move this to an appropriate place. We don't
269 	 * use STACK_TOP because that can depend on attributes which aren't
270 	 * configured yet.
271 	 */
272 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 	vma->vm_end = STACK_TOP_MAX;
274 	vma->vm_start = vma->vm_end - PAGE_SIZE;
275 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 
278 	err = insert_vm_struct(mm, vma);
279 	if (err)
280 		goto err;
281 
282 	mm->stack_vm = mm->total_vm = 1;
283 	mmap_write_unlock(mm);
284 	bprm->p = vma->vm_end - sizeof(void *);
285 	return 0;
286 err:
287 	mmap_write_unlock(mm);
288 err_free:
289 	bprm->vma = NULL;
290 	vm_area_free(vma);
291 	return err;
292 }
293 
valid_arg_len(struct linux_binprm * bprm,long len)294 static bool valid_arg_len(struct linux_binprm *bprm, long len)
295 {
296 	return len <= MAX_ARG_STRLEN;
297 }
298 
299 #else
300 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)301 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
302 {
303 }
304 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)305 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
306 		int write)
307 {
308 	struct page *page;
309 
310 	page = bprm->page[pos / PAGE_SIZE];
311 	if (!page && write) {
312 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
313 		if (!page)
314 			return NULL;
315 		bprm->page[pos / PAGE_SIZE] = page;
316 	}
317 
318 	return page;
319 }
320 
put_arg_page(struct page * page)321 static void put_arg_page(struct page *page)
322 {
323 }
324 
free_arg_page(struct linux_binprm * bprm,int i)325 static void free_arg_page(struct linux_binprm *bprm, int i)
326 {
327 	if (bprm->page[i]) {
328 		__free_page(bprm->page[i]);
329 		bprm->page[i] = NULL;
330 	}
331 }
332 
free_arg_pages(struct linux_binprm * bprm)333 static void free_arg_pages(struct linux_binprm *bprm)
334 {
335 	int i;
336 
337 	for (i = 0; i < MAX_ARG_PAGES; i++)
338 		free_arg_page(bprm, i);
339 }
340 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)341 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
342 		struct page *page)
343 {
344 }
345 
__bprm_mm_init(struct linux_binprm * bprm)346 static int __bprm_mm_init(struct linux_binprm *bprm)
347 {
348 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
349 	return 0;
350 }
351 
valid_arg_len(struct linux_binprm * bprm,long len)352 static bool valid_arg_len(struct linux_binprm *bprm, long len)
353 {
354 	return len <= bprm->p;
355 }
356 
357 #endif /* CONFIG_MMU */
358 
359 /*
360  * Create a new mm_struct and populate it with a temporary stack
361  * vm_area_struct.  We don't have enough context at this point to set the stack
362  * flags, permissions, and offset, so we use temporary values.  We'll update
363  * them later in setup_arg_pages().
364  */
bprm_mm_init(struct linux_binprm * bprm)365 static int bprm_mm_init(struct linux_binprm *bprm)
366 {
367 	int err;
368 	struct mm_struct *mm = NULL;
369 
370 	bprm->mm = mm = mm_alloc();
371 	err = -ENOMEM;
372 	if (!mm)
373 		goto err;
374 
375 	/* Save current stack limit for all calculations made during exec. */
376 	task_lock(current->group_leader);
377 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
378 	task_unlock(current->group_leader);
379 
380 	err = __bprm_mm_init(bprm);
381 	if (err)
382 		goto err;
383 
384 	return 0;
385 
386 err:
387 	if (mm) {
388 		bprm->mm = NULL;
389 		mmdrop(mm);
390 	}
391 
392 	return err;
393 }
394 
395 struct user_arg_ptr {
396 #ifdef CONFIG_COMPAT
397 	bool is_compat;
398 #endif
399 	union {
400 		const char __user *const __user *native;
401 #ifdef CONFIG_COMPAT
402 		const compat_uptr_t __user *compat;
403 #endif
404 	} ptr;
405 };
406 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)407 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
408 {
409 	const char __user *native;
410 
411 #ifdef CONFIG_COMPAT
412 	if (unlikely(argv.is_compat)) {
413 		compat_uptr_t compat;
414 
415 		if (get_user(compat, argv.ptr.compat + nr))
416 			return ERR_PTR(-EFAULT);
417 
418 		return compat_ptr(compat);
419 	}
420 #endif
421 
422 	if (get_user(native, argv.ptr.native + nr))
423 		return ERR_PTR(-EFAULT);
424 
425 	return native;
426 }
427 
428 /*
429  * count() counts the number of strings in array ARGV.
430  */
count(struct user_arg_ptr argv,int max)431 static int count(struct user_arg_ptr argv, int max)
432 {
433 	int i = 0;
434 
435 	if (argv.ptr.native != NULL) {
436 		for (;;) {
437 			const char __user *p = get_user_arg_ptr(argv, i);
438 
439 			if (!p)
440 				break;
441 
442 			if (IS_ERR(p))
443 				return -EFAULT;
444 
445 			if (i >= max)
446 				return -E2BIG;
447 			++i;
448 
449 			if (fatal_signal_pending(current))
450 				return -ERESTARTNOHAND;
451 			cond_resched();
452 		}
453 	}
454 	return i;
455 }
456 
count_strings_kernel(const char * const * argv)457 static int count_strings_kernel(const char *const *argv)
458 {
459 	int i;
460 
461 	if (!argv)
462 		return 0;
463 
464 	for (i = 0; argv[i]; ++i) {
465 		if (i >= MAX_ARG_STRINGS)
466 			return -E2BIG;
467 		if (fatal_signal_pending(current))
468 			return -ERESTARTNOHAND;
469 		cond_resched();
470 	}
471 	return i;
472 }
473 
bprm_stack_limits(struct linux_binprm * bprm)474 static int bprm_stack_limits(struct linux_binprm *bprm)
475 {
476 	unsigned long limit, ptr_size;
477 
478 	/*
479 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
480 	 * (whichever is smaller) for the argv+env strings.
481 	 * This ensures that:
482 	 *  - the remaining binfmt code will not run out of stack space,
483 	 *  - the program will have a reasonable amount of stack left
484 	 *    to work from.
485 	 */
486 	limit = _STK_LIM / 4 * 3;
487 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
488 	/*
489 	 * We've historically supported up to 32 pages (ARG_MAX)
490 	 * of argument strings even with small stacks
491 	 */
492 	limit = max_t(unsigned long, limit, ARG_MAX);
493 	/*
494 	 * We must account for the size of all the argv and envp pointers to
495 	 * the argv and envp strings, since they will also take up space in
496 	 * the stack. They aren't stored until much later when we can't
497 	 * signal to the parent that the child has run out of stack space.
498 	 * Instead, calculate it here so it's possible to fail gracefully.
499 	 *
500 	 * In the case of argc = 0, make sure there is space for adding a
501 	 * empty string (which will bump argc to 1), to ensure confused
502 	 * userspace programs don't start processing from argv[1], thinking
503 	 * argc can never be 0, to keep them from walking envp by accident.
504 	 * See do_execveat_common().
505 	 */
506 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
507 	if (limit <= ptr_size)
508 		return -E2BIG;
509 	limit -= ptr_size;
510 
511 	bprm->argmin = bprm->p - limit;
512 	return 0;
513 }
514 
515 /*
516  * 'copy_strings()' copies argument/environment strings from the old
517  * processes's memory to the new process's stack.  The call to get_user_pages()
518  * ensures the destination page is created and not swapped out.
519  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)520 static int copy_strings(int argc, struct user_arg_ptr argv,
521 			struct linux_binprm *bprm)
522 {
523 	struct page *kmapped_page = NULL;
524 	char *kaddr = NULL;
525 	unsigned long kpos = 0;
526 	int ret;
527 
528 	while (argc-- > 0) {
529 		const char __user *str;
530 		int len;
531 		unsigned long pos;
532 
533 		ret = -EFAULT;
534 		str = get_user_arg_ptr(argv, argc);
535 		if (IS_ERR(str))
536 			goto out;
537 
538 		len = strnlen_user(str, MAX_ARG_STRLEN);
539 		if (!len)
540 			goto out;
541 
542 		ret = -E2BIG;
543 		if (!valid_arg_len(bprm, len))
544 			goto out;
545 
546 		/* We're going to work our way backwords. */
547 		pos = bprm->p;
548 		str += len;
549 		bprm->p -= len;
550 #ifdef CONFIG_MMU
551 		if (bprm->p < bprm->argmin)
552 			goto out;
553 #endif
554 
555 		while (len > 0) {
556 			int offset, bytes_to_copy;
557 
558 			if (fatal_signal_pending(current)) {
559 				ret = -ERESTARTNOHAND;
560 				goto out;
561 			}
562 			cond_resched();
563 
564 			offset = pos % PAGE_SIZE;
565 			if (offset == 0)
566 				offset = PAGE_SIZE;
567 
568 			bytes_to_copy = offset;
569 			if (bytes_to_copy > len)
570 				bytes_to_copy = len;
571 
572 			offset -= bytes_to_copy;
573 			pos -= bytes_to_copy;
574 			str -= bytes_to_copy;
575 			len -= bytes_to_copy;
576 
577 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
578 				struct page *page;
579 
580 				page = get_arg_page(bprm, pos, 1);
581 				if (!page) {
582 					ret = -E2BIG;
583 					goto out;
584 				}
585 
586 				if (kmapped_page) {
587 					flush_kernel_dcache_page(kmapped_page);
588 					kunmap(kmapped_page);
589 					put_arg_page(kmapped_page);
590 				}
591 				kmapped_page = page;
592 				kaddr = kmap(kmapped_page);
593 				kpos = pos & PAGE_MASK;
594 				flush_arg_page(bprm, kpos, kmapped_page);
595 			}
596 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
597 				ret = -EFAULT;
598 				goto out;
599 			}
600 		}
601 	}
602 	ret = 0;
603 out:
604 	if (kmapped_page) {
605 		flush_kernel_dcache_page(kmapped_page);
606 		kunmap(kmapped_page);
607 		put_arg_page(kmapped_page);
608 	}
609 	return ret;
610 }
611 
612 /*
613  * Copy and argument/environment string from the kernel to the processes stack.
614  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)615 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
616 {
617 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
618 	unsigned long pos = bprm->p;
619 
620 	if (len == 0)
621 		return -EFAULT;
622 	if (!valid_arg_len(bprm, len))
623 		return -E2BIG;
624 
625 	/* We're going to work our way backwards. */
626 	arg += len;
627 	bprm->p -= len;
628 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
629 		return -E2BIG;
630 
631 	while (len > 0) {
632 		unsigned int bytes_to_copy = min_t(unsigned int, len,
633 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
634 		struct page *page;
635 		char *kaddr;
636 
637 		pos -= bytes_to_copy;
638 		arg -= bytes_to_copy;
639 		len -= bytes_to_copy;
640 
641 		page = get_arg_page(bprm, pos, 1);
642 		if (!page)
643 			return -E2BIG;
644 		kaddr = kmap_atomic(page);
645 		flush_arg_page(bprm, pos & PAGE_MASK, page);
646 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
647 		flush_kernel_dcache_page(page);
648 		kunmap_atomic(kaddr);
649 		put_arg_page(page);
650 	}
651 
652 	return 0;
653 }
654 EXPORT_SYMBOL(copy_string_kernel);
655 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)656 static int copy_strings_kernel(int argc, const char *const *argv,
657 			       struct linux_binprm *bprm)
658 {
659 	while (argc-- > 0) {
660 		int ret = copy_string_kernel(argv[argc], bprm);
661 		if (ret < 0)
662 			return ret;
663 		if (fatal_signal_pending(current))
664 			return -ERESTARTNOHAND;
665 		cond_resched();
666 	}
667 	return 0;
668 }
669 
670 #ifdef CONFIG_MMU
671 
672 /*
673  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
674  * the binfmt code determines where the new stack should reside, we shift it to
675  * its final location.  The process proceeds as follows:
676  *
677  * 1) Use shift to calculate the new vma endpoints.
678  * 2) Extend vma to cover both the old and new ranges.  This ensures the
679  *    arguments passed to subsequent functions are consistent.
680  * 3) Move vma's page tables to the new range.
681  * 4) Free up any cleared pgd range.
682  * 5) Shrink the vma to cover only the new range.
683  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)684 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685 {
686 	struct mm_struct *mm = vma->vm_mm;
687 	unsigned long old_start = vma->vm_start;
688 	unsigned long old_end = vma->vm_end;
689 	unsigned long length = old_end - old_start;
690 	unsigned long new_start = old_start - shift;
691 	unsigned long new_end = old_end - shift;
692 	struct mmu_gather tlb;
693 
694 	BUG_ON(new_start > new_end);
695 
696 	/*
697 	 * ensure there are no vmas between where we want to go
698 	 * and where we are
699 	 */
700 	if (vma != find_vma(mm, new_start))
701 		return -EFAULT;
702 
703 	/*
704 	 * cover the whole range: [new_start, old_end)
705 	 */
706 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
707 		return -ENOMEM;
708 
709 	/*
710 	 * move the page tables downwards, on failure we rely on
711 	 * process cleanup to remove whatever mess we made.
712 	 */
713 	if (length != move_page_tables(vma, old_start,
714 				       vma, new_start, length, false))
715 		return -ENOMEM;
716 
717 	lru_add_drain();
718 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
719 	if (new_end > old_start) {
720 		/*
721 		 * when the old and new regions overlap clear from new_end.
722 		 */
723 		free_pgd_range(&tlb, new_end, old_end, new_end,
724 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
725 	} else {
726 		/*
727 		 * otherwise, clean from old_start; this is done to not touch
728 		 * the address space in [new_end, old_start) some architectures
729 		 * have constraints on va-space that make this illegal (IA64) -
730 		 * for the others its just a little faster.
731 		 */
732 		free_pgd_range(&tlb, old_start, old_end, new_end,
733 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
734 	}
735 	tlb_finish_mmu(&tlb, old_start, old_end);
736 
737 	/*
738 	 * Shrink the vma to just the new range.  Always succeeds.
739 	 */
740 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
741 
742 	return 0;
743 }
744 
745 /*
746  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
747  * the stack is optionally relocated, and some extra space is added.
748  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)749 int setup_arg_pages(struct linux_binprm *bprm,
750 		    unsigned long stack_top,
751 		    int executable_stack)
752 {
753 	unsigned long ret;
754 	unsigned long stack_shift;
755 	struct mm_struct *mm = current->mm;
756 	struct vm_area_struct *vma = bprm->vma;
757 	struct vm_area_struct *prev = NULL;
758 	unsigned long vm_flags;
759 	unsigned long stack_base;
760 	unsigned long stack_size;
761 	unsigned long stack_expand;
762 	unsigned long rlim_stack;
763 
764 #ifdef CONFIG_STACK_GROWSUP
765 	/* Limit stack size */
766 	stack_base = bprm->rlim_stack.rlim_max;
767 	if (stack_base > STACK_SIZE_MAX)
768 		stack_base = STACK_SIZE_MAX;
769 
770 	/* Add space for stack randomization. */
771 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
772 
773 	/* Make sure we didn't let the argument array grow too large. */
774 	if (vma->vm_end - vma->vm_start > stack_base)
775 		return -ENOMEM;
776 
777 	stack_base = PAGE_ALIGN(stack_top - stack_base);
778 
779 	stack_shift = vma->vm_start - stack_base;
780 	mm->arg_start = bprm->p - stack_shift;
781 	bprm->p = vma->vm_end - stack_shift;
782 #else
783 	stack_top = arch_align_stack(stack_top);
784 	stack_top = PAGE_ALIGN(stack_top);
785 
786 	if (unlikely(stack_top < mmap_min_addr) ||
787 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
788 		return -ENOMEM;
789 
790 	stack_shift = vma->vm_end - stack_top;
791 
792 	bprm->p -= stack_shift;
793 	mm->arg_start = bprm->p;
794 #endif
795 
796 	if (bprm->loader)
797 		bprm->loader -= stack_shift;
798 	bprm->exec -= stack_shift;
799 
800 	if (mmap_write_lock_killable(mm))
801 		return -EINTR;
802 
803 	vm_flags = VM_STACK_FLAGS;
804 
805 	/*
806 	 * Adjust stack execute permissions; explicitly enable for
807 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
808 	 * (arch default) otherwise.
809 	 */
810 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
811 		vm_flags |= VM_EXEC;
812 	else if (executable_stack == EXSTACK_DISABLE_X)
813 		vm_flags &= ~VM_EXEC;
814 	vm_flags |= mm->def_flags;
815 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
816 
817 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
818 			vm_flags);
819 	if (ret)
820 		goto out_unlock;
821 	BUG_ON(prev != vma);
822 
823 	if (unlikely(vm_flags & VM_EXEC)) {
824 		pr_warn_once("process '%pD4' started with executable stack\n",
825 			     bprm->file);
826 	}
827 
828 	/* Move stack pages down in memory. */
829 	if (stack_shift) {
830 		ret = shift_arg_pages(vma, stack_shift);
831 		if (ret)
832 			goto out_unlock;
833 	}
834 
835 	/* mprotect_fixup is overkill to remove the temporary stack flags */
836 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
837 
838 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
839 	stack_size = vma->vm_end - vma->vm_start;
840 	/*
841 	 * Align this down to a page boundary as expand_stack
842 	 * will align it up.
843 	 */
844 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
845 #ifdef CONFIG_STACK_GROWSUP
846 	if (stack_size + stack_expand > rlim_stack)
847 		stack_base = vma->vm_start + rlim_stack;
848 	else
849 		stack_base = vma->vm_end + stack_expand;
850 #else
851 	if (stack_size + stack_expand > rlim_stack)
852 		stack_base = vma->vm_end - rlim_stack;
853 	else
854 		stack_base = vma->vm_start - stack_expand;
855 #endif
856 	current->mm->start_stack = bprm->p;
857 	ret = expand_stack(vma, stack_base);
858 	if (ret)
859 		ret = -EFAULT;
860 
861 out_unlock:
862 	mmap_write_unlock(mm);
863 	return ret;
864 }
865 EXPORT_SYMBOL(setup_arg_pages);
866 
867 #else
868 
869 /*
870  * Transfer the program arguments and environment from the holding pages
871  * onto the stack. The provided stack pointer is adjusted accordingly.
872  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)873 int transfer_args_to_stack(struct linux_binprm *bprm,
874 			   unsigned long *sp_location)
875 {
876 	unsigned long index, stop, sp;
877 	int ret = 0;
878 
879 	stop = bprm->p >> PAGE_SHIFT;
880 	sp = *sp_location;
881 
882 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
883 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
884 		char *src = kmap(bprm->page[index]) + offset;
885 		sp -= PAGE_SIZE - offset;
886 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
887 			ret = -EFAULT;
888 		kunmap(bprm->page[index]);
889 		if (ret)
890 			goto out;
891 	}
892 
893 	*sp_location = sp;
894 
895 out:
896 	return ret;
897 }
898 EXPORT_SYMBOL(transfer_args_to_stack);
899 
900 #endif /* CONFIG_MMU */
901 
do_open_execat(int fd,struct filename * name,int flags)902 static struct file *do_open_execat(int fd, struct filename *name, int flags)
903 {
904 	struct file *file;
905 	int err;
906 	struct open_flags open_exec_flags = {
907 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
908 		.acc_mode = MAY_EXEC,
909 		.intent = LOOKUP_OPEN,
910 		.lookup_flags = LOOKUP_FOLLOW,
911 	};
912 
913 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
914 		return ERR_PTR(-EINVAL);
915 	if (flags & AT_SYMLINK_NOFOLLOW)
916 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
917 	if (flags & AT_EMPTY_PATH)
918 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
919 
920 	file = do_filp_open(fd, name, &open_exec_flags);
921 	if (IS_ERR(file))
922 		goto out;
923 
924 	/*
925 	 * may_open() has already checked for this, so it should be
926 	 * impossible to trip now. But we need to be extra cautious
927 	 * and check again at the very end too.
928 	 */
929 	err = -EACCES;
930 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
931 			 path_noexec(&file->f_path)))
932 		goto exit;
933 
934 	err = deny_write_access(file);
935 	if (err)
936 		goto exit;
937 
938 	if (name->name[0] != '\0')
939 		fsnotify_open(file);
940 
941 out:
942 	return file;
943 
944 exit:
945 	fput(file);
946 	return ERR_PTR(err);
947 }
948 
open_exec(const char * name)949 struct file *open_exec(const char *name)
950 {
951 	struct filename *filename = getname_kernel(name);
952 	struct file *f = ERR_CAST(filename);
953 
954 	if (!IS_ERR(filename)) {
955 		f = do_open_execat(AT_FDCWD, filename, 0);
956 		putname(filename);
957 	}
958 	return f;
959 }
960 EXPORT_SYMBOL(open_exec);
961 
962 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
963     defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)964 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965 {
966 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 	if (res > 0)
968 		flush_icache_user_range(addr, addr + len);
969 	return res;
970 }
971 EXPORT_SYMBOL(read_code);
972 #endif
973 
974 /*
975  * Maps the mm_struct mm into the current task struct.
976  * On success, this function returns with exec_update_lock
977  * held for writing.
978  */
exec_mmap(struct mm_struct * mm)979 static int exec_mmap(struct mm_struct *mm)
980 {
981 	struct task_struct *tsk;
982 	struct mm_struct *old_mm, *active_mm;
983 	int ret;
984 
985 	/* Notify parent that we're no longer interested in the old VM */
986 	tsk = current;
987 	old_mm = current->mm;
988 	exec_mm_release(tsk, old_mm);
989 	if (old_mm)
990 		sync_mm_rss(old_mm);
991 
992 	ret = down_write_killable(&tsk->signal->exec_update_lock);
993 	if (ret)
994 		return ret;
995 
996 	if (old_mm) {
997 		/*
998 		 * Make sure that if there is a core dump in progress
999 		 * for the old mm, we get out and die instead of going
1000 		 * through with the exec.  We must hold mmap_lock around
1001 		 * checking core_state and changing tsk->mm.
1002 		 */
1003 		mmap_read_lock(old_mm);
1004 		if (unlikely(old_mm->core_state)) {
1005 			mmap_read_unlock(old_mm);
1006 			up_write(&tsk->signal->exec_update_lock);
1007 			return -EINTR;
1008 		}
1009 	}
1010 
1011 	task_lock(tsk);
1012 	membarrier_exec_mmap(mm);
1013 
1014 	local_irq_disable();
1015 	active_mm = tsk->active_mm;
1016 	tsk->active_mm = mm;
1017 	tsk->mm = mm;
1018 	/*
1019 	 * This prevents preemption while active_mm is being loaded and
1020 	 * it and mm are being updated, which could cause problems for
1021 	 * lazy tlb mm refcounting when these are updated by context
1022 	 * switches. Not all architectures can handle irqs off over
1023 	 * activate_mm yet.
1024 	 */
1025 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 		local_irq_enable();
1027 	activate_mm(active_mm, mm);
1028 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 		local_irq_enable();
1030 	tsk->mm->vmacache_seqnum = 0;
1031 	vmacache_flush(tsk);
1032 	task_unlock(tsk);
1033 	if (old_mm) {
1034 		mmap_read_unlock(old_mm);
1035 		BUG_ON(active_mm != old_mm);
1036 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037 		mm_update_next_owner(old_mm);
1038 		mmput(old_mm);
1039 		return 0;
1040 	}
1041 	mmdrop(active_mm);
1042 	return 0;
1043 }
1044 
de_thread(struct task_struct * tsk)1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 	struct signal_struct *sig = tsk->signal;
1048 	struct sighand_struct *oldsighand = tsk->sighand;
1049 	spinlock_t *lock = &oldsighand->siglock;
1050 
1051 	if (thread_group_empty(tsk))
1052 		goto no_thread_group;
1053 
1054 	/*
1055 	 * Kill all other threads in the thread group.
1056 	 */
1057 	spin_lock_irq(lock);
1058 	if (signal_group_exit(sig)) {
1059 		/*
1060 		 * Another group action in progress, just
1061 		 * return so that the signal is processed.
1062 		 */
1063 		spin_unlock_irq(lock);
1064 		return -EAGAIN;
1065 	}
1066 
1067 	sig->group_exit_task = tsk;
1068 	sig->notify_count = zap_other_threads(tsk);
1069 	if (!thread_group_leader(tsk))
1070 		sig->notify_count--;
1071 
1072 	while (sig->notify_count) {
1073 		__set_current_state(TASK_KILLABLE);
1074 		spin_unlock_irq(lock);
1075 		schedule();
1076 		if (__fatal_signal_pending(tsk))
1077 			goto killed;
1078 		spin_lock_irq(lock);
1079 	}
1080 	spin_unlock_irq(lock);
1081 
1082 	/*
1083 	 * At this point all other threads have exited, all we have to
1084 	 * do is to wait for the thread group leader to become inactive,
1085 	 * and to assume its PID:
1086 	 */
1087 	if (!thread_group_leader(tsk)) {
1088 		struct task_struct *leader = tsk->group_leader;
1089 
1090 		for (;;) {
1091 			cgroup_threadgroup_change_begin(tsk);
1092 			write_lock_irq(&tasklist_lock);
1093 			/*
1094 			 * Do this under tasklist_lock to ensure that
1095 			 * exit_notify() can't miss ->group_exit_task
1096 			 */
1097 			sig->notify_count = -1;
1098 			if (likely(leader->exit_state))
1099 				break;
1100 			__set_current_state(TASK_KILLABLE);
1101 			write_unlock_irq(&tasklist_lock);
1102 			cgroup_threadgroup_change_end(tsk);
1103 			schedule();
1104 			if (__fatal_signal_pending(tsk))
1105 				goto killed;
1106 		}
1107 
1108 		/*
1109 		 * The only record we have of the real-time age of a
1110 		 * process, regardless of execs it's done, is start_time.
1111 		 * All the past CPU time is accumulated in signal_struct
1112 		 * from sister threads now dead.  But in this non-leader
1113 		 * exec, nothing survives from the original leader thread,
1114 		 * whose birth marks the true age of this process now.
1115 		 * When we take on its identity by switching to its PID, we
1116 		 * also take its birthdate (always earlier than our own).
1117 		 */
1118 		tsk->start_time = leader->start_time;
1119 		tsk->start_boottime = leader->start_boottime;
1120 
1121 		BUG_ON(!same_thread_group(leader, tsk));
1122 		/*
1123 		 * An exec() starts a new thread group with the
1124 		 * TGID of the previous thread group. Rehash the
1125 		 * two threads with a switched PID, and release
1126 		 * the former thread group leader:
1127 		 */
1128 
1129 		/* Become a process group leader with the old leader's pid.
1130 		 * The old leader becomes a thread of the this thread group.
1131 		 */
1132 		exchange_tids(tsk, leader);
1133 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1134 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1135 		transfer_pid(leader, tsk, PIDTYPE_SID);
1136 
1137 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1138 		list_replace_init(&leader->sibling, &tsk->sibling);
1139 
1140 		tsk->group_leader = tsk;
1141 		leader->group_leader = tsk;
1142 
1143 		tsk->exit_signal = SIGCHLD;
1144 		leader->exit_signal = -1;
1145 
1146 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147 		leader->exit_state = EXIT_DEAD;
1148 
1149 		/*
1150 		 * We are going to release_task()->ptrace_unlink() silently,
1151 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152 		 * the tracer wont't block again waiting for this thread.
1153 		 */
1154 		if (unlikely(leader->ptrace))
1155 			__wake_up_parent(leader, leader->parent);
1156 		write_unlock_irq(&tasklist_lock);
1157 		cgroup_threadgroup_change_end(tsk);
1158 
1159 		release_task(leader);
1160 	}
1161 
1162 	sig->group_exit_task = NULL;
1163 	sig->notify_count = 0;
1164 
1165 no_thread_group:
1166 	/* we have changed execution domain */
1167 	tsk->exit_signal = SIGCHLD;
1168 
1169 	BUG_ON(!thread_group_leader(tsk));
1170 	return 0;
1171 
1172 killed:
1173 	/* protects against exit_notify() and __exit_signal() */
1174 	read_lock(&tasklist_lock);
1175 	sig->group_exit_task = NULL;
1176 	sig->notify_count = 0;
1177 	read_unlock(&tasklist_lock);
1178 	return -EAGAIN;
1179 }
1180 
1181 
1182 /*
1183  * This function makes sure the current process has its own signal table,
1184  * so that flush_signal_handlers can later reset the handlers without
1185  * disturbing other processes.  (Other processes might share the signal
1186  * table via the CLONE_SIGHAND option to clone().)
1187  */
unshare_sighand(struct task_struct * me)1188 static int unshare_sighand(struct task_struct *me)
1189 {
1190 	struct sighand_struct *oldsighand = me->sighand;
1191 
1192 	if (refcount_read(&oldsighand->count) != 1) {
1193 		struct sighand_struct *newsighand;
1194 		/*
1195 		 * This ->sighand is shared with the CLONE_SIGHAND
1196 		 * but not CLONE_THREAD task, switch to the new one.
1197 		 */
1198 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 		if (!newsighand)
1200 			return -ENOMEM;
1201 
1202 		refcount_set(&newsighand->count, 1);
1203 
1204 		write_lock_irq(&tasklist_lock);
1205 		spin_lock(&oldsighand->siglock);
1206 		memcpy(newsighand->action, oldsighand->action,
1207 		       sizeof(newsighand->action));
1208 		rcu_assign_pointer(me->sighand, newsighand);
1209 		spin_unlock(&oldsighand->siglock);
1210 		write_unlock_irq(&tasklist_lock);
1211 
1212 		__cleanup_sighand(oldsighand);
1213 	}
1214 	return 0;
1215 }
1216 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218 {
1219 	task_lock(tsk);
1220 	strncpy(buf, tsk->comm, buf_size);
1221 	task_unlock(tsk);
1222 	return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(__get_task_comm);
1225 
1226 /*
1227  * These functions flushes out all traces of the currently running executable
1228  * so that a new one can be started
1229  */
1230 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 	task_lock(tsk);
1234 	trace_task_rename(tsk, buf);
1235 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1236 	task_unlock(tsk);
1237 	perf_event_comm(tsk, exec);
1238 }
1239 
1240 /*
1241  * Calling this is the point of no return. None of the failures will be
1242  * seen by userspace since either the process is already taking a fatal
1243  * signal (via de_thread() or coredump), or will have SEGV raised
1244  * (after exec_mmap()) by search_binary_handler (see below).
1245  */
begin_new_exec(struct linux_binprm * bprm)1246 int begin_new_exec(struct linux_binprm * bprm)
1247 {
1248 	struct task_struct *me = current;
1249 	int retval;
1250 
1251 	/* Once we are committed compute the creds */
1252 	retval = bprm_creds_from_file(bprm);
1253 	if (retval)
1254 		return retval;
1255 
1256 	/*
1257 	 * Ensure all future errors are fatal.
1258 	 */
1259 	bprm->point_of_no_return = true;
1260 
1261 	/*
1262 	 * Make this the only thread in the thread group.
1263 	 */
1264 	retval = de_thread(me);
1265 	if (retval)
1266 		goto out;
1267 
1268 	/*
1269 	 * Must be called _before_ exec_mmap() as bprm->mm is
1270 	 * not visibile until then. This also enables the update
1271 	 * to be lockless.
1272 	 */
1273 	set_mm_exe_file(bprm->mm, bprm->file);
1274 
1275 	/* If the binary is not readable then enforce mm->dumpable=0 */
1276 	would_dump(bprm, bprm->file);
1277 	if (bprm->have_execfd)
1278 		would_dump(bprm, bprm->executable);
1279 
1280 	/*
1281 	 * Release all of the old mmap stuff
1282 	 */
1283 	acct_arg_size(bprm, 0);
1284 	retval = exec_mmap(bprm->mm);
1285 	if (retval)
1286 		goto out;
1287 
1288 	bprm->mm = NULL;
1289 
1290 #ifdef CONFIG_POSIX_TIMERS
1291 	spin_lock_irq(&me->sighand->siglock);
1292 	posix_cpu_timers_exit(me);
1293 	spin_unlock_irq(&me->sighand->siglock);
1294 	exit_itimers(me);
1295 	flush_itimer_signals();
1296 #endif
1297 
1298 	/*
1299 	 * Make the signal table private.
1300 	 */
1301 	retval = unshare_sighand(me);
1302 	if (retval)
1303 		goto out_unlock;
1304 
1305 	/*
1306 	 * Ensure that the uaccess routines can actually operate on userspace
1307 	 * pointers:
1308 	 */
1309 	force_uaccess_begin();
1310 
1311 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1312 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1313 	flush_thread();
1314 	me->personality &= ~bprm->per_clear;
1315 
1316 	/*
1317 	 * We have to apply CLOEXEC before we change whether the process is
1318 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1319 	 * trying to access the should-be-closed file descriptors of a process
1320 	 * undergoing exec(2).
1321 	 */
1322 	do_close_on_exec(me->files);
1323 
1324 	if (bprm->secureexec) {
1325 		/* Make sure parent cannot signal privileged process. */
1326 		me->pdeath_signal = 0;
1327 
1328 		/*
1329 		 * For secureexec, reset the stack limit to sane default to
1330 		 * avoid bad behavior from the prior rlimits. This has to
1331 		 * happen before arch_pick_mmap_layout(), which examines
1332 		 * RLIMIT_STACK, but after the point of no return to avoid
1333 		 * needing to clean up the change on failure.
1334 		 */
1335 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1336 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1337 	}
1338 
1339 	me->sas_ss_sp = me->sas_ss_size = 0;
1340 
1341 	/*
1342 	 * Figure out dumpability. Note that this checking only of current
1343 	 * is wrong, but userspace depends on it. This should be testing
1344 	 * bprm->secureexec instead.
1345 	 */
1346 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1347 	    !(uid_eq(current_euid(), current_uid()) &&
1348 	      gid_eq(current_egid(), current_gid())))
1349 		set_dumpable(current->mm, suid_dumpable);
1350 	else
1351 		set_dumpable(current->mm, SUID_DUMP_USER);
1352 
1353 	perf_event_exec();
1354 	__set_task_comm(me, kbasename(bprm->filename), true);
1355 
1356 	/* An exec changes our domain. We are no longer part of the thread
1357 	   group */
1358 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1359 	flush_signal_handlers(me, 0);
1360 
1361 	/*
1362 	 * install the new credentials for this executable
1363 	 */
1364 	security_bprm_committing_creds(bprm);
1365 
1366 	commit_creds(bprm->cred);
1367 	bprm->cred = NULL;
1368 
1369 	/*
1370 	 * Disable monitoring for regular users
1371 	 * when executing setuid binaries. Must
1372 	 * wait until new credentials are committed
1373 	 * by commit_creds() above
1374 	 */
1375 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1376 		perf_event_exit_task(me);
1377 	/*
1378 	 * cred_guard_mutex must be held at least to this point to prevent
1379 	 * ptrace_attach() from altering our determination of the task's
1380 	 * credentials; any time after this it may be unlocked.
1381 	 */
1382 	security_bprm_committed_creds(bprm);
1383 
1384 	/* Pass the opened binary to the interpreter. */
1385 	if (bprm->have_execfd) {
1386 		retval = get_unused_fd_flags(0);
1387 		if (retval < 0)
1388 			goto out_unlock;
1389 		fd_install(retval, bprm->executable);
1390 		bprm->executable = NULL;
1391 		bprm->execfd = retval;
1392 	}
1393 	return 0;
1394 
1395 out_unlock:
1396 	up_write(&me->signal->exec_update_lock);
1397 	if (!bprm->cred)
1398 		mutex_unlock(&me->signal->cred_guard_mutex);
1399 
1400 out:
1401 	return retval;
1402 }
1403 EXPORT_SYMBOL(begin_new_exec);
1404 
would_dump(struct linux_binprm * bprm,struct file * file)1405 void would_dump(struct linux_binprm *bprm, struct file *file)
1406 {
1407 	struct inode *inode = file_inode(file);
1408 	if (inode_permission(inode, MAY_READ) < 0) {
1409 		struct user_namespace *old, *user_ns;
1410 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1411 
1412 		/* Ensure mm->user_ns contains the executable */
1413 		user_ns = old = bprm->mm->user_ns;
1414 		while ((user_ns != &init_user_ns) &&
1415 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1416 			user_ns = user_ns->parent;
1417 
1418 		if (old != user_ns) {
1419 			bprm->mm->user_ns = get_user_ns(user_ns);
1420 			put_user_ns(old);
1421 		}
1422 	}
1423 }
1424 EXPORT_SYMBOL(would_dump);
1425 
setup_new_exec(struct linux_binprm * bprm)1426 void setup_new_exec(struct linux_binprm * bprm)
1427 {
1428 	/* Setup things that can depend upon the personality */
1429 	struct task_struct *me = current;
1430 
1431 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1432 
1433 	arch_setup_new_exec();
1434 
1435 	/* Set the new mm task size. We have to do that late because it may
1436 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1437 	 * some architectures like powerpc
1438 	 */
1439 	me->mm->task_size = TASK_SIZE;
1440 	up_write(&me->signal->exec_update_lock);
1441 	mutex_unlock(&me->signal->cred_guard_mutex);
1442 }
1443 EXPORT_SYMBOL(setup_new_exec);
1444 
1445 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1446 void finalize_exec(struct linux_binprm *bprm)
1447 {
1448 	/* Store any stack rlimit changes before starting thread. */
1449 	task_lock(current->group_leader);
1450 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1451 	task_unlock(current->group_leader);
1452 }
1453 EXPORT_SYMBOL(finalize_exec);
1454 
1455 /*
1456  * Prepare credentials and lock ->cred_guard_mutex.
1457  * setup_new_exec() commits the new creds and drops the lock.
1458  * Or, if exec fails before, free_bprm() should release ->cred and
1459  * and unlock.
1460  */
prepare_bprm_creds(struct linux_binprm * bprm)1461 static int prepare_bprm_creds(struct linux_binprm *bprm)
1462 {
1463 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1464 		return -ERESTARTNOINTR;
1465 
1466 	bprm->cred = prepare_exec_creds();
1467 	if (likely(bprm->cred))
1468 		return 0;
1469 
1470 	mutex_unlock(&current->signal->cred_guard_mutex);
1471 	return -ENOMEM;
1472 }
1473 
free_bprm(struct linux_binprm * bprm)1474 static void free_bprm(struct linux_binprm *bprm)
1475 {
1476 	if (bprm->mm) {
1477 		acct_arg_size(bprm, 0);
1478 		mmput(bprm->mm);
1479 	}
1480 	free_arg_pages(bprm);
1481 	if (bprm->cred) {
1482 		mutex_unlock(&current->signal->cred_guard_mutex);
1483 		abort_creds(bprm->cred);
1484 	}
1485 	if (bprm->file) {
1486 		allow_write_access(bprm->file);
1487 		fput(bprm->file);
1488 	}
1489 	if (bprm->executable)
1490 		fput(bprm->executable);
1491 	/* If a binfmt changed the interp, free it. */
1492 	if (bprm->interp != bprm->filename)
1493 		kfree(bprm->interp);
1494 	kfree(bprm->fdpath);
1495 	kfree(bprm);
1496 }
1497 
alloc_bprm(int fd,struct filename * filename)1498 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1499 {
1500 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1501 	int retval = -ENOMEM;
1502 	if (!bprm)
1503 		goto out;
1504 
1505 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1506 		bprm->filename = filename->name;
1507 	} else {
1508 		if (filename->name[0] == '\0')
1509 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1510 		else
1511 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1512 						  fd, filename->name);
1513 		if (!bprm->fdpath)
1514 			goto out_free;
1515 
1516 		bprm->filename = bprm->fdpath;
1517 	}
1518 	bprm->interp = bprm->filename;
1519 
1520 	retval = bprm_mm_init(bprm);
1521 	if (retval)
1522 		goto out_free;
1523 	return bprm;
1524 
1525 out_free:
1526 	free_bprm(bprm);
1527 out:
1528 	return ERR_PTR(retval);
1529 }
1530 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1531 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1532 {
1533 	/* If a binfmt changed the interp, free it first. */
1534 	if (bprm->interp != bprm->filename)
1535 		kfree(bprm->interp);
1536 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1537 	if (!bprm->interp)
1538 		return -ENOMEM;
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL(bprm_change_interp);
1542 
1543 /*
1544  * determine how safe it is to execute the proposed program
1545  * - the caller must hold ->cred_guard_mutex to protect against
1546  *   PTRACE_ATTACH or seccomp thread-sync
1547  */
check_unsafe_exec(struct linux_binprm * bprm)1548 static void check_unsafe_exec(struct linux_binprm *bprm)
1549 {
1550 	struct task_struct *p = current, *t;
1551 	unsigned n_fs;
1552 
1553 	if (p->ptrace)
1554 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1555 
1556 	/*
1557 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1558 	 * mess up.
1559 	 */
1560 	if (task_no_new_privs(current))
1561 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1562 
1563 	t = p;
1564 	n_fs = 1;
1565 	spin_lock(&p->fs->lock);
1566 	rcu_read_lock();
1567 	while_each_thread(p, t) {
1568 		if (t->fs == p->fs)
1569 			n_fs++;
1570 	}
1571 	rcu_read_unlock();
1572 
1573 	if (p->fs->users > n_fs)
1574 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1575 	else
1576 		p->fs->in_exec = 1;
1577 	spin_unlock(&p->fs->lock);
1578 }
1579 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1580 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1581 {
1582 	/* Handle suid and sgid on files */
1583 	struct inode *inode;
1584 	unsigned int mode;
1585 	kuid_t uid;
1586 	kgid_t gid;
1587 
1588 	if (!mnt_may_suid(file->f_path.mnt))
1589 		return;
1590 
1591 	if (task_no_new_privs(current))
1592 		return;
1593 
1594 	inode = file->f_path.dentry->d_inode;
1595 	mode = READ_ONCE(inode->i_mode);
1596 	if (!(mode & (S_ISUID|S_ISGID)))
1597 		return;
1598 
1599 	/* Be careful if suid/sgid is set */
1600 	inode_lock(inode);
1601 
1602 	/* reload atomically mode/uid/gid now that lock held */
1603 	mode = inode->i_mode;
1604 	uid = inode->i_uid;
1605 	gid = inode->i_gid;
1606 	inode_unlock(inode);
1607 
1608 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1609 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1610 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1611 		return;
1612 
1613 	if (mode & S_ISUID) {
1614 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1615 		bprm->cred->euid = uid;
1616 	}
1617 
1618 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1619 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1620 		bprm->cred->egid = gid;
1621 	}
1622 }
1623 
1624 /*
1625  * Compute brpm->cred based upon the final binary.
1626  */
bprm_creds_from_file(struct linux_binprm * bprm)1627 static int bprm_creds_from_file(struct linux_binprm *bprm)
1628 {
1629 	/* Compute creds based on which file? */
1630 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1631 
1632 	bprm_fill_uid(bprm, file);
1633 	return security_bprm_creds_from_file(bprm, file);
1634 }
1635 
1636 /*
1637  * Fill the binprm structure from the inode.
1638  * Read the first BINPRM_BUF_SIZE bytes
1639  *
1640  * This may be called multiple times for binary chains (scripts for example).
1641  */
prepare_binprm(struct linux_binprm * bprm)1642 static int prepare_binprm(struct linux_binprm *bprm)
1643 {
1644 	loff_t pos = 0;
1645 
1646 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1647 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1648 }
1649 
1650 /*
1651  * Arguments are '\0' separated strings found at the location bprm->p
1652  * points to; chop off the first by relocating brpm->p to right after
1653  * the first '\0' encountered.
1654  */
remove_arg_zero(struct linux_binprm * bprm)1655 int remove_arg_zero(struct linux_binprm *bprm)
1656 {
1657 	int ret = 0;
1658 	unsigned long offset;
1659 	char *kaddr;
1660 	struct page *page;
1661 
1662 	if (!bprm->argc)
1663 		return 0;
1664 
1665 	do {
1666 		offset = bprm->p & ~PAGE_MASK;
1667 		page = get_arg_page(bprm, bprm->p, 0);
1668 		if (!page) {
1669 			ret = -EFAULT;
1670 			goto out;
1671 		}
1672 		kaddr = kmap_atomic(page);
1673 
1674 		for (; offset < PAGE_SIZE && kaddr[offset];
1675 				offset++, bprm->p++)
1676 			;
1677 
1678 		kunmap_atomic(kaddr);
1679 		put_arg_page(page);
1680 	} while (offset == PAGE_SIZE);
1681 
1682 	bprm->p++;
1683 	bprm->argc--;
1684 	ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(remove_arg_zero);
1690 
1691 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1692 /*
1693  * cycle the list of binary formats handler, until one recognizes the image
1694  */
search_binary_handler(struct linux_binprm * bprm)1695 static int search_binary_handler(struct linux_binprm *bprm)
1696 {
1697 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1698 	struct linux_binfmt *fmt;
1699 	int retval;
1700 
1701 	retval = prepare_binprm(bprm);
1702 	if (retval < 0)
1703 		return retval;
1704 
1705 	retval = security_bprm_check(bprm);
1706 	if (retval)
1707 		return retval;
1708 
1709 	retval = -ENOENT;
1710  retry:
1711 	read_lock(&binfmt_lock);
1712 	list_for_each_entry(fmt, &formats, lh) {
1713 		if (!try_module_get(fmt->module))
1714 			continue;
1715 		read_unlock(&binfmt_lock);
1716 
1717 		retval = fmt->load_binary(bprm);
1718 
1719 		read_lock(&binfmt_lock);
1720 		put_binfmt(fmt);
1721 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1722 			read_unlock(&binfmt_lock);
1723 			return retval;
1724 		}
1725 	}
1726 	read_unlock(&binfmt_lock);
1727 
1728 	if (need_retry) {
1729 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1730 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1731 			return retval;
1732 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1733 			return retval;
1734 		need_retry = false;
1735 		goto retry;
1736 	}
1737 
1738 	return retval;
1739 }
1740 
exec_binprm(struct linux_binprm * bprm)1741 static int exec_binprm(struct linux_binprm *bprm)
1742 {
1743 	pid_t old_pid, old_vpid;
1744 	int ret, depth;
1745 
1746 	/* Need to fetch pid before load_binary changes it */
1747 	old_pid = current->pid;
1748 	rcu_read_lock();
1749 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1750 	rcu_read_unlock();
1751 
1752 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1753 	for (depth = 0;; depth++) {
1754 		struct file *exec;
1755 		if (depth > 5)
1756 			return -ELOOP;
1757 
1758 		ret = search_binary_handler(bprm);
1759 		if (ret < 0)
1760 			return ret;
1761 		if (!bprm->interpreter)
1762 			break;
1763 
1764 		exec = bprm->file;
1765 		bprm->file = bprm->interpreter;
1766 		bprm->interpreter = NULL;
1767 
1768 		allow_write_access(exec);
1769 		if (unlikely(bprm->have_execfd)) {
1770 			if (bprm->executable) {
1771 				fput(exec);
1772 				return -ENOEXEC;
1773 			}
1774 			bprm->executable = exec;
1775 		} else
1776 			fput(exec);
1777 	}
1778 
1779 	audit_bprm(bprm);
1780 	trace_sched_process_exec(current, old_pid, bprm);
1781 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1782 	proc_exec_connector(current);
1783 	return 0;
1784 }
1785 
1786 /*
1787  * sys_execve() executes a new program.
1788  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1789 static int bprm_execve(struct linux_binprm *bprm,
1790 		       int fd, struct filename *filename, int flags)
1791 {
1792 	struct file *file;
1793 	struct files_struct *displaced;
1794 	int retval;
1795 
1796 	/*
1797 	 * Cancel any io_uring activity across execve
1798 	 */
1799 	io_uring_task_cancel();
1800 
1801 	retval = unshare_files(&displaced);
1802 	if (retval)
1803 		return retval;
1804 
1805 	retval = prepare_bprm_creds(bprm);
1806 	if (retval)
1807 		goto out_files;
1808 
1809 	check_unsafe_exec(bprm);
1810 	current->in_execve = 1;
1811 
1812 	file = do_open_execat(fd, filename, flags);
1813 	retval = PTR_ERR(file);
1814 	if (IS_ERR(file))
1815 		goto out_unmark;
1816 
1817 	sched_exec();
1818 
1819 	bprm->file = file;
1820 	/*
1821 	 * Record that a name derived from an O_CLOEXEC fd will be
1822 	 * inaccessible after exec. Relies on having exclusive access to
1823 	 * current->files (due to unshare_files above).
1824 	 */
1825 	if (bprm->fdpath &&
1826 	    close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1827 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1828 
1829 	/* Set the unchanging part of bprm->cred */
1830 	retval = security_bprm_creds_for_exec(bprm);
1831 	if (retval)
1832 		goto out;
1833 
1834 	retval = exec_binprm(bprm);
1835 	if (retval < 0)
1836 		goto out;
1837 
1838 	/* execve succeeded */
1839 	current->fs->in_exec = 0;
1840 	current->in_execve = 0;
1841 	rseq_execve(current);
1842 	acct_update_integrals(current);
1843 	task_numa_free(current, false);
1844 	if (displaced)
1845 		put_files_struct(displaced);
1846 	return retval;
1847 
1848 out:
1849 	/*
1850 	 * If past the point of no return ensure the the code never
1851 	 * returns to the userspace process.  Use an existing fatal
1852 	 * signal if present otherwise terminate the process with
1853 	 * SIGSEGV.
1854 	 */
1855 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1856 		force_sigsegv(SIGSEGV);
1857 
1858 out_unmark:
1859 	current->fs->in_exec = 0;
1860 	current->in_execve = 0;
1861 
1862 out_files:
1863 	if (displaced)
1864 		reset_files_struct(displaced);
1865 
1866 	return retval;
1867 }
1868 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1869 static int do_execveat_common(int fd, struct filename *filename,
1870 			      struct user_arg_ptr argv,
1871 			      struct user_arg_ptr envp,
1872 			      int flags)
1873 {
1874 	struct linux_binprm *bprm;
1875 	int retval;
1876 
1877 	if (IS_ERR(filename))
1878 		return PTR_ERR(filename);
1879 
1880 	/*
1881 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1882 	 * set*uid() to execve() because too many poorly written programs
1883 	 * don't check setuid() return code.  Here we additionally recheck
1884 	 * whether NPROC limit is still exceeded.
1885 	 */
1886 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1887 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1888 		retval = -EAGAIN;
1889 		goto out_ret;
1890 	}
1891 
1892 	/* We're below the limit (still or again), so we don't want to make
1893 	 * further execve() calls fail. */
1894 	current->flags &= ~PF_NPROC_EXCEEDED;
1895 
1896 	bprm = alloc_bprm(fd, filename);
1897 	if (IS_ERR(bprm)) {
1898 		retval = PTR_ERR(bprm);
1899 		goto out_ret;
1900 	}
1901 
1902 	retval = count(argv, MAX_ARG_STRINGS);
1903 	if (retval == 0)
1904 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1905 			     current->comm, bprm->filename);
1906 	if (retval < 0)
1907 		goto out_free;
1908 	bprm->argc = retval;
1909 
1910 	retval = count(envp, MAX_ARG_STRINGS);
1911 	if (retval < 0)
1912 		goto out_free;
1913 	bprm->envc = retval;
1914 
1915 	retval = bprm_stack_limits(bprm);
1916 	if (retval < 0)
1917 		goto out_free;
1918 
1919 	retval = copy_string_kernel(bprm->filename, bprm);
1920 	if (retval < 0)
1921 		goto out_free;
1922 	bprm->exec = bprm->p;
1923 
1924 	retval = copy_strings(bprm->envc, envp, bprm);
1925 	if (retval < 0)
1926 		goto out_free;
1927 
1928 	retval = copy_strings(bprm->argc, argv, bprm);
1929 	if (retval < 0)
1930 		goto out_free;
1931 
1932 	/*
1933 	 * When argv is empty, add an empty string ("") as argv[0] to
1934 	 * ensure confused userspace programs that start processing
1935 	 * from argv[1] won't end up walking envp. See also
1936 	 * bprm_stack_limits().
1937 	 */
1938 	if (bprm->argc == 0) {
1939 		retval = copy_string_kernel("", bprm);
1940 		if (retval < 0)
1941 			goto out_free;
1942 		bprm->argc = 1;
1943 	}
1944 
1945 	retval = bprm_execve(bprm, fd, filename, flags);
1946 out_free:
1947 	free_bprm(bprm);
1948 
1949 out_ret:
1950 	putname(filename);
1951 	return retval;
1952 }
1953 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1954 int kernel_execve(const char *kernel_filename,
1955 		  const char *const *argv, const char *const *envp)
1956 {
1957 	struct filename *filename;
1958 	struct linux_binprm *bprm;
1959 	int fd = AT_FDCWD;
1960 	int retval;
1961 
1962 	filename = getname_kernel(kernel_filename);
1963 	if (IS_ERR(filename))
1964 		return PTR_ERR(filename);
1965 
1966 	bprm = alloc_bprm(fd, filename);
1967 	if (IS_ERR(bprm)) {
1968 		retval = PTR_ERR(bprm);
1969 		goto out_ret;
1970 	}
1971 
1972 	retval = count_strings_kernel(argv);
1973 	if (WARN_ON_ONCE(retval == 0))
1974 		retval = -EINVAL;
1975 	if (retval < 0)
1976 		goto out_free;
1977 	bprm->argc = retval;
1978 
1979 	retval = count_strings_kernel(envp);
1980 	if (retval < 0)
1981 		goto out_free;
1982 	bprm->envc = retval;
1983 
1984 	retval = bprm_stack_limits(bprm);
1985 	if (retval < 0)
1986 		goto out_free;
1987 
1988 	retval = copy_string_kernel(bprm->filename, bprm);
1989 	if (retval < 0)
1990 		goto out_free;
1991 	bprm->exec = bprm->p;
1992 
1993 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1994 	if (retval < 0)
1995 		goto out_free;
1996 
1997 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1998 	if (retval < 0)
1999 		goto out_free;
2000 
2001 	retval = bprm_execve(bprm, fd, filename, 0);
2002 out_free:
2003 	free_bprm(bprm);
2004 out_ret:
2005 	putname(filename);
2006 	return retval;
2007 }
2008 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2009 static int do_execve(struct filename *filename,
2010 	const char __user *const __user *__argv,
2011 	const char __user *const __user *__envp)
2012 {
2013 	struct user_arg_ptr argv = { .ptr.native = __argv };
2014 	struct user_arg_ptr envp = { .ptr.native = __envp };
2015 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2016 }
2017 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2018 static int do_execveat(int fd, struct filename *filename,
2019 		const char __user *const __user *__argv,
2020 		const char __user *const __user *__envp,
2021 		int flags)
2022 {
2023 	struct user_arg_ptr argv = { .ptr.native = __argv };
2024 	struct user_arg_ptr envp = { .ptr.native = __envp };
2025 
2026 	return do_execveat_common(fd, filename, argv, envp, flags);
2027 }
2028 
2029 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2030 static int compat_do_execve(struct filename *filename,
2031 	const compat_uptr_t __user *__argv,
2032 	const compat_uptr_t __user *__envp)
2033 {
2034 	struct user_arg_ptr argv = {
2035 		.is_compat = true,
2036 		.ptr.compat = __argv,
2037 	};
2038 	struct user_arg_ptr envp = {
2039 		.is_compat = true,
2040 		.ptr.compat = __envp,
2041 	};
2042 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2043 }
2044 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2045 static int compat_do_execveat(int fd, struct filename *filename,
2046 			      const compat_uptr_t __user *__argv,
2047 			      const compat_uptr_t __user *__envp,
2048 			      int flags)
2049 {
2050 	struct user_arg_ptr argv = {
2051 		.is_compat = true,
2052 		.ptr.compat = __argv,
2053 	};
2054 	struct user_arg_ptr envp = {
2055 		.is_compat = true,
2056 		.ptr.compat = __envp,
2057 	};
2058 	return do_execveat_common(fd, filename, argv, envp, flags);
2059 }
2060 #endif
2061 
set_binfmt(struct linux_binfmt * new)2062 void set_binfmt(struct linux_binfmt *new)
2063 {
2064 	struct mm_struct *mm = current->mm;
2065 
2066 	if (mm->binfmt)
2067 		module_put(mm->binfmt->module);
2068 
2069 	mm->binfmt = new;
2070 	if (new)
2071 		__module_get(new->module);
2072 }
2073 EXPORT_SYMBOL(set_binfmt);
2074 
2075 /*
2076  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2077  */
set_dumpable(struct mm_struct * mm,int value)2078 void set_dumpable(struct mm_struct *mm, int value)
2079 {
2080 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2081 		return;
2082 
2083 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2084 }
2085 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2086 SYSCALL_DEFINE3(execve,
2087 		const char __user *, filename,
2088 		const char __user *const __user *, argv,
2089 		const char __user *const __user *, envp)
2090 {
2091 	return do_execve(getname(filename), argv, envp);
2092 }
2093 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2094 SYSCALL_DEFINE5(execveat,
2095 		int, fd, const char __user *, filename,
2096 		const char __user *const __user *, argv,
2097 		const char __user *const __user *, envp,
2098 		int, flags)
2099 {
2100 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2101 
2102 	return do_execveat(fd,
2103 			   getname_flags(filename, lookup_flags, NULL),
2104 			   argv, envp, flags);
2105 }
2106 
2107 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2108 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2109 	const compat_uptr_t __user *, argv,
2110 	const compat_uptr_t __user *, envp)
2111 {
2112 	return compat_do_execve(getname(filename), argv, envp);
2113 }
2114 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2115 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2116 		       const char __user *, filename,
2117 		       const compat_uptr_t __user *, argv,
2118 		       const compat_uptr_t __user *, envp,
2119 		       int,  flags)
2120 {
2121 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2122 
2123 	return compat_do_execveat(fd,
2124 				  getname_flags(filename, lookup_flags, NULL),
2125 				  argv, envp, flags);
2126 }
2127 #endif
2128