• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
90  * locked- and dirty-page accounting.
91  *
92  * The page flags field is split into two parts, the main flags area
93  * which extends from the low bits upwards, and the fields area which
94  * extends from the high bits downwards.
95  *
96  *  | FIELD | ... | FLAGS |
97  *  N-1           ^       0
98  *               (NR_PAGEFLAGS)
99  *
100  * The fields area is reserved for fields mapping zone, node (for NUMA) and
101  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
102  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
103  */
104 enum pageflags {
105 	PG_locked,		/* Page is locked. Don't touch. */
106 	PG_referenced,
107 	PG_uptodate,
108 	PG_dirty,
109 	PG_lru,
110 	PG_active,
111 	PG_workingset,
112 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
113 	PG_error,
114 	PG_slab,
115 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
116 	PG_arch_1,
117 	PG_reserved,
118 	PG_private,		/* If pagecache, has fs-private data */
119 	PG_private_2,		/* If pagecache, has fs aux data */
120 	PG_writeback,		/* Page is under writeback */
121 	PG_head,		/* A head page */
122 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
123 	PG_reclaim,		/* To be reclaimed asap */
124 	PG_swapbacked,		/* Page is backed by RAM/swap */
125 	PG_unevictable,		/* Page is "unevictable"  */
126 #ifdef CONFIG_MMU
127 	PG_mlocked,		/* Page is vma mlocked */
128 #endif
129 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
130 	PG_uncached,		/* Page has been mapped as uncached */
131 #endif
132 #ifdef CONFIG_MEMORY_FAILURE
133 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
134 #endif
135 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
136 	PG_young,
137 	PG_idle,
138 #endif
139 #ifdef CONFIG_64BIT
140 	PG_arch_2,
141 #endif
142 #ifdef CONFIG_KASAN_HW_TAGS
143 	PG_skip_kasan_poison,
144 #endif
145 	__NR_PAGEFLAGS,
146 
147 	/* Filesystems */
148 	PG_checked = PG_owner_priv_1,
149 
150 	/* SwapBacked */
151 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
152 
153 	/* Two page bits are conscripted by FS-Cache to maintain local caching
154 	 * state.  These bits are set on pages belonging to the netfs's inodes
155 	 * when those inodes are being locally cached.
156 	 */
157 	PG_fscache = PG_private_2,	/* page backed by cache */
158 
159 	/* XEN */
160 	/* Pinned in Xen as a read-only pagetable page. */
161 	PG_pinned = PG_owner_priv_1,
162 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
163 	PG_savepinned = PG_dirty,
164 	/* Has a grant mapping of another (foreign) domain's page. */
165 	PG_foreign = PG_owner_priv_1,
166 	/* Remapped by swiotlb-xen. */
167 	PG_xen_remapped = PG_owner_priv_1,
168 
169 	/* SLOB */
170 	PG_slob_free = PG_private,
171 
172 	/* Compound pages. Stored in first tail page's flags */
173 	PG_double_map = PG_workingset,
174 
175 	/* non-lru isolated movable page */
176 	PG_isolated = PG_reclaim,
177 
178 	/* Only valid for buddy pages. Used to track pages that are reported */
179 	PG_reported = PG_uptodate,
180 };
181 
182 #ifndef __GENERATING_BOUNDS_H
183 
184 struct page;	/* forward declaration */
185 
compound_head(struct page * page)186 static inline struct page *compound_head(struct page *page)
187 {
188 	unsigned long head = READ_ONCE(page->compound_head);
189 
190 	if (unlikely(head & 1))
191 		return (struct page *) (head - 1);
192 	return page;
193 }
194 
PageTail(struct page * page)195 static __always_inline int PageTail(struct page *page)
196 {
197 	return READ_ONCE(page->compound_head) & 1;
198 }
199 
PageCompound(struct page * page)200 static __always_inline int PageCompound(struct page *page)
201 {
202 	return test_bit(PG_head, &page->flags) || PageTail(page);
203 }
204 
205 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)206 static inline int PagePoisoned(const struct page *page)
207 {
208 	return page->flags == PAGE_POISON_PATTERN;
209 }
210 
211 #ifdef CONFIG_DEBUG_VM
212 void page_init_poison(struct page *page, size_t size);
213 #else
page_init_poison(struct page * page,size_t size)214 static inline void page_init_poison(struct page *page, size_t size)
215 {
216 }
217 #endif
218 
219 /*
220  * Page flags policies wrt compound pages
221  *
222  * PF_POISONED_CHECK
223  *     check if this struct page poisoned/uninitialized
224  *
225  * PF_ANY:
226  *     the page flag is relevant for small, head and tail pages.
227  *
228  * PF_HEAD:
229  *     for compound page all operations related to the page flag applied to
230  *     head page.
231  *
232  * PF_ONLY_HEAD:
233  *     for compound page, callers only ever operate on the head page.
234  *
235  * PF_NO_TAIL:
236  *     modifications of the page flag must be done on small or head pages,
237  *     checks can be done on tail pages too.
238  *
239  * PF_NO_COMPOUND:
240  *     the page flag is not relevant for compound pages.
241  *
242  * PF_SECOND:
243  *     the page flag is stored in the first tail page.
244  */
245 #define PF_POISONED_CHECK(page) ({					\
246 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
247 		page; })
248 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
249 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
250 #define PF_ONLY_HEAD(page, enforce) ({					\
251 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
252 		PF_POISONED_CHECK(page); })
253 #define PF_NO_TAIL(page, enforce) ({					\
254 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
255 		PF_POISONED_CHECK(compound_head(page)); })
256 #define PF_NO_COMPOUND(page, enforce) ({				\
257 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
258 		PF_POISONED_CHECK(page); })
259 #define PF_SECOND(page, enforce) ({					\
260 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
261 		PF_POISONED_CHECK(&page[1]); })
262 
263 /*
264  * Macros to create function definitions for page flags
265  */
266 #define TESTPAGEFLAG(uname, lname, policy)				\
267 static __always_inline int Page##uname(struct page *page)		\
268 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
269 
270 #define SETPAGEFLAG(uname, lname, policy)				\
271 static __always_inline void SetPage##uname(struct page *page)		\
272 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
273 
274 #define CLEARPAGEFLAG(uname, lname, policy)				\
275 static __always_inline void ClearPage##uname(struct page *page)		\
276 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
277 
278 #define __SETPAGEFLAG(uname, lname, policy)				\
279 static __always_inline void __SetPage##uname(struct page *page)		\
280 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
281 
282 #define __CLEARPAGEFLAG(uname, lname, policy)				\
283 static __always_inline void __ClearPage##uname(struct page *page)	\
284 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
285 
286 #define TESTSETFLAG(uname, lname, policy)				\
287 static __always_inline int TestSetPage##uname(struct page *page)	\
288 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
289 
290 #define TESTCLEARFLAG(uname, lname, policy)				\
291 static __always_inline int TestClearPage##uname(struct page *page)	\
292 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
293 
294 #define PAGEFLAG(uname, lname, policy)					\
295 	TESTPAGEFLAG(uname, lname, policy)				\
296 	SETPAGEFLAG(uname, lname, policy)				\
297 	CLEARPAGEFLAG(uname, lname, policy)
298 
299 #define __PAGEFLAG(uname, lname, policy)				\
300 	TESTPAGEFLAG(uname, lname, policy)				\
301 	__SETPAGEFLAG(uname, lname, policy)				\
302 	__CLEARPAGEFLAG(uname, lname, policy)
303 
304 #define TESTSCFLAG(uname, lname, policy)				\
305 	TESTSETFLAG(uname, lname, policy)				\
306 	TESTCLEARFLAG(uname, lname, policy)
307 
308 #define TESTPAGEFLAG_FALSE(uname)					\
309 static inline int Page##uname(const struct page *page) { return 0; }
310 
311 #define SETPAGEFLAG_NOOP(uname)						\
312 static inline void SetPage##uname(struct page *page) {  }
313 
314 #define CLEARPAGEFLAG_NOOP(uname)					\
315 static inline void ClearPage##uname(struct page *page) {  }
316 
317 #define __CLEARPAGEFLAG_NOOP(uname)					\
318 static inline void __ClearPage##uname(struct page *page) {  }
319 
320 #define TESTSETFLAG_FALSE(uname)					\
321 static inline int TestSetPage##uname(struct page *page) { return 0; }
322 
323 #define TESTCLEARFLAG_FALSE(uname)					\
324 static inline int TestClearPage##uname(struct page *page) { return 0; }
325 
326 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
327 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
328 
329 #define TESTSCFLAG_FALSE(uname)						\
330 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
331 
332 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
333 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
334 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
335 PAGEFLAG(Referenced, referenced, PF_HEAD)
336 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
337 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
338 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
339 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
340 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
341 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
342 	TESTCLEARFLAG(Active, active, PF_HEAD)
343 PAGEFLAG(Workingset, workingset, PF_HEAD)
344 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
345 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
346 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
347 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
348 
349 /* Xen */
350 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
351 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
352 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
353 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)354 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
355 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
356 
357 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
358 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
359 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
360 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
361 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
362 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
363 
364 /*
365  * Private page markings that may be used by the filesystem that owns the page
366  * for its own purposes.
367  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
368  */
369 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
370 	__CLEARPAGEFLAG(Private, private, PF_ANY)
371 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
372 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
373 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
374 
375 /*
376  * Only test-and-set exist for PG_writeback.  The unconditional operators are
377  * risky: they bypass page accounting.
378  */
379 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
380 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
381 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
382 
383 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
384 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
385 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
386 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
387 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
388 
389 #ifdef CONFIG_HIGHMEM
390 /*
391  * Must use a macro here due to header dependency issues. page_zone() is not
392  * available at this point.
393  */
394 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
395 #else
396 PAGEFLAG_FALSE(HighMem)
397 #endif
398 
399 #ifdef CONFIG_SWAP
400 static __always_inline int PageSwapCache(struct page *page)
401 {
402 #ifdef CONFIG_THP_SWAP
403 	page = compound_head(page);
404 #endif
405 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
406 
407 }
408 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
409 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
410 #else
411 PAGEFLAG_FALSE(SwapCache)
412 #endif
413 
414 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
415 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
416 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
417 
418 #ifdef CONFIG_MMU
419 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
420 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
421 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
422 #else
423 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
424 	TESTSCFLAG_FALSE(Mlocked)
425 #endif
426 
427 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
428 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
429 #else
430 PAGEFLAG_FALSE(Uncached)
431 #endif
432 
433 #ifdef CONFIG_MEMORY_FAILURE
434 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
435 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
436 #define __PG_HWPOISON (1UL << PG_hwpoison)
437 extern bool take_page_off_buddy(struct page *page);
438 #else
439 PAGEFLAG_FALSE(HWPoison)
440 #define __PG_HWPOISON 0
441 #endif
442 
443 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)444 TESTPAGEFLAG(Young, young, PF_ANY)
445 SETPAGEFLAG(Young, young, PF_ANY)
446 TESTCLEARFLAG(Young, young, PF_ANY)
447 PAGEFLAG(Idle, idle, PF_ANY)
448 #endif
449 
450 #ifdef CONFIG_KASAN_HW_TAGS
451 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
452 #else
453 PAGEFLAG_FALSE(SkipKASanPoison)
454 #endif
455 
456 /*
457  * PageReported() is used to track reported free pages within the Buddy
458  * allocator. We can use the non-atomic version of the test and set
459  * operations as both should be shielded with the zone lock to prevent
460  * any possible races on the setting or clearing of the bit.
461  */
462 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
463 
464 /*
465  * On an anonymous page mapped into a user virtual memory area,
466  * page->mapping points to its anon_vma, not to a struct address_space;
467  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
468  *
469  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
470  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
471  * bit; and then page->mapping points, not to an anon_vma, but to a private
472  * structure which KSM associates with that merged page.  See ksm.h.
473  *
474  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
475  * page and then page->mapping points a struct address_space.
476  *
477  * Please note that, confusingly, "page_mapping" refers to the inode
478  * address_space which maps the page from disk; whereas "page_mapped"
479  * refers to user virtual address space into which the page is mapped.
480  */
481 #define PAGE_MAPPING_ANON	0x1
482 #define PAGE_MAPPING_MOVABLE	0x2
483 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
484 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
485 
486 static __always_inline int PageMappingFlags(struct page *page)
487 {
488 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
489 }
490 
PageAnon(struct page * page)491 static __always_inline int PageAnon(struct page *page)
492 {
493 	page = compound_head(page);
494 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
495 }
496 
__PageMovable(struct page * page)497 static __always_inline int __PageMovable(struct page *page)
498 {
499 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
500 				PAGE_MAPPING_MOVABLE;
501 }
502 
503 #ifdef CONFIG_KSM
504 /*
505  * A KSM page is one of those write-protected "shared pages" or "merged pages"
506  * which KSM maps into multiple mms, wherever identical anonymous page content
507  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
508  * anon_vma, but to that page's node of the stable tree.
509  */
PageKsm(struct page * page)510 static __always_inline int PageKsm(struct page *page)
511 {
512 	page = compound_head(page);
513 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
514 				PAGE_MAPPING_KSM;
515 }
516 #else
517 TESTPAGEFLAG_FALSE(Ksm)
518 #endif
519 
520 u64 stable_page_flags(struct page *page);
521 
PageUptodate(struct page * page)522 static inline int PageUptodate(struct page *page)
523 {
524 	int ret;
525 	page = compound_head(page);
526 	ret = test_bit(PG_uptodate, &(page)->flags);
527 	/*
528 	 * Must ensure that the data we read out of the page is loaded
529 	 * _after_ we've loaded page->flags to check for PageUptodate.
530 	 * We can skip the barrier if the page is not uptodate, because
531 	 * we wouldn't be reading anything from it.
532 	 *
533 	 * See SetPageUptodate() for the other side of the story.
534 	 */
535 	if (ret)
536 		smp_rmb();
537 
538 	return ret;
539 }
540 
__SetPageUptodate(struct page * page)541 static __always_inline void __SetPageUptodate(struct page *page)
542 {
543 	VM_BUG_ON_PAGE(PageTail(page), page);
544 	smp_wmb();
545 	__set_bit(PG_uptodate, &page->flags);
546 }
547 
SetPageUptodate(struct page * page)548 static __always_inline void SetPageUptodate(struct page *page)
549 {
550 	VM_BUG_ON_PAGE(PageTail(page), page);
551 	/*
552 	 * Memory barrier must be issued before setting the PG_uptodate bit,
553 	 * so that all previous stores issued in order to bring the page
554 	 * uptodate are actually visible before PageUptodate becomes true.
555 	 */
556 	smp_wmb();
557 	set_bit(PG_uptodate, &page->flags);
558 }
559 
560 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
561 
562 int test_clear_page_writeback(struct page *page);
563 int __test_set_page_writeback(struct page *page, bool keep_write);
564 
565 #define test_set_page_writeback(page)			\
566 	__test_set_page_writeback(page, false)
567 #define test_set_page_writeback_keepwrite(page)	\
568 	__test_set_page_writeback(page, true)
569 
set_page_writeback(struct page * page)570 static inline void set_page_writeback(struct page *page)
571 {
572 	test_set_page_writeback(page);
573 }
574 
set_page_writeback_keepwrite(struct page * page)575 static inline void set_page_writeback_keepwrite(struct page *page)
576 {
577 	test_set_page_writeback_keepwrite(page);
578 }
579 
__PAGEFLAG(Head,head,PF_ANY)580 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
581 
582 static __always_inline void set_compound_head(struct page *page, struct page *head)
583 {
584 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
585 }
586 
clear_compound_head(struct page * page)587 static __always_inline void clear_compound_head(struct page *page)
588 {
589 	WRITE_ONCE(page->compound_head, 0);
590 }
591 
592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)593 static inline void ClearPageCompound(struct page *page)
594 {
595 	BUG_ON(!PageHead(page));
596 	ClearPageHead(page);
597 }
598 #endif
599 
600 #define PG_head_mask ((1UL << PG_head))
601 
602 #ifdef CONFIG_HUGETLB_PAGE
603 int PageHuge(struct page *page);
604 int PageHeadHuge(struct page *page);
605 bool page_huge_active(struct page *page);
606 #else
607 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)608 TESTPAGEFLAG_FALSE(HeadHuge)
609 
610 static inline bool page_huge_active(struct page *page)
611 {
612 	return 0;
613 }
614 #endif
615 
616 
617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
618 /*
619  * PageHuge() only returns true for hugetlbfs pages, but not for
620  * normal or transparent huge pages.
621  *
622  * PageTransHuge() returns true for both transparent huge and
623  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
624  * called only in the core VM paths where hugetlbfs pages can't exist.
625  */
PageTransHuge(struct page * page)626 static inline int PageTransHuge(struct page *page)
627 {
628 	VM_BUG_ON_PAGE(PageTail(page), page);
629 	return PageHead(page);
630 }
631 
632 /*
633  * PageTransCompound returns true for both transparent huge pages
634  * and hugetlbfs pages, so it should only be called when it's known
635  * that hugetlbfs pages aren't involved.
636  */
PageTransCompound(struct page * page)637 static inline int PageTransCompound(struct page *page)
638 {
639 	return PageCompound(page);
640 }
641 
642 /*
643  * PageTransCompoundMap is the same as PageTransCompound, but it also
644  * guarantees the primary MMU has the entire compound page mapped
645  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
646  * can also map the entire compound page. This allows the secondary
647  * MMUs to call get_user_pages() only once for each compound page and
648  * to immediately map the entire compound page with a single secondary
649  * MMU fault. If there will be a pmd split later, the secondary MMUs
650  * will get an update through the MMU notifier invalidation through
651  * split_huge_pmd().
652  *
653  * Unlike PageTransCompound, this is safe to be called only while
654  * split_huge_pmd() cannot run from under us, like if protected by the
655  * MMU notifier, otherwise it may result in page->_mapcount check false
656  * positives.
657  *
658  * We have to treat page cache THP differently since every subpage of it
659  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
660  * mapped in the current process so comparing subpage's _mapcount to
661  * compound_mapcount to filter out PTE mapped case.
662  */
PageTransCompoundMap(struct page * page)663 static inline int PageTransCompoundMap(struct page *page)
664 {
665 	struct page *head;
666 
667 	if (!PageTransCompound(page))
668 		return 0;
669 
670 	if (PageAnon(page))
671 		return atomic_read(&page->_mapcount) < 0;
672 
673 	head = compound_head(page);
674 	/* File THP is PMD mapped and not PTE mapped */
675 	return atomic_read(&page->_mapcount) ==
676 	       atomic_read(compound_mapcount_ptr(head));
677 }
678 
679 /*
680  * PageTransTail returns true for both transparent huge pages
681  * and hugetlbfs pages, so it should only be called when it's known
682  * that hugetlbfs pages aren't involved.
683  */
PageTransTail(struct page * page)684 static inline int PageTransTail(struct page *page)
685 {
686 	return PageTail(page);
687 }
688 
689 /*
690  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
691  * as PMDs.
692  *
693  * This is required for optimization of rmap operations for THP: we can postpone
694  * per small page mapcount accounting (and its overhead from atomic operations)
695  * until the first PMD split.
696  *
697  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
698  * by one. This reference will go away with last compound_mapcount.
699  *
700  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
701  */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)702 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
703 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
704 #else
705 TESTPAGEFLAG_FALSE(TransHuge)
706 TESTPAGEFLAG_FALSE(TransCompound)
707 TESTPAGEFLAG_FALSE(TransCompoundMap)
708 TESTPAGEFLAG_FALSE(TransTail)
709 PAGEFLAG_FALSE(DoubleMap)
710 	TESTSCFLAG_FALSE(DoubleMap)
711 #endif
712 
713 /*
714  * For pages that are never mapped to userspace (and aren't PageSlab),
715  * page_type may be used.  Because it is initialised to -1, we invert the
716  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
717  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
718  * low bits so that an underflow or overflow of page_mapcount() won't be
719  * mistaken for a page type value.
720  */
721 
722 #define PAGE_TYPE_BASE	0xf0000000
723 /* Reserve		0x0000007f to catch underflows of page_mapcount */
724 #define PAGE_MAPCOUNT_RESERVE	-128
725 #define PG_buddy	0x00000080
726 #define PG_offline	0x00000100
727 #define PG_kmemcg	0x00000200
728 #define PG_table	0x00000400
729 #define PG_guard	0x00000800
730 
731 #define PageType(page, flag)						\
732 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
733 
734 static inline int page_has_type(struct page *page)
735 {
736 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
737 }
738 
739 #define PAGE_TYPE_OPS(uname, lname)					\
740 static __always_inline int Page##uname(struct page *page)		\
741 {									\
742 	return PageType(page, PG_##lname);				\
743 }									\
744 static __always_inline void __SetPage##uname(struct page *page)		\
745 {									\
746 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
747 	page->page_type &= ~PG_##lname;					\
748 }									\
749 static __always_inline void __ClearPage##uname(struct page *page)	\
750 {									\
751 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
752 	page->page_type |= PG_##lname;					\
753 }
754 
755 /*
756  * PageBuddy() indicates that the page is free and in the buddy system
757  * (see mm/page_alloc.c).
758  */
759 PAGE_TYPE_OPS(Buddy, buddy)
760 
761 /*
762  * PageOffline() indicates that the page is logically offline although the
763  * containing section is online. (e.g. inflated in a balloon driver or
764  * not onlined when onlining the section).
765  * The content of these pages is effectively stale. Such pages should not
766  * be touched (read/write/dump/save) except by their owner.
767  *
768  * If a driver wants to allow to offline unmovable PageOffline() pages without
769  * putting them back to the buddy, it can do so via the memory notifier by
770  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
771  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
772  * pages (now with a reference count of zero) are treated like free pages,
773  * allowing the containing memory block to get offlined. A driver that
774  * relies on this feature is aware that re-onlining the memory block will
775  * require to re-set the pages PageOffline() and not giving them to the
776  * buddy via online_page_callback_t.
777  */
778 PAGE_TYPE_OPS(Offline, offline)
779 
780 /*
781  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
782  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
783  */
784 PAGE_TYPE_OPS(Kmemcg, kmemcg)
785 
786 /*
787  * Marks pages in use as page tables.
788  */
789 PAGE_TYPE_OPS(Table, table)
790 
791 /*
792  * Marks guardpages used with debug_pagealloc.
793  */
794 PAGE_TYPE_OPS(Guard, guard)
795 
796 extern bool is_free_buddy_page(struct page *page);
797 
798 PAGEFLAG(Isolated, isolated, PF_ANY);
799 
800 /*
801  * If network-based swap is enabled, sl*b must keep track of whether pages
802  * were allocated from pfmemalloc reserves.
803  */
PageSlabPfmemalloc(struct page * page)804 static inline int PageSlabPfmemalloc(struct page *page)
805 {
806 	VM_BUG_ON_PAGE(!PageSlab(page), page);
807 	return PageActive(page);
808 }
809 
SetPageSlabPfmemalloc(struct page * page)810 static inline void SetPageSlabPfmemalloc(struct page *page)
811 {
812 	VM_BUG_ON_PAGE(!PageSlab(page), page);
813 	SetPageActive(page);
814 }
815 
__ClearPageSlabPfmemalloc(struct page * page)816 static inline void __ClearPageSlabPfmemalloc(struct page *page)
817 {
818 	VM_BUG_ON_PAGE(!PageSlab(page), page);
819 	__ClearPageActive(page);
820 }
821 
ClearPageSlabPfmemalloc(struct page * page)822 static inline void ClearPageSlabPfmemalloc(struct page *page)
823 {
824 	VM_BUG_ON_PAGE(!PageSlab(page), page);
825 	ClearPageActive(page);
826 }
827 
828 #ifdef CONFIG_MMU
829 #define __PG_MLOCKED		(1UL << PG_mlocked)
830 #else
831 #define __PG_MLOCKED		0
832 #endif
833 
834 /*
835  * Flags checked when a page is freed.  Pages being freed should not have
836  * these flags set.  It they are, there is a problem.
837  */
838 #define PAGE_FLAGS_CHECK_AT_FREE				\
839 	(1UL << PG_lru		| 1UL << PG_locked	|	\
840 	 1UL << PG_private	| 1UL << PG_private_2	|	\
841 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
842 	 1UL << PG_slab		| 1UL << PG_active 	|	\
843 	 1UL << PG_unevictable	| __PG_MLOCKED)
844 
845 /*
846  * Flags checked when a page is prepped for return by the page allocator.
847  * Pages being prepped should not have these flags set.  It they are set,
848  * there has been a kernel bug or struct page corruption.
849  *
850  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
851  * alloc-free cycle to prevent from reusing the page.
852  */
853 #define PAGE_FLAGS_CHECK_AT_PREP	\
854 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
855 
856 #define PAGE_FLAGS_PRIVATE				\
857 	(1UL << PG_private | 1UL << PG_private_2)
858 /**
859  * page_has_private - Determine if page has private stuff
860  * @page: The page to be checked
861  *
862  * Determine if a page has private stuff, indicating that release routines
863  * should be invoked upon it.
864  */
page_has_private(struct page * page)865 static inline int page_has_private(struct page *page)
866 {
867 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
868 }
869 
870 #undef PF_ANY
871 #undef PF_HEAD
872 #undef PF_ONLY_HEAD
873 #undef PF_NO_TAIL
874 #undef PF_NO_COMPOUND
875 #undef PF_SECOND
876 #endif /* !__GENERATING_BOUNDS_H */
877 
878 #endif	/* PAGE_FLAGS_H */
879