1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <linux/android_kabi.h>
72 #include <linux/android_vendor.h>
73
74 /*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92
93 /* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97 typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111
112 struct sock;
113 struct proto;
114 struct net;
115
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118
119 /**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
124 * @skc_hash: hash value used with various protocol lookup tables
125 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
126 * @skc_dport: placeholder for inet_dport/tw_dport
127 * @skc_num: placeholder for inet_num/tw_num
128 * @skc_portpair: __u32 union of @skc_dport & @skc_num
129 * @skc_family: network address family
130 * @skc_state: Connection state
131 * @skc_reuse: %SO_REUSEADDR setting
132 * @skc_reuseport: %SO_REUSEPORT setting
133 * @skc_ipv6only: socket is IPV6 only
134 * @skc_net_refcnt: socket is using net ref counting
135 * @skc_bound_dev_if: bound device index if != 0
136 * @skc_bind_node: bind hash linkage for various protocol lookup tables
137 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
138 * @skc_prot: protocol handlers inside a network family
139 * @skc_net: reference to the network namespace of this socket
140 * @skc_v6_daddr: IPV6 destination address
141 * @skc_v6_rcv_saddr: IPV6 source address
142 * @skc_cookie: socket's cookie value
143 * @skc_node: main hash linkage for various protocol lookup tables
144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
145 * @skc_tx_queue_mapping: tx queue number for this connection
146 * @skc_rx_queue_mapping: rx queue number for this connection
147 * @skc_flags: place holder for sk_flags
148 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
149 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
150 * @skc_listener: connection request listener socket (aka rsk_listener)
151 * [union with @skc_flags]
152 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
153 * [union with @skc_flags]
154 * @skc_incoming_cpu: record/match cpu processing incoming packets
155 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
156 * [union with @skc_incoming_cpu]
157 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
158 * [union with @skc_incoming_cpu]
159 * @skc_refcnt: reference count
160 *
161 * This is the minimal network layer representation of sockets, the header
162 * for struct sock and struct inet_timewait_sock.
163 */
164 struct sock_common {
165 union {
166 __addrpair skc_addrpair;
167 struct {
168 __be32 skc_daddr;
169 __be32 skc_rcv_saddr;
170 };
171 };
172 union {
173 unsigned int skc_hash;
174 __u16 skc_u16hashes[2];
175 };
176 /* skc_dport && skc_num must be grouped as well */
177 union {
178 __portpair skc_portpair;
179 struct {
180 __be16 skc_dport;
181 __u16 skc_num;
182 };
183 };
184
185 unsigned short skc_family;
186 volatile unsigned char skc_state;
187 unsigned char skc_reuse:4;
188 unsigned char skc_reuseport:1;
189 unsigned char skc_ipv6only:1;
190 unsigned char skc_net_refcnt:1;
191 int skc_bound_dev_if;
192 union {
193 struct hlist_node skc_bind_node;
194 struct hlist_node skc_portaddr_node;
195 };
196 struct proto *skc_prot;
197 possible_net_t skc_net;
198
199 #if IS_ENABLED(CONFIG_IPV6)
200 struct in6_addr skc_v6_daddr;
201 struct in6_addr skc_v6_rcv_saddr;
202 #endif
203
204 atomic64_t skc_cookie;
205
206 /* following fields are padding to force
207 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
208 * assuming IPV6 is enabled. We use this padding differently
209 * for different kind of 'sockets'
210 */
211 union {
212 unsigned long skc_flags;
213 struct sock *skc_listener; /* request_sock */
214 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
215 };
216 /*
217 * fields between dontcopy_begin/dontcopy_end
218 * are not copied in sock_copy()
219 */
220 /* private: */
221 int skc_dontcopy_begin[0];
222 /* public: */
223 union {
224 struct hlist_node skc_node;
225 struct hlist_nulls_node skc_nulls_node;
226 };
227 unsigned short skc_tx_queue_mapping;
228 #ifdef CONFIG_XPS
229 unsigned short skc_rx_queue_mapping;
230 #endif
231 union {
232 int skc_incoming_cpu;
233 u32 skc_rcv_wnd;
234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 };
236
237 refcount_t skc_refcnt;
238 /* private: */
239 int skc_dontcopy_end[0];
240 union {
241 u32 skc_rxhash;
242 u32 skc_window_clamp;
243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 };
245 /* public: */
246 };
247
248 struct bpf_local_storage;
249
250 /**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_dst_cache: destination cache
261 * @sk_dst_pending_confirm: need to confirm neighbour
262 * @sk_policy: flow policy
263 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
264 * @sk_receive_queue: incoming packets
265 * @sk_wmem_alloc: transmit queue bytes committed
266 * @sk_tsq_flags: TCP Small Queues flags
267 * @sk_write_queue: Packet sending queue
268 * @sk_omem_alloc: "o" is "option" or "other"
269 * @sk_wmem_queued: persistent queue size
270 * @sk_forward_alloc: space allocated forward
271 * @sk_napi_id: id of the last napi context to receive data for sk
272 * @sk_ll_usec: usecs to busypoll when there is no data
273 * @sk_allocation: allocation mode
274 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
275 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
276 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
277 * @sk_sndbuf: size of send buffer in bytes
278 * @__sk_flags_offset: empty field used to determine location of bitfield
279 * @sk_padding: unused element for alignment
280 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
281 * @sk_no_check_rx: allow zero checksum in RX packets
282 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
283 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
284 * @sk_route_forced_caps: static, forced route capabilities
285 * (set in tcp_init_sock())
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_priority: %SO_PRIORITY setting
304 * @sk_type: socket type (%SOCK_STREAM, etc)
305 * @sk_protocol: which protocol this socket belongs in this network family
306 * @sk_peer_pid: &struct pid for this socket's peer
307 * @sk_peer_cred: %SO_PEERCRED setting
308 * @sk_rcvlowat: %SO_RCVLOWAT setting
309 * @sk_rcvtimeo: %SO_RCVTIMEO setting
310 * @sk_sndtimeo: %SO_SNDTIMEO setting
311 * @sk_txhash: computed flow hash for use on transmit
312 * @sk_filter: socket filtering instructions
313 * @sk_timer: sock cleanup timer
314 * @sk_stamp: time stamp of last packet received
315 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
316 * @sk_tsflags: SO_TIMESTAMPING socket options
317 * @sk_tskey: counter to disambiguate concurrent tstamp requests
318 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
319 * @sk_socket: Identd and reporting IO signals
320 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
321 * @sk_frag: cached page frag
322 * @sk_peek_off: current peek_offset value
323 * @sk_send_head: front of stuff to transmit
324 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
325 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
326 * @sk_security: used by security modules
327 * @sk_mark: generic packet mark
328 * @sk_cgrp_data: cgroup data for this cgroup
329 * @sk_memcg: this socket's memory cgroup association
330 * @sk_write_pending: a write to stream socket waits to start
331 * @sk_state_change: callback to indicate change in the state of the sock
332 * @sk_data_ready: callback to indicate there is data to be processed
333 * @sk_write_space: callback to indicate there is bf sending space available
334 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
335 * @sk_backlog_rcv: callback to process the backlog
336 * @sk_validate_xmit_skb: ptr to an optional validate function
337 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
338 * @sk_reuseport_cb: reuseport group container
339 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
340 * @sk_rcu: used during RCU grace period
341 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
342 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
343 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
344 * @sk_txtime_unused: unused txtime flags
345 */
346 struct sock {
347 /*
348 * Now struct inet_timewait_sock also uses sock_common, so please just
349 * don't add nothing before this first member (__sk_common) --acme
350 */
351 struct sock_common __sk_common;
352 #define sk_node __sk_common.skc_node
353 #define sk_nulls_node __sk_common.skc_nulls_node
354 #define sk_refcnt __sk_common.skc_refcnt
355 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
356 #ifdef CONFIG_XPS
357 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
358 #endif
359
360 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
361 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
362 #define sk_hash __sk_common.skc_hash
363 #define sk_portpair __sk_common.skc_portpair
364 #define sk_num __sk_common.skc_num
365 #define sk_dport __sk_common.skc_dport
366 #define sk_addrpair __sk_common.skc_addrpair
367 #define sk_daddr __sk_common.skc_daddr
368 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
369 #define sk_family __sk_common.skc_family
370 #define sk_state __sk_common.skc_state
371 #define sk_reuse __sk_common.skc_reuse
372 #define sk_reuseport __sk_common.skc_reuseport
373 #define sk_ipv6only __sk_common.skc_ipv6only
374 #define sk_net_refcnt __sk_common.skc_net_refcnt
375 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
376 #define sk_bind_node __sk_common.skc_bind_node
377 #define sk_prot __sk_common.skc_prot
378 #define sk_net __sk_common.skc_net
379 #define sk_v6_daddr __sk_common.skc_v6_daddr
380 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
381 #define sk_cookie __sk_common.skc_cookie
382 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
383 #define sk_flags __sk_common.skc_flags
384 #define sk_rxhash __sk_common.skc_rxhash
385
386 socket_lock_t sk_lock;
387 atomic_t sk_drops;
388 int sk_rcvlowat;
389 struct sk_buff_head sk_error_queue;
390 struct sk_buff *sk_rx_skb_cache;
391 struct sk_buff_head sk_receive_queue;
392 /*
393 * The backlog queue is special, it is always used with
394 * the per-socket spinlock held and requires low latency
395 * access. Therefore we special case it's implementation.
396 * Note : rmem_alloc is in this structure to fill a hole
397 * on 64bit arches, not because its logically part of
398 * backlog.
399 */
400 struct {
401 atomic_t rmem_alloc;
402 int len;
403 struct sk_buff *head;
404 struct sk_buff *tail;
405 } sk_backlog;
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407
408 int sk_forward_alloc;
409 #ifdef CONFIG_NET_RX_BUSY_POLL
410 unsigned int sk_ll_usec;
411 /* ===== mostly read cache line ===== */
412 unsigned int sk_napi_id;
413 #endif
414 int sk_rcvbuf;
415
416 struct sk_filter __rcu *sk_filter;
417 union {
418 struct socket_wq __rcu *sk_wq;
419 /* private: */
420 struct socket_wq *sk_wq_raw;
421 /* public: */
422 };
423 #ifdef CONFIG_XFRM
424 struct xfrm_policy __rcu *sk_policy[2];
425 #endif
426 struct dst_entry __rcu *sk_rx_dst;
427 struct dst_entry __rcu *sk_dst_cache;
428 atomic_t sk_omem_alloc;
429 int sk_sndbuf;
430
431 /* ===== cache line for TX ===== */
432 int sk_wmem_queued;
433 refcount_t sk_wmem_alloc;
434 unsigned long sk_tsq_flags;
435 union {
436 struct sk_buff *sk_send_head;
437 struct rb_root tcp_rtx_queue;
438 };
439 struct sk_buff *sk_tx_skb_cache;
440 struct sk_buff_head sk_write_queue;
441 __s32 sk_peek_off;
442 int sk_write_pending;
443 __u32 sk_dst_pending_confirm;
444 u32 sk_pacing_status; /* see enum sk_pacing */
445 long sk_sndtimeo;
446 struct timer_list sk_timer;
447 __u32 sk_priority;
448 __u32 sk_mark;
449 unsigned long sk_pacing_rate; /* bytes per second */
450 unsigned long sk_max_pacing_rate;
451 struct page_frag sk_frag;
452 netdev_features_t sk_route_caps;
453 netdev_features_t sk_route_nocaps;
454 netdev_features_t sk_route_forced_caps;
455 int sk_gso_type;
456 unsigned int sk_gso_max_size;
457 gfp_t sk_allocation;
458 __u32 sk_txhash;
459
460 /*
461 * Because of non atomicity rules, all
462 * changes are protected by socket lock.
463 */
464 u8 sk_padding : 1,
465 sk_kern_sock : 1,
466 sk_no_check_tx : 1,
467 sk_no_check_rx : 1,
468 sk_userlocks : 4;
469 u8 sk_pacing_shift;
470 u16 sk_type;
471 u16 sk_protocol;
472 u16 sk_gso_max_segs;
473 unsigned long sk_lingertime;
474 struct proto *sk_prot_creator;
475 rwlock_t sk_callback_lock;
476 int sk_err,
477 sk_err_soft;
478 u32 sk_ack_backlog;
479 u32 sk_max_ack_backlog;
480 kuid_t sk_uid;
481 #if IS_ENABLED(CONFIG_DEBUG_SPINLOCK) || IS_ENABLED(CONFIG_DEBUG_LOCK_ALLOC)
482 spinlock_t sk_peer_lock;
483 #else
484 /* sk_peer_lock is in the ANDROID_KABI_RESERVE(1) field below */
485 #endif
486 struct pid *sk_peer_pid;
487 const struct cred *sk_peer_cred;
488
489 long sk_rcvtimeo;
490 ktime_t sk_stamp;
491 #if BITS_PER_LONG==32
492 seqlock_t sk_stamp_seq;
493 #endif
494 u16 sk_tsflags;
495 u8 sk_shutdown;
496 u32 sk_tskey;
497 atomic_t sk_zckey;
498
499 u8 sk_clockid;
500 u8 sk_txtime_deadline_mode : 1,
501 sk_txtime_report_errors : 1,
502 sk_txtime_unused : 6;
503
504 struct socket *sk_socket;
505 void *sk_user_data;
506 #ifdef CONFIG_SECURITY
507 void *sk_security;
508 #endif
509 struct sock_cgroup_data sk_cgrp_data;
510 struct mem_cgroup *sk_memcg;
511 void (*sk_state_change)(struct sock *sk);
512 void (*sk_data_ready)(struct sock *sk);
513 void (*sk_write_space)(struct sock *sk);
514 void (*sk_error_report)(struct sock *sk);
515 int (*sk_backlog_rcv)(struct sock *sk,
516 struct sk_buff *skb);
517 #ifdef CONFIG_SOCK_VALIDATE_XMIT
518 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
519 struct net_device *dev,
520 struct sk_buff *skb);
521 #endif
522 void (*sk_destruct)(struct sock *sk);
523 struct sock_reuseport __rcu *sk_reuseport_cb;
524 #ifdef CONFIG_BPF_SYSCALL
525 struct bpf_local_storage __rcu *sk_bpf_storage;
526 #endif
527 struct rcu_head sk_rcu;
528
529 #if IS_ENABLED(CONFIG_DEBUG_SPINLOCK) || IS_ENABLED(CONFIG_DEBUG_LOCK_ALLOC)
530 ANDROID_KABI_RESERVE(1);
531 #else
532 ANDROID_KABI_USE(1, spinlock_t sk_peer_lock);
533 #endif
534 ANDROID_KABI_RESERVE(2);
535 ANDROID_KABI_RESERVE(3);
536 ANDROID_KABI_RESERVE(4);
537 ANDROID_KABI_RESERVE(5);
538 ANDROID_KABI_RESERVE(6);
539 ANDROID_KABI_RESERVE(7);
540 ANDROID_KABI_RESERVE(8);
541
542 ANDROID_OEM_DATA(1);
543 };
544
545 enum sk_pacing {
546 SK_PACING_NONE = 0,
547 SK_PACING_NEEDED = 1,
548 SK_PACING_FQ = 2,
549 };
550
551 /* flag bits in sk_user_data
552 *
553 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
554 * not be suitable for copying when cloning the socket. For instance,
555 * it can point to a reference counted object. sk_user_data bottom
556 * bit is set if pointer must not be copied.
557 *
558 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
559 * managed/owned by a BPF reuseport array. This bit should be set
560 * when sk_user_data's sk is added to the bpf's reuseport_array.
561 *
562 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
563 * sk_user_data points to psock type. This bit should be set
564 * when sk_user_data is assigned to a psock object.
565 */
566 #define SK_USER_DATA_NOCOPY 1UL
567 #define SK_USER_DATA_BPF 2UL
568 #define SK_USER_DATA_PSOCK 4UL
569 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
570 SK_USER_DATA_PSOCK)
571
572 /**
573 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
574 * @sk: socket
575 */
sk_user_data_is_nocopy(const struct sock * sk)576 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
577 {
578 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
579 }
580
581 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
582
583 /**
584 * __rcu_dereference_sk_user_data_with_flags - return the pointer
585 * only if argument flags all has been set in sk_user_data. Otherwise
586 * return NULL
587 *
588 * @sk: socket
589 * @flags: flag bits
590 */
591 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)592 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
593 uintptr_t flags)
594 {
595 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
596
597 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
598
599 if ((sk_user_data & flags) == flags)
600 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
601 return NULL;
602 }
603
604 #define rcu_dereference_sk_user_data(sk) \
605 __rcu_dereference_sk_user_data_with_flags(sk, 0)
606 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
607 ({ \
608 uintptr_t __tmp1 = (uintptr_t)(ptr), \
609 __tmp2 = (uintptr_t)(flags); \
610 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
611 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
612 rcu_assign_pointer(__sk_user_data((sk)), \
613 __tmp1 | __tmp2); \
614 })
615 #define rcu_assign_sk_user_data(sk, ptr) \
616 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
617
618 /*
619 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
620 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
621 * on a socket means that the socket will reuse everybody else's port
622 * without looking at the other's sk_reuse value.
623 */
624
625 #define SK_NO_REUSE 0
626 #define SK_CAN_REUSE 1
627 #define SK_FORCE_REUSE 2
628
629 int sk_set_peek_off(struct sock *sk, int val);
630
sk_peek_offset(struct sock * sk,int flags)631 static inline int sk_peek_offset(struct sock *sk, int flags)
632 {
633 if (unlikely(flags & MSG_PEEK)) {
634 return READ_ONCE(sk->sk_peek_off);
635 }
636
637 return 0;
638 }
639
sk_peek_offset_bwd(struct sock * sk,int val)640 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
641 {
642 s32 off = READ_ONCE(sk->sk_peek_off);
643
644 if (unlikely(off >= 0)) {
645 off = max_t(s32, off - val, 0);
646 WRITE_ONCE(sk->sk_peek_off, off);
647 }
648 }
649
sk_peek_offset_fwd(struct sock * sk,int val)650 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
651 {
652 sk_peek_offset_bwd(sk, -val);
653 }
654
655 /*
656 * Hashed lists helper routines
657 */
sk_entry(const struct hlist_node * node)658 static inline struct sock *sk_entry(const struct hlist_node *node)
659 {
660 return hlist_entry(node, struct sock, sk_node);
661 }
662
__sk_head(const struct hlist_head * head)663 static inline struct sock *__sk_head(const struct hlist_head *head)
664 {
665 return hlist_entry(head->first, struct sock, sk_node);
666 }
667
sk_head(const struct hlist_head * head)668 static inline struct sock *sk_head(const struct hlist_head *head)
669 {
670 return hlist_empty(head) ? NULL : __sk_head(head);
671 }
672
__sk_nulls_head(const struct hlist_nulls_head * head)673 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
674 {
675 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
676 }
677
sk_nulls_head(const struct hlist_nulls_head * head)678 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
679 {
680 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
681 }
682
sk_next(const struct sock * sk)683 static inline struct sock *sk_next(const struct sock *sk)
684 {
685 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
686 }
687
sk_nulls_next(const struct sock * sk)688 static inline struct sock *sk_nulls_next(const struct sock *sk)
689 {
690 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
691 hlist_nulls_entry(sk->sk_nulls_node.next,
692 struct sock, sk_nulls_node) :
693 NULL;
694 }
695
sk_unhashed(const struct sock * sk)696 static inline bool sk_unhashed(const struct sock *sk)
697 {
698 return hlist_unhashed(&sk->sk_node);
699 }
700
sk_hashed(const struct sock * sk)701 static inline bool sk_hashed(const struct sock *sk)
702 {
703 return !sk_unhashed(sk);
704 }
705
sk_node_init(struct hlist_node * node)706 static inline void sk_node_init(struct hlist_node *node)
707 {
708 node->pprev = NULL;
709 }
710
sk_nulls_node_init(struct hlist_nulls_node * node)711 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
712 {
713 node->pprev = NULL;
714 }
715
__sk_del_node(struct sock * sk)716 static inline void __sk_del_node(struct sock *sk)
717 {
718 __hlist_del(&sk->sk_node);
719 }
720
721 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)722 static inline bool __sk_del_node_init(struct sock *sk)
723 {
724 if (sk_hashed(sk)) {
725 __sk_del_node(sk);
726 sk_node_init(&sk->sk_node);
727 return true;
728 }
729 return false;
730 }
731
732 /* Grab socket reference count. This operation is valid only
733 when sk is ALREADY grabbed f.e. it is found in hash table
734 or a list and the lookup is made under lock preventing hash table
735 modifications.
736 */
737
sock_hold(struct sock * sk)738 static __always_inline void sock_hold(struct sock *sk)
739 {
740 refcount_inc(&sk->sk_refcnt);
741 }
742
743 /* Ungrab socket in the context, which assumes that socket refcnt
744 cannot hit zero, f.e. it is true in context of any socketcall.
745 */
__sock_put(struct sock * sk)746 static __always_inline void __sock_put(struct sock *sk)
747 {
748 refcount_dec(&sk->sk_refcnt);
749 }
750
sk_del_node_init(struct sock * sk)751 static inline bool sk_del_node_init(struct sock *sk)
752 {
753 bool rc = __sk_del_node_init(sk);
754
755 if (rc) {
756 /* paranoid for a while -acme */
757 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
758 __sock_put(sk);
759 }
760 return rc;
761 }
762 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
763
__sk_nulls_del_node_init_rcu(struct sock * sk)764 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
765 {
766 if (sk_hashed(sk)) {
767 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
768 return true;
769 }
770 return false;
771 }
772
sk_nulls_del_node_init_rcu(struct sock * sk)773 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
774 {
775 bool rc = __sk_nulls_del_node_init_rcu(sk);
776
777 if (rc) {
778 /* paranoid for a while -acme */
779 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
780 __sock_put(sk);
781 }
782 return rc;
783 }
784
__sk_add_node(struct sock * sk,struct hlist_head * list)785 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
786 {
787 hlist_add_head(&sk->sk_node, list);
788 }
789
sk_add_node(struct sock * sk,struct hlist_head * list)790 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
791 {
792 sock_hold(sk);
793 __sk_add_node(sk, list);
794 }
795
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)796 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
797 {
798 sock_hold(sk);
799 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
800 sk->sk_family == AF_INET6)
801 hlist_add_tail_rcu(&sk->sk_node, list);
802 else
803 hlist_add_head_rcu(&sk->sk_node, list);
804 }
805
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)806 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
807 {
808 sock_hold(sk);
809 hlist_add_tail_rcu(&sk->sk_node, list);
810 }
811
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)812 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
813 {
814 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
815 }
816
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)817 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
818 {
819 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
820 }
821
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)822 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
823 {
824 sock_hold(sk);
825 __sk_nulls_add_node_rcu(sk, list);
826 }
827
__sk_del_bind_node(struct sock * sk)828 static inline void __sk_del_bind_node(struct sock *sk)
829 {
830 __hlist_del(&sk->sk_bind_node);
831 }
832
sk_add_bind_node(struct sock * sk,struct hlist_head * list)833 static inline void sk_add_bind_node(struct sock *sk,
834 struct hlist_head *list)
835 {
836 hlist_add_head(&sk->sk_bind_node, list);
837 }
838
839 #define sk_for_each(__sk, list) \
840 hlist_for_each_entry(__sk, list, sk_node)
841 #define sk_for_each_rcu(__sk, list) \
842 hlist_for_each_entry_rcu(__sk, list, sk_node)
843 #define sk_nulls_for_each(__sk, node, list) \
844 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
845 #define sk_nulls_for_each_rcu(__sk, node, list) \
846 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
847 #define sk_for_each_from(__sk) \
848 hlist_for_each_entry_from(__sk, sk_node)
849 #define sk_nulls_for_each_from(__sk, node) \
850 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
851 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
852 #define sk_for_each_safe(__sk, tmp, list) \
853 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
854 #define sk_for_each_bound(__sk, list) \
855 hlist_for_each_entry(__sk, list, sk_bind_node)
856
857 /**
858 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
859 * @tpos: the type * to use as a loop cursor.
860 * @pos: the &struct hlist_node to use as a loop cursor.
861 * @head: the head for your list.
862 * @offset: offset of hlist_node within the struct.
863 *
864 */
865 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
866 for (pos = rcu_dereference(hlist_first_rcu(head)); \
867 pos != NULL && \
868 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
869 pos = rcu_dereference(hlist_next_rcu(pos)))
870
sk_user_ns(struct sock * sk)871 static inline struct user_namespace *sk_user_ns(struct sock *sk)
872 {
873 /* Careful only use this in a context where these parameters
874 * can not change and must all be valid, such as recvmsg from
875 * userspace.
876 */
877 return sk->sk_socket->file->f_cred->user_ns;
878 }
879
880 /* Sock flags */
881 enum sock_flags {
882 SOCK_DEAD,
883 SOCK_DONE,
884 SOCK_URGINLINE,
885 SOCK_KEEPOPEN,
886 SOCK_LINGER,
887 SOCK_DESTROY,
888 SOCK_BROADCAST,
889 SOCK_TIMESTAMP,
890 SOCK_ZAPPED,
891 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
892 SOCK_DBG, /* %SO_DEBUG setting */
893 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
894 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
895 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
896 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
897 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
898 SOCK_FASYNC, /* fasync() active */
899 SOCK_RXQ_OVFL,
900 SOCK_ZEROCOPY, /* buffers from userspace */
901 SOCK_WIFI_STATUS, /* push wifi status to userspace */
902 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
903 * Will use last 4 bytes of packet sent from
904 * user-space instead.
905 */
906 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
907 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
908 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
909 SOCK_TXTIME,
910 SOCK_XDP, /* XDP is attached */
911 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
912 };
913
914 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
915
sock_copy_flags(struct sock * nsk,struct sock * osk)916 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
917 {
918 nsk->sk_flags = osk->sk_flags;
919 }
920
sock_set_flag(struct sock * sk,enum sock_flags flag)921 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
922 {
923 __set_bit(flag, &sk->sk_flags);
924 }
925
sock_reset_flag(struct sock * sk,enum sock_flags flag)926 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
927 {
928 __clear_bit(flag, &sk->sk_flags);
929 }
930
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)931 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
932 int valbool)
933 {
934 if (valbool)
935 sock_set_flag(sk, bit);
936 else
937 sock_reset_flag(sk, bit);
938 }
939
sock_flag(const struct sock * sk,enum sock_flags flag)940 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
941 {
942 return test_bit(flag, &sk->sk_flags);
943 }
944
945 #ifdef CONFIG_NET
946 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)947 static inline int sk_memalloc_socks(void)
948 {
949 return static_branch_unlikely(&memalloc_socks_key);
950 }
951
952 void __receive_sock(struct file *file);
953 #else
954
sk_memalloc_socks(void)955 static inline int sk_memalloc_socks(void)
956 {
957 return 0;
958 }
959
__receive_sock(struct file * file)960 static inline void __receive_sock(struct file *file)
961 { }
962 #endif
963
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)964 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
965 {
966 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
967 }
968
sk_acceptq_removed(struct sock * sk)969 static inline void sk_acceptq_removed(struct sock *sk)
970 {
971 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
972 }
973
sk_acceptq_added(struct sock * sk)974 static inline void sk_acceptq_added(struct sock *sk)
975 {
976 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
977 }
978
sk_acceptq_is_full(const struct sock * sk)979 static inline bool sk_acceptq_is_full(const struct sock *sk)
980 {
981 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
982 }
983
984 /*
985 * Compute minimal free write space needed to queue new packets.
986 */
sk_stream_min_wspace(const struct sock * sk)987 static inline int sk_stream_min_wspace(const struct sock *sk)
988 {
989 return READ_ONCE(sk->sk_wmem_queued) >> 1;
990 }
991
sk_stream_wspace(const struct sock * sk)992 static inline int sk_stream_wspace(const struct sock *sk)
993 {
994 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
995 }
996
sk_wmem_queued_add(struct sock * sk,int val)997 static inline void sk_wmem_queued_add(struct sock *sk, int val)
998 {
999 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1000 }
1001
1002 void sk_stream_write_space(struct sock *sk);
1003
1004 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1005 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1006 {
1007 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1008 skb_dst_force(skb);
1009
1010 if (!sk->sk_backlog.tail)
1011 WRITE_ONCE(sk->sk_backlog.head, skb);
1012 else
1013 sk->sk_backlog.tail->next = skb;
1014
1015 WRITE_ONCE(sk->sk_backlog.tail, skb);
1016 skb->next = NULL;
1017 }
1018
1019 /*
1020 * Take into account size of receive queue and backlog queue
1021 * Do not take into account this skb truesize,
1022 * to allow even a single big packet to come.
1023 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1024 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1025 {
1026 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1027
1028 return qsize > limit;
1029 }
1030
1031 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1032 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1033 unsigned int limit)
1034 {
1035 if (sk_rcvqueues_full(sk, limit))
1036 return -ENOBUFS;
1037
1038 /*
1039 * If the skb was allocated from pfmemalloc reserves, only
1040 * allow SOCK_MEMALLOC sockets to use it as this socket is
1041 * helping free memory
1042 */
1043 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1044 return -ENOMEM;
1045
1046 __sk_add_backlog(sk, skb);
1047 sk->sk_backlog.len += skb->truesize;
1048 return 0;
1049 }
1050
1051 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1052
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1053 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1054 {
1055 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1056 return __sk_backlog_rcv(sk, skb);
1057
1058 return sk->sk_backlog_rcv(sk, skb);
1059 }
1060
sk_incoming_cpu_update(struct sock * sk)1061 static inline void sk_incoming_cpu_update(struct sock *sk)
1062 {
1063 int cpu = raw_smp_processor_id();
1064
1065 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1066 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1067 }
1068
sock_rps_record_flow_hash(__u32 hash)1069 static inline void sock_rps_record_flow_hash(__u32 hash)
1070 {
1071 #ifdef CONFIG_RPS
1072 struct rps_sock_flow_table *sock_flow_table;
1073
1074 rcu_read_lock();
1075 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1076 rps_record_sock_flow(sock_flow_table, hash);
1077 rcu_read_unlock();
1078 #endif
1079 }
1080
sock_rps_record_flow(const struct sock * sk)1081 static inline void sock_rps_record_flow(const struct sock *sk)
1082 {
1083 #ifdef CONFIG_RPS
1084 if (static_branch_unlikely(&rfs_needed)) {
1085 /* Reading sk->sk_rxhash might incur an expensive cache line
1086 * miss.
1087 *
1088 * TCP_ESTABLISHED does cover almost all states where RFS
1089 * might be useful, and is cheaper [1] than testing :
1090 * IPv4: inet_sk(sk)->inet_daddr
1091 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1092 * OR an additional socket flag
1093 * [1] : sk_state and sk_prot are in the same cache line.
1094 */
1095 if (sk->sk_state == TCP_ESTABLISHED) {
1096 /* This READ_ONCE() is paired with the WRITE_ONCE()
1097 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1098 */
1099 sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1100 }
1101 }
1102 #endif
1103 }
1104
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1105 static inline void sock_rps_save_rxhash(struct sock *sk,
1106 const struct sk_buff *skb)
1107 {
1108 #ifdef CONFIG_RPS
1109 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1110 * here, and another one in sock_rps_record_flow().
1111 */
1112 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1113 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1114 #endif
1115 }
1116
sock_rps_reset_rxhash(struct sock * sk)1117 static inline void sock_rps_reset_rxhash(struct sock *sk)
1118 {
1119 #ifdef CONFIG_RPS
1120 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1121 WRITE_ONCE(sk->sk_rxhash, 0);
1122 #endif
1123 }
1124
1125 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1126 ({ int __rc; \
1127 release_sock(__sk); \
1128 __rc = __condition; \
1129 if (!__rc) { \
1130 *(__timeo) = wait_woken(__wait, \
1131 TASK_INTERRUPTIBLE, \
1132 *(__timeo)); \
1133 } \
1134 sched_annotate_sleep(); \
1135 lock_sock(__sk); \
1136 __rc = __condition; \
1137 __rc; \
1138 })
1139
1140 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1141 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1142 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1143 int sk_stream_error(struct sock *sk, int flags, int err);
1144 void sk_stream_kill_queues(struct sock *sk);
1145 void sk_set_memalloc(struct sock *sk);
1146 void sk_clear_memalloc(struct sock *sk);
1147
1148 void __sk_flush_backlog(struct sock *sk);
1149
sk_flush_backlog(struct sock * sk)1150 static inline bool sk_flush_backlog(struct sock *sk)
1151 {
1152 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1153 __sk_flush_backlog(sk);
1154 return true;
1155 }
1156 return false;
1157 }
1158
1159 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1160
1161 struct request_sock_ops;
1162 struct timewait_sock_ops;
1163 struct inet_hashinfo;
1164 struct raw_hashinfo;
1165 struct smc_hashinfo;
1166 struct module;
1167
1168 /*
1169 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1170 * un-modified. Special care is taken when initializing object to zero.
1171 */
sk_prot_clear_nulls(struct sock * sk,int size)1172 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1173 {
1174 if (offsetof(struct sock, sk_node.next) != 0)
1175 memset(sk, 0, offsetof(struct sock, sk_node.next));
1176 memset(&sk->sk_node.pprev, 0,
1177 size - offsetof(struct sock, sk_node.pprev));
1178 }
1179
1180 /* Networking protocol blocks we attach to sockets.
1181 * socket layer -> transport layer interface
1182 */
1183 struct proto {
1184 void (*close)(struct sock *sk,
1185 long timeout);
1186 int (*pre_connect)(struct sock *sk,
1187 struct sockaddr *uaddr,
1188 int addr_len);
1189 int (*connect)(struct sock *sk,
1190 struct sockaddr *uaddr,
1191 int addr_len);
1192 int (*disconnect)(struct sock *sk, int flags);
1193
1194 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1195 bool kern);
1196
1197 int (*ioctl)(struct sock *sk, int cmd,
1198 unsigned long arg);
1199 int (*init)(struct sock *sk);
1200 void (*destroy)(struct sock *sk);
1201 void (*shutdown)(struct sock *sk, int how);
1202 int (*setsockopt)(struct sock *sk, int level,
1203 int optname, sockptr_t optval,
1204 unsigned int optlen);
1205 int (*getsockopt)(struct sock *sk, int level,
1206 int optname, char __user *optval,
1207 int __user *option);
1208 void (*keepalive)(struct sock *sk, int valbool);
1209 #ifdef CONFIG_COMPAT
1210 int (*compat_ioctl)(struct sock *sk,
1211 unsigned int cmd, unsigned long arg);
1212 #endif
1213 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1214 size_t len);
1215 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1216 size_t len, int noblock, int flags,
1217 int *addr_len);
1218 int (*sendpage)(struct sock *sk, struct page *page,
1219 int offset, size_t size, int flags);
1220 int (*bind)(struct sock *sk,
1221 struct sockaddr *addr, int addr_len);
1222 int (*bind_add)(struct sock *sk,
1223 struct sockaddr *addr, int addr_len);
1224
1225 int (*backlog_rcv) (struct sock *sk,
1226 struct sk_buff *skb);
1227
1228 void (*release_cb)(struct sock *sk);
1229
1230 /* Keeping track of sk's, looking them up, and port selection methods. */
1231 int (*hash)(struct sock *sk);
1232 void (*unhash)(struct sock *sk);
1233 void (*rehash)(struct sock *sk);
1234 int (*get_port)(struct sock *sk, unsigned short snum);
1235
1236 /* Keeping track of sockets in use */
1237 #ifdef CONFIG_PROC_FS
1238 unsigned int inuse_idx;
1239 #endif
1240
1241 bool (*stream_memory_free)(const struct sock *sk, int wake);
1242 bool (*stream_memory_read)(const struct sock *sk);
1243 /* Memory pressure */
1244 void (*enter_memory_pressure)(struct sock *sk);
1245 void (*leave_memory_pressure)(struct sock *sk);
1246 atomic_long_t *memory_allocated; /* Current allocated memory. */
1247 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1248 /*
1249 * Pressure flag: try to collapse.
1250 * Technical note: it is used by multiple contexts non atomically.
1251 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1252 * All the __sk_mem_schedule() is of this nature: accounting
1253 * is strict, actions are advisory and have some latency.
1254 */
1255 unsigned long *memory_pressure;
1256 long *sysctl_mem;
1257
1258 int *sysctl_wmem;
1259 int *sysctl_rmem;
1260 u32 sysctl_wmem_offset;
1261 u32 sysctl_rmem_offset;
1262
1263 int max_header;
1264 bool no_autobind;
1265
1266 struct kmem_cache *slab;
1267 unsigned int obj_size;
1268 slab_flags_t slab_flags;
1269 unsigned int useroffset; /* Usercopy region offset */
1270 unsigned int usersize; /* Usercopy region size */
1271
1272 struct percpu_counter *orphan_count;
1273
1274 struct request_sock_ops *rsk_prot;
1275 struct timewait_sock_ops *twsk_prot;
1276
1277 union {
1278 struct inet_hashinfo *hashinfo;
1279 struct udp_table *udp_table;
1280 struct raw_hashinfo *raw_hash;
1281 struct smc_hashinfo *smc_hash;
1282 } h;
1283
1284 struct module *owner;
1285
1286 char name[32];
1287
1288 struct list_head node;
1289 #ifdef SOCK_REFCNT_DEBUG
1290 atomic_t socks;
1291 #endif
1292 int (*diag_destroy)(struct sock *sk, int err);
1293 } __randomize_layout;
1294
1295 int proto_register(struct proto *prot, int alloc_slab);
1296 void proto_unregister(struct proto *prot);
1297 int sock_load_diag_module(int family, int protocol);
1298
1299 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1300 static inline void sk_refcnt_debug_inc(struct sock *sk)
1301 {
1302 atomic_inc(&sk->sk_prot->socks);
1303 }
1304
sk_refcnt_debug_dec(struct sock * sk)1305 static inline void sk_refcnt_debug_dec(struct sock *sk)
1306 {
1307 atomic_dec(&sk->sk_prot->socks);
1308 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1309 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1310 }
1311
sk_refcnt_debug_release(const struct sock * sk)1312 static inline void sk_refcnt_debug_release(const struct sock *sk)
1313 {
1314 if (refcount_read(&sk->sk_refcnt) != 1)
1315 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1316 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1317 }
1318 #else /* SOCK_REFCNT_DEBUG */
1319 #define sk_refcnt_debug_inc(sk) do { } while (0)
1320 #define sk_refcnt_debug_dec(sk) do { } while (0)
1321 #define sk_refcnt_debug_release(sk) do { } while (0)
1322 #endif /* SOCK_REFCNT_DEBUG */
1323
__sk_stream_memory_free(const struct sock * sk,int wake)1324 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1325 {
1326 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1327 return false;
1328
1329 return sk->sk_prot->stream_memory_free ?
1330 sk->sk_prot->stream_memory_free(sk, wake) : true;
1331 }
1332
sk_stream_memory_free(const struct sock * sk)1333 static inline bool sk_stream_memory_free(const struct sock *sk)
1334 {
1335 return __sk_stream_memory_free(sk, 0);
1336 }
1337
__sk_stream_is_writeable(const struct sock * sk,int wake)1338 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1339 {
1340 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1341 __sk_stream_memory_free(sk, wake);
1342 }
1343
sk_stream_is_writeable(const struct sock * sk)1344 static inline bool sk_stream_is_writeable(const struct sock *sk)
1345 {
1346 return __sk_stream_is_writeable(sk, 0);
1347 }
1348
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1349 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1350 struct cgroup *ancestor)
1351 {
1352 #ifdef CONFIG_SOCK_CGROUP_DATA
1353 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1354 ancestor);
1355 #else
1356 return -ENOTSUPP;
1357 #endif
1358 }
1359
sk_has_memory_pressure(const struct sock * sk)1360 static inline bool sk_has_memory_pressure(const struct sock *sk)
1361 {
1362 return sk->sk_prot->memory_pressure != NULL;
1363 }
1364
sk_under_global_memory_pressure(const struct sock * sk)1365 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1366 {
1367 return sk->sk_prot->memory_pressure &&
1368 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1369 }
1370
sk_under_memory_pressure(const struct sock * sk)1371 static inline bool sk_under_memory_pressure(const struct sock *sk)
1372 {
1373 if (!sk->sk_prot->memory_pressure)
1374 return false;
1375
1376 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1377 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1378 return true;
1379
1380 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1381 }
1382
1383 static inline long
sk_memory_allocated(const struct sock * sk)1384 sk_memory_allocated(const struct sock *sk)
1385 {
1386 return atomic_long_read(sk->sk_prot->memory_allocated);
1387 }
1388
1389 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1390 sk_memory_allocated_add(struct sock *sk, int amt)
1391 {
1392 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1393 }
1394
1395 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1396 sk_memory_allocated_sub(struct sock *sk, int amt)
1397 {
1398 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1399 }
1400
sk_sockets_allocated_dec(struct sock * sk)1401 static inline void sk_sockets_allocated_dec(struct sock *sk)
1402 {
1403 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1404 }
1405
sk_sockets_allocated_inc(struct sock * sk)1406 static inline void sk_sockets_allocated_inc(struct sock *sk)
1407 {
1408 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1409 }
1410
1411 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1412 sk_sockets_allocated_read_positive(struct sock *sk)
1413 {
1414 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1415 }
1416
1417 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1418 proto_sockets_allocated_sum_positive(struct proto *prot)
1419 {
1420 return percpu_counter_sum_positive(prot->sockets_allocated);
1421 }
1422
1423 static inline long
proto_memory_allocated(struct proto * prot)1424 proto_memory_allocated(struct proto *prot)
1425 {
1426 return atomic_long_read(prot->memory_allocated);
1427 }
1428
1429 static inline bool
proto_memory_pressure(struct proto * prot)1430 proto_memory_pressure(struct proto *prot)
1431 {
1432 if (!prot->memory_pressure)
1433 return false;
1434 return !!READ_ONCE(*prot->memory_pressure);
1435 }
1436
1437
1438 #ifdef CONFIG_PROC_FS
1439 /* Called with local bh disabled */
1440 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1441 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1442 int sock_inuse_get(struct net *net);
1443 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1444 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1445 int inc)
1446 {
1447 }
1448 #endif
1449
1450
1451 /* With per-bucket locks this operation is not-atomic, so that
1452 * this version is not worse.
1453 */
__sk_prot_rehash(struct sock * sk)1454 static inline int __sk_prot_rehash(struct sock *sk)
1455 {
1456 sk->sk_prot->unhash(sk);
1457 return sk->sk_prot->hash(sk);
1458 }
1459
1460 /* About 10 seconds */
1461 #define SOCK_DESTROY_TIME (10*HZ)
1462
1463 /* Sockets 0-1023 can't be bound to unless you are superuser */
1464 #define PROT_SOCK 1024
1465
1466 #define SHUTDOWN_MASK 3
1467 #define RCV_SHUTDOWN 1
1468 #define SEND_SHUTDOWN 2
1469
1470 #define SOCK_SNDBUF_LOCK 1
1471 #define SOCK_RCVBUF_LOCK 2
1472 #define SOCK_BINDADDR_LOCK 4
1473 #define SOCK_BINDPORT_LOCK 8
1474
1475 struct socket_alloc {
1476 struct socket socket;
1477 struct inode vfs_inode;
1478 };
1479
SOCKET_I(struct inode * inode)1480 static inline struct socket *SOCKET_I(struct inode *inode)
1481 {
1482 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1483 }
1484
SOCK_INODE(struct socket * socket)1485 static inline struct inode *SOCK_INODE(struct socket *socket)
1486 {
1487 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1488 }
1489
1490 /*
1491 * Functions for memory accounting
1492 */
1493 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1494 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1495 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1496 void __sk_mem_reclaim(struct sock *sk, int amount);
1497
1498 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1499 * do not necessarily have 16x time more memory than 4KB ones.
1500 */
1501 #define SK_MEM_QUANTUM 4096
1502 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1503 #define SK_MEM_SEND 0
1504 #define SK_MEM_RECV 1
1505
1506 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1507 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1508 {
1509 long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1510
1511 #if PAGE_SIZE > SK_MEM_QUANTUM
1512 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1513 #elif PAGE_SIZE < SK_MEM_QUANTUM
1514 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1515 #endif
1516 return val;
1517 }
1518
sk_mem_pages(int amt)1519 static inline int sk_mem_pages(int amt)
1520 {
1521 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1522 }
1523
sk_has_account(struct sock * sk)1524 static inline bool sk_has_account(struct sock *sk)
1525 {
1526 /* return true if protocol supports memory accounting */
1527 return !!sk->sk_prot->memory_allocated;
1528 }
1529
sk_wmem_schedule(struct sock * sk,int size)1530 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1531 {
1532 int delta;
1533
1534 if (!sk_has_account(sk))
1535 return true;
1536 delta = size - sk->sk_forward_alloc;
1537 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1538 }
1539
1540 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1541 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1542 {
1543 int delta;
1544
1545 if (!sk_has_account(sk))
1546 return true;
1547 delta = size - sk->sk_forward_alloc;
1548 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1549 skb_pfmemalloc(skb);
1550 }
1551
sk_mem_reclaim(struct sock * sk)1552 static inline void sk_mem_reclaim(struct sock *sk)
1553 {
1554 if (!sk_has_account(sk))
1555 return;
1556 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1557 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1558 }
1559
sk_mem_reclaim_partial(struct sock * sk)1560 static inline void sk_mem_reclaim_partial(struct sock *sk)
1561 {
1562 if (!sk_has_account(sk))
1563 return;
1564 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1565 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1566 }
1567
sk_mem_charge(struct sock * sk,int size)1568 static inline void sk_mem_charge(struct sock *sk, int size)
1569 {
1570 if (!sk_has_account(sk))
1571 return;
1572 sk->sk_forward_alloc -= size;
1573 }
1574
sk_mem_uncharge(struct sock * sk,int size)1575 static inline void sk_mem_uncharge(struct sock *sk, int size)
1576 {
1577 if (!sk_has_account(sk))
1578 return;
1579 sk->sk_forward_alloc += size;
1580
1581 /* Avoid a possible overflow.
1582 * TCP send queues can make this happen, if sk_mem_reclaim()
1583 * is not called and more than 2 GBytes are released at once.
1584 *
1585 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1586 * no need to hold that much forward allocation anyway.
1587 */
1588 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1589 __sk_mem_reclaim(sk, 1 << 20);
1590 }
1591
1592 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1593 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1594 {
1595 sk_wmem_queued_add(sk, -skb->truesize);
1596 sk_mem_uncharge(sk, skb->truesize);
1597 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1598 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1599 skb_ext_reset(skb);
1600 skb_zcopy_clear(skb, true);
1601 sk->sk_tx_skb_cache = skb;
1602 return;
1603 }
1604 __kfree_skb(skb);
1605 }
1606
sock_release_ownership(struct sock * sk)1607 static inline void sock_release_ownership(struct sock *sk)
1608 {
1609 if (sk->sk_lock.owned) {
1610 sk->sk_lock.owned = 0;
1611
1612 /* The sk_lock has mutex_unlock() semantics: */
1613 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1614 }
1615 }
1616
1617 /*
1618 * Macro so as to not evaluate some arguments when
1619 * lockdep is not enabled.
1620 *
1621 * Mark both the sk_lock and the sk_lock.slock as a
1622 * per-address-family lock class.
1623 */
1624 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1625 do { \
1626 sk->sk_lock.owned = 0; \
1627 init_waitqueue_head(&sk->sk_lock.wq); \
1628 spin_lock_init(&(sk)->sk_lock.slock); \
1629 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1630 sizeof((sk)->sk_lock)); \
1631 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1632 (skey), (sname)); \
1633 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1634 } while (0)
1635
1636 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1637 static inline bool lockdep_sock_is_held(const struct sock *sk)
1638 {
1639 return lockdep_is_held(&sk->sk_lock) ||
1640 lockdep_is_held(&sk->sk_lock.slock);
1641 }
1642 #endif
1643
1644 void lock_sock_nested(struct sock *sk, int subclass);
1645
lock_sock(struct sock * sk)1646 static inline void lock_sock(struct sock *sk)
1647 {
1648 lock_sock_nested(sk, 0);
1649 }
1650
1651 void __release_sock(struct sock *sk);
1652 void release_sock(struct sock *sk);
1653
1654 /* BH context may only use the following locking interface. */
1655 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1656 #define bh_lock_sock_nested(__sk) \
1657 spin_lock_nested(&((__sk)->sk_lock.slock), \
1658 SINGLE_DEPTH_NESTING)
1659 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1660
1661 bool lock_sock_fast(struct sock *sk);
1662 /**
1663 * unlock_sock_fast - complement of lock_sock_fast
1664 * @sk: socket
1665 * @slow: slow mode
1666 *
1667 * fast unlock socket for user context.
1668 * If slow mode is on, we call regular release_sock()
1669 */
unlock_sock_fast(struct sock * sk,bool slow)1670 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1671 {
1672 if (slow)
1673 release_sock(sk);
1674 else
1675 spin_unlock_bh(&sk->sk_lock.slock);
1676 }
1677
1678 /* Used by processes to "lock" a socket state, so that
1679 * interrupts and bottom half handlers won't change it
1680 * from under us. It essentially blocks any incoming
1681 * packets, so that we won't get any new data or any
1682 * packets that change the state of the socket.
1683 *
1684 * While locked, BH processing will add new packets to
1685 * the backlog queue. This queue is processed by the
1686 * owner of the socket lock right before it is released.
1687 *
1688 * Since ~2.3.5 it is also exclusive sleep lock serializing
1689 * accesses from user process context.
1690 */
1691
sock_owned_by_me(const struct sock * sk)1692 static inline void sock_owned_by_me(const struct sock *sk)
1693 {
1694 #ifdef CONFIG_LOCKDEP
1695 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1696 #endif
1697 }
1698
sock_owned_by_user(const struct sock * sk)1699 static inline bool sock_owned_by_user(const struct sock *sk)
1700 {
1701 sock_owned_by_me(sk);
1702 return sk->sk_lock.owned;
1703 }
1704
sock_owned_by_user_nocheck(const struct sock * sk)1705 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1706 {
1707 return sk->sk_lock.owned;
1708 }
1709
1710 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1711 static inline bool sock_allow_reclassification(const struct sock *csk)
1712 {
1713 struct sock *sk = (struct sock *)csk;
1714
1715 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1716 }
1717
1718 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1719 struct proto *prot, int kern);
1720 void sk_free(struct sock *sk);
1721 void sk_destruct(struct sock *sk);
1722 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1723 void sk_free_unlock_clone(struct sock *sk);
1724
1725 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1726 gfp_t priority);
1727 void __sock_wfree(struct sk_buff *skb);
1728 void sock_wfree(struct sk_buff *skb);
1729 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1730 gfp_t priority);
1731 void skb_orphan_partial(struct sk_buff *skb);
1732 void sock_rfree(struct sk_buff *skb);
1733 void sock_efree(struct sk_buff *skb);
1734 #ifdef CONFIG_INET
1735 void sock_edemux(struct sk_buff *skb);
1736 void sock_pfree(struct sk_buff *skb);
1737 #else
1738 #define sock_edemux sock_efree
1739 #endif
1740
1741 int sock_setsockopt(struct socket *sock, int level, int op,
1742 sockptr_t optval, unsigned int optlen);
1743
1744 int sock_getsockopt(struct socket *sock, int level, int op,
1745 char __user *optval, int __user *optlen);
1746 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1747 bool timeval, bool time32);
1748 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1749 int noblock, int *errcode);
1750 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1751 unsigned long data_len, int noblock,
1752 int *errcode, int max_page_order);
1753 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1754 void sock_kfree_s(struct sock *sk, void *mem, int size);
1755 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1756 void sk_send_sigurg(struct sock *sk);
1757
1758 struct sockcm_cookie {
1759 u64 transmit_time;
1760 u32 mark;
1761 u16 tsflags;
1762 };
1763
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1764 static inline void sockcm_init(struct sockcm_cookie *sockc,
1765 const struct sock *sk)
1766 {
1767 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1768 }
1769
1770 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1771 struct sockcm_cookie *sockc);
1772 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1773 struct sockcm_cookie *sockc);
1774
1775 /*
1776 * Functions to fill in entries in struct proto_ops when a protocol
1777 * does not implement a particular function.
1778 */
1779 int sock_no_bind(struct socket *, struct sockaddr *, int);
1780 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1781 int sock_no_socketpair(struct socket *, struct socket *);
1782 int sock_no_accept(struct socket *, struct socket *, int, bool);
1783 int sock_no_getname(struct socket *, struct sockaddr *, int);
1784 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1785 int sock_no_listen(struct socket *, int);
1786 int sock_no_shutdown(struct socket *, int);
1787 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1788 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1789 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1790 int sock_no_mmap(struct file *file, struct socket *sock,
1791 struct vm_area_struct *vma);
1792 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1793 size_t size, int flags);
1794 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1795 int offset, size_t size, int flags);
1796
1797 /*
1798 * Functions to fill in entries in struct proto_ops when a protocol
1799 * uses the inet style.
1800 */
1801 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1802 char __user *optval, int __user *optlen);
1803 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1804 int flags);
1805 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1806 sockptr_t optval, unsigned int optlen);
1807
1808 void sk_common_release(struct sock *sk);
1809
1810 /*
1811 * Default socket callbacks and setup code
1812 */
1813
1814 /* Initialise core socket variables using an explicit uid. */
1815 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1816
1817 /* Initialise core socket variables.
1818 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1819 */
1820 void sock_init_data(struct socket *sock, struct sock *sk);
1821
1822 /*
1823 * Socket reference counting postulates.
1824 *
1825 * * Each user of socket SHOULD hold a reference count.
1826 * * Each access point to socket (an hash table bucket, reference from a list,
1827 * running timer, skb in flight MUST hold a reference count.
1828 * * When reference count hits 0, it means it will never increase back.
1829 * * When reference count hits 0, it means that no references from
1830 * outside exist to this socket and current process on current CPU
1831 * is last user and may/should destroy this socket.
1832 * * sk_free is called from any context: process, BH, IRQ. When
1833 * it is called, socket has no references from outside -> sk_free
1834 * may release descendant resources allocated by the socket, but
1835 * to the time when it is called, socket is NOT referenced by any
1836 * hash tables, lists etc.
1837 * * Packets, delivered from outside (from network or from another process)
1838 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1839 * when they sit in queue. Otherwise, packets will leak to hole, when
1840 * socket is looked up by one cpu and unhasing is made by another CPU.
1841 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1842 * (leak to backlog). Packet socket does all the processing inside
1843 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1844 * use separate SMP lock, so that they are prone too.
1845 */
1846
1847 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1848 static inline void sock_put(struct sock *sk)
1849 {
1850 if (refcount_dec_and_test(&sk->sk_refcnt))
1851 sk_free(sk);
1852 }
1853 /* Generic version of sock_put(), dealing with all sockets
1854 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1855 */
1856 void sock_gen_put(struct sock *sk);
1857
1858 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1859 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1860 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1861 const int nested)
1862 {
1863 return __sk_receive_skb(sk, skb, nested, 1, true);
1864 }
1865
sk_tx_queue_set(struct sock * sk,int tx_queue)1866 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1867 {
1868 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1869 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1870 return;
1871 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1872 * other WRITE_ONCE() because socket lock might be not held.
1873 */
1874 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1875 }
1876
1877 #define NO_QUEUE_MAPPING USHRT_MAX
1878
sk_tx_queue_clear(struct sock * sk)1879 static inline void sk_tx_queue_clear(struct sock *sk)
1880 {
1881 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1882 * other WRITE_ONCE() because socket lock might be not held.
1883 */
1884 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1885 }
1886
sk_tx_queue_get(const struct sock * sk)1887 static inline int sk_tx_queue_get(const struct sock *sk)
1888 {
1889 if (sk) {
1890 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1891 * and sk_tx_queue_set().
1892 */
1893 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1894
1895 if (val != NO_QUEUE_MAPPING)
1896 return val;
1897 }
1898 return -1;
1899 }
1900
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1901 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1902 {
1903 #ifdef CONFIG_XPS
1904 if (skb_rx_queue_recorded(skb)) {
1905 u16 rx_queue = skb_get_rx_queue(skb);
1906
1907 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1908 return;
1909
1910 sk->sk_rx_queue_mapping = rx_queue;
1911 }
1912 #endif
1913 }
1914
sk_rx_queue_clear(struct sock * sk)1915 static inline void sk_rx_queue_clear(struct sock *sk)
1916 {
1917 #ifdef CONFIG_XPS
1918 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1919 #endif
1920 }
1921
1922 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1923 static inline int sk_rx_queue_get(const struct sock *sk)
1924 {
1925 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1926 return sk->sk_rx_queue_mapping;
1927
1928 return -1;
1929 }
1930 #endif
1931
sk_set_socket(struct sock * sk,struct socket * sock)1932 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1933 {
1934 sk->sk_socket = sock;
1935 }
1936
sk_sleep(struct sock * sk)1937 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1938 {
1939 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1940 return &rcu_dereference_raw(sk->sk_wq)->wait;
1941 }
1942 /* Detach socket from process context.
1943 * Announce socket dead, detach it from wait queue and inode.
1944 * Note that parent inode held reference count on this struct sock,
1945 * we do not release it in this function, because protocol
1946 * probably wants some additional cleanups or even continuing
1947 * to work with this socket (TCP).
1948 */
sock_orphan(struct sock * sk)1949 static inline void sock_orphan(struct sock *sk)
1950 {
1951 write_lock_bh(&sk->sk_callback_lock);
1952 sock_set_flag(sk, SOCK_DEAD);
1953 sk_set_socket(sk, NULL);
1954 sk->sk_wq = NULL;
1955 write_unlock_bh(&sk->sk_callback_lock);
1956 }
1957
sock_graft(struct sock * sk,struct socket * parent)1958 static inline void sock_graft(struct sock *sk, struct socket *parent)
1959 {
1960 WARN_ON(parent->sk);
1961 write_lock_bh(&sk->sk_callback_lock);
1962 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1963 parent->sk = sk;
1964 sk_set_socket(sk, parent);
1965 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1966 security_sock_graft(sk, parent);
1967 write_unlock_bh(&sk->sk_callback_lock);
1968 }
1969
1970 kuid_t sock_i_uid(struct sock *sk);
1971 unsigned long __sock_i_ino(struct sock *sk);
1972 unsigned long sock_i_ino(struct sock *sk);
1973
sock_net_uid(const struct net * net,const struct sock * sk)1974 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1975 {
1976 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1977 }
1978
net_tx_rndhash(void)1979 static inline u32 net_tx_rndhash(void)
1980 {
1981 u32 v = prandom_u32();
1982
1983 return v ?: 1;
1984 }
1985
sk_set_txhash(struct sock * sk)1986 static inline void sk_set_txhash(struct sock *sk)
1987 {
1988 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1989 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1990 }
1991
sk_rethink_txhash(struct sock * sk)1992 static inline bool sk_rethink_txhash(struct sock *sk)
1993 {
1994 if (sk->sk_txhash) {
1995 sk_set_txhash(sk);
1996 return true;
1997 }
1998 return false;
1999 }
2000
2001 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2002 __sk_dst_get(struct sock *sk)
2003 {
2004 return rcu_dereference_check(sk->sk_dst_cache,
2005 lockdep_sock_is_held(sk));
2006 }
2007
2008 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2009 sk_dst_get(struct sock *sk)
2010 {
2011 struct dst_entry *dst;
2012
2013 rcu_read_lock();
2014 dst = rcu_dereference(sk->sk_dst_cache);
2015 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2016 dst = NULL;
2017 rcu_read_unlock();
2018 return dst;
2019 }
2020
__dst_negative_advice(struct sock * sk)2021 static inline void __dst_negative_advice(struct sock *sk)
2022 {
2023 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2024
2025 if (dst && dst->ops->negative_advice) {
2026 ndst = dst->ops->negative_advice(dst);
2027
2028 if (ndst != dst) {
2029 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2030 sk_tx_queue_clear(sk);
2031 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2032 }
2033 }
2034 }
2035
dst_negative_advice(struct sock * sk)2036 static inline void dst_negative_advice(struct sock *sk)
2037 {
2038 sk_rethink_txhash(sk);
2039 __dst_negative_advice(sk);
2040 }
2041
2042 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2043 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2044 {
2045 struct dst_entry *old_dst;
2046
2047 sk_tx_queue_clear(sk);
2048 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2049 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2050 lockdep_sock_is_held(sk));
2051 rcu_assign_pointer(sk->sk_dst_cache, dst);
2052 dst_release(old_dst);
2053 }
2054
2055 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2056 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2057 {
2058 struct dst_entry *old_dst;
2059
2060 sk_tx_queue_clear(sk);
2061 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2062 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2063 dst_release(old_dst);
2064 }
2065
2066 static inline void
__sk_dst_reset(struct sock * sk)2067 __sk_dst_reset(struct sock *sk)
2068 {
2069 __sk_dst_set(sk, NULL);
2070 }
2071
2072 static inline void
sk_dst_reset(struct sock * sk)2073 sk_dst_reset(struct sock *sk)
2074 {
2075 sk_dst_set(sk, NULL);
2076 }
2077
2078 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2079
2080 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2081
sk_dst_confirm(struct sock * sk)2082 static inline void sk_dst_confirm(struct sock *sk)
2083 {
2084 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2085 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2086 }
2087
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2088 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2089 {
2090 if (skb_get_dst_pending_confirm(skb)) {
2091 struct sock *sk = skb->sk;
2092 unsigned long now = jiffies;
2093
2094 /* avoid dirtying neighbour */
2095 if (READ_ONCE(n->confirmed) != now)
2096 WRITE_ONCE(n->confirmed, now);
2097 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2098 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2099 }
2100 }
2101
2102 bool sk_mc_loop(struct sock *sk);
2103
sk_can_gso(const struct sock * sk)2104 static inline bool sk_can_gso(const struct sock *sk)
2105 {
2106 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2107 }
2108
2109 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2110
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2111 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2112 {
2113 sk->sk_route_nocaps |= flags;
2114 sk->sk_route_caps &= ~flags;
2115 }
2116
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2117 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2118 struct iov_iter *from, char *to,
2119 int copy, int offset)
2120 {
2121 if (skb->ip_summed == CHECKSUM_NONE) {
2122 __wsum csum = 0;
2123 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2124 return -EFAULT;
2125 skb->csum = csum_block_add(skb->csum, csum, offset);
2126 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2127 if (!copy_from_iter_full_nocache(to, copy, from))
2128 return -EFAULT;
2129 } else if (!copy_from_iter_full(to, copy, from))
2130 return -EFAULT;
2131
2132 return 0;
2133 }
2134
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2135 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2136 struct iov_iter *from, int copy)
2137 {
2138 int err, offset = skb->len;
2139
2140 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2141 copy, offset);
2142 if (err)
2143 __skb_trim(skb, offset);
2144
2145 return err;
2146 }
2147
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2148 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2149 struct sk_buff *skb,
2150 struct page *page,
2151 int off, int copy)
2152 {
2153 int err;
2154
2155 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2156 copy, skb->len);
2157 if (err)
2158 return err;
2159
2160 skb->len += copy;
2161 skb->data_len += copy;
2162 skb->truesize += copy;
2163 sk_wmem_queued_add(sk, copy);
2164 sk_mem_charge(sk, copy);
2165 return 0;
2166 }
2167
2168 /**
2169 * sk_wmem_alloc_get - returns write allocations
2170 * @sk: socket
2171 *
2172 * Return: sk_wmem_alloc minus initial offset of one
2173 */
sk_wmem_alloc_get(const struct sock * sk)2174 static inline int sk_wmem_alloc_get(const struct sock *sk)
2175 {
2176 return refcount_read(&sk->sk_wmem_alloc) - 1;
2177 }
2178
2179 /**
2180 * sk_rmem_alloc_get - returns read allocations
2181 * @sk: socket
2182 *
2183 * Return: sk_rmem_alloc
2184 */
sk_rmem_alloc_get(const struct sock * sk)2185 static inline int sk_rmem_alloc_get(const struct sock *sk)
2186 {
2187 return atomic_read(&sk->sk_rmem_alloc);
2188 }
2189
2190 /**
2191 * sk_has_allocations - check if allocations are outstanding
2192 * @sk: socket
2193 *
2194 * Return: true if socket has write or read allocations
2195 */
sk_has_allocations(const struct sock * sk)2196 static inline bool sk_has_allocations(const struct sock *sk)
2197 {
2198 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2199 }
2200
2201 /**
2202 * skwq_has_sleeper - check if there are any waiting processes
2203 * @wq: struct socket_wq
2204 *
2205 * Return: true if socket_wq has waiting processes
2206 *
2207 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2208 * barrier call. They were added due to the race found within the tcp code.
2209 *
2210 * Consider following tcp code paths::
2211 *
2212 * CPU1 CPU2
2213 * sys_select receive packet
2214 * ... ...
2215 * __add_wait_queue update tp->rcv_nxt
2216 * ... ...
2217 * tp->rcv_nxt check sock_def_readable
2218 * ... {
2219 * schedule rcu_read_lock();
2220 * wq = rcu_dereference(sk->sk_wq);
2221 * if (wq && waitqueue_active(&wq->wait))
2222 * wake_up_interruptible(&wq->wait)
2223 * ...
2224 * }
2225 *
2226 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2227 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2228 * could then endup calling schedule and sleep forever if there are no more
2229 * data on the socket.
2230 *
2231 */
skwq_has_sleeper(struct socket_wq * wq)2232 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2233 {
2234 return wq && wq_has_sleeper(&wq->wait);
2235 }
2236
2237 /**
2238 * sock_poll_wait - place memory barrier behind the poll_wait call.
2239 * @filp: file
2240 * @sock: socket to wait on
2241 * @p: poll_table
2242 *
2243 * See the comments in the wq_has_sleeper function.
2244 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2245 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2246 poll_table *p)
2247 {
2248 if (!poll_does_not_wait(p)) {
2249 poll_wait(filp, &sock->wq.wait, p);
2250 /* We need to be sure we are in sync with the
2251 * socket flags modification.
2252 *
2253 * This memory barrier is paired in the wq_has_sleeper.
2254 */
2255 smp_mb();
2256 }
2257 }
2258
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2259 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2260 {
2261 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2262 u32 txhash = READ_ONCE(sk->sk_txhash);
2263
2264 if (txhash) {
2265 skb->l4_hash = 1;
2266 skb->hash = txhash;
2267 }
2268 }
2269
2270 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2271
2272 /*
2273 * Queue a received datagram if it will fit. Stream and sequenced
2274 * protocols can't normally use this as they need to fit buffers in
2275 * and play with them.
2276 *
2277 * Inlined as it's very short and called for pretty much every
2278 * packet ever received.
2279 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2280 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2281 {
2282 skb_orphan(skb);
2283 skb->sk = sk;
2284 skb->destructor = sock_rfree;
2285 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2286 sk_mem_charge(sk, skb->truesize);
2287 }
2288
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2289 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2290 {
2291 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2292 skb_orphan(skb);
2293 skb->destructor = sock_efree;
2294 skb->sk = sk;
2295 return true;
2296 }
2297 return false;
2298 }
2299
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2300 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2301 {
2302 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2303 if (skb) {
2304 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2305 skb_set_owner_r(skb, sk);
2306 return skb;
2307 }
2308 __kfree_skb(skb);
2309 }
2310 return NULL;
2311 }
2312
2313 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2314 unsigned long expires);
2315
2316 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2317
2318 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2319
2320 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2321 struct sk_buff *skb, unsigned int flags,
2322 void (*destructor)(struct sock *sk,
2323 struct sk_buff *skb));
2324 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2325 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2326
2327 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2328 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2329
2330 /*
2331 * Recover an error report and clear atomically
2332 */
2333
sock_error(struct sock * sk)2334 static inline int sock_error(struct sock *sk)
2335 {
2336 int err;
2337
2338 /* Avoid an atomic operation for the common case.
2339 * This is racy since another cpu/thread can change sk_err under us.
2340 */
2341 if (likely(data_race(!sk->sk_err)))
2342 return 0;
2343
2344 err = xchg(&sk->sk_err, 0);
2345 return -err;
2346 }
2347
sock_wspace(struct sock * sk)2348 static inline unsigned long sock_wspace(struct sock *sk)
2349 {
2350 int amt = 0;
2351
2352 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2353 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2354 if (amt < 0)
2355 amt = 0;
2356 }
2357 return amt;
2358 }
2359
2360 /* Note:
2361 * We use sk->sk_wq_raw, from contexts knowing this
2362 * pointer is not NULL and cannot disappear/change.
2363 */
sk_set_bit(int nr,struct sock * sk)2364 static inline void sk_set_bit(int nr, struct sock *sk)
2365 {
2366 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2367 !sock_flag(sk, SOCK_FASYNC))
2368 return;
2369
2370 set_bit(nr, &sk->sk_wq_raw->flags);
2371 }
2372
sk_clear_bit(int nr,struct sock * sk)2373 static inline void sk_clear_bit(int nr, struct sock *sk)
2374 {
2375 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2376 !sock_flag(sk, SOCK_FASYNC))
2377 return;
2378
2379 clear_bit(nr, &sk->sk_wq_raw->flags);
2380 }
2381
sk_wake_async(const struct sock * sk,int how,int band)2382 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2383 {
2384 if (sock_flag(sk, SOCK_FASYNC)) {
2385 rcu_read_lock();
2386 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2387 rcu_read_unlock();
2388 }
2389 }
2390
2391 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2392 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2393 * Note: for send buffers, TCP works better if we can build two skbs at
2394 * minimum.
2395 */
2396 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2397
2398 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2399 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2400
sk_stream_moderate_sndbuf(struct sock * sk)2401 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2402 {
2403 u32 val;
2404
2405 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2406 return;
2407
2408 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2409
2410 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2411 }
2412
2413 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2414 bool force_schedule);
2415
2416 /**
2417 * sk_page_frag - return an appropriate page_frag
2418 * @sk: socket
2419 *
2420 * Use the per task page_frag instead of the per socket one for
2421 * optimization when we know that we're in process context and own
2422 * everything that's associated with %current.
2423 *
2424 * Both direct reclaim and page faults can nest inside other
2425 * socket operations and end up recursing into sk_page_frag()
2426 * while it's already in use: explicitly avoid task page_frag
2427 * usage if the caller is potentially doing any of them.
2428 * This assumes that page fault handlers use the GFP_NOFS flags.
2429 *
2430 * Return: a per task page_frag if context allows that,
2431 * otherwise a per socket one.
2432 */
sk_page_frag(struct sock * sk)2433 static inline struct page_frag *sk_page_frag(struct sock *sk)
2434 {
2435 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2436 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2437 return ¤t->task_frag;
2438
2439 return &sk->sk_frag;
2440 }
2441
2442 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2443
2444 /*
2445 * Default write policy as shown to user space via poll/select/SIGIO
2446 */
sock_writeable(const struct sock * sk)2447 static inline bool sock_writeable(const struct sock *sk)
2448 {
2449 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2450 }
2451
gfp_any(void)2452 static inline gfp_t gfp_any(void)
2453 {
2454 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2455 }
2456
sock_rcvtimeo(const struct sock * sk,bool noblock)2457 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2458 {
2459 return noblock ? 0 : sk->sk_rcvtimeo;
2460 }
2461
sock_sndtimeo(const struct sock * sk,bool noblock)2462 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2463 {
2464 return noblock ? 0 : sk->sk_sndtimeo;
2465 }
2466
sock_rcvlowat(const struct sock * sk,int waitall,int len)2467 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2468 {
2469 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2470
2471 return v ?: 1;
2472 }
2473
2474 /* Alas, with timeout socket operations are not restartable.
2475 * Compare this to poll().
2476 */
sock_intr_errno(long timeo)2477 static inline int sock_intr_errno(long timeo)
2478 {
2479 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2480 }
2481
2482 struct sock_skb_cb {
2483 u32 dropcount;
2484 };
2485
2486 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2487 * using skb->cb[] would keep using it directly and utilize its
2488 * alignement guarantee.
2489 */
2490 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2491 sizeof(struct sock_skb_cb)))
2492
2493 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2494 SOCK_SKB_CB_OFFSET))
2495
2496 #define sock_skb_cb_check_size(size) \
2497 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2498
2499 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2500 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2501 {
2502 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2503 atomic_read(&sk->sk_drops) : 0;
2504 }
2505
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2506 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2507 {
2508 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2509
2510 atomic_add(segs, &sk->sk_drops);
2511 }
2512
sock_read_timestamp(struct sock * sk)2513 static inline ktime_t sock_read_timestamp(struct sock *sk)
2514 {
2515 #if BITS_PER_LONG==32
2516 unsigned int seq;
2517 ktime_t kt;
2518
2519 do {
2520 seq = read_seqbegin(&sk->sk_stamp_seq);
2521 kt = sk->sk_stamp;
2522 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2523
2524 return kt;
2525 #else
2526 return READ_ONCE(sk->sk_stamp);
2527 #endif
2528 }
2529
sock_write_timestamp(struct sock * sk,ktime_t kt)2530 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2531 {
2532 #if BITS_PER_LONG==32
2533 write_seqlock(&sk->sk_stamp_seq);
2534 sk->sk_stamp = kt;
2535 write_sequnlock(&sk->sk_stamp_seq);
2536 #else
2537 WRITE_ONCE(sk->sk_stamp, kt);
2538 #endif
2539 }
2540
2541 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2542 struct sk_buff *skb);
2543 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2544 struct sk_buff *skb);
2545
2546 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2547 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2548 {
2549 ktime_t kt = skb->tstamp;
2550 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2551
2552 /*
2553 * generate control messages if
2554 * - receive time stamping in software requested
2555 * - software time stamp available and wanted
2556 * - hardware time stamps available and wanted
2557 */
2558 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2559 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2560 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2561 (hwtstamps->hwtstamp &&
2562 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2563 __sock_recv_timestamp(msg, sk, skb);
2564 else
2565 sock_write_timestamp(sk, kt);
2566
2567 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2568 __sock_recv_wifi_status(msg, sk, skb);
2569 }
2570
2571 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2572 struct sk_buff *skb);
2573
2574 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2575 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2576 struct sk_buff *skb)
2577 {
2578 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2579 (1UL << SOCK_RCVTSTAMP))
2580 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2581 SOF_TIMESTAMPING_RAW_HARDWARE)
2582
2583 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2584 __sock_recv_ts_and_drops(msg, sk, skb);
2585 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2586 sock_write_timestamp(sk, skb->tstamp);
2587 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2588 sock_write_timestamp(sk, 0);
2589 }
2590
2591 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2592
2593 /**
2594 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2595 * @sk: socket sending this packet
2596 * @tsflags: timestamping flags to use
2597 * @tx_flags: completed with instructions for time stamping
2598 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2599 *
2600 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2601 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2602 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2603 __u8 *tx_flags, __u32 *tskey)
2604 {
2605 if (unlikely(tsflags)) {
2606 __sock_tx_timestamp(tsflags, tx_flags);
2607 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2608 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2609 *tskey = sk->sk_tskey++;
2610 }
2611 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2612 *tx_flags |= SKBTX_WIFI_STATUS;
2613 }
2614
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2615 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2616 __u8 *tx_flags)
2617 {
2618 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2619 }
2620
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2621 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2622 {
2623 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2624 &skb_shinfo(skb)->tskey);
2625 }
2626
2627 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2628 /**
2629 * sk_eat_skb - Release a skb if it is no longer needed
2630 * @sk: socket to eat this skb from
2631 * @skb: socket buffer to eat
2632 *
2633 * This routine must be called with interrupts disabled or with the socket
2634 * locked so that the sk_buff queue operation is ok.
2635 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2636 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2637 {
2638 __skb_unlink(skb, &sk->sk_receive_queue);
2639 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2640 !sk->sk_rx_skb_cache) {
2641 sk->sk_rx_skb_cache = skb;
2642 skb_orphan(skb);
2643 return;
2644 }
2645 __kfree_skb(skb);
2646 }
2647
2648 static inline
sock_net(const struct sock * sk)2649 struct net *sock_net(const struct sock *sk)
2650 {
2651 return read_pnet(&sk->sk_net);
2652 }
2653
2654 static inline
sock_net_set(struct sock * sk,struct net * net)2655 void sock_net_set(struct sock *sk, struct net *net)
2656 {
2657 write_pnet(&sk->sk_net, net);
2658 }
2659
2660 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2661 skb_sk_is_prefetched(struct sk_buff *skb)
2662 {
2663 #ifdef CONFIG_INET
2664 return skb->destructor == sock_pfree;
2665 #else
2666 return false;
2667 #endif /* CONFIG_INET */
2668 }
2669
2670 /* This helper checks if a socket is a full socket,
2671 * ie _not_ a timewait or request socket.
2672 */
sk_fullsock(const struct sock * sk)2673 static inline bool sk_fullsock(const struct sock *sk)
2674 {
2675 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2676 }
2677
2678 static inline bool
sk_is_refcounted(struct sock * sk)2679 sk_is_refcounted(struct sock *sk)
2680 {
2681 /* Only full sockets have sk->sk_flags. */
2682 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2683 }
2684
2685 /**
2686 * skb_steal_sock - steal a socket from an sk_buff
2687 * @skb: sk_buff to steal the socket from
2688 * @refcounted: is set to true if the socket is reference-counted
2689 */
2690 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2691 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2692 {
2693 if (skb->sk) {
2694 struct sock *sk = skb->sk;
2695
2696 *refcounted = true;
2697 if (skb_sk_is_prefetched(skb))
2698 *refcounted = sk_is_refcounted(sk);
2699 skb->destructor = NULL;
2700 skb->sk = NULL;
2701 return sk;
2702 }
2703 *refcounted = false;
2704 return NULL;
2705 }
2706
2707 /* Checks if this SKB belongs to an HW offloaded socket
2708 * and whether any SW fallbacks are required based on dev.
2709 * Check decrypted mark in case skb_orphan() cleared socket.
2710 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2711 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2712 struct net_device *dev)
2713 {
2714 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2715 struct sock *sk = skb->sk;
2716
2717 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2718 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2719 #ifdef CONFIG_TLS_DEVICE
2720 } else if (unlikely(skb->decrypted)) {
2721 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2722 kfree_skb(skb);
2723 skb = NULL;
2724 #endif
2725 }
2726 #endif
2727
2728 return skb;
2729 }
2730
2731 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2732 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2733 */
sk_listener(const struct sock * sk)2734 static inline bool sk_listener(const struct sock *sk)
2735 {
2736 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2737 }
2738
2739 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2740 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2741 int type);
2742
2743 bool sk_ns_capable(const struct sock *sk,
2744 struct user_namespace *user_ns, int cap);
2745 bool sk_capable(const struct sock *sk, int cap);
2746 bool sk_net_capable(const struct sock *sk, int cap);
2747
2748 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2749
2750 /* Take into consideration the size of the struct sk_buff overhead in the
2751 * determination of these values, since that is non-constant across
2752 * platforms. This makes socket queueing behavior and performance
2753 * not depend upon such differences.
2754 */
2755 #define _SK_MEM_PACKETS 256
2756 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2757 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2758 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2759
2760 extern __u32 sysctl_wmem_max;
2761 extern __u32 sysctl_rmem_max;
2762
2763 extern int sysctl_tstamp_allow_data;
2764 extern int sysctl_optmem_max;
2765
2766 extern __u32 sysctl_wmem_default;
2767 extern __u32 sysctl_rmem_default;
2768
2769 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2770 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2771
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2772 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2773 {
2774 /* Does this proto have per netns sysctl_wmem ? */
2775 if (proto->sysctl_wmem_offset)
2776 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2777
2778 return READ_ONCE(*proto->sysctl_wmem);
2779 }
2780
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2781 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2782 {
2783 /* Does this proto have per netns sysctl_rmem ? */
2784 if (proto->sysctl_rmem_offset)
2785 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2786
2787 return READ_ONCE(*proto->sysctl_rmem);
2788 }
2789
2790 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2791 * Some wifi drivers need to tweak it to get more chunks.
2792 * They can use this helper from their ndo_start_xmit()
2793 */
sk_pacing_shift_update(struct sock * sk,int val)2794 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2795 {
2796 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2797 return;
2798 WRITE_ONCE(sk->sk_pacing_shift, val);
2799 }
2800
2801 /* if a socket is bound to a device, check that the given device
2802 * index is either the same or that the socket is bound to an L3
2803 * master device and the given device index is also enslaved to
2804 * that L3 master
2805 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2806 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2807 {
2808 int mdif;
2809
2810 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2811 return true;
2812
2813 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2814 if (mdif && mdif == sk->sk_bound_dev_if)
2815 return true;
2816
2817 return false;
2818 }
2819
2820 void sock_def_readable(struct sock *sk);
2821
2822 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2823 void sock_enable_timestamps(struct sock *sk);
2824 void sock_no_linger(struct sock *sk);
2825 void sock_set_keepalive(struct sock *sk);
2826 void sock_set_priority(struct sock *sk, u32 priority);
2827 void sock_set_rcvbuf(struct sock *sk, int val);
2828 void sock_set_mark(struct sock *sk, u32 val);
2829 void sock_set_reuseaddr(struct sock *sk);
2830 void sock_set_reuseport(struct sock *sk);
2831 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2832
2833 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2834
2835 #endif /* _SOCK_H */
2836