1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24
25 #ifdef CONFIG_CGROUPS
26
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME 64
40
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 CSS_DYING = (1 << 4), /* css is dying */
56 };
57
58 /* bits in struct cgroup flags field */
59 enum {
60 /* Control Group requires release notifications to userspace */
61 CGRP_NOTIFY_ON_RELEASE,
62 /*
63 * Clone the parent's configuration when creating a new child
64 * cpuset cgroup. For historical reasons, this option can be
65 * specified at mount time and thus is implemented here.
66 */
67 CGRP_CPUSET_CLONE_CHILDREN,
68
69 /* Control group has to be frozen. */
70 CGRP_FREEZE,
71
72 /* Cgroup is frozen. */
73 CGRP_FROZEN,
74 };
75
76 /* cgroup_root->flags */
77 enum {
78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
80
81 /*
82 * Consider namespaces as delegation boundaries. If this flag is
83 * set, controller specific interface files in a namespace root
84 * aren't writeable from inside the namespace.
85 */
86 CGRP_ROOT_NS_DELEGATE = (1 << 3),
87
88 /*
89 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 */
91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92
93 /*
94 * Enable legacy local memory.events.
95 */
96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97
98 /*
99 * Enable recursive subtree protection
100 */
101 CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
102 };
103
104 /* cftype->flags */
105 enum {
106 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
107 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
108 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
109
110 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
111 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
112 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
113 CFTYPE_PRESSURE = (1 << 6), /* only if pressure feature is enabled */
114
115 /* internal flags, do not use outside cgroup core proper */
116 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
117 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
118 };
119
120 /*
121 * cgroup_file is the handle for a file instance created in a cgroup which
122 * is used, for example, to generate file changed notifications. This can
123 * be obtained by setting cftype->file_offset.
124 */
125 struct cgroup_file {
126 /* do not access any fields from outside cgroup core */
127 struct kernfs_node *kn;
128 unsigned long notified_at;
129 struct timer_list notify_timer;
130 };
131
132 /*
133 * Per-subsystem/per-cgroup state maintained by the system. This is the
134 * fundamental structural building block that controllers deal with.
135 *
136 * Fields marked with "PI:" are public and immutable and may be accessed
137 * directly without synchronization.
138 */
139 struct cgroup_subsys_state {
140 /* PI: the cgroup that this css is attached to */
141 struct cgroup *cgroup;
142
143 /* PI: the cgroup subsystem that this css is attached to */
144 struct cgroup_subsys *ss;
145
146 /* reference count - access via css_[try]get() and css_put() */
147 struct percpu_ref refcnt;
148
149 /* siblings list anchored at the parent's ->children */
150 struct list_head sibling;
151 struct list_head children;
152
153 /* flush target list anchored at cgrp->rstat_css_list */
154 struct list_head rstat_css_node;
155
156 /*
157 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
158 * matching css can be looked up using css_from_id().
159 */
160 int id;
161
162 unsigned int flags;
163
164 /*
165 * Monotonically increasing unique serial number which defines a
166 * uniform order among all csses. It's guaranteed that all
167 * ->children lists are in the ascending order of ->serial_nr and
168 * used to allow interrupting and resuming iterations.
169 */
170 u64 serial_nr;
171
172 /*
173 * Incremented by online self and children. Used to guarantee that
174 * parents are not offlined before their children.
175 */
176 atomic_t online_cnt;
177
178 /* percpu_ref killing and RCU release */
179 struct work_struct destroy_work;
180 struct rcu_work destroy_rwork;
181
182 /*
183 * PI: the parent css. Placed here for cache proximity to following
184 * fields of the containing structure.
185 */
186 struct cgroup_subsys_state *parent;
187 };
188
189 /*
190 * A css_set is a structure holding pointers to a set of
191 * cgroup_subsys_state objects. This saves space in the task struct
192 * object and speeds up fork()/exit(), since a single inc/dec and a
193 * list_add()/del() can bump the reference count on the entire cgroup
194 * set for a task.
195 */
196 struct css_set {
197 /*
198 * Set of subsystem states, one for each subsystem. This array is
199 * immutable after creation apart from the init_css_set during
200 * subsystem registration (at boot time).
201 */
202 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
203
204 /* reference count */
205 refcount_t refcount;
206
207 /*
208 * For a domain cgroup, the following points to self. If threaded,
209 * to the matching cset of the nearest domain ancestor. The
210 * dom_cset provides access to the domain cgroup and its csses to
211 * which domain level resource consumptions should be charged.
212 */
213 struct css_set *dom_cset;
214
215 /* the default cgroup associated with this css_set */
216 struct cgroup *dfl_cgrp;
217
218 /* internal task count, protected by css_set_lock */
219 int nr_tasks;
220
221 /*
222 * Lists running through all tasks using this cgroup group.
223 * mg_tasks lists tasks which belong to this cset but are in the
224 * process of being migrated out or in. Protected by
225 * css_set_rwsem, but, during migration, once tasks are moved to
226 * mg_tasks, it can be read safely while holding cgroup_mutex.
227 */
228 struct list_head tasks;
229 struct list_head mg_tasks;
230 struct list_head dying_tasks;
231
232 /* all css_task_iters currently walking this cset */
233 struct list_head task_iters;
234
235 /*
236 * On the default hierarhcy, ->subsys[ssid] may point to a css
237 * attached to an ancestor instead of the cgroup this css_set is
238 * associated with. The following node is anchored at
239 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
240 * iterate through all css's attached to a given cgroup.
241 */
242 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
243
244 /* all threaded csets whose ->dom_cset points to this cset */
245 struct list_head threaded_csets;
246 struct list_head threaded_csets_node;
247
248 /*
249 * List running through all cgroup groups in the same hash
250 * slot. Protected by css_set_lock
251 */
252 struct hlist_node hlist;
253
254 /*
255 * List of cgrp_cset_links pointing at cgroups referenced from this
256 * css_set. Protected by css_set_lock.
257 */
258 struct list_head cgrp_links;
259
260 /*
261 * List of csets participating in the on-going migration either as
262 * source or destination. Protected by cgroup_mutex.
263 */
264 struct list_head mg_preload_node;
265 struct list_head mg_node;
266
267 /*
268 * If this cset is acting as the source of migration the following
269 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
270 * respectively the source and destination cgroups of the on-going
271 * migration. mg_dst_cset is the destination cset the target tasks
272 * on this cset should be migrated to. Protected by cgroup_mutex.
273 */
274 struct cgroup *mg_src_cgrp;
275 struct cgroup *mg_dst_cgrp;
276 struct css_set *mg_dst_cset;
277
278 /* dead and being drained, ignore for migration */
279 bool dead;
280
281 /* For RCU-protected deletion */
282 struct rcu_head rcu_head;
283 };
284
285 struct ext_css_set {
286 struct css_set cset;
287
288 struct list_head mg_src_preload_node;
289 struct list_head mg_dst_preload_node;
290 };
291
292 struct cgroup_base_stat {
293 struct task_cputime cputime;
294 };
295
296 /*
297 * rstat - cgroup scalable recursive statistics. Accounting is done
298 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
299 * hierarchy on reads.
300 *
301 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
302 * linked into the updated tree. On the following read, propagation only
303 * considers and consumes the updated tree. This makes reading O(the
304 * number of descendants which have been active since last read) instead of
305 * O(the total number of descendants).
306 *
307 * This is important because there can be a lot of (draining) cgroups which
308 * aren't active and stat may be read frequently. The combination can
309 * become very expensive. By propagating selectively, increasing reading
310 * frequency decreases the cost of each read.
311 *
312 * This struct hosts both the fields which implement the above -
313 * updated_children and updated_next - and the fields which track basic
314 * resource statistics on top of it - bsync, bstat and last_bstat.
315 */
316 struct cgroup_rstat_cpu {
317 /*
318 * ->bsync protects ->bstat. These are the only fields which get
319 * updated in the hot path.
320 */
321 struct u64_stats_sync bsync;
322 struct cgroup_base_stat bstat;
323
324 /*
325 * Snapshots at the last reading. These are used to calculate the
326 * deltas to propagate to the global counters.
327 */
328 struct cgroup_base_stat last_bstat;
329
330 /*
331 * Child cgroups with stat updates on this cpu since the last read
332 * are linked on the parent's ->updated_children through
333 * ->updated_next.
334 *
335 * In addition to being more compact, singly-linked list pointing
336 * to the cgroup makes it unnecessary for each per-cpu struct to
337 * point back to the associated cgroup.
338 *
339 * Protected by per-cpu cgroup_rstat_cpu_lock.
340 */
341 struct cgroup *updated_children; /* terminated by self cgroup */
342 struct cgroup *updated_next; /* NULL iff not on the list */
343 };
344
345 struct cgroup_freezer_state {
346 /* Should the cgroup and its descendants be frozen. */
347 bool freeze;
348
349 /* Should the cgroup actually be frozen? */
350 int e_freeze;
351
352 /* Fields below are protected by css_set_lock */
353
354 /* Number of frozen descendant cgroups */
355 int nr_frozen_descendants;
356
357 /*
358 * Number of tasks, which are counted as frozen:
359 * frozen, SIGSTOPped, and PTRACEd.
360 */
361 int nr_frozen_tasks;
362 };
363
364 struct cgroup {
365 /* self css with NULL ->ss, points back to this cgroup */
366 struct cgroup_subsys_state self;
367
368 unsigned long flags; /* "unsigned long" so bitops work */
369
370 /*
371 * The depth this cgroup is at. The root is at depth zero and each
372 * step down the hierarchy increments the level. This along with
373 * ancestor_ids[] can determine whether a given cgroup is a
374 * descendant of another without traversing the hierarchy.
375 */
376 int level;
377
378 /* Maximum allowed descent tree depth */
379 int max_depth;
380
381 /*
382 * Keep track of total numbers of visible and dying descent cgroups.
383 * Dying cgroups are cgroups which were deleted by a user,
384 * but are still existing because someone else is holding a reference.
385 * max_descendants is a maximum allowed number of descent cgroups.
386 *
387 * nr_descendants and nr_dying_descendants are protected
388 * by cgroup_mutex and css_set_lock. It's fine to read them holding
389 * any of cgroup_mutex and css_set_lock; for writing both locks
390 * should be held.
391 */
392 int nr_descendants;
393 int nr_dying_descendants;
394 int max_descendants;
395
396 /*
397 * Each non-empty css_set associated with this cgroup contributes
398 * one to nr_populated_csets. The counter is zero iff this cgroup
399 * doesn't have any tasks.
400 *
401 * All children which have non-zero nr_populated_csets and/or
402 * nr_populated_children of their own contribute one to either
403 * nr_populated_domain_children or nr_populated_threaded_children
404 * depending on their type. Each counter is zero iff all cgroups
405 * of the type in the subtree proper don't have any tasks.
406 */
407 int nr_populated_csets;
408 int nr_populated_domain_children;
409 int nr_populated_threaded_children;
410
411 int nr_threaded_children; /* # of live threaded child cgroups */
412
413 struct kernfs_node *kn; /* cgroup kernfs entry */
414 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
415 struct cgroup_file events_file; /* handle for "cgroup.events" */
416
417 /*
418 * The bitmask of subsystems enabled on the child cgroups.
419 * ->subtree_control is the one configured through
420 * "cgroup.subtree_control" while ->child_ss_mask is the effective
421 * one which may have more subsystems enabled. Controller knobs
422 * are made available iff it's enabled in ->subtree_control.
423 */
424 u16 subtree_control;
425 u16 subtree_ss_mask;
426 u16 old_subtree_control;
427 u16 old_subtree_ss_mask;
428
429 /* Private pointers for each registered subsystem */
430 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
431
432 struct cgroup_root *root;
433
434 /*
435 * List of cgrp_cset_links pointing at css_sets with tasks in this
436 * cgroup. Protected by css_set_lock.
437 */
438 struct list_head cset_links;
439
440 /*
441 * On the default hierarchy, a css_set for a cgroup with some
442 * susbsys disabled will point to css's which are associated with
443 * the closest ancestor which has the subsys enabled. The
444 * following lists all css_sets which point to this cgroup's css
445 * for the given subsystem.
446 */
447 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
448
449 /*
450 * If !threaded, self. If threaded, it points to the nearest
451 * domain ancestor. Inside a threaded subtree, cgroups are exempt
452 * from process granularity and no-internal-task constraint.
453 * Domain level resource consumptions which aren't tied to a
454 * specific task are charged to the dom_cgrp.
455 */
456 struct cgroup *dom_cgrp;
457 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
458
459 /* per-cpu recursive resource statistics */
460 struct cgroup_rstat_cpu __percpu *rstat_cpu;
461 struct list_head rstat_css_list;
462
463 /* cgroup basic resource statistics */
464 struct cgroup_base_stat last_bstat;
465 struct cgroup_base_stat bstat;
466 struct prev_cputime prev_cputime; /* for printing out cputime */
467
468 /*
469 * list of pidlists, up to two for each namespace (one for procs, one
470 * for tasks); created on demand.
471 */
472 struct list_head pidlists;
473 struct mutex pidlist_mutex;
474
475 /* used to wait for offlining of csses */
476 wait_queue_head_t offline_waitq;
477
478 /* used to schedule release agent */
479 struct work_struct release_agent_work;
480
481 /* used to track pressure stalls */
482 struct psi_group psi;
483
484 /* used to store eBPF programs */
485 struct cgroup_bpf bpf;
486
487 /* If there is block congestion on this cgroup. */
488 atomic_t congestion_count;
489
490 /* Used to store internal freezer state */
491 struct cgroup_freezer_state freezer;
492
493 /* ids of the ancestors at each level including self */
494 u64 ancestor_ids[];
495 };
496
497 /*
498 * A cgroup_root represents the root of a cgroup hierarchy, and may be
499 * associated with a kernfs_root to form an active hierarchy. This is
500 * internal to cgroup core. Don't access directly from controllers.
501 */
502 struct cgroup_root {
503 struct kernfs_root *kf_root;
504
505 /* The bitmask of subsystems attached to this hierarchy */
506 unsigned int subsys_mask;
507
508 /* Unique id for this hierarchy. */
509 int hierarchy_id;
510
511 /* The root cgroup. Root is destroyed on its release. */
512 struct cgroup cgrp;
513
514 /* for cgrp->ancestor_ids[0] */
515 u64 cgrp_ancestor_id_storage;
516
517 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
518 atomic_t nr_cgrps;
519
520 /* A list running through the active hierarchies */
521 struct list_head root_list;
522
523 /* Hierarchy-specific flags */
524 unsigned int flags;
525
526 /* The path to use for release notifications. */
527 char release_agent_path[PATH_MAX];
528
529 /* The name for this hierarchy - may be empty */
530 char name[MAX_CGROUP_ROOT_NAMELEN];
531 };
532
533 /*
534 * struct cftype: handler definitions for cgroup control files
535 *
536 * When reading/writing to a file:
537 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
538 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
539 */
540 struct cftype {
541 /*
542 * By convention, the name should begin with the name of the
543 * subsystem, followed by a period. Zero length string indicates
544 * end of cftype array.
545 */
546 char name[MAX_CFTYPE_NAME];
547 unsigned long private;
548
549 /*
550 * The maximum length of string, excluding trailing nul, that can
551 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
552 */
553 size_t max_write_len;
554
555 /* CFTYPE_* flags */
556 unsigned int flags;
557
558 /*
559 * If non-zero, should contain the offset from the start of css to
560 * a struct cgroup_file field. cgroup will record the handle of
561 * the created file into it. The recorded handle can be used as
562 * long as the containing css remains accessible.
563 */
564 unsigned int file_offset;
565
566 /*
567 * Fields used for internal bookkeeping. Initialized automatically
568 * during registration.
569 */
570 struct cgroup_subsys *ss; /* NULL for cgroup core files */
571 struct list_head node; /* anchored at ss->cfts */
572 struct kernfs_ops *kf_ops;
573
574 int (*open)(struct kernfs_open_file *of);
575 void (*release)(struct kernfs_open_file *of);
576
577 /*
578 * read_u64() is a shortcut for the common case of returning a
579 * single integer. Use it in place of read()
580 */
581 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
582 /*
583 * read_s64() is a signed version of read_u64()
584 */
585 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
586
587 /* generic seq_file read interface */
588 int (*seq_show)(struct seq_file *sf, void *v);
589
590 /* optional ops, implement all or none */
591 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
592 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
593 void (*seq_stop)(struct seq_file *sf, void *v);
594
595 /*
596 * write_u64() is a shortcut for the common case of accepting
597 * a single integer (as parsed by simple_strtoull) from
598 * userspace. Use in place of write(); return 0 or error.
599 */
600 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
601 u64 val);
602 /*
603 * write_s64() is a signed version of write_u64()
604 */
605 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
606 s64 val);
607
608 /*
609 * write() is the generic write callback which maps directly to
610 * kernfs write operation and overrides all other operations.
611 * Maximum write size is determined by ->max_write_len. Use
612 * of_css/cft() to access the associated css and cft.
613 */
614 ssize_t (*write)(struct kernfs_open_file *of,
615 char *buf, size_t nbytes, loff_t off);
616
617 __poll_t (*poll)(struct kernfs_open_file *of,
618 struct poll_table_struct *pt);
619
620 #ifdef CONFIG_DEBUG_LOCK_ALLOC
621 struct lock_class_key lockdep_key;
622 #endif
623 };
624
625 /*
626 * Control Group subsystem type.
627 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
628 */
629 struct cgroup_subsys {
630 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
631 int (*css_online)(struct cgroup_subsys_state *css);
632 void (*css_offline)(struct cgroup_subsys_state *css);
633 void (*css_released)(struct cgroup_subsys_state *css);
634 void (*css_free)(struct cgroup_subsys_state *css);
635 void (*css_reset)(struct cgroup_subsys_state *css);
636 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
637 int (*css_extra_stat_show)(struct seq_file *seq,
638 struct cgroup_subsys_state *css);
639
640 int (*can_attach)(struct cgroup_taskset *tset);
641 void (*cancel_attach)(struct cgroup_taskset *tset);
642 void (*attach)(struct cgroup_taskset *tset);
643 void (*post_attach)(void);
644 int (*can_fork)(struct task_struct *task,
645 struct css_set *cset);
646 void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
647 void (*fork)(struct task_struct *task);
648 void (*exit)(struct task_struct *task);
649 void (*release)(struct task_struct *task);
650 void (*bind)(struct cgroup_subsys_state *root_css);
651
652 bool early_init:1;
653
654 /*
655 * If %true, the controller, on the default hierarchy, doesn't show
656 * up in "cgroup.controllers" or "cgroup.subtree_control", is
657 * implicitly enabled on all cgroups on the default hierarchy, and
658 * bypasses the "no internal process" constraint. This is for
659 * utility type controllers which is transparent to userland.
660 *
661 * An implicit controller can be stolen from the default hierarchy
662 * anytime and thus must be okay with offline csses from previous
663 * hierarchies coexisting with csses for the current one.
664 */
665 bool implicit_on_dfl:1;
666
667 /*
668 * If %true, the controller, supports threaded mode on the default
669 * hierarchy. In a threaded subtree, both process granularity and
670 * no-internal-process constraint are ignored and a threaded
671 * controllers should be able to handle that.
672 *
673 * Note that as an implicit controller is automatically enabled on
674 * all cgroups on the default hierarchy, it should also be
675 * threaded. implicit && !threaded is not supported.
676 */
677 bool threaded:1;
678
679 /*
680 * If %false, this subsystem is properly hierarchical -
681 * configuration, resource accounting and restriction on a parent
682 * cgroup cover those of its children. If %true, hierarchy support
683 * is broken in some ways - some subsystems ignore hierarchy
684 * completely while others are only implemented half-way.
685 *
686 * It's now disallowed to create nested cgroups if the subsystem is
687 * broken and cgroup core will emit a warning message on such
688 * cases. Eventually, all subsystems will be made properly
689 * hierarchical and this will go away.
690 */
691 bool broken_hierarchy:1;
692 bool warned_broken_hierarchy:1;
693
694 /* the following two fields are initialized automtically during boot */
695 int id;
696 const char *name;
697
698 /* optional, initialized automatically during boot if not set */
699 const char *legacy_name;
700
701 /* link to parent, protected by cgroup_lock() */
702 struct cgroup_root *root;
703
704 /* idr for css->id */
705 struct idr css_idr;
706
707 /*
708 * List of cftypes. Each entry is the first entry of an array
709 * terminated by zero length name.
710 */
711 struct list_head cfts;
712
713 /*
714 * Base cftypes which are automatically registered. The two can
715 * point to the same array.
716 */
717 struct cftype *dfl_cftypes; /* for the default hierarchy */
718 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
719
720 /*
721 * A subsystem may depend on other subsystems. When such subsystem
722 * is enabled on a cgroup, the depended-upon subsystems are enabled
723 * together if available. Subsystems enabled due to dependency are
724 * not visible to userland until explicitly enabled. The following
725 * specifies the mask of subsystems that this one depends on.
726 */
727 unsigned int depends_on;
728 };
729
730 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
731
732 /**
733 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
734 * @tsk: target task
735 *
736 * Allows cgroup operations to synchronize against threadgroup changes
737 * using a percpu_rw_semaphore.
738 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)739 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
740 {
741 percpu_down_read(&cgroup_threadgroup_rwsem);
742 }
743
744 /**
745 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
746 * @tsk: target task
747 *
748 * Counterpart of cgroup_threadcgroup_change_begin().
749 */
cgroup_threadgroup_change_end(struct task_struct * tsk)750 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
751 {
752 percpu_up_read(&cgroup_threadgroup_rwsem);
753 }
754
755 #else /* CONFIG_CGROUPS */
756
757 #define CGROUP_SUBSYS_COUNT 0
758
cgroup_threadgroup_change_begin(struct task_struct * tsk)759 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
760 {
761 might_sleep();
762 }
763
cgroup_threadgroup_change_end(struct task_struct * tsk)764 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
765
766 #endif /* CONFIG_CGROUPS */
767
768 #ifdef CONFIG_SOCK_CGROUP_DATA
769
770 /*
771 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
772 * per-socket cgroup information except for memcg association.
773 *
774 * On legacy hierarchies, net_prio and net_cls controllers directly set
775 * attributes on each sock which can then be tested by the network layer.
776 * On the default hierarchy, each sock is associated with the cgroup it was
777 * created in and the networking layer can match the cgroup directly.
778 *
779 * To avoid carrying all three cgroup related fields separately in sock,
780 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
781 * On boot, sock_cgroup_data records the cgroup that the sock was created
782 * in so that cgroup2 matches can be made; however, once either net_prio or
783 * net_cls starts being used, the area is overriden to carry prioidx and/or
784 * classid. The two modes are distinguished by whether the lowest bit is
785 * set. Clear bit indicates cgroup pointer while set bit prioidx and
786 * classid.
787 *
788 * While userland may start using net_prio or net_cls at any time, once
789 * either is used, cgroup2 matching no longer works. There is no reason to
790 * mix the two and this is in line with how legacy and v2 compatibility is
791 * handled. On mode switch, cgroup references which are already being
792 * pointed to by socks may be leaked. While this can be remedied by adding
793 * synchronization around sock_cgroup_data, given that the number of leaked
794 * cgroups is bound and highly unlikely to be high, this seems to be the
795 * better trade-off.
796 */
797 struct sock_cgroup_data {
798 union {
799 #ifdef __LITTLE_ENDIAN
800 struct {
801 u8 is_data : 1;
802 u8 no_refcnt : 1;
803 u8 unused : 6;
804 u8 padding;
805 u16 prioidx;
806 u32 classid;
807 } __packed;
808 #else
809 struct {
810 u32 classid;
811 u16 prioidx;
812 u8 padding;
813 u8 unused : 6;
814 u8 no_refcnt : 1;
815 u8 is_data : 1;
816 } __packed;
817 #endif
818 u64 val;
819 };
820 };
821
822 /*
823 * There's a theoretical window where the following accessors race with
824 * updaters and return part of the previous pointer as the prioidx or
825 * classid. Such races are short-lived and the result isn't critical.
826 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)827 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
828 {
829 /* fallback to 1 which is always the ID of the root cgroup */
830 return (skcd->is_data & 1) ? skcd->prioidx : 1;
831 }
832
sock_cgroup_classid(const struct sock_cgroup_data * skcd)833 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
834 {
835 /* fallback to 0 which is the unconfigured default classid */
836 return (skcd->is_data & 1) ? skcd->classid : 0;
837 }
838
839 /*
840 * If invoked concurrently, the updaters may clobber each other. The
841 * caller is responsible for synchronization.
842 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)843 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
844 u16 prioidx)
845 {
846 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
847
848 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
849 return;
850
851 if (!(skcd_buf.is_data & 1)) {
852 skcd_buf.val = 0;
853 skcd_buf.is_data = 1;
854 }
855
856 skcd_buf.prioidx = prioidx;
857 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
858 }
859
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)860 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
861 u32 classid)
862 {
863 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
864
865 if (sock_cgroup_classid(&skcd_buf) == classid)
866 return;
867
868 if (!(skcd_buf.is_data & 1)) {
869 skcd_buf.val = 0;
870 skcd_buf.is_data = 1;
871 }
872
873 skcd_buf.classid = classid;
874 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
875 }
876
877 #else /* CONFIG_SOCK_CGROUP_DATA */
878
879 struct sock_cgroup_data {
880 };
881
882 #endif /* CONFIG_SOCK_CGROUP_DATA */
883
884 #endif /* _LINUX_CGROUP_DEFS_H */
885