1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29 #include <linux/android_kabi.h>
30 #include <linux/android_vendor.h>
31
32 struct module;
33 struct scsi_ioctl_command;
34
35 struct request_queue;
36 struct elevator_queue;
37 struct blk_trace;
38 struct request;
39 struct sg_io_hdr;
40 struct bsg_job;
41 struct blkcg_gq;
42 struct blk_flush_queue;
43 struct pr_ops;
44 struct rq_qos;
45 struct blk_queue_stats;
46 struct blk_stat_callback;
47 struct blk_keyslot_manager;
48
49 #define BLKDEV_MIN_RQ 4
50 #define BLKDEV_MAX_RQ 128 /* Default maximum */
51
52 /* Must be consistent with blk_mq_poll_stats_bkt() */
53 #define BLK_MQ_POLL_STATS_BKTS 16
54
55 /* Doing classic polling */
56 #define BLK_MQ_POLL_CLASSIC -1
57
58 /*
59 * Maximum number of blkcg policies allowed to be registered concurrently.
60 * Defined here to simplify include dependency.
61 */
62 #define BLKCG_MAX_POLS 5
63
blk_validate_block_size(unsigned int bsize)64 static inline int blk_validate_block_size(unsigned int bsize)
65 {
66 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
67 return -EINVAL;
68
69 return 0;
70 }
71
72 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
73
74 /*
75 * request flags */
76 typedef __u32 __bitwise req_flags_t;
77
78 /* elevator knows about this request */
79 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
80 /* drive already may have started this one */
81 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
82 /* may not be passed by ioscheduler */
83 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
84 /* request for flush sequence */
85 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
86 /* merge of different types, fail separately */
87 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
88 /* track inflight for MQ */
89 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
90 /* don't call prep for this one */
91 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
92 /* vaguely specified driver internal error. Ignored by the block layer */
93 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
94 /* don't warn about errors */
95 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
96 /* elevator private data attached */
97 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
98 /* account into disk and partition IO statistics */
99 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
100 /* request came from our alloc pool */
101 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
102 /* runtime pm request */
103 #define RQF_PM ((__force req_flags_t)(1 << 15))
104 /* on IO scheduler merge hash */
105 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
106 /* track IO completion time */
107 #define RQF_STATS ((__force req_flags_t)(1 << 17))
108 /* Look at ->special_vec for the actual data payload instead of the
109 bio chain. */
110 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
111 /* The per-zone write lock is held for this request */
112 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
113 /* already slept for hybrid poll */
114 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
115 /* ->timeout has been called, don't expire again */
116 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
117
118 /* flags that prevent us from merging requests: */
119 #define RQF_NOMERGE_FLAGS \
120 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
121
122 /*
123 * Request state for blk-mq.
124 */
125 enum mq_rq_state {
126 MQ_RQ_IDLE = 0,
127 MQ_RQ_IN_FLIGHT = 1,
128 MQ_RQ_COMPLETE = 2,
129 };
130
131 /*
132 * Try to put the fields that are referenced together in the same cacheline.
133 *
134 * If you modify this structure, make sure to update blk_rq_init() and
135 * especially blk_mq_rq_ctx_init() to take care of the added fields.
136 */
137 struct request {
138 struct request_queue *q;
139 struct blk_mq_ctx *mq_ctx;
140 struct blk_mq_hw_ctx *mq_hctx;
141
142 unsigned int cmd_flags; /* op and common flags */
143 req_flags_t rq_flags;
144
145 int tag;
146 int internal_tag;
147
148 /* the following two fields are internal, NEVER access directly */
149 unsigned int __data_len; /* total data len */
150 sector_t __sector; /* sector cursor */
151
152 struct bio *bio;
153 struct bio *biotail;
154
155 struct list_head queuelist;
156
157 /*
158 * The hash is used inside the scheduler, and killed once the
159 * request reaches the dispatch list. The ipi_list is only used
160 * to queue the request for softirq completion, which is long
161 * after the request has been unhashed (and even removed from
162 * the dispatch list).
163 */
164 union {
165 struct hlist_node hash; /* merge hash */
166 struct list_head ipi_list;
167 };
168
169 /*
170 * The rb_node is only used inside the io scheduler, requests
171 * are pruned when moved to the dispatch queue. So let the
172 * completion_data share space with the rb_node.
173 */
174 union {
175 struct rb_node rb_node; /* sort/lookup */
176 struct bio_vec special_vec;
177 void *completion_data;
178 int error_count; /* for legacy drivers, don't use */
179 };
180
181 /*
182 * Three pointers are available for the IO schedulers, if they need
183 * more they have to dynamically allocate it. Flush requests are
184 * never put on the IO scheduler. So let the flush fields share
185 * space with the elevator data.
186 */
187 union {
188 struct {
189 struct io_cq *icq;
190 void *priv[2];
191 } elv;
192
193 struct {
194 unsigned int seq;
195 struct list_head list;
196 rq_end_io_fn *saved_end_io;
197 } flush;
198 };
199
200 struct gendisk *rq_disk;
201 struct hd_struct *part;
202 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
203 /* Time that the first bio started allocating this request. */
204 u64 alloc_time_ns;
205 #endif
206 /* Time that this request was allocated for this IO. */
207 u64 start_time_ns;
208 /* Time that I/O was submitted to the device. */
209 u64 io_start_time_ns;
210
211 #ifdef CONFIG_BLK_WBT
212 unsigned short wbt_flags;
213 #endif
214 /*
215 * rq sectors used for blk stats. It has the same value
216 * with blk_rq_sectors(rq), except that it never be zeroed
217 * by completion.
218 */
219 unsigned short stats_sectors;
220
221 /*
222 * Number of scatter-gather DMA addr+len pairs after
223 * physical address coalescing is performed.
224 */
225 unsigned short nr_phys_segments;
226
227 #if defined(CONFIG_BLK_DEV_INTEGRITY)
228 unsigned short nr_integrity_segments;
229 #endif
230
231 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
232 struct bio_crypt_ctx *crypt_ctx;
233 struct blk_ksm_keyslot *crypt_keyslot;
234 #endif
235
236 unsigned short write_hint;
237 unsigned short ioprio;
238
239 enum mq_rq_state state;
240 refcount_t ref;
241
242 unsigned int timeout;
243 unsigned long deadline;
244
245 union {
246 struct __call_single_data csd;
247 u64 fifo_time;
248 };
249
250 /*
251 * completion callback.
252 */
253 rq_end_io_fn *end_io;
254 void *end_io_data;
255
256 ANDROID_KABI_RESERVE(1);
257 };
258
blk_op_is_scsi(unsigned int op)259 static inline bool blk_op_is_scsi(unsigned int op)
260 {
261 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
262 }
263
blk_op_is_private(unsigned int op)264 static inline bool blk_op_is_private(unsigned int op)
265 {
266 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
267 }
268
blk_rq_is_scsi(struct request * rq)269 static inline bool blk_rq_is_scsi(struct request *rq)
270 {
271 return blk_op_is_scsi(req_op(rq));
272 }
273
blk_rq_is_private(struct request * rq)274 static inline bool blk_rq_is_private(struct request *rq)
275 {
276 return blk_op_is_private(req_op(rq));
277 }
278
blk_rq_is_passthrough(struct request * rq)279 static inline bool blk_rq_is_passthrough(struct request *rq)
280 {
281 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
282 }
283
bio_is_passthrough(struct bio * bio)284 static inline bool bio_is_passthrough(struct bio *bio)
285 {
286 unsigned op = bio_op(bio);
287
288 return blk_op_is_scsi(op) || blk_op_is_private(op);
289 }
290
req_get_ioprio(struct request * req)291 static inline unsigned short req_get_ioprio(struct request *req)
292 {
293 return req->ioprio;
294 }
295
296 #include <linux/elevator.h>
297
298 struct blk_queue_ctx;
299
300 struct bio_vec;
301
302 enum blk_eh_timer_return {
303 BLK_EH_DONE, /* drivers has completed the command */
304 BLK_EH_RESET_TIMER, /* reset timer and try again */
305 };
306
307 enum blk_queue_state {
308 Queue_down,
309 Queue_up,
310 };
311
312 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
313 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
314
315 #define BLK_SCSI_MAX_CMDS (256)
316 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
317
318 /*
319 * Zoned block device models (zoned limit).
320 *
321 * Note: This needs to be ordered from the least to the most severe
322 * restrictions for the inheritance in blk_stack_limits() to work.
323 */
324 enum blk_zoned_model {
325 BLK_ZONED_NONE = 0, /* Regular block device */
326 BLK_ZONED_HA, /* Host-aware zoned block device */
327 BLK_ZONED_HM, /* Host-managed zoned block device */
328 };
329
330 struct queue_limits {
331 unsigned long bounce_pfn;
332 unsigned long seg_boundary_mask;
333 unsigned long virt_boundary_mask;
334
335 unsigned int max_hw_sectors;
336 unsigned int max_dev_sectors;
337 unsigned int chunk_sectors;
338 unsigned int max_sectors;
339 unsigned int max_segment_size;
340 unsigned int physical_block_size;
341 unsigned int logical_block_size;
342 unsigned int alignment_offset;
343 unsigned int io_min;
344 unsigned int io_opt;
345 unsigned int max_discard_sectors;
346 unsigned int max_hw_discard_sectors;
347 unsigned int max_write_same_sectors;
348 unsigned int max_write_zeroes_sectors;
349 unsigned int max_zone_append_sectors;
350 unsigned int discard_granularity;
351 unsigned int discard_alignment;
352
353 unsigned short max_segments;
354 unsigned short max_integrity_segments;
355 unsigned short max_discard_segments;
356
357 unsigned char misaligned;
358 unsigned char discard_misaligned;
359 unsigned char raid_partial_stripes_expensive;
360 enum blk_zoned_model zoned;
361
362 ANDROID_KABI_RESERVE(1);
363 };
364
365 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
366 void *data);
367
368 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
369
370 #ifdef CONFIG_BLK_DEV_ZONED
371
372 #define BLK_ALL_ZONES ((unsigned int)-1)
373 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
374 unsigned int nr_zones, report_zones_cb cb, void *data);
375 unsigned int blkdev_nr_zones(struct gendisk *disk);
376 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
377 sector_t sectors, sector_t nr_sectors,
378 gfp_t gfp_mask);
379 int blk_revalidate_disk_zones(struct gendisk *disk,
380 void (*update_driver_data)(struct gendisk *disk));
381
382 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
383 unsigned int cmd, unsigned long arg);
384 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
385 unsigned int cmd, unsigned long arg);
386
387 #else /* CONFIG_BLK_DEV_ZONED */
388
blkdev_nr_zones(struct gendisk * disk)389 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
390 {
391 return 0;
392 }
393
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)394 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
395 fmode_t mode, unsigned int cmd,
396 unsigned long arg)
397 {
398 return -ENOTTY;
399 }
400
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)401 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
402 fmode_t mode, unsigned int cmd,
403 unsigned long arg)
404 {
405 return -ENOTTY;
406 }
407
408 #endif /* CONFIG_BLK_DEV_ZONED */
409
410 struct request_queue {
411 struct request *last_merge;
412 struct elevator_queue *elevator;
413
414 struct percpu_ref q_usage_counter;
415
416 struct blk_queue_stats *stats;
417 struct rq_qos *rq_qos;
418
419 const struct blk_mq_ops *mq_ops;
420
421 /* sw queues */
422 struct blk_mq_ctx __percpu *queue_ctx;
423
424 unsigned int queue_depth;
425
426 /* hw dispatch queues */
427 struct blk_mq_hw_ctx **queue_hw_ctx;
428 unsigned int nr_hw_queues;
429
430 struct backing_dev_info *backing_dev_info;
431
432 /*
433 * The queue owner gets to use this for whatever they like.
434 * ll_rw_blk doesn't touch it.
435 */
436 void *queuedata;
437
438 /*
439 * various queue flags, see QUEUE_* below
440 */
441 unsigned long queue_flags;
442 /*
443 * Number of contexts that have called blk_set_pm_only(). If this
444 * counter is above zero then only RQF_PM requests are processed.
445 */
446 atomic_t pm_only;
447
448 /*
449 * ida allocated id for this queue. Used to index queues from
450 * ioctx.
451 */
452 int id;
453
454 /*
455 * queue needs bounce pages for pages above this limit
456 */
457 gfp_t bounce_gfp;
458
459 spinlock_t queue_lock;
460
461 /*
462 * queue kobject
463 */
464 struct kobject kobj;
465
466 /*
467 * mq queue kobject
468 */
469 struct kobject *mq_kobj;
470
471 #ifdef CONFIG_BLK_DEV_INTEGRITY
472 struct blk_integrity integrity;
473 #endif /* CONFIG_BLK_DEV_INTEGRITY */
474
475 #ifdef CONFIG_PM
476 struct device *dev;
477 enum rpm_status rpm_status;
478 unsigned int nr_pending;
479 #endif
480
481 /*
482 * queue settings
483 */
484 unsigned long nr_requests; /* Max # of requests */
485
486 unsigned int dma_pad_mask;
487 unsigned int dma_alignment;
488
489 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
490 /* Inline crypto capabilities */
491 struct blk_keyslot_manager *ksm;
492 #endif
493
494 unsigned int rq_timeout;
495 int poll_nsec;
496
497 struct blk_stat_callback *poll_cb;
498 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
499
500 struct timer_list timeout;
501 struct work_struct timeout_work;
502
503 atomic_t nr_active_requests_shared_sbitmap;
504
505 struct list_head icq_list;
506 #ifdef CONFIG_BLK_CGROUP
507 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
508 struct blkcg_gq *root_blkg;
509 struct list_head blkg_list;
510 #endif
511
512 struct queue_limits limits;
513
514 unsigned int required_elevator_features;
515
516 #ifdef CONFIG_BLK_DEV_ZONED
517 /*
518 * Zoned block device information for request dispatch control.
519 * nr_zones is the total number of zones of the device. This is always
520 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
521 * bits which indicates if a zone is conventional (bit set) or
522 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
523 * bits which indicates if a zone is write locked, that is, if a write
524 * request targeting the zone was dispatched. All three fields are
525 * initialized by the low level device driver (e.g. scsi/sd.c).
526 * Stacking drivers (device mappers) may or may not initialize
527 * these fields.
528 *
529 * Reads of this information must be protected with blk_queue_enter() /
530 * blk_queue_exit(). Modifying this information is only allowed while
531 * no requests are being processed. See also blk_mq_freeze_queue() and
532 * blk_mq_unfreeze_queue().
533 */
534 unsigned int nr_zones;
535 unsigned long *conv_zones_bitmap;
536 unsigned long *seq_zones_wlock;
537 unsigned int max_open_zones;
538 unsigned int max_active_zones;
539 #endif /* CONFIG_BLK_DEV_ZONED */
540
541 /*
542 * sg stuff
543 */
544 unsigned int sg_timeout;
545 unsigned int sg_reserved_size;
546 int node;
547 struct mutex debugfs_mutex;
548 #ifdef CONFIG_BLK_DEV_IO_TRACE
549 struct blk_trace __rcu *blk_trace;
550 #endif
551 /*
552 * for flush operations
553 */
554 struct blk_flush_queue *fq;
555
556 struct list_head requeue_list;
557 spinlock_t requeue_lock;
558 struct delayed_work requeue_work;
559
560 struct mutex sysfs_lock;
561 struct mutex sysfs_dir_lock;
562
563 /*
564 * for reusing dead hctx instance in case of updating
565 * nr_hw_queues
566 */
567 struct list_head unused_hctx_list;
568 spinlock_t unused_hctx_lock;
569
570 int mq_freeze_depth;
571
572 #if defined(CONFIG_BLK_DEV_BSG)
573 struct bsg_class_device bsg_dev;
574 #endif
575
576 #ifdef CONFIG_BLK_DEV_THROTTLING
577 /* Throttle data */
578 struct throtl_data *td;
579 #endif
580 struct rcu_head rcu_head;
581 wait_queue_head_t mq_freeze_wq;
582 /*
583 * Protect concurrent access to q_usage_counter by
584 * percpu_ref_kill() and percpu_ref_reinit().
585 */
586 struct mutex mq_freeze_lock;
587
588 struct blk_mq_tag_set *tag_set;
589 struct list_head tag_set_list;
590 struct bio_set bio_split;
591
592 struct dentry *debugfs_dir;
593
594 #ifdef CONFIG_BLK_DEBUG_FS
595 struct dentry *sched_debugfs_dir;
596 struct dentry *rqos_debugfs_dir;
597 #endif
598
599 bool mq_sysfs_init_done;
600
601 size_t cmd_size;
602
603 #define BLK_MAX_WRITE_HINTS 5
604 u64 write_hints[BLK_MAX_WRITE_HINTS];
605
606 ANDROID_KABI_RESERVE(1);
607 ANDROID_KABI_RESERVE(2);
608 ANDROID_KABI_RESERVE(3);
609 ANDROID_KABI_RESERVE(4);
610 ANDROID_OEM_DATA(1);
611 };
612
613 /* Keep blk_queue_flag_name[] in sync with the definitions below */
614 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
615 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
616 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
617 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
618 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
619 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
620 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
621 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
622 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
623 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
624 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
625 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
626 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
627 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
628 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
629 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
630 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
631 #define QUEUE_FLAG_WC 17 /* Write back caching */
632 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
633 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
634 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
635 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
636 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
637 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
638 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
639 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
640 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
641 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
642 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
643 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
644
645 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
646 (1 << QUEUE_FLAG_SAME_COMP) | \
647 (1 << QUEUE_FLAG_NOWAIT))
648
649 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
650 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
651 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
652
653 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
654 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
655 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
656 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
657 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
658 #define blk_queue_noxmerges(q) \
659 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
660 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
661 #define blk_queue_stable_writes(q) \
662 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
663 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
664 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
665 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
666 #define blk_queue_zone_resetall(q) \
667 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
668 #define blk_queue_secure_erase(q) \
669 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
670 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
671 #define blk_queue_scsi_passthrough(q) \
672 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
673 #define blk_queue_pci_p2pdma(q) \
674 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
675 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
676 #define blk_queue_rq_alloc_time(q) \
677 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
678 #else
679 #define blk_queue_rq_alloc_time(q) false
680 #endif
681
682 #define blk_noretry_request(rq) \
683 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
684 REQ_FAILFAST_DRIVER))
685 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
686 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
687 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
688 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
689 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
690
691 extern void blk_set_pm_only(struct request_queue *q);
692 extern void blk_clear_pm_only(struct request_queue *q);
693
blk_account_rq(struct request * rq)694 static inline bool blk_account_rq(struct request *rq)
695 {
696 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
697 }
698
699 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
700
701 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
702
703 #define rq_dma_dir(rq) \
704 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
705
706 #define dma_map_bvec(dev, bv, dir, attrs) \
707 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
708 (dir), (attrs))
709
queue_is_mq(struct request_queue * q)710 static inline bool queue_is_mq(struct request_queue *q)
711 {
712 return q->mq_ops;
713 }
714
715 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)716 blk_queue_zoned_model(struct request_queue *q)
717 {
718 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
719 return q->limits.zoned;
720 return BLK_ZONED_NONE;
721 }
722
blk_queue_is_zoned(struct request_queue * q)723 static inline bool blk_queue_is_zoned(struct request_queue *q)
724 {
725 switch (blk_queue_zoned_model(q)) {
726 case BLK_ZONED_HA:
727 case BLK_ZONED_HM:
728 return true;
729 default:
730 return false;
731 }
732 }
733
blk_queue_zone_sectors(struct request_queue * q)734 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
735 {
736 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
737 }
738
739 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)740 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
741 {
742 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
743 }
744
blk_queue_zone_no(struct request_queue * q,sector_t sector)745 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
746 sector_t sector)
747 {
748 if (!blk_queue_is_zoned(q))
749 return 0;
750 return sector >> ilog2(q->limits.chunk_sectors);
751 }
752
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)753 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
754 sector_t sector)
755 {
756 if (!blk_queue_is_zoned(q))
757 return false;
758 if (!q->conv_zones_bitmap)
759 return true;
760 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
761 }
762
blk_queue_max_open_zones(struct request_queue * q,unsigned int max_open_zones)763 static inline void blk_queue_max_open_zones(struct request_queue *q,
764 unsigned int max_open_zones)
765 {
766 q->max_open_zones = max_open_zones;
767 }
768
queue_max_open_zones(const struct request_queue * q)769 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
770 {
771 return q->max_open_zones;
772 }
773
blk_queue_max_active_zones(struct request_queue * q,unsigned int max_active_zones)774 static inline void blk_queue_max_active_zones(struct request_queue *q,
775 unsigned int max_active_zones)
776 {
777 q->max_active_zones = max_active_zones;
778 }
779
queue_max_active_zones(const struct request_queue * q)780 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
781 {
782 return q->max_active_zones;
783 }
784 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)785 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
786 {
787 return 0;
788 }
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)789 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
790 sector_t sector)
791 {
792 return false;
793 }
blk_queue_zone_no(struct request_queue * q,sector_t sector)794 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
795 sector_t sector)
796 {
797 return 0;
798 }
queue_max_open_zones(const struct request_queue * q)799 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
800 {
801 return 0;
802 }
queue_max_active_zones(const struct request_queue * q)803 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
804 {
805 return 0;
806 }
807 #endif /* CONFIG_BLK_DEV_ZONED */
808
rq_is_sync(struct request * rq)809 static inline bool rq_is_sync(struct request *rq)
810 {
811 return op_is_sync(rq->cmd_flags);
812 }
813
rq_mergeable(struct request * rq)814 static inline bool rq_mergeable(struct request *rq)
815 {
816 if (blk_rq_is_passthrough(rq))
817 return false;
818
819 if (req_op(rq) == REQ_OP_FLUSH)
820 return false;
821
822 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
823 return false;
824
825 if (req_op(rq) == REQ_OP_ZONE_APPEND)
826 return false;
827
828 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
829 return false;
830 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
831 return false;
832
833 return true;
834 }
835
blk_write_same_mergeable(struct bio * a,struct bio * b)836 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
837 {
838 if (bio_page(a) == bio_page(b) &&
839 bio_offset(a) == bio_offset(b))
840 return true;
841
842 return false;
843 }
844
blk_queue_depth(struct request_queue * q)845 static inline unsigned int blk_queue_depth(struct request_queue *q)
846 {
847 if (q->queue_depth)
848 return q->queue_depth;
849
850 return q->nr_requests;
851 }
852
853 extern unsigned long blk_max_low_pfn, blk_max_pfn;
854
855 /*
856 * standard bounce addresses:
857 *
858 * BLK_BOUNCE_HIGH : bounce all highmem pages
859 * BLK_BOUNCE_ANY : don't bounce anything
860 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
861 */
862
863 #if BITS_PER_LONG == 32
864 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
865 #else
866 #define BLK_BOUNCE_HIGH -1ULL
867 #endif
868 #define BLK_BOUNCE_ANY (-1ULL)
869 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
870
871 /*
872 * default timeout for SG_IO if none specified
873 */
874 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
875 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
876
877 struct rq_map_data {
878 struct page **pages;
879 int page_order;
880 int nr_entries;
881 unsigned long offset;
882 int null_mapped;
883 int from_user;
884 };
885
886 struct req_iterator {
887 struct bvec_iter iter;
888 struct bio *bio;
889 };
890
891 /* This should not be used directly - use rq_for_each_segment */
892 #define for_each_bio(_bio) \
893 for (; _bio; _bio = _bio->bi_next)
894 #define __rq_for_each_bio(_bio, rq) \
895 if ((rq->bio)) \
896 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
897
898 #define rq_for_each_segment(bvl, _rq, _iter) \
899 __rq_for_each_bio(_iter.bio, _rq) \
900 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
901
902 #define rq_for_each_bvec(bvl, _rq, _iter) \
903 __rq_for_each_bio(_iter.bio, _rq) \
904 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
905
906 #define rq_iter_last(bvec, _iter) \
907 (_iter.bio->bi_next == NULL && \
908 bio_iter_last(bvec, _iter.iter))
909
910 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
911 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
912 #endif
913 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
914 extern void rq_flush_dcache_pages(struct request *rq);
915 #else
rq_flush_dcache_pages(struct request * rq)916 static inline void rq_flush_dcache_pages(struct request *rq)
917 {
918 }
919 #endif
920
921 extern int blk_register_queue(struct gendisk *disk);
922 extern void blk_unregister_queue(struct gendisk *disk);
923 blk_qc_t submit_bio_noacct(struct bio *bio);
924 extern void blk_rq_init(struct request_queue *q, struct request *rq);
925 extern void blk_put_request(struct request *);
926 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
927 blk_mq_req_flags_t flags);
928 extern int blk_lld_busy(struct request_queue *q);
929 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
930 struct bio_set *bs, gfp_t gfp_mask,
931 int (*bio_ctr)(struct bio *, struct bio *, void *),
932 void *data);
933 extern void blk_rq_unprep_clone(struct request *rq);
934 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
935 struct request *rq);
936 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
937 extern void blk_queue_split(struct bio **);
938 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
939 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
940 unsigned int, void __user *);
941 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
942 unsigned int, void __user *);
943 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
944 struct scsi_ioctl_command __user *);
945 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
946 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
947
948 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
949 extern void blk_queue_exit(struct request_queue *q);
950 extern void blk_sync_queue(struct request_queue *q);
951 extern int blk_rq_map_user(struct request_queue *, struct request *,
952 struct rq_map_data *, void __user *, unsigned long,
953 gfp_t);
954 extern int blk_rq_unmap_user(struct bio *);
955 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
956 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
957 struct rq_map_data *, const struct iov_iter *,
958 gfp_t);
959 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
960 struct request *, int);
961 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
962 struct request *, int, rq_end_io_fn *);
963
964 /* Helper to convert REQ_OP_XXX to its string format XXX */
965 extern const char *blk_op_str(unsigned int op);
966
967 int blk_status_to_errno(blk_status_t status);
968 blk_status_t errno_to_blk_status(int errno);
969
970 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
971
bdev_get_queue(struct block_device * bdev)972 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
973 {
974 return bdev->bd_disk->queue; /* this is never NULL */
975 }
976
977 /*
978 * The basic unit of block I/O is a sector. It is used in a number of contexts
979 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
980 * bytes. Variables of type sector_t represent an offset or size that is a
981 * multiple of 512 bytes. Hence these two constants.
982 */
983 #ifndef SECTOR_SHIFT
984 #define SECTOR_SHIFT 9
985 #endif
986 #ifndef SECTOR_SIZE
987 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
988 #endif
989
990 /*
991 * blk_rq_pos() : the current sector
992 * blk_rq_bytes() : bytes left in the entire request
993 * blk_rq_cur_bytes() : bytes left in the current segment
994 * blk_rq_err_bytes() : bytes left till the next error boundary
995 * blk_rq_sectors() : sectors left in the entire request
996 * blk_rq_cur_sectors() : sectors left in the current segment
997 * blk_rq_stats_sectors() : sectors of the entire request used for stats
998 */
blk_rq_pos(const struct request * rq)999 static inline sector_t blk_rq_pos(const struct request *rq)
1000 {
1001 return rq->__sector;
1002 }
1003
blk_rq_bytes(const struct request * rq)1004 static inline unsigned int blk_rq_bytes(const struct request *rq)
1005 {
1006 return rq->__data_len;
1007 }
1008
blk_rq_cur_bytes(const struct request * rq)1009 static inline int blk_rq_cur_bytes(const struct request *rq)
1010 {
1011 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1012 }
1013
1014 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1015
blk_rq_sectors(const struct request * rq)1016 static inline unsigned int blk_rq_sectors(const struct request *rq)
1017 {
1018 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1019 }
1020
blk_rq_cur_sectors(const struct request * rq)1021 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1022 {
1023 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1024 }
1025
blk_rq_stats_sectors(const struct request * rq)1026 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1027 {
1028 return rq->stats_sectors;
1029 }
1030
1031 #ifdef CONFIG_BLK_DEV_ZONED
1032
1033 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1034 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1035
blk_rq_zone_no(struct request * rq)1036 static inline unsigned int blk_rq_zone_no(struct request *rq)
1037 {
1038 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1039 }
1040
blk_rq_zone_is_seq(struct request * rq)1041 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1042 {
1043 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1044 }
1045 #endif /* CONFIG_BLK_DEV_ZONED */
1046
1047 /*
1048 * Some commands like WRITE SAME have a payload or data transfer size which
1049 * is different from the size of the request. Any driver that supports such
1050 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1051 * calculate the data transfer size.
1052 */
blk_rq_payload_bytes(struct request * rq)1053 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1054 {
1055 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1056 return rq->special_vec.bv_len;
1057 return blk_rq_bytes(rq);
1058 }
1059
1060 /*
1061 * Return the first full biovec in the request. The caller needs to check that
1062 * there are any bvecs before calling this helper.
1063 */
req_bvec(struct request * rq)1064 static inline struct bio_vec req_bvec(struct request *rq)
1065 {
1066 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1067 return rq->special_vec;
1068 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1069 }
1070
blk_queue_get_max_sectors(struct request_queue * q,int op)1071 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1072 int op)
1073 {
1074 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1075 return min(q->limits.max_discard_sectors,
1076 UINT_MAX >> SECTOR_SHIFT);
1077
1078 if (unlikely(op == REQ_OP_WRITE_SAME))
1079 return q->limits.max_write_same_sectors;
1080
1081 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1082 return q->limits.max_write_zeroes_sectors;
1083
1084 return q->limits.max_sectors;
1085 }
1086
1087 /*
1088 * Return maximum size of a request at given offset. Only valid for
1089 * file system requests.
1090 */
blk_max_size_offset(struct request_queue * q,sector_t offset,unsigned int chunk_sectors)1091 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1092 sector_t offset,
1093 unsigned int chunk_sectors)
1094 {
1095 if (!chunk_sectors) {
1096 if (q->limits.chunk_sectors)
1097 chunk_sectors = q->limits.chunk_sectors;
1098 else
1099 return q->limits.max_sectors;
1100 }
1101
1102 if (likely(is_power_of_2(chunk_sectors)))
1103 chunk_sectors -= offset & (chunk_sectors - 1);
1104 else
1105 chunk_sectors -= sector_div(offset, chunk_sectors);
1106
1107 return min(q->limits.max_sectors, chunk_sectors);
1108 }
1109
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1110 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1111 sector_t offset)
1112 {
1113 struct request_queue *q = rq->q;
1114
1115 if (blk_rq_is_passthrough(rq))
1116 return q->limits.max_hw_sectors;
1117
1118 if (!q->limits.chunk_sectors ||
1119 req_op(rq) == REQ_OP_DISCARD ||
1120 req_op(rq) == REQ_OP_SECURE_ERASE)
1121 return blk_queue_get_max_sectors(q, req_op(rq));
1122
1123 return min(blk_max_size_offset(q, offset, 0),
1124 blk_queue_get_max_sectors(q, req_op(rq)));
1125 }
1126
blk_rq_count_bios(struct request * rq)1127 static inline unsigned int blk_rq_count_bios(struct request *rq)
1128 {
1129 unsigned int nr_bios = 0;
1130 struct bio *bio;
1131
1132 __rq_for_each_bio(bio, rq)
1133 nr_bios++;
1134
1135 return nr_bios;
1136 }
1137
1138 void blk_steal_bios(struct bio_list *list, struct request *rq);
1139
1140 /*
1141 * Request completion related functions.
1142 *
1143 * blk_update_request() completes given number of bytes and updates
1144 * the request without completing it.
1145 */
1146 extern bool blk_update_request(struct request *rq, blk_status_t error,
1147 unsigned int nr_bytes);
1148
1149 extern void blk_abort_request(struct request *);
1150
1151 /*
1152 * Access functions for manipulating queue properties
1153 */
1154 extern void blk_cleanup_queue(struct request_queue *);
1155 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1156 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1157 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1158 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1159 extern void blk_queue_max_discard_segments(struct request_queue *,
1160 unsigned short);
1161 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1162 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1163 unsigned int max_discard_sectors);
1164 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1165 unsigned int max_write_same_sectors);
1166 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1167 unsigned int max_write_same_sectors);
1168 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1169 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1170 unsigned int max_zone_append_sectors);
1171 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1172 extern void blk_queue_alignment_offset(struct request_queue *q,
1173 unsigned int alignment);
1174 void blk_queue_update_readahead(struct request_queue *q);
1175 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1176 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1177 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1178 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1179 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1180 extern void blk_set_default_limits(struct queue_limits *lim);
1181 extern void blk_set_stacking_limits(struct queue_limits *lim);
1182 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1183 sector_t offset);
1184 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1185 sector_t offset);
1186 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1187 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1188 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1189 extern void blk_queue_dma_alignment(struct request_queue *, int);
1190 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1191 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1192 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1193 extern void blk_queue_required_elevator_features(struct request_queue *q,
1194 unsigned int features);
1195 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1196 struct device *dev);
1197
1198 /*
1199 * Number of physical segments as sent to the device.
1200 *
1201 * Normally this is the number of discontiguous data segments sent by the
1202 * submitter. But for data-less command like discard we might have no
1203 * actual data segments submitted, but the driver might have to add it's
1204 * own special payload. In that case we still return 1 here so that this
1205 * special payload will be mapped.
1206 */
blk_rq_nr_phys_segments(struct request * rq)1207 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1208 {
1209 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1210 return 1;
1211 return rq->nr_phys_segments;
1212 }
1213
1214 /*
1215 * Number of discard segments (or ranges) the driver needs to fill in.
1216 * Each discard bio merged into a request is counted as one segment.
1217 */
blk_rq_nr_discard_segments(struct request * rq)1218 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1219 {
1220 return max_t(unsigned short, rq->nr_phys_segments, 1);
1221 }
1222
1223 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1224 struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1225 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1226 struct scatterlist *sglist)
1227 {
1228 struct scatterlist *last_sg = NULL;
1229
1230 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1231 }
1232 extern void blk_dump_rq_flags(struct request *, char *);
1233
1234 bool __must_check blk_get_queue(struct request_queue *);
1235 struct request_queue *blk_alloc_queue(int node_id);
1236 extern void blk_put_queue(struct request_queue *);
1237 extern void blk_set_queue_dying(struct request_queue *);
1238
1239 #ifdef CONFIG_BLOCK
1240 /*
1241 * blk_plug permits building a queue of related requests by holding the I/O
1242 * fragments for a short period. This allows merging of sequential requests
1243 * into single larger request. As the requests are moved from a per-task list to
1244 * the device's request_queue in a batch, this results in improved scalability
1245 * as the lock contention for request_queue lock is reduced.
1246 *
1247 * It is ok not to disable preemption when adding the request to the plug list
1248 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1249 * the plug list when the task sleeps by itself. For details, please see
1250 * schedule() where blk_schedule_flush_plug() is called.
1251 */
1252 struct blk_plug {
1253 struct list_head mq_list; /* blk-mq requests */
1254 struct list_head cb_list; /* md requires an unplug callback */
1255 unsigned short rq_count;
1256 bool multiple_queues;
1257 bool nowait;
1258 };
1259
1260 struct blk_plug_cb;
1261 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1262 struct blk_plug_cb {
1263 struct list_head list;
1264 blk_plug_cb_fn callback;
1265 void *data;
1266 };
1267 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1268 void *data, int size);
1269 extern void blk_start_plug(struct blk_plug *);
1270 extern void blk_finish_plug(struct blk_plug *);
1271 extern void blk_flush_plug_list(struct blk_plug *, bool);
1272
blk_flush_plug(struct task_struct * tsk)1273 static inline void blk_flush_plug(struct task_struct *tsk)
1274 {
1275 struct blk_plug *plug = tsk->plug;
1276
1277 if (plug)
1278 blk_flush_plug_list(plug, false);
1279 }
1280
blk_schedule_flush_plug(struct task_struct * tsk)1281 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1282 {
1283 struct blk_plug *plug = tsk->plug;
1284
1285 if (plug)
1286 blk_flush_plug_list(plug, true);
1287 }
1288
blk_needs_flush_plug(struct task_struct * tsk)1289 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1290 {
1291 struct blk_plug *plug = tsk->plug;
1292
1293 return plug &&
1294 (!list_empty(&plug->mq_list) ||
1295 !list_empty(&plug->cb_list));
1296 }
1297
1298 int blkdev_issue_flush(struct block_device *, gfp_t);
1299 long nr_blockdev_pages(void);
1300 #else /* CONFIG_BLOCK */
1301 struct blk_plug {
1302 };
1303
blk_start_plug(struct blk_plug * plug)1304 static inline void blk_start_plug(struct blk_plug *plug)
1305 {
1306 }
1307
blk_finish_plug(struct blk_plug * plug)1308 static inline void blk_finish_plug(struct blk_plug *plug)
1309 {
1310 }
1311
blk_flush_plug(struct task_struct * task)1312 static inline void blk_flush_plug(struct task_struct *task)
1313 {
1314 }
1315
blk_schedule_flush_plug(struct task_struct * task)1316 static inline void blk_schedule_flush_plug(struct task_struct *task)
1317 {
1318 }
1319
1320
blk_needs_flush_plug(struct task_struct * tsk)1321 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1322 {
1323 return false;
1324 }
1325
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask)1326 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1327 {
1328 return 0;
1329 }
1330
nr_blockdev_pages(void)1331 static inline long nr_blockdev_pages(void)
1332 {
1333 return 0;
1334 }
1335 #endif /* CONFIG_BLOCK */
1336
1337 extern void blk_io_schedule(void);
1338
1339 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1340 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1341
1342 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1343
1344 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1345 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1346 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1347 sector_t nr_sects, gfp_t gfp_mask, int flags,
1348 struct bio **biop);
1349
1350 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1351 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1352
1353 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1354 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1355 unsigned flags);
1356 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1357 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1358
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1359 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1360 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1361 {
1362 return blkdev_issue_discard(sb->s_bdev,
1363 block << (sb->s_blocksize_bits -
1364 SECTOR_SHIFT),
1365 nr_blocks << (sb->s_blocksize_bits -
1366 SECTOR_SHIFT),
1367 gfp_mask, flags);
1368 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1369 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1370 sector_t nr_blocks, gfp_t gfp_mask)
1371 {
1372 return blkdev_issue_zeroout(sb->s_bdev,
1373 block << (sb->s_blocksize_bits -
1374 SECTOR_SHIFT),
1375 nr_blocks << (sb->s_blocksize_bits -
1376 SECTOR_SHIFT),
1377 gfp_mask, 0);
1378 }
1379
1380 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1381
bdev_is_partition(struct block_device * bdev)1382 static inline bool bdev_is_partition(struct block_device *bdev)
1383 {
1384 return bdev->bd_partno;
1385 }
1386
1387 enum blk_default_limits {
1388 BLK_MAX_SEGMENTS = 128,
1389 BLK_SAFE_MAX_SECTORS = 255,
1390 BLK_DEF_MAX_SECTORS = 2560,
1391 BLK_MAX_SEGMENT_SIZE = 65536,
1392 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1393 };
1394
queue_segment_boundary(const struct request_queue * q)1395 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1396 {
1397 return q->limits.seg_boundary_mask;
1398 }
1399
queue_virt_boundary(const struct request_queue * q)1400 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1401 {
1402 return q->limits.virt_boundary_mask;
1403 }
1404
queue_max_sectors(const struct request_queue * q)1405 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1406 {
1407 return q->limits.max_sectors;
1408 }
1409
queue_max_hw_sectors(const struct request_queue * q)1410 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1411 {
1412 return q->limits.max_hw_sectors;
1413 }
1414
queue_max_segments(const struct request_queue * q)1415 static inline unsigned short queue_max_segments(const struct request_queue *q)
1416 {
1417 return q->limits.max_segments;
1418 }
1419
queue_max_discard_segments(const struct request_queue * q)1420 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1421 {
1422 return q->limits.max_discard_segments;
1423 }
1424
queue_max_segment_size(const struct request_queue * q)1425 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1426 {
1427 return q->limits.max_segment_size;
1428 }
1429
queue_max_zone_append_sectors(const struct request_queue * q)1430 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1431 {
1432
1433 const struct queue_limits *l = &q->limits;
1434
1435 return min(l->max_zone_append_sectors, l->max_sectors);
1436 }
1437
queue_logical_block_size(const struct request_queue * q)1438 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1439 {
1440 int retval = 512;
1441
1442 if (q && q->limits.logical_block_size)
1443 retval = q->limits.logical_block_size;
1444
1445 return retval;
1446 }
1447
bdev_logical_block_size(struct block_device * bdev)1448 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1449 {
1450 return queue_logical_block_size(bdev_get_queue(bdev));
1451 }
1452
queue_physical_block_size(const struct request_queue * q)1453 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1454 {
1455 return q->limits.physical_block_size;
1456 }
1457
bdev_physical_block_size(struct block_device * bdev)1458 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1459 {
1460 return queue_physical_block_size(bdev_get_queue(bdev));
1461 }
1462
queue_io_min(const struct request_queue * q)1463 static inline unsigned int queue_io_min(const struct request_queue *q)
1464 {
1465 return q->limits.io_min;
1466 }
1467
bdev_io_min(struct block_device * bdev)1468 static inline int bdev_io_min(struct block_device *bdev)
1469 {
1470 return queue_io_min(bdev_get_queue(bdev));
1471 }
1472
queue_io_opt(const struct request_queue * q)1473 static inline unsigned int queue_io_opt(const struct request_queue *q)
1474 {
1475 return q->limits.io_opt;
1476 }
1477
bdev_io_opt(struct block_device * bdev)1478 static inline int bdev_io_opt(struct block_device *bdev)
1479 {
1480 return queue_io_opt(bdev_get_queue(bdev));
1481 }
1482
queue_alignment_offset(const struct request_queue * q)1483 static inline int queue_alignment_offset(const struct request_queue *q)
1484 {
1485 if (q->limits.misaligned)
1486 return -1;
1487
1488 return q->limits.alignment_offset;
1489 }
1490
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1491 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1492 {
1493 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1494 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1495 << SECTOR_SHIFT;
1496
1497 return (granularity + lim->alignment_offset - alignment) % granularity;
1498 }
1499
bdev_alignment_offset(struct block_device * bdev)1500 static inline int bdev_alignment_offset(struct block_device *bdev)
1501 {
1502 struct request_queue *q = bdev_get_queue(bdev);
1503
1504 if (q->limits.misaligned)
1505 return -1;
1506 if (bdev_is_partition(bdev))
1507 return queue_limit_alignment_offset(&q->limits,
1508 bdev->bd_part->start_sect);
1509 return q->limits.alignment_offset;
1510 }
1511
queue_discard_alignment(const struct request_queue * q)1512 static inline int queue_discard_alignment(const struct request_queue *q)
1513 {
1514 if (q->limits.discard_misaligned)
1515 return -1;
1516
1517 return q->limits.discard_alignment;
1518 }
1519
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1520 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1521 {
1522 unsigned int alignment, granularity, offset;
1523
1524 if (!lim->max_discard_sectors)
1525 return 0;
1526
1527 /* Why are these in bytes, not sectors? */
1528 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1529 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1530 if (!granularity)
1531 return 0;
1532
1533 /* Offset of the partition start in 'granularity' sectors */
1534 offset = sector_div(sector, granularity);
1535
1536 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1537 offset = (granularity + alignment - offset) % granularity;
1538
1539 /* Turn it back into bytes, gaah */
1540 return offset << SECTOR_SHIFT;
1541 }
1542
1543 /*
1544 * Two cases of handling DISCARD merge:
1545 * If max_discard_segments > 1, the driver takes every bio
1546 * as a range and send them to controller together. The ranges
1547 * needn't to be contiguous.
1548 * Otherwise, the bios/requests will be handled as same as
1549 * others which should be contiguous.
1550 */
blk_discard_mergable(struct request * req)1551 static inline bool blk_discard_mergable(struct request *req)
1552 {
1553 if (req_op(req) == REQ_OP_DISCARD &&
1554 queue_max_discard_segments(req->q) > 1)
1555 return true;
1556 return false;
1557 }
1558
bdev_discard_alignment(struct block_device * bdev)1559 static inline int bdev_discard_alignment(struct block_device *bdev)
1560 {
1561 struct request_queue *q = bdev_get_queue(bdev);
1562
1563 if (bdev_is_partition(bdev))
1564 return queue_limit_discard_alignment(&q->limits,
1565 bdev->bd_part->start_sect);
1566 return q->limits.discard_alignment;
1567 }
1568
bdev_write_same(struct block_device * bdev)1569 static inline unsigned int bdev_write_same(struct block_device *bdev)
1570 {
1571 struct request_queue *q = bdev_get_queue(bdev);
1572
1573 if (q)
1574 return q->limits.max_write_same_sectors;
1575
1576 return 0;
1577 }
1578
bdev_write_zeroes_sectors(struct block_device * bdev)1579 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1580 {
1581 struct request_queue *q = bdev_get_queue(bdev);
1582
1583 if (q)
1584 return q->limits.max_write_zeroes_sectors;
1585
1586 return 0;
1587 }
1588
bdev_zoned_model(struct block_device * bdev)1589 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1590 {
1591 struct request_queue *q = bdev_get_queue(bdev);
1592
1593 if (q)
1594 return blk_queue_zoned_model(q);
1595
1596 return BLK_ZONED_NONE;
1597 }
1598
bdev_is_zoned(struct block_device * bdev)1599 static inline bool bdev_is_zoned(struct block_device *bdev)
1600 {
1601 struct request_queue *q = bdev_get_queue(bdev);
1602
1603 if (q)
1604 return blk_queue_is_zoned(q);
1605
1606 return false;
1607 }
1608
bdev_zone_sectors(struct block_device * bdev)1609 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1610 {
1611 struct request_queue *q = bdev_get_queue(bdev);
1612
1613 if (q)
1614 return blk_queue_zone_sectors(q);
1615 return 0;
1616 }
1617
bdev_max_open_zones(struct block_device * bdev)1618 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1619 {
1620 struct request_queue *q = bdev_get_queue(bdev);
1621
1622 if (q)
1623 return queue_max_open_zones(q);
1624 return 0;
1625 }
1626
bdev_max_active_zones(struct block_device * bdev)1627 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1628 {
1629 struct request_queue *q = bdev_get_queue(bdev);
1630
1631 if (q)
1632 return queue_max_active_zones(q);
1633 return 0;
1634 }
1635
queue_dma_alignment(const struct request_queue * q)1636 static inline int queue_dma_alignment(const struct request_queue *q)
1637 {
1638 return q ? q->dma_alignment : 511;
1639 }
1640
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1641 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1642 unsigned int len)
1643 {
1644 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1645 return !(addr & alignment) && !(len & alignment);
1646 }
1647
1648 /* assumes size > 256 */
blksize_bits(unsigned int size)1649 static inline unsigned int blksize_bits(unsigned int size)
1650 {
1651 unsigned int bits = 8;
1652 do {
1653 bits++;
1654 size >>= 1;
1655 } while (size > 256);
1656 return bits;
1657 }
1658
block_size(struct block_device * bdev)1659 static inline unsigned int block_size(struct block_device *bdev)
1660 {
1661 return 1 << bdev->bd_inode->i_blkbits;
1662 }
1663
1664 int kblockd_schedule_work(struct work_struct *work);
1665 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1666
1667 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1668 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1669 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1670 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1671
1672 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1673
1674 enum blk_integrity_flags {
1675 BLK_INTEGRITY_VERIFY = 1 << 0,
1676 BLK_INTEGRITY_GENERATE = 1 << 1,
1677 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1678 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1679 };
1680
1681 struct blk_integrity_iter {
1682 void *prot_buf;
1683 void *data_buf;
1684 sector_t seed;
1685 unsigned int data_size;
1686 unsigned short interval;
1687 const char *disk_name;
1688 };
1689
1690 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1691 typedef void (integrity_prepare_fn) (struct request *);
1692 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1693
1694 struct blk_integrity_profile {
1695 integrity_processing_fn *generate_fn;
1696 integrity_processing_fn *verify_fn;
1697 integrity_prepare_fn *prepare_fn;
1698 integrity_complete_fn *complete_fn;
1699 const char *name;
1700 };
1701
1702 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1703 extern void blk_integrity_unregister(struct gendisk *);
1704 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1705 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1706 struct scatterlist *);
1707 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1708
blk_get_integrity(struct gendisk * disk)1709 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1710 {
1711 struct blk_integrity *bi = &disk->queue->integrity;
1712
1713 if (!bi->profile)
1714 return NULL;
1715
1716 return bi;
1717 }
1718
1719 static inline
bdev_get_integrity(struct block_device * bdev)1720 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1721 {
1722 return blk_get_integrity(bdev->bd_disk);
1723 }
1724
1725 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1726 blk_integrity_queue_supports_integrity(struct request_queue *q)
1727 {
1728 return q->integrity.profile;
1729 }
1730
blk_integrity_rq(struct request * rq)1731 static inline bool blk_integrity_rq(struct request *rq)
1732 {
1733 return rq->cmd_flags & REQ_INTEGRITY;
1734 }
1735
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1736 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1737 unsigned int segs)
1738 {
1739 q->limits.max_integrity_segments = segs;
1740 }
1741
1742 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1743 queue_max_integrity_segments(const struct request_queue *q)
1744 {
1745 return q->limits.max_integrity_segments;
1746 }
1747
1748 /**
1749 * bio_integrity_intervals - Return number of integrity intervals for a bio
1750 * @bi: blk_integrity profile for device
1751 * @sectors: Size of the bio in 512-byte sectors
1752 *
1753 * Description: The block layer calculates everything in 512 byte
1754 * sectors but integrity metadata is done in terms of the data integrity
1755 * interval size of the storage device. Convert the block layer sectors
1756 * to the appropriate number of integrity intervals.
1757 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1758 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1759 unsigned int sectors)
1760 {
1761 return sectors >> (bi->interval_exp - 9);
1762 }
1763
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1764 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1765 unsigned int sectors)
1766 {
1767 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1768 }
1769
1770 /*
1771 * Return the first bvec that contains integrity data. Only drivers that are
1772 * limited to a single integrity segment should use this helper.
1773 */
rq_integrity_vec(struct request * rq)1774 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1775 {
1776 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1777 return NULL;
1778 return rq->bio->bi_integrity->bip_vec;
1779 }
1780
1781 #else /* CONFIG_BLK_DEV_INTEGRITY */
1782
1783 struct bio;
1784 struct block_device;
1785 struct gendisk;
1786 struct blk_integrity;
1787
blk_integrity_rq(struct request * rq)1788 static inline int blk_integrity_rq(struct request *rq)
1789 {
1790 return 0;
1791 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1792 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1793 struct bio *b)
1794 {
1795 return 0;
1796 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1797 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1798 struct bio *b,
1799 struct scatterlist *s)
1800 {
1801 return 0;
1802 }
bdev_get_integrity(struct block_device * b)1803 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1804 {
1805 return NULL;
1806 }
blk_get_integrity(struct gendisk * disk)1807 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1808 {
1809 return NULL;
1810 }
1811 static inline bool
blk_integrity_queue_supports_integrity(struct request_queue * q)1812 blk_integrity_queue_supports_integrity(struct request_queue *q)
1813 {
1814 return false;
1815 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1816 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1817 {
1818 return 0;
1819 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1820 static inline void blk_integrity_register(struct gendisk *d,
1821 struct blk_integrity *b)
1822 {
1823 }
blk_integrity_unregister(struct gendisk * d)1824 static inline void blk_integrity_unregister(struct gendisk *d)
1825 {
1826 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1827 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1828 unsigned int segs)
1829 {
1830 }
queue_max_integrity_segments(const struct request_queue * q)1831 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1832 {
1833 return 0;
1834 }
1835
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1836 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1837 unsigned int sectors)
1838 {
1839 return 0;
1840 }
1841
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1842 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1843 unsigned int sectors)
1844 {
1845 return 0;
1846 }
1847
rq_integrity_vec(struct request * rq)1848 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1849 {
1850 return NULL;
1851 }
1852
1853 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1854
1855 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1856
1857 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1858
1859 void blk_ksm_unregister(struct request_queue *q);
1860
1861 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1862
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)1863 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1864 struct request_queue *q)
1865 {
1866 return true;
1867 }
1868
blk_ksm_unregister(struct request_queue * q)1869 static inline void blk_ksm_unregister(struct request_queue *q) { }
1870
1871 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1872
1873
1874 struct block_device_operations {
1875 blk_qc_t (*submit_bio) (struct bio *bio);
1876 int (*open) (struct block_device *, fmode_t);
1877 void (*release) (struct gendisk *, fmode_t);
1878 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1879 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1880 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1881 unsigned int (*check_events) (struct gendisk *disk,
1882 unsigned int clearing);
1883 void (*unlock_native_capacity) (struct gendisk *);
1884 int (*revalidate_disk) (struct gendisk *);
1885 int (*getgeo)(struct block_device *, struct hd_geometry *);
1886 /* this callback is with swap_lock and sometimes page table lock held */
1887 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1888 int (*report_zones)(struct gendisk *, sector_t sector,
1889 unsigned int nr_zones, report_zones_cb cb, void *data);
1890 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1891 struct module *owner;
1892 const struct pr_ops *pr_ops;
1893
1894 ANDROID_KABI_RESERVE(1);
1895 ANDROID_KABI_RESERVE(2);
1896 ANDROID_OEM_DATA(1);
1897 };
1898
1899 #ifdef CONFIG_COMPAT
1900 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1901 unsigned int, unsigned long);
1902 #else
1903 #define blkdev_compat_ptr_ioctl NULL
1904 #endif
1905
1906 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1907 unsigned long);
1908 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1909 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1910 struct writeback_control *);
1911
1912 #ifdef CONFIG_BLK_DEV_ZONED
1913 bool blk_req_needs_zone_write_lock(struct request *rq);
1914 bool blk_req_zone_write_trylock(struct request *rq);
1915 void __blk_req_zone_write_lock(struct request *rq);
1916 void __blk_req_zone_write_unlock(struct request *rq);
1917
blk_req_zone_write_lock(struct request * rq)1918 static inline void blk_req_zone_write_lock(struct request *rq)
1919 {
1920 if (blk_req_needs_zone_write_lock(rq))
1921 __blk_req_zone_write_lock(rq);
1922 }
1923
blk_req_zone_write_unlock(struct request * rq)1924 static inline void blk_req_zone_write_unlock(struct request *rq)
1925 {
1926 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1927 __blk_req_zone_write_unlock(rq);
1928 }
1929
blk_req_zone_is_write_locked(struct request * rq)1930 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1931 {
1932 return rq->q->seq_zones_wlock &&
1933 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1934 }
1935
blk_req_can_dispatch_to_zone(struct request * rq)1936 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1937 {
1938 if (!blk_req_needs_zone_write_lock(rq))
1939 return true;
1940 return !blk_req_zone_is_write_locked(rq);
1941 }
1942 #else
blk_req_needs_zone_write_lock(struct request * rq)1943 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1944 {
1945 return false;
1946 }
1947
blk_req_zone_write_lock(struct request * rq)1948 static inline void blk_req_zone_write_lock(struct request *rq)
1949 {
1950 }
1951
blk_req_zone_write_unlock(struct request * rq)1952 static inline void blk_req_zone_write_unlock(struct request *rq)
1953 {
1954 }
blk_req_zone_is_write_locked(struct request * rq)1955 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1956 {
1957 return false;
1958 }
1959
blk_req_can_dispatch_to_zone(struct request * rq)1960 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1961 {
1962 return true;
1963 }
1964 #endif /* CONFIG_BLK_DEV_ZONED */
1965
blk_wake_io_task(struct task_struct * waiter)1966 static inline void blk_wake_io_task(struct task_struct *waiter)
1967 {
1968 /*
1969 * If we're polling, the task itself is doing the completions. For
1970 * that case, we don't need to signal a wakeup, it's enough to just
1971 * mark us as RUNNING.
1972 */
1973 if (waiter == current)
1974 __set_current_state(TASK_RUNNING);
1975 else
1976 wake_up_process(waiter);
1977 }
1978
1979 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1980 unsigned int op);
1981 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1982 unsigned long start_time);
1983
1984 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1985 struct bio *bio);
1986 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1987 unsigned long start_time);
1988
1989 /**
1990 * bio_start_io_acct - start I/O accounting for bio based drivers
1991 * @bio: bio to start account for
1992 *
1993 * Returns the start time that should be passed back to bio_end_io_acct().
1994 */
bio_start_io_acct(struct bio * bio)1995 static inline unsigned long bio_start_io_acct(struct bio *bio)
1996 {
1997 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1998 }
1999
2000 /**
2001 * bio_end_io_acct - end I/O accounting for bio based drivers
2002 * @bio: bio to end account for
2003 * @start: start time returned by bio_start_io_acct()
2004 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)2005 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
2006 {
2007 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
2008 }
2009
2010 int bdev_read_only(struct block_device *bdev);
2011 int set_blocksize(struct block_device *bdev, int size);
2012
2013 const char *bdevname(struct block_device *bdev, char *buffer);
2014 struct block_device *lookup_bdev(const char *);
2015
2016 void blkdev_show(struct seq_file *seqf, off_t offset);
2017
2018 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
2019 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
2020 #ifdef CONFIG_BLOCK
2021 #define BLKDEV_MAJOR_MAX 512
2022 #else
2023 #define BLKDEV_MAJOR_MAX 0
2024 #endif
2025
2026 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2027 void *holder);
2028 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2029 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
2030 void *holder);
2031 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
2032 void *holder);
2033 void blkdev_put(struct block_device *bdev, fmode_t mode);
2034
2035 struct block_device *I_BDEV(struct inode *inode);
2036 struct block_device *bdget_part(struct hd_struct *part);
2037 struct block_device *bdgrab(struct block_device *bdev);
2038 void bdput(struct block_device *);
2039
2040 #ifdef CONFIG_BLOCK
2041 void invalidate_bdev(struct block_device *bdev);
2042 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2043 loff_t lend);
2044 int sync_blockdev(struct block_device *bdev);
2045 #else
invalidate_bdev(struct block_device * bdev)2046 static inline void invalidate_bdev(struct block_device *bdev)
2047 {
2048 }
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)2049 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2050 loff_t lstart, loff_t lend)
2051 {
2052 return 0;
2053 }
sync_blockdev(struct block_device * bdev)2054 static inline int sync_blockdev(struct block_device *bdev)
2055 {
2056 return 0;
2057 }
2058 #endif
2059 int fsync_bdev(struct block_device *bdev);
2060
2061 int freeze_bdev(struct block_device *bdev);
2062 int thaw_bdev(struct block_device *bdev);
2063
2064 #endif /* _LINUX_BLKDEV_H */
2065