• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/android_kabi.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct phy_device;
56 struct dsa_port;
57 struct ip_tunnel_parm;
58 struct macsec_context;
59 struct macsec_ops;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct udp_tunnel_nic_info;
70 struct udp_tunnel_nic;
71 struct bpf_prog;
72 struct xdp_buff;
73 
74 void synchronize_net(void);
75 void netdev_set_default_ethtool_ops(struct net_device *dev,
76 				    const struct ethtool_ops *ops);
77 
78 /* Backlog congestion levels */
79 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
80 #define NET_RX_DROP		1	/* packet dropped */
81 
82 #define MAX_NEST_DEV 8
83 
84 /*
85  * Transmit return codes: transmit return codes originate from three different
86  * namespaces:
87  *
88  * - qdisc return codes
89  * - driver transmit return codes
90  * - errno values
91  *
92  * Drivers are allowed to return any one of those in their hard_start_xmit()
93  * function. Real network devices commonly used with qdiscs should only return
94  * the driver transmit return codes though - when qdiscs are used, the actual
95  * transmission happens asynchronously, so the value is not propagated to
96  * higher layers. Virtual network devices transmit synchronously; in this case
97  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98  * others are propagated to higher layers.
99  */
100 
101 /* qdisc ->enqueue() return codes. */
102 #define NET_XMIT_SUCCESS	0x00
103 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
104 #define NET_XMIT_CN		0x02	/* congestion notification	*/
105 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
106 
107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108  * indicates that the device will soon be dropping packets, or already drops
109  * some packets of the same priority; prompting us to send less aggressively. */
110 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
111 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112 
113 /* Driver transmit return codes */
114 #define NETDEV_TX_MASK		0xf0
115 
116 enum netdev_tx {
117 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
118 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
119 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
120 };
121 typedef enum netdev_tx netdev_tx_t;
122 
123 /*
124  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126  */
dev_xmit_complete(int rc)127 static inline bool dev_xmit_complete(int rc)
128 {
129 	/*
130 	 * Positive cases with an skb consumed by a driver:
131 	 * - successful transmission (rc == NETDEV_TX_OK)
132 	 * - error while transmitting (rc < 0)
133 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
134 	 */
135 	if (likely(rc < NET_XMIT_MASK))
136 		return true;
137 
138 	return false;
139 }
140 
141 /*
142  *	Compute the worst-case header length according to the protocols
143  *	used.
144  */
145 
146 #if defined(CONFIG_HYPERV_NET)
147 # define LL_MAX_HEADER 128
148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157 
158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164 
165 /*
166  *	Old network device statistics. Fields are native words
167  *	(unsigned long) so they can be read and written atomically.
168  */
169 
170 struct net_device_stats {
171 	unsigned long	rx_packets;
172 	unsigned long	tx_packets;
173 	unsigned long	rx_bytes;
174 	unsigned long	tx_bytes;
175 	unsigned long	rx_errors;
176 	unsigned long	tx_errors;
177 	unsigned long	rx_dropped;
178 	unsigned long	tx_dropped;
179 	unsigned long	multicast;
180 	unsigned long	collisions;
181 	unsigned long	rx_length_errors;
182 	unsigned long	rx_over_errors;
183 	unsigned long	rx_crc_errors;
184 	unsigned long	rx_frame_errors;
185 	unsigned long	rx_fifo_errors;
186 	unsigned long	rx_missed_errors;
187 	unsigned long	tx_aborted_errors;
188 	unsigned long	tx_carrier_errors;
189 	unsigned long	tx_fifo_errors;
190 	unsigned long	tx_heartbeat_errors;
191 	unsigned long	tx_window_errors;
192 	unsigned long	rx_compressed;
193 	unsigned long	tx_compressed;
194 };
195 
196 
197 #include <linux/cache.h>
198 #include <linux/skbuff.h>
199 
200 #ifdef CONFIG_RPS
201 #include <linux/static_key.h>
202 extern struct static_key_false rps_needed;
203 extern struct static_key_false rfs_needed;
204 #endif
205 
206 struct neighbour;
207 struct neigh_parms;
208 struct sk_buff;
209 
210 struct netdev_hw_addr {
211 	struct list_head	list;
212 	unsigned char		addr[MAX_ADDR_LEN];
213 	unsigned char		type;
214 #define NETDEV_HW_ADDR_T_LAN		1
215 #define NETDEV_HW_ADDR_T_SAN		2
216 #define NETDEV_HW_ADDR_T_UNICAST	3
217 #define NETDEV_HW_ADDR_T_MULTICAST	4
218 	bool			global_use;
219 	int			sync_cnt;
220 	int			refcount;
221 	int			synced;
222 	struct rcu_head		rcu_head;
223 };
224 
225 struct netdev_hw_addr_list {
226 	struct list_head	list;
227 	int			count;
228 };
229 
230 #define netdev_hw_addr_list_count(l) ((l)->count)
231 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
232 #define netdev_hw_addr_list_for_each(ha, l) \
233 	list_for_each_entry(ha, &(l)->list, list)
234 
235 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
236 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
237 #define netdev_for_each_uc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
239 
240 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
241 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
242 #define netdev_for_each_mc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
244 
245 struct hh_cache {
246 	unsigned int	hh_len;
247 	seqlock_t	hh_lock;
248 
249 	/* cached hardware header; allow for machine alignment needs.        */
250 #define HH_DATA_MOD	16
251 #define HH_DATA_OFF(__len) \
252 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
253 #define HH_DATA_ALIGN(__len) \
254 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
255 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
256 };
257 
258 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
259  * Alternative is:
260  *   dev->hard_header_len ? (dev->hard_header_len +
261  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
262  *
263  * We could use other alignment values, but we must maintain the
264  * relationship HH alignment <= LL alignment.
265  */
266 #define LL_RESERVED_SPACE(dev) \
267 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
268 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
270 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
271 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272 
273 struct header_ops {
274 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
275 			   unsigned short type, const void *daddr,
276 			   const void *saddr, unsigned int len);
277 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
278 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
279 	void	(*cache_update)(struct hh_cache *hh,
280 				const struct net_device *dev,
281 				const unsigned char *haddr);
282 	bool	(*validate)(const char *ll_header, unsigned int len);
283 	__be16	(*parse_protocol)(const struct sk_buff *skb);
284 
285 	ANDROID_KABI_RESERVE(1);
286 	ANDROID_KABI_RESERVE(2);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 	__LINK_STATE_TESTING,
301 };
302 
303 
304 /*
305  * This structure holds boot-time configured netdevice settings. They
306  * are then used in the device probing.
307  */
308 struct netdev_boot_setup {
309 	char name[IFNAMSIZ];
310 	struct ifmap map;
311 };
312 #define NETDEV_BOOT_SETUP_MAX 8
313 
314 int __init netdev_boot_setup(char *str);
315 
316 struct gro_list {
317 	struct list_head	list;
318 	int			count;
319 };
320 
321 /*
322  * size of gro hash buckets, must less than bit number of
323  * napi_struct::gro_bitmask
324  */
325 #define GRO_HASH_BUCKETS	8
326 
327 /*
328  * Structure for NAPI scheduling similar to tasklet but with weighting
329  */
330 struct napi_struct {
331 	/* The poll_list must only be managed by the entity which
332 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
333 	 * whoever atomically sets that bit can add this napi_struct
334 	 * to the per-CPU poll_list, and whoever clears that bit
335 	 * can remove from the list right before clearing the bit.
336 	 */
337 	struct list_head	poll_list;
338 
339 	unsigned long		state;
340 	int			weight;
341 	int			defer_hard_irqs_count;
342 	unsigned long		gro_bitmask;
343 	int			(*poll)(struct napi_struct *, int);
344 #ifdef CONFIG_NETPOLL
345 	int			poll_owner;
346 #endif
347 	struct net_device	*dev;
348 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
349 	struct sk_buff		*skb;
350 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
351 	int			rx_count; /* length of rx_list */
352 	struct hrtimer		timer;
353 	struct list_head	dev_list;
354 	struct hlist_node	napi_hash_node;
355 	unsigned int		napi_id;
356 
357 	ANDROID_KABI_RESERVE(1);
358 	ANDROID_KABI_RESERVE(2);
359 	ANDROID_KABI_RESERVE(3);
360 	ANDROID_KABI_RESERVE(4);
361 };
362 
363 enum {
364 	NAPI_STATE_SCHED,	/* Poll is scheduled */
365 	NAPI_STATE_MISSED,	/* reschedule a napi */
366 	NAPI_STATE_DISABLE,	/* Disable pending */
367 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
368 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
369 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
370 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
371 };
372 
373 enum {
374 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
375 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
376 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
377 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
378 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
379 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
380 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
381 };
382 
383 enum gro_result {
384 	GRO_MERGED,
385 	GRO_MERGED_FREE,
386 	GRO_HELD,
387 	GRO_NORMAL,
388 	GRO_DROP,
389 	GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392 
393 /*
394  * enum rx_handler_result - Possible return values for rx_handlers.
395  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396  * further.
397  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398  * case skb->dev was changed by rx_handler.
399  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401  *
402  * rx_handlers are functions called from inside __netif_receive_skb(), to do
403  * special processing of the skb, prior to delivery to protocol handlers.
404  *
405  * Currently, a net_device can only have a single rx_handler registered. Trying
406  * to register a second rx_handler will return -EBUSY.
407  *
408  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409  * To unregister a rx_handler on a net_device, use
410  * netdev_rx_handler_unregister().
411  *
412  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413  * do with the skb.
414  *
415  * If the rx_handler consumed the skb in some way, it should return
416  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417  * the skb to be delivered in some other way.
418  *
419  * If the rx_handler changed skb->dev, to divert the skb to another
420  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421  * new device will be called if it exists.
422  *
423  * If the rx_handler decides the skb should be ignored, it should return
424  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425  * are registered on exact device (ptype->dev == skb->dev).
426  *
427  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428  * delivered, it should return RX_HANDLER_PASS.
429  *
430  * A device without a registered rx_handler will behave as if rx_handler
431  * returned RX_HANDLER_PASS.
432  */
433 
434 enum rx_handler_result {
435 	RX_HANDLER_CONSUMED,
436 	RX_HANDLER_ANOTHER,
437 	RX_HANDLER_EXACT,
438 	RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442 
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445 
napi_disable_pending(struct napi_struct * n)446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 	return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450 
451 bool napi_schedule_prep(struct napi_struct *n);
452 
453 /**
454  *	napi_schedule - schedule NAPI poll
455  *	@n: NAPI context
456  *
457  * Schedule NAPI poll routine to be called if it is not already
458  * running.
459  */
napi_schedule(struct napi_struct * n)460 static inline void napi_schedule(struct napi_struct *n)
461 {
462 	if (napi_schedule_prep(n))
463 		__napi_schedule(n);
464 }
465 
466 /**
467  *	napi_schedule_irqoff - schedule NAPI poll
468  *	@n: NAPI context
469  *
470  * Variant of napi_schedule(), assuming hard irqs are masked.
471  */
napi_schedule_irqoff(struct napi_struct * n)472 static inline void napi_schedule_irqoff(struct napi_struct *n)
473 {
474 	if (napi_schedule_prep(n))
475 		__napi_schedule_irqoff(n);
476 }
477 
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)479 static inline bool napi_reschedule(struct napi_struct *napi)
480 {
481 	if (napi_schedule_prep(napi)) {
482 		__napi_schedule(napi);
483 		return true;
484 	}
485 	return false;
486 }
487 
488 bool napi_complete_done(struct napi_struct *n, int work_done);
489 /**
490  *	napi_complete - NAPI processing complete
491  *	@n: NAPI context
492  *
493  * Mark NAPI processing as complete.
494  * Consider using napi_complete_done() instead.
495  * Return false if device should avoid rearming interrupts.
496  */
napi_complete(struct napi_struct * n)497 static inline bool napi_complete(struct napi_struct *n)
498 {
499 	return napi_complete_done(n, 0);
500 }
501 
502 /**
503  *	napi_disable - prevent NAPI from scheduling
504  *	@n: NAPI context
505  *
506  * Stop NAPI from being scheduled on this context.
507  * Waits till any outstanding processing completes.
508  */
509 void napi_disable(struct napi_struct *n);
510 
511 /**
512  *	napi_enable - enable NAPI scheduling
513  *	@n: NAPI context
514  *
515  * Resume NAPI from being scheduled on this context.
516  * Must be paired with napi_disable.
517  */
napi_enable(struct napi_struct * n)518 static inline void napi_enable(struct napi_struct *n)
519 {
520 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
521 	smp_mb__before_atomic();
522 	clear_bit(NAPI_STATE_SCHED, &n->state);
523 	clear_bit(NAPI_STATE_NPSVC, &n->state);
524 }
525 
526 /**
527  *	napi_synchronize - wait until NAPI is not running
528  *	@n: NAPI context
529  *
530  * Wait until NAPI is done being scheduled on this context.
531  * Waits till any outstanding processing completes but
532  * does not disable future activations.
533  */
napi_synchronize(const struct napi_struct * n)534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 	if (IS_ENABLED(CONFIG_SMP))
537 		while (test_bit(NAPI_STATE_SCHED, &n->state))
538 			msleep(1);
539 	else
540 		barrier();
541 }
542 
543 /**
544  *	napi_if_scheduled_mark_missed - if napi is running, set the
545  *	NAPIF_STATE_MISSED
546  *	@n: NAPI context
547  *
548  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
549  * NAPI is scheduled.
550  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)551 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
552 {
553 	unsigned long val, new;
554 
555 	do {
556 		val = READ_ONCE(n->state);
557 		if (val & NAPIF_STATE_DISABLE)
558 			return true;
559 
560 		if (!(val & NAPIF_STATE_SCHED))
561 			return false;
562 
563 		new = val | NAPIF_STATE_MISSED;
564 	} while (cmpxchg(&n->state, val, new) != val);
565 
566 	return true;
567 }
568 
569 enum netdev_queue_state_t {
570 	__QUEUE_STATE_DRV_XOFF,
571 	__QUEUE_STATE_STACK_XOFF,
572 	__QUEUE_STATE_FROZEN,
573 };
574 
575 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
576 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
577 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
578 
579 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
580 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
583 					QUEUE_STATE_FROZEN)
584 
585 /*
586  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
587  * netif_tx_* functions below are used to manipulate this flag.  The
588  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
589  * queue independently.  The netif_xmit_*stopped functions below are called
590  * to check if the queue has been stopped by the driver or stack (either
591  * of the XOFF bits are set in the state).  Drivers should not need to call
592  * netif_xmit*stopped functions, they should only be using netif_tx_*.
593  */
594 
595 struct netdev_queue {
596 /*
597  * read-mostly part
598  */
599 	struct net_device	*dev;
600 	struct Qdisc __rcu	*qdisc;
601 	struct Qdisc		*qdisc_sleeping;
602 #ifdef CONFIG_SYSFS
603 	struct kobject		kobj;
604 #endif
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 	int			numa_node;
607 #endif
608 	unsigned long		tx_maxrate;
609 	/*
610 	 * Number of TX timeouts for this queue
611 	 * (/sys/class/net/DEV/Q/trans_timeout)
612 	 */
613 	unsigned long		trans_timeout;
614 
615 	/* Subordinate device that the queue has been assigned to */
616 	struct net_device	*sb_dev;
617 #ifdef CONFIG_XDP_SOCKETS
618 	struct xsk_buff_pool    *pool;
619 #endif
620 /*
621  * write-mostly part
622  */
623 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
624 	int			xmit_lock_owner;
625 	/*
626 	 * Time (in jiffies) of last Tx
627 	 */
628 	unsigned long		trans_start;
629 
630 	unsigned long		state;
631 
632 #ifdef CONFIG_BQL
633 	struct dql		dql;
634 #endif
635 
636 	ANDROID_KABI_RESERVE(1);
637 	ANDROID_KABI_RESERVE(2);
638 	ANDROID_KABI_RESERVE(3);
639 	ANDROID_KABI_RESERVE(4);
640 } ____cacheline_aligned_in_smp;
641 
642 extern int sysctl_fb_tunnels_only_for_init_net;
643 extern int sysctl_devconf_inherit_init_net;
644 
645 /*
646  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
647  *                                     == 1 : For initns only
648  *                                     == 2 : For none.
649  */
net_has_fallback_tunnels(const struct net * net)650 static inline bool net_has_fallback_tunnels(const struct net *net)
651 {
652 #if IS_ENABLED(CONFIG_SYSCTL)
653 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
654 
655 	return !fb_tunnels_only_for_init_net ||
656 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
657 #else
658 	return true;
659 #endif
660 }
661 
net_inherit_devconf(void)662 static inline int net_inherit_devconf(void)
663 {
664 #if IS_ENABLED(CONFIG_SYSCTL)
665 	return READ_ONCE(sysctl_devconf_inherit_init_net);
666 #else
667 	return 0;
668 #endif
669 }
670 
netdev_queue_numa_node_read(const struct netdev_queue * q)671 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
672 {
673 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
674 	return q->numa_node;
675 #else
676 	return NUMA_NO_NODE;
677 #endif
678 }
679 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)680 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
681 {
682 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
683 	q->numa_node = node;
684 #endif
685 }
686 
687 #ifdef CONFIG_RPS
688 /*
689  * This structure holds an RPS map which can be of variable length.  The
690  * map is an array of CPUs.
691  */
692 struct rps_map {
693 	unsigned int len;
694 	struct rcu_head rcu;
695 	u16 cpus[];
696 };
697 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
698 
699 /*
700  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
701  * tail pointer for that CPU's input queue at the time of last enqueue, and
702  * a hardware filter index.
703  */
704 struct rps_dev_flow {
705 	u16 cpu;
706 	u16 filter;
707 	unsigned int last_qtail;
708 };
709 #define RPS_NO_FILTER 0xffff
710 
711 /*
712  * The rps_dev_flow_table structure contains a table of flow mappings.
713  */
714 struct rps_dev_flow_table {
715 	unsigned int mask;
716 	struct rcu_head rcu;
717 	struct rps_dev_flow flows[];
718 };
719 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
720     ((_num) * sizeof(struct rps_dev_flow)))
721 
722 /*
723  * The rps_sock_flow_table contains mappings of flows to the last CPU
724  * on which they were processed by the application (set in recvmsg).
725  * Each entry is a 32bit value. Upper part is the high-order bits
726  * of flow hash, lower part is CPU number.
727  * rps_cpu_mask is used to partition the space, depending on number of
728  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
729  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
730  * meaning we use 32-6=26 bits for the hash.
731  */
732 struct rps_sock_flow_table {
733 	u32	mask;
734 
735 	u32	ents[] ____cacheline_aligned_in_smp;
736 };
737 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
738 
739 #define RPS_NO_CPU 0xffff
740 
741 extern u32 rps_cpu_mask;
742 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
743 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)744 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
745 					u32 hash)
746 {
747 	if (table && hash) {
748 		unsigned int index = hash & table->mask;
749 		u32 val = hash & ~rps_cpu_mask;
750 
751 		/* We only give a hint, preemption can change CPU under us */
752 		val |= raw_smp_processor_id();
753 
754 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
755 		 * here, and another one in get_rps_cpu().
756 		 */
757 		if (READ_ONCE(table->ents[index]) != val)
758 			WRITE_ONCE(table->ents[index], val);
759 	}
760 }
761 
762 #ifdef CONFIG_RFS_ACCEL
763 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
764 			 u16 filter_id);
765 #endif
766 #endif /* CONFIG_RPS */
767 
768 /* This structure contains an instance of an RX queue. */
769 struct netdev_rx_queue {
770 #ifdef CONFIG_RPS
771 	struct rps_map __rcu		*rps_map;
772 	struct rps_dev_flow_table __rcu	*rps_flow_table;
773 #endif
774 	struct kobject			kobj;
775 	struct net_device		*dev;
776 	struct xdp_rxq_info		xdp_rxq;
777 #ifdef CONFIG_XDP_SOCKETS
778 	struct xsk_buff_pool            *pool;
779 #endif
780 
781 	ANDROID_KABI_RESERVE(1);
782 	ANDROID_KABI_RESERVE(2);
783 	ANDROID_KABI_RESERVE(3);
784 	ANDROID_KABI_RESERVE(4);
785 } ____cacheline_aligned_in_smp;
786 
787 /*
788  * RX queue sysfs structures and functions.
789  */
790 struct rx_queue_attribute {
791 	struct attribute attr;
792 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
793 	ssize_t (*store)(struct netdev_rx_queue *queue,
794 			 const char *buf, size_t len);
795 };
796 
797 #ifdef CONFIG_XPS
798 /*
799  * This structure holds an XPS map which can be of variable length.  The
800  * map is an array of queues.
801  */
802 struct xps_map {
803 	unsigned int len;
804 	unsigned int alloc_len;
805 	struct rcu_head rcu;
806 	u16 queues[];
807 };
808 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
809 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
810        - sizeof(struct xps_map)) / sizeof(u16))
811 
812 /*
813  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
814  */
815 struct xps_dev_maps {
816 	struct rcu_head rcu;
817 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
818 };
819 
820 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
821 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
822 
823 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
824 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
825 
826 #endif /* CONFIG_XPS */
827 
828 #define TC_MAX_QUEUE	16
829 #define TC_BITMASK	15
830 /* HW offloaded queuing disciplines txq count and offset maps */
831 struct netdev_tc_txq {
832 	u16 count;
833 	u16 offset;
834 };
835 
836 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
837 /*
838  * This structure is to hold information about the device
839  * configured to run FCoE protocol stack.
840  */
841 struct netdev_fcoe_hbainfo {
842 	char	manufacturer[64];
843 	char	serial_number[64];
844 	char	hardware_version[64];
845 	char	driver_version[64];
846 	char	optionrom_version[64];
847 	char	firmware_version[64];
848 	char	model[256];
849 	char	model_description[256];
850 };
851 #endif
852 
853 #define MAX_PHYS_ITEM_ID_LEN 32
854 
855 /* This structure holds a unique identifier to identify some
856  * physical item (port for example) used by a netdevice.
857  */
858 struct netdev_phys_item_id {
859 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
860 	unsigned char id_len;
861 };
862 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)863 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
864 					    struct netdev_phys_item_id *b)
865 {
866 	return a->id_len == b->id_len &&
867 	       memcmp(a->id, b->id, a->id_len) == 0;
868 }
869 
870 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
871 				       struct sk_buff *skb,
872 				       struct net_device *sb_dev);
873 
874 enum tc_setup_type {
875 	TC_SETUP_QDISC_MQPRIO,
876 	TC_SETUP_CLSU32,
877 	TC_SETUP_CLSFLOWER,
878 	TC_SETUP_CLSMATCHALL,
879 	TC_SETUP_CLSBPF,
880 	TC_SETUP_BLOCK,
881 	TC_SETUP_QDISC_CBS,
882 	TC_SETUP_QDISC_RED,
883 	TC_SETUP_QDISC_PRIO,
884 	TC_SETUP_QDISC_MQ,
885 	TC_SETUP_QDISC_ETF,
886 	TC_SETUP_ROOT_QDISC,
887 	TC_SETUP_QDISC_GRED,
888 	TC_SETUP_QDISC_TAPRIO,
889 	TC_SETUP_FT,
890 	TC_SETUP_QDISC_ETS,
891 	TC_SETUP_QDISC_TBF,
892 	TC_SETUP_QDISC_FIFO,
893 };
894 
895 /* These structures hold the attributes of bpf state that are being passed
896  * to the netdevice through the bpf op.
897  */
898 enum bpf_netdev_command {
899 	/* Set or clear a bpf program used in the earliest stages of packet
900 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
901 	 * is responsible for calling bpf_prog_put on any old progs that are
902 	 * stored. In case of error, the callee need not release the new prog
903 	 * reference, but on success it takes ownership and must bpf_prog_put
904 	 * when it is no longer used.
905 	 */
906 	XDP_SETUP_PROG,
907 	XDP_SETUP_PROG_HW,
908 	/* BPF program for offload callbacks, invoked at program load time. */
909 	BPF_OFFLOAD_MAP_ALLOC,
910 	BPF_OFFLOAD_MAP_FREE,
911 	XDP_SETUP_XSK_POOL,
912 };
913 
914 struct bpf_prog_offload_ops;
915 struct netlink_ext_ack;
916 struct xdp_umem;
917 struct xdp_dev_bulk_queue;
918 struct bpf_xdp_link;
919 
920 enum bpf_xdp_mode {
921 	XDP_MODE_SKB = 0,
922 	XDP_MODE_DRV = 1,
923 	XDP_MODE_HW = 2,
924 	__MAX_XDP_MODE
925 };
926 
927 struct bpf_xdp_entity {
928 	struct bpf_prog *prog;
929 	struct bpf_xdp_link *link;
930 };
931 
932 struct netdev_bpf {
933 	enum bpf_netdev_command command;
934 	union {
935 		/* XDP_SETUP_PROG */
936 		struct {
937 			u32 flags;
938 			struct bpf_prog *prog;
939 			struct netlink_ext_ack *extack;
940 		};
941 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
942 		struct {
943 			struct bpf_offloaded_map *offmap;
944 		};
945 		/* XDP_SETUP_XSK_POOL */
946 		struct {
947 			struct xsk_buff_pool *pool;
948 			u16 queue_id;
949 		} xsk;
950 	};
951 };
952 
953 /* Flags for ndo_xsk_wakeup. */
954 #define XDP_WAKEUP_RX (1 << 0)
955 #define XDP_WAKEUP_TX (1 << 1)
956 
957 #ifdef CONFIG_XFRM_OFFLOAD
958 struct xfrmdev_ops {
959 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
960 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
961 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
962 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
963 				       struct xfrm_state *x);
964 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
965 
966 	ANDROID_KABI_RESERVE(1);
967 	ANDROID_KABI_RESERVE(2);
968 	ANDROID_KABI_RESERVE(3);
969 	ANDROID_KABI_RESERVE(4);
970 };
971 #endif
972 
973 struct dev_ifalias {
974 	struct rcu_head rcuhead;
975 	char ifalias[];
976 };
977 
978 struct devlink;
979 struct tlsdev_ops;
980 
981 struct netdev_name_node {
982 	struct hlist_node hlist;
983 	struct list_head list;
984 	struct net_device *dev;
985 	const char *name;
986 };
987 
988 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
989 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
990 
991 struct netdev_net_notifier {
992 	struct list_head list;
993 	struct notifier_block *nb;
994 };
995 
996 /*
997  * This structure defines the management hooks for network devices.
998  * The following hooks can be defined; unless noted otherwise, they are
999  * optional and can be filled with a null pointer.
1000  *
1001  * int (*ndo_init)(struct net_device *dev);
1002  *     This function is called once when a network device is registered.
1003  *     The network device can use this for any late stage initialization
1004  *     or semantic validation. It can fail with an error code which will
1005  *     be propagated back to register_netdev.
1006  *
1007  * void (*ndo_uninit)(struct net_device *dev);
1008  *     This function is called when device is unregistered or when registration
1009  *     fails. It is not called if init fails.
1010  *
1011  * int (*ndo_open)(struct net_device *dev);
1012  *     This function is called when a network device transitions to the up
1013  *     state.
1014  *
1015  * int (*ndo_stop)(struct net_device *dev);
1016  *     This function is called when a network device transitions to the down
1017  *     state.
1018  *
1019  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1020  *                               struct net_device *dev);
1021  *	Called when a packet needs to be transmitted.
1022  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1023  *	the queue before that can happen; it's for obsolete devices and weird
1024  *	corner cases, but the stack really does a non-trivial amount
1025  *	of useless work if you return NETDEV_TX_BUSY.
1026  *	Required; cannot be NULL.
1027  *
1028  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1029  *					   struct net_device *dev
1030  *					   netdev_features_t features);
1031  *	Called by core transmit path to determine if device is capable of
1032  *	performing offload operations on a given packet. This is to give
1033  *	the device an opportunity to implement any restrictions that cannot
1034  *	be otherwise expressed by feature flags. The check is called with
1035  *	the set of features that the stack has calculated and it returns
1036  *	those the driver believes to be appropriate.
1037  *
1038  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1039  *                         struct net_device *sb_dev);
1040  *	Called to decide which queue to use when device supports multiple
1041  *	transmit queues.
1042  *
1043  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1044  *	This function is called to allow device receiver to make
1045  *	changes to configuration when multicast or promiscuous is enabled.
1046  *
1047  * void (*ndo_set_rx_mode)(struct net_device *dev);
1048  *	This function is called device changes address list filtering.
1049  *	If driver handles unicast address filtering, it should set
1050  *	IFF_UNICAST_FLT in its priv_flags.
1051  *
1052  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1053  *	This function  is called when the Media Access Control address
1054  *	needs to be changed. If this interface is not defined, the
1055  *	MAC address can not be changed.
1056  *
1057  * int (*ndo_validate_addr)(struct net_device *dev);
1058  *	Test if Media Access Control address is valid for the device.
1059  *
1060  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1061  *	Called when a user requests an ioctl which can't be handled by
1062  *	the generic interface code. If not defined ioctls return
1063  *	not supported error code.
1064  *
1065  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1066  *	Used to set network devices bus interface parameters. This interface
1067  *	is retained for legacy reasons; new devices should use the bus
1068  *	interface (PCI) for low level management.
1069  *
1070  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1071  *	Called when a user wants to change the Maximum Transfer Unit
1072  *	of a device.
1073  *
1074  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1075  *	Callback used when the transmitter has not made any progress
1076  *	for dev->watchdog ticks.
1077  *
1078  * void (*ndo_get_stats64)(struct net_device *dev,
1079  *                         struct rtnl_link_stats64 *storage);
1080  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1081  *	Called when a user wants to get the network device usage
1082  *	statistics. Drivers must do one of the following:
1083  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1084  *	   rtnl_link_stats64 structure passed by the caller.
1085  *	2. Define @ndo_get_stats to update a net_device_stats structure
1086  *	   (which should normally be dev->stats) and return a pointer to
1087  *	   it. The structure may be changed asynchronously only if each
1088  *	   field is written atomically.
1089  *	3. Update dev->stats asynchronously and atomically, and define
1090  *	   neither operation.
1091  *
1092  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1093  *	Return true if this device supports offload stats of this attr_id.
1094  *
1095  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1096  *	void *attr_data)
1097  *	Get statistics for offload operations by attr_id. Write it into the
1098  *	attr_data pointer.
1099  *
1100  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1101  *	If device supports VLAN filtering this function is called when a
1102  *	VLAN id is registered.
1103  *
1104  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1105  *	If device supports VLAN filtering this function is called when a
1106  *	VLAN id is unregistered.
1107  *
1108  * void (*ndo_poll_controller)(struct net_device *dev);
1109  *
1110  *	SR-IOV management functions.
1111  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1112  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1113  *			  u8 qos, __be16 proto);
1114  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1115  *			  int max_tx_rate);
1116  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1117  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1118  * int (*ndo_get_vf_config)(struct net_device *dev,
1119  *			    int vf, struct ifla_vf_info *ivf);
1120  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1121  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1122  *			  struct nlattr *port[]);
1123  *
1124  *      Enable or disable the VF ability to query its RSS Redirection Table and
1125  *      Hash Key. This is needed since on some devices VF share this information
1126  *      with PF and querying it may introduce a theoretical security risk.
1127  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1128  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1129  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1130  *		       void *type_data);
1131  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1132  *	This is always called from the stack with the rtnl lock held and netif
1133  *	tx queues stopped. This allows the netdevice to perform queue
1134  *	management safely.
1135  *
1136  *	Fiber Channel over Ethernet (FCoE) offload functions.
1137  * int (*ndo_fcoe_enable)(struct net_device *dev);
1138  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1139  *	so the underlying device can perform whatever needed configuration or
1140  *	initialization to support acceleration of FCoE traffic.
1141  *
1142  * int (*ndo_fcoe_disable)(struct net_device *dev);
1143  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1144  *	so the underlying device can perform whatever needed clean-ups to
1145  *	stop supporting acceleration of FCoE traffic.
1146  *
1147  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1148  *			     struct scatterlist *sgl, unsigned int sgc);
1149  *	Called when the FCoE Initiator wants to initialize an I/O that
1150  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1151  *	perform necessary setup and returns 1 to indicate the device is set up
1152  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1153  *
1154  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1155  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1156  *	indicated by the FC exchange id 'xid', so the underlying device can
1157  *	clean up and reuse resources for later DDP requests.
1158  *
1159  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1160  *			      struct scatterlist *sgl, unsigned int sgc);
1161  *	Called when the FCoE Target wants to initialize an I/O that
1162  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1163  *	perform necessary setup and returns 1 to indicate the device is set up
1164  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1165  *
1166  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1167  *			       struct netdev_fcoe_hbainfo *hbainfo);
1168  *	Called when the FCoE Protocol stack wants information on the underlying
1169  *	device. This information is utilized by the FCoE protocol stack to
1170  *	register attributes with Fiber Channel management service as per the
1171  *	FC-GS Fabric Device Management Information(FDMI) specification.
1172  *
1173  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1174  *	Called when the underlying device wants to override default World Wide
1175  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1176  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1177  *	protocol stack to use.
1178  *
1179  *	RFS acceleration.
1180  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1181  *			    u16 rxq_index, u32 flow_id);
1182  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1183  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1184  *	Return the filter ID on success, or a negative error code.
1185  *
1186  *	Slave management functions (for bridge, bonding, etc).
1187  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1188  *	Called to make another netdev an underling.
1189  *
1190  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1191  *	Called to release previously enslaved netdev.
1192  *
1193  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1194  *					    struct sk_buff *skb,
1195  *					    bool all_slaves);
1196  *	Get the xmit slave of master device. If all_slaves is true, function
1197  *	assume all the slaves can transmit.
1198  *
1199  *      Feature/offload setting functions.
1200  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1201  *		netdev_features_t features);
1202  *	Adjusts the requested feature flags according to device-specific
1203  *	constraints, and returns the resulting flags. Must not modify
1204  *	the device state.
1205  *
1206  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1207  *	Called to update device configuration to new features. Passed
1208  *	feature set might be less than what was returned by ndo_fix_features()).
1209  *	Must return >0 or -errno if it changed dev->features itself.
1210  *
1211  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1212  *		      struct net_device *dev,
1213  *		      const unsigned char *addr, u16 vid, u16 flags,
1214  *		      struct netlink_ext_ack *extack);
1215  *	Adds an FDB entry to dev for addr.
1216  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1217  *		      struct net_device *dev,
1218  *		      const unsigned char *addr, u16 vid)
1219  *	Deletes the FDB entry from dev coresponding to addr.
1220  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1221  *		       struct net_device *dev, struct net_device *filter_dev,
1222  *		       int *idx)
1223  *	Used to add FDB entries to dump requests. Implementers should add
1224  *	entries to skb and update idx with the number of entries.
1225  *
1226  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1227  *			     u16 flags, struct netlink_ext_ack *extack)
1228  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1229  *			     struct net_device *dev, u32 filter_mask,
1230  *			     int nlflags)
1231  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1232  *			     u16 flags);
1233  *
1234  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1235  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1236  *	which do not represent real hardware may define this to allow their
1237  *	userspace components to manage their virtual carrier state. Devices
1238  *	that determine carrier state from physical hardware properties (eg
1239  *	network cables) or protocol-dependent mechanisms (eg
1240  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1241  *
1242  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1243  *			       struct netdev_phys_item_id *ppid);
1244  *	Called to get ID of physical port of this device. If driver does
1245  *	not implement this, it is assumed that the hw is not able to have
1246  *	multiple net devices on single physical port.
1247  *
1248  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1249  *				 struct netdev_phys_item_id *ppid)
1250  *	Called to get the parent ID of the physical port of this device.
1251  *
1252  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1253  *			      struct udp_tunnel_info *ti);
1254  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1255  *	address family that a UDP tunnel is listnening to. It is called only
1256  *	when a new port starts listening. The operation is protected by the
1257  *	RTNL.
1258  *
1259  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1260  *			      struct udp_tunnel_info *ti);
1261  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1262  *	address family that the UDP tunnel is not listening to anymore. The
1263  *	operation is protected by the RTNL.
1264  *
1265  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1266  *				 struct net_device *dev)
1267  *	Called by upper layer devices to accelerate switching or other
1268  *	station functionality into hardware. 'pdev is the lowerdev
1269  *	to use for the offload and 'dev' is the net device that will
1270  *	back the offload. Returns a pointer to the private structure
1271  *	the upper layer will maintain.
1272  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1273  *	Called by upper layer device to delete the station created
1274  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1275  *	the station and priv is the structure returned by the add
1276  *	operation.
1277  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1278  *			     int queue_index, u32 maxrate);
1279  *	Called when a user wants to set a max-rate limitation of specific
1280  *	TX queue.
1281  * int (*ndo_get_iflink)(const struct net_device *dev);
1282  *	Called to get the iflink value of this device.
1283  * void (*ndo_change_proto_down)(struct net_device *dev,
1284  *				 bool proto_down);
1285  *	This function is used to pass protocol port error state information
1286  *	to the switch driver. The switch driver can react to the proto_down
1287  *      by doing a phys down on the associated switch port.
1288  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1289  *	This function is used to get egress tunnel information for given skb.
1290  *	This is useful for retrieving outer tunnel header parameters while
1291  *	sampling packet.
1292  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1293  *	This function is used to specify the headroom that the skb must
1294  *	consider when allocation skb during packet reception. Setting
1295  *	appropriate rx headroom value allows avoiding skb head copy on
1296  *	forward. Setting a negative value resets the rx headroom to the
1297  *	default value.
1298  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1299  *	This function is used to set or query state related to XDP on the
1300  *	netdevice and manage BPF offload. See definition of
1301  *	enum bpf_netdev_command for details.
1302  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1303  *			u32 flags);
1304  *	This function is used to submit @n XDP packets for transmit on a
1305  *	netdevice. Returns number of frames successfully transmitted, frames
1306  *	that got dropped are freed/returned via xdp_return_frame().
1307  *	Returns negative number, means general error invoking ndo, meaning
1308  *	no frames were xmit'ed and core-caller will free all frames.
1309  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1310  *      This function is used to wake up the softirq, ksoftirqd or kthread
1311  *	responsible for sending and/or receiving packets on a specific
1312  *	queue id bound to an AF_XDP socket. The flags field specifies if
1313  *	only RX, only Tx, or both should be woken up using the flags
1314  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1315  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1316  *	Get devlink port instance associated with a given netdev.
1317  *	Called with a reference on the netdevice and devlink locks only,
1318  *	rtnl_lock is not held.
1319  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1320  *			 int cmd);
1321  *	Add, change, delete or get information on an IPv4 tunnel.
1322  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1323  *	If a device is paired with a peer device, return the peer instance.
1324  *	The caller must be under RCU read context.
1325  */
1326 struct net_device_ops {
1327 	int			(*ndo_init)(struct net_device *dev);
1328 	void			(*ndo_uninit)(struct net_device *dev);
1329 	int			(*ndo_open)(struct net_device *dev);
1330 	int			(*ndo_stop)(struct net_device *dev);
1331 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1332 						  struct net_device *dev);
1333 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1334 						      struct net_device *dev,
1335 						      netdev_features_t features);
1336 	u16			(*ndo_select_queue)(struct net_device *dev,
1337 						    struct sk_buff *skb,
1338 						    struct net_device *sb_dev);
1339 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1340 						       int flags);
1341 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1342 	int			(*ndo_set_mac_address)(struct net_device *dev,
1343 						       void *addr);
1344 	int			(*ndo_validate_addr)(struct net_device *dev);
1345 	int			(*ndo_do_ioctl)(struct net_device *dev,
1346 					        struct ifreq *ifr, int cmd);
1347 	int			(*ndo_set_config)(struct net_device *dev,
1348 					          struct ifmap *map);
1349 	int			(*ndo_change_mtu)(struct net_device *dev,
1350 						  int new_mtu);
1351 	int			(*ndo_neigh_setup)(struct net_device *dev,
1352 						   struct neigh_parms *);
1353 	void			(*ndo_tx_timeout) (struct net_device *dev,
1354 						   unsigned int txqueue);
1355 
1356 	void			(*ndo_get_stats64)(struct net_device *dev,
1357 						   struct rtnl_link_stats64 *storage);
1358 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1359 	int			(*ndo_get_offload_stats)(int attr_id,
1360 							 const struct net_device *dev,
1361 							 void *attr_data);
1362 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1363 
1364 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1365 						       __be16 proto, u16 vid);
1366 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1367 						        __be16 proto, u16 vid);
1368 #ifdef CONFIG_NET_POLL_CONTROLLER
1369 	void                    (*ndo_poll_controller)(struct net_device *dev);
1370 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1371 						     struct netpoll_info *info);
1372 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1373 #endif
1374 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1375 						  int queue, u8 *mac);
1376 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1377 						   int queue, u16 vlan,
1378 						   u8 qos, __be16 proto);
1379 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1380 						   int vf, int min_tx_rate,
1381 						   int max_tx_rate);
1382 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1383 						       int vf, bool setting);
1384 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1385 						    int vf, bool setting);
1386 	int			(*ndo_get_vf_config)(struct net_device *dev,
1387 						     int vf,
1388 						     struct ifla_vf_info *ivf);
1389 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1390 							 int vf, int link_state);
1391 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1392 						    int vf,
1393 						    struct ifla_vf_stats
1394 						    *vf_stats);
1395 	int			(*ndo_set_vf_port)(struct net_device *dev,
1396 						   int vf,
1397 						   struct nlattr *port[]);
1398 	int			(*ndo_get_vf_port)(struct net_device *dev,
1399 						   int vf, struct sk_buff *skb);
1400 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1401 						   int vf,
1402 						   struct ifla_vf_guid *node_guid,
1403 						   struct ifla_vf_guid *port_guid);
1404 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1405 						   int vf, u64 guid,
1406 						   int guid_type);
1407 	int			(*ndo_set_vf_rss_query_en)(
1408 						   struct net_device *dev,
1409 						   int vf, bool setting);
1410 	int			(*ndo_setup_tc)(struct net_device *dev,
1411 						enum tc_setup_type type,
1412 						void *type_data);
1413 #if IS_ENABLED(CONFIG_FCOE)
1414 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1415 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1416 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1417 						      u16 xid,
1418 						      struct scatterlist *sgl,
1419 						      unsigned int sgc);
1420 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1421 						     u16 xid);
1422 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1423 						       u16 xid,
1424 						       struct scatterlist *sgl,
1425 						       unsigned int sgc);
1426 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1427 							struct netdev_fcoe_hbainfo *hbainfo);
1428 #endif
1429 
1430 #if IS_ENABLED(CONFIG_LIBFCOE)
1431 #define NETDEV_FCOE_WWNN 0
1432 #define NETDEV_FCOE_WWPN 1
1433 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1434 						    u64 *wwn, int type);
1435 #endif
1436 
1437 #ifdef CONFIG_RFS_ACCEL
1438 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1439 						     const struct sk_buff *skb,
1440 						     u16 rxq_index,
1441 						     u32 flow_id);
1442 #endif
1443 	int			(*ndo_add_slave)(struct net_device *dev,
1444 						 struct net_device *slave_dev,
1445 						 struct netlink_ext_ack *extack);
1446 	int			(*ndo_del_slave)(struct net_device *dev,
1447 						 struct net_device *slave_dev);
1448 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1449 						      struct sk_buff *skb,
1450 						      bool all_slaves);
1451 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1452 						    netdev_features_t features);
1453 	int			(*ndo_set_features)(struct net_device *dev,
1454 						    netdev_features_t features);
1455 	int			(*ndo_neigh_construct)(struct net_device *dev,
1456 						       struct neighbour *n);
1457 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1458 						     struct neighbour *n);
1459 
1460 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1461 					       struct nlattr *tb[],
1462 					       struct net_device *dev,
1463 					       const unsigned char *addr,
1464 					       u16 vid,
1465 					       u16 flags,
1466 					       struct netlink_ext_ack *extack);
1467 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1468 					       struct nlattr *tb[],
1469 					       struct net_device *dev,
1470 					       const unsigned char *addr,
1471 					       u16 vid);
1472 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1473 						struct netlink_callback *cb,
1474 						struct net_device *dev,
1475 						struct net_device *filter_dev,
1476 						int *idx);
1477 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1478 					       struct nlattr *tb[],
1479 					       struct net_device *dev,
1480 					       const unsigned char *addr,
1481 					       u16 vid, u32 portid, u32 seq,
1482 					       struct netlink_ext_ack *extack);
1483 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1484 						      struct nlmsghdr *nlh,
1485 						      u16 flags,
1486 						      struct netlink_ext_ack *extack);
1487 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1488 						      u32 pid, u32 seq,
1489 						      struct net_device *dev,
1490 						      u32 filter_mask,
1491 						      int nlflags);
1492 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1493 						      struct nlmsghdr *nlh,
1494 						      u16 flags);
1495 	int			(*ndo_change_carrier)(struct net_device *dev,
1496 						      bool new_carrier);
1497 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1498 							struct netdev_phys_item_id *ppid);
1499 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1500 							  struct netdev_phys_item_id *ppid);
1501 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1502 							  char *name, size_t len);
1503 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1504 						      struct udp_tunnel_info *ti);
1505 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1506 						      struct udp_tunnel_info *ti);
1507 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1508 							struct net_device *dev);
1509 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1510 							void *priv);
1511 
1512 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1513 						      int queue_index,
1514 						      u32 maxrate);
1515 	int			(*ndo_get_iflink)(const struct net_device *dev);
1516 	int			(*ndo_change_proto_down)(struct net_device *dev,
1517 							 bool proto_down);
1518 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1519 						       struct sk_buff *skb);
1520 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1521 						       int needed_headroom);
1522 	int			(*ndo_bpf)(struct net_device *dev,
1523 					   struct netdev_bpf *bpf);
1524 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1525 						struct xdp_frame **xdp,
1526 						u32 flags);
1527 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1528 						  u32 queue_id, u32 flags);
1529 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1530 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1531 						  struct ip_tunnel_parm *p, int cmd);
1532 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1533 
1534 	ANDROID_KABI_RESERVE(1);
1535 	ANDROID_KABI_RESERVE(2);
1536 	ANDROID_KABI_RESERVE(3);
1537 	ANDROID_KABI_RESERVE(4);
1538 	ANDROID_KABI_RESERVE(5);
1539 	ANDROID_KABI_RESERVE(6);
1540 	ANDROID_KABI_RESERVE(7);
1541 	ANDROID_KABI_RESERVE(8);
1542 };
1543 
1544 /**
1545  * enum net_device_priv_flags - &struct net_device priv_flags
1546  *
1547  * These are the &struct net_device, they are only set internally
1548  * by drivers and used in the kernel. These flags are invisible to
1549  * userspace; this means that the order of these flags can change
1550  * during any kernel release.
1551  *
1552  * You should have a pretty good reason to be extending these flags.
1553  *
1554  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1555  * @IFF_EBRIDGE: Ethernet bridging device
1556  * @IFF_BONDING: bonding master or slave
1557  * @IFF_ISATAP: ISATAP interface (RFC4214)
1558  * @IFF_WAN_HDLC: WAN HDLC device
1559  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1560  *	release skb->dst
1561  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1562  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1563  * @IFF_MACVLAN_PORT: device used as macvlan port
1564  * @IFF_BRIDGE_PORT: device used as bridge port
1565  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1566  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1567  * @IFF_UNICAST_FLT: Supports unicast filtering
1568  * @IFF_TEAM_PORT: device used as team port
1569  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1570  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1571  *	change when it's running
1572  * @IFF_MACVLAN: Macvlan device
1573  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1574  *	underlying stacked devices
1575  * @IFF_L3MDEV_MASTER: device is an L3 master device
1576  * @IFF_NO_QUEUE: device can run without qdisc attached
1577  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1578  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1579  * @IFF_TEAM: device is a team device
1580  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1581  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1582  *	entity (i.e. the master device for bridged veth)
1583  * @IFF_MACSEC: device is a MACsec device
1584  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1585  * @IFF_FAILOVER: device is a failover master device
1586  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1587  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1588  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1589  */
1590 enum netdev_priv_flags {
1591 	IFF_802_1Q_VLAN			= 1<<0,
1592 	IFF_EBRIDGE			= 1<<1,
1593 	IFF_BONDING			= 1<<2,
1594 	IFF_ISATAP			= 1<<3,
1595 	IFF_WAN_HDLC			= 1<<4,
1596 	IFF_XMIT_DST_RELEASE		= 1<<5,
1597 	IFF_DONT_BRIDGE			= 1<<6,
1598 	IFF_DISABLE_NETPOLL		= 1<<7,
1599 	IFF_MACVLAN_PORT		= 1<<8,
1600 	IFF_BRIDGE_PORT			= 1<<9,
1601 	IFF_OVS_DATAPATH		= 1<<10,
1602 	IFF_TX_SKB_SHARING		= 1<<11,
1603 	IFF_UNICAST_FLT			= 1<<12,
1604 	IFF_TEAM_PORT			= 1<<13,
1605 	IFF_SUPP_NOFCS			= 1<<14,
1606 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1607 	IFF_MACVLAN			= 1<<16,
1608 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1609 	IFF_L3MDEV_MASTER		= 1<<18,
1610 	IFF_NO_QUEUE			= 1<<19,
1611 	IFF_OPENVSWITCH			= 1<<20,
1612 	IFF_L3MDEV_SLAVE		= 1<<21,
1613 	IFF_TEAM			= 1<<22,
1614 	IFF_RXFH_CONFIGURED		= 1<<23,
1615 	IFF_PHONY_HEADROOM		= 1<<24,
1616 	IFF_MACSEC			= 1<<25,
1617 	IFF_NO_RX_HANDLER		= 1<<26,
1618 	IFF_FAILOVER			= 1<<27,
1619 	IFF_FAILOVER_SLAVE		= 1<<28,
1620 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1621 	IFF_LIVE_RENAME_OK		= 1<<30,
1622 };
1623 
1624 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1625 #define IFF_EBRIDGE			IFF_EBRIDGE
1626 #define IFF_BONDING			IFF_BONDING
1627 #define IFF_ISATAP			IFF_ISATAP
1628 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1629 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1630 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1631 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1632 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1633 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1634 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1635 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1636 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1637 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1638 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1639 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1640 #define IFF_MACVLAN			IFF_MACVLAN
1641 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1642 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1643 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1644 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1645 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1646 #define IFF_TEAM			IFF_TEAM
1647 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1648 #define IFF_MACSEC			IFF_MACSEC
1649 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1650 #define IFF_FAILOVER			IFF_FAILOVER
1651 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1652 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1653 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1654 
1655 /* Specifies the type of the struct net_device::ml_priv pointer */
1656 enum netdev_ml_priv_type {
1657 	ML_PRIV_NONE,
1658 	ML_PRIV_CAN,
1659 };
1660 
1661 /**
1662  *	struct net_device - The DEVICE structure.
1663  *
1664  *	Actually, this whole structure is a big mistake.  It mixes I/O
1665  *	data with strictly "high-level" data, and it has to know about
1666  *	almost every data structure used in the INET module.
1667  *
1668  *	@name:	This is the first field of the "visible" part of this structure
1669  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1670  *		of the interface.
1671  *
1672  *	@name_node:	Name hashlist node
1673  *	@ifalias:	SNMP alias
1674  *	@mem_end:	Shared memory end
1675  *	@mem_start:	Shared memory start
1676  *	@base_addr:	Device I/O address
1677  *	@irq:		Device IRQ number
1678  *
1679  *	@state:		Generic network queuing layer state, see netdev_state_t
1680  *	@dev_list:	The global list of network devices
1681  *	@napi_list:	List entry used for polling NAPI devices
1682  *	@unreg_list:	List entry  when we are unregistering the
1683  *			device; see the function unregister_netdev
1684  *	@close_list:	List entry used when we are closing the device
1685  *	@ptype_all:     Device-specific packet handlers for all protocols
1686  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1687  *
1688  *	@adj_list:	Directly linked devices, like slaves for bonding
1689  *	@features:	Currently active device features
1690  *	@hw_features:	User-changeable features
1691  *
1692  *	@wanted_features:	User-requested features
1693  *	@vlan_features:		Mask of features inheritable by VLAN devices
1694  *
1695  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1696  *				This field indicates what encapsulation
1697  *				offloads the hardware is capable of doing,
1698  *				and drivers will need to set them appropriately.
1699  *
1700  *	@mpls_features:	Mask of features inheritable by MPLS
1701  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1702  *
1703  *	@ifindex:	interface index
1704  *	@group:		The group the device belongs to
1705  *
1706  *	@stats:		Statistics struct, which was left as a legacy, use
1707  *			rtnl_link_stats64 instead
1708  *
1709  *	@rx_dropped:	Dropped packets by core network,
1710  *			do not use this in drivers
1711  *	@tx_dropped:	Dropped packets by core network,
1712  *			do not use this in drivers
1713  *	@rx_nohandler:	nohandler dropped packets by core network on
1714  *			inactive devices, do not use this in drivers
1715  *	@carrier_up_count:	Number of times the carrier has been up
1716  *	@carrier_down_count:	Number of times the carrier has been down
1717  *
1718  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1719  *				instead of ioctl,
1720  *				see <net/iw_handler.h> for details.
1721  *	@wireless_data:	Instance data managed by the core of wireless extensions
1722  *
1723  *	@netdev_ops:	Includes several pointers to callbacks,
1724  *			if one wants to override the ndo_*() functions
1725  *	@ethtool_ops:	Management operations
1726  *	@l3mdev_ops:	Layer 3 master device operations
1727  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1728  *			discovery handling. Necessary for e.g. 6LoWPAN.
1729  *	@xfrmdev_ops:	Transformation offload operations
1730  *	@tlsdev_ops:	Transport Layer Security offload operations
1731  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1732  *			of Layer 2 headers.
1733  *
1734  *	@flags:		Interface flags (a la BSD)
1735  *	@priv_flags:	Like 'flags' but invisible to userspace,
1736  *			see if.h for the definitions
1737  *	@gflags:	Global flags ( kept as legacy )
1738  *	@padded:	How much padding added by alloc_netdev()
1739  *	@operstate:	RFC2863 operstate
1740  *	@link_mode:	Mapping policy to operstate
1741  *	@if_port:	Selectable AUI, TP, ...
1742  *	@dma:		DMA channel
1743  *	@mtu:		Interface MTU value
1744  *	@min_mtu:	Interface Minimum MTU value
1745  *	@max_mtu:	Interface Maximum MTU value
1746  *	@type:		Interface hardware type
1747  *	@hard_header_len: Maximum hardware header length.
1748  *	@min_header_len:  Minimum hardware header length
1749  *
1750  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1751  *			  cases can this be guaranteed
1752  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1753  *			  cases can this be guaranteed. Some cases also use
1754  *			  LL_MAX_HEADER instead to allocate the skb
1755  *
1756  *	interface address info:
1757  *
1758  * 	@perm_addr:		Permanent hw address
1759  * 	@addr_assign_type:	Hw address assignment type
1760  * 	@addr_len:		Hardware address length
1761  *	@upper_level:		Maximum depth level of upper devices.
1762  *	@lower_level:		Maximum depth level of lower devices.
1763  *	@neigh_priv_len:	Used in neigh_alloc()
1764  * 	@dev_id:		Used to differentiate devices that share
1765  * 				the same link layer address
1766  * 	@dev_port:		Used to differentiate devices that share
1767  * 				the same function
1768  *	@addr_list_lock:	XXX: need comments on this one
1769  *	@name_assign_type:	network interface name assignment type
1770  *	@uc_promisc:		Counter that indicates promiscuous mode
1771  *				has been enabled due to the need to listen to
1772  *				additional unicast addresses in a device that
1773  *				does not implement ndo_set_rx_mode()
1774  *	@uc:			unicast mac addresses
1775  *	@mc:			multicast mac addresses
1776  *	@dev_addrs:		list of device hw addresses
1777  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1778  *	@promiscuity:		Number of times the NIC is told to work in
1779  *				promiscuous mode; if it becomes 0 the NIC will
1780  *				exit promiscuous mode
1781  *	@allmulti:		Counter, enables or disables allmulticast mode
1782  *
1783  *	@vlan_info:	VLAN info
1784  *	@dsa_ptr:	dsa specific data
1785  *	@tipc_ptr:	TIPC specific data
1786  *	@atalk_ptr:	AppleTalk link
1787  *	@ip_ptr:	IPv4 specific data
1788  *	@ip6_ptr:	IPv6 specific data
1789  *	@ax25_ptr:	AX.25 specific data
1790  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1791  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1792  *			 device struct
1793  *	@mpls_ptr:	mpls_dev struct pointer
1794  *
1795  *	@dev_addr:	Hw address (before bcast,
1796  *			because most packets are unicast)
1797  *
1798  *	@_rx:			Array of RX queues
1799  *	@num_rx_queues:		Number of RX queues
1800  *				allocated at register_netdev() time
1801  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1802  *	@xdp_prog:		XDP sockets filter program pointer
1803  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1804  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1805  *				allow to avoid NIC hard IRQ, on busy queues.
1806  *
1807  *	@rx_handler:		handler for received packets
1808  *	@rx_handler_data: 	XXX: need comments on this one
1809  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1810  *				ingress processing
1811  *	@ingress_queue:		XXX: need comments on this one
1812  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1813  *	@broadcast:		hw bcast address
1814  *
1815  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1816  *			indexed by RX queue number. Assigned by driver.
1817  *			This must only be set if the ndo_rx_flow_steer
1818  *			operation is defined
1819  *	@index_hlist:		Device index hash chain
1820  *
1821  *	@_tx:			Array of TX queues
1822  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1823  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1824  *	@qdisc:			Root qdisc from userspace point of view
1825  *	@tx_queue_len:		Max frames per queue allowed
1826  *	@tx_global_lock: 	XXX: need comments on this one
1827  *	@xdp_bulkq:		XDP device bulk queue
1828  *	@xps_cpus_map:		all CPUs map for XPS device
1829  *	@xps_rxqs_map:		all RXQs map for XPS device
1830  *
1831  *	@xps_maps:	XXX: need comments on this one
1832  *	@miniq_egress:		clsact qdisc specific data for
1833  *				egress processing
1834  *	@qdisc_hash:		qdisc hash table
1835  *	@watchdog_timeo:	Represents the timeout that is used by
1836  *				the watchdog (see dev_watchdog())
1837  *	@watchdog_timer:	List of timers
1838  *
1839  *	@proto_down_reason:	reason a netdev interface is held down
1840  *	@pcpu_refcnt:		Number of references to this device
1841  *	@todo_list:		Delayed register/unregister
1842  *	@link_watch_list:	XXX: need comments on this one
1843  *
1844  *	@reg_state:		Register/unregister state machine
1845  *	@dismantle:		Device is going to be freed
1846  *	@rtnl_link_state:	This enum represents the phases of creating
1847  *				a new link
1848  *
1849  *	@needs_free_netdev:	Should unregister perform free_netdev?
1850  *	@priv_destructor:	Called from unregister
1851  *	@npinfo:		XXX: need comments on this one
1852  * 	@nd_net:		Network namespace this network device is inside
1853  *
1854  * 	@ml_priv:	Mid-layer private
1855  *	@ml_priv_type:  Mid-layer private type
1856  * 	@lstats:	Loopback statistics
1857  * 	@tstats:	Tunnel statistics
1858  * 	@dstats:	Dummy statistics
1859  * 	@vstats:	Virtual ethernet statistics
1860  *
1861  *	@garp_port:	GARP
1862  *	@mrp_port:	MRP
1863  *
1864  *	@dev:		Class/net/name entry
1865  *	@sysfs_groups:	Space for optional device, statistics and wireless
1866  *			sysfs groups
1867  *
1868  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1869  *	@rtnl_link_ops:	Rtnl_link_ops
1870  *
1871  *	@gso_max_size:	Maximum size of generic segmentation offload
1872  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1873  *			NIC for GSO
1874  *
1875  *	@dcbnl_ops:	Data Center Bridging netlink ops
1876  *	@num_tc:	Number of traffic classes in the net device
1877  *	@tc_to_txq:	XXX: need comments on this one
1878  *	@prio_tc_map:	XXX: need comments on this one
1879  *
1880  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1881  *
1882  *	@priomap:	XXX: need comments on this one
1883  *	@phydev:	Physical device may attach itself
1884  *			for hardware timestamping
1885  *	@sfp_bus:	attached &struct sfp_bus structure.
1886  *
1887  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1888  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1889  *
1890  *	@proto_down:	protocol port state information can be sent to the
1891  *			switch driver and used to set the phys state of the
1892  *			switch port.
1893  *
1894  *	@wol_enabled:	Wake-on-LAN is enabled
1895  *
1896  *	@net_notifier_list:	List of per-net netdev notifier block
1897  *				that follow this device when it is moved
1898  *				to another network namespace.
1899  *
1900  *	@macsec_ops:    MACsec offloading ops
1901  *
1902  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1903  *				offload capabilities of the device
1904  *	@udp_tunnel_nic:	UDP tunnel offload state
1905  *	@xdp_state:		stores info on attached XDP BPF programs
1906  *
1907  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1908  *			dev->addr_list_lock.
1909  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1910  *			keep a list of interfaces to be deleted.
1911  *
1912  *	FIXME: cleanup struct net_device such that network protocol info
1913  *	moves out.
1914  */
1915 
1916 struct net_device {
1917 	char			name[IFNAMSIZ];
1918 	struct netdev_name_node	*name_node;
1919 	struct dev_ifalias	__rcu *ifalias;
1920 	/*
1921 	 *	I/O specific fields
1922 	 *	FIXME: Merge these and struct ifmap into one
1923 	 */
1924 	unsigned long		mem_end;
1925 	unsigned long		mem_start;
1926 	unsigned long		base_addr;
1927 	int			irq;
1928 
1929 	/*
1930 	 *	Some hardware also needs these fields (state,dev_list,
1931 	 *	napi_list,unreg_list,close_list) but they are not
1932 	 *	part of the usual set specified in Space.c.
1933 	 */
1934 
1935 	unsigned long		state;
1936 
1937 	struct list_head	dev_list;
1938 	struct list_head	napi_list;
1939 	struct list_head	unreg_list;
1940 	struct list_head	close_list;
1941 	struct list_head	ptype_all;
1942 	struct list_head	ptype_specific;
1943 
1944 	struct {
1945 		struct list_head upper;
1946 		struct list_head lower;
1947 	} adj_list;
1948 
1949 	netdev_features_t	features;
1950 	netdev_features_t	hw_features;
1951 	netdev_features_t	wanted_features;
1952 	netdev_features_t	vlan_features;
1953 	netdev_features_t	hw_enc_features;
1954 	netdev_features_t	mpls_features;
1955 	netdev_features_t	gso_partial_features;
1956 
1957 	int			ifindex;
1958 	int			group;
1959 
1960 	struct net_device_stats	stats;
1961 
1962 	atomic_long_t		rx_dropped;
1963 	atomic_long_t		tx_dropped;
1964 	atomic_long_t		rx_nohandler;
1965 
1966 	/* Stats to monitor link on/off, flapping */
1967 	atomic_t		carrier_up_count;
1968 	atomic_t		carrier_down_count;
1969 
1970 #ifdef CONFIG_WIRELESS_EXT
1971 	const struct iw_handler_def *wireless_handlers;
1972 	struct iw_public_data	*wireless_data;
1973 #endif
1974 	const struct net_device_ops *netdev_ops;
1975 	const struct ethtool_ops *ethtool_ops;
1976 #ifdef CONFIG_NET_L3_MASTER_DEV
1977 	const struct l3mdev_ops	*l3mdev_ops;
1978 #endif
1979 #if IS_ENABLED(CONFIG_IPV6)
1980 	const struct ndisc_ops *ndisc_ops;
1981 #endif
1982 
1983 #ifdef CONFIG_XFRM_OFFLOAD
1984 	const struct xfrmdev_ops *xfrmdev_ops;
1985 #endif
1986 
1987 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1988 	const struct tlsdev_ops *tlsdev_ops;
1989 #endif
1990 
1991 	const struct header_ops *header_ops;
1992 
1993 	unsigned int		flags;
1994 	unsigned int		priv_flags;
1995 
1996 	unsigned short		gflags;
1997 	unsigned short		padded;
1998 
1999 	unsigned char		operstate;
2000 	unsigned char		link_mode;
2001 
2002 	unsigned char		if_port;
2003 	unsigned char		dma;
2004 
2005 	/* Note : dev->mtu is often read without holding a lock.
2006 	 * Writers usually hold RTNL.
2007 	 * It is recommended to use READ_ONCE() to annotate the reads,
2008 	 * and to use WRITE_ONCE() to annotate the writes.
2009 	 */
2010 	unsigned int		mtu;
2011 	unsigned int		min_mtu;
2012 	unsigned int		max_mtu;
2013 	unsigned short		type;
2014 	unsigned short		hard_header_len;
2015 	unsigned char		min_header_len;
2016 	unsigned char		name_assign_type;
2017 
2018 	unsigned short		needed_headroom;
2019 	unsigned short		needed_tailroom;
2020 
2021 	/* Interface address info. */
2022 	unsigned char		perm_addr[MAX_ADDR_LEN];
2023 	unsigned char		addr_assign_type;
2024 	unsigned char		addr_len;
2025 	unsigned char		upper_level;
2026 	unsigned char		lower_level;
2027 
2028 	unsigned short		neigh_priv_len;
2029 	unsigned short          dev_id;
2030 	unsigned short          dev_port;
2031 	spinlock_t		addr_list_lock;
2032 
2033 	struct netdev_hw_addr_list	uc;
2034 	struct netdev_hw_addr_list	mc;
2035 	struct netdev_hw_addr_list	dev_addrs;
2036 
2037 #ifdef CONFIG_SYSFS
2038 	struct kset		*queues_kset;
2039 #endif
2040 #ifdef CONFIG_LOCKDEP
2041 	struct list_head	unlink_list;
2042 #endif
2043 	unsigned int		promiscuity;
2044 	unsigned int		allmulti;
2045 	bool			uc_promisc;
2046 #ifdef CONFIG_LOCKDEP
2047 	unsigned char		nested_level;
2048 #endif
2049 
2050 
2051 	/* Protocol-specific pointers */
2052 
2053 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2054 	struct vlan_info __rcu	*vlan_info;
2055 #endif
2056 #if IS_ENABLED(CONFIG_NET_DSA)
2057 	struct dsa_port		*dsa_ptr;
2058 #endif
2059 #if IS_ENABLED(CONFIG_TIPC)
2060 	struct tipc_bearer __rcu *tipc_ptr;
2061 #endif
2062 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2063 	void 			*atalk_ptr;
2064 #endif
2065 	struct in_device __rcu	*ip_ptr;
2066 	struct inet6_dev __rcu	*ip6_ptr;
2067 #if IS_ENABLED(CONFIG_AX25)
2068 	void			*ax25_ptr;
2069 #endif
2070 	struct wireless_dev	*ieee80211_ptr;
2071 	struct wpan_dev		*ieee802154_ptr;
2072 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2073 	struct mpls_dev __rcu	*mpls_ptr;
2074 #endif
2075 
2076 /*
2077  * Cache lines mostly used on receive path (including eth_type_trans())
2078  */
2079 	/* Interface address info used in eth_type_trans() */
2080 	unsigned char		*dev_addr;
2081 
2082 	struct netdev_rx_queue	*_rx;
2083 	unsigned int		num_rx_queues;
2084 	unsigned int		real_num_rx_queues;
2085 
2086 	struct bpf_prog __rcu	*xdp_prog;
2087 	unsigned long		gro_flush_timeout;
2088 	int			napi_defer_hard_irqs;
2089 	rx_handler_func_t __rcu	*rx_handler;
2090 	void __rcu		*rx_handler_data;
2091 
2092 #ifdef CONFIG_NET_CLS_ACT
2093 	struct mini_Qdisc __rcu	*miniq_ingress;
2094 #endif
2095 	struct netdev_queue __rcu *ingress_queue;
2096 #ifdef CONFIG_NETFILTER_INGRESS
2097 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2098 #endif
2099 
2100 	unsigned char		broadcast[MAX_ADDR_LEN];
2101 #ifdef CONFIG_RFS_ACCEL
2102 	struct cpu_rmap		*rx_cpu_rmap;
2103 #endif
2104 	struct hlist_node	index_hlist;
2105 
2106 /*
2107  * Cache lines mostly used on transmit path
2108  */
2109 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2110 	unsigned int		num_tx_queues;
2111 	unsigned int		real_num_tx_queues;
2112 	struct Qdisc __rcu	*qdisc;
2113 	unsigned int		tx_queue_len;
2114 	spinlock_t		tx_global_lock;
2115 
2116 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2117 
2118 #ifdef CONFIG_XPS
2119 	struct xps_dev_maps __rcu *xps_cpus_map;
2120 	struct xps_dev_maps __rcu *xps_rxqs_map;
2121 #endif
2122 #ifdef CONFIG_NET_CLS_ACT
2123 	struct mini_Qdisc __rcu	*miniq_egress;
2124 #endif
2125 
2126 #ifdef CONFIG_NET_SCHED
2127 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2128 #endif
2129 	/* These may be needed for future network-power-down code. */
2130 	struct timer_list	watchdog_timer;
2131 	int			watchdog_timeo;
2132 
2133 	u32                     proto_down_reason;
2134 
2135 	struct list_head	todo_list;
2136 	int __percpu		*pcpu_refcnt;
2137 
2138 	struct list_head	link_watch_list;
2139 
2140 	enum { NETREG_UNINITIALIZED=0,
2141 	       NETREG_REGISTERED,	/* completed register_netdevice */
2142 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2143 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2144 	       NETREG_RELEASED,		/* called free_netdev */
2145 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2146 	} reg_state:8;
2147 
2148 	bool dismantle;
2149 
2150 	enum {
2151 		RTNL_LINK_INITIALIZED,
2152 		RTNL_LINK_INITIALIZING,
2153 	} rtnl_link_state:16;
2154 
2155 	bool needs_free_netdev;
2156 	void (*priv_destructor)(struct net_device *dev);
2157 
2158 #ifdef CONFIG_NETPOLL
2159 	struct netpoll_info __rcu	*npinfo;
2160 #endif
2161 
2162 	possible_net_t			nd_net;
2163 
2164 	/* mid-layer private */
2165 	void				*ml_priv;
2166 	enum netdev_ml_priv_type	ml_priv_type;
2167 
2168 	union {
2169 		struct pcpu_lstats __percpu		*lstats;
2170 		struct pcpu_sw_netstats __percpu	*tstats;
2171 		struct pcpu_dstats __percpu		*dstats;
2172 	};
2173 
2174 #if IS_ENABLED(CONFIG_GARP)
2175 	struct garp_port __rcu	*garp_port;
2176 #endif
2177 #if IS_ENABLED(CONFIG_MRP)
2178 	struct mrp_port __rcu	*mrp_port;
2179 #endif
2180 
2181 	struct device		dev;
2182 	const struct attribute_group *sysfs_groups[4];
2183 	const struct attribute_group *sysfs_rx_queue_group;
2184 
2185 	const struct rtnl_link_ops *rtnl_link_ops;
2186 
2187 	/* for setting kernel sock attribute on TCP connection setup */
2188 #define GSO_MAX_SIZE		65536
2189 	unsigned int		gso_max_size;
2190 #define GSO_MAX_SEGS		65535
2191 	u16			gso_max_segs;
2192 
2193 #ifdef CONFIG_DCB
2194 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2195 #endif
2196 	s16			num_tc;
2197 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2198 	u8			prio_tc_map[TC_BITMASK + 1];
2199 
2200 #if IS_ENABLED(CONFIG_FCOE)
2201 	unsigned int		fcoe_ddp_xid;
2202 #endif
2203 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2204 	struct netprio_map __rcu *priomap;
2205 #endif
2206 	struct phy_device	*phydev;
2207 	struct sfp_bus		*sfp_bus;
2208 	struct lock_class_key	*qdisc_tx_busylock;
2209 	struct lock_class_key	*qdisc_running_key;
2210 	bool			proto_down;
2211 	unsigned		wol_enabled:1;
2212 
2213 	struct list_head	net_notifier_list;
2214 
2215 #if IS_ENABLED(CONFIG_MACSEC)
2216 	/* MACsec management functions */
2217 	const struct macsec_ops *macsec_ops;
2218 #endif
2219 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2220 	struct udp_tunnel_nic	*udp_tunnel_nic;
2221 
2222 	/* protected by rtnl_lock */
2223 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2224 
2225 	ANDROID_KABI_RESERVE(1);
2226 	ANDROID_KABI_RESERVE(2);
2227 	ANDROID_KABI_RESERVE(3);
2228 	ANDROID_KABI_RESERVE(4);
2229 	ANDROID_KABI_RESERVE(5);
2230 	ANDROID_KABI_RESERVE(6);
2231 	ANDROID_KABI_RESERVE(7);
2232 	ANDROID_KABI_RESERVE(8);
2233 };
2234 #define to_net_dev(d) container_of(d, struct net_device, dev)
2235 
netif_elide_gro(const struct net_device * dev)2236 static inline bool netif_elide_gro(const struct net_device *dev)
2237 {
2238 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2239 		return true;
2240 	return false;
2241 }
2242 
2243 #define	NETDEV_ALIGN		32
2244 
2245 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2246 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2247 {
2248 	return dev->prio_tc_map[prio & TC_BITMASK];
2249 }
2250 
2251 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2252 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2253 {
2254 	if (tc >= dev->num_tc)
2255 		return -EINVAL;
2256 
2257 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2258 	return 0;
2259 }
2260 
2261 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2262 void netdev_reset_tc(struct net_device *dev);
2263 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2264 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2265 
2266 static inline
netdev_get_num_tc(struct net_device * dev)2267 int netdev_get_num_tc(struct net_device *dev)
2268 {
2269 	return dev->num_tc;
2270 }
2271 
net_prefetch(void * p)2272 static inline void net_prefetch(void *p)
2273 {
2274 	prefetch(p);
2275 #if L1_CACHE_BYTES < 128
2276 	prefetch((u8 *)p + L1_CACHE_BYTES);
2277 #endif
2278 }
2279 
net_prefetchw(void * p)2280 static inline void net_prefetchw(void *p)
2281 {
2282 	prefetchw(p);
2283 #if L1_CACHE_BYTES < 128
2284 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2285 #endif
2286 }
2287 
2288 void netdev_unbind_sb_channel(struct net_device *dev,
2289 			      struct net_device *sb_dev);
2290 int netdev_bind_sb_channel_queue(struct net_device *dev,
2291 				 struct net_device *sb_dev,
2292 				 u8 tc, u16 count, u16 offset);
2293 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2294 static inline int netdev_get_sb_channel(struct net_device *dev)
2295 {
2296 	return max_t(int, -dev->num_tc, 0);
2297 }
2298 
2299 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2300 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2301 					 unsigned int index)
2302 {
2303 	return &dev->_tx[index];
2304 }
2305 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2306 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2307 						    const struct sk_buff *skb)
2308 {
2309 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2310 }
2311 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2312 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2313 					    void (*f)(struct net_device *,
2314 						      struct netdev_queue *,
2315 						      void *),
2316 					    void *arg)
2317 {
2318 	unsigned int i;
2319 
2320 	for (i = 0; i < dev->num_tx_queues; i++)
2321 		f(dev, &dev->_tx[i], arg);
2322 }
2323 
2324 #define netdev_lockdep_set_classes(dev)				\
2325 {								\
2326 	static struct lock_class_key qdisc_tx_busylock_key;	\
2327 	static struct lock_class_key qdisc_running_key;		\
2328 	static struct lock_class_key qdisc_xmit_lock_key;	\
2329 	static struct lock_class_key dev_addr_list_lock_key;	\
2330 	unsigned int i;						\
2331 								\
2332 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2333 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2334 	lockdep_set_class(&(dev)->addr_list_lock,		\
2335 			  &dev_addr_list_lock_key);		\
2336 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2337 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2338 				  &qdisc_xmit_lock_key);	\
2339 }
2340 
2341 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2342 		     struct net_device *sb_dev);
2343 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2344 					 struct sk_buff *skb,
2345 					 struct net_device *sb_dev);
2346 
2347 /* returns the headroom that the master device needs to take in account
2348  * when forwarding to this dev
2349  */
netdev_get_fwd_headroom(struct net_device * dev)2350 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2351 {
2352 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2353 }
2354 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2355 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2356 {
2357 	if (dev->netdev_ops->ndo_set_rx_headroom)
2358 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2359 }
2360 
2361 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2362 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2363 {
2364 	netdev_set_rx_headroom(dev, -1);
2365 }
2366 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2367 static inline void *netdev_get_ml_priv(struct net_device *dev,
2368 				       enum netdev_ml_priv_type type)
2369 {
2370 	if (dev->ml_priv_type != type)
2371 		return NULL;
2372 
2373 	return dev->ml_priv;
2374 }
2375 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2376 static inline void netdev_set_ml_priv(struct net_device *dev,
2377 				      void *ml_priv,
2378 				      enum netdev_ml_priv_type type)
2379 {
2380 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2381 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2382 	     dev->ml_priv_type, type);
2383 	WARN(!dev->ml_priv_type && dev->ml_priv,
2384 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2385 
2386 	dev->ml_priv = ml_priv;
2387 	dev->ml_priv_type = type;
2388 }
2389 
2390 /*
2391  * Net namespace inlines
2392  */
2393 static inline
dev_net(const struct net_device * dev)2394 struct net *dev_net(const struct net_device *dev)
2395 {
2396 	return read_pnet(&dev->nd_net);
2397 }
2398 
2399 static inline
dev_net_set(struct net_device * dev,struct net * net)2400 void dev_net_set(struct net_device *dev, struct net *net)
2401 {
2402 	write_pnet(&dev->nd_net, net);
2403 }
2404 
2405 /**
2406  *	netdev_priv - access network device private data
2407  *	@dev: network device
2408  *
2409  * Get network device private data
2410  */
netdev_priv(const struct net_device * dev)2411 static inline void *netdev_priv(const struct net_device *dev)
2412 {
2413 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2414 }
2415 
2416 /* Set the sysfs physical device reference for the network logical device
2417  * if set prior to registration will cause a symlink during initialization.
2418  */
2419 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2420 
2421 /* Set the sysfs device type for the network logical device to allow
2422  * fine-grained identification of different network device types. For
2423  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2424  */
2425 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2426 
2427 /* Default NAPI poll() weight
2428  * Device drivers are strongly advised to not use bigger value
2429  */
2430 #define NAPI_POLL_WEIGHT 64
2431 
2432 /**
2433  *	netif_napi_add - initialize a NAPI context
2434  *	@dev:  network device
2435  *	@napi: NAPI context
2436  *	@poll: polling function
2437  *	@weight: default weight
2438  *
2439  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2440  * *any* of the other NAPI-related functions.
2441  */
2442 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2443 		    int (*poll)(struct napi_struct *, int), int weight);
2444 
2445 /**
2446  *	netif_tx_napi_add - initialize a NAPI context
2447  *	@dev:  network device
2448  *	@napi: NAPI context
2449  *	@poll: polling function
2450  *	@weight: default weight
2451  *
2452  * This variant of netif_napi_add() should be used from drivers using NAPI
2453  * to exclusively poll a TX queue.
2454  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2455  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2456 static inline void netif_tx_napi_add(struct net_device *dev,
2457 				     struct napi_struct *napi,
2458 				     int (*poll)(struct napi_struct *, int),
2459 				     int weight)
2460 {
2461 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2462 	netif_napi_add(dev, napi, poll, weight);
2463 }
2464 
2465 /**
2466  *  __netif_napi_del - remove a NAPI context
2467  *  @napi: NAPI context
2468  *
2469  * Warning: caller must observe RCU grace period before freeing memory
2470  * containing @napi. Drivers might want to call this helper to combine
2471  * all the needed RCU grace periods into a single one.
2472  */
2473 void __netif_napi_del(struct napi_struct *napi);
2474 
2475 /**
2476  *  netif_napi_del - remove a NAPI context
2477  *  @napi: NAPI context
2478  *
2479  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2480  */
netif_napi_del(struct napi_struct * napi)2481 static inline void netif_napi_del(struct napi_struct *napi)
2482 {
2483 	__netif_napi_del(napi);
2484 	synchronize_net();
2485 }
2486 
2487 struct napi_gro_cb {
2488 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2489 	void	*frag0;
2490 
2491 	/* Length of frag0. */
2492 	unsigned int frag0_len;
2493 
2494 	/* This indicates where we are processing relative to skb->data. */
2495 	int	data_offset;
2496 
2497 	/* This is non-zero if the packet cannot be merged with the new skb. */
2498 	u16	flush;
2499 
2500 	/* Save the IP ID here and check when we get to the transport layer */
2501 	u16	flush_id;
2502 
2503 	/* Number of segments aggregated. */
2504 	u16	count;
2505 
2506 	/* Start offset for remote checksum offload */
2507 	u16	gro_remcsum_start;
2508 
2509 	/* jiffies when first packet was created/queued */
2510 	unsigned long age;
2511 
2512 	/* Used in ipv6_gro_receive() and foo-over-udp */
2513 	u16	proto;
2514 
2515 	/* This is non-zero if the packet may be of the same flow. */
2516 	u8	same_flow:1;
2517 
2518 	/* Used in tunnel GRO receive */
2519 	u8	encap_mark:1;
2520 
2521 	/* GRO checksum is valid */
2522 	u8	csum_valid:1;
2523 
2524 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2525 	u8	csum_cnt:3;
2526 
2527 	/* Free the skb? */
2528 	u8	free:2;
2529 #define NAPI_GRO_FREE		  1
2530 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2531 
2532 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2533 	u8	is_ipv6:1;
2534 
2535 	/* Used in GRE, set in fou/gue_gro_receive */
2536 	u8	is_fou:1;
2537 
2538 	/* Used to determine if flush_id can be ignored */
2539 	u8	is_atomic:1;
2540 
2541 	/* Number of gro_receive callbacks this packet already went through */
2542 	u8 recursion_counter:4;
2543 
2544 	/* GRO is done by frag_list pointer chaining. */
2545 	u8	is_flist:1;
2546 
2547 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2548 	__wsum	csum;
2549 
2550 	/* used in skb_gro_receive() slow path */
2551 	struct sk_buff *last;
2552 };
2553 
2554 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2555 
2556 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2557 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2558 {
2559 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2560 }
2561 
2562 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2563 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2564 					       struct list_head *head,
2565 					       struct sk_buff *skb)
2566 {
2567 	if (unlikely(gro_recursion_inc_test(skb))) {
2568 		NAPI_GRO_CB(skb)->flush |= 1;
2569 		return NULL;
2570 	}
2571 
2572 	return cb(head, skb);
2573 }
2574 
2575 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2576 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2577 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2578 						  struct sock *sk,
2579 						  struct list_head *head,
2580 						  struct sk_buff *skb)
2581 {
2582 	if (unlikely(gro_recursion_inc_test(skb))) {
2583 		NAPI_GRO_CB(skb)->flush |= 1;
2584 		return NULL;
2585 	}
2586 
2587 	return cb(sk, head, skb);
2588 }
2589 
2590 struct packet_type {
2591 	__be16			type;	/* This is really htons(ether_type). */
2592 	bool			ignore_outgoing;
2593 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2594 	int			(*func) (struct sk_buff *,
2595 					 struct net_device *,
2596 					 struct packet_type *,
2597 					 struct net_device *);
2598 	void			(*list_func) (struct list_head *,
2599 					      struct packet_type *,
2600 					      struct net_device *);
2601 	bool			(*id_match)(struct packet_type *ptype,
2602 					    struct sock *sk);
2603 	struct net		*af_packet_net;
2604 	void			*af_packet_priv;
2605 	struct list_head	list;
2606 
2607 	ANDROID_KABI_RESERVE(1);
2608 	ANDROID_KABI_RESERVE(2);
2609 	ANDROID_KABI_RESERVE(3);
2610 	ANDROID_KABI_RESERVE(4);
2611 };
2612 
2613 struct offload_callbacks {
2614 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2615 						netdev_features_t features);
2616 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2617 						struct sk_buff *skb);
2618 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2619 };
2620 
2621 struct packet_offload {
2622 	__be16			 type;	/* This is really htons(ether_type). */
2623 	u16			 priority;
2624 	struct offload_callbacks callbacks;
2625 	struct list_head	 list;
2626 };
2627 
2628 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2629 struct pcpu_sw_netstats {
2630 	u64     rx_packets;
2631 	u64     rx_bytes;
2632 	u64     tx_packets;
2633 	u64     tx_bytes;
2634 	struct u64_stats_sync   syncp;
2635 } __aligned(4 * sizeof(u64));
2636 
2637 struct pcpu_lstats {
2638 	u64_stats_t packets;
2639 	u64_stats_t bytes;
2640 	struct u64_stats_sync syncp;
2641 } __aligned(2 * sizeof(u64));
2642 
2643 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2644 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2645 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2646 {
2647 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2648 
2649 	u64_stats_update_begin(&tstats->syncp);
2650 	tstats->rx_bytes += len;
2651 	tstats->rx_packets++;
2652 	u64_stats_update_end(&tstats->syncp);
2653 }
2654 
dev_lstats_add(struct net_device * dev,unsigned int len)2655 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2656 {
2657 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2658 
2659 	u64_stats_update_begin(&lstats->syncp);
2660 	u64_stats_add(&lstats->bytes, len);
2661 	u64_stats_inc(&lstats->packets);
2662 	u64_stats_update_end(&lstats->syncp);
2663 }
2664 
2665 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2666 ({									\
2667 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2668 	if (pcpu_stats)	{						\
2669 		int __cpu;						\
2670 		for_each_possible_cpu(__cpu) {				\
2671 			typeof(type) *stat;				\
2672 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2673 			u64_stats_init(&stat->syncp);			\
2674 		}							\
2675 	}								\
2676 	pcpu_stats;							\
2677 })
2678 
2679 #define netdev_alloc_pcpu_stats(type)					\
2680 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2681 
2682 enum netdev_lag_tx_type {
2683 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2684 	NETDEV_LAG_TX_TYPE_RANDOM,
2685 	NETDEV_LAG_TX_TYPE_BROADCAST,
2686 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2687 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2688 	NETDEV_LAG_TX_TYPE_HASH,
2689 };
2690 
2691 enum netdev_lag_hash {
2692 	NETDEV_LAG_HASH_NONE,
2693 	NETDEV_LAG_HASH_L2,
2694 	NETDEV_LAG_HASH_L34,
2695 	NETDEV_LAG_HASH_L23,
2696 	NETDEV_LAG_HASH_E23,
2697 	NETDEV_LAG_HASH_E34,
2698 	NETDEV_LAG_HASH_UNKNOWN,
2699 };
2700 
2701 struct netdev_lag_upper_info {
2702 	enum netdev_lag_tx_type tx_type;
2703 	enum netdev_lag_hash hash_type;
2704 };
2705 
2706 struct netdev_lag_lower_state_info {
2707 	u8 link_up : 1,
2708 	   tx_enabled : 1;
2709 };
2710 
2711 #include <linux/notifier.h>
2712 
2713 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2714  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2715  * adding new types.
2716  */
2717 enum netdev_cmd {
2718 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2719 	NETDEV_DOWN,
2720 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2721 				   detected a hardware crash and restarted
2722 				   - we can use this eg to kick tcp sessions
2723 				   once done */
2724 	NETDEV_CHANGE,		/* Notify device state change */
2725 	NETDEV_REGISTER,
2726 	NETDEV_UNREGISTER,
2727 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2728 	NETDEV_CHANGEADDR,	/* notify after the address change */
2729 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2730 	NETDEV_GOING_DOWN,
2731 	NETDEV_CHANGENAME,
2732 	NETDEV_FEAT_CHANGE,
2733 	NETDEV_BONDING_FAILOVER,
2734 	NETDEV_PRE_UP,
2735 	NETDEV_PRE_TYPE_CHANGE,
2736 	NETDEV_POST_TYPE_CHANGE,
2737 	NETDEV_POST_INIT,
2738 	NETDEV_RELEASE,
2739 	NETDEV_NOTIFY_PEERS,
2740 	NETDEV_JOIN,
2741 	NETDEV_CHANGEUPPER,
2742 	NETDEV_RESEND_IGMP,
2743 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2744 	NETDEV_CHANGEINFODATA,
2745 	NETDEV_BONDING_INFO,
2746 	NETDEV_PRECHANGEUPPER,
2747 	NETDEV_CHANGELOWERSTATE,
2748 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2749 	NETDEV_UDP_TUNNEL_DROP_INFO,
2750 	NETDEV_CHANGE_TX_QUEUE_LEN,
2751 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2752 	NETDEV_CVLAN_FILTER_DROP_INFO,
2753 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2754 	NETDEV_SVLAN_FILTER_DROP_INFO,
2755 };
2756 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2757 
2758 int register_netdevice_notifier(struct notifier_block *nb);
2759 int unregister_netdevice_notifier(struct notifier_block *nb);
2760 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2761 int unregister_netdevice_notifier_net(struct net *net,
2762 				      struct notifier_block *nb);
2763 int register_netdevice_notifier_dev_net(struct net_device *dev,
2764 					struct notifier_block *nb,
2765 					struct netdev_net_notifier *nn);
2766 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2767 					  struct notifier_block *nb,
2768 					  struct netdev_net_notifier *nn);
2769 
2770 struct netdev_notifier_info {
2771 	struct net_device	*dev;
2772 	struct netlink_ext_ack	*extack;
2773 };
2774 
2775 struct netdev_notifier_info_ext {
2776 	struct netdev_notifier_info info; /* must be first */
2777 	union {
2778 		u32 mtu;
2779 	} ext;
2780 };
2781 
2782 struct netdev_notifier_change_info {
2783 	struct netdev_notifier_info info; /* must be first */
2784 	unsigned int flags_changed;
2785 };
2786 
2787 struct netdev_notifier_changeupper_info {
2788 	struct netdev_notifier_info info; /* must be first */
2789 	struct net_device *upper_dev; /* new upper dev */
2790 	bool master; /* is upper dev master */
2791 	bool linking; /* is the notification for link or unlink */
2792 	void *upper_info; /* upper dev info */
2793 };
2794 
2795 struct netdev_notifier_changelowerstate_info {
2796 	struct netdev_notifier_info info; /* must be first */
2797 	void *lower_state_info; /* is lower dev state */
2798 };
2799 
2800 struct netdev_notifier_pre_changeaddr_info {
2801 	struct netdev_notifier_info info; /* must be first */
2802 	const unsigned char *dev_addr;
2803 };
2804 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2805 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2806 					     struct net_device *dev)
2807 {
2808 	info->dev = dev;
2809 	info->extack = NULL;
2810 }
2811 
2812 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2813 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2814 {
2815 	return info->dev;
2816 }
2817 
2818 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2819 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2820 {
2821 	return info->extack;
2822 }
2823 
2824 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2825 
2826 
2827 extern rwlock_t				dev_base_lock;		/* Device list lock */
2828 
2829 #define for_each_netdev(net, d)		\
2830 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2831 #define for_each_netdev_reverse(net, d)	\
2832 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2833 #define for_each_netdev_rcu(net, d)		\
2834 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2835 #define for_each_netdev_safe(net, d, n)	\
2836 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2837 #define for_each_netdev_continue(net, d)		\
2838 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2839 #define for_each_netdev_continue_reverse(net, d)		\
2840 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2841 						     dev_list)
2842 #define for_each_netdev_continue_rcu(net, d)		\
2843 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2844 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2845 		for_each_netdev_rcu(&init_net, slave)	\
2846 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2847 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2848 
next_net_device(struct net_device * dev)2849 static inline struct net_device *next_net_device(struct net_device *dev)
2850 {
2851 	struct list_head *lh;
2852 	struct net *net;
2853 
2854 	net = dev_net(dev);
2855 	lh = dev->dev_list.next;
2856 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2857 }
2858 
next_net_device_rcu(struct net_device * dev)2859 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2860 {
2861 	struct list_head *lh;
2862 	struct net *net;
2863 
2864 	net = dev_net(dev);
2865 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2866 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2867 }
2868 
first_net_device(struct net * net)2869 static inline struct net_device *first_net_device(struct net *net)
2870 {
2871 	return list_empty(&net->dev_base_head) ? NULL :
2872 		net_device_entry(net->dev_base_head.next);
2873 }
2874 
first_net_device_rcu(struct net * net)2875 static inline struct net_device *first_net_device_rcu(struct net *net)
2876 {
2877 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2878 
2879 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2880 }
2881 
2882 int netdev_boot_setup_check(struct net_device *dev);
2883 unsigned long netdev_boot_base(const char *prefix, int unit);
2884 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2885 				       const char *hwaddr);
2886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2887 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2888 void dev_add_pack(struct packet_type *pt);
2889 void dev_remove_pack(struct packet_type *pt);
2890 void __dev_remove_pack(struct packet_type *pt);
2891 void dev_add_offload(struct packet_offload *po);
2892 void dev_remove_offload(struct packet_offload *po);
2893 
2894 int dev_get_iflink(const struct net_device *dev);
2895 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2896 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2897 				      unsigned short mask);
2898 struct net_device *dev_get_by_name(struct net *net, const char *name);
2899 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2900 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2901 int dev_alloc_name(struct net_device *dev, const char *name);
2902 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2903 void dev_close(struct net_device *dev);
2904 void dev_close_many(struct list_head *head, bool unlink);
2905 void dev_disable_lro(struct net_device *dev);
2906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2907 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2908 		     struct net_device *sb_dev);
2909 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2910 		       struct net_device *sb_dev);
2911 
2912 int dev_queue_xmit(struct sk_buff *skb);
2913 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2914 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2915 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2916 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2917 {
2918 	int ret;
2919 
2920 	ret = __dev_direct_xmit(skb, queue_id);
2921 	if (!dev_xmit_complete(ret))
2922 		kfree_skb(skb);
2923 	return ret;
2924 }
2925 
2926 int register_netdevice(struct net_device *dev);
2927 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2928 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2929 static inline void unregister_netdevice(struct net_device *dev)
2930 {
2931 	unregister_netdevice_queue(dev, NULL);
2932 }
2933 
2934 int netdev_refcnt_read(const struct net_device *dev);
2935 void free_netdev(struct net_device *dev);
2936 void netdev_freemem(struct net_device *dev);
2937 int init_dummy_netdev(struct net_device *dev);
2938 
2939 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2940 					 struct sk_buff *skb,
2941 					 bool all_slaves);
2942 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2943 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2944 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2945 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2946 int netdev_get_name(struct net *net, char *name, int ifindex);
2947 int dev_restart(struct net_device *dev);
2948 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2949 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2950 
skb_gro_offset(const struct sk_buff * skb)2951 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2952 {
2953 	return NAPI_GRO_CB(skb)->data_offset;
2954 }
2955 
skb_gro_len(const struct sk_buff * skb)2956 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2957 {
2958 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2959 }
2960 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2961 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2962 {
2963 	NAPI_GRO_CB(skb)->data_offset += len;
2964 }
2965 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2966 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2967 					unsigned int offset)
2968 {
2969 	return NAPI_GRO_CB(skb)->frag0 + offset;
2970 }
2971 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2972 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2973 {
2974 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2975 }
2976 
skb_gro_frag0_invalidate(struct sk_buff * skb)2977 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2978 {
2979 	NAPI_GRO_CB(skb)->frag0 = NULL;
2980 	NAPI_GRO_CB(skb)->frag0_len = 0;
2981 }
2982 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2983 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2984 					unsigned int offset)
2985 {
2986 	if (!pskb_may_pull(skb, hlen))
2987 		return NULL;
2988 
2989 	skb_gro_frag0_invalidate(skb);
2990 	return skb->data + offset;
2991 }
2992 
skb_gro_network_header(struct sk_buff * skb)2993 static inline void *skb_gro_network_header(struct sk_buff *skb)
2994 {
2995 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2996 	       skb_network_offset(skb);
2997 }
2998 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2999 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3000 					const void *start, unsigned int len)
3001 {
3002 	if (NAPI_GRO_CB(skb)->csum_valid)
3003 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3004 						  csum_partial(start, len, 0));
3005 }
3006 
3007 /* GRO checksum functions. These are logical equivalents of the normal
3008  * checksum functions (in skbuff.h) except that they operate on the GRO
3009  * offsets and fields in sk_buff.
3010  */
3011 
3012 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3013 
skb_at_gro_remcsum_start(struct sk_buff * skb)3014 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3015 {
3016 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3017 }
3018 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3019 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3020 						      bool zero_okay,
3021 						      __sum16 check)
3022 {
3023 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3024 		skb_checksum_start_offset(skb) <
3025 		 skb_gro_offset(skb)) &&
3026 		!skb_at_gro_remcsum_start(skb) &&
3027 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3028 		(!zero_okay || check));
3029 }
3030 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)3031 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3032 							   __wsum psum)
3033 {
3034 	if (NAPI_GRO_CB(skb)->csum_valid &&
3035 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3036 		return 0;
3037 
3038 	NAPI_GRO_CB(skb)->csum = psum;
3039 
3040 	return __skb_gro_checksum_complete(skb);
3041 }
3042 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3043 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3044 {
3045 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3046 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3047 		NAPI_GRO_CB(skb)->csum_cnt--;
3048 	} else {
3049 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3050 		 * verified a new top level checksum or an encapsulated one
3051 		 * during GRO. This saves work if we fallback to normal path.
3052 		 */
3053 		__skb_incr_checksum_unnecessary(skb);
3054 	}
3055 }
3056 
3057 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3058 				    compute_pseudo)			\
3059 ({									\
3060 	__sum16 __ret = 0;						\
3061 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3062 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3063 				compute_pseudo(skb, proto));		\
3064 	if (!__ret)							\
3065 		skb_gro_incr_csum_unnecessary(skb);			\
3066 	__ret;								\
3067 })
3068 
3069 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3070 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3071 
3072 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3073 					     compute_pseudo)		\
3074 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3075 
3076 #define skb_gro_checksum_simple_validate(skb)				\
3077 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3078 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3079 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3080 {
3081 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3082 		!NAPI_GRO_CB(skb)->csum_valid);
3083 }
3084 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3085 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3086 					      __wsum pseudo)
3087 {
3088 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3089 	NAPI_GRO_CB(skb)->csum_valid = 1;
3090 }
3091 
3092 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3093 do {									\
3094 	if (__skb_gro_checksum_convert_check(skb))			\
3095 		__skb_gro_checksum_convert(skb, 			\
3096 					   compute_pseudo(skb, proto));	\
3097 } while (0)
3098 
3099 struct gro_remcsum {
3100 	int offset;
3101 	__wsum delta;
3102 };
3103 
skb_gro_remcsum_init(struct gro_remcsum * grc)3104 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3105 {
3106 	grc->offset = 0;
3107 	grc->delta = 0;
3108 }
3109 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3110 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3111 					    unsigned int off, size_t hdrlen,
3112 					    int start, int offset,
3113 					    struct gro_remcsum *grc,
3114 					    bool nopartial)
3115 {
3116 	__wsum delta;
3117 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3118 
3119 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3120 
3121 	if (!nopartial) {
3122 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3123 		return ptr;
3124 	}
3125 
3126 	ptr = skb_gro_header_fast(skb, off);
3127 	if (skb_gro_header_hard(skb, off + plen)) {
3128 		ptr = skb_gro_header_slow(skb, off + plen, off);
3129 		if (!ptr)
3130 			return NULL;
3131 	}
3132 
3133 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3134 			       start, offset);
3135 
3136 	/* Adjust skb->csum since we changed the packet */
3137 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3138 
3139 	grc->offset = off + hdrlen + offset;
3140 	grc->delta = delta;
3141 
3142 	return ptr;
3143 }
3144 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3145 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3146 					   struct gro_remcsum *grc)
3147 {
3148 	void *ptr;
3149 	size_t plen = grc->offset + sizeof(u16);
3150 
3151 	if (!grc->delta)
3152 		return;
3153 
3154 	ptr = skb_gro_header_fast(skb, grc->offset);
3155 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3156 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3157 		if (!ptr)
3158 			return;
3159 	}
3160 
3161 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3162 }
3163 
3164 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3165 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3166 {
3167 	if (PTR_ERR(pp) != -EINPROGRESS)
3168 		NAPI_GRO_CB(skb)->flush |= flush;
3169 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3170 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3171 					       struct sk_buff *pp,
3172 					       int flush,
3173 					       struct gro_remcsum *grc)
3174 {
3175 	if (PTR_ERR(pp) != -EINPROGRESS) {
3176 		NAPI_GRO_CB(skb)->flush |= flush;
3177 		skb_gro_remcsum_cleanup(skb, grc);
3178 		skb->remcsum_offload = 0;
3179 	}
3180 }
3181 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3182 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3183 {
3184 	NAPI_GRO_CB(skb)->flush |= flush;
3185 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3186 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3187 					       struct sk_buff *pp,
3188 					       int flush,
3189 					       struct gro_remcsum *grc)
3190 {
3191 	NAPI_GRO_CB(skb)->flush |= flush;
3192 	skb_gro_remcsum_cleanup(skb, grc);
3193 	skb->remcsum_offload = 0;
3194 }
3195 #endif
3196 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3197 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3198 				  unsigned short type,
3199 				  const void *daddr, const void *saddr,
3200 				  unsigned int len)
3201 {
3202 	if (!dev->header_ops || !dev->header_ops->create)
3203 		return 0;
3204 
3205 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3206 }
3207 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3208 static inline int dev_parse_header(const struct sk_buff *skb,
3209 				   unsigned char *haddr)
3210 {
3211 	const struct net_device *dev = skb->dev;
3212 
3213 	if (!dev->header_ops || !dev->header_ops->parse)
3214 		return 0;
3215 	return dev->header_ops->parse(skb, haddr);
3216 }
3217 
dev_parse_header_protocol(const struct sk_buff * skb)3218 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3219 {
3220 	const struct net_device *dev = skb->dev;
3221 
3222 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3223 		return 0;
3224 	return dev->header_ops->parse_protocol(skb);
3225 }
3226 
3227 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3228 static inline bool dev_validate_header(const struct net_device *dev,
3229 				       char *ll_header, int len)
3230 {
3231 	if (likely(len >= dev->hard_header_len))
3232 		return true;
3233 	if (len < dev->min_header_len)
3234 		return false;
3235 
3236 	if (capable(CAP_SYS_RAWIO)) {
3237 		memset(ll_header + len, 0, dev->hard_header_len - len);
3238 		return true;
3239 	}
3240 
3241 	if (dev->header_ops && dev->header_ops->validate)
3242 		return dev->header_ops->validate(ll_header, len);
3243 
3244 	return false;
3245 }
3246 
dev_has_header(const struct net_device * dev)3247 static inline bool dev_has_header(const struct net_device *dev)
3248 {
3249 	return dev->header_ops && dev->header_ops->create;
3250 }
3251 
3252 #ifdef CONFIG_NET_FLOW_LIMIT
3253 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3254 struct sd_flow_limit {
3255 	u64			count;
3256 	unsigned int		num_buckets;
3257 	unsigned int		history_head;
3258 	u16			history[FLOW_LIMIT_HISTORY];
3259 	u8			buckets[];
3260 };
3261 
3262 extern int netdev_flow_limit_table_len;
3263 #endif /* CONFIG_NET_FLOW_LIMIT */
3264 
3265 /*
3266  * Incoming packets are placed on per-CPU queues
3267  */
3268 struct softnet_data {
3269 	struct list_head	poll_list;
3270 	struct sk_buff_head	process_queue;
3271 
3272 	/* stats */
3273 	unsigned int		processed;
3274 	unsigned int		time_squeeze;
3275 	unsigned int		received_rps;
3276 #ifdef CONFIG_RPS
3277 	struct softnet_data	*rps_ipi_list;
3278 #endif
3279 #ifdef CONFIG_NET_FLOW_LIMIT
3280 	struct sd_flow_limit __rcu *flow_limit;
3281 #endif
3282 	struct Qdisc		*output_queue;
3283 	struct Qdisc		**output_queue_tailp;
3284 	struct sk_buff		*completion_queue;
3285 #ifdef CONFIG_XFRM_OFFLOAD
3286 	struct sk_buff_head	xfrm_backlog;
3287 #endif
3288 	/* written and read only by owning cpu: */
3289 	struct {
3290 		u16 recursion;
3291 		u8  more;
3292 	} xmit;
3293 #ifdef CONFIG_RPS
3294 	/* input_queue_head should be written by cpu owning this struct,
3295 	 * and only read by other cpus. Worth using a cache line.
3296 	 */
3297 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3298 
3299 	/* Elements below can be accessed between CPUs for RPS/RFS */
3300 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3301 	struct softnet_data	*rps_ipi_next;
3302 	unsigned int		cpu;
3303 	unsigned int		input_queue_tail;
3304 #endif
3305 	unsigned int		dropped;
3306 	struct sk_buff_head	input_pkt_queue;
3307 	struct napi_struct	backlog;
3308 
3309 };
3310 
input_queue_head_incr(struct softnet_data * sd)3311 static inline void input_queue_head_incr(struct softnet_data *sd)
3312 {
3313 #ifdef CONFIG_RPS
3314 	sd->input_queue_head++;
3315 #endif
3316 }
3317 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3318 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3319 					      unsigned int *qtail)
3320 {
3321 #ifdef CONFIG_RPS
3322 	*qtail = ++sd->input_queue_tail;
3323 #endif
3324 }
3325 
3326 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3327 
dev_recursion_level(void)3328 static inline int dev_recursion_level(void)
3329 {
3330 	return this_cpu_read(softnet_data.xmit.recursion);
3331 }
3332 
3333 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3334 static inline bool dev_xmit_recursion(void)
3335 {
3336 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3337 			XMIT_RECURSION_LIMIT);
3338 }
3339 
dev_xmit_recursion_inc(void)3340 static inline void dev_xmit_recursion_inc(void)
3341 {
3342 	__this_cpu_inc(softnet_data.xmit.recursion);
3343 }
3344 
dev_xmit_recursion_dec(void)3345 static inline void dev_xmit_recursion_dec(void)
3346 {
3347 	__this_cpu_dec(softnet_data.xmit.recursion);
3348 }
3349 
3350 void __netif_schedule(struct Qdisc *q);
3351 void netif_schedule_queue(struct netdev_queue *txq);
3352 
netif_tx_schedule_all(struct net_device * dev)3353 static inline void netif_tx_schedule_all(struct net_device *dev)
3354 {
3355 	unsigned int i;
3356 
3357 	for (i = 0; i < dev->num_tx_queues; i++)
3358 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3359 }
3360 
netif_tx_start_queue(struct netdev_queue * dev_queue)3361 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3362 {
3363 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3364 }
3365 
3366 /**
3367  *	netif_start_queue - allow transmit
3368  *	@dev: network device
3369  *
3370  *	Allow upper layers to call the device hard_start_xmit routine.
3371  */
netif_start_queue(struct net_device * dev)3372 static inline void netif_start_queue(struct net_device *dev)
3373 {
3374 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3375 }
3376 
netif_tx_start_all_queues(struct net_device * dev)3377 static inline void netif_tx_start_all_queues(struct net_device *dev)
3378 {
3379 	unsigned int i;
3380 
3381 	for (i = 0; i < dev->num_tx_queues; i++) {
3382 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3383 		netif_tx_start_queue(txq);
3384 	}
3385 }
3386 
3387 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3388 
3389 /**
3390  *	netif_wake_queue - restart transmit
3391  *	@dev: network device
3392  *
3393  *	Allow upper layers to call the device hard_start_xmit routine.
3394  *	Used for flow control when transmit resources are available.
3395  */
netif_wake_queue(struct net_device * dev)3396 static inline void netif_wake_queue(struct net_device *dev)
3397 {
3398 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3399 }
3400 
netif_tx_wake_all_queues(struct net_device * dev)3401 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3402 {
3403 	unsigned int i;
3404 
3405 	for (i = 0; i < dev->num_tx_queues; i++) {
3406 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3407 		netif_tx_wake_queue(txq);
3408 	}
3409 }
3410 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3411 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3412 {
3413 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3414 }
3415 
3416 /**
3417  *	netif_stop_queue - stop transmitted packets
3418  *	@dev: network device
3419  *
3420  *	Stop upper layers calling the device hard_start_xmit routine.
3421  *	Used for flow control when transmit resources are unavailable.
3422  */
netif_stop_queue(struct net_device * dev)3423 static inline void netif_stop_queue(struct net_device *dev)
3424 {
3425 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3426 }
3427 
3428 void netif_tx_stop_all_queues(struct net_device *dev);
3429 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3430 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3431 {
3432 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3433 }
3434 
3435 /**
3436  *	netif_queue_stopped - test if transmit queue is flowblocked
3437  *	@dev: network device
3438  *
3439  *	Test if transmit queue on device is currently unable to send.
3440  */
netif_queue_stopped(const struct net_device * dev)3441 static inline bool netif_queue_stopped(const struct net_device *dev)
3442 {
3443 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3444 }
3445 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3446 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3447 {
3448 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3449 }
3450 
3451 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3452 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3453 {
3454 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3455 }
3456 
3457 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3458 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3459 {
3460 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3461 }
3462 
3463 /**
3464  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3465  *	@dev_queue: pointer to transmit queue
3466  *
3467  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3468  * to give appropriate hint to the CPU.
3469  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3470 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3471 {
3472 #ifdef CONFIG_BQL
3473 	prefetchw(&dev_queue->dql.num_queued);
3474 #endif
3475 }
3476 
3477 /**
3478  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3479  *	@dev_queue: pointer to transmit queue
3480  *
3481  * BQL enabled drivers might use this helper in their TX completion path,
3482  * to give appropriate hint to the CPU.
3483  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3484 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3485 {
3486 #ifdef CONFIG_BQL
3487 	prefetchw(&dev_queue->dql.limit);
3488 #endif
3489 }
3490 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3491 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3492 					unsigned int bytes)
3493 {
3494 #ifdef CONFIG_BQL
3495 	dql_queued(&dev_queue->dql, bytes);
3496 
3497 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3498 		return;
3499 
3500 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3501 
3502 	/*
3503 	 * The XOFF flag must be set before checking the dql_avail below,
3504 	 * because in netdev_tx_completed_queue we update the dql_completed
3505 	 * before checking the XOFF flag.
3506 	 */
3507 	smp_mb();
3508 
3509 	/* check again in case another CPU has just made room avail */
3510 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3511 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3512 #endif
3513 }
3514 
3515 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3516  * that they should not test BQL status themselves.
3517  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3518  * skb of a batch.
3519  * Returns true if the doorbell must be used to kick the NIC.
3520  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3521 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3522 					  unsigned int bytes,
3523 					  bool xmit_more)
3524 {
3525 	if (xmit_more) {
3526 #ifdef CONFIG_BQL
3527 		dql_queued(&dev_queue->dql, bytes);
3528 #endif
3529 		return netif_tx_queue_stopped(dev_queue);
3530 	}
3531 	netdev_tx_sent_queue(dev_queue, bytes);
3532 	return true;
3533 }
3534 
3535 /**
3536  * 	netdev_sent_queue - report the number of bytes queued to hardware
3537  * 	@dev: network device
3538  * 	@bytes: number of bytes queued to the hardware device queue
3539  *
3540  * 	Report the number of bytes queued for sending/completion to the network
3541  * 	device hardware queue. @bytes should be a good approximation and should
3542  * 	exactly match netdev_completed_queue() @bytes
3543  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3544 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3545 {
3546 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3547 }
3548 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3549 static inline bool __netdev_sent_queue(struct net_device *dev,
3550 				       unsigned int bytes,
3551 				       bool xmit_more)
3552 {
3553 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3554 				      xmit_more);
3555 }
3556 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3557 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3558 					     unsigned int pkts, unsigned int bytes)
3559 {
3560 #ifdef CONFIG_BQL
3561 	if (unlikely(!bytes))
3562 		return;
3563 
3564 	dql_completed(&dev_queue->dql, bytes);
3565 
3566 	/*
3567 	 * Without the memory barrier there is a small possiblity that
3568 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3569 	 * be stopped forever
3570 	 */
3571 	smp_mb();
3572 
3573 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3574 		return;
3575 
3576 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3577 		netif_schedule_queue(dev_queue);
3578 #endif
3579 }
3580 
3581 /**
3582  * 	netdev_completed_queue - report bytes and packets completed by device
3583  * 	@dev: network device
3584  * 	@pkts: actual number of packets sent over the medium
3585  * 	@bytes: actual number of bytes sent over the medium
3586  *
3587  * 	Report the number of bytes and packets transmitted by the network device
3588  * 	hardware queue over the physical medium, @bytes must exactly match the
3589  * 	@bytes amount passed to netdev_sent_queue()
3590  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3591 static inline void netdev_completed_queue(struct net_device *dev,
3592 					  unsigned int pkts, unsigned int bytes)
3593 {
3594 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3595 }
3596 
netdev_tx_reset_queue(struct netdev_queue * q)3597 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3598 {
3599 #ifdef CONFIG_BQL
3600 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3601 	dql_reset(&q->dql);
3602 #endif
3603 }
3604 
3605 /**
3606  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3607  * 	@dev_queue: network device
3608  *
3609  * 	Reset the bytes and packet count of a network device and clear the
3610  * 	software flow control OFF bit for this network device
3611  */
netdev_reset_queue(struct net_device * dev_queue)3612 static inline void netdev_reset_queue(struct net_device *dev_queue)
3613 {
3614 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3615 }
3616 
3617 /**
3618  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3619  * 	@dev: network device
3620  * 	@queue_index: given tx queue index
3621  *
3622  * 	Returns 0 if given tx queue index >= number of device tx queues,
3623  * 	otherwise returns the originally passed tx queue index.
3624  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3625 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3626 {
3627 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3628 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3629 				     dev->name, queue_index,
3630 				     dev->real_num_tx_queues);
3631 		return 0;
3632 	}
3633 
3634 	return queue_index;
3635 }
3636 
3637 /**
3638  *	netif_running - test if up
3639  *	@dev: network device
3640  *
3641  *	Test if the device has been brought up.
3642  */
netif_running(const struct net_device * dev)3643 static inline bool netif_running(const struct net_device *dev)
3644 {
3645 	return test_bit(__LINK_STATE_START, &dev->state);
3646 }
3647 
3648 /*
3649  * Routines to manage the subqueues on a device.  We only need start,
3650  * stop, and a check if it's stopped.  All other device management is
3651  * done at the overall netdevice level.
3652  * Also test the device if we're multiqueue.
3653  */
3654 
3655 /**
3656  *	netif_start_subqueue - allow sending packets on subqueue
3657  *	@dev: network device
3658  *	@queue_index: sub queue index
3659  *
3660  * Start individual transmit queue of a device with multiple transmit queues.
3661  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3662 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3663 {
3664 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3665 
3666 	netif_tx_start_queue(txq);
3667 }
3668 
3669 /**
3670  *	netif_stop_subqueue - stop sending packets on subqueue
3671  *	@dev: network device
3672  *	@queue_index: sub queue index
3673  *
3674  * Stop individual transmit queue of a device with multiple transmit queues.
3675  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3676 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3677 {
3678 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3679 	netif_tx_stop_queue(txq);
3680 }
3681 
3682 /**
3683  *	netif_subqueue_stopped - test status of subqueue
3684  *	@dev: network device
3685  *	@queue_index: sub queue index
3686  *
3687  * Check individual transmit queue of a device with multiple transmit queues.
3688  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3689 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3690 					    u16 queue_index)
3691 {
3692 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3693 
3694 	return netif_tx_queue_stopped(txq);
3695 }
3696 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3697 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3698 					  struct sk_buff *skb)
3699 {
3700 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3701 }
3702 
3703 /**
3704  *	netif_wake_subqueue - allow sending packets on subqueue
3705  *	@dev: network device
3706  *	@queue_index: sub queue index
3707  *
3708  * Resume individual transmit queue of a device with multiple transmit queues.
3709  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3710 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3711 {
3712 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3713 
3714 	netif_tx_wake_queue(txq);
3715 }
3716 
3717 #ifdef CONFIG_XPS
3718 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3719 			u16 index);
3720 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3721 			  u16 index, bool is_rxqs_map);
3722 
3723 /**
3724  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3725  *	@j: CPU/Rx queue index
3726  *	@mask: bitmask of all cpus/rx queues
3727  *	@nr_bits: number of bits in the bitmask
3728  *
3729  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3730  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3731 static inline bool netif_attr_test_mask(unsigned long j,
3732 					const unsigned long *mask,
3733 					unsigned int nr_bits)
3734 {
3735 	cpu_max_bits_warn(j, nr_bits);
3736 	return test_bit(j, mask);
3737 }
3738 
3739 /**
3740  *	netif_attr_test_online - Test for online CPU/Rx queue
3741  *	@j: CPU/Rx queue index
3742  *	@online_mask: bitmask for CPUs/Rx queues that are online
3743  *	@nr_bits: number of bits in the bitmask
3744  *
3745  * Returns true if a CPU/Rx queue is online.
3746  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3747 static inline bool netif_attr_test_online(unsigned long j,
3748 					  const unsigned long *online_mask,
3749 					  unsigned int nr_bits)
3750 {
3751 	cpu_max_bits_warn(j, nr_bits);
3752 
3753 	if (online_mask)
3754 		return test_bit(j, online_mask);
3755 
3756 	return (j < nr_bits);
3757 }
3758 
3759 /**
3760  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3761  *	@n: CPU/Rx queue index
3762  *	@srcp: the cpumask/Rx queue mask pointer
3763  *	@nr_bits: number of bits in the bitmask
3764  *
3765  * Returns >= nr_bits if no further CPUs/Rx queues set.
3766  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3767 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3768 					       unsigned int nr_bits)
3769 {
3770 	/* -1 is a legal arg here. */
3771 	if (n != -1)
3772 		cpu_max_bits_warn(n, nr_bits);
3773 
3774 	if (srcp)
3775 		return find_next_bit(srcp, nr_bits, n + 1);
3776 
3777 	return n + 1;
3778 }
3779 
3780 /**
3781  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3782  *	@n: CPU/Rx queue index
3783  *	@src1p: the first CPUs/Rx queues mask pointer
3784  *	@src2p: the second CPUs/Rx queues mask pointer
3785  *	@nr_bits: number of bits in the bitmask
3786  *
3787  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3788  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3789 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3790 					  const unsigned long *src2p,
3791 					  unsigned int nr_bits)
3792 {
3793 	/* -1 is a legal arg here. */
3794 	if (n != -1)
3795 		cpu_max_bits_warn(n, nr_bits);
3796 
3797 	if (src1p && src2p)
3798 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3799 	else if (src1p)
3800 		return find_next_bit(src1p, nr_bits, n + 1);
3801 	else if (src2p)
3802 		return find_next_bit(src2p, nr_bits, n + 1);
3803 
3804 	return n + 1;
3805 }
3806 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3807 static inline int netif_set_xps_queue(struct net_device *dev,
3808 				      const struct cpumask *mask,
3809 				      u16 index)
3810 {
3811 	return 0;
3812 }
3813 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3814 static inline int __netif_set_xps_queue(struct net_device *dev,
3815 					const unsigned long *mask,
3816 					u16 index, bool is_rxqs_map)
3817 {
3818 	return 0;
3819 }
3820 #endif
3821 
3822 /**
3823  *	netif_is_multiqueue - test if device has multiple transmit queues
3824  *	@dev: network device
3825  *
3826  * Check if device has multiple transmit queues
3827  */
netif_is_multiqueue(const struct net_device * dev)3828 static inline bool netif_is_multiqueue(const struct net_device *dev)
3829 {
3830 	return dev->num_tx_queues > 1;
3831 }
3832 
3833 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3834 
3835 #ifdef CONFIG_SYSFS
3836 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3837 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3838 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3839 						unsigned int rxqs)
3840 {
3841 	dev->real_num_rx_queues = rxqs;
3842 	return 0;
3843 }
3844 #endif
3845 
3846 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3847 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3848 {
3849 	return dev->_rx + rxq;
3850 }
3851 
3852 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3853 static inline unsigned int get_netdev_rx_queue_index(
3854 		struct netdev_rx_queue *queue)
3855 {
3856 	struct net_device *dev = queue->dev;
3857 	int index = queue - dev->_rx;
3858 
3859 	BUG_ON(index >= dev->num_rx_queues);
3860 	return index;
3861 }
3862 #endif
3863 
3864 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3865 int netif_get_num_default_rss_queues(void);
3866 
3867 enum skb_free_reason {
3868 	SKB_REASON_CONSUMED,
3869 	SKB_REASON_DROPPED,
3870 };
3871 
3872 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3873 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3874 
3875 /*
3876  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3877  * interrupt context or with hardware interrupts being disabled.
3878  * (in_irq() || irqs_disabled())
3879  *
3880  * We provide four helpers that can be used in following contexts :
3881  *
3882  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3883  *  replacing kfree_skb(skb)
3884  *
3885  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3886  *  Typically used in place of consume_skb(skb) in TX completion path
3887  *
3888  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3889  *  replacing kfree_skb(skb)
3890  *
3891  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3892  *  and consumed a packet. Used in place of consume_skb(skb)
3893  */
dev_kfree_skb_irq(struct sk_buff * skb)3894 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3895 {
3896 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3897 }
3898 
dev_consume_skb_irq(struct sk_buff * skb)3899 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3900 {
3901 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3902 }
3903 
dev_kfree_skb_any(struct sk_buff * skb)3904 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3905 {
3906 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3907 }
3908 
dev_consume_skb_any(struct sk_buff * skb)3909 static inline void dev_consume_skb_any(struct sk_buff *skb)
3910 {
3911 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3912 }
3913 
3914 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3915 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3916 int netif_rx(struct sk_buff *skb);
3917 int netif_rx_ni(struct sk_buff *skb);
3918 int netif_rx_any_context(struct sk_buff *skb);
3919 int netif_receive_skb(struct sk_buff *skb);
3920 int netif_receive_skb_core(struct sk_buff *skb);
3921 void netif_receive_skb_list(struct list_head *head);
3922 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3923 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3924 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3925 gro_result_t napi_gro_frags(struct napi_struct *napi);
3926 struct packet_offload *gro_find_receive_by_type(__be16 type);
3927 struct packet_offload *gro_find_complete_by_type(__be16 type);
3928 
napi_free_frags(struct napi_struct * napi)3929 static inline void napi_free_frags(struct napi_struct *napi)
3930 {
3931 	kfree_skb(napi->skb);
3932 	napi->skb = NULL;
3933 }
3934 
3935 bool netdev_is_rx_handler_busy(struct net_device *dev);
3936 int netdev_rx_handler_register(struct net_device *dev,
3937 			       rx_handler_func_t *rx_handler,
3938 			       void *rx_handler_data);
3939 void netdev_rx_handler_unregister(struct net_device *dev);
3940 
3941 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3942 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3943 {
3944 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3945 }
3946 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3947 		bool *need_copyout);
3948 int dev_ifconf(struct net *net, struct ifconf *, int);
3949 int dev_ethtool(struct net *net, struct ifreq *);
3950 unsigned int dev_get_flags(const struct net_device *);
3951 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3952 		       struct netlink_ext_ack *extack);
3953 int dev_change_flags(struct net_device *dev, unsigned int flags,
3954 		     struct netlink_ext_ack *extack);
3955 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3956 			unsigned int gchanges);
3957 int dev_change_name(struct net_device *, const char *);
3958 int dev_set_alias(struct net_device *, const char *, size_t);
3959 int dev_get_alias(const struct net_device *, char *, size_t);
3960 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3961 int __dev_set_mtu(struct net_device *, int);
3962 int dev_validate_mtu(struct net_device *dev, int mtu,
3963 		     struct netlink_ext_ack *extack);
3964 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3965 		    struct netlink_ext_ack *extack);
3966 int dev_set_mtu(struct net_device *, int);
3967 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3968 void dev_set_group(struct net_device *, int);
3969 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3970 			      struct netlink_ext_ack *extack);
3971 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3972 			struct netlink_ext_ack *extack);
3973 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3974 			     struct netlink_ext_ack *extack);
3975 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3976 int dev_change_carrier(struct net_device *, bool new_carrier);
3977 int dev_get_phys_port_id(struct net_device *dev,
3978 			 struct netdev_phys_item_id *ppid);
3979 int dev_get_phys_port_name(struct net_device *dev,
3980 			   char *name, size_t len);
3981 int dev_get_port_parent_id(struct net_device *dev,
3982 			   struct netdev_phys_item_id *ppid, bool recurse);
3983 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3984 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3985 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3986 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3987 				  u32 value);
3988 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3989 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3990 				    struct netdev_queue *txq, int *ret);
3991 
3992 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3993 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3994 		      int fd, int expected_fd, u32 flags);
3995 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3996 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3997 
3998 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3999 
4000 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4001 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4002 bool is_skb_forwardable(const struct net_device *dev,
4003 			const struct sk_buff *skb);
4004 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)4005 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4006 					       struct sk_buff *skb)
4007 {
4008 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4009 	    unlikely(!is_skb_forwardable(dev, skb))) {
4010 		atomic_long_inc(&dev->rx_dropped);
4011 		kfree_skb(skb);
4012 		return NET_RX_DROP;
4013 	}
4014 
4015 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4016 	skb->priority = 0;
4017 	return 0;
4018 }
4019 
4020 bool dev_nit_active(struct net_device *dev);
4021 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4022 
4023 extern int		netdev_budget;
4024 extern unsigned int	netdev_budget_usecs;
4025 
4026 /* Called by rtnetlink.c:rtnl_unlock() */
4027 void netdev_run_todo(void);
4028 
4029 /**
4030  *	dev_put - release reference to device
4031  *	@dev: network device
4032  *
4033  * Release reference to device to allow it to be freed.
4034  */
dev_put(struct net_device * dev)4035 static inline void dev_put(struct net_device *dev)
4036 {
4037 	if (dev)
4038 		this_cpu_dec(*dev->pcpu_refcnt);
4039 }
4040 
4041 /**
4042  *	dev_hold - get reference to device
4043  *	@dev: network device
4044  *
4045  * Hold reference to device to keep it from being freed.
4046  */
dev_hold(struct net_device * dev)4047 static inline void dev_hold(struct net_device *dev)
4048 {
4049 	if (dev)
4050 		this_cpu_inc(*dev->pcpu_refcnt);
4051 }
4052 
4053 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4054  * and _off may be called from IRQ context, but it is caller
4055  * who is responsible for serialization of these calls.
4056  *
4057  * The name carrier is inappropriate, these functions should really be
4058  * called netif_lowerlayer_*() because they represent the state of any
4059  * kind of lower layer not just hardware media.
4060  */
4061 
4062 void linkwatch_init_dev(struct net_device *dev);
4063 void linkwatch_fire_event(struct net_device *dev);
4064 void linkwatch_forget_dev(struct net_device *dev);
4065 
4066 /**
4067  *	netif_carrier_ok - test if carrier present
4068  *	@dev: network device
4069  *
4070  * Check if carrier is present on device
4071  */
netif_carrier_ok(const struct net_device * dev)4072 static inline bool netif_carrier_ok(const struct net_device *dev)
4073 {
4074 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4075 }
4076 
4077 unsigned long dev_trans_start(struct net_device *dev);
4078 
4079 void __netdev_watchdog_up(struct net_device *dev);
4080 
4081 void netif_carrier_on(struct net_device *dev);
4082 
4083 void netif_carrier_off(struct net_device *dev);
4084 
4085 /**
4086  *	netif_dormant_on - mark device as dormant.
4087  *	@dev: network device
4088  *
4089  * Mark device as dormant (as per RFC2863).
4090  *
4091  * The dormant state indicates that the relevant interface is not
4092  * actually in a condition to pass packets (i.e., it is not 'up') but is
4093  * in a "pending" state, waiting for some external event.  For "on-
4094  * demand" interfaces, this new state identifies the situation where the
4095  * interface is waiting for events to place it in the up state.
4096  */
netif_dormant_on(struct net_device * dev)4097 static inline void netif_dormant_on(struct net_device *dev)
4098 {
4099 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4100 		linkwatch_fire_event(dev);
4101 }
4102 
4103 /**
4104  *	netif_dormant_off - set device as not dormant.
4105  *	@dev: network device
4106  *
4107  * Device is not in dormant state.
4108  */
netif_dormant_off(struct net_device * dev)4109 static inline void netif_dormant_off(struct net_device *dev)
4110 {
4111 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4112 		linkwatch_fire_event(dev);
4113 }
4114 
4115 /**
4116  *	netif_dormant - test if device is dormant
4117  *	@dev: network device
4118  *
4119  * Check if device is dormant.
4120  */
netif_dormant(const struct net_device * dev)4121 static inline bool netif_dormant(const struct net_device *dev)
4122 {
4123 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4124 }
4125 
4126 
4127 /**
4128  *	netif_testing_on - mark device as under test.
4129  *	@dev: network device
4130  *
4131  * Mark device as under test (as per RFC2863).
4132  *
4133  * The testing state indicates that some test(s) must be performed on
4134  * the interface. After completion, of the test, the interface state
4135  * will change to up, dormant, or down, as appropriate.
4136  */
netif_testing_on(struct net_device * dev)4137 static inline void netif_testing_on(struct net_device *dev)
4138 {
4139 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4140 		linkwatch_fire_event(dev);
4141 }
4142 
4143 /**
4144  *	netif_testing_off - set device as not under test.
4145  *	@dev: network device
4146  *
4147  * Device is not in testing state.
4148  */
netif_testing_off(struct net_device * dev)4149 static inline void netif_testing_off(struct net_device *dev)
4150 {
4151 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4152 		linkwatch_fire_event(dev);
4153 }
4154 
4155 /**
4156  *	netif_testing - test if device is under test
4157  *	@dev: network device
4158  *
4159  * Check if device is under test
4160  */
netif_testing(const struct net_device * dev)4161 static inline bool netif_testing(const struct net_device *dev)
4162 {
4163 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4164 }
4165 
4166 
4167 /**
4168  *	netif_oper_up - test if device is operational
4169  *	@dev: network device
4170  *
4171  * Check if carrier is operational
4172  */
netif_oper_up(const struct net_device * dev)4173 static inline bool netif_oper_up(const struct net_device *dev)
4174 {
4175 	return (dev->operstate == IF_OPER_UP ||
4176 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4177 }
4178 
4179 /**
4180  *	netif_device_present - is device available or removed
4181  *	@dev: network device
4182  *
4183  * Check if device has not been removed from system.
4184  */
netif_device_present(struct net_device * dev)4185 static inline bool netif_device_present(struct net_device *dev)
4186 {
4187 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4188 }
4189 
4190 void netif_device_detach(struct net_device *dev);
4191 
4192 void netif_device_attach(struct net_device *dev);
4193 
4194 /*
4195  * Network interface message level settings
4196  */
4197 
4198 enum {
4199 	NETIF_MSG_DRV_BIT,
4200 	NETIF_MSG_PROBE_BIT,
4201 	NETIF_MSG_LINK_BIT,
4202 	NETIF_MSG_TIMER_BIT,
4203 	NETIF_MSG_IFDOWN_BIT,
4204 	NETIF_MSG_IFUP_BIT,
4205 	NETIF_MSG_RX_ERR_BIT,
4206 	NETIF_MSG_TX_ERR_BIT,
4207 	NETIF_MSG_TX_QUEUED_BIT,
4208 	NETIF_MSG_INTR_BIT,
4209 	NETIF_MSG_TX_DONE_BIT,
4210 	NETIF_MSG_RX_STATUS_BIT,
4211 	NETIF_MSG_PKTDATA_BIT,
4212 	NETIF_MSG_HW_BIT,
4213 	NETIF_MSG_WOL_BIT,
4214 
4215 	/* When you add a new bit above, update netif_msg_class_names array
4216 	 * in net/ethtool/common.c
4217 	 */
4218 	NETIF_MSG_CLASS_COUNT,
4219 };
4220 /* Both ethtool_ops interface and internal driver implementation use u32 */
4221 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4222 
4223 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4224 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4225 
4226 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4227 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4228 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4229 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4230 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4231 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4232 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4233 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4234 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4235 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4236 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4237 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4238 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4239 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4240 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4241 
4242 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4243 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4244 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4245 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4246 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4247 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4248 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4249 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4250 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4251 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4252 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4253 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4254 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4255 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4256 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4257 
netif_msg_init(int debug_value,int default_msg_enable_bits)4258 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4259 {
4260 	/* use default */
4261 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4262 		return default_msg_enable_bits;
4263 	if (debug_value == 0)	/* no output */
4264 		return 0;
4265 	/* set low N bits */
4266 	return (1U << debug_value) - 1;
4267 }
4268 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4269 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4270 {
4271 	spin_lock(&txq->_xmit_lock);
4272 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4273 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4274 }
4275 
__netif_tx_acquire(struct netdev_queue * txq)4276 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4277 {
4278 	__acquire(&txq->_xmit_lock);
4279 	return true;
4280 }
4281 
__netif_tx_release(struct netdev_queue * txq)4282 static inline void __netif_tx_release(struct netdev_queue *txq)
4283 {
4284 	__release(&txq->_xmit_lock);
4285 }
4286 
__netif_tx_lock_bh(struct netdev_queue * txq)4287 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4288 {
4289 	spin_lock_bh(&txq->_xmit_lock);
4290 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4291 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4292 }
4293 
__netif_tx_trylock(struct netdev_queue * txq)4294 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4295 {
4296 	bool ok = spin_trylock(&txq->_xmit_lock);
4297 
4298 	if (likely(ok)) {
4299 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4300 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4301 	}
4302 	return ok;
4303 }
4304 
__netif_tx_unlock(struct netdev_queue * txq)4305 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4306 {
4307 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4308 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4309 	spin_unlock(&txq->_xmit_lock);
4310 }
4311 
__netif_tx_unlock_bh(struct netdev_queue * txq)4312 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4313 {
4314 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4315 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4316 	spin_unlock_bh(&txq->_xmit_lock);
4317 }
4318 
txq_trans_update(struct netdev_queue * txq)4319 static inline void txq_trans_update(struct netdev_queue *txq)
4320 {
4321 	if (txq->xmit_lock_owner != -1)
4322 		txq->trans_start = jiffies;
4323 }
4324 
4325 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4326 static inline void netif_trans_update(struct net_device *dev)
4327 {
4328 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4329 
4330 	if (txq->trans_start != jiffies)
4331 		txq->trans_start = jiffies;
4332 }
4333 
4334 /**
4335  *	netif_tx_lock - grab network device transmit lock
4336  *	@dev: network device
4337  *
4338  * Get network device transmit lock
4339  */
netif_tx_lock(struct net_device * dev)4340 static inline void netif_tx_lock(struct net_device *dev)
4341 {
4342 	unsigned int i;
4343 	int cpu;
4344 
4345 	spin_lock(&dev->tx_global_lock);
4346 	cpu = smp_processor_id();
4347 	for (i = 0; i < dev->num_tx_queues; i++) {
4348 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4349 
4350 		/* We are the only thread of execution doing a
4351 		 * freeze, but we have to grab the _xmit_lock in
4352 		 * order to synchronize with threads which are in
4353 		 * the ->hard_start_xmit() handler and already
4354 		 * checked the frozen bit.
4355 		 */
4356 		__netif_tx_lock(txq, cpu);
4357 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4358 		__netif_tx_unlock(txq);
4359 	}
4360 }
4361 
netif_tx_lock_bh(struct net_device * dev)4362 static inline void netif_tx_lock_bh(struct net_device *dev)
4363 {
4364 	local_bh_disable();
4365 	netif_tx_lock(dev);
4366 }
4367 
netif_tx_unlock(struct net_device * dev)4368 static inline void netif_tx_unlock(struct net_device *dev)
4369 {
4370 	unsigned int i;
4371 
4372 	for (i = 0; i < dev->num_tx_queues; i++) {
4373 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4374 
4375 		/* No need to grab the _xmit_lock here.  If the
4376 		 * queue is not stopped for another reason, we
4377 		 * force a schedule.
4378 		 */
4379 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4380 		netif_schedule_queue(txq);
4381 	}
4382 	spin_unlock(&dev->tx_global_lock);
4383 }
4384 
netif_tx_unlock_bh(struct net_device * dev)4385 static inline void netif_tx_unlock_bh(struct net_device *dev)
4386 {
4387 	netif_tx_unlock(dev);
4388 	local_bh_enable();
4389 }
4390 
4391 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4392 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4393 		__netif_tx_lock(txq, cpu);		\
4394 	} else {					\
4395 		__netif_tx_acquire(txq);		\
4396 	}						\
4397 }
4398 
4399 #define HARD_TX_TRYLOCK(dev, txq)			\
4400 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4401 		__netif_tx_trylock(txq) :		\
4402 		__netif_tx_acquire(txq))
4403 
4404 #define HARD_TX_UNLOCK(dev, txq) {			\
4405 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4406 		__netif_tx_unlock(txq);			\
4407 	} else {					\
4408 		__netif_tx_release(txq);		\
4409 	}						\
4410 }
4411 
netif_tx_disable(struct net_device * dev)4412 static inline void netif_tx_disable(struct net_device *dev)
4413 {
4414 	unsigned int i;
4415 	int cpu;
4416 
4417 	local_bh_disable();
4418 	cpu = smp_processor_id();
4419 	spin_lock(&dev->tx_global_lock);
4420 	for (i = 0; i < dev->num_tx_queues; i++) {
4421 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4422 
4423 		__netif_tx_lock(txq, cpu);
4424 		netif_tx_stop_queue(txq);
4425 		__netif_tx_unlock(txq);
4426 	}
4427 	spin_unlock(&dev->tx_global_lock);
4428 	local_bh_enable();
4429 }
4430 
netif_addr_lock(struct net_device * dev)4431 static inline void netif_addr_lock(struct net_device *dev)
4432 {
4433 	unsigned char nest_level = 0;
4434 
4435 #ifdef CONFIG_LOCKDEP
4436 	nest_level = dev->nested_level;
4437 #endif
4438 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4439 }
4440 
netif_addr_lock_bh(struct net_device * dev)4441 static inline void netif_addr_lock_bh(struct net_device *dev)
4442 {
4443 	unsigned char nest_level = 0;
4444 
4445 #ifdef CONFIG_LOCKDEP
4446 	nest_level = dev->nested_level;
4447 #endif
4448 	local_bh_disable();
4449 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4450 }
4451 
netif_addr_unlock(struct net_device * dev)4452 static inline void netif_addr_unlock(struct net_device *dev)
4453 {
4454 	spin_unlock(&dev->addr_list_lock);
4455 }
4456 
netif_addr_unlock_bh(struct net_device * dev)4457 static inline void netif_addr_unlock_bh(struct net_device *dev)
4458 {
4459 	spin_unlock_bh(&dev->addr_list_lock);
4460 }
4461 
4462 /*
4463  * dev_addrs walker. Should be used only for read access. Call with
4464  * rcu_read_lock held.
4465  */
4466 #define for_each_dev_addr(dev, ha) \
4467 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4468 
4469 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4470 
4471 void ether_setup(struct net_device *dev);
4472 
4473 /* Support for loadable net-drivers */
4474 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4475 				    unsigned char name_assign_type,
4476 				    void (*setup)(struct net_device *),
4477 				    unsigned int txqs, unsigned int rxqs);
4478 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4479 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4480 
4481 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4482 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4483 			 count)
4484 
4485 int register_netdev(struct net_device *dev);
4486 void unregister_netdev(struct net_device *dev);
4487 
4488 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4489 
4490 /* General hardware address lists handling functions */
4491 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4492 		   struct netdev_hw_addr_list *from_list, int addr_len);
4493 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4494 		      struct netdev_hw_addr_list *from_list, int addr_len);
4495 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4496 		       struct net_device *dev,
4497 		       int (*sync)(struct net_device *, const unsigned char *),
4498 		       int (*unsync)(struct net_device *,
4499 				     const unsigned char *));
4500 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4501 			   struct net_device *dev,
4502 			   int (*sync)(struct net_device *,
4503 				       const unsigned char *, int),
4504 			   int (*unsync)(struct net_device *,
4505 					 const unsigned char *, int));
4506 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4507 			      struct net_device *dev,
4508 			      int (*unsync)(struct net_device *,
4509 					    const unsigned char *, int));
4510 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4511 			  struct net_device *dev,
4512 			  int (*unsync)(struct net_device *,
4513 					const unsigned char *));
4514 void __hw_addr_init(struct netdev_hw_addr_list *list);
4515 
4516 /* Functions used for device addresses handling */
4517 static inline void
__dev_addr_set(struct net_device * dev,const u8 * addr,size_t len)4518 __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len)
4519 {
4520 	memcpy(dev->dev_addr, addr, len);
4521 }
4522 
dev_addr_set(struct net_device * dev,const u8 * addr)4523 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4524 {
4525 	__dev_addr_set(dev, addr, dev->addr_len);
4526 }
4527 
4528 static inline void
dev_addr_mod(struct net_device * dev,unsigned int offset,const u8 * addr,size_t len)4529 dev_addr_mod(struct net_device *dev, unsigned int offset,
4530 	     const u8 *addr, size_t len)
4531 {
4532 	memcpy(&dev->dev_addr[offset], addr, len);
4533 }
4534 
4535 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4536 		 unsigned char addr_type);
4537 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4538 		 unsigned char addr_type);
4539 void dev_addr_flush(struct net_device *dev);
4540 int dev_addr_init(struct net_device *dev);
4541 
4542 /* Functions used for unicast addresses handling */
4543 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4544 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4545 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4546 int dev_uc_sync(struct net_device *to, struct net_device *from);
4547 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4548 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4549 void dev_uc_flush(struct net_device *dev);
4550 void dev_uc_init(struct net_device *dev);
4551 
4552 /**
4553  *  __dev_uc_sync - Synchonize device's unicast list
4554  *  @dev:  device to sync
4555  *  @sync: function to call if address should be added
4556  *  @unsync: function to call if address should be removed
4557  *
4558  *  Add newly added addresses to the interface, and release
4559  *  addresses that have been deleted.
4560  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4561 static inline int __dev_uc_sync(struct net_device *dev,
4562 				int (*sync)(struct net_device *,
4563 					    const unsigned char *),
4564 				int (*unsync)(struct net_device *,
4565 					      const unsigned char *))
4566 {
4567 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4568 }
4569 
4570 /**
4571  *  __dev_uc_unsync - Remove synchronized addresses from device
4572  *  @dev:  device to sync
4573  *  @unsync: function to call if address should be removed
4574  *
4575  *  Remove all addresses that were added to the device by dev_uc_sync().
4576  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4577 static inline void __dev_uc_unsync(struct net_device *dev,
4578 				   int (*unsync)(struct net_device *,
4579 						 const unsigned char *))
4580 {
4581 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4582 }
4583 
4584 /* Functions used for multicast addresses handling */
4585 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4586 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4587 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4588 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4589 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4590 int dev_mc_sync(struct net_device *to, struct net_device *from);
4591 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4592 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4593 void dev_mc_flush(struct net_device *dev);
4594 void dev_mc_init(struct net_device *dev);
4595 
4596 /**
4597  *  __dev_mc_sync - Synchonize device's multicast list
4598  *  @dev:  device to sync
4599  *  @sync: function to call if address should be added
4600  *  @unsync: function to call if address should be removed
4601  *
4602  *  Add newly added addresses to the interface, and release
4603  *  addresses that have been deleted.
4604  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4605 static inline int __dev_mc_sync(struct net_device *dev,
4606 				int (*sync)(struct net_device *,
4607 					    const unsigned char *),
4608 				int (*unsync)(struct net_device *,
4609 					      const unsigned char *))
4610 {
4611 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4612 }
4613 
4614 /**
4615  *  __dev_mc_unsync - Remove synchronized addresses from device
4616  *  @dev:  device to sync
4617  *  @unsync: function to call if address should be removed
4618  *
4619  *  Remove all addresses that were added to the device by dev_mc_sync().
4620  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4621 static inline void __dev_mc_unsync(struct net_device *dev,
4622 				   int (*unsync)(struct net_device *,
4623 						 const unsigned char *))
4624 {
4625 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4626 }
4627 
4628 /* Functions used for secondary unicast and multicast support */
4629 void dev_set_rx_mode(struct net_device *dev);
4630 void __dev_set_rx_mode(struct net_device *dev);
4631 int dev_set_promiscuity(struct net_device *dev, int inc);
4632 int dev_set_allmulti(struct net_device *dev, int inc);
4633 void netdev_state_change(struct net_device *dev);
4634 void netdev_notify_peers(struct net_device *dev);
4635 void netdev_features_change(struct net_device *dev);
4636 /* Load a device via the kmod */
4637 void dev_load(struct net *net, const char *name);
4638 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4639 					struct rtnl_link_stats64 *storage);
4640 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4641 			     const struct net_device_stats *netdev_stats);
4642 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4643 			   const struct pcpu_sw_netstats __percpu *netstats);
4644 
4645 extern int		netdev_max_backlog;
4646 extern int		netdev_tstamp_prequeue;
4647 extern int		weight_p;
4648 extern int		dev_weight_rx_bias;
4649 extern int		dev_weight_tx_bias;
4650 extern int		dev_rx_weight;
4651 extern int		dev_tx_weight;
4652 extern int		gro_normal_batch;
4653 
4654 enum {
4655 	NESTED_SYNC_IMM_BIT,
4656 	NESTED_SYNC_TODO_BIT,
4657 };
4658 
4659 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4660 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4661 
4662 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4663 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4664 
4665 struct netdev_nested_priv {
4666 	unsigned char flags;
4667 	void *data;
4668 };
4669 
4670 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4671 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4672 						     struct list_head **iter);
4673 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4674 						     struct list_head **iter);
4675 
4676 #ifdef CONFIG_LOCKDEP
4677 static LIST_HEAD(net_unlink_list);
4678 
net_unlink_todo(struct net_device * dev)4679 static inline void net_unlink_todo(struct net_device *dev)
4680 {
4681 	if (list_empty(&dev->unlink_list))
4682 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4683 }
4684 #endif
4685 
4686 /* iterate through upper list, must be called under RCU read lock */
4687 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4688 	for (iter = &(dev)->adj_list.upper, \
4689 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4690 	     updev; \
4691 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4692 
4693 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4694 				  int (*fn)(struct net_device *upper_dev,
4695 					    struct netdev_nested_priv *priv),
4696 				  struct netdev_nested_priv *priv);
4697 
4698 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4699 				  struct net_device *upper_dev);
4700 
4701 bool netdev_has_any_upper_dev(struct net_device *dev);
4702 
4703 void *netdev_lower_get_next_private(struct net_device *dev,
4704 				    struct list_head **iter);
4705 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4706 					struct list_head **iter);
4707 
4708 #define netdev_for_each_lower_private(dev, priv, iter) \
4709 	for (iter = (dev)->adj_list.lower.next, \
4710 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4711 	     priv; \
4712 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4713 
4714 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4715 	for (iter = &(dev)->adj_list.lower, \
4716 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4717 	     priv; \
4718 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4719 
4720 void *netdev_lower_get_next(struct net_device *dev,
4721 				struct list_head **iter);
4722 
4723 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4724 	for (iter = (dev)->adj_list.lower.next, \
4725 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4726 	     ldev; \
4727 	     ldev = netdev_lower_get_next(dev, &(iter)))
4728 
4729 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4730 					     struct list_head **iter);
4731 int netdev_walk_all_lower_dev(struct net_device *dev,
4732 			      int (*fn)(struct net_device *lower_dev,
4733 					struct netdev_nested_priv *priv),
4734 			      struct netdev_nested_priv *priv);
4735 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4736 				  int (*fn)(struct net_device *lower_dev,
4737 					    struct netdev_nested_priv *priv),
4738 				  struct netdev_nested_priv *priv);
4739 
4740 void *netdev_adjacent_get_private(struct list_head *adj_list);
4741 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4742 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4743 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4744 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4745 			  struct netlink_ext_ack *extack);
4746 int netdev_master_upper_dev_link(struct net_device *dev,
4747 				 struct net_device *upper_dev,
4748 				 void *upper_priv, void *upper_info,
4749 				 struct netlink_ext_ack *extack);
4750 void netdev_upper_dev_unlink(struct net_device *dev,
4751 			     struct net_device *upper_dev);
4752 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4753 				   struct net_device *new_dev,
4754 				   struct net_device *dev,
4755 				   struct netlink_ext_ack *extack);
4756 void netdev_adjacent_change_commit(struct net_device *old_dev,
4757 				   struct net_device *new_dev,
4758 				   struct net_device *dev);
4759 void netdev_adjacent_change_abort(struct net_device *old_dev,
4760 				  struct net_device *new_dev,
4761 				  struct net_device *dev);
4762 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4763 void *netdev_lower_dev_get_private(struct net_device *dev,
4764 				   struct net_device *lower_dev);
4765 void netdev_lower_state_changed(struct net_device *lower_dev,
4766 				void *lower_state_info);
4767 
4768 /* RSS keys are 40 or 52 bytes long */
4769 #define NETDEV_RSS_KEY_LEN 52
4770 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4771 void netdev_rss_key_fill(void *buffer, size_t len);
4772 
4773 int skb_checksum_help(struct sk_buff *skb);
4774 int skb_crc32c_csum_help(struct sk_buff *skb);
4775 int skb_csum_hwoffload_help(struct sk_buff *skb,
4776 			    const netdev_features_t features);
4777 
4778 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4779 				  netdev_features_t features, bool tx_path);
4780 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4781 				    netdev_features_t features);
4782 
4783 struct netdev_bonding_info {
4784 	ifslave	slave;
4785 	ifbond	master;
4786 };
4787 
4788 struct netdev_notifier_bonding_info {
4789 	struct netdev_notifier_info info; /* must be first */
4790 	struct netdev_bonding_info  bonding_info;
4791 };
4792 
4793 void netdev_bonding_info_change(struct net_device *dev,
4794 				struct netdev_bonding_info *bonding_info);
4795 
4796 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4797 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4798 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4799 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4800 				  const void *data)
4801 {
4802 }
4803 #endif
4804 
4805 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4806 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4807 {
4808 	return __skb_gso_segment(skb, features, true);
4809 }
4810 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4811 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4812 static inline bool can_checksum_protocol(netdev_features_t features,
4813 					 __be16 protocol)
4814 {
4815 	if (protocol == htons(ETH_P_FCOE))
4816 		return !!(features & NETIF_F_FCOE_CRC);
4817 
4818 	/* Assume this is an IP checksum (not SCTP CRC) */
4819 
4820 	if (features & NETIF_F_HW_CSUM) {
4821 		/* Can checksum everything */
4822 		return true;
4823 	}
4824 
4825 	switch (protocol) {
4826 	case htons(ETH_P_IP):
4827 		return !!(features & NETIF_F_IP_CSUM);
4828 	case htons(ETH_P_IPV6):
4829 		return !!(features & NETIF_F_IPV6_CSUM);
4830 	default:
4831 		return false;
4832 	}
4833 }
4834 
4835 #ifdef CONFIG_BUG
4836 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4837 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4838 static inline void netdev_rx_csum_fault(struct net_device *dev,
4839 					struct sk_buff *skb)
4840 {
4841 }
4842 #endif
4843 /* rx skb timestamps */
4844 void net_enable_timestamp(void);
4845 void net_disable_timestamp(void);
4846 
4847 #ifdef CONFIG_PROC_FS
4848 int __init dev_proc_init(void);
4849 #else
4850 #define dev_proc_init() 0
4851 #endif
4852 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4853 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4854 					      struct sk_buff *skb, struct net_device *dev,
4855 					      bool more)
4856 {
4857 	__this_cpu_write(softnet_data.xmit.more, more);
4858 	return ops->ndo_start_xmit(skb, dev);
4859 }
4860 
netdev_xmit_more(void)4861 static inline bool netdev_xmit_more(void)
4862 {
4863 	return __this_cpu_read(softnet_data.xmit.more);
4864 }
4865 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4866 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4867 					    struct netdev_queue *txq, bool more)
4868 {
4869 	const struct net_device_ops *ops = dev->netdev_ops;
4870 	netdev_tx_t rc;
4871 
4872 	rc = __netdev_start_xmit(ops, skb, dev, more);
4873 	if (rc == NETDEV_TX_OK)
4874 		txq_trans_update(txq);
4875 
4876 	return rc;
4877 }
4878 
4879 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4880 				const void *ns);
4881 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4882 				 const void *ns);
4883 
4884 extern const struct kobj_ns_type_operations net_ns_type_operations;
4885 
4886 const char *netdev_drivername(const struct net_device *dev);
4887 
4888 void linkwatch_run_queue(void);
4889 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4890 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4891 							  netdev_features_t f2)
4892 {
4893 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4894 		if (f1 & NETIF_F_HW_CSUM)
4895 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4896 		else
4897 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4898 	}
4899 
4900 	return f1 & f2;
4901 }
4902 
netdev_get_wanted_features(struct net_device * dev)4903 static inline netdev_features_t netdev_get_wanted_features(
4904 	struct net_device *dev)
4905 {
4906 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4907 }
4908 netdev_features_t netdev_increment_features(netdev_features_t all,
4909 	netdev_features_t one, netdev_features_t mask);
4910 
4911 /* Allow TSO being used on stacked device :
4912  * Performing the GSO segmentation before last device
4913  * is a performance improvement.
4914  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4915 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4916 							netdev_features_t mask)
4917 {
4918 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4919 }
4920 
4921 int __netdev_update_features(struct net_device *dev);
4922 void netdev_update_features(struct net_device *dev);
4923 void netdev_change_features(struct net_device *dev);
4924 
4925 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4926 					struct net_device *dev);
4927 
4928 netdev_features_t passthru_features_check(struct sk_buff *skb,
4929 					  struct net_device *dev,
4930 					  netdev_features_t features);
4931 netdev_features_t netif_skb_features(struct sk_buff *skb);
4932 
net_gso_ok(netdev_features_t features,int gso_type)4933 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4934 {
4935 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4936 
4937 	/* check flags correspondence */
4938 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4939 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4940 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4941 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4942 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4943 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4944 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4945 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4946 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4947 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4948 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4949 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4950 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4951 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4952 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4953 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4954 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4955 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4956 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4957 
4958 	return (features & feature) == feature;
4959 }
4960 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4961 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4962 {
4963 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4964 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4965 }
4966 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4967 static inline bool netif_needs_gso(struct sk_buff *skb,
4968 				   netdev_features_t features)
4969 {
4970 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4971 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4972 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4973 }
4974 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4975 static inline void netif_set_gso_max_size(struct net_device *dev,
4976 					  unsigned int size)
4977 {
4978 	dev->gso_max_size = size;
4979 }
4980 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4981 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4982 					int pulled_hlen, u16 mac_offset,
4983 					int mac_len)
4984 {
4985 	skb->protocol = protocol;
4986 	skb->encapsulation = 1;
4987 	skb_push(skb, pulled_hlen);
4988 	skb_reset_transport_header(skb);
4989 	skb->mac_header = mac_offset;
4990 	skb->network_header = skb->mac_header + mac_len;
4991 	skb->mac_len = mac_len;
4992 }
4993 
netif_is_macsec(const struct net_device * dev)4994 static inline bool netif_is_macsec(const struct net_device *dev)
4995 {
4996 	return dev->priv_flags & IFF_MACSEC;
4997 }
4998 
netif_is_macvlan(const struct net_device * dev)4999 static inline bool netif_is_macvlan(const struct net_device *dev)
5000 {
5001 	return dev->priv_flags & IFF_MACVLAN;
5002 }
5003 
netif_is_macvlan_port(const struct net_device * dev)5004 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5005 {
5006 	return dev->priv_flags & IFF_MACVLAN_PORT;
5007 }
5008 
netif_is_bond_master(const struct net_device * dev)5009 static inline bool netif_is_bond_master(const struct net_device *dev)
5010 {
5011 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5012 }
5013 
netif_is_bond_slave(const struct net_device * dev)5014 static inline bool netif_is_bond_slave(const struct net_device *dev)
5015 {
5016 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5017 }
5018 
netif_supports_nofcs(struct net_device * dev)5019 static inline bool netif_supports_nofcs(struct net_device *dev)
5020 {
5021 	return dev->priv_flags & IFF_SUPP_NOFCS;
5022 }
5023 
netif_has_l3_rx_handler(const struct net_device * dev)5024 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5025 {
5026 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5027 }
5028 
netif_is_l3_master(const struct net_device * dev)5029 static inline bool netif_is_l3_master(const struct net_device *dev)
5030 {
5031 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5032 }
5033 
netif_is_l3_slave(const struct net_device * dev)5034 static inline bool netif_is_l3_slave(const struct net_device *dev)
5035 {
5036 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5037 }
5038 
netif_is_bridge_master(const struct net_device * dev)5039 static inline bool netif_is_bridge_master(const struct net_device *dev)
5040 {
5041 	return dev->priv_flags & IFF_EBRIDGE;
5042 }
5043 
netif_is_bridge_port(const struct net_device * dev)5044 static inline bool netif_is_bridge_port(const struct net_device *dev)
5045 {
5046 	return dev->priv_flags & IFF_BRIDGE_PORT;
5047 }
5048 
netif_is_ovs_master(const struct net_device * dev)5049 static inline bool netif_is_ovs_master(const struct net_device *dev)
5050 {
5051 	return dev->priv_flags & IFF_OPENVSWITCH;
5052 }
5053 
netif_is_ovs_port(const struct net_device * dev)5054 static inline bool netif_is_ovs_port(const struct net_device *dev)
5055 {
5056 	return dev->priv_flags & IFF_OVS_DATAPATH;
5057 }
5058 
netif_is_any_bridge_port(const struct net_device * dev)5059 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5060 {
5061 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5062 }
5063 
netif_is_team_master(const struct net_device * dev)5064 static inline bool netif_is_team_master(const struct net_device *dev)
5065 {
5066 	return dev->priv_flags & IFF_TEAM;
5067 }
5068 
netif_is_team_port(const struct net_device * dev)5069 static inline bool netif_is_team_port(const struct net_device *dev)
5070 {
5071 	return dev->priv_flags & IFF_TEAM_PORT;
5072 }
5073 
netif_is_lag_master(const struct net_device * dev)5074 static inline bool netif_is_lag_master(const struct net_device *dev)
5075 {
5076 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5077 }
5078 
netif_is_lag_port(const struct net_device * dev)5079 static inline bool netif_is_lag_port(const struct net_device *dev)
5080 {
5081 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5082 }
5083 
netif_is_rxfh_configured(const struct net_device * dev)5084 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5085 {
5086 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5087 }
5088 
netif_is_failover(const struct net_device * dev)5089 static inline bool netif_is_failover(const struct net_device *dev)
5090 {
5091 	return dev->priv_flags & IFF_FAILOVER;
5092 }
5093 
netif_is_failover_slave(const struct net_device * dev)5094 static inline bool netif_is_failover_slave(const struct net_device *dev)
5095 {
5096 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5097 }
5098 
5099 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5100 static inline void netif_keep_dst(struct net_device *dev)
5101 {
5102 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5103 }
5104 
5105 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5106 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5107 {
5108 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5109 	return dev->priv_flags & IFF_MACSEC;
5110 }
5111 
5112 extern struct pernet_operations __net_initdata loopback_net_ops;
5113 
5114 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5115 
5116 /* netdev_printk helpers, similar to dev_printk */
5117 
netdev_name(const struct net_device * dev)5118 static inline const char *netdev_name(const struct net_device *dev)
5119 {
5120 	if (!dev->name[0] || strchr(dev->name, '%'))
5121 		return "(unnamed net_device)";
5122 	return dev->name;
5123 }
5124 
netdev_unregistering(const struct net_device * dev)5125 static inline bool netdev_unregistering(const struct net_device *dev)
5126 {
5127 	return dev->reg_state == NETREG_UNREGISTERING;
5128 }
5129 
netdev_reg_state(const struct net_device * dev)5130 static inline const char *netdev_reg_state(const struct net_device *dev)
5131 {
5132 	switch (dev->reg_state) {
5133 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5134 	case NETREG_REGISTERED: return "";
5135 	case NETREG_UNREGISTERING: return " (unregistering)";
5136 	case NETREG_UNREGISTERED: return " (unregistered)";
5137 	case NETREG_RELEASED: return " (released)";
5138 	case NETREG_DUMMY: return " (dummy)";
5139 	}
5140 
5141 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5142 	return " (unknown)";
5143 }
5144 
5145 __printf(3, 4) __cold
5146 void netdev_printk(const char *level, const struct net_device *dev,
5147 		   const char *format, ...);
5148 __printf(2, 3) __cold
5149 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5150 __printf(2, 3) __cold
5151 void netdev_alert(const struct net_device *dev, const char *format, ...);
5152 __printf(2, 3) __cold
5153 void netdev_crit(const struct net_device *dev, const char *format, ...);
5154 __printf(2, 3) __cold
5155 void netdev_err(const struct net_device *dev, const char *format, ...);
5156 __printf(2, 3) __cold
5157 void netdev_warn(const struct net_device *dev, const char *format, ...);
5158 __printf(2, 3) __cold
5159 void netdev_notice(const struct net_device *dev, const char *format, ...);
5160 __printf(2, 3) __cold
5161 void netdev_info(const struct net_device *dev, const char *format, ...);
5162 
5163 #define netdev_level_once(level, dev, fmt, ...)			\
5164 do {								\
5165 	static bool __print_once __read_mostly;			\
5166 								\
5167 	if (!__print_once) {					\
5168 		__print_once = true;				\
5169 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5170 	}							\
5171 } while (0)
5172 
5173 #define netdev_emerg_once(dev, fmt, ...) \
5174 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5175 #define netdev_alert_once(dev, fmt, ...) \
5176 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5177 #define netdev_crit_once(dev, fmt, ...) \
5178 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5179 #define netdev_err_once(dev, fmt, ...) \
5180 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5181 #define netdev_warn_once(dev, fmt, ...) \
5182 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5183 #define netdev_notice_once(dev, fmt, ...) \
5184 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5185 #define netdev_info_once(dev, fmt, ...) \
5186 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5187 
5188 #define MODULE_ALIAS_NETDEV(device) \
5189 	MODULE_ALIAS("netdev-" device)
5190 
5191 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5192 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5193 #define netdev_dbg(__dev, format, args...)			\
5194 do {								\
5195 	dynamic_netdev_dbg(__dev, format, ##args);		\
5196 } while (0)
5197 #elif defined(DEBUG)
5198 #define netdev_dbg(__dev, format, args...)			\
5199 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5200 #else
5201 #define netdev_dbg(__dev, format, args...)			\
5202 ({								\
5203 	if (0)							\
5204 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5205 })
5206 #endif
5207 
5208 #if defined(VERBOSE_DEBUG)
5209 #define netdev_vdbg	netdev_dbg
5210 #else
5211 
5212 #define netdev_vdbg(dev, format, args...)			\
5213 ({								\
5214 	if (0)							\
5215 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5216 	0;							\
5217 })
5218 #endif
5219 
5220 /*
5221  * netdev_WARN() acts like dev_printk(), but with the key difference
5222  * of using a WARN/WARN_ON to get the message out, including the
5223  * file/line information and a backtrace.
5224  */
5225 #define netdev_WARN(dev, format, args...)			\
5226 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5227 	     netdev_reg_state(dev), ##args)
5228 
5229 #define netdev_WARN_ONCE(dev, format, args...)				\
5230 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5231 		  netdev_reg_state(dev), ##args)
5232 
5233 /* netif printk helpers, similar to netdev_printk */
5234 
5235 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5236 do {					  			\
5237 	if (netif_msg_##type(priv))				\
5238 		netdev_printk(level, (dev), fmt, ##args);	\
5239 } while (0)
5240 
5241 #define netif_level(level, priv, type, dev, fmt, args...)	\
5242 do {								\
5243 	if (netif_msg_##type(priv))				\
5244 		netdev_##level(dev, fmt, ##args);		\
5245 } while (0)
5246 
5247 #define netif_emerg(priv, type, dev, fmt, args...)		\
5248 	netif_level(emerg, priv, type, dev, fmt, ##args)
5249 #define netif_alert(priv, type, dev, fmt, args...)		\
5250 	netif_level(alert, priv, type, dev, fmt, ##args)
5251 #define netif_crit(priv, type, dev, fmt, args...)		\
5252 	netif_level(crit, priv, type, dev, fmt, ##args)
5253 #define netif_err(priv, type, dev, fmt, args...)		\
5254 	netif_level(err, priv, type, dev, fmt, ##args)
5255 #define netif_warn(priv, type, dev, fmt, args...)		\
5256 	netif_level(warn, priv, type, dev, fmt, ##args)
5257 #define netif_notice(priv, type, dev, fmt, args...)		\
5258 	netif_level(notice, priv, type, dev, fmt, ##args)
5259 #define netif_info(priv, type, dev, fmt, args...)		\
5260 	netif_level(info, priv, type, dev, fmt, ##args)
5261 
5262 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5263 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5264 #define netif_dbg(priv, type, netdev, format, args...)		\
5265 do {								\
5266 	if (netif_msg_##type(priv))				\
5267 		dynamic_netdev_dbg(netdev, format, ##args);	\
5268 } while (0)
5269 #elif defined(DEBUG)
5270 #define netif_dbg(priv, type, dev, format, args...)		\
5271 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5272 #else
5273 #define netif_dbg(priv, type, dev, format, args...)			\
5274 ({									\
5275 	if (0)								\
5276 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5277 	0;								\
5278 })
5279 #endif
5280 
5281 /* if @cond then downgrade to debug, else print at @level */
5282 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5283 	do {                                                              \
5284 		if (cond)                                                 \
5285 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5286 		else                                                      \
5287 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5288 	} while (0)
5289 
5290 #if defined(VERBOSE_DEBUG)
5291 #define netif_vdbg	netif_dbg
5292 #else
5293 #define netif_vdbg(priv, type, dev, format, args...)		\
5294 ({								\
5295 	if (0)							\
5296 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5297 	0;							\
5298 })
5299 #endif
5300 
5301 /*
5302  *	The list of packet types we will receive (as opposed to discard)
5303  *	and the routines to invoke.
5304  *
5305  *	Why 16. Because with 16 the only overlap we get on a hash of the
5306  *	low nibble of the protocol value is RARP/SNAP/X.25.
5307  *
5308  *		0800	IP
5309  *		0001	802.3
5310  *		0002	AX.25
5311  *		0004	802.2
5312  *		8035	RARP
5313  *		0005	SNAP
5314  *		0805	X.25
5315  *		0806	ARP
5316  *		8137	IPX
5317  *		0009	Localtalk
5318  *		86DD	IPv6
5319  */
5320 #define PTYPE_HASH_SIZE	(16)
5321 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5322 
5323 extern struct net_device *blackhole_netdev;
5324 
5325 #endif	/* _LINUX_NETDEVICE_H */
5326