• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12 
13 /**
14  * em_perf_state - Performance state of a performance domain
15  * @frequency:	The frequency in KHz, for consistency with CPUFreq
16  * @power:	The power consumed at this level, in milli-watts (by 1 CPU or
17 		by a registered device). It can be a total power: static and
18 		dynamic.
19  * @cost:	The cost coefficient associated with this level, used during
20  *		energy calculation. Equal to: power * max_frequency / frequency
21  */
22 struct em_perf_state {
23 	unsigned long frequency;
24 	unsigned long power;
25 	unsigned long cost;
26 };
27 
28 /**
29  * em_perf_domain - Performance domain
30  * @table:		List of performance states, in ascending order
31  * @nr_perf_states:	Number of performance states
32  * @milliwatts:		Flag indicating the power values are in milli-Watts
33  *			or some other scale.
34  * @cpus:		Cpumask covering the CPUs of the domain. It's here
35  *			for performance reasons to avoid potential cache
36  *			misses during energy calculations in the scheduler
37  *			and simplifies allocating/freeing that memory region.
38  *
39  * In case of CPU device, a "performance domain" represents a group of CPUs
40  * whose performance is scaled together. All CPUs of a performance domain
41  * must have the same micro-architecture. Performance domains often have
42  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
43  * field is unused.
44  */
45 struct em_perf_domain {
46 	struct em_perf_state *table;
47 	int nr_perf_states;
48 	int milliwatts;
49 	unsigned long cpus[];
50 };
51 
52 #define em_span_cpus(em) (to_cpumask((em)->cpus))
53 
54 #ifdef CONFIG_ENERGY_MODEL
55 #define EM_MAX_POWER 0xFFFF
56 
57 /*
58  * Increase resolution of energy estimation calculations for 64-bit
59  * architectures. The extra resolution improves decision made by EAS for the
60  * task placement when two Performance Domains might provide similar energy
61  * estimation values (w/o better resolution the values could be equal).
62  *
63  * We increase resolution only if we have enough bits to allow this increased
64  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
65  * are pretty high and the returns do not justify the increased costs.
66  */
67 #ifdef CONFIG_64BIT
68 #define em_scale_power(p) ((p) * 1000)
69 #else
70 #define em_scale_power(p) (p)
71 #endif
72 
73 struct em_data_callback {
74 	/**
75 	 * active_power() - Provide power at the next performance state of
76 	 *		a device
77 	 * @power	: Active power at the performance state in mW
78 	 *		(modified)
79 	 * @freq	: Frequency at the performance state in kHz
80 	 *		(modified)
81 	 * @dev		: Device for which we do this operation (can be a CPU)
82 	 *
83 	 * active_power() must find the lowest performance state of 'dev' above
84 	 * 'freq' and update 'power' and 'freq' to the matching active power
85 	 * and frequency.
86 	 *
87 	 * In case of CPUs, the power is the one of a single CPU in the domain,
88 	 * expressed in milli-watts. It is expected to fit in the
89 	 * [0, EM_MAX_POWER] range.
90 	 *
91 	 * Return 0 on success.
92 	 */
93 	int (*active_power)(unsigned long *power, unsigned long *freq,
94 			    struct device *dev);
95 };
96 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
97 
98 struct em_perf_domain *em_cpu_get(int cpu);
99 struct em_perf_domain *em_pd_get(struct device *dev);
100 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
101 				struct em_data_callback *cb, cpumask_t *span,
102 				bool milliwatts);
103 void em_dev_unregister_perf_domain(struct device *dev);
104 
105 /**
106  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
107 		performance domain
108  * @pd		: performance domain for which energy has to be estimated
109  * @max_util	: highest utilization among CPUs of the domain
110  * @sum_util	: sum of the utilization of all CPUs in the domain
111  *
112  * This function must be used only for CPU devices. There is no validation,
113  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
114  * the scheduler code quite frequently and that is why there is not checks.
115  *
116  * Return: the sum of the energy consumed by the CPUs of the domain assuming
117  * a capacity state satisfying the max utilization of the domain.
118  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util)119 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
120 				unsigned long max_util, unsigned long sum_util)
121 {
122 	unsigned long freq, scale_cpu;
123 	struct em_perf_state *ps;
124 	int i, cpu;
125 
126 	if (!sum_util)
127 		return 0;
128 
129 	/*
130 	 * In order to predict the performance state, map the utilization of
131 	 * the most utilized CPU of the performance domain to a requested
132 	 * frequency, like schedutil.
133 	 */
134 	cpu = cpumask_first(to_cpumask(pd->cpus));
135 	scale_cpu = arch_scale_cpu_capacity(cpu);
136 	ps = &pd->table[pd->nr_perf_states - 1];
137 	freq = map_util_freq(max_util, ps->frequency, scale_cpu);
138 
139 	/*
140 	 * Find the lowest performance state of the Energy Model above the
141 	 * requested frequency.
142 	 */
143 	for (i = 0; i < pd->nr_perf_states; i++) {
144 		ps = &pd->table[i];
145 		if (ps->frequency >= freq)
146 			break;
147 	}
148 
149 	/*
150 	 * The capacity of a CPU in the domain at the performance state (ps)
151 	 * can be computed as:
152 	 *
153 	 *             ps->freq * scale_cpu
154 	 *   ps->cap = --------------------                          (1)
155 	 *                 cpu_max_freq
156 	 *
157 	 * So, ignoring the costs of idle states (which are not available in
158 	 * the EM), the energy consumed by this CPU at that performance state
159 	 * is estimated as:
160 	 *
161 	 *             ps->power * cpu_util
162 	 *   cpu_nrg = --------------------                          (2)
163 	 *                   ps->cap
164 	 *
165 	 * since 'cpu_util / ps->cap' represents its percentage of busy time.
166 	 *
167 	 *   NOTE: Although the result of this computation actually is in
168 	 *         units of power, it can be manipulated as an energy value
169 	 *         over a scheduling period, since it is assumed to be
170 	 *         constant during that interval.
171 	 *
172 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
173 	 * of two terms:
174 	 *
175 	 *             ps->power * cpu_max_freq   cpu_util
176 	 *   cpu_nrg = ------------------------ * ---------          (3)
177 	 *                    ps->freq            scale_cpu
178 	 *
179 	 * The first term is static, and is stored in the em_perf_state struct
180 	 * as 'ps->cost'.
181 	 *
182 	 * Since all CPUs of the domain have the same micro-architecture, they
183 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
184 	 * total energy of the domain (which is the simple sum of the energy of
185 	 * all of its CPUs) can be factorized as:
186 	 *
187 	 *            ps->cost * \Sum cpu_util
188 	 *   pd_nrg = ------------------------                       (4)
189 	 *                  scale_cpu
190 	 */
191 	return ps->cost * sum_util / scale_cpu;
192 }
193 
194 /**
195  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
196  *				domain
197  * @pd		: performance domain for which this must be done
198  *
199  * Return: the number of performance states in the performance domain table
200  */
em_pd_nr_perf_states(struct em_perf_domain * pd)201 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
202 {
203 	return pd->nr_perf_states;
204 }
205 
206 #else
207 struct em_data_callback {};
208 #define EM_DATA_CB(_active_power_cb) { }
209 
210 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool milliwatts)211 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
212 				struct em_data_callback *cb, cpumask_t *span,
213 				bool milliwatts)
214 {
215 	return -EINVAL;
216 }
em_dev_unregister_perf_domain(struct device * dev)217 static inline void em_dev_unregister_perf_domain(struct device *dev)
218 {
219 }
em_cpu_get(int cpu)220 static inline struct em_perf_domain *em_cpu_get(int cpu)
221 {
222 	return NULL;
223 }
em_pd_get(struct device * dev)224 static inline struct em_perf_domain *em_pd_get(struct device *dev)
225 {
226 	return NULL;
227 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util)228 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
229 			unsigned long max_util, unsigned long sum_util)
230 {
231 	return 0;
232 }
em_pd_nr_perf_states(struct em_perf_domain * pd)233 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
234 {
235 	return 0;
236 }
237 #endif
238 
239 #endif
240