• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/android_kabi.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 #define MAX_KSWAPD_THREADS 16
43 
44 enum migratetype {
45 	MIGRATE_UNMOVABLE,
46 	MIGRATE_MOVABLE,
47 	MIGRATE_RECLAIMABLE,
48 #ifdef CONFIG_CMA
49 	/*
50 	 * MIGRATE_CMA migration type is designed to mimic the way
51 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
52 	 * from MIGRATE_CMA pageblocks and page allocator never
53 	 * implicitly change migration type of MIGRATE_CMA pageblock.
54 	 *
55 	 * The way to use it is to change migratetype of a range of
56 	 * pageblocks to MIGRATE_CMA which can be done by
57 	 * __free_pageblock_cma() function.  What is important though
58 	 * is that a range of pageblocks must be aligned to
59 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
60 	 * a single pageblock.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 	MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
65 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
66 #ifdef CONFIG_MEMORY_ISOLATION
67 	MIGRATE_ISOLATE,	/* can't allocate from here */
68 #endif
69 	MIGRATE_TYPES
70 };
71 
72 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
73 extern const char * const migratetype_names[MIGRATE_TYPES];
74 
75 #ifdef CONFIG_CMA
76 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
77 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
78 #  define get_cma_migrate_type() MIGRATE_CMA
79 #else
80 #  define is_migrate_cma(migratetype) false
81 #  define is_migrate_cma_page(_page) false
82 #  define get_cma_migrate_type() MIGRATE_MOVABLE
83 #endif
84 
is_migrate_movable(int mt)85 static inline bool is_migrate_movable(int mt)
86 {
87 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
88 }
89 
90 #define for_each_migratetype_order(order, type) \
91 	for (order = 0; order < MAX_ORDER; order++) \
92 		for (type = 0; type < MIGRATE_TYPES; type++)
93 
94 extern int page_group_by_mobility_disabled;
95 
96 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
97 
98 #define get_pageblock_migratetype(page)					\
99 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
100 
101 struct free_area {
102 	struct list_head	free_list[MIGRATE_TYPES];
103 	unsigned long		nr_free;
104 };
105 
get_page_from_free_area(struct free_area * area,int migratetype)106 static inline struct page *get_page_from_free_area(struct free_area *area,
107 					    int migratetype)
108 {
109 	return list_first_entry_or_null(&area->free_list[migratetype],
110 					struct page, lru);
111 }
112 
free_area_empty(struct free_area * area,int migratetype)113 static inline bool free_area_empty(struct free_area *area, int migratetype)
114 {
115 	return list_empty(&area->free_list[migratetype]);
116 }
117 
118 struct pglist_data;
119 
120 /*
121  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
122  * So add a wild amount of padding here to ensure that they fall into separate
123  * cachelines.  There are very few zone structures in the machine, so space
124  * consumption is not a concern here.
125  */
126 #if defined(CONFIG_SMP)
127 struct zone_padding {
128 	char x[0];
129 } ____cacheline_internodealigned_in_smp;
130 #define ZONE_PADDING(name)	struct zone_padding name;
131 #else
132 #define ZONE_PADDING(name)
133 #endif
134 
135 #ifdef CONFIG_NUMA
136 enum numa_stat_item {
137 	NUMA_HIT,		/* allocated in intended node */
138 	NUMA_MISS,		/* allocated in non intended node */
139 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
140 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
141 	NUMA_LOCAL,		/* allocation from local node */
142 	NUMA_OTHER,		/* allocation from other node */
143 	NR_VM_NUMA_STAT_ITEMS
144 };
145 #else
146 #define NR_VM_NUMA_STAT_ITEMS 0
147 #endif
148 
149 enum zone_stat_item {
150 	/* First 128 byte cacheline (assuming 64 bit words) */
151 	NR_FREE_PAGES,
152 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
153 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
154 	NR_ZONE_ACTIVE_ANON,
155 	NR_ZONE_INACTIVE_FILE,
156 	NR_ZONE_ACTIVE_FILE,
157 	NR_ZONE_UNEVICTABLE,
158 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
159 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
160 	NR_PAGETABLE,		/* used for pagetables */
161 	/* Second 128 byte cacheline */
162 	NR_BOUNCE,
163 	NR_ZSPAGES,		/* allocated in zsmalloc */
164 	NR_FREE_CMA_PAGES,
165 	NR_VM_ZONE_STAT_ITEMS };
166 
167 enum node_stat_item {
168 	NR_LRU_BASE,
169 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
170 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
171 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
172 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
173 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
174 	NR_SLAB_RECLAIMABLE_B,
175 	NR_SLAB_UNRECLAIMABLE_B,
176 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
177 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
178 	WORKINGSET_NODES,
179 	WORKINGSET_REFAULT_BASE,
180 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
181 	WORKINGSET_REFAULT_FILE,
182 	WORKINGSET_ACTIVATE_BASE,
183 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
184 	WORKINGSET_ACTIVATE_FILE,
185 	WORKINGSET_RESTORE_BASE,
186 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
187 	WORKINGSET_RESTORE_FILE,
188 	WORKINGSET_NODERECLAIM,
189 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
190 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
191 			   only modified from process context */
192 	NR_FILE_PAGES,
193 	NR_FILE_DIRTY,
194 	NR_WRITEBACK,
195 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
196 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
197 	NR_SHMEM_THPS,
198 	NR_SHMEM_PMDMAPPED,
199 	NR_FILE_THPS,
200 	NR_FILE_PMDMAPPED,
201 	NR_ANON_THPS,
202 	NR_VMSCAN_WRITE,
203 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
204 	NR_DIRTIED,		/* page dirtyings since bootup */
205 	NR_WRITTEN,		/* page writings since bootup */
206 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
207 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
208 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
209 	NR_KERNEL_STACK_KB,	/* measured in KiB */
210 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
211 	NR_KERNEL_SCS_KB,	/* measured in KiB */
212 #endif
213 	NR_VM_NODE_STAT_ITEMS
214 };
215 
216 /*
217  * Returns true if the value is measured in bytes (most vmstat values are
218  * measured in pages). This defines the API part, the internal representation
219  * might be different.
220  */
vmstat_item_in_bytes(int idx)221 static __always_inline bool vmstat_item_in_bytes(int idx)
222 {
223 	/*
224 	 * Global and per-node slab counters track slab pages.
225 	 * It's expected that changes are multiples of PAGE_SIZE.
226 	 * Internally values are stored in pages.
227 	 *
228 	 * Per-memcg and per-lruvec counters track memory, consumed
229 	 * by individual slab objects. These counters are actually
230 	 * byte-precise.
231 	 */
232 	return (idx == NR_SLAB_RECLAIMABLE_B ||
233 		idx == NR_SLAB_UNRECLAIMABLE_B);
234 }
235 
236 /*
237  * We do arithmetic on the LRU lists in various places in the code,
238  * so it is important to keep the active lists LRU_ACTIVE higher in
239  * the array than the corresponding inactive lists, and to keep
240  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
241  *
242  * This has to be kept in sync with the statistics in zone_stat_item
243  * above and the descriptions in vmstat_text in mm/vmstat.c
244  */
245 #define LRU_BASE 0
246 #define LRU_ACTIVE 1
247 #define LRU_FILE 2
248 
249 enum lru_list {
250 	LRU_INACTIVE_ANON = LRU_BASE,
251 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
252 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
253 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
254 	LRU_UNEVICTABLE,
255 	NR_LRU_LISTS
256 };
257 
258 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
259 
260 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
261 
is_file_lru(enum lru_list lru)262 static inline bool is_file_lru(enum lru_list lru)
263 {
264 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
265 }
266 
is_active_lru(enum lru_list lru)267 static inline bool is_active_lru(enum lru_list lru)
268 {
269 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
270 }
271 
272 #define ANON_AND_FILE 2
273 
274 enum lruvec_flags {
275 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
276 					 * backed by a congested BDI
277 					 */
278 };
279 
280 struct lruvec {
281 	struct list_head		lists[NR_LRU_LISTS];
282 	/*
283 	 * These track the cost of reclaiming one LRU - file or anon -
284 	 * over the other. As the observed cost of reclaiming one LRU
285 	 * increases, the reclaim scan balance tips toward the other.
286 	 */
287 	unsigned long			anon_cost;
288 	unsigned long			file_cost;
289 	/* Non-resident age, driven by LRU movement */
290 	atomic_long_t			nonresident_age;
291 	/* Refaults at the time of last reclaim cycle */
292 	unsigned long			refaults[ANON_AND_FILE];
293 	/* Various lruvec state flags (enum lruvec_flags) */
294 	unsigned long			flags;
295 #ifdef CONFIG_MEMCG
296 	struct pglist_data *pgdat;
297 #endif
298 };
299 
300 /* Isolate unmapped pages */
301 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
302 /* Isolate for asynchronous migration */
303 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
304 /* Isolate unevictable pages */
305 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
306 
307 /* LRU Isolation modes. */
308 typedef unsigned __bitwise isolate_mode_t;
309 
310 enum zone_watermarks {
311 	WMARK_MIN,
312 	WMARK_LOW,
313 	WMARK_HIGH,
314 	NR_WMARK
315 };
316 
317 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
318 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
319 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
320 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
321 
322 struct per_cpu_pages {
323 	int count;		/* number of pages in the list */
324 	int high;		/* high watermark, emptying needed */
325 	int batch;		/* chunk size for buddy add/remove */
326 
327 	/* Lists of pages, one per migrate type stored on the pcp-lists */
328 	struct list_head lists[MIGRATE_PCPTYPES];
329 };
330 
331 struct per_cpu_pageset {
332 	struct per_cpu_pages pcp;
333 #ifdef CONFIG_NUMA
334 	s8 expire;
335 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
336 #endif
337 #ifdef CONFIG_SMP
338 	s8 stat_threshold;
339 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
340 #endif
341 };
342 
343 struct per_cpu_nodestat {
344 	s8 stat_threshold;
345 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
346 };
347 
348 #endif /* !__GENERATING_BOUNDS.H */
349 
350 enum zone_type {
351 	/*
352 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
353 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
354 	 * On architectures where this area covers the whole 32 bit address
355 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
356 	 * DMA addressing constraints. This distinction is important as a 32bit
357 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
358 	 * platforms may need both zones as they support peripherals with
359 	 * different DMA addressing limitations.
360 	 */
361 #ifdef CONFIG_ZONE_DMA
362 	ZONE_DMA,
363 #endif
364 #ifdef CONFIG_ZONE_DMA32
365 	ZONE_DMA32,
366 #endif
367 	/*
368 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
369 	 * performed on pages in ZONE_NORMAL if the DMA devices support
370 	 * transfers to all addressable memory.
371 	 */
372 	ZONE_NORMAL,
373 #ifdef CONFIG_HIGHMEM
374 	/*
375 	 * A memory area that is only addressable by the kernel through
376 	 * mapping portions into its own address space. This is for example
377 	 * used by i386 to allow the kernel to address the memory beyond
378 	 * 900MB. The kernel will set up special mappings (page
379 	 * table entries on i386) for each page that the kernel needs to
380 	 * access.
381 	 */
382 	ZONE_HIGHMEM,
383 #endif
384 	/*
385 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
386 	 * movable pages with few exceptional cases described below. Main use
387 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
388 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
389 	 * to increase the number of THP/huge pages. Notable special cases are:
390 	 *
391 	 * 1. Pinned pages: (long-term) pinning of movable pages might
392 	 *    essentially turn such pages unmovable. Memory offlining might
393 	 *    retry a long time.
394 	 * 2. memblock allocations: kernelcore/movablecore setups might create
395 	 *    situations where ZONE_MOVABLE contains unmovable allocations
396 	 *    after boot. Memory offlining and allocations fail early.
397 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
398 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
399 	 *    for example, if we have sections that are only partially
400 	 *    populated. Memory offlining and allocations fail early.
401 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
402 	 *    memory offlining, such pages cannot be allocated.
403 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
404 	 *    hotplugged memory blocks might only partially be managed by the
405 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
406 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
407 	 *    some cases (virtio-mem), such pages can be skipped during
408 	 *    memory offlining, however, cannot be moved/allocated. These
409 	 *    techniques might use alloc_contig_range() to hide previously
410 	 *    exposed pages from the buddy again (e.g., to implement some sort
411 	 *    of memory unplug in virtio-mem).
412 	 *
413 	 * In general, no unmovable allocations that degrade memory offlining
414 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
415 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
416 	 * if has_unmovable_pages() states that there are no unmovable pages,
417 	 * there can be false negatives).
418 	 */
419 	ZONE_MOVABLE,
420 #ifdef CONFIG_ZONE_DEVICE
421 	ZONE_DEVICE,
422 #endif
423 	__MAX_NR_ZONES
424 
425 };
426 
427 #ifndef __GENERATING_BOUNDS_H
428 
429 #define ASYNC_AND_SYNC 2
430 
431 struct zone {
432 	/* Read-mostly fields */
433 
434 	/* zone watermarks, access with *_wmark_pages(zone) macros */
435 	unsigned long _watermark[NR_WMARK];
436 	unsigned long watermark_boost;
437 
438 	unsigned long nr_reserved_highatomic;
439 
440 	/*
441 	 * We don't know if the memory that we're going to allocate will be
442 	 * freeable or/and it will be released eventually, so to avoid totally
443 	 * wasting several GB of ram we must reserve some of the lower zone
444 	 * memory (otherwise we risk to run OOM on the lower zones despite
445 	 * there being tons of freeable ram on the higher zones).  This array is
446 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
447 	 * changes.
448 	 */
449 	long lowmem_reserve[MAX_NR_ZONES];
450 
451 #ifdef CONFIG_NEED_MULTIPLE_NODES
452 	int node;
453 #endif
454 	struct pglist_data	*zone_pgdat;
455 	struct per_cpu_pageset __percpu *pageset;
456 
457 #ifndef CONFIG_SPARSEMEM
458 	/*
459 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
460 	 * In SPARSEMEM, this map is stored in struct mem_section
461 	 */
462 	unsigned long		*pageblock_flags;
463 #endif /* CONFIG_SPARSEMEM */
464 
465 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
466 	unsigned long		zone_start_pfn;
467 
468 	/*
469 	 * spanned_pages is the total pages spanned by the zone, including
470 	 * holes, which is calculated as:
471 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
472 	 *
473 	 * present_pages is physical pages existing within the zone, which
474 	 * is calculated as:
475 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
476 	 *
477 	 * managed_pages is present pages managed by the buddy system, which
478 	 * is calculated as (reserved_pages includes pages allocated by the
479 	 * bootmem allocator):
480 	 *	managed_pages = present_pages - reserved_pages;
481 	 *
482 	 * cma pages is present pages that are assigned for CMA use
483 	 * (MIGRATE_CMA).
484 	 *
485 	 * So present_pages may be used by memory hotplug or memory power
486 	 * management logic to figure out unmanaged pages by checking
487 	 * (present_pages - managed_pages). And managed_pages should be used
488 	 * by page allocator and vm scanner to calculate all kinds of watermarks
489 	 * and thresholds.
490 	 *
491 	 * Locking rules:
492 	 *
493 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
494 	 * It is a seqlock because it has to be read outside of zone->lock,
495 	 * and it is done in the main allocator path.  But, it is written
496 	 * quite infrequently.
497 	 *
498 	 * The span_seq lock is declared along with zone->lock because it is
499 	 * frequently read in proximity to zone->lock.  It's good to
500 	 * give them a chance of being in the same cacheline.
501 	 *
502 	 * Write access to present_pages at runtime should be protected by
503 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
504 	 * present_pages should get_online_mems() to get a stable value.
505 	 */
506 	atomic_long_t		managed_pages;
507 	unsigned long		spanned_pages;
508 	unsigned long		present_pages;
509 #ifdef CONFIG_CMA
510 	unsigned long		cma_pages;
511 #endif
512 
513 	const char		*name;
514 
515 #ifdef CONFIG_MEMORY_ISOLATION
516 	/*
517 	 * Number of isolated pageblock. It is used to solve incorrect
518 	 * freepage counting problem due to racy retrieving migratetype
519 	 * of pageblock. Protected by zone->lock.
520 	 */
521 	unsigned long		nr_isolate_pageblock;
522 #endif
523 
524 #ifdef CONFIG_MEMORY_HOTPLUG
525 	/* see spanned/present_pages for more description */
526 	seqlock_t		span_seqlock;
527 #endif
528 
529 	int initialized;
530 
531 	/* Write-intensive fields used from the page allocator */
532 	ZONE_PADDING(_pad1_)
533 
534 	/* free areas of different sizes */
535 	struct free_area	free_area[MAX_ORDER];
536 
537 	/* zone flags, see below */
538 	unsigned long		flags;
539 
540 	/* Primarily protects free_area */
541 	spinlock_t		lock;
542 
543 	/* Write-intensive fields used by compaction and vmstats. */
544 	ZONE_PADDING(_pad2_)
545 
546 	/*
547 	 * When free pages are below this point, additional steps are taken
548 	 * when reading the number of free pages to avoid per-cpu counter
549 	 * drift allowing watermarks to be breached
550 	 */
551 	unsigned long percpu_drift_mark;
552 
553 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
554 	/* pfn where compaction free scanner should start */
555 	unsigned long		compact_cached_free_pfn;
556 	/* pfn where compaction migration scanner should start */
557 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
558 	unsigned long		compact_init_migrate_pfn;
559 	unsigned long		compact_init_free_pfn;
560 #endif
561 
562 #ifdef CONFIG_COMPACTION
563 	/*
564 	 * On compaction failure, 1<<compact_defer_shift compactions
565 	 * are skipped before trying again. The number attempted since
566 	 * last failure is tracked with compact_considered.
567 	 * compact_order_failed is the minimum compaction failed order.
568 	 */
569 	unsigned int		compact_considered;
570 	unsigned int		compact_defer_shift;
571 	int			compact_order_failed;
572 #endif
573 
574 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
575 	/* Set to true when the PG_migrate_skip bits should be cleared */
576 	bool			compact_blockskip_flush;
577 #endif
578 
579 	bool			contiguous;
580 
581 	ZONE_PADDING(_pad3_)
582 	/* Zone statistics */
583 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
584 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
585 
586 	ANDROID_KABI_RESERVE(1);
587 	ANDROID_KABI_RESERVE(2);
588 	ANDROID_KABI_RESERVE(3);
589 	ANDROID_KABI_RESERVE(4);
590 } ____cacheline_internodealigned_in_smp;
591 
592 enum pgdat_flags {
593 	PGDAT_DIRTY,			/* reclaim scanning has recently found
594 					 * many dirty file pages at the tail
595 					 * of the LRU.
596 					 */
597 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
598 					 * many pages under writeback
599 					 */
600 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
601 };
602 
603 enum zone_flags {
604 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
605 					 * Cleared when kswapd is woken.
606 					 */
607 };
608 
zone_managed_pages(struct zone * zone)609 static inline unsigned long zone_managed_pages(struct zone *zone)
610 {
611 	return (unsigned long)atomic_long_read(&zone->managed_pages);
612 }
613 
zone_cma_pages(struct zone * zone)614 static inline unsigned long zone_cma_pages(struct zone *zone)
615 {
616 #ifdef CONFIG_CMA
617 	return zone->cma_pages;
618 #else
619 	return 0;
620 #endif
621 }
622 
zone_end_pfn(const struct zone * zone)623 static inline unsigned long zone_end_pfn(const struct zone *zone)
624 {
625 	return zone->zone_start_pfn + zone->spanned_pages;
626 }
627 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)628 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
629 {
630 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
631 }
632 
zone_is_initialized(struct zone * zone)633 static inline bool zone_is_initialized(struct zone *zone)
634 {
635 	return zone->initialized;
636 }
637 
zone_is_empty(struct zone * zone)638 static inline bool zone_is_empty(struct zone *zone)
639 {
640 	return zone->spanned_pages == 0;
641 }
642 
643 /*
644  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
645  * intersection with the given zone
646  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)647 static inline bool zone_intersects(struct zone *zone,
648 		unsigned long start_pfn, unsigned long nr_pages)
649 {
650 	if (zone_is_empty(zone))
651 		return false;
652 	if (start_pfn >= zone_end_pfn(zone) ||
653 	    start_pfn + nr_pages <= zone->zone_start_pfn)
654 		return false;
655 
656 	return true;
657 }
658 
659 /*
660  * The "priority" of VM scanning is how much of the queues we will scan in one
661  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
662  * queues ("queue_length >> 12") during an aging round.
663  */
664 #define DEF_PRIORITY 12
665 
666 /* Maximum number of zones on a zonelist */
667 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
668 
669 enum {
670 	ZONELIST_FALLBACK,	/* zonelist with fallback */
671 #ifdef CONFIG_NUMA
672 	/*
673 	 * The NUMA zonelists are doubled because we need zonelists that
674 	 * restrict the allocations to a single node for __GFP_THISNODE.
675 	 */
676 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
677 #endif
678 	MAX_ZONELISTS
679 };
680 
681 /*
682  * This struct contains information about a zone in a zonelist. It is stored
683  * here to avoid dereferences into large structures and lookups of tables
684  */
685 struct zoneref {
686 	struct zone *zone;	/* Pointer to actual zone */
687 	int zone_idx;		/* zone_idx(zoneref->zone) */
688 };
689 
690 /*
691  * One allocation request operates on a zonelist. A zonelist
692  * is a list of zones, the first one is the 'goal' of the
693  * allocation, the other zones are fallback zones, in decreasing
694  * priority.
695  *
696  * To speed the reading of the zonelist, the zonerefs contain the zone index
697  * of the entry being read. Helper functions to access information given
698  * a struct zoneref are
699  *
700  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
701  * zonelist_zone_idx()	- Return the index of the zone for an entry
702  * zonelist_node_idx()	- Return the index of the node for an entry
703  */
704 struct zonelist {
705 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
706 };
707 
708 #ifndef CONFIG_DISCONTIGMEM
709 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
710 extern struct page *mem_map;
711 #endif
712 
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 struct deferred_split {
715 	spinlock_t split_queue_lock;
716 	struct list_head split_queue;
717 	unsigned long split_queue_len;
718 };
719 #endif
720 
721 /*
722  * On NUMA machines, each NUMA node would have a pg_data_t to describe
723  * it's memory layout. On UMA machines there is a single pglist_data which
724  * describes the whole memory.
725  *
726  * Memory statistics and page replacement data structures are maintained on a
727  * per-zone basis.
728  */
729 typedef struct pglist_data {
730 	/*
731 	 * node_zones contains just the zones for THIS node. Not all of the
732 	 * zones may be populated, but it is the full list. It is referenced by
733 	 * this node's node_zonelists as well as other node's node_zonelists.
734 	 */
735 	struct zone node_zones[MAX_NR_ZONES];
736 
737 	/*
738 	 * node_zonelists contains references to all zones in all nodes.
739 	 * Generally the first zones will be references to this node's
740 	 * node_zones.
741 	 */
742 	struct zonelist node_zonelists[MAX_ZONELISTS];
743 
744 	int nr_zones; /* number of populated zones in this node */
745 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
746 	struct page *node_mem_map;
747 #ifdef CONFIG_PAGE_EXTENSION
748 	struct page_ext *node_page_ext;
749 #endif
750 #endif
751 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
752 	/*
753 	 * Must be held any time you expect node_start_pfn,
754 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
755 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
756 	 * init.
757 	 *
758 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
759 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
760 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
761 	 *
762 	 * Nests above zone->lock and zone->span_seqlock
763 	 */
764 	spinlock_t node_size_lock;
765 #endif
766 	unsigned long node_start_pfn;
767 	unsigned long node_present_pages; /* total number of physical pages */
768 	unsigned long node_spanned_pages; /* total size of physical page
769 					     range, including holes */
770 	int node_id;
771 	wait_queue_head_t kswapd_wait;
772 	wait_queue_head_t pfmemalloc_wait;
773 	struct task_struct *kswapd;	/* Protected by
774 					   mem_hotplug_begin/end() */
775 	struct task_struct *mkswapd[MAX_KSWAPD_THREADS];
776 	int kswapd_order;
777 	enum zone_type kswapd_highest_zoneidx;
778 
779 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
780 
781 	ANDROID_OEM_DATA(1);
782 #ifdef CONFIG_COMPACTION
783 	int kcompactd_max_order;
784 	enum zone_type kcompactd_highest_zoneidx;
785 	wait_queue_head_t kcompactd_wait;
786 	struct task_struct *kcompactd;
787 	bool proactive_compact_trigger;
788 #endif
789 	/*
790 	 * This is a per-node reserve of pages that are not available
791 	 * to userspace allocations.
792 	 */
793 	unsigned long		totalreserve_pages;
794 
795 #ifdef CONFIG_NUMA
796 	/*
797 	 * node reclaim becomes active if more unmapped pages exist.
798 	 */
799 	unsigned long		min_unmapped_pages;
800 	unsigned long		min_slab_pages;
801 #endif /* CONFIG_NUMA */
802 
803 	/* Write-intensive fields used by page reclaim */
804 	ZONE_PADDING(_pad1_)
805 	spinlock_t		lru_lock;
806 
807 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
808 	/*
809 	 * If memory initialisation on large machines is deferred then this
810 	 * is the first PFN that needs to be initialised.
811 	 */
812 	unsigned long first_deferred_pfn;
813 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
814 
815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
816 	struct deferred_split deferred_split_queue;
817 #endif
818 
819 	/* Fields commonly accessed by the page reclaim scanner */
820 
821 	/*
822 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
823 	 *
824 	 * Use mem_cgroup_lruvec() to look up lruvecs.
825 	 */
826 	struct lruvec		__lruvec;
827 
828 	unsigned long		flags;
829 
830 	ZONE_PADDING(_pad2_)
831 
832 	/* Per-node vmstats */
833 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
834 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
835 } pg_data_t;
836 
837 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
838 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
839 #ifdef CONFIG_FLAT_NODE_MEM_MAP
840 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
841 #else
842 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
843 #endif
844 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
845 
846 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
847 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
848 
pgdat_end_pfn(pg_data_t * pgdat)849 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
850 {
851 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
852 }
853 
pgdat_is_empty(pg_data_t * pgdat)854 static inline bool pgdat_is_empty(pg_data_t *pgdat)
855 {
856 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
857 }
858 
859 #include <linux/memory_hotplug.h>
860 
861 void build_all_zonelists(pg_data_t *pgdat);
862 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
863 		   enum zone_type highest_zoneidx);
864 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
865 			 int highest_zoneidx, unsigned int alloc_flags,
866 			 long free_pages);
867 bool zone_watermark_ok(struct zone *z, unsigned int order,
868 		unsigned long mark, int highest_zoneidx,
869 		unsigned int alloc_flags);
870 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
871 		unsigned long mark, int highest_zoneidx);
872 /*
873  * Memory initialization context, use to differentiate memory added by
874  * the platform statically or via memory hotplug interface.
875  */
876 enum meminit_context {
877 	MEMINIT_EARLY,
878 	MEMINIT_HOTPLUG,
879 };
880 
881 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
882 				     unsigned long size);
883 
884 extern void lruvec_init(struct lruvec *lruvec);
885 
lruvec_pgdat(struct lruvec * lruvec)886 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
887 {
888 #ifdef CONFIG_MEMCG
889 	return lruvec->pgdat;
890 #else
891 	return container_of(lruvec, struct pglist_data, __lruvec);
892 #endif
893 }
894 
895 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
896 
897 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
898 int local_memory_node(int node_id);
899 #else
local_memory_node(int node_id)900 static inline int local_memory_node(int node_id) { return node_id; };
901 #endif
902 
903 /*
904  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
905  */
906 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
907 
908 /*
909  * Returns true if a zone has pages managed by the buddy allocator.
910  * All the reclaim decisions have to use this function rather than
911  * populated_zone(). If the whole zone is reserved then we can easily
912  * end up with populated_zone() && !managed_zone().
913  */
managed_zone(struct zone * zone)914 static inline bool managed_zone(struct zone *zone)
915 {
916 	return zone_managed_pages(zone);
917 }
918 
919 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)920 static inline bool populated_zone(struct zone *zone)
921 {
922 	return zone->present_pages;
923 }
924 
925 #ifdef CONFIG_NEED_MULTIPLE_NODES
zone_to_nid(struct zone * zone)926 static inline int zone_to_nid(struct zone *zone)
927 {
928 	return zone->node;
929 }
930 
zone_set_nid(struct zone * zone,int nid)931 static inline void zone_set_nid(struct zone *zone, int nid)
932 {
933 	zone->node = nid;
934 }
935 #else
zone_to_nid(struct zone * zone)936 static inline int zone_to_nid(struct zone *zone)
937 {
938 	return 0;
939 }
940 
zone_set_nid(struct zone * zone,int nid)941 static inline void zone_set_nid(struct zone *zone, int nid) {}
942 #endif
943 
944 extern int movable_zone;
945 
946 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)947 static inline int zone_movable_is_highmem(void)
948 {
949 #ifdef CONFIG_NEED_MULTIPLE_NODES
950 	return movable_zone == ZONE_HIGHMEM;
951 #else
952 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
953 #endif
954 }
955 #endif
956 
is_highmem_idx(enum zone_type idx)957 static inline int is_highmem_idx(enum zone_type idx)
958 {
959 #ifdef CONFIG_HIGHMEM
960 	return (idx == ZONE_HIGHMEM ||
961 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
962 #else
963 	return 0;
964 #endif
965 }
966 
967 #ifdef CONFIG_ZONE_DMA
968 bool has_managed_dma(void);
969 #else
has_managed_dma(void)970 static inline bool has_managed_dma(void)
971 {
972 	return false;
973 }
974 #endif
975 
976 /**
977  * is_highmem - helper function to quickly check if a struct zone is a
978  *              highmem zone or not.  This is an attempt to keep references
979  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
980  * @zone - pointer to struct zone variable
981  */
is_highmem(struct zone * zone)982 static inline int is_highmem(struct zone *zone)
983 {
984 #ifdef CONFIG_HIGHMEM
985 	return is_highmem_idx(zone_idx(zone));
986 #else
987 	return 0;
988 #endif
989 }
990 
991 /* These two functions are used to setup the per zone pages min values */
992 struct ctl_table;
993 
994 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
995 		loff_t *);
996 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
997 		size_t *, loff_t *);
998 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
999 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1000 		size_t *, loff_t *);
1001 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1002 		void *, size_t *, loff_t *);
1003 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1004 		void *, size_t *, loff_t *);
1005 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1006 		void *, size_t *, loff_t *);
1007 int numa_zonelist_order_handler(struct ctl_table *, int,
1008 		void *, size_t *, loff_t *);
1009 extern int percpu_pagelist_fraction;
1010 extern char numa_zonelist_order[];
1011 #define NUMA_ZONELIST_ORDER_LEN	16
1012 
1013 #ifndef CONFIG_NEED_MULTIPLE_NODES
1014 
1015 extern struct pglist_data contig_page_data;
1016 #define NODE_DATA(nid)		(&contig_page_data)
1017 #define NODE_MEM_MAP(nid)	mem_map
1018 
1019 #else /* CONFIG_NEED_MULTIPLE_NODES */
1020 
1021 #include <asm/mmzone.h>
1022 
1023 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1024 
1025 extern struct pglist_data *first_online_pgdat(void);
1026 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1027 extern struct zone *next_zone(struct zone *zone);
1028 extern int isolate_anon_lru_page(struct page *page);
1029 
1030 /**
1031  * for_each_online_pgdat - helper macro to iterate over all online nodes
1032  * @pgdat - pointer to a pg_data_t variable
1033  */
1034 #define for_each_online_pgdat(pgdat)			\
1035 	for (pgdat = first_online_pgdat();		\
1036 	     pgdat;					\
1037 	     pgdat = next_online_pgdat(pgdat))
1038 /**
1039  * for_each_zone - helper macro to iterate over all memory zones
1040  * @zone - pointer to struct zone variable
1041  *
1042  * The user only needs to declare the zone variable, for_each_zone
1043  * fills it in.
1044  */
1045 #define for_each_zone(zone)			        \
1046 	for (zone = (first_online_pgdat())->node_zones; \
1047 	     zone;					\
1048 	     zone = next_zone(zone))
1049 
1050 #define for_each_populated_zone(zone)		        \
1051 	for (zone = (first_online_pgdat())->node_zones; \
1052 	     zone;					\
1053 	     zone = next_zone(zone))			\
1054 		if (!populated_zone(zone))		\
1055 			; /* do nothing */		\
1056 		else
1057 
zonelist_zone(struct zoneref * zoneref)1058 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1059 {
1060 	return zoneref->zone;
1061 }
1062 
zonelist_zone_idx(struct zoneref * zoneref)1063 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1064 {
1065 	return zoneref->zone_idx;
1066 }
1067 
zonelist_node_idx(struct zoneref * zoneref)1068 static inline int zonelist_node_idx(struct zoneref *zoneref)
1069 {
1070 	return zone_to_nid(zoneref->zone);
1071 }
1072 
1073 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1074 					enum zone_type highest_zoneidx,
1075 					nodemask_t *nodes);
1076 
1077 /**
1078  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1079  * @z - The cursor used as a starting point for the search
1080  * @highest_zoneidx - The zone index of the highest zone to return
1081  * @nodes - An optional nodemask to filter the zonelist with
1082  *
1083  * This function returns the next zone at or below a given zone index that is
1084  * within the allowed nodemask using a cursor as the starting point for the
1085  * search. The zoneref returned is a cursor that represents the current zone
1086  * being examined. It should be advanced by one before calling
1087  * next_zones_zonelist again.
1088  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1089 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1090 					enum zone_type highest_zoneidx,
1091 					nodemask_t *nodes)
1092 {
1093 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1094 		return z;
1095 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1096 }
1097 
1098 /**
1099  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1100  * @zonelist - The zonelist to search for a suitable zone
1101  * @highest_zoneidx - The zone index of the highest zone to return
1102  * @nodes - An optional nodemask to filter the zonelist with
1103  * @return - Zoneref pointer for the first suitable zone found (see below)
1104  *
1105  * This function returns the first zone at or below a given zone index that is
1106  * within the allowed nodemask. The zoneref returned is a cursor that can be
1107  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1108  * one before calling.
1109  *
1110  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1111  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1112  * update due to cpuset modification.
1113  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1114 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1115 					enum zone_type highest_zoneidx,
1116 					nodemask_t *nodes)
1117 {
1118 	return next_zones_zonelist(zonelist->_zonerefs,
1119 							highest_zoneidx, nodes);
1120 }
1121 
1122 /**
1123  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1124  * @zone - The current zone in the iterator
1125  * @z - The current pointer within zonelist->_zonerefs being iterated
1126  * @zlist - The zonelist being iterated
1127  * @highidx - The zone index of the highest zone to return
1128  * @nodemask - Nodemask allowed by the allocator
1129  *
1130  * This iterator iterates though all zones at or below a given zone index and
1131  * within a given nodemask
1132  */
1133 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1134 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1135 		zone;							\
1136 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1137 			zone = zonelist_zone(z))
1138 
1139 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1140 	for (zone = z->zone;	\
1141 		zone;							\
1142 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1143 			zone = zonelist_zone(z))
1144 
1145 
1146 /**
1147  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1148  * @zone - The current zone in the iterator
1149  * @z - The current pointer within zonelist->zones being iterated
1150  * @zlist - The zonelist being iterated
1151  * @highidx - The zone index of the highest zone to return
1152  *
1153  * This iterator iterates though all zones at or below a given zone index.
1154  */
1155 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1156 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1157 
1158 #ifdef CONFIG_SPARSEMEM
1159 #include <asm/sparsemem.h>
1160 #endif
1161 
1162 #ifdef CONFIG_FLATMEM
1163 #define pfn_to_nid(pfn)		(0)
1164 #endif
1165 
1166 #ifdef CONFIG_SPARSEMEM
1167 
1168 /*
1169  * SECTION_SHIFT    		#bits space required to store a section #
1170  *
1171  * PA_SECTION_SHIFT		physical address to/from section number
1172  * PFN_SECTION_SHIFT		pfn to/from section number
1173  */
1174 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1175 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1176 
1177 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1178 
1179 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1180 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1181 
1182 #define SECTION_BLOCKFLAGS_BITS \
1183 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1184 
1185 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1186 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1187 #endif
1188 
pfn_to_section_nr(unsigned long pfn)1189 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1190 {
1191 	return pfn >> PFN_SECTION_SHIFT;
1192 }
section_nr_to_pfn(unsigned long sec)1193 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1194 {
1195 	return sec << PFN_SECTION_SHIFT;
1196 }
1197 
1198 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1199 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1200 
1201 #define SUBSECTION_SHIFT 21
1202 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1203 
1204 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1205 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1206 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1207 
1208 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1209 #error Subsection size exceeds section size
1210 #else
1211 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1212 #endif
1213 
1214 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1215 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1216 
1217 struct mem_section_usage {
1218 	struct rcu_head rcu;
1219 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1220 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1221 #endif
1222 	/* See declaration of similar field in struct zone */
1223 	unsigned long pageblock_flags[0];
1224 };
1225 
1226 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1227 
1228 struct page;
1229 struct page_ext;
1230 struct mem_section {
1231 	/*
1232 	 * This is, logically, a pointer to an array of struct
1233 	 * pages.  However, it is stored with some other magic.
1234 	 * (see sparse.c::sparse_init_one_section())
1235 	 *
1236 	 * Additionally during early boot we encode node id of
1237 	 * the location of the section here to guide allocation.
1238 	 * (see sparse.c::memory_present())
1239 	 *
1240 	 * Making it a UL at least makes someone do a cast
1241 	 * before using it wrong.
1242 	 */
1243 	unsigned long section_mem_map;
1244 
1245 	struct mem_section_usage *usage;
1246 #ifdef CONFIG_PAGE_EXTENSION
1247 	/*
1248 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1249 	 * section. (see page_ext.h about this.)
1250 	 */
1251 	struct page_ext *page_ext;
1252 	unsigned long pad;
1253 #endif
1254 	/*
1255 	 * WARNING: mem_section must be a power-of-2 in size for the
1256 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1257 	 */
1258 };
1259 
1260 #ifdef CONFIG_SPARSEMEM_EXTREME
1261 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1262 #else
1263 #define SECTIONS_PER_ROOT	1
1264 #endif
1265 
1266 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1267 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1268 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1269 
1270 #ifdef CONFIG_SPARSEMEM_EXTREME
1271 extern struct mem_section **mem_section;
1272 #else
1273 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1274 #endif
1275 
section_to_usemap(struct mem_section * ms)1276 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1277 {
1278 	return ms->usage->pageblock_flags;
1279 }
1280 
__nr_to_section(unsigned long nr)1281 static inline struct mem_section *__nr_to_section(unsigned long nr)
1282 {
1283 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1284 
1285 	if (unlikely(root >= NR_SECTION_ROOTS))
1286 		return NULL;
1287 
1288 #ifdef CONFIG_SPARSEMEM_EXTREME
1289 	if (!mem_section || !mem_section[root])
1290 		return NULL;
1291 #endif
1292 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1293 }
1294 extern unsigned long __section_nr(struct mem_section *ms);
1295 extern size_t mem_section_usage_size(void);
1296 
1297 /*
1298  * We use the lower bits of the mem_map pointer to store
1299  * a little bit of information.  The pointer is calculated
1300  * as mem_map - section_nr_to_pfn(pnum).  The result is
1301  * aligned to the minimum alignment of the two values:
1302  *   1. All mem_map arrays are page-aligned.
1303  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1304  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1305  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1306  *      worst combination is powerpc with 256k pages,
1307  *      which results in PFN_SECTION_SHIFT equal 6.
1308  * To sum it up, at least 6 bits are available.
1309  */
1310 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1311 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1312 #define SECTION_IS_ONLINE	(1UL<<2)
1313 #define SECTION_IS_EARLY	(1UL<<3)
1314 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1315 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1316 #define SECTION_NID_SHIFT	3
1317 
__section_mem_map_addr(struct mem_section * section)1318 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1319 {
1320 	unsigned long map = section->section_mem_map;
1321 	map &= SECTION_MAP_MASK;
1322 	return (struct page *)map;
1323 }
1324 
present_section(struct mem_section * section)1325 static inline int present_section(struct mem_section *section)
1326 {
1327 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1328 }
1329 
present_section_nr(unsigned long nr)1330 static inline int present_section_nr(unsigned long nr)
1331 {
1332 	return present_section(__nr_to_section(nr));
1333 }
1334 
valid_section(struct mem_section * section)1335 static inline int valid_section(struct mem_section *section)
1336 {
1337 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1338 }
1339 
early_section(struct mem_section * section)1340 static inline int early_section(struct mem_section *section)
1341 {
1342 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1343 }
1344 
valid_section_nr(unsigned long nr)1345 static inline int valid_section_nr(unsigned long nr)
1346 {
1347 	return valid_section(__nr_to_section(nr));
1348 }
1349 
online_section(struct mem_section * section)1350 static inline int online_section(struct mem_section *section)
1351 {
1352 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1353 }
1354 
online_section_nr(unsigned long nr)1355 static inline int online_section_nr(unsigned long nr)
1356 {
1357 	return online_section(__nr_to_section(nr));
1358 }
1359 
1360 #ifdef CONFIG_MEMORY_HOTPLUG
1361 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1362 #ifdef CONFIG_MEMORY_HOTREMOVE
1363 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1364 #endif
1365 #endif
1366 
__pfn_to_section(unsigned long pfn)1367 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1368 {
1369 	return __nr_to_section(pfn_to_section_nr(pfn));
1370 }
1371 
1372 extern unsigned long __highest_present_section_nr;
1373 
subsection_map_index(unsigned long pfn)1374 static inline int subsection_map_index(unsigned long pfn)
1375 {
1376 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1377 }
1378 
1379 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1380 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1381 {
1382 	int idx = subsection_map_index(pfn);
1383 
1384 	return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1385 }
1386 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1387 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1388 {
1389 	return 1;
1390 }
1391 #endif
1392 
1393 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1394 static inline int pfn_valid(unsigned long pfn)
1395 {
1396 	struct mem_section *ms;
1397 	int ret;
1398 
1399 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1400 		return 0;
1401 	ms = __pfn_to_section(pfn);
1402 	rcu_read_lock();
1403 	if (!valid_section(ms)) {
1404 		rcu_read_unlock();
1405 		return 0;
1406 	}
1407 	/*
1408 	 * Traditionally early sections always returned pfn_valid() for
1409 	 * the entire section-sized span.
1410 	 */
1411 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
1412 	rcu_read_unlock();
1413 
1414 	return ret;
1415 }
1416 #endif
1417 
pfn_in_present_section(unsigned long pfn)1418 static inline int pfn_in_present_section(unsigned long pfn)
1419 {
1420 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1421 		return 0;
1422 	return present_section(__pfn_to_section(pfn));
1423 }
1424 
next_present_section_nr(unsigned long section_nr)1425 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1426 {
1427 	while (++section_nr <= __highest_present_section_nr) {
1428 		if (present_section_nr(section_nr))
1429 			return section_nr;
1430 	}
1431 
1432 	return -1;
1433 }
1434 
1435 /*
1436  * These are _only_ used during initialisation, therefore they
1437  * can use __initdata ...  They could have names to indicate
1438  * this restriction.
1439  */
1440 #ifdef CONFIG_NUMA
1441 #define pfn_to_nid(pfn)							\
1442 ({									\
1443 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1444 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1445 })
1446 #else
1447 #define pfn_to_nid(pfn)		(0)
1448 #endif
1449 
1450 void sparse_init(void);
1451 #else
1452 #define sparse_init()	do {} while (0)
1453 #define sparse_index_init(_sec, _nid)  do {} while (0)
1454 #define pfn_in_present_section pfn_valid
1455 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1456 #endif /* CONFIG_SPARSEMEM */
1457 
1458 /*
1459  * During memory init memblocks map pfns to nids. The search is expensive and
1460  * this caches recent lookups. The implementation of __early_pfn_to_nid
1461  * may treat start/end as pfns or sections.
1462  */
1463 struct mminit_pfnnid_cache {
1464 	unsigned long last_start;
1465 	unsigned long last_end;
1466 	int last_nid;
1467 };
1468 
1469 /*
1470  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1471  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1472  * pfn_valid_within() should be used in this case; we optimise this away
1473  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1474  */
1475 #ifdef CONFIG_HOLES_IN_ZONE
1476 #define pfn_valid_within(pfn) pfn_valid(pfn)
1477 #else
1478 #define pfn_valid_within(pfn) (1)
1479 #endif
1480 
1481 #endif /* !__GENERATING_BOUNDS.H */
1482 #endif /* !__ASSEMBLY__ */
1483 #endif /* _LINUX_MMZONE_H */
1484