1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/rcuwait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQ_VM_BUGGED (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQUEST_ARCH_BASE 8
151
152 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
153 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
154 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
155 })
156 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
157
158 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
159 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
160
161 extern struct mutex kvm_lock;
162 extern struct list_head vm_list;
163
164 struct kvm_io_range {
165 gpa_t addr;
166 int len;
167 struct kvm_io_device *dev;
168 };
169
170 #define NR_IOBUS_DEVS 1000
171
172 struct kvm_io_bus {
173 int dev_count;
174 int ioeventfd_count;
175 struct kvm_io_range range[];
176 };
177
178 enum kvm_bus {
179 KVM_MMIO_BUS,
180 KVM_PIO_BUS,
181 KVM_VIRTIO_CCW_NOTIFY_BUS,
182 KVM_FAST_MMIO_BUS,
183 KVM_NR_BUSES
184 };
185
186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
187 int len, const void *val);
188 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
189 gpa_t addr, int len, const void *val, long cookie);
190 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 int len, void *val);
192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
193 int len, struct kvm_io_device *dev);
194 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
195 struct kvm_io_device *dev);
196 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 gpa_t addr);
198
199 #ifdef CONFIG_KVM_ASYNC_PF
200 struct kvm_async_pf {
201 struct work_struct work;
202 struct list_head link;
203 struct list_head queue;
204 struct kvm_vcpu *vcpu;
205 struct mm_struct *mm;
206 gpa_t cr2_or_gpa;
207 unsigned long addr;
208 struct kvm_arch_async_pf arch;
209 bool wakeup_all;
210 bool notpresent_injected;
211 };
212
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
216 unsigned long hva, struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219
220 enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225 };
226
227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229 struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242 };
243
244 /*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
kvm_vcpu_mapped(struct kvm_host_map * map)248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 return !!map->hva;
251 }
252
253 /*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257 struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261 };
262
263 struct kvm_vcpu {
264 struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267 #endif
268 int cpu;
269 int vcpu_id; /* id given by userspace at creation */
270 int vcpu_idx; /* index in kvm->vcpus array */
271 int srcu_idx;
272 int mode;
273 u64 requests;
274 unsigned long guest_debug;
275
276 int pre_pcpu;
277 struct list_head blocked_vcpu_list;
278
279 struct mutex mutex;
280 struct kvm_run *run;
281
282 struct rcuwait wait;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290 #ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298
299 #ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306 #endif
307
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319 #endif
320 bool preempted;
321 bool ready;
322 struct kvm_vcpu_arch arch;
323 };
324
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)325 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
326 {
327 /*
328 * The memory barrier ensures a previous write to vcpu->requests cannot
329 * be reordered with the read of vcpu->mode. It pairs with the general
330 * memory barrier following the write of vcpu->mode in VCPU RUN.
331 */
332 smp_mb__before_atomic();
333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
334 }
335
336 /*
337 * Some of the bitops functions do not support too long bitmaps.
338 * This number must be determined not to exceed such limits.
339 */
340 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
341
342 struct kvm_memory_slot {
343 gfn_t base_gfn;
344 unsigned long npages;
345 unsigned long *dirty_bitmap;
346 struct kvm_arch_memory_slot arch;
347 unsigned long userspace_addr;
348 u32 flags;
349 short id;
350 u16 as_id;
351 };
352
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
354 {
355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
356 }
357
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
359 {
360 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
361
362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
363 }
364
365 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
366 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
367 #endif
368
369 struct kvm_s390_adapter_int {
370 u64 ind_addr;
371 u64 summary_addr;
372 u64 ind_offset;
373 u32 summary_offset;
374 u32 adapter_id;
375 };
376
377 struct kvm_hv_sint {
378 u32 vcpu;
379 u32 sint;
380 };
381
382 struct kvm_kernel_irq_routing_entry {
383 u32 gsi;
384 u32 type;
385 int (*set)(struct kvm_kernel_irq_routing_entry *e,
386 struct kvm *kvm, int irq_source_id, int level,
387 bool line_status);
388 union {
389 struct {
390 unsigned irqchip;
391 unsigned pin;
392 } irqchip;
393 struct {
394 u32 address_lo;
395 u32 address_hi;
396 u32 data;
397 u32 flags;
398 u32 devid;
399 } msi;
400 struct kvm_s390_adapter_int adapter;
401 struct kvm_hv_sint hv_sint;
402 };
403 struct hlist_node link;
404 };
405
406 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
407 struct kvm_irq_routing_table {
408 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
409 u32 nr_rt_entries;
410 /*
411 * Array indexed by gsi. Each entry contains list of irq chips
412 * the gsi is connected to.
413 */
414 struct hlist_head map[];
415 };
416 #endif
417
418 #ifndef KVM_PRIVATE_MEM_SLOTS
419 #define KVM_PRIVATE_MEM_SLOTS 0
420 #endif
421
422 #ifndef KVM_MEM_SLOTS_NUM
423 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
424 #endif
425
426 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)427 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
428 {
429 return 0;
430 }
431 #endif
432
433 /*
434 * Note:
435 * memslots are not sorted by id anymore, please use id_to_memslot()
436 * to get the memslot by its id.
437 */
438 struct kvm_memslots {
439 u64 generation;
440 /* The mapping table from slot id to the index in memslots[]. */
441 short id_to_index[KVM_MEM_SLOTS_NUM];
442 atomic_t lru_slot;
443 int used_slots;
444 struct kvm_memory_slot memslots[];
445 };
446
447 struct kvm {
448 spinlock_t mmu_lock;
449 struct mutex slots_lock;
450 struct mm_struct *mm; /* userspace tied to this vm */
451 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
452 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
453
454 /*
455 * created_vcpus is protected by kvm->lock, and is incremented
456 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
457 * incremented after storing the kvm_vcpu pointer in vcpus,
458 * and is accessed atomically.
459 */
460 atomic_t online_vcpus;
461 int created_vcpus;
462 int last_boosted_vcpu;
463 struct list_head vm_list;
464 struct mutex lock;
465 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
466 #ifdef CONFIG_HAVE_KVM_EVENTFD
467 struct {
468 spinlock_t lock;
469 struct list_head items;
470 struct list_head resampler_list;
471 struct mutex resampler_lock;
472 } irqfds;
473 struct list_head ioeventfds;
474 #endif
475 struct kvm_vm_stat stat;
476 struct kvm_arch arch;
477 refcount_t users_count;
478 #ifdef CONFIG_KVM_MMIO
479 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
480 spinlock_t ring_lock;
481 struct list_head coalesced_zones;
482 #endif
483
484 struct mutex irq_lock;
485 #ifdef CONFIG_HAVE_KVM_IRQCHIP
486 /*
487 * Update side is protected by irq_lock.
488 */
489 struct kvm_irq_routing_table __rcu *irq_routing;
490 #endif
491 #ifdef CONFIG_HAVE_KVM_IRQFD
492 struct hlist_head irq_ack_notifier_list;
493 #endif
494
495 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
496 struct mmu_notifier mmu_notifier;
497 unsigned long mmu_notifier_seq;
498 long mmu_notifier_count;
499 #endif
500 long tlbs_dirty;
501 struct list_head devices;
502 u64 manual_dirty_log_protect;
503 struct dentry *debugfs_dentry;
504 struct kvm_stat_data **debugfs_stat_data;
505 struct srcu_struct srcu;
506 struct srcu_struct irq_srcu;
507 pid_t userspace_pid;
508 unsigned int max_halt_poll_ns;
509 bool vm_bugged;
510 };
511
512 #define kvm_err(fmt, ...) \
513 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
514 #define kvm_info(fmt, ...) \
515 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
516 #define kvm_debug(fmt, ...) \
517 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
518 #define kvm_debug_ratelimited(fmt, ...) \
519 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
520 ## __VA_ARGS__)
521 #define kvm_pr_unimpl(fmt, ...) \
522 pr_err_ratelimited("kvm [%i]: " fmt, \
523 task_tgid_nr(current), ## __VA_ARGS__)
524
525 /* The guest did something we don't support. */
526 #define vcpu_unimpl(vcpu, fmt, ...) \
527 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
528 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
529
530 #define vcpu_debug(vcpu, fmt, ...) \
531 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
532 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
533 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
534 ## __VA_ARGS__)
535 #define vcpu_err(vcpu, fmt, ...) \
536 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
537
538 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
kvm_vm_bugged(struct kvm * kvm)539 static inline void kvm_vm_bugged(struct kvm *kvm)
540 {
541 kvm->vm_bugged = true;
542 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED);
543 }
544
545 #define KVM_BUG(cond, kvm, fmt...) \
546 ({ \
547 int __ret = (cond); \
548 \
549 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
550 kvm_vm_bugged(kvm); \
551 unlikely(__ret); \
552 })
553
554 #define KVM_BUG_ON(cond, kvm) \
555 ({ \
556 int __ret = (cond); \
557 \
558 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
559 kvm_vm_bugged(kvm); \
560 unlikely(__ret); \
561 })
562
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)563 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
564 {
565 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
566 }
567
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)568 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
569 {
570 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
571 lockdep_is_held(&kvm->slots_lock) ||
572 !refcount_read(&kvm->users_count));
573 }
574
kvm_get_vcpu(struct kvm * kvm,int i)575 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
576 {
577 int num_vcpus = atomic_read(&kvm->online_vcpus);
578 i = array_index_nospec(i, num_vcpus);
579
580 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
581 smp_rmb();
582 return kvm->vcpus[i];
583 }
584
585 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
586 for (idx = 0; \
587 idx < atomic_read(&kvm->online_vcpus) && \
588 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
589 idx++)
590
kvm_get_vcpu_by_id(struct kvm * kvm,int id)591 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
592 {
593 struct kvm_vcpu *vcpu = NULL;
594 int i;
595
596 if (id < 0)
597 return NULL;
598 if (id < KVM_MAX_VCPUS)
599 vcpu = kvm_get_vcpu(kvm, id);
600 if (vcpu && vcpu->vcpu_id == id)
601 return vcpu;
602 kvm_for_each_vcpu(i, vcpu, kvm)
603 if (vcpu->vcpu_id == id)
604 return vcpu;
605 return NULL;
606 }
607
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)608 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
609 {
610 return vcpu->vcpu_idx;
611 }
612
613 #define kvm_for_each_memslot(memslot, slots) \
614 for (memslot = &slots->memslots[0]; \
615 memslot < slots->memslots + slots->used_slots; memslot++) \
616 if (WARN_ON_ONCE(!memslot->npages)) { \
617 } else
618
619 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
620
621 void vcpu_load(struct kvm_vcpu *vcpu);
622 void vcpu_put(struct kvm_vcpu *vcpu);
623
624 #ifdef __KVM_HAVE_IOAPIC
625 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
626 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
627 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)628 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
629 {
630 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)631 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
632 {
633 }
634 #endif
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 int kvm_irqfd_init(void);
638 void kvm_irqfd_exit(void);
639 #else
kvm_irqfd_init(void)640 static inline int kvm_irqfd_init(void)
641 {
642 return 0;
643 }
644
kvm_irqfd_exit(void)645 static inline void kvm_irqfd_exit(void)
646 {
647 }
648 #endif
649 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
650 struct module *module);
651 void kvm_exit(void);
652
653 void kvm_get_kvm(struct kvm *kvm);
654 void kvm_put_kvm(struct kvm *kvm);
655 void kvm_put_kvm_no_destroy(struct kvm *kvm);
656
__kvm_memslots(struct kvm * kvm,int as_id)657 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
658 {
659 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
660 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
661 lockdep_is_held(&kvm->slots_lock) ||
662 !refcount_read(&kvm->users_count));
663 }
664
kvm_memslots(struct kvm * kvm)665 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
666 {
667 return __kvm_memslots(kvm, 0);
668 }
669
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)670 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
671 {
672 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
673
674 return __kvm_memslots(vcpu->kvm, as_id);
675 }
676
677 static inline
id_to_memslot(struct kvm_memslots * slots,int id)678 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
679 {
680 int index = slots->id_to_index[id];
681 struct kvm_memory_slot *slot;
682
683 if (index < 0)
684 return NULL;
685
686 slot = &slots->memslots[index];
687
688 WARN_ON(slot->id != id);
689 return slot;
690 }
691
692 /*
693 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
694 * - create a new memory slot
695 * - delete an existing memory slot
696 * - modify an existing memory slot
697 * -- move it in the guest physical memory space
698 * -- just change its flags
699 *
700 * Since flags can be changed by some of these operations, the following
701 * differentiation is the best we can do for __kvm_set_memory_region():
702 */
703 enum kvm_mr_change {
704 KVM_MR_CREATE,
705 KVM_MR_DELETE,
706 KVM_MR_MOVE,
707 KVM_MR_FLAGS_ONLY,
708 };
709
710 int kvm_set_memory_region(struct kvm *kvm,
711 const struct kvm_userspace_memory_region *mem);
712 int __kvm_set_memory_region(struct kvm *kvm,
713 const struct kvm_userspace_memory_region *mem);
714 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
715 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
716 int kvm_arch_prepare_memory_region(struct kvm *kvm,
717 struct kvm_memory_slot *memslot,
718 const struct kvm_userspace_memory_region *mem,
719 enum kvm_mr_change change);
720 void kvm_arch_commit_memory_region(struct kvm *kvm,
721 const struct kvm_userspace_memory_region *mem,
722 struct kvm_memory_slot *old,
723 const struct kvm_memory_slot *new,
724 enum kvm_mr_change change);
725 /* flush all memory translations */
726 void kvm_arch_flush_shadow_all(struct kvm *kvm);
727 /* flush memory translations pointing to 'slot' */
728 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
729 struct kvm_memory_slot *slot);
730
731 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
732 struct page **pages, int nr_pages);
733
734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
735 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
736 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
737 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
738 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
739 bool *writable);
740 void kvm_release_page_clean(struct page *page);
741 void kvm_release_page_dirty(struct page *page);
742 void kvm_set_page_accessed(struct page *page);
743
744 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
745 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
746 bool *writable);
747 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
748 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
749 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
750 bool atomic, bool *async, bool write_fault,
751 bool *writable);
752
753 void kvm_release_pfn_clean(kvm_pfn_t pfn);
754 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
755 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
756 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
757 void kvm_get_pfn(kvm_pfn_t pfn);
758
759 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
760 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
761 int len);
762 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
763 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
764 void *data, unsigned long len);
765 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
766 void *data, unsigned int offset,
767 unsigned long len);
768 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
769 int offset, int len);
770 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
771 unsigned long len);
772 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
773 void *data, unsigned long len);
774 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
775 void *data, unsigned int offset,
776 unsigned long len);
777 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
778 gpa_t gpa, unsigned long len);
779
780 #define __kvm_get_guest(kvm, gfn, offset, v) \
781 ({ \
782 unsigned long __addr = gfn_to_hva(kvm, gfn); \
783 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
784 int __ret = -EFAULT; \
785 \
786 if (!kvm_is_error_hva(__addr)) \
787 __ret = get_user(v, __uaddr); \
788 __ret; \
789 })
790
791 #define kvm_get_guest(kvm, gpa, v) \
792 ({ \
793 gpa_t __gpa = gpa; \
794 struct kvm *__kvm = kvm; \
795 \
796 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
797 offset_in_page(__gpa), v); \
798 })
799
800 #define __kvm_put_guest(kvm, gfn, offset, v) \
801 ({ \
802 unsigned long __addr = gfn_to_hva(kvm, gfn); \
803 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
804 int __ret = -EFAULT; \
805 \
806 if (!kvm_is_error_hva(__addr)) \
807 __ret = put_user(v, __uaddr); \
808 if (!__ret) \
809 mark_page_dirty(kvm, gfn); \
810 __ret; \
811 })
812
813 #define kvm_put_guest(kvm, gpa, v) \
814 ({ \
815 gpa_t __gpa = gpa; \
816 struct kvm *__kvm = kvm; \
817 \
818 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
819 offset_in_page(__gpa), v); \
820 })
821
822 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
823 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
824 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
825 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
826 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
827 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
828 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
829 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
830
831 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
832 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
833 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
834 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
835 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
836 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
837 struct gfn_to_pfn_cache *cache, bool atomic);
838 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
839 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
840 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
841 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
842 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
843 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
844 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
845 int len);
846 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
847 unsigned long len);
848 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
849 unsigned long len);
850 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
851 int offset, int len);
852 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
853 unsigned long len);
854 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
855
856 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
857 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
858
859 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
860 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
861 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
862 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
863 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
864 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
865 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
866
867 void kvm_flush_remote_tlbs(struct kvm *kvm);
868 void kvm_reload_remote_mmus(struct kvm *kvm);
869
870 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
871 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
872 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
873 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
874 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
875 #endif
876
877 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
878 struct kvm_vcpu *except,
879 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
880 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
881 struct kvm_vcpu *except);
882 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
883 unsigned long *vcpu_bitmap);
884
885 long kvm_arch_dev_ioctl(struct file *filp,
886 unsigned int ioctl, unsigned long arg);
887 long kvm_arch_vcpu_ioctl(struct file *filp,
888 unsigned int ioctl, unsigned long arg);
889 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
890
891 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
892
893 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
894 struct kvm_memory_slot *slot,
895 gfn_t gfn_offset,
896 unsigned long mask);
897 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
898
899 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
900 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
901 struct kvm_memory_slot *memslot);
902 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
903 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
904 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
905 int *is_dirty, struct kvm_memory_slot **memslot);
906 #endif
907
908 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
909 bool line_status);
910 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
911 struct kvm_enable_cap *cap);
912 long kvm_arch_vm_ioctl(struct file *filp,
913 unsigned int ioctl, unsigned long arg);
914 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
915 unsigned long arg);
916
917 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
918 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
919
920 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
921 struct kvm_translation *tr);
922
923 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
924 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
925 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
926 struct kvm_sregs *sregs);
927 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
928 struct kvm_sregs *sregs);
929 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
930 struct kvm_mp_state *mp_state);
931 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
932 struct kvm_mp_state *mp_state);
933 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
934 struct kvm_guest_debug *dbg);
935 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
936
937 int kvm_arch_init(void *opaque);
938 void kvm_arch_exit(void);
939
940 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
941
942 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
943 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
944 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
945 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
946 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
947 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
948
949 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
950 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
951 #endif
952
953 int kvm_arch_hardware_enable(void);
954 void kvm_arch_hardware_disable(void);
955 int kvm_arch_hardware_setup(void *opaque);
956 void kvm_arch_hardware_unsetup(void);
957 int kvm_arch_check_processor_compat(void *opaque);
958 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
959 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
960 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
961 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
962 int kvm_arch_post_init_vm(struct kvm *kvm);
963 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
964
965 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
966 /*
967 * All architectures that want to use vzalloc currently also
968 * need their own kvm_arch_alloc_vm implementation.
969 */
kvm_arch_alloc_vm(void)970 static inline struct kvm *kvm_arch_alloc_vm(void)
971 {
972 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
973 }
974
kvm_arch_free_vm(struct kvm * kvm)975 static inline void kvm_arch_free_vm(struct kvm *kvm)
976 {
977 kfree(kvm);
978 }
979 #endif
980
981 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)982 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
983 {
984 return -ENOTSUPP;
985 }
986 #endif
987
988 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
989 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
990 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
991 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
992 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)993 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
994 {
995 }
996
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)997 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
998 {
999 }
1000
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1001 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1002 {
1003 return false;
1004 }
1005 #endif
1006 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1007 void kvm_arch_start_assignment(struct kvm *kvm);
1008 void kvm_arch_end_assignment(struct kvm *kvm);
1009 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1010 #else
kvm_arch_start_assignment(struct kvm * kvm)1011 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1012 {
1013 }
1014
kvm_arch_end_assignment(struct kvm * kvm)1015 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1016 {
1017 }
1018
kvm_arch_has_assigned_device(struct kvm * kvm)1019 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1020 {
1021 return false;
1022 }
1023 #endif
1024
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1025 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1026 {
1027 #ifdef __KVM_HAVE_ARCH_WQP
1028 return vcpu->arch.waitp;
1029 #else
1030 return &vcpu->wait;
1031 #endif
1032 }
1033
1034 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1035 /*
1036 * returns true if the virtual interrupt controller is initialized and
1037 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1038 * controller is dynamically instantiated and this is not always true.
1039 */
1040 bool kvm_arch_intc_initialized(struct kvm *kvm);
1041 #else
kvm_arch_intc_initialized(struct kvm * kvm)1042 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1043 {
1044 return true;
1045 }
1046 #endif
1047
1048 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1049 void kvm_arch_destroy_vm(struct kvm *kvm);
1050 void kvm_arch_sync_events(struct kvm *kvm);
1051
1052 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1053
1054 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1055 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1056 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1057
1058 struct kvm_irq_ack_notifier {
1059 struct hlist_node link;
1060 unsigned gsi;
1061 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1062 };
1063
1064 int kvm_irq_map_gsi(struct kvm *kvm,
1065 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1066 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1067
1068 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1069 bool line_status);
1070 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1071 int irq_source_id, int level, bool line_status);
1072 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1073 struct kvm *kvm, int irq_source_id,
1074 int level, bool line_status);
1075 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1076 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1077 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1078 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1079 struct kvm_irq_ack_notifier *kian);
1080 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1081 struct kvm_irq_ack_notifier *kian);
1082 int kvm_request_irq_source_id(struct kvm *kvm);
1083 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1084 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1085
1086 /*
1087 * search_memslots() and __gfn_to_memslot() are here because they are
1088 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1089 * gfn_to_memslot() itself isn't here as an inline because that would
1090 * bloat other code too much.
1091 *
1092 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1093 */
1094 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1095 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1096 {
1097 int start = 0, end = slots->used_slots;
1098 int slot = atomic_read(&slots->lru_slot);
1099 struct kvm_memory_slot *memslots = slots->memslots;
1100
1101 if (unlikely(!slots->used_slots))
1102 return NULL;
1103
1104 if (gfn >= memslots[slot].base_gfn &&
1105 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1106 return &memslots[slot];
1107
1108 while (start < end) {
1109 slot = start + (end - start) / 2;
1110
1111 if (gfn >= memslots[slot].base_gfn)
1112 end = slot;
1113 else
1114 start = slot + 1;
1115 }
1116
1117 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1118 gfn < memslots[start].base_gfn + memslots[start].npages) {
1119 atomic_set(&slots->lru_slot, start);
1120 return &memslots[start];
1121 }
1122
1123 return NULL;
1124 }
1125
1126 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1127 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1128 {
1129 return search_memslots(slots, gfn);
1130 }
1131
1132 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1133 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1134 {
1135 /*
1136 * The index was checked originally in search_memslots. To avoid
1137 * that a malicious guest builds a Spectre gadget out of e.g. page
1138 * table walks, do not let the processor speculate loads outside
1139 * the guest's registered memslots.
1140 */
1141 unsigned long offset = gfn - slot->base_gfn;
1142 offset = array_index_nospec(offset, slot->npages);
1143 return slot->userspace_addr + offset * PAGE_SIZE;
1144 }
1145
memslot_id(struct kvm * kvm,gfn_t gfn)1146 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1147 {
1148 return gfn_to_memslot(kvm, gfn)->id;
1149 }
1150
1151 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1152 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1153 {
1154 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1155
1156 return slot->base_gfn + gfn_offset;
1157 }
1158
gfn_to_gpa(gfn_t gfn)1159 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1160 {
1161 return (gpa_t)gfn << PAGE_SHIFT;
1162 }
1163
gpa_to_gfn(gpa_t gpa)1164 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1165 {
1166 return (gfn_t)(gpa >> PAGE_SHIFT);
1167 }
1168
pfn_to_hpa(kvm_pfn_t pfn)1169 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1170 {
1171 return (hpa_t)pfn << PAGE_SHIFT;
1172 }
1173
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1174 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1175 gpa_t gpa)
1176 {
1177 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1178 }
1179
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1180 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1181 {
1182 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1183
1184 return kvm_is_error_hva(hva);
1185 }
1186
1187 enum kvm_stat_kind {
1188 KVM_STAT_VM,
1189 KVM_STAT_VCPU,
1190 };
1191
1192 struct kvm_stat_data {
1193 struct kvm *kvm;
1194 struct kvm_stats_debugfs_item *dbgfs_item;
1195 };
1196
1197 struct kvm_stats_debugfs_item {
1198 const char *name;
1199 int offset;
1200 enum kvm_stat_kind kind;
1201 int mode;
1202 };
1203
1204 #define KVM_DBGFS_GET_MODE(dbgfs_item) \
1205 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1206
1207 #define VM_STAT(n, x, ...) \
1208 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1209 #define VCPU_STAT(n, x, ...) \
1210 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1211
1212 extern struct kvm_stats_debugfs_item debugfs_entries[];
1213 extern struct dentry *kvm_debugfs_dir;
1214
1215 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1216 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1217 {
1218 if (unlikely(kvm->mmu_notifier_count))
1219 return 1;
1220 /*
1221 * Ensure the read of mmu_notifier_count happens before the read
1222 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1223 * mmu_notifier_invalidate_range_end to make sure that the caller
1224 * either sees the old (non-zero) value of mmu_notifier_count or
1225 * the new (incremented) value of mmu_notifier_seq.
1226 * PowerPC Book3s HV KVM calls this under a per-page lock
1227 * rather than under kvm->mmu_lock, for scalability, so
1228 * can't rely on kvm->mmu_lock to keep things ordered.
1229 */
1230 smp_rmb();
1231 if (kvm->mmu_notifier_seq != mmu_seq)
1232 return 1;
1233 return 0;
1234 }
1235 #endif
1236
1237 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1238
1239 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1240
1241 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1242 int kvm_set_irq_routing(struct kvm *kvm,
1243 const struct kvm_irq_routing_entry *entries,
1244 unsigned nr,
1245 unsigned flags);
1246 int kvm_set_routing_entry(struct kvm *kvm,
1247 struct kvm_kernel_irq_routing_entry *e,
1248 const struct kvm_irq_routing_entry *ue);
1249 void kvm_free_irq_routing(struct kvm *kvm);
1250
1251 #else
1252
kvm_free_irq_routing(struct kvm * kvm)1253 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1254
1255 #endif
1256
1257 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1258
1259 #ifdef CONFIG_HAVE_KVM_EVENTFD
1260
1261 void kvm_eventfd_init(struct kvm *kvm);
1262 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1263
1264 #ifdef CONFIG_HAVE_KVM_IRQFD
1265 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1266 void kvm_irqfd_release(struct kvm *kvm);
1267 void kvm_irq_routing_update(struct kvm *);
1268 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1269 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1270 {
1271 return -EINVAL;
1272 }
1273
kvm_irqfd_release(struct kvm * kvm)1274 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1275 #endif
1276
1277 #else
1278
kvm_eventfd_init(struct kvm * kvm)1279 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1280
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1281 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1282 {
1283 return -EINVAL;
1284 }
1285
kvm_irqfd_release(struct kvm * kvm)1286 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1287
1288 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1289 static inline void kvm_irq_routing_update(struct kvm *kvm)
1290 {
1291 }
1292 #endif
1293
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1294 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1295 {
1296 return -ENOSYS;
1297 }
1298
1299 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1300
1301 void kvm_arch_irq_routing_update(struct kvm *kvm);
1302
kvm_make_request(int req,struct kvm_vcpu * vcpu)1303 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1304 {
1305 /*
1306 * Ensure the rest of the request is published to kvm_check_request's
1307 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1308 */
1309 smp_wmb();
1310 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1311 }
1312
kvm_request_pending(struct kvm_vcpu * vcpu)1313 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1314 {
1315 return READ_ONCE(vcpu->requests);
1316 }
1317
kvm_test_request(int req,struct kvm_vcpu * vcpu)1318 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1319 {
1320 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1321 }
1322
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1323 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1324 {
1325 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1326 }
1327
kvm_check_request(int req,struct kvm_vcpu * vcpu)1328 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1329 {
1330 if (kvm_test_request(req, vcpu)) {
1331 kvm_clear_request(req, vcpu);
1332
1333 /*
1334 * Ensure the rest of the request is visible to kvm_check_request's
1335 * caller. Paired with the smp_wmb in kvm_make_request.
1336 */
1337 smp_mb__after_atomic();
1338 return true;
1339 } else {
1340 return false;
1341 }
1342 }
1343
1344 extern bool kvm_rebooting;
1345
1346 extern unsigned int halt_poll_ns;
1347 extern unsigned int halt_poll_ns_grow;
1348 extern unsigned int halt_poll_ns_grow_start;
1349 extern unsigned int halt_poll_ns_shrink;
1350
1351 struct kvm_device {
1352 const struct kvm_device_ops *ops;
1353 struct kvm *kvm;
1354 void *private;
1355 struct list_head vm_node;
1356 };
1357
1358 /* create, destroy, and name are mandatory */
1359 struct kvm_device_ops {
1360 const char *name;
1361
1362 /*
1363 * create is called holding kvm->lock and any operations not suitable
1364 * to do while holding the lock should be deferred to init (see
1365 * below).
1366 */
1367 int (*create)(struct kvm_device *dev, u32 type);
1368
1369 /*
1370 * init is called after create if create is successful and is called
1371 * outside of holding kvm->lock.
1372 */
1373 void (*init)(struct kvm_device *dev);
1374
1375 /*
1376 * Destroy is responsible for freeing dev.
1377 *
1378 * Destroy may be called before or after destructors are called
1379 * on emulated I/O regions, depending on whether a reference is
1380 * held by a vcpu or other kvm component that gets destroyed
1381 * after the emulated I/O.
1382 */
1383 void (*destroy)(struct kvm_device *dev);
1384
1385 /*
1386 * Release is an alternative method to free the device. It is
1387 * called when the device file descriptor is closed. Once
1388 * release is called, the destroy method will not be called
1389 * anymore as the device is removed from the device list of
1390 * the VM. kvm->lock is held.
1391 */
1392 void (*release)(struct kvm_device *dev);
1393
1394 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1395 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1396 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1397 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1398 unsigned long arg);
1399 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1400 };
1401
1402 void kvm_device_get(struct kvm_device *dev);
1403 void kvm_device_put(struct kvm_device *dev);
1404 struct kvm_device *kvm_device_from_filp(struct file *filp);
1405 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1406 void kvm_unregister_device_ops(u32 type);
1407
1408 extern struct kvm_device_ops kvm_mpic_ops;
1409 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1410 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1411
1412 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1413
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1414 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1415 {
1416 vcpu->spin_loop.in_spin_loop = val;
1417 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1418 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1419 {
1420 vcpu->spin_loop.dy_eligible = val;
1421 }
1422
1423 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1424
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1425 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1426 {
1427 }
1428
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1429 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1430 {
1431 }
1432 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1433
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)1434 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1435 {
1436 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1437 !(memslot->flags & KVM_MEMSLOT_INVALID));
1438 }
1439
1440 struct kvm_vcpu *kvm_get_running_vcpu(void);
1441 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1442
1443 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1444 bool kvm_arch_has_irq_bypass(void);
1445 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1446 struct irq_bypass_producer *);
1447 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1448 struct irq_bypass_producer *);
1449 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1450 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1451 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1452 uint32_t guest_irq, bool set);
1453 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1454
1455 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1456 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1457 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1458 {
1459 return vcpu->valid_wakeup;
1460 }
1461
1462 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1463 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1464 {
1465 return true;
1466 }
1467 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1468
1469 #ifdef CONFIG_HAVE_KVM_NO_POLL
1470 /* Callback that tells if we must not poll */
1471 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1472 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1473 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1474 {
1475 return false;
1476 }
1477 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1478
1479 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1480 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1481 unsigned int ioctl, unsigned long arg);
1482 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1483 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1484 unsigned int ioctl,
1485 unsigned long arg)
1486 {
1487 return -ENOIOCTLCMD;
1488 }
1489 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1490
1491 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1492 unsigned long start, unsigned long end);
1493
1494 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
1495
1496 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1497 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1498 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1499 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1500 {
1501 return 0;
1502 }
1503 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1504
1505 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1506
1507 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1508 uintptr_t data, const char *name,
1509 struct task_struct **thread_ptr);
1510
1511 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)1512 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1513 {
1514 vcpu->run->exit_reason = KVM_EXIT_INTR;
1515 vcpu->stat.signal_exits++;
1516 }
1517 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1518
1519 #endif
1520