• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 	 */
91 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92 
93 	/*
94 	 * Enable legacy local memory.events.
95 	 */
96 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97 
98 	/*
99 	 * Enable recursive subtree protection
100 	 */
101 	CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
102 };
103 
104 /* cftype->flags */
105 enum {
106 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
107 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
108 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
109 
110 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
111 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
112 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
113 	CFTYPE_PRESSURE		= (1 << 6),	/* only if pressure feature is enabled */
114 
115 	/* internal flags, do not use outside cgroup core proper */
116 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
117 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
118 };
119 
120 /*
121  * cgroup_file is the handle for a file instance created in a cgroup which
122  * is used, for example, to generate file changed notifications.  This can
123  * be obtained by setting cftype->file_offset.
124  */
125 struct cgroup_file {
126 	/* do not access any fields from outside cgroup core */
127 	struct kernfs_node *kn;
128 	unsigned long notified_at;
129 	struct timer_list notify_timer;
130 };
131 
132 /*
133  * Per-subsystem/per-cgroup state maintained by the system.  This is the
134  * fundamental structural building block that controllers deal with.
135  *
136  * Fields marked with "PI:" are public and immutable and may be accessed
137  * directly without synchronization.
138  */
139 struct cgroup_subsys_state {
140 	/* PI: the cgroup that this css is attached to */
141 	struct cgroup *cgroup;
142 
143 	/* PI: the cgroup subsystem that this css is attached to */
144 	struct cgroup_subsys *ss;
145 
146 	/* reference count - access via css_[try]get() and css_put() */
147 	struct percpu_ref refcnt;
148 
149 	/* siblings list anchored at the parent's ->children */
150 	struct list_head sibling;
151 	struct list_head children;
152 
153 	/* flush target list anchored at cgrp->rstat_css_list */
154 	struct list_head rstat_css_node;
155 
156 	/*
157 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
158 	 * matching css can be looked up using css_from_id().
159 	 */
160 	int id;
161 
162 	unsigned int flags;
163 
164 	/*
165 	 * Monotonically increasing unique serial number which defines a
166 	 * uniform order among all csses.  It's guaranteed that all
167 	 * ->children lists are in the ascending order of ->serial_nr and
168 	 * used to allow interrupting and resuming iterations.
169 	 */
170 	u64 serial_nr;
171 
172 	/*
173 	 * Incremented by online self and children.  Used to guarantee that
174 	 * parents are not offlined before their children.
175 	 */
176 	atomic_t online_cnt;
177 
178 	/* percpu_ref killing and RCU release */
179 	struct work_struct destroy_work;
180 	struct rcu_work destroy_rwork;
181 
182 	/*
183 	 * PI: the parent css.	Placed here for cache proximity to following
184 	 * fields of the containing structure.
185 	 */
186 	struct cgroup_subsys_state *parent;
187 };
188 
189 /*
190  * A css_set is a structure holding pointers to a set of
191  * cgroup_subsys_state objects. This saves space in the task struct
192  * object and speeds up fork()/exit(), since a single inc/dec and a
193  * list_add()/del() can bump the reference count on the entire cgroup
194  * set for a task.
195  */
196 struct css_set {
197 	/*
198 	 * Set of subsystem states, one for each subsystem. This array is
199 	 * immutable after creation apart from the init_css_set during
200 	 * subsystem registration (at boot time).
201 	 */
202 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
203 
204 	/* reference count */
205 	refcount_t refcount;
206 
207 	/*
208 	 * For a domain cgroup, the following points to self.  If threaded,
209 	 * to the matching cset of the nearest domain ancestor.  The
210 	 * dom_cset provides access to the domain cgroup and its csses to
211 	 * which domain level resource consumptions should be charged.
212 	 */
213 	struct css_set *dom_cset;
214 
215 	/* the default cgroup associated with this css_set */
216 	struct cgroup *dfl_cgrp;
217 
218 	/* internal task count, protected by css_set_lock */
219 	int nr_tasks;
220 
221 	/*
222 	 * Lists running through all tasks using this cgroup group.
223 	 * mg_tasks lists tasks which belong to this cset but are in the
224 	 * process of being migrated out or in.  Protected by
225 	 * css_set_rwsem, but, during migration, once tasks are moved to
226 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
227 	 */
228 	struct list_head tasks;
229 	struct list_head mg_tasks;
230 	struct list_head dying_tasks;
231 
232 	/* all css_task_iters currently walking this cset */
233 	struct list_head task_iters;
234 
235 	/*
236 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
237 	 * attached to an ancestor instead of the cgroup this css_set is
238 	 * associated with.  The following node is anchored at
239 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
240 	 * iterate through all css's attached to a given cgroup.
241 	 */
242 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
243 
244 	/* all threaded csets whose ->dom_cset points to this cset */
245 	struct list_head threaded_csets;
246 	struct list_head threaded_csets_node;
247 
248 	/*
249 	 * List running through all cgroup groups in the same hash
250 	 * slot. Protected by css_set_lock
251 	 */
252 	struct hlist_node hlist;
253 
254 	/*
255 	 * List of cgrp_cset_links pointing at cgroups referenced from this
256 	 * css_set.  Protected by css_set_lock.
257 	 */
258 	struct list_head cgrp_links;
259 
260 	/*
261 	 * List of csets participating in the on-going migration either as
262 	 * source or destination.  Protected by cgroup_mutex.
263 	 */
264 	struct list_head mg_preload_node;
265 	struct list_head mg_node;
266 
267 	/*
268 	 * If this cset is acting as the source of migration the following
269 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
270 	 * respectively the source and destination cgroups of the on-going
271 	 * migration.  mg_dst_cset is the destination cset the target tasks
272 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
273 	 */
274 	struct cgroup *mg_src_cgrp;
275 	struct cgroup *mg_dst_cgrp;
276 	struct css_set *mg_dst_cset;
277 
278 	/* dead and being drained, ignore for migration */
279 	bool dead;
280 
281 	/* For RCU-protected deletion */
282 	struct rcu_head rcu_head;
283 };
284 
285 struct ext_css_set {
286 	struct css_set cset;
287 
288 	struct list_head mg_src_preload_node;
289 	struct list_head mg_dst_preload_node;
290 };
291 
292 struct cgroup_base_stat {
293 	struct task_cputime cputime;
294 };
295 
296 /*
297  * rstat - cgroup scalable recursive statistics.  Accounting is done
298  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
299  * hierarchy on reads.
300  *
301  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
302  * linked into the updated tree.  On the following read, propagation only
303  * considers and consumes the updated tree.  This makes reading O(the
304  * number of descendants which have been active since last read) instead of
305  * O(the total number of descendants).
306  *
307  * This is important because there can be a lot of (draining) cgroups which
308  * aren't active and stat may be read frequently.  The combination can
309  * become very expensive.  By propagating selectively, increasing reading
310  * frequency decreases the cost of each read.
311  *
312  * This struct hosts both the fields which implement the above -
313  * updated_children and updated_next - and the fields which track basic
314  * resource statistics on top of it - bsync, bstat and last_bstat.
315  */
316 struct cgroup_rstat_cpu {
317 	/*
318 	 * ->bsync protects ->bstat.  These are the only fields which get
319 	 * updated in the hot path.
320 	 */
321 	struct u64_stats_sync bsync;
322 	struct cgroup_base_stat bstat;
323 
324 	/*
325 	 * Snapshots at the last reading.  These are used to calculate the
326 	 * deltas to propagate to the global counters.
327 	 */
328 	struct cgroup_base_stat last_bstat;
329 
330 	/*
331 	 * Child cgroups with stat updates on this cpu since the last read
332 	 * are linked on the parent's ->updated_children through
333 	 * ->updated_next.
334 	 *
335 	 * In addition to being more compact, singly-linked list pointing
336 	 * to the cgroup makes it unnecessary for each per-cpu struct to
337 	 * point back to the associated cgroup.
338 	 *
339 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
340 	 */
341 	struct cgroup *updated_children;	/* terminated by self cgroup */
342 	struct cgroup *updated_next;		/* NULL iff not on the list */
343 };
344 
345 struct cgroup_freezer_state {
346 	/* Should the cgroup and its descendants be frozen. */
347 	bool freeze;
348 
349 	/* Should the cgroup actually be frozen? */
350 	int e_freeze;
351 
352 	/* Fields below are protected by css_set_lock */
353 
354 	/* Number of frozen descendant cgroups */
355 	int nr_frozen_descendants;
356 
357 	/*
358 	 * Number of tasks, which are counted as frozen:
359 	 * frozen, SIGSTOPped, and PTRACEd.
360 	 */
361 	int nr_frozen_tasks;
362 };
363 
364 struct cgroup {
365 	/* self css with NULL ->ss, points back to this cgroup */
366 	struct cgroup_subsys_state self;
367 
368 	unsigned long flags;		/* "unsigned long" so bitops work */
369 
370 	/*
371 	 * The depth this cgroup is at.  The root is at depth zero and each
372 	 * step down the hierarchy increments the level.  This along with
373 	 * ancestor_ids[] can determine whether a given cgroup is a
374 	 * descendant of another without traversing the hierarchy.
375 	 */
376 	int level;
377 
378 	/* Maximum allowed descent tree depth */
379 	int max_depth;
380 
381 	/*
382 	 * Keep track of total numbers of visible and dying descent cgroups.
383 	 * Dying cgroups are cgroups which were deleted by a user,
384 	 * but are still existing because someone else is holding a reference.
385 	 * max_descendants is a maximum allowed number of descent cgroups.
386 	 *
387 	 * nr_descendants and nr_dying_descendants are protected
388 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
389 	 * any of cgroup_mutex and css_set_lock; for writing both locks
390 	 * should be held.
391 	 */
392 	int nr_descendants;
393 	int nr_dying_descendants;
394 	int max_descendants;
395 
396 	/*
397 	 * Each non-empty css_set associated with this cgroup contributes
398 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
399 	 * doesn't have any tasks.
400 	 *
401 	 * All children which have non-zero nr_populated_csets and/or
402 	 * nr_populated_children of their own contribute one to either
403 	 * nr_populated_domain_children or nr_populated_threaded_children
404 	 * depending on their type.  Each counter is zero iff all cgroups
405 	 * of the type in the subtree proper don't have any tasks.
406 	 */
407 	int nr_populated_csets;
408 	int nr_populated_domain_children;
409 	int nr_populated_threaded_children;
410 
411 	int nr_threaded_children;	/* # of live threaded child cgroups */
412 
413 	struct kernfs_node *kn;		/* cgroup kernfs entry */
414 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
415 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
416 
417 	/*
418 	 * The bitmask of subsystems enabled on the child cgroups.
419 	 * ->subtree_control is the one configured through
420 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
421 	 * one which may have more subsystems enabled.  Controller knobs
422 	 * are made available iff it's enabled in ->subtree_control.
423 	 */
424 	u16 subtree_control;
425 	u16 subtree_ss_mask;
426 	u16 old_subtree_control;
427 	u16 old_subtree_ss_mask;
428 
429 	/* Private pointers for each registered subsystem */
430 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
431 
432 	struct cgroup_root *root;
433 
434 	/*
435 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
436 	 * cgroup.  Protected by css_set_lock.
437 	 */
438 	struct list_head cset_links;
439 
440 	/*
441 	 * On the default hierarchy, a css_set for a cgroup with some
442 	 * susbsys disabled will point to css's which are associated with
443 	 * the closest ancestor which has the subsys enabled.  The
444 	 * following lists all css_sets which point to this cgroup's css
445 	 * for the given subsystem.
446 	 */
447 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
448 
449 	/*
450 	 * If !threaded, self.  If threaded, it points to the nearest
451 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
452 	 * from process granularity and no-internal-task constraint.
453 	 * Domain level resource consumptions which aren't tied to a
454 	 * specific task are charged to the dom_cgrp.
455 	 */
456 	struct cgroup *dom_cgrp;
457 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
458 
459 	/* per-cpu recursive resource statistics */
460 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
461 	struct list_head rstat_css_list;
462 
463 	/* cgroup basic resource statistics */
464 	struct cgroup_base_stat last_bstat;
465 	struct cgroup_base_stat bstat;
466 	struct prev_cputime prev_cputime;	/* for printing out cputime */
467 
468 	/*
469 	 * list of pidlists, up to two for each namespace (one for procs, one
470 	 * for tasks); created on demand.
471 	 */
472 	struct list_head pidlists;
473 	struct mutex pidlist_mutex;
474 
475 	/* used to wait for offlining of csses */
476 	wait_queue_head_t offline_waitq;
477 
478 	/* used to schedule release agent */
479 	struct work_struct release_agent_work;
480 
481 	/* used to track pressure stalls */
482 	struct psi_group psi;
483 
484 	/* used to store eBPF programs */
485 	struct cgroup_bpf bpf;
486 
487 	/* If there is block congestion on this cgroup. */
488 	atomic_t congestion_count;
489 
490 	/* Used to store internal freezer state */
491 	struct cgroup_freezer_state freezer;
492 
493 	/* ids of the ancestors at each level including self */
494 	u64 ancestor_ids[];
495 };
496 
497 /*
498  * A cgroup_root represents the root of a cgroup hierarchy, and may be
499  * associated with a kernfs_root to form an active hierarchy.  This is
500  * internal to cgroup core.  Don't access directly from controllers.
501  */
502 struct cgroup_root {
503 	struct kernfs_root *kf_root;
504 
505 	/* The bitmask of subsystems attached to this hierarchy */
506 	unsigned int subsys_mask;
507 
508 	/* Unique id for this hierarchy. */
509 	int hierarchy_id;
510 
511 	/* The root cgroup.  Root is destroyed on its release. */
512 	struct cgroup cgrp;
513 
514 	/* for cgrp->ancestor_ids[0] */
515 	u64 cgrp_ancestor_id_storage;
516 
517 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
518 	atomic_t nr_cgrps;
519 
520 	/* A list running through the active hierarchies */
521 	struct list_head root_list;
522 
523 	/* Hierarchy-specific flags */
524 	unsigned int flags;
525 
526 	/* The path to use for release notifications. */
527 	char release_agent_path[PATH_MAX];
528 
529 	/* The name for this hierarchy - may be empty */
530 	char name[MAX_CGROUP_ROOT_NAMELEN];
531 };
532 
533 /*
534  * struct cftype: handler definitions for cgroup control files
535  *
536  * When reading/writing to a file:
537  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
538  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
539  */
540 struct cftype {
541 	/*
542 	 * By convention, the name should begin with the name of the
543 	 * subsystem, followed by a period.  Zero length string indicates
544 	 * end of cftype array.
545 	 */
546 	char name[MAX_CFTYPE_NAME];
547 	unsigned long private;
548 
549 	/*
550 	 * The maximum length of string, excluding trailing nul, that can
551 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
552 	 */
553 	size_t max_write_len;
554 
555 	/* CFTYPE_* flags */
556 	unsigned int flags;
557 
558 	/*
559 	 * If non-zero, should contain the offset from the start of css to
560 	 * a struct cgroup_file field.  cgroup will record the handle of
561 	 * the created file into it.  The recorded handle can be used as
562 	 * long as the containing css remains accessible.
563 	 */
564 	unsigned int file_offset;
565 
566 	/*
567 	 * Fields used for internal bookkeeping.  Initialized automatically
568 	 * during registration.
569 	 */
570 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
571 	struct list_head node;		/* anchored at ss->cfts */
572 	struct kernfs_ops *kf_ops;
573 
574 	int (*open)(struct kernfs_open_file *of);
575 	void (*release)(struct kernfs_open_file *of);
576 
577 	/*
578 	 * read_u64() is a shortcut for the common case of returning a
579 	 * single integer. Use it in place of read()
580 	 */
581 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
582 	/*
583 	 * read_s64() is a signed version of read_u64()
584 	 */
585 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
586 
587 	/* generic seq_file read interface */
588 	int (*seq_show)(struct seq_file *sf, void *v);
589 
590 	/* optional ops, implement all or none */
591 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
592 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
593 	void (*seq_stop)(struct seq_file *sf, void *v);
594 
595 	/*
596 	 * write_u64() is a shortcut for the common case of accepting
597 	 * a single integer (as parsed by simple_strtoull) from
598 	 * userspace. Use in place of write(); return 0 or error.
599 	 */
600 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
601 			 u64 val);
602 	/*
603 	 * write_s64() is a signed version of write_u64()
604 	 */
605 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
606 			 s64 val);
607 
608 	/*
609 	 * write() is the generic write callback which maps directly to
610 	 * kernfs write operation and overrides all other operations.
611 	 * Maximum write size is determined by ->max_write_len.  Use
612 	 * of_css/cft() to access the associated css and cft.
613 	 */
614 	ssize_t (*write)(struct kernfs_open_file *of,
615 			 char *buf, size_t nbytes, loff_t off);
616 
617 	__poll_t (*poll)(struct kernfs_open_file *of,
618 			 struct poll_table_struct *pt);
619 
620 #ifdef CONFIG_DEBUG_LOCK_ALLOC
621 	struct lock_class_key	lockdep_key;
622 #endif
623 };
624 
625 /*
626  * Control Group subsystem type.
627  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
628  */
629 struct cgroup_subsys {
630 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
631 	int (*css_online)(struct cgroup_subsys_state *css);
632 	void (*css_offline)(struct cgroup_subsys_state *css);
633 	void (*css_released)(struct cgroup_subsys_state *css);
634 	void (*css_free)(struct cgroup_subsys_state *css);
635 	void (*css_reset)(struct cgroup_subsys_state *css);
636 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
637 	int (*css_extra_stat_show)(struct seq_file *seq,
638 				   struct cgroup_subsys_state *css);
639 
640 	int (*can_attach)(struct cgroup_taskset *tset);
641 	void (*cancel_attach)(struct cgroup_taskset *tset);
642 	void (*attach)(struct cgroup_taskset *tset);
643 	void (*post_attach)(void);
644 	int (*can_fork)(struct task_struct *task,
645 			struct css_set *cset);
646 	void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
647 	void (*fork)(struct task_struct *task);
648 	void (*exit)(struct task_struct *task);
649 	void (*release)(struct task_struct *task);
650 	void (*bind)(struct cgroup_subsys_state *root_css);
651 
652 	bool early_init:1;
653 
654 	/*
655 	 * If %true, the controller, on the default hierarchy, doesn't show
656 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
657 	 * implicitly enabled on all cgroups on the default hierarchy, and
658 	 * bypasses the "no internal process" constraint.  This is for
659 	 * utility type controllers which is transparent to userland.
660 	 *
661 	 * An implicit controller can be stolen from the default hierarchy
662 	 * anytime and thus must be okay with offline csses from previous
663 	 * hierarchies coexisting with csses for the current one.
664 	 */
665 	bool implicit_on_dfl:1;
666 
667 	/*
668 	 * If %true, the controller, supports threaded mode on the default
669 	 * hierarchy.  In a threaded subtree, both process granularity and
670 	 * no-internal-process constraint are ignored and a threaded
671 	 * controllers should be able to handle that.
672 	 *
673 	 * Note that as an implicit controller is automatically enabled on
674 	 * all cgroups on the default hierarchy, it should also be
675 	 * threaded.  implicit && !threaded is not supported.
676 	 */
677 	bool threaded:1;
678 
679 	/*
680 	 * If %false, this subsystem is properly hierarchical -
681 	 * configuration, resource accounting and restriction on a parent
682 	 * cgroup cover those of its children.  If %true, hierarchy support
683 	 * is broken in some ways - some subsystems ignore hierarchy
684 	 * completely while others are only implemented half-way.
685 	 *
686 	 * It's now disallowed to create nested cgroups if the subsystem is
687 	 * broken and cgroup core will emit a warning message on such
688 	 * cases.  Eventually, all subsystems will be made properly
689 	 * hierarchical and this will go away.
690 	 */
691 	bool broken_hierarchy:1;
692 	bool warned_broken_hierarchy:1;
693 
694 	/* the following two fields are initialized automtically during boot */
695 	int id;
696 	const char *name;
697 
698 	/* optional, initialized automatically during boot if not set */
699 	const char *legacy_name;
700 
701 	/* link to parent, protected by cgroup_lock() */
702 	struct cgroup_root *root;
703 
704 	/* idr for css->id */
705 	struct idr css_idr;
706 
707 	/*
708 	 * List of cftypes.  Each entry is the first entry of an array
709 	 * terminated by zero length name.
710 	 */
711 	struct list_head cfts;
712 
713 	/*
714 	 * Base cftypes which are automatically registered.  The two can
715 	 * point to the same array.
716 	 */
717 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
718 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
719 
720 	/*
721 	 * A subsystem may depend on other subsystems.  When such subsystem
722 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
723 	 * together if available.  Subsystems enabled due to dependency are
724 	 * not visible to userland until explicitly enabled.  The following
725 	 * specifies the mask of subsystems that this one depends on.
726 	 */
727 	unsigned int depends_on;
728 };
729 
730 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
731 
732 /**
733  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
734  * @tsk: target task
735  *
736  * Allows cgroup operations to synchronize against threadgroup changes
737  * using a percpu_rw_semaphore.
738  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)739 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
740 {
741 	percpu_down_read(&cgroup_threadgroup_rwsem);
742 }
743 
744 /**
745  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
746  * @tsk: target task
747  *
748  * Counterpart of cgroup_threadcgroup_change_begin().
749  */
cgroup_threadgroup_change_end(struct task_struct * tsk)750 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
751 {
752 	percpu_up_read(&cgroup_threadgroup_rwsem);
753 }
754 
755 #else	/* CONFIG_CGROUPS */
756 
757 #define CGROUP_SUBSYS_COUNT 0
758 
cgroup_threadgroup_change_begin(struct task_struct * tsk)759 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
760 {
761 	might_sleep();
762 }
763 
cgroup_threadgroup_change_end(struct task_struct * tsk)764 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
765 
766 #endif	/* CONFIG_CGROUPS */
767 
768 #ifdef CONFIG_SOCK_CGROUP_DATA
769 
770 /*
771  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
772  * per-socket cgroup information except for memcg association.
773  *
774  * On legacy hierarchies, net_prio and net_cls controllers directly set
775  * attributes on each sock which can then be tested by the network layer.
776  * On the default hierarchy, each sock is associated with the cgroup it was
777  * created in and the networking layer can match the cgroup directly.
778  *
779  * To avoid carrying all three cgroup related fields separately in sock,
780  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
781  * On boot, sock_cgroup_data records the cgroup that the sock was created
782  * in so that cgroup2 matches can be made; however, once either net_prio or
783  * net_cls starts being used, the area is overriden to carry prioidx and/or
784  * classid.  The two modes are distinguished by whether the lowest bit is
785  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
786  * classid.
787  *
788  * While userland may start using net_prio or net_cls at any time, once
789  * either is used, cgroup2 matching no longer works.  There is no reason to
790  * mix the two and this is in line with how legacy and v2 compatibility is
791  * handled.  On mode switch, cgroup references which are already being
792  * pointed to by socks may be leaked.  While this can be remedied by adding
793  * synchronization around sock_cgroup_data, given that the number of leaked
794  * cgroups is bound and highly unlikely to be high, this seems to be the
795  * better trade-off.
796  */
797 struct sock_cgroup_data {
798 	union {
799 #ifdef __LITTLE_ENDIAN
800 		struct {
801 			u8	is_data : 1;
802 			u8	no_refcnt : 1;
803 			u8	unused : 6;
804 			u8	padding;
805 			u16	prioidx;
806 			u32	classid;
807 		} __packed;
808 #else
809 		struct {
810 			u32	classid;
811 			u16	prioidx;
812 			u8	padding;
813 			u8	unused : 6;
814 			u8	no_refcnt : 1;
815 			u8	is_data : 1;
816 		} __packed;
817 #endif
818 		u64		val;
819 	};
820 };
821 
822 /*
823  * There's a theoretical window where the following accessors race with
824  * updaters and return part of the previous pointer as the prioidx or
825  * classid.  Such races are short-lived and the result isn't critical.
826  */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)827 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
828 {
829 	/* fallback to 1 which is always the ID of the root cgroup */
830 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
831 }
832 
sock_cgroup_classid(const struct sock_cgroup_data * skcd)833 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
834 {
835 	/* fallback to 0 which is the unconfigured default classid */
836 	return (skcd->is_data & 1) ? skcd->classid : 0;
837 }
838 
839 /*
840  * If invoked concurrently, the updaters may clobber each other.  The
841  * caller is responsible for synchronization.
842  */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)843 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
844 					   u16 prioidx)
845 {
846 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
847 
848 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
849 		return;
850 
851 	if (!(skcd_buf.is_data & 1)) {
852 		skcd_buf.val = 0;
853 		skcd_buf.is_data = 1;
854 	}
855 
856 	skcd_buf.prioidx = prioidx;
857 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
858 }
859 
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)860 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
861 					   u32 classid)
862 {
863 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
864 
865 	if (sock_cgroup_classid(&skcd_buf) == classid)
866 		return;
867 
868 	if (!(skcd_buf.is_data & 1)) {
869 		skcd_buf.val = 0;
870 		skcd_buf.is_data = 1;
871 	}
872 
873 	skcd_buf.classid = classid;
874 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
875 }
876 
877 #else	/* CONFIG_SOCK_CGROUP_DATA */
878 
879 struct sock_cgroup_data {
880 };
881 
882 #endif	/* CONFIG_SOCK_CGROUP_DATA */
883 
884 #endif	/* _LINUX_CGROUP_DEFS_H */
885