1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 #include <linux/sched/debug.h>
19
20 struct pagevec;
21
22 /*
23 * Bits in mapping->flags.
24 */
25 enum mapping_flags {
26 AS_EIO = 0, /* IO error on async write */
27 AS_ENOSPC = 1, /* ENOSPC on async write */
28 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
29 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
30 AS_EXITING = 4, /* final truncate in progress */
31 /* writeback related tags are not used */
32 AS_NO_WRITEBACK_TAGS = 5,
33 AS_THP_SUPPORT = 6, /* THPs supported */
34 };
35
36 /**
37 * mapping_set_error - record a writeback error in the address_space
38 * @mapping: the mapping in which an error should be set
39 * @error: the error to set in the mapping
40 *
41 * When writeback fails in some way, we must record that error so that
42 * userspace can be informed when fsync and the like are called. We endeavor
43 * to report errors on any file that was open at the time of the error. Some
44 * internal callers also need to know when writeback errors have occurred.
45 *
46 * When a writeback error occurs, most filesystems will want to call
47 * mapping_set_error to record the error in the mapping so that it can be
48 * reported when the application calls fsync(2).
49 */
mapping_set_error(struct address_space * mapping,int error)50 static inline void mapping_set_error(struct address_space *mapping, int error)
51 {
52 if (likely(!error))
53 return;
54
55 /* Record in wb_err for checkers using errseq_t based tracking */
56 __filemap_set_wb_err(mapping, error);
57
58 /* Record it in superblock */
59 if (mapping->host)
60 errseq_set(&mapping->host->i_sb->s_wb_err, error);
61
62 /* Record it in flags for now, for legacy callers */
63 if (error == -ENOSPC)
64 set_bit(AS_ENOSPC, &mapping->flags);
65 else
66 set_bit(AS_EIO, &mapping->flags);
67 }
68
mapping_set_unevictable(struct address_space * mapping)69 static inline void mapping_set_unevictable(struct address_space *mapping)
70 {
71 set_bit(AS_UNEVICTABLE, &mapping->flags);
72 }
73
mapping_clear_unevictable(struct address_space * mapping)74 static inline void mapping_clear_unevictable(struct address_space *mapping)
75 {
76 clear_bit(AS_UNEVICTABLE, &mapping->flags);
77 }
78
mapping_unevictable(struct address_space * mapping)79 static inline bool mapping_unevictable(struct address_space *mapping)
80 {
81 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
82 }
83
mapping_set_exiting(struct address_space * mapping)84 static inline void mapping_set_exiting(struct address_space *mapping)
85 {
86 set_bit(AS_EXITING, &mapping->flags);
87 }
88
mapping_exiting(struct address_space * mapping)89 static inline int mapping_exiting(struct address_space *mapping)
90 {
91 return test_bit(AS_EXITING, &mapping->flags);
92 }
93
mapping_set_no_writeback_tags(struct address_space * mapping)94 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
95 {
96 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
97 }
98
mapping_use_writeback_tags(struct address_space * mapping)99 static inline int mapping_use_writeback_tags(struct address_space *mapping)
100 {
101 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
102 }
103
mapping_gfp_mask(struct address_space * mapping)104 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
105 {
106 return mapping->gfp_mask;
107 }
108
109 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)110 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
111 gfp_t gfp_mask)
112 {
113 return mapping_gfp_mask(mapping) & gfp_mask;
114 }
115
116 /*
117 * This is non-atomic. Only to be used before the mapping is activated.
118 * Probably needs a barrier...
119 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)120 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
121 {
122 m->gfp_mask = mask;
123 }
124
mapping_thp_support(struct address_space * mapping)125 static inline bool mapping_thp_support(struct address_space *mapping)
126 {
127 return test_bit(AS_THP_SUPPORT, &mapping->flags);
128 }
129
filemap_nr_thps(struct address_space * mapping)130 static inline int filemap_nr_thps(struct address_space *mapping)
131 {
132 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
133 return atomic_read(&mapping->nr_thps);
134 #else
135 return 0;
136 #endif
137 }
138
filemap_nr_thps_inc(struct address_space * mapping)139 static inline void filemap_nr_thps_inc(struct address_space *mapping)
140 {
141 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
142 if (!mapping_thp_support(mapping))
143 atomic_inc(&mapping->nr_thps);
144 #else
145 WARN_ON_ONCE(1);
146 #endif
147 }
148
filemap_nr_thps_dec(struct address_space * mapping)149 static inline void filemap_nr_thps_dec(struct address_space *mapping)
150 {
151 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
152 if (!mapping_thp_support(mapping))
153 atomic_dec(&mapping->nr_thps);
154 #else
155 WARN_ON_ONCE(1);
156 #endif
157 }
158
159 void release_pages(struct page **pages, int nr);
160
161 /*
162 * speculatively take a reference to a page.
163 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
164 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
165 *
166 * This function must be called inside the same rcu_read_lock() section as has
167 * been used to lookup the page in the pagecache radix-tree (or page table):
168 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
169 *
170 * Unless an RCU grace period has passed, the count of all pages coming out
171 * of the allocator must be considered unstable. page_count may return higher
172 * than expected, and put_page must be able to do the right thing when the
173 * page has been finished with, no matter what it is subsequently allocated
174 * for (because put_page is what is used here to drop an invalid speculative
175 * reference).
176 *
177 * This is the interesting part of the lockless pagecache (and lockless
178 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
179 * has the following pattern:
180 * 1. find page in radix tree
181 * 2. conditionally increment refcount
182 * 3. check the page is still in pagecache (if no, goto 1)
183 *
184 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
185 * following (with the i_pages lock held):
186 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
187 * B. remove page from pagecache
188 * C. free the page
189 *
190 * There are 2 critical interleavings that matter:
191 * - 2 runs before A: in this case, A sees elevated refcount and bails out
192 * - A runs before 2: in this case, 2 sees zero refcount and retries;
193 * subsequently, B will complete and 1 will find no page, causing the
194 * lookup to return NULL.
195 *
196 * It is possible that between 1 and 2, the page is removed then the exact same
197 * page is inserted into the same position in pagecache. That's OK: the
198 * old find_get_page using a lock could equally have run before or after
199 * such a re-insertion, depending on order that locks are granted.
200 *
201 * Lookups racing against pagecache insertion isn't a big problem: either 1
202 * will find the page or it will not. Likewise, the old find_get_page could run
203 * either before the insertion or afterwards, depending on timing.
204 */
__page_cache_add_speculative(struct page * page,int count)205 static inline int __page_cache_add_speculative(struct page *page, int count)
206 {
207 #ifdef CONFIG_TINY_RCU
208 # ifdef CONFIG_PREEMPT_COUNT
209 VM_BUG_ON(!in_atomic() && !irqs_disabled());
210 # endif
211 /*
212 * Preempt must be disabled here - we rely on rcu_read_lock doing
213 * this for us.
214 *
215 * Pagecache won't be truncated from interrupt context, so if we have
216 * found a page in the radix tree here, we have pinned its refcount by
217 * disabling preempt, and hence no need for the "speculative get" that
218 * SMP requires.
219 */
220 VM_BUG_ON_PAGE(page_count(page) == 0, page);
221 page_ref_add(page, count);
222
223 #else
224 if (unlikely(!page_ref_add_unless(page, count, 0))) {
225 /*
226 * Either the page has been freed, or will be freed.
227 * In either case, retry here and the caller should
228 * do the right thing (see comments above).
229 */
230 return 0;
231 }
232 #endif
233 VM_BUG_ON_PAGE(PageTail(page), page);
234
235 return 1;
236 }
237
page_cache_get_speculative(struct page * page)238 static inline int page_cache_get_speculative(struct page *page)
239 {
240 return __page_cache_add_speculative(page, 1);
241 }
242
page_cache_add_speculative(struct page * page,int count)243 static inline int page_cache_add_speculative(struct page *page, int count)
244 {
245 return __page_cache_add_speculative(page, count);
246 }
247
248 /**
249 * attach_page_private - Attach private data to a page.
250 * @page: Page to attach data to.
251 * @data: Data to attach to page.
252 *
253 * Attaching private data to a page increments the page's reference count.
254 * The data must be detached before the page will be freed.
255 */
attach_page_private(struct page * page,void * data)256 static inline void attach_page_private(struct page *page, void *data)
257 {
258 get_page(page);
259 set_page_private(page, (unsigned long)data);
260 SetPagePrivate(page);
261 }
262
263 /**
264 * detach_page_private - Detach private data from a page.
265 * @page: Page to detach data from.
266 *
267 * Removes the data that was previously attached to the page and decrements
268 * the refcount on the page.
269 *
270 * Return: Data that was attached to the page.
271 */
detach_page_private(struct page * page)272 static inline void *detach_page_private(struct page *page)
273 {
274 void *data = (void *)page_private(page);
275
276 if (!PagePrivate(page))
277 return NULL;
278 ClearPagePrivate(page);
279 set_page_private(page, 0);
280 put_page(page);
281
282 return data;
283 }
284
285 #ifdef CONFIG_NUMA
286 extern struct page *__page_cache_alloc(gfp_t gfp);
287 #else
__page_cache_alloc(gfp_t gfp)288 static inline struct page *__page_cache_alloc(gfp_t gfp)
289 {
290 return alloc_pages(gfp, 0);
291 }
292 #endif
293
page_cache_alloc(struct address_space * x)294 static inline struct page *page_cache_alloc(struct address_space *x)
295 {
296 return __page_cache_alloc(mapping_gfp_mask(x));
297 }
298
299 gfp_t readahead_gfp_mask(struct address_space *x);
300
301 typedef int filler_t(void *, struct page *);
302
303 pgoff_t page_cache_next_miss(struct address_space *mapping,
304 pgoff_t index, unsigned long max_scan);
305 pgoff_t page_cache_prev_miss(struct address_space *mapping,
306 pgoff_t index, unsigned long max_scan);
307
308 #define FGP_ACCESSED 0x00000001
309 #define FGP_LOCK 0x00000002
310 #define FGP_CREAT 0x00000004
311 #define FGP_WRITE 0x00000008
312 #define FGP_NOFS 0x00000010
313 #define FGP_NOWAIT 0x00000020
314 #define FGP_FOR_MMAP 0x00000040
315 #define FGP_HEAD 0x00000080
316
317 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
318 int fgp_flags, gfp_t cache_gfp_mask);
319
320 /**
321 * find_get_page - find and get a page reference
322 * @mapping: the address_space to search
323 * @offset: the page index
324 *
325 * Looks up the page cache slot at @mapping & @offset. If there is a
326 * page cache page, it is returned with an increased refcount.
327 *
328 * Otherwise, %NULL is returned.
329 */
find_get_page(struct address_space * mapping,pgoff_t offset)330 static inline struct page *find_get_page(struct address_space *mapping,
331 pgoff_t offset)
332 {
333 return pagecache_get_page(mapping, offset, 0, 0);
334 }
335
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)336 static inline struct page *find_get_page_flags(struct address_space *mapping,
337 pgoff_t offset, int fgp_flags)
338 {
339 return pagecache_get_page(mapping, offset, fgp_flags, 0);
340 }
341
342 /**
343 * find_lock_page - locate, pin and lock a pagecache page
344 * @mapping: the address_space to search
345 * @index: the page index
346 *
347 * Looks up the page cache entry at @mapping & @index. If there is a
348 * page cache page, it is returned locked and with an increased
349 * refcount.
350 *
351 * Context: May sleep.
352 * Return: A struct page or %NULL if there is no page in the cache for this
353 * index.
354 */
find_lock_page(struct address_space * mapping,pgoff_t index)355 static inline struct page *find_lock_page(struct address_space *mapping,
356 pgoff_t index)
357 {
358 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
359 }
360
361 /**
362 * find_lock_head - Locate, pin and lock a pagecache page.
363 * @mapping: The address_space to search.
364 * @index: The page index.
365 *
366 * Looks up the page cache entry at @mapping & @index. If there is a
367 * page cache page, its head page is returned locked and with an increased
368 * refcount.
369 *
370 * Context: May sleep.
371 * Return: A struct page which is !PageTail, or %NULL if there is no page
372 * in the cache for this index.
373 */
find_lock_head(struct address_space * mapping,pgoff_t index)374 static inline struct page *find_lock_head(struct address_space *mapping,
375 pgoff_t index)
376 {
377 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
378 }
379
380 /**
381 * find_or_create_page - locate or add a pagecache page
382 * @mapping: the page's address_space
383 * @index: the page's index into the mapping
384 * @gfp_mask: page allocation mode
385 *
386 * Looks up the page cache slot at @mapping & @offset. If there is a
387 * page cache page, it is returned locked and with an increased
388 * refcount.
389 *
390 * If the page is not present, a new page is allocated using @gfp_mask
391 * and added to the page cache and the VM's LRU list. The page is
392 * returned locked and with an increased refcount.
393 *
394 * On memory exhaustion, %NULL is returned.
395 *
396 * find_or_create_page() may sleep, even if @gfp_flags specifies an
397 * atomic allocation!
398 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)399 static inline struct page *find_or_create_page(struct address_space *mapping,
400 pgoff_t index, gfp_t gfp_mask)
401 {
402 return pagecache_get_page(mapping, index,
403 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
404 gfp_mask);
405 }
406
407 /**
408 * grab_cache_page_nowait - returns locked page at given index in given cache
409 * @mapping: target address_space
410 * @index: the page index
411 *
412 * Same as grab_cache_page(), but do not wait if the page is unavailable.
413 * This is intended for speculative data generators, where the data can
414 * be regenerated if the page couldn't be grabbed. This routine should
415 * be safe to call while holding the lock for another page.
416 *
417 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
418 * and deadlock against the caller's locked page.
419 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)420 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
421 pgoff_t index)
422 {
423 return pagecache_get_page(mapping, index,
424 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
425 mapping_gfp_mask(mapping));
426 }
427
428 /* Does this page contain this index? */
thp_contains(struct page * head,pgoff_t index)429 static inline bool thp_contains(struct page *head, pgoff_t index)
430 {
431 /* HugeTLBfs indexes the page cache in units of hpage_size */
432 if (PageHuge(head))
433 return head->index == index;
434 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
435 }
436
437 /*
438 * Given the page we found in the page cache, return the page corresponding
439 * to this index in the file
440 */
find_subpage(struct page * head,pgoff_t index)441 static inline struct page *find_subpage(struct page *head, pgoff_t index)
442 {
443 /* HugeTLBfs wants the head page regardless */
444 if (PageHuge(head))
445 return head;
446
447 return head + (index & (thp_nr_pages(head) - 1));
448 }
449
450 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
451 unsigned int nr_entries, struct page **entries,
452 pgoff_t *indices);
453 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
454 pgoff_t end, unsigned int nr_pages,
455 struct page **pages);
find_get_pages(struct address_space * mapping,pgoff_t * start,unsigned int nr_pages,struct page ** pages)456 static inline unsigned find_get_pages(struct address_space *mapping,
457 pgoff_t *start, unsigned int nr_pages,
458 struct page **pages)
459 {
460 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
461 pages);
462 }
463 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
464 unsigned int nr_pages, struct page **pages);
465 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
466 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
467 struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)468 static inline unsigned find_get_pages_tag(struct address_space *mapping,
469 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
470 struct page **pages)
471 {
472 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
473 nr_pages, pages);
474 }
475
476 struct page *grab_cache_page_write_begin(struct address_space *mapping,
477 pgoff_t index, unsigned flags);
478
479 /*
480 * Returns locked page at given index in given cache, creating it if needed.
481 */
grab_cache_page(struct address_space * mapping,pgoff_t index)482 static inline struct page *grab_cache_page(struct address_space *mapping,
483 pgoff_t index)
484 {
485 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
486 }
487
488 extern struct page * read_cache_page(struct address_space *mapping,
489 pgoff_t index, filler_t *filler, void *data);
490 extern struct page * read_cache_page_gfp(struct address_space *mapping,
491 pgoff_t index, gfp_t gfp_mask);
492 extern int read_cache_pages(struct address_space *mapping,
493 struct list_head *pages, filler_t *filler, void *data);
494
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)495 static inline struct page *read_mapping_page(struct address_space *mapping,
496 pgoff_t index, void *data)
497 {
498 return read_cache_page(mapping, index, NULL, data);
499 }
500
501 /*
502 * Get index of the page within radix-tree (but not for hugetlb pages).
503 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
504 */
page_to_index(struct page * page)505 static inline pgoff_t page_to_index(struct page *page)
506 {
507 pgoff_t pgoff;
508
509 if (likely(!PageTransTail(page)))
510 return page->index;
511
512 /*
513 * We don't initialize ->index for tail pages: calculate based on
514 * head page
515 */
516 pgoff = compound_head(page)->index;
517 pgoff += page - compound_head(page);
518 return pgoff;
519 }
520
521 extern pgoff_t hugetlb_basepage_index(struct page *page);
522
523 /*
524 * Get the offset in PAGE_SIZE (even for hugetlb pages).
525 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
526 */
page_to_pgoff(struct page * page)527 static inline pgoff_t page_to_pgoff(struct page *page)
528 {
529 if (unlikely(PageHuge(page)))
530 return hugetlb_basepage_index(page);
531 return page_to_index(page);
532 }
533
534 /*
535 * Return byte-offset into filesystem object for page.
536 */
page_offset(struct page * page)537 static inline loff_t page_offset(struct page *page)
538 {
539 return ((loff_t)page->index) << PAGE_SHIFT;
540 }
541
page_file_offset(struct page * page)542 static inline loff_t page_file_offset(struct page *page)
543 {
544 return ((loff_t)page_index(page)) << PAGE_SHIFT;
545 }
546
547 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
548 unsigned long address);
549
linear_page_index(struct vm_area_struct * vma,unsigned long address)550 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
551 unsigned long address)
552 {
553 pgoff_t pgoff;
554 if (unlikely(is_vm_hugetlb_page(vma)))
555 return linear_hugepage_index(vma, address);
556 pgoff = (address - READ_ONCE(vma->vm_start)) >> PAGE_SHIFT;
557 pgoff += READ_ONCE(vma->vm_pgoff);
558 return pgoff;
559 }
560
561 struct wait_page_key {
562 struct page *page;
563 int bit_nr;
564 int page_match;
565 };
566
567 struct wait_page_queue {
568 struct page *page;
569 int bit_nr;
570 wait_queue_entry_t wait;
571 };
572
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)573 static inline bool wake_page_match(struct wait_page_queue *wait_page,
574 struct wait_page_key *key)
575 {
576 if (wait_page->page != key->page)
577 return false;
578 key->page_match = 1;
579
580 if (wait_page->bit_nr != key->bit_nr)
581 return false;
582
583 return true;
584 }
585
586 extern void __lock_page(struct page *page);
587 extern int __lock_page_killable(struct page *page);
588 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
589 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
590 unsigned int flags);
591 extern void unlock_page(struct page *page);
592
593 /*
594 * Return true if the page was successfully locked
595 */
trylock_page(struct page * page)596 static inline int trylock_page(struct page *page)
597 {
598 page = compound_head(page);
599 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
600 }
601
602 /*
603 * lock_page may only be called if we have the page's inode pinned.
604 */
lock_page(struct page * page)605 static inline __sched void lock_page(struct page *page)
606 {
607 might_sleep();
608 if (!trylock_page(page))
609 __lock_page(page);
610 }
611
612 /*
613 * lock_page_killable is like lock_page but can be interrupted by fatal
614 * signals. It returns 0 if it locked the page and -EINTR if it was
615 * killed while waiting.
616 */
lock_page_killable(struct page * page)617 static inline __sched int lock_page_killable(struct page *page)
618 {
619 might_sleep();
620 if (!trylock_page(page))
621 return __lock_page_killable(page);
622 return 0;
623 }
624
625 /*
626 * lock_page_async - Lock the page, unless this would block. If the page
627 * is already locked, then queue a callback when the page becomes unlocked.
628 * This callback can then retry the operation.
629 *
630 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
631 * was already locked and the callback defined in 'wait' was queued.
632 */
lock_page_async(struct page * page,struct wait_page_queue * wait)633 static inline __sched int lock_page_async(struct page *page,
634 struct wait_page_queue *wait)
635 {
636 if (!trylock_page(page))
637 return __lock_page_async(page, wait);
638 return 0;
639 }
640
641 /*
642 * lock_page_or_retry - Lock the page, unless this would block and the
643 * caller indicated that it can handle a retry.
644 *
645 * Return value and mmap_lock implications depend on flags; see
646 * __lock_page_or_retry().
647 */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)648 static inline __sched int lock_page_or_retry(struct page *page, struct mm_struct *mm,
649 unsigned int flags)
650 {
651 might_sleep();
652 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
653 }
654
655 /*
656 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
657 * and should not be used directly.
658 */
659 extern void wait_on_page_bit(struct page *page, int bit_nr);
660 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
661
662 /*
663 * Wait for a page to be unlocked.
664 *
665 * This must be called with the caller "holding" the page,
666 * ie with increased "page->count" so that the page won't
667 * go away during the wait..
668 */
wait_on_page_locked(struct page * page)669 static inline __sched void wait_on_page_locked(struct page *page)
670 {
671 if (PageLocked(page))
672 wait_on_page_bit(compound_head(page), PG_locked);
673 }
674
wait_on_page_locked_killable(struct page * page)675 static inline __sched int wait_on_page_locked_killable(struct page *page)
676 {
677 if (!PageLocked(page))
678 return 0;
679 return wait_on_page_bit_killable(compound_head(page), PG_locked);
680 }
681
682 extern void put_and_wait_on_page_locked(struct page *page);
683
684 void wait_on_page_writeback(struct page *page);
685 extern void end_page_writeback(struct page *page);
686 void wait_for_stable_page(struct page *page);
687
688 void page_endio(struct page *page, bool is_write, int err);
689
690 /*
691 * Add an arbitrary waiter to a page's wait queue
692 */
693 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
694
695 /*
696 * Fault everything in given userspace address range in.
697 */
fault_in_pages_writeable(char __user * uaddr,int size)698 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
699 {
700 char __user *end = uaddr + size - 1;
701
702 if (unlikely(size == 0))
703 return 0;
704
705 if (unlikely(uaddr > end))
706 return -EFAULT;
707 /*
708 * Writing zeroes into userspace here is OK, because we know that if
709 * the zero gets there, we'll be overwriting it.
710 */
711 do {
712 if (unlikely(__put_user(0, uaddr) != 0))
713 return -EFAULT;
714 uaddr += PAGE_SIZE;
715 } while (uaddr <= end);
716
717 /* Check whether the range spilled into the next page. */
718 if (((unsigned long)uaddr & PAGE_MASK) ==
719 ((unsigned long)end & PAGE_MASK))
720 return __put_user(0, end);
721
722 return 0;
723 }
724
fault_in_pages_readable(const char __user * uaddr,int size)725 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
726 {
727 volatile char c;
728 const char __user *end = uaddr + size - 1;
729
730 if (unlikely(size == 0))
731 return 0;
732
733 if (unlikely(uaddr > end))
734 return -EFAULT;
735
736 do {
737 if (unlikely(__get_user(c, uaddr) != 0))
738 return -EFAULT;
739 uaddr += PAGE_SIZE;
740 } while (uaddr <= end);
741
742 /* Check whether the range spilled into the next page. */
743 if (((unsigned long)uaddr & PAGE_MASK) ==
744 ((unsigned long)end & PAGE_MASK)) {
745 return __get_user(c, end);
746 }
747
748 (void)c;
749 return 0;
750 }
751
752 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
753 pgoff_t index, gfp_t gfp_mask);
754 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
755 pgoff_t index, gfp_t gfp_mask);
756 extern void delete_from_page_cache(struct page *page);
757 extern void __delete_from_page_cache(struct page *page, void *shadow);
758 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
759 void delete_from_page_cache_batch(struct address_space *mapping,
760 struct pagevec *pvec);
761
762 /*
763 * Like add_to_page_cache_locked, but used to add newly allocated pages:
764 * the page is new, so we can just run __SetPageLocked() against it.
765 */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)766 static inline int add_to_page_cache(struct page *page,
767 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
768 {
769 int error;
770
771 __SetPageLocked(page);
772 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
773 if (unlikely(error))
774 __ClearPageLocked(page);
775 return error;
776 }
777
778 /**
779 * struct readahead_control - Describes a readahead request.
780 *
781 * A readahead request is for consecutive pages. Filesystems which
782 * implement the ->readahead method should call readahead_page() or
783 * readahead_page_batch() in a loop and attempt to start I/O against
784 * each page in the request.
785 *
786 * Most of the fields in this struct are private and should be accessed
787 * by the functions below.
788 *
789 * @file: The file, used primarily by network filesystems for authentication.
790 * May be NULL if invoked internally by the filesystem.
791 * @mapping: Readahead this filesystem object.
792 */
793 struct readahead_control {
794 struct file *file;
795 struct address_space *mapping;
796 /* private: use the readahead_* accessors instead */
797 pgoff_t _index;
798 unsigned int _nr_pages;
799 unsigned int _batch_count;
800 };
801
802 #define DEFINE_READAHEAD(rac, f, m, i) \
803 struct readahead_control rac = { \
804 .file = f, \
805 .mapping = m, \
806 ._index = i, \
807 }
808
809 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
810
811 void page_cache_ra_unbounded(struct readahead_control *,
812 unsigned long nr_to_read, unsigned long lookahead_count);
813 void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
814 unsigned long req_count);
815 void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
816 struct page *, unsigned long req_count);
817
818 /**
819 * page_cache_sync_readahead - generic file readahead
820 * @mapping: address_space which holds the pagecache and I/O vectors
821 * @ra: file_ra_state which holds the readahead state
822 * @file: Used by the filesystem for authentication.
823 * @index: Index of first page to be read.
824 * @req_count: Total number of pages being read by the caller.
825 *
826 * page_cache_sync_readahead() should be called when a cache miss happened:
827 * it will submit the read. The readahead logic may decide to piggyback more
828 * pages onto the read request if access patterns suggest it will improve
829 * performance.
830 */
831 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)832 void page_cache_sync_readahead(struct address_space *mapping,
833 struct file_ra_state *ra, struct file *file, pgoff_t index,
834 unsigned long req_count)
835 {
836 DEFINE_READAHEAD(ractl, file, mapping, index);
837 page_cache_sync_ra(&ractl, ra, req_count);
838 }
839
840 /**
841 * page_cache_async_readahead - file readahead for marked pages
842 * @mapping: address_space which holds the pagecache and I/O vectors
843 * @ra: file_ra_state which holds the readahead state
844 * @file: Used by the filesystem for authentication.
845 * @page: The page at @index which triggered the readahead call.
846 * @index: Index of first page to be read.
847 * @req_count: Total number of pages being read by the caller.
848 *
849 * page_cache_async_readahead() should be called when a page is used which
850 * is marked as PageReadahead; this is a marker to suggest that the application
851 * has used up enough of the readahead window that we should start pulling in
852 * more pages.
853 */
854 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t index,unsigned long req_count)855 void page_cache_async_readahead(struct address_space *mapping,
856 struct file_ra_state *ra, struct file *file,
857 struct page *page, pgoff_t index, unsigned long req_count)
858 {
859 DEFINE_READAHEAD(ractl, file, mapping, index);
860 page_cache_async_ra(&ractl, ra, page, req_count);
861 }
862
863 /**
864 * readahead_page - Get the next page to read.
865 * @rac: The current readahead request.
866 *
867 * Context: The page is locked and has an elevated refcount. The caller
868 * should decreases the refcount once the page has been submitted for I/O
869 * and unlock the page once all I/O to that page has completed.
870 * Return: A pointer to the next page, or %NULL if we are done.
871 */
readahead_page(struct readahead_control * rac)872 static inline struct page *readahead_page(struct readahead_control *rac)
873 {
874 struct page *page;
875
876 BUG_ON(rac->_batch_count > rac->_nr_pages);
877 rac->_nr_pages -= rac->_batch_count;
878 rac->_index += rac->_batch_count;
879
880 if (!rac->_nr_pages) {
881 rac->_batch_count = 0;
882 return NULL;
883 }
884
885 page = xa_load(&rac->mapping->i_pages, rac->_index);
886 VM_BUG_ON_PAGE(!PageLocked(page), page);
887 rac->_batch_count = thp_nr_pages(page);
888
889 return page;
890 }
891
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)892 static inline unsigned int __readahead_batch(struct readahead_control *rac,
893 struct page **array, unsigned int array_sz)
894 {
895 unsigned int i = 0;
896 XA_STATE(xas, &rac->mapping->i_pages, 0);
897 struct page *page;
898
899 BUG_ON(rac->_batch_count > rac->_nr_pages);
900 rac->_nr_pages -= rac->_batch_count;
901 rac->_index += rac->_batch_count;
902 rac->_batch_count = 0;
903
904 xas_set(&xas, rac->_index);
905 rcu_read_lock();
906 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
907 if (xas_retry(&xas, page))
908 continue;
909 VM_BUG_ON_PAGE(!PageLocked(page), page);
910 VM_BUG_ON_PAGE(PageTail(page), page);
911 array[i++] = page;
912 rac->_batch_count += thp_nr_pages(page);
913
914 /*
915 * The page cache isn't using multi-index entries yet,
916 * so the xas cursor needs to be manually moved to the
917 * next index. This can be removed once the page cache
918 * is converted.
919 */
920 if (PageHead(page))
921 xas_set(&xas, rac->_index + rac->_batch_count);
922
923 if (i == array_sz)
924 break;
925 }
926 rcu_read_unlock();
927
928 return i;
929 }
930
931 /**
932 * readahead_page_batch - Get a batch of pages to read.
933 * @rac: The current readahead request.
934 * @array: An array of pointers to struct page.
935 *
936 * Context: The pages are locked and have an elevated refcount. The caller
937 * should decreases the refcount once the page has been submitted for I/O
938 * and unlock the page once all I/O to that page has completed.
939 * Return: The number of pages placed in the array. 0 indicates the request
940 * is complete.
941 */
942 #define readahead_page_batch(rac, array) \
943 __readahead_batch(rac, array, ARRAY_SIZE(array))
944
945 /**
946 * readahead_pos - The byte offset into the file of this readahead request.
947 * @rac: The readahead request.
948 */
readahead_pos(struct readahead_control * rac)949 static inline loff_t readahead_pos(struct readahead_control *rac)
950 {
951 return (loff_t)rac->_index * PAGE_SIZE;
952 }
953
954 /**
955 * readahead_length - The number of bytes in this readahead request.
956 * @rac: The readahead request.
957 */
readahead_length(struct readahead_control * rac)958 static inline loff_t readahead_length(struct readahead_control *rac)
959 {
960 return (loff_t)rac->_nr_pages * PAGE_SIZE;
961 }
962
963 /**
964 * readahead_index - The index of the first page in this readahead request.
965 * @rac: The readahead request.
966 */
readahead_index(struct readahead_control * rac)967 static inline pgoff_t readahead_index(struct readahead_control *rac)
968 {
969 return rac->_index;
970 }
971
972 /**
973 * readahead_count - The number of pages in this readahead request.
974 * @rac: The readahead request.
975 */
readahead_count(struct readahead_control * rac)976 static inline unsigned int readahead_count(struct readahead_control *rac)
977 {
978 return rac->_nr_pages;
979 }
980
dir_pages(struct inode * inode)981 static inline unsigned long dir_pages(struct inode *inode)
982 {
983 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
984 PAGE_SHIFT;
985 }
986
987 /**
988 * page_mkwrite_check_truncate - check if page was truncated
989 * @page: the page to check
990 * @inode: the inode to check the page against
991 *
992 * Returns the number of bytes in the page up to EOF,
993 * or -EFAULT if the page was truncated.
994 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)995 static inline int page_mkwrite_check_truncate(struct page *page,
996 struct inode *inode)
997 {
998 loff_t size = i_size_read(inode);
999 pgoff_t index = size >> PAGE_SHIFT;
1000 int offset = offset_in_page(size);
1001
1002 if (page->mapping != inode->i_mapping)
1003 return -EFAULT;
1004
1005 /* page is wholly inside EOF */
1006 if (page->index < index)
1007 return PAGE_SIZE;
1008 /* page is wholly past EOF */
1009 if (page->index > index || !offset)
1010 return -EFAULT;
1011 /* page is partially inside EOF */
1012 return offset;
1013 }
1014
1015 /**
1016 * i_blocks_per_page - How many blocks fit in this page.
1017 * @inode: The inode which contains the blocks.
1018 * @page: The page (head page if the page is a THP).
1019 *
1020 * If the block size is larger than the size of this page, return zero.
1021 *
1022 * Context: The caller should hold a refcount on the page to prevent it
1023 * from being split.
1024 * Return: The number of filesystem blocks covered by this page.
1025 */
1026 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1027 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1028 {
1029 return thp_size(page) >> inode->i_blkbits;
1030 }
1031 #endif /* _LINUX_PAGEMAP_H */
1032