1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/android_kabi.h>
24 #include <asm/page.h>
25
26 /* Free memory management - zoned buddy allocator. */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33
34 /*
35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36 * costly to service. That is between allocation orders which should
37 * coalesce naturally under reasonable reclaim pressure and those which
38 * will not.
39 */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41
42 #define MAX_KSWAPD_THREADS 16
43
44 enum migratetype {
45 MIGRATE_UNMOVABLE,
46 MIGRATE_MOVABLE,
47 MIGRATE_RECLAIMABLE,
48 #ifdef CONFIG_CMA
49 /*
50 * MIGRATE_CMA migration type is designed to mimic the way
51 * ZONE_MOVABLE works. Only movable pages can be allocated
52 * from MIGRATE_CMA pageblocks and page allocator never
53 * implicitly change migration type of MIGRATE_CMA pageblock.
54 *
55 * The way to use it is to change migratetype of a range of
56 * pageblocks to MIGRATE_CMA which can be done by
57 * __free_pageblock_cma() function. What is important though
58 * is that a range of pageblocks must be aligned to
59 * MAX_ORDER_NR_PAGES should biggest page be bigger then
60 * a single pageblock.
61 */
62 MIGRATE_CMA,
63 #endif
64 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
65 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
66 #ifdef CONFIG_MEMORY_ISOLATION
67 MIGRATE_ISOLATE, /* can't allocate from here */
68 #endif
69 MIGRATE_TYPES
70 };
71
72 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
73 extern const char * const migratetype_names[MIGRATE_TYPES];
74
75 #ifdef CONFIG_CMA
76 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
77 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
78 # define get_cma_migrate_type() MIGRATE_CMA
79 #else
80 # define is_migrate_cma(migratetype) false
81 # define is_migrate_cma_page(_page) false
82 # define get_cma_migrate_type() MIGRATE_MOVABLE
83 #endif
84
is_migrate_movable(int mt)85 static inline bool is_migrate_movable(int mt)
86 {
87 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
88 }
89
90 #define for_each_migratetype_order(order, type) \
91 for (order = 0; order < MAX_ORDER; order++) \
92 for (type = 0; type < MIGRATE_TYPES; type++)
93
94 extern int page_group_by_mobility_disabled;
95
96 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
97
98 #define get_pageblock_migratetype(page) \
99 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
100
101 struct free_area {
102 struct list_head free_list[MIGRATE_TYPES];
103 unsigned long nr_free;
104 };
105
get_page_from_free_area(struct free_area * area,int migratetype)106 static inline struct page *get_page_from_free_area(struct free_area *area,
107 int migratetype)
108 {
109 return list_first_entry_or_null(&area->free_list[migratetype],
110 struct page, lru);
111 }
112
free_area_empty(struct free_area * area,int migratetype)113 static inline bool free_area_empty(struct free_area *area, int migratetype)
114 {
115 return list_empty(&area->free_list[migratetype]);
116 }
117
118 struct pglist_data;
119
120 /*
121 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
122 * So add a wild amount of padding here to ensure that they fall into separate
123 * cachelines. There are very few zone structures in the machine, so space
124 * consumption is not a concern here.
125 */
126 #if defined(CONFIG_SMP)
127 struct zone_padding {
128 char x[0];
129 } ____cacheline_internodealigned_in_smp;
130 #define ZONE_PADDING(name) struct zone_padding name;
131 #else
132 #define ZONE_PADDING(name)
133 #endif
134
135 #ifdef CONFIG_NUMA
136 enum numa_stat_item {
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143 NR_VM_NUMA_STAT_ITEMS
144 };
145 #else
146 #define NR_VM_NUMA_STAT_ITEMS 0
147 #endif
148
149 enum zone_stat_item {
150 /* First 128 byte cacheline (assuming 64 bit words) */
151 NR_FREE_PAGES,
152 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
153 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
154 NR_ZONE_ACTIVE_ANON,
155 NR_ZONE_INACTIVE_FILE,
156 NR_ZONE_ACTIVE_FILE,
157 NR_ZONE_UNEVICTABLE,
158 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
159 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
160 NR_PAGETABLE, /* used for pagetables */
161 /* Second 128 byte cacheline */
162 NR_BOUNCE,
163 NR_ZSPAGES, /* allocated in zsmalloc */
164 NR_FREE_CMA_PAGES,
165 NR_VM_ZONE_STAT_ITEMS };
166
167 enum node_stat_item {
168 NR_LRU_BASE,
169 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
170 NR_ACTIVE_ANON, /* " " " " " */
171 NR_INACTIVE_FILE, /* " " " " " */
172 NR_ACTIVE_FILE, /* " " " " " */
173 NR_UNEVICTABLE, /* " " " " " */
174 NR_SLAB_RECLAIMABLE_B,
175 NR_SLAB_UNRECLAIMABLE_B,
176 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
177 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
178 WORKINGSET_NODES,
179 WORKINGSET_REFAULT_BASE,
180 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
181 WORKINGSET_REFAULT_FILE,
182 WORKINGSET_ACTIVATE_BASE,
183 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
184 WORKINGSET_ACTIVATE_FILE,
185 WORKINGSET_RESTORE_BASE,
186 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
187 WORKINGSET_RESTORE_FILE,
188 WORKINGSET_NODERECLAIM,
189 NR_ANON_MAPPED, /* Mapped anonymous pages */
190 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
191 only modified from process context */
192 NR_FILE_PAGES,
193 NR_FILE_DIRTY,
194 NR_WRITEBACK,
195 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
196 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
197 NR_SHMEM_THPS,
198 NR_SHMEM_PMDMAPPED,
199 NR_FILE_THPS,
200 NR_FILE_PMDMAPPED,
201 NR_ANON_THPS,
202 NR_VMSCAN_WRITE,
203 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
204 NR_DIRTIED, /* page dirtyings since bootup */
205 NR_WRITTEN, /* page writings since bootup */
206 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
207 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
208 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
209 NR_KERNEL_STACK_KB, /* measured in KiB */
210 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
211 NR_KERNEL_SCS_KB, /* measured in KiB */
212 #endif
213 NR_VM_NODE_STAT_ITEMS
214 };
215
216 /*
217 * Returns true if the value is measured in bytes (most vmstat values are
218 * measured in pages). This defines the API part, the internal representation
219 * might be different.
220 */
vmstat_item_in_bytes(int idx)221 static __always_inline bool vmstat_item_in_bytes(int idx)
222 {
223 /*
224 * Global and per-node slab counters track slab pages.
225 * It's expected that changes are multiples of PAGE_SIZE.
226 * Internally values are stored in pages.
227 *
228 * Per-memcg and per-lruvec counters track memory, consumed
229 * by individual slab objects. These counters are actually
230 * byte-precise.
231 */
232 return (idx == NR_SLAB_RECLAIMABLE_B ||
233 idx == NR_SLAB_UNRECLAIMABLE_B);
234 }
235
236 /*
237 * We do arithmetic on the LRU lists in various places in the code,
238 * so it is important to keep the active lists LRU_ACTIVE higher in
239 * the array than the corresponding inactive lists, and to keep
240 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
241 *
242 * This has to be kept in sync with the statistics in zone_stat_item
243 * above and the descriptions in vmstat_text in mm/vmstat.c
244 */
245 #define LRU_BASE 0
246 #define LRU_ACTIVE 1
247 #define LRU_FILE 2
248
249 enum lru_list {
250 LRU_INACTIVE_ANON = LRU_BASE,
251 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
252 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
253 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
254 LRU_UNEVICTABLE,
255 NR_LRU_LISTS
256 };
257
258 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
259
260 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
261
is_file_lru(enum lru_list lru)262 static inline bool is_file_lru(enum lru_list lru)
263 {
264 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
265 }
266
is_active_lru(enum lru_list lru)267 static inline bool is_active_lru(enum lru_list lru)
268 {
269 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
270 }
271
272 #define ANON_AND_FILE 2
273
274 enum lruvec_flags {
275 LRUVEC_CONGESTED, /* lruvec has many dirty pages
276 * backed by a congested BDI
277 */
278 };
279
280 struct lruvec {
281 struct list_head lists[NR_LRU_LISTS];
282 /*
283 * These track the cost of reclaiming one LRU - file or anon -
284 * over the other. As the observed cost of reclaiming one LRU
285 * increases, the reclaim scan balance tips toward the other.
286 */
287 unsigned long anon_cost;
288 unsigned long file_cost;
289 /* Non-resident age, driven by LRU movement */
290 atomic_long_t nonresident_age;
291 /* Refaults at the time of last reclaim cycle */
292 unsigned long refaults[ANON_AND_FILE];
293 /* Various lruvec state flags (enum lruvec_flags) */
294 unsigned long flags;
295 #ifdef CONFIG_MEMCG
296 struct pglist_data *pgdat;
297 #endif
298 };
299
300 /* Isolate unmapped pages */
301 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
302 /* Isolate for asynchronous migration */
303 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
304 /* Isolate unevictable pages */
305 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
306
307 /* LRU Isolation modes. */
308 typedef unsigned __bitwise isolate_mode_t;
309
310 enum zone_watermarks {
311 WMARK_MIN,
312 WMARK_LOW,
313 WMARK_HIGH,
314 NR_WMARK
315 };
316
317 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
318 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
319 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
320 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
321
322 struct per_cpu_pages {
323 int count; /* number of pages in the list */
324 int high; /* high watermark, emptying needed */
325 int batch; /* chunk size for buddy add/remove */
326
327 /* Lists of pages, one per migrate type stored on the pcp-lists */
328 struct list_head lists[MIGRATE_PCPTYPES];
329 };
330
331 struct per_cpu_pageset {
332 struct per_cpu_pages pcp;
333 #ifdef CONFIG_NUMA
334 s8 expire;
335 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
336 #endif
337 #ifdef CONFIG_SMP
338 s8 stat_threshold;
339 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
340 #endif
341 };
342
343 struct per_cpu_nodestat {
344 s8 stat_threshold;
345 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
346 };
347
348 #endif /* !__GENERATING_BOUNDS.H */
349
350 enum zone_type {
351 /*
352 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
353 * to DMA to all of the addressable memory (ZONE_NORMAL).
354 * On architectures where this area covers the whole 32 bit address
355 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
356 * DMA addressing constraints. This distinction is important as a 32bit
357 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
358 * platforms may need both zones as they support peripherals with
359 * different DMA addressing limitations.
360 */
361 #ifdef CONFIG_ZONE_DMA
362 ZONE_DMA,
363 #endif
364 #ifdef CONFIG_ZONE_DMA32
365 ZONE_DMA32,
366 #endif
367 /*
368 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
369 * performed on pages in ZONE_NORMAL if the DMA devices support
370 * transfers to all addressable memory.
371 */
372 ZONE_NORMAL,
373 #ifdef CONFIG_HIGHMEM
374 /*
375 * A memory area that is only addressable by the kernel through
376 * mapping portions into its own address space. This is for example
377 * used by i386 to allow the kernel to address the memory beyond
378 * 900MB. The kernel will set up special mappings (page
379 * table entries on i386) for each page that the kernel needs to
380 * access.
381 */
382 ZONE_HIGHMEM,
383 #endif
384 /*
385 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
386 * movable pages with few exceptional cases described below. Main use
387 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
388 * likely to succeed, and to locally limit unmovable allocations - e.g.,
389 * to increase the number of THP/huge pages. Notable special cases are:
390 *
391 * 1. Pinned pages: (long-term) pinning of movable pages might
392 * essentially turn such pages unmovable. Memory offlining might
393 * retry a long time.
394 * 2. memblock allocations: kernelcore/movablecore setups might create
395 * situations where ZONE_MOVABLE contains unmovable allocations
396 * after boot. Memory offlining and allocations fail early.
397 * 3. Memory holes: kernelcore/movablecore setups might create very rare
398 * situations where ZONE_MOVABLE contains memory holes after boot,
399 * for example, if we have sections that are only partially
400 * populated. Memory offlining and allocations fail early.
401 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
402 * memory offlining, such pages cannot be allocated.
403 * 5. Unmovable PG_offline pages: in paravirtualized environments,
404 * hotplugged memory blocks might only partially be managed by the
405 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
406 * parts not manged by the buddy are unmovable PG_offline pages. In
407 * some cases (virtio-mem), such pages can be skipped during
408 * memory offlining, however, cannot be moved/allocated. These
409 * techniques might use alloc_contig_range() to hide previously
410 * exposed pages from the buddy again (e.g., to implement some sort
411 * of memory unplug in virtio-mem).
412 *
413 * In general, no unmovable allocations that degrade memory offlining
414 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
415 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
416 * if has_unmovable_pages() states that there are no unmovable pages,
417 * there can be false negatives).
418 */
419 ZONE_MOVABLE,
420 #ifdef CONFIG_ZONE_DEVICE
421 ZONE_DEVICE,
422 #endif
423 __MAX_NR_ZONES
424
425 };
426
427 #ifndef __GENERATING_BOUNDS_H
428
429 #define ASYNC_AND_SYNC 2
430
431 struct zone {
432 /* Read-mostly fields */
433
434 /* zone watermarks, access with *_wmark_pages(zone) macros */
435 unsigned long _watermark[NR_WMARK];
436 unsigned long watermark_boost;
437
438 unsigned long nr_reserved_highatomic;
439
440 /*
441 * We don't know if the memory that we're going to allocate will be
442 * freeable or/and it will be released eventually, so to avoid totally
443 * wasting several GB of ram we must reserve some of the lower zone
444 * memory (otherwise we risk to run OOM on the lower zones despite
445 * there being tons of freeable ram on the higher zones). This array is
446 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
447 * changes.
448 */
449 long lowmem_reserve[MAX_NR_ZONES];
450
451 #ifdef CONFIG_NEED_MULTIPLE_NODES
452 int node;
453 #endif
454 struct pglist_data *zone_pgdat;
455 struct per_cpu_pageset __percpu *pageset;
456
457 #ifndef CONFIG_SPARSEMEM
458 /*
459 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
460 * In SPARSEMEM, this map is stored in struct mem_section
461 */
462 unsigned long *pageblock_flags;
463 #endif /* CONFIG_SPARSEMEM */
464
465 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
466 unsigned long zone_start_pfn;
467
468 /*
469 * spanned_pages is the total pages spanned by the zone, including
470 * holes, which is calculated as:
471 * spanned_pages = zone_end_pfn - zone_start_pfn;
472 *
473 * present_pages is physical pages existing within the zone, which
474 * is calculated as:
475 * present_pages = spanned_pages - absent_pages(pages in holes);
476 *
477 * managed_pages is present pages managed by the buddy system, which
478 * is calculated as (reserved_pages includes pages allocated by the
479 * bootmem allocator):
480 * managed_pages = present_pages - reserved_pages;
481 *
482 * cma pages is present pages that are assigned for CMA use
483 * (MIGRATE_CMA).
484 *
485 * So present_pages may be used by memory hotplug or memory power
486 * management logic to figure out unmanaged pages by checking
487 * (present_pages - managed_pages). And managed_pages should be used
488 * by page allocator and vm scanner to calculate all kinds of watermarks
489 * and thresholds.
490 *
491 * Locking rules:
492 *
493 * zone_start_pfn and spanned_pages are protected by span_seqlock.
494 * It is a seqlock because it has to be read outside of zone->lock,
495 * and it is done in the main allocator path. But, it is written
496 * quite infrequently.
497 *
498 * The span_seq lock is declared along with zone->lock because it is
499 * frequently read in proximity to zone->lock. It's good to
500 * give them a chance of being in the same cacheline.
501 *
502 * Write access to present_pages at runtime should be protected by
503 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
504 * present_pages should get_online_mems() to get a stable value.
505 */
506 atomic_long_t managed_pages;
507 unsigned long spanned_pages;
508 unsigned long present_pages;
509 #ifdef CONFIG_CMA
510 unsigned long cma_pages;
511 #endif
512
513 const char *name;
514
515 #ifdef CONFIG_MEMORY_ISOLATION
516 /*
517 * Number of isolated pageblock. It is used to solve incorrect
518 * freepage counting problem due to racy retrieving migratetype
519 * of pageblock. Protected by zone->lock.
520 */
521 unsigned long nr_isolate_pageblock;
522 #endif
523
524 #ifdef CONFIG_MEMORY_HOTPLUG
525 /* see spanned/present_pages for more description */
526 seqlock_t span_seqlock;
527 #endif
528
529 int initialized;
530
531 /* Write-intensive fields used from the page allocator */
532 ZONE_PADDING(_pad1_)
533
534 /* free areas of different sizes */
535 struct free_area free_area[MAX_ORDER];
536
537 /* zone flags, see below */
538 unsigned long flags;
539
540 /* Primarily protects free_area */
541 spinlock_t lock;
542
543 /* Write-intensive fields used by compaction and vmstats. */
544 ZONE_PADDING(_pad2_)
545
546 /*
547 * When free pages are below this point, additional steps are taken
548 * when reading the number of free pages to avoid per-cpu counter
549 * drift allowing watermarks to be breached
550 */
551 unsigned long percpu_drift_mark;
552
553 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
554 /* pfn where compaction free scanner should start */
555 unsigned long compact_cached_free_pfn;
556 /* pfn where compaction migration scanner should start */
557 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
558 unsigned long compact_init_migrate_pfn;
559 unsigned long compact_init_free_pfn;
560 #endif
561
562 #ifdef CONFIG_COMPACTION
563 /*
564 * On compaction failure, 1<<compact_defer_shift compactions
565 * are skipped before trying again. The number attempted since
566 * last failure is tracked with compact_considered.
567 * compact_order_failed is the minimum compaction failed order.
568 */
569 unsigned int compact_considered;
570 unsigned int compact_defer_shift;
571 int compact_order_failed;
572 #endif
573
574 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
575 /* Set to true when the PG_migrate_skip bits should be cleared */
576 bool compact_blockskip_flush;
577 #endif
578
579 bool contiguous;
580
581 ZONE_PADDING(_pad3_)
582 /* Zone statistics */
583 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
584 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
585
586 ANDROID_KABI_RESERVE(1);
587 ANDROID_KABI_RESERVE(2);
588 ANDROID_KABI_RESERVE(3);
589 ANDROID_KABI_RESERVE(4);
590 } ____cacheline_internodealigned_in_smp;
591
592 enum pgdat_flags {
593 PGDAT_DIRTY, /* reclaim scanning has recently found
594 * many dirty file pages at the tail
595 * of the LRU.
596 */
597 PGDAT_WRITEBACK, /* reclaim scanning has recently found
598 * many pages under writeback
599 */
600 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
601 };
602
603 enum zone_flags {
604 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
605 * Cleared when kswapd is woken.
606 */
607 };
608
zone_managed_pages(struct zone * zone)609 static inline unsigned long zone_managed_pages(struct zone *zone)
610 {
611 return (unsigned long)atomic_long_read(&zone->managed_pages);
612 }
613
zone_cma_pages(struct zone * zone)614 static inline unsigned long zone_cma_pages(struct zone *zone)
615 {
616 #ifdef CONFIG_CMA
617 return zone->cma_pages;
618 #else
619 return 0;
620 #endif
621 }
622
zone_end_pfn(const struct zone * zone)623 static inline unsigned long zone_end_pfn(const struct zone *zone)
624 {
625 return zone->zone_start_pfn + zone->spanned_pages;
626 }
627
zone_spans_pfn(const struct zone * zone,unsigned long pfn)628 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
629 {
630 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
631 }
632
zone_is_initialized(struct zone * zone)633 static inline bool zone_is_initialized(struct zone *zone)
634 {
635 return zone->initialized;
636 }
637
zone_is_empty(struct zone * zone)638 static inline bool zone_is_empty(struct zone *zone)
639 {
640 return zone->spanned_pages == 0;
641 }
642
643 /*
644 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
645 * intersection with the given zone
646 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)647 static inline bool zone_intersects(struct zone *zone,
648 unsigned long start_pfn, unsigned long nr_pages)
649 {
650 if (zone_is_empty(zone))
651 return false;
652 if (start_pfn >= zone_end_pfn(zone) ||
653 start_pfn + nr_pages <= zone->zone_start_pfn)
654 return false;
655
656 return true;
657 }
658
659 /*
660 * The "priority" of VM scanning is how much of the queues we will scan in one
661 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
662 * queues ("queue_length >> 12") during an aging round.
663 */
664 #define DEF_PRIORITY 12
665
666 /* Maximum number of zones on a zonelist */
667 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
668
669 enum {
670 ZONELIST_FALLBACK, /* zonelist with fallback */
671 #ifdef CONFIG_NUMA
672 /*
673 * The NUMA zonelists are doubled because we need zonelists that
674 * restrict the allocations to a single node for __GFP_THISNODE.
675 */
676 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
677 #endif
678 MAX_ZONELISTS
679 };
680
681 /*
682 * This struct contains information about a zone in a zonelist. It is stored
683 * here to avoid dereferences into large structures and lookups of tables
684 */
685 struct zoneref {
686 struct zone *zone; /* Pointer to actual zone */
687 int zone_idx; /* zone_idx(zoneref->zone) */
688 };
689
690 /*
691 * One allocation request operates on a zonelist. A zonelist
692 * is a list of zones, the first one is the 'goal' of the
693 * allocation, the other zones are fallback zones, in decreasing
694 * priority.
695 *
696 * To speed the reading of the zonelist, the zonerefs contain the zone index
697 * of the entry being read. Helper functions to access information given
698 * a struct zoneref are
699 *
700 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
701 * zonelist_zone_idx() - Return the index of the zone for an entry
702 * zonelist_node_idx() - Return the index of the node for an entry
703 */
704 struct zonelist {
705 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
706 };
707
708 #ifndef CONFIG_DISCONTIGMEM
709 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
710 extern struct page *mem_map;
711 #endif
712
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 struct deferred_split {
715 spinlock_t split_queue_lock;
716 struct list_head split_queue;
717 unsigned long split_queue_len;
718 };
719 #endif
720
721 /*
722 * On NUMA machines, each NUMA node would have a pg_data_t to describe
723 * it's memory layout. On UMA machines there is a single pglist_data which
724 * describes the whole memory.
725 *
726 * Memory statistics and page replacement data structures are maintained on a
727 * per-zone basis.
728 */
729 typedef struct pglist_data {
730 /*
731 * node_zones contains just the zones for THIS node. Not all of the
732 * zones may be populated, but it is the full list. It is referenced by
733 * this node's node_zonelists as well as other node's node_zonelists.
734 */
735 struct zone node_zones[MAX_NR_ZONES];
736
737 /*
738 * node_zonelists contains references to all zones in all nodes.
739 * Generally the first zones will be references to this node's
740 * node_zones.
741 */
742 struct zonelist node_zonelists[MAX_ZONELISTS];
743
744 int nr_zones; /* number of populated zones in this node */
745 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
746 struct page *node_mem_map;
747 #ifdef CONFIG_PAGE_EXTENSION
748 struct page_ext *node_page_ext;
749 #endif
750 #endif
751 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
752 /*
753 * Must be held any time you expect node_start_pfn,
754 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
755 * Also synchronizes pgdat->first_deferred_pfn during deferred page
756 * init.
757 *
758 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
759 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
760 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
761 *
762 * Nests above zone->lock and zone->span_seqlock
763 */
764 spinlock_t node_size_lock;
765 #endif
766 unsigned long node_start_pfn;
767 unsigned long node_present_pages; /* total number of physical pages */
768 unsigned long node_spanned_pages; /* total size of physical page
769 range, including holes */
770 int node_id;
771 wait_queue_head_t kswapd_wait;
772 wait_queue_head_t pfmemalloc_wait;
773 struct task_struct *kswapd; /* Protected by
774 mem_hotplug_begin/end() */
775 struct task_struct *mkswapd[MAX_KSWAPD_THREADS];
776 int kswapd_order;
777 enum zone_type kswapd_highest_zoneidx;
778
779 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
780
781 ANDROID_OEM_DATA(1);
782 #ifdef CONFIG_COMPACTION
783 int kcompactd_max_order;
784 enum zone_type kcompactd_highest_zoneidx;
785 wait_queue_head_t kcompactd_wait;
786 struct task_struct *kcompactd;
787 bool proactive_compact_trigger;
788 #endif
789 /*
790 * This is a per-node reserve of pages that are not available
791 * to userspace allocations.
792 */
793 unsigned long totalreserve_pages;
794
795 #ifdef CONFIG_NUMA
796 /*
797 * node reclaim becomes active if more unmapped pages exist.
798 */
799 unsigned long min_unmapped_pages;
800 unsigned long min_slab_pages;
801 #endif /* CONFIG_NUMA */
802
803 /* Write-intensive fields used by page reclaim */
804 ZONE_PADDING(_pad1_)
805 spinlock_t lru_lock;
806
807 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
808 /*
809 * If memory initialisation on large machines is deferred then this
810 * is the first PFN that needs to be initialised.
811 */
812 unsigned long first_deferred_pfn;
813 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
814
815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
816 struct deferred_split deferred_split_queue;
817 #endif
818
819 /* Fields commonly accessed by the page reclaim scanner */
820
821 /*
822 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
823 *
824 * Use mem_cgroup_lruvec() to look up lruvecs.
825 */
826 struct lruvec __lruvec;
827
828 unsigned long flags;
829
830 ZONE_PADDING(_pad2_)
831
832 /* Per-node vmstats */
833 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
834 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
835 } pg_data_t;
836
837 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
838 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
839 #ifdef CONFIG_FLAT_NODE_MEM_MAP
840 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
841 #else
842 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
843 #endif
844 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
845
846 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
847 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
848
pgdat_end_pfn(pg_data_t * pgdat)849 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
850 {
851 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
852 }
853
pgdat_is_empty(pg_data_t * pgdat)854 static inline bool pgdat_is_empty(pg_data_t *pgdat)
855 {
856 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
857 }
858
859 #include <linux/memory_hotplug.h>
860
861 void build_all_zonelists(pg_data_t *pgdat);
862 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
863 enum zone_type highest_zoneidx);
864 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
865 int highest_zoneidx, unsigned int alloc_flags,
866 long free_pages);
867 bool zone_watermark_ok(struct zone *z, unsigned int order,
868 unsigned long mark, int highest_zoneidx,
869 unsigned int alloc_flags);
870 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
871 unsigned long mark, int highest_zoneidx);
872 /*
873 * Memory initialization context, use to differentiate memory added by
874 * the platform statically or via memory hotplug interface.
875 */
876 enum meminit_context {
877 MEMINIT_EARLY,
878 MEMINIT_HOTPLUG,
879 };
880
881 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
882 unsigned long size);
883
884 extern void lruvec_init(struct lruvec *lruvec);
885
lruvec_pgdat(struct lruvec * lruvec)886 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
887 {
888 #ifdef CONFIG_MEMCG
889 return lruvec->pgdat;
890 #else
891 return container_of(lruvec, struct pglist_data, __lruvec);
892 #endif
893 }
894
895 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
896
897 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
898 int local_memory_node(int node_id);
899 #else
local_memory_node(int node_id)900 static inline int local_memory_node(int node_id) { return node_id; };
901 #endif
902
903 /*
904 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
905 */
906 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
907
908 /*
909 * Returns true if a zone has pages managed by the buddy allocator.
910 * All the reclaim decisions have to use this function rather than
911 * populated_zone(). If the whole zone is reserved then we can easily
912 * end up with populated_zone() && !managed_zone().
913 */
managed_zone(struct zone * zone)914 static inline bool managed_zone(struct zone *zone)
915 {
916 return zone_managed_pages(zone);
917 }
918
919 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)920 static inline bool populated_zone(struct zone *zone)
921 {
922 return zone->present_pages;
923 }
924
925 #ifdef CONFIG_NEED_MULTIPLE_NODES
zone_to_nid(struct zone * zone)926 static inline int zone_to_nid(struct zone *zone)
927 {
928 return zone->node;
929 }
930
zone_set_nid(struct zone * zone,int nid)931 static inline void zone_set_nid(struct zone *zone, int nid)
932 {
933 zone->node = nid;
934 }
935 #else
zone_to_nid(struct zone * zone)936 static inline int zone_to_nid(struct zone *zone)
937 {
938 return 0;
939 }
940
zone_set_nid(struct zone * zone,int nid)941 static inline void zone_set_nid(struct zone *zone, int nid) {}
942 #endif
943
944 extern int movable_zone;
945
946 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)947 static inline int zone_movable_is_highmem(void)
948 {
949 #ifdef CONFIG_NEED_MULTIPLE_NODES
950 return movable_zone == ZONE_HIGHMEM;
951 #else
952 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
953 #endif
954 }
955 #endif
956
is_highmem_idx(enum zone_type idx)957 static inline int is_highmem_idx(enum zone_type idx)
958 {
959 #ifdef CONFIG_HIGHMEM
960 return (idx == ZONE_HIGHMEM ||
961 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
962 #else
963 return 0;
964 #endif
965 }
966
967 #ifdef CONFIG_ZONE_DMA
968 bool has_managed_dma(void);
969 #else
has_managed_dma(void)970 static inline bool has_managed_dma(void)
971 {
972 return false;
973 }
974 #endif
975
976 /**
977 * is_highmem - helper function to quickly check if a struct zone is a
978 * highmem zone or not. This is an attempt to keep references
979 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
980 * @zone - pointer to struct zone variable
981 */
is_highmem(struct zone * zone)982 static inline int is_highmem(struct zone *zone)
983 {
984 #ifdef CONFIG_HIGHMEM
985 return is_highmem_idx(zone_idx(zone));
986 #else
987 return 0;
988 #endif
989 }
990
991 /* These two functions are used to setup the per zone pages min values */
992 struct ctl_table;
993
994 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
995 loff_t *);
996 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
997 size_t *, loff_t *);
998 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
999 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1000 size_t *, loff_t *);
1001 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1002 void *, size_t *, loff_t *);
1003 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1004 void *, size_t *, loff_t *);
1005 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1006 void *, size_t *, loff_t *);
1007 int numa_zonelist_order_handler(struct ctl_table *, int,
1008 void *, size_t *, loff_t *);
1009 extern int percpu_pagelist_fraction;
1010 extern char numa_zonelist_order[];
1011 #define NUMA_ZONELIST_ORDER_LEN 16
1012
1013 #ifndef CONFIG_NEED_MULTIPLE_NODES
1014
1015 extern struct pglist_data contig_page_data;
1016 #define NODE_DATA(nid) (&contig_page_data)
1017 #define NODE_MEM_MAP(nid) mem_map
1018
1019 #else /* CONFIG_NEED_MULTIPLE_NODES */
1020
1021 #include <asm/mmzone.h>
1022
1023 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1024
1025 extern struct pglist_data *first_online_pgdat(void);
1026 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1027 extern struct zone *next_zone(struct zone *zone);
1028 extern int isolate_anon_lru_page(struct page *page);
1029
1030 /**
1031 * for_each_online_pgdat - helper macro to iterate over all online nodes
1032 * @pgdat - pointer to a pg_data_t variable
1033 */
1034 #define for_each_online_pgdat(pgdat) \
1035 for (pgdat = first_online_pgdat(); \
1036 pgdat; \
1037 pgdat = next_online_pgdat(pgdat))
1038 /**
1039 * for_each_zone - helper macro to iterate over all memory zones
1040 * @zone - pointer to struct zone variable
1041 *
1042 * The user only needs to declare the zone variable, for_each_zone
1043 * fills it in.
1044 */
1045 #define for_each_zone(zone) \
1046 for (zone = (first_online_pgdat())->node_zones; \
1047 zone; \
1048 zone = next_zone(zone))
1049
1050 #define for_each_populated_zone(zone) \
1051 for (zone = (first_online_pgdat())->node_zones; \
1052 zone; \
1053 zone = next_zone(zone)) \
1054 if (!populated_zone(zone)) \
1055 ; /* do nothing */ \
1056 else
1057
zonelist_zone(struct zoneref * zoneref)1058 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1059 {
1060 return zoneref->zone;
1061 }
1062
zonelist_zone_idx(struct zoneref * zoneref)1063 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1064 {
1065 return zoneref->zone_idx;
1066 }
1067
zonelist_node_idx(struct zoneref * zoneref)1068 static inline int zonelist_node_idx(struct zoneref *zoneref)
1069 {
1070 return zone_to_nid(zoneref->zone);
1071 }
1072
1073 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1074 enum zone_type highest_zoneidx,
1075 nodemask_t *nodes);
1076
1077 /**
1078 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1079 * @z - The cursor used as a starting point for the search
1080 * @highest_zoneidx - The zone index of the highest zone to return
1081 * @nodes - An optional nodemask to filter the zonelist with
1082 *
1083 * This function returns the next zone at or below a given zone index that is
1084 * within the allowed nodemask using a cursor as the starting point for the
1085 * search. The zoneref returned is a cursor that represents the current zone
1086 * being examined. It should be advanced by one before calling
1087 * next_zones_zonelist again.
1088 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1089 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1090 enum zone_type highest_zoneidx,
1091 nodemask_t *nodes)
1092 {
1093 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1094 return z;
1095 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1096 }
1097
1098 /**
1099 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1100 * @zonelist - The zonelist to search for a suitable zone
1101 * @highest_zoneidx - The zone index of the highest zone to return
1102 * @nodes - An optional nodemask to filter the zonelist with
1103 * @return - Zoneref pointer for the first suitable zone found (see below)
1104 *
1105 * This function returns the first zone at or below a given zone index that is
1106 * within the allowed nodemask. The zoneref returned is a cursor that can be
1107 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1108 * one before calling.
1109 *
1110 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1111 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1112 * update due to cpuset modification.
1113 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1114 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1115 enum zone_type highest_zoneidx,
1116 nodemask_t *nodes)
1117 {
1118 return next_zones_zonelist(zonelist->_zonerefs,
1119 highest_zoneidx, nodes);
1120 }
1121
1122 /**
1123 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1124 * @zone - The current zone in the iterator
1125 * @z - The current pointer within zonelist->_zonerefs being iterated
1126 * @zlist - The zonelist being iterated
1127 * @highidx - The zone index of the highest zone to return
1128 * @nodemask - Nodemask allowed by the allocator
1129 *
1130 * This iterator iterates though all zones at or below a given zone index and
1131 * within a given nodemask
1132 */
1133 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1134 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1135 zone; \
1136 z = next_zones_zonelist(++z, highidx, nodemask), \
1137 zone = zonelist_zone(z))
1138
1139 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1140 for (zone = z->zone; \
1141 zone; \
1142 z = next_zones_zonelist(++z, highidx, nodemask), \
1143 zone = zonelist_zone(z))
1144
1145
1146 /**
1147 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1148 * @zone - The current zone in the iterator
1149 * @z - The current pointer within zonelist->zones being iterated
1150 * @zlist - The zonelist being iterated
1151 * @highidx - The zone index of the highest zone to return
1152 *
1153 * This iterator iterates though all zones at or below a given zone index.
1154 */
1155 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1156 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1157
1158 #ifdef CONFIG_SPARSEMEM
1159 #include <asm/sparsemem.h>
1160 #endif
1161
1162 #ifdef CONFIG_FLATMEM
1163 #define pfn_to_nid(pfn) (0)
1164 #endif
1165
1166 #ifdef CONFIG_SPARSEMEM
1167
1168 /*
1169 * SECTION_SHIFT #bits space required to store a section #
1170 *
1171 * PA_SECTION_SHIFT physical address to/from section number
1172 * PFN_SECTION_SHIFT pfn to/from section number
1173 */
1174 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1175 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1176
1177 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1178
1179 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1180 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1181
1182 #define SECTION_BLOCKFLAGS_BITS \
1183 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1184
1185 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1186 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1187 #endif
1188
pfn_to_section_nr(unsigned long pfn)1189 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1190 {
1191 return pfn >> PFN_SECTION_SHIFT;
1192 }
section_nr_to_pfn(unsigned long sec)1193 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1194 {
1195 return sec << PFN_SECTION_SHIFT;
1196 }
1197
1198 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1199 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1200
1201 #define SUBSECTION_SHIFT 21
1202 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1203
1204 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1205 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1206 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1207
1208 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1209 #error Subsection size exceeds section size
1210 #else
1211 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1212 #endif
1213
1214 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1215 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1216
1217 struct mem_section_usage {
1218 struct rcu_head rcu;
1219 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1220 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1221 #endif
1222 /* See declaration of similar field in struct zone */
1223 unsigned long pageblock_flags[0];
1224 };
1225
1226 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1227
1228 struct page;
1229 struct page_ext;
1230 struct mem_section {
1231 /*
1232 * This is, logically, a pointer to an array of struct
1233 * pages. However, it is stored with some other magic.
1234 * (see sparse.c::sparse_init_one_section())
1235 *
1236 * Additionally during early boot we encode node id of
1237 * the location of the section here to guide allocation.
1238 * (see sparse.c::memory_present())
1239 *
1240 * Making it a UL at least makes someone do a cast
1241 * before using it wrong.
1242 */
1243 unsigned long section_mem_map;
1244
1245 struct mem_section_usage *usage;
1246 #ifdef CONFIG_PAGE_EXTENSION
1247 /*
1248 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1249 * section. (see page_ext.h about this.)
1250 */
1251 struct page_ext *page_ext;
1252 unsigned long pad;
1253 #endif
1254 /*
1255 * WARNING: mem_section must be a power-of-2 in size for the
1256 * calculation and use of SECTION_ROOT_MASK to make sense.
1257 */
1258 };
1259
1260 #ifdef CONFIG_SPARSEMEM_EXTREME
1261 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1262 #else
1263 #define SECTIONS_PER_ROOT 1
1264 #endif
1265
1266 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1267 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1268 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1269
1270 #ifdef CONFIG_SPARSEMEM_EXTREME
1271 extern struct mem_section **mem_section;
1272 #else
1273 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1274 #endif
1275
section_to_usemap(struct mem_section * ms)1276 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1277 {
1278 return ms->usage->pageblock_flags;
1279 }
1280
__nr_to_section(unsigned long nr)1281 static inline struct mem_section *__nr_to_section(unsigned long nr)
1282 {
1283 unsigned long root = SECTION_NR_TO_ROOT(nr);
1284
1285 if (unlikely(root >= NR_SECTION_ROOTS))
1286 return NULL;
1287
1288 #ifdef CONFIG_SPARSEMEM_EXTREME
1289 if (!mem_section || !mem_section[root])
1290 return NULL;
1291 #endif
1292 return &mem_section[root][nr & SECTION_ROOT_MASK];
1293 }
1294 extern unsigned long __section_nr(struct mem_section *ms);
1295 extern size_t mem_section_usage_size(void);
1296
1297 /*
1298 * We use the lower bits of the mem_map pointer to store
1299 * a little bit of information. The pointer is calculated
1300 * as mem_map - section_nr_to_pfn(pnum). The result is
1301 * aligned to the minimum alignment of the two values:
1302 * 1. All mem_map arrays are page-aligned.
1303 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1304 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1305 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1306 * worst combination is powerpc with 256k pages,
1307 * which results in PFN_SECTION_SHIFT equal 6.
1308 * To sum it up, at least 6 bits are available.
1309 */
1310 #define SECTION_MARKED_PRESENT (1UL<<0)
1311 #define SECTION_HAS_MEM_MAP (1UL<<1)
1312 #define SECTION_IS_ONLINE (1UL<<2)
1313 #define SECTION_IS_EARLY (1UL<<3)
1314 #define SECTION_MAP_LAST_BIT (1UL<<4)
1315 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1316 #define SECTION_NID_SHIFT 3
1317
__section_mem_map_addr(struct mem_section * section)1318 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1319 {
1320 unsigned long map = section->section_mem_map;
1321 map &= SECTION_MAP_MASK;
1322 return (struct page *)map;
1323 }
1324
present_section(struct mem_section * section)1325 static inline int present_section(struct mem_section *section)
1326 {
1327 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1328 }
1329
present_section_nr(unsigned long nr)1330 static inline int present_section_nr(unsigned long nr)
1331 {
1332 return present_section(__nr_to_section(nr));
1333 }
1334
valid_section(struct mem_section * section)1335 static inline int valid_section(struct mem_section *section)
1336 {
1337 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1338 }
1339
early_section(struct mem_section * section)1340 static inline int early_section(struct mem_section *section)
1341 {
1342 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1343 }
1344
valid_section_nr(unsigned long nr)1345 static inline int valid_section_nr(unsigned long nr)
1346 {
1347 return valid_section(__nr_to_section(nr));
1348 }
1349
online_section(struct mem_section * section)1350 static inline int online_section(struct mem_section *section)
1351 {
1352 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1353 }
1354
online_section_nr(unsigned long nr)1355 static inline int online_section_nr(unsigned long nr)
1356 {
1357 return online_section(__nr_to_section(nr));
1358 }
1359
1360 #ifdef CONFIG_MEMORY_HOTPLUG
1361 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1362 #ifdef CONFIG_MEMORY_HOTREMOVE
1363 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1364 #endif
1365 #endif
1366
__pfn_to_section(unsigned long pfn)1367 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1368 {
1369 return __nr_to_section(pfn_to_section_nr(pfn));
1370 }
1371
1372 extern unsigned long __highest_present_section_nr;
1373
subsection_map_index(unsigned long pfn)1374 static inline int subsection_map_index(unsigned long pfn)
1375 {
1376 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1377 }
1378
1379 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1380 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1381 {
1382 int idx = subsection_map_index(pfn);
1383
1384 return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1385 }
1386 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1387 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1388 {
1389 return 1;
1390 }
1391 #endif
1392
1393 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1394 static inline int pfn_valid(unsigned long pfn)
1395 {
1396 struct mem_section *ms;
1397 int ret;
1398
1399 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1400 return 0;
1401 ms = __pfn_to_section(pfn);
1402 rcu_read_lock();
1403 if (!valid_section(ms)) {
1404 rcu_read_unlock();
1405 return 0;
1406 }
1407 /*
1408 * Traditionally early sections always returned pfn_valid() for
1409 * the entire section-sized span.
1410 */
1411 ret = early_section(ms) || pfn_section_valid(ms, pfn);
1412 rcu_read_unlock();
1413
1414 return ret;
1415 }
1416 #endif
1417
pfn_in_present_section(unsigned long pfn)1418 static inline int pfn_in_present_section(unsigned long pfn)
1419 {
1420 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1421 return 0;
1422 return present_section(__pfn_to_section(pfn));
1423 }
1424
next_present_section_nr(unsigned long section_nr)1425 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1426 {
1427 while (++section_nr <= __highest_present_section_nr) {
1428 if (present_section_nr(section_nr))
1429 return section_nr;
1430 }
1431
1432 return -1;
1433 }
1434
1435 /*
1436 * These are _only_ used during initialisation, therefore they
1437 * can use __initdata ... They could have names to indicate
1438 * this restriction.
1439 */
1440 #ifdef CONFIG_NUMA
1441 #define pfn_to_nid(pfn) \
1442 ({ \
1443 unsigned long __pfn_to_nid_pfn = (pfn); \
1444 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1445 })
1446 #else
1447 #define pfn_to_nid(pfn) (0)
1448 #endif
1449
1450 void sparse_init(void);
1451 #else
1452 #define sparse_init() do {} while (0)
1453 #define sparse_index_init(_sec, _nid) do {} while (0)
1454 #define pfn_in_present_section pfn_valid
1455 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1456 #endif /* CONFIG_SPARSEMEM */
1457
1458 /*
1459 * During memory init memblocks map pfns to nids. The search is expensive and
1460 * this caches recent lookups. The implementation of __early_pfn_to_nid
1461 * may treat start/end as pfns or sections.
1462 */
1463 struct mminit_pfnnid_cache {
1464 unsigned long last_start;
1465 unsigned long last_end;
1466 int last_nid;
1467 };
1468
1469 /*
1470 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1471 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1472 * pfn_valid_within() should be used in this case; we optimise this away
1473 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1474 */
1475 #ifdef CONFIG_HOLES_IN_ZONE
1476 #define pfn_valid_within(pfn) pfn_valid(pfn)
1477 #else
1478 #define pfn_valid_within(pfn) (1)
1479 #endif
1480
1481 #endif /* !__GENERATING_BOUNDS.H */
1482 #endif /* !__ASSEMBLY__ */
1483 #endif /* _LINUX_MMZONE_H */
1484