1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42
43 #include <net/sock.h>
44 #include "util.h"
45
46 struct mqueue_fs_context {
47 struct ipc_namespace *ipc_ns;
48 bool newns; /* Set if newly created ipc namespace */
49 };
50
51 #define MQUEUE_MAGIC 0x19800202
52 #define DIRENT_SIZE 20
53 #define FILENT_SIZE 80
54
55 #define SEND 0
56 #define RECV 1
57
58 #define STATE_NONE 0
59 #define STATE_READY 1
60
61 struct posix_msg_tree_node {
62 struct rb_node rb_node;
63 struct list_head msg_list;
64 int priority;
65 };
66
67 /*
68 * Locking:
69 *
70 * Accesses to a message queue are synchronized by acquiring info->lock.
71 *
72 * There are two notable exceptions:
73 * - The actual wakeup of a sleeping task is performed using the wake_q
74 * framework. info->lock is already released when wake_up_q is called.
75 * - The exit codepaths after sleeping check ext_wait_queue->state without
76 * any locks. If it is STATE_READY, then the syscall is completed without
77 * acquiring info->lock.
78 *
79 * MQ_BARRIER:
80 * To achieve proper release/acquire memory barrier pairing, the state is set to
81 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
82 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
83 *
84 * This prevents the following races:
85 *
86 * 1) With the simple wake_q_add(), the task could be gone already before
87 * the increase of the reference happens
88 * Thread A
89 * Thread B
90 * WRITE_ONCE(wait.state, STATE_NONE);
91 * schedule_hrtimeout()
92 * wake_q_add(A)
93 * if (cmpxchg()) // success
94 * ->state = STATE_READY (reordered)
95 * <timeout returns>
96 * if (wait.state == STATE_READY) return;
97 * sysret to user space
98 * sys_exit()
99 * get_task_struct() // UaF
100 *
101 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
102 * the smp_store_release() that does ->state = STATE_READY.
103 *
104 * 2) Without proper _release/_acquire barriers, the woken up task
105 * could read stale data
106 *
107 * Thread A
108 * Thread B
109 * do_mq_timedreceive
110 * WRITE_ONCE(wait.state, STATE_NONE);
111 * schedule_hrtimeout()
112 * state = STATE_READY;
113 * <timeout returns>
114 * if (wait.state == STATE_READY) return;
115 * msg_ptr = wait.msg; // Access to stale data!
116 * receiver->msg = message; (reordered)
117 *
118 * Solution: use _release and _acquire barriers.
119 *
120 * 3) There is intentionally no barrier when setting current->state
121 * to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
122 * release memory barrier, and the wakeup is triggered when holding
123 * info->lock, i.e. spin_lock(&info->lock) provided a pairing
124 * acquire memory barrier.
125 */
126
127 struct ext_wait_queue { /* queue of sleeping tasks */
128 struct task_struct *task;
129 struct list_head list;
130 struct msg_msg *msg; /* ptr of loaded message */
131 int state; /* one of STATE_* values */
132 };
133
134 struct mqueue_inode_info {
135 spinlock_t lock;
136 struct inode vfs_inode;
137 wait_queue_head_t wait_q;
138
139 struct rb_root msg_tree;
140 struct rb_node *msg_tree_rightmost;
141 struct posix_msg_tree_node *node_cache;
142 struct mq_attr attr;
143
144 struct sigevent notify;
145 struct pid *notify_owner;
146 u32 notify_self_exec_id;
147 struct user_namespace *notify_user_ns;
148 struct user_struct *user; /* user who created, for accounting */
149 struct sock *notify_sock;
150 struct sk_buff *notify_cookie;
151
152 /* for tasks waiting for free space and messages, respectively */
153 struct ext_wait_queue e_wait_q[2];
154
155 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
156 };
157
158 static struct file_system_type mqueue_fs_type;
159 static const struct inode_operations mqueue_dir_inode_operations;
160 static const struct file_operations mqueue_file_operations;
161 static const struct super_operations mqueue_super_ops;
162 static const struct fs_context_operations mqueue_fs_context_ops;
163 static void remove_notification(struct mqueue_inode_info *info);
164
165 static struct kmem_cache *mqueue_inode_cachep;
166
167 static struct ctl_table_header *mq_sysctl_table;
168
MQUEUE_I(struct inode * inode)169 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
170 {
171 return container_of(inode, struct mqueue_inode_info, vfs_inode);
172 }
173
174 /*
175 * This routine should be called with the mq_lock held.
176 */
__get_ns_from_inode(struct inode * inode)177 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
178 {
179 return get_ipc_ns(inode->i_sb->s_fs_info);
180 }
181
get_ns_from_inode(struct inode * inode)182 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
183 {
184 struct ipc_namespace *ns;
185
186 spin_lock(&mq_lock);
187 ns = __get_ns_from_inode(inode);
188 spin_unlock(&mq_lock);
189 return ns;
190 }
191
192 /* Auxiliary functions to manipulate messages' list */
msg_insert(struct msg_msg * msg,struct mqueue_inode_info * info)193 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
194 {
195 struct rb_node **p, *parent = NULL;
196 struct posix_msg_tree_node *leaf;
197 bool rightmost = true;
198
199 p = &info->msg_tree.rb_node;
200 while (*p) {
201 parent = *p;
202 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
203
204 if (likely(leaf->priority == msg->m_type))
205 goto insert_msg;
206 else if (msg->m_type < leaf->priority) {
207 p = &(*p)->rb_left;
208 rightmost = false;
209 } else
210 p = &(*p)->rb_right;
211 }
212 if (info->node_cache) {
213 leaf = info->node_cache;
214 info->node_cache = NULL;
215 } else {
216 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
217 if (!leaf)
218 return -ENOMEM;
219 INIT_LIST_HEAD(&leaf->msg_list);
220 }
221 leaf->priority = msg->m_type;
222
223 if (rightmost)
224 info->msg_tree_rightmost = &leaf->rb_node;
225
226 rb_link_node(&leaf->rb_node, parent, p);
227 rb_insert_color(&leaf->rb_node, &info->msg_tree);
228 insert_msg:
229 info->attr.mq_curmsgs++;
230 info->qsize += msg->m_ts;
231 list_add_tail(&msg->m_list, &leaf->msg_list);
232 return 0;
233 }
234
msg_tree_erase(struct posix_msg_tree_node * leaf,struct mqueue_inode_info * info)235 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
236 struct mqueue_inode_info *info)
237 {
238 struct rb_node *node = &leaf->rb_node;
239
240 if (info->msg_tree_rightmost == node)
241 info->msg_tree_rightmost = rb_prev(node);
242
243 rb_erase(node, &info->msg_tree);
244 if (info->node_cache)
245 kfree(leaf);
246 else
247 info->node_cache = leaf;
248 }
249
msg_get(struct mqueue_inode_info * info)250 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
251 {
252 struct rb_node *parent = NULL;
253 struct posix_msg_tree_node *leaf;
254 struct msg_msg *msg;
255
256 try_again:
257 /*
258 * During insert, low priorities go to the left and high to the
259 * right. On receive, we want the highest priorities first, so
260 * walk all the way to the right.
261 */
262 parent = info->msg_tree_rightmost;
263 if (!parent) {
264 if (info->attr.mq_curmsgs) {
265 pr_warn_once("Inconsistency in POSIX message queue, "
266 "no tree element, but supposedly messages "
267 "should exist!\n");
268 info->attr.mq_curmsgs = 0;
269 }
270 return NULL;
271 }
272 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
273 if (unlikely(list_empty(&leaf->msg_list))) {
274 pr_warn_once("Inconsistency in POSIX message queue, "
275 "empty leaf node but we haven't implemented "
276 "lazy leaf delete!\n");
277 msg_tree_erase(leaf, info);
278 goto try_again;
279 } else {
280 msg = list_first_entry(&leaf->msg_list,
281 struct msg_msg, m_list);
282 list_del(&msg->m_list);
283 if (list_empty(&leaf->msg_list)) {
284 msg_tree_erase(leaf, info);
285 }
286 }
287 info->attr.mq_curmsgs--;
288 info->qsize -= msg->m_ts;
289 return msg;
290 }
291
mqueue_get_inode(struct super_block * sb,struct ipc_namespace * ipc_ns,umode_t mode,struct mq_attr * attr)292 static struct inode *mqueue_get_inode(struct super_block *sb,
293 struct ipc_namespace *ipc_ns, umode_t mode,
294 struct mq_attr *attr)
295 {
296 struct user_struct *u = current_user();
297 struct inode *inode;
298 int ret = -ENOMEM;
299
300 inode = new_inode(sb);
301 if (!inode)
302 goto err;
303
304 inode->i_ino = get_next_ino();
305 inode->i_mode = mode;
306 inode->i_uid = current_fsuid();
307 inode->i_gid = current_fsgid();
308 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
309
310 if (S_ISREG(mode)) {
311 struct mqueue_inode_info *info;
312 unsigned long mq_bytes, mq_treesize;
313
314 inode->i_fop = &mqueue_file_operations;
315 inode->i_size = FILENT_SIZE;
316 /* mqueue specific info */
317 info = MQUEUE_I(inode);
318 spin_lock_init(&info->lock);
319 init_waitqueue_head(&info->wait_q);
320 INIT_LIST_HEAD(&info->e_wait_q[0].list);
321 INIT_LIST_HEAD(&info->e_wait_q[1].list);
322 info->notify_owner = NULL;
323 info->notify_user_ns = NULL;
324 info->qsize = 0;
325 info->user = NULL; /* set when all is ok */
326 info->msg_tree = RB_ROOT;
327 info->msg_tree_rightmost = NULL;
328 info->node_cache = NULL;
329 memset(&info->attr, 0, sizeof(info->attr));
330 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
331 ipc_ns->mq_msg_default);
332 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
333 ipc_ns->mq_msgsize_default);
334 if (attr) {
335 info->attr.mq_maxmsg = attr->mq_maxmsg;
336 info->attr.mq_msgsize = attr->mq_msgsize;
337 }
338 /*
339 * We used to allocate a static array of pointers and account
340 * the size of that array as well as one msg_msg struct per
341 * possible message into the queue size. That's no longer
342 * accurate as the queue is now an rbtree and will grow and
343 * shrink depending on usage patterns. We can, however, still
344 * account one msg_msg struct per message, but the nodes are
345 * allocated depending on priority usage, and most programs
346 * only use one, or a handful, of priorities. However, since
347 * this is pinned memory, we need to assume worst case, so
348 * that means the min(mq_maxmsg, max_priorities) * struct
349 * posix_msg_tree_node.
350 */
351
352 ret = -EINVAL;
353 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
354 goto out_inode;
355 if (capable(CAP_SYS_RESOURCE)) {
356 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
357 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
358 goto out_inode;
359 } else {
360 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
361 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
362 goto out_inode;
363 }
364 ret = -EOVERFLOW;
365 /* check for overflow */
366 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
367 goto out_inode;
368 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
369 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
370 sizeof(struct posix_msg_tree_node);
371 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
372 if (mq_bytes + mq_treesize < mq_bytes)
373 goto out_inode;
374 mq_bytes += mq_treesize;
375 spin_lock(&mq_lock);
376 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
377 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
378 spin_unlock(&mq_lock);
379 /* mqueue_evict_inode() releases info->messages */
380 ret = -EMFILE;
381 goto out_inode;
382 }
383 u->mq_bytes += mq_bytes;
384 spin_unlock(&mq_lock);
385
386 /* all is ok */
387 info->user = get_uid(u);
388 } else if (S_ISDIR(mode)) {
389 inc_nlink(inode);
390 /* Some things misbehave if size == 0 on a directory */
391 inode->i_size = 2 * DIRENT_SIZE;
392 inode->i_op = &mqueue_dir_inode_operations;
393 inode->i_fop = &simple_dir_operations;
394 }
395
396 return inode;
397 out_inode:
398 iput(inode);
399 err:
400 return ERR_PTR(ret);
401 }
402
mqueue_fill_super(struct super_block * sb,struct fs_context * fc)403 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
404 {
405 struct inode *inode;
406 struct ipc_namespace *ns = sb->s_fs_info;
407
408 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
409 sb->s_blocksize = PAGE_SIZE;
410 sb->s_blocksize_bits = PAGE_SHIFT;
411 sb->s_magic = MQUEUE_MAGIC;
412 sb->s_op = &mqueue_super_ops;
413
414 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
415 if (IS_ERR(inode))
416 return PTR_ERR(inode);
417
418 sb->s_root = d_make_root(inode);
419 if (!sb->s_root)
420 return -ENOMEM;
421 return 0;
422 }
423
mqueue_get_tree(struct fs_context * fc)424 static int mqueue_get_tree(struct fs_context *fc)
425 {
426 struct mqueue_fs_context *ctx = fc->fs_private;
427
428 /*
429 * With a newly created ipc namespace, we don't need to do a search
430 * for an ipc namespace match, but we still need to set s_fs_info.
431 */
432 if (ctx->newns) {
433 fc->s_fs_info = ctx->ipc_ns;
434 return get_tree_nodev(fc, mqueue_fill_super);
435 }
436 return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
437 }
438
mqueue_fs_context_free(struct fs_context * fc)439 static void mqueue_fs_context_free(struct fs_context *fc)
440 {
441 struct mqueue_fs_context *ctx = fc->fs_private;
442
443 put_ipc_ns(ctx->ipc_ns);
444 kfree(ctx);
445 }
446
mqueue_init_fs_context(struct fs_context * fc)447 static int mqueue_init_fs_context(struct fs_context *fc)
448 {
449 struct mqueue_fs_context *ctx;
450
451 ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
452 if (!ctx)
453 return -ENOMEM;
454
455 ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
456 put_user_ns(fc->user_ns);
457 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
458 fc->fs_private = ctx;
459 fc->ops = &mqueue_fs_context_ops;
460 return 0;
461 }
462
463 /*
464 * mq_init_ns() is currently the only caller of mq_create_mount().
465 * So the ns parameter is always a newly created ipc namespace.
466 */
mq_create_mount(struct ipc_namespace * ns)467 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
468 {
469 struct mqueue_fs_context *ctx;
470 struct fs_context *fc;
471 struct vfsmount *mnt;
472
473 fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
474 if (IS_ERR(fc))
475 return ERR_CAST(fc);
476
477 ctx = fc->fs_private;
478 ctx->newns = true;
479 put_ipc_ns(ctx->ipc_ns);
480 ctx->ipc_ns = get_ipc_ns(ns);
481 put_user_ns(fc->user_ns);
482 fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
483
484 mnt = fc_mount(fc);
485 put_fs_context(fc);
486 return mnt;
487 }
488
init_once(void * foo)489 static void init_once(void *foo)
490 {
491 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
492
493 inode_init_once(&p->vfs_inode);
494 }
495
mqueue_alloc_inode(struct super_block * sb)496 static struct inode *mqueue_alloc_inode(struct super_block *sb)
497 {
498 struct mqueue_inode_info *ei;
499
500 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
501 if (!ei)
502 return NULL;
503 return &ei->vfs_inode;
504 }
505
mqueue_free_inode(struct inode * inode)506 static void mqueue_free_inode(struct inode *inode)
507 {
508 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
509 }
510
mqueue_evict_inode(struct inode * inode)511 static void mqueue_evict_inode(struct inode *inode)
512 {
513 struct mqueue_inode_info *info;
514 struct user_struct *user;
515 struct ipc_namespace *ipc_ns;
516 struct msg_msg *msg, *nmsg;
517 LIST_HEAD(tmp_msg);
518
519 clear_inode(inode);
520
521 if (S_ISDIR(inode->i_mode))
522 return;
523
524 ipc_ns = get_ns_from_inode(inode);
525 info = MQUEUE_I(inode);
526 spin_lock(&info->lock);
527 while ((msg = msg_get(info)) != NULL)
528 list_add_tail(&msg->m_list, &tmp_msg);
529 kfree(info->node_cache);
530 spin_unlock(&info->lock);
531
532 list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
533 list_del(&msg->m_list);
534 free_msg(msg);
535 }
536
537 user = info->user;
538 if (user) {
539 unsigned long mq_bytes, mq_treesize;
540
541 /* Total amount of bytes accounted for the mqueue */
542 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
543 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
544 sizeof(struct posix_msg_tree_node);
545
546 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
547 info->attr.mq_msgsize);
548
549 spin_lock(&mq_lock);
550 user->mq_bytes -= mq_bytes;
551 /*
552 * get_ns_from_inode() ensures that the
553 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
554 * to which we now hold a reference, or it is NULL.
555 * We can't put it here under mq_lock, though.
556 */
557 if (ipc_ns)
558 ipc_ns->mq_queues_count--;
559 spin_unlock(&mq_lock);
560 free_uid(user);
561 }
562 if (ipc_ns)
563 put_ipc_ns(ipc_ns);
564 }
565
mqueue_create_attr(struct dentry * dentry,umode_t mode,void * arg)566 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
567 {
568 struct inode *dir = dentry->d_parent->d_inode;
569 struct inode *inode;
570 struct mq_attr *attr = arg;
571 int error;
572 struct ipc_namespace *ipc_ns;
573
574 spin_lock(&mq_lock);
575 ipc_ns = __get_ns_from_inode(dir);
576 if (!ipc_ns) {
577 error = -EACCES;
578 goto out_unlock;
579 }
580
581 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
582 !capable(CAP_SYS_RESOURCE)) {
583 error = -ENOSPC;
584 goto out_unlock;
585 }
586 ipc_ns->mq_queues_count++;
587 spin_unlock(&mq_lock);
588
589 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
590 if (IS_ERR(inode)) {
591 error = PTR_ERR(inode);
592 spin_lock(&mq_lock);
593 ipc_ns->mq_queues_count--;
594 goto out_unlock;
595 }
596
597 put_ipc_ns(ipc_ns);
598 dir->i_size += DIRENT_SIZE;
599 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
600
601 d_instantiate(dentry, inode);
602 dget(dentry);
603 return 0;
604 out_unlock:
605 spin_unlock(&mq_lock);
606 if (ipc_ns)
607 put_ipc_ns(ipc_ns);
608 return error;
609 }
610
mqueue_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)611 static int mqueue_create(struct inode *dir, struct dentry *dentry,
612 umode_t mode, bool excl)
613 {
614 return mqueue_create_attr(dentry, mode, NULL);
615 }
616
mqueue_unlink(struct inode * dir,struct dentry * dentry)617 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
618 {
619 struct inode *inode = d_inode(dentry);
620
621 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
622 dir->i_size -= DIRENT_SIZE;
623 drop_nlink(inode);
624 dput(dentry);
625 return 0;
626 }
627
628 /*
629 * This is routine for system read from queue file.
630 * To avoid mess with doing here some sort of mq_receive we allow
631 * to read only queue size & notification info (the only values
632 * that are interesting from user point of view and aren't accessible
633 * through std routines)
634 */
mqueue_read_file(struct file * filp,char __user * u_data,size_t count,loff_t * off)635 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
636 size_t count, loff_t *off)
637 {
638 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
639 char buffer[FILENT_SIZE];
640 ssize_t ret;
641
642 spin_lock(&info->lock);
643 snprintf(buffer, sizeof(buffer),
644 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
645 info->qsize,
646 info->notify_owner ? info->notify.sigev_notify : 0,
647 (info->notify_owner &&
648 info->notify.sigev_notify == SIGEV_SIGNAL) ?
649 info->notify.sigev_signo : 0,
650 pid_vnr(info->notify_owner));
651 spin_unlock(&info->lock);
652 buffer[sizeof(buffer)-1] = '\0';
653
654 ret = simple_read_from_buffer(u_data, count, off, buffer,
655 strlen(buffer));
656 if (ret <= 0)
657 return ret;
658
659 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
660 return ret;
661 }
662
mqueue_flush_file(struct file * filp,fl_owner_t id)663 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
664 {
665 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
666
667 spin_lock(&info->lock);
668 if (task_tgid(current) == info->notify_owner)
669 remove_notification(info);
670
671 spin_unlock(&info->lock);
672 return 0;
673 }
674
mqueue_poll_file(struct file * filp,struct poll_table_struct * poll_tab)675 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
676 {
677 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
678 __poll_t retval = 0;
679
680 poll_wait(filp, &info->wait_q, poll_tab);
681
682 spin_lock(&info->lock);
683 if (info->attr.mq_curmsgs)
684 retval = EPOLLIN | EPOLLRDNORM;
685
686 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
687 retval |= EPOLLOUT | EPOLLWRNORM;
688 spin_unlock(&info->lock);
689
690 return retval;
691 }
692
693 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
wq_add(struct mqueue_inode_info * info,int sr,struct ext_wait_queue * ewp)694 static void wq_add(struct mqueue_inode_info *info, int sr,
695 struct ext_wait_queue *ewp)
696 {
697 struct ext_wait_queue *walk;
698
699 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
700 if (walk->task->prio <= current->prio) {
701 list_add_tail(&ewp->list, &walk->list);
702 return;
703 }
704 }
705 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
706 }
707
708 /*
709 * Puts current task to sleep. Caller must hold queue lock. After return
710 * lock isn't held.
711 * sr: SEND or RECV
712 */
wq_sleep(struct mqueue_inode_info * info,int sr,ktime_t * timeout,struct ext_wait_queue * ewp)713 static int wq_sleep(struct mqueue_inode_info *info, int sr,
714 ktime_t *timeout, struct ext_wait_queue *ewp)
715 __releases(&info->lock)
716 {
717 int retval;
718 signed long time;
719
720 wq_add(info, sr, ewp);
721
722 for (;;) {
723 /* memory barrier not required, we hold info->lock */
724 __set_current_state(TASK_INTERRUPTIBLE);
725
726 spin_unlock(&info->lock);
727 time = schedule_hrtimeout_range_clock(timeout, 0,
728 HRTIMER_MODE_ABS, CLOCK_REALTIME);
729
730 if (READ_ONCE(ewp->state) == STATE_READY) {
731 /* see MQ_BARRIER for purpose/pairing */
732 smp_acquire__after_ctrl_dep();
733 retval = 0;
734 goto out;
735 }
736 spin_lock(&info->lock);
737
738 /* we hold info->lock, so no memory barrier required */
739 if (READ_ONCE(ewp->state) == STATE_READY) {
740 retval = 0;
741 goto out_unlock;
742 }
743 if (signal_pending(current)) {
744 retval = -ERESTARTSYS;
745 break;
746 }
747 if (time == 0) {
748 retval = -ETIMEDOUT;
749 break;
750 }
751 }
752 list_del(&ewp->list);
753 out_unlock:
754 spin_unlock(&info->lock);
755 out:
756 return retval;
757 }
758
759 /*
760 * Returns waiting task that should be serviced first or NULL if none exists
761 */
wq_get_first_waiter(struct mqueue_inode_info * info,int sr)762 static struct ext_wait_queue *wq_get_first_waiter(
763 struct mqueue_inode_info *info, int sr)
764 {
765 struct list_head *ptr;
766
767 ptr = info->e_wait_q[sr].list.prev;
768 if (ptr == &info->e_wait_q[sr].list)
769 return NULL;
770 return list_entry(ptr, struct ext_wait_queue, list);
771 }
772
773
set_cookie(struct sk_buff * skb,char code)774 static inline void set_cookie(struct sk_buff *skb, char code)
775 {
776 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
777 }
778
779 /*
780 * The next function is only to split too long sys_mq_timedsend
781 */
__do_notify(struct mqueue_inode_info * info)782 static void __do_notify(struct mqueue_inode_info *info)
783 {
784 /* notification
785 * invoked when there is registered process and there isn't process
786 * waiting synchronously for message AND state of queue changed from
787 * empty to not empty. Here we are sure that no one is waiting
788 * synchronously. */
789 if (info->notify_owner &&
790 info->attr.mq_curmsgs == 1) {
791 switch (info->notify.sigev_notify) {
792 case SIGEV_NONE:
793 break;
794 case SIGEV_SIGNAL: {
795 struct kernel_siginfo sig_i;
796 struct task_struct *task;
797
798 /* do_mq_notify() accepts sigev_signo == 0, why?? */
799 if (!info->notify.sigev_signo)
800 break;
801
802 clear_siginfo(&sig_i);
803 sig_i.si_signo = info->notify.sigev_signo;
804 sig_i.si_errno = 0;
805 sig_i.si_code = SI_MESGQ;
806 sig_i.si_value = info->notify.sigev_value;
807 rcu_read_lock();
808 /* map current pid/uid into info->owner's namespaces */
809 sig_i.si_pid = task_tgid_nr_ns(current,
810 ns_of_pid(info->notify_owner));
811 sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
812 current_uid());
813 /*
814 * We can't use kill_pid_info(), this signal should
815 * bypass check_kill_permission(). It is from kernel
816 * but si_fromuser() can't know this.
817 * We do check the self_exec_id, to avoid sending
818 * signals to programs that don't expect them.
819 */
820 task = pid_task(info->notify_owner, PIDTYPE_TGID);
821 if (task && task->self_exec_id ==
822 info->notify_self_exec_id) {
823 do_send_sig_info(info->notify.sigev_signo,
824 &sig_i, task, PIDTYPE_TGID);
825 }
826 rcu_read_unlock();
827 break;
828 }
829 case SIGEV_THREAD:
830 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
831 netlink_sendskb(info->notify_sock, info->notify_cookie);
832 break;
833 }
834 /* after notification unregisters process */
835 put_pid(info->notify_owner);
836 put_user_ns(info->notify_user_ns);
837 info->notify_owner = NULL;
838 info->notify_user_ns = NULL;
839 }
840 wake_up(&info->wait_q);
841 }
842
prepare_timeout(const struct __kernel_timespec __user * u_abs_timeout,struct timespec64 * ts)843 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
844 struct timespec64 *ts)
845 {
846 if (get_timespec64(ts, u_abs_timeout))
847 return -EFAULT;
848 if (!timespec64_valid(ts))
849 return -EINVAL;
850 return 0;
851 }
852
remove_notification(struct mqueue_inode_info * info)853 static void remove_notification(struct mqueue_inode_info *info)
854 {
855 if (info->notify_owner != NULL &&
856 info->notify.sigev_notify == SIGEV_THREAD) {
857 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
858 netlink_sendskb(info->notify_sock, info->notify_cookie);
859 }
860 put_pid(info->notify_owner);
861 put_user_ns(info->notify_user_ns);
862 info->notify_owner = NULL;
863 info->notify_user_ns = NULL;
864 }
865
prepare_open(struct dentry * dentry,int oflag,int ro,umode_t mode,struct filename * name,struct mq_attr * attr)866 static int prepare_open(struct dentry *dentry, int oflag, int ro,
867 umode_t mode, struct filename *name,
868 struct mq_attr *attr)
869 {
870 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
871 MAY_READ | MAY_WRITE };
872 int acc;
873
874 if (d_really_is_negative(dentry)) {
875 if (!(oflag & O_CREAT))
876 return -ENOENT;
877 if (ro)
878 return ro;
879 audit_inode_parent_hidden(name, dentry->d_parent);
880 return vfs_mkobj(dentry, mode & ~current_umask(),
881 mqueue_create_attr, attr);
882 }
883 /* it already existed */
884 audit_inode(name, dentry, 0);
885 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
886 return -EEXIST;
887 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
888 return -EINVAL;
889 acc = oflag2acc[oflag & O_ACCMODE];
890 return inode_permission(d_inode(dentry), acc);
891 }
892
do_mq_open(const char __user * u_name,int oflag,umode_t mode,struct mq_attr * attr)893 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
894 struct mq_attr *attr)
895 {
896 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
897 struct dentry *root = mnt->mnt_root;
898 struct filename *name;
899 struct path path;
900 int fd, error;
901 int ro;
902
903 audit_mq_open(oflag, mode, attr);
904
905 if (IS_ERR(name = getname(u_name)))
906 return PTR_ERR(name);
907
908 fd = get_unused_fd_flags(O_CLOEXEC);
909 if (fd < 0)
910 goto out_putname;
911
912 ro = mnt_want_write(mnt); /* we'll drop it in any case */
913 inode_lock(d_inode(root));
914 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
915 if (IS_ERR(path.dentry)) {
916 error = PTR_ERR(path.dentry);
917 goto out_putfd;
918 }
919 path.mnt = mntget(mnt);
920 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
921 if (!error) {
922 struct file *file = dentry_open(&path, oflag, current_cred());
923 if (!IS_ERR(file))
924 fd_install(fd, file);
925 else
926 error = PTR_ERR(file);
927 }
928 path_put(&path);
929 out_putfd:
930 if (error) {
931 put_unused_fd(fd);
932 fd = error;
933 }
934 inode_unlock(d_inode(root));
935 if (!ro)
936 mnt_drop_write(mnt);
937 out_putname:
938 putname(name);
939 return fd;
940 }
941
SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,umode_t,mode,struct mq_attr __user *,u_attr)942 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
943 struct mq_attr __user *, u_attr)
944 {
945 struct mq_attr attr;
946 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
947 return -EFAULT;
948
949 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
950 }
951
SYSCALL_DEFINE1(mq_unlink,const char __user *,u_name)952 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
953 {
954 int err;
955 struct filename *name;
956 struct dentry *dentry;
957 struct inode *inode = NULL;
958 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
959 struct vfsmount *mnt = ipc_ns->mq_mnt;
960
961 name = getname(u_name);
962 if (IS_ERR(name))
963 return PTR_ERR(name);
964
965 audit_inode_parent_hidden(name, mnt->mnt_root);
966 err = mnt_want_write(mnt);
967 if (err)
968 goto out_name;
969 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
970 dentry = lookup_one_len(name->name, mnt->mnt_root,
971 strlen(name->name));
972 if (IS_ERR(dentry)) {
973 err = PTR_ERR(dentry);
974 goto out_unlock;
975 }
976
977 inode = d_inode(dentry);
978 if (!inode) {
979 err = -ENOENT;
980 } else {
981 ihold(inode);
982 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
983 }
984 dput(dentry);
985
986 out_unlock:
987 inode_unlock(d_inode(mnt->mnt_root));
988 if (inode)
989 iput(inode);
990 mnt_drop_write(mnt);
991 out_name:
992 putname(name);
993
994 return err;
995 }
996
997 /* Pipelined send and receive functions.
998 *
999 * If a receiver finds no waiting message, then it registers itself in the
1000 * list of waiting receivers. A sender checks that list before adding the new
1001 * message into the message array. If there is a waiting receiver, then it
1002 * bypasses the message array and directly hands the message over to the
1003 * receiver. The receiver accepts the message and returns without grabbing the
1004 * queue spinlock:
1005 *
1006 * - Set pointer to message.
1007 * - Queue the receiver task for later wakeup (without the info->lock).
1008 * - Update its state to STATE_READY. Now the receiver can continue.
1009 * - Wake up the process after the lock is dropped. Should the process wake up
1010 * before this wakeup (due to a timeout or a signal) it will either see
1011 * STATE_READY and continue or acquire the lock to check the state again.
1012 *
1013 * The same algorithm is used for senders.
1014 */
1015
__pipelined_op(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct ext_wait_queue * this)1016 static inline void __pipelined_op(struct wake_q_head *wake_q,
1017 struct mqueue_inode_info *info,
1018 struct ext_wait_queue *this)
1019 {
1020 struct task_struct *task;
1021
1022 list_del(&this->list);
1023 task = get_task_struct(this->task);
1024
1025 /* see MQ_BARRIER for purpose/pairing */
1026 smp_store_release(&this->state, STATE_READY);
1027 wake_q_add_safe(wake_q, task);
1028 }
1029
1030 /* pipelined_send() - send a message directly to the task waiting in
1031 * sys_mq_timedreceive() (without inserting message into a queue).
1032 */
pipelined_send(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct msg_msg * message,struct ext_wait_queue * receiver)1033 static inline void pipelined_send(struct wake_q_head *wake_q,
1034 struct mqueue_inode_info *info,
1035 struct msg_msg *message,
1036 struct ext_wait_queue *receiver)
1037 {
1038 receiver->msg = message;
1039 __pipelined_op(wake_q, info, receiver);
1040 }
1041
1042 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1043 * gets its message and put to the queue (we have one free place for sure). */
pipelined_receive(struct wake_q_head * wake_q,struct mqueue_inode_info * info)1044 static inline void pipelined_receive(struct wake_q_head *wake_q,
1045 struct mqueue_inode_info *info)
1046 {
1047 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1048
1049 if (!sender) {
1050 /* for poll */
1051 wake_up_interruptible(&info->wait_q);
1052 return;
1053 }
1054 if (msg_insert(sender->msg, info))
1055 return;
1056
1057 __pipelined_op(wake_q, info, sender);
1058 }
1059
do_mq_timedsend(mqd_t mqdes,const char __user * u_msg_ptr,size_t msg_len,unsigned int msg_prio,struct timespec64 * ts)1060 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1061 size_t msg_len, unsigned int msg_prio,
1062 struct timespec64 *ts)
1063 {
1064 struct fd f;
1065 struct inode *inode;
1066 struct ext_wait_queue wait;
1067 struct ext_wait_queue *receiver;
1068 struct msg_msg *msg_ptr;
1069 struct mqueue_inode_info *info;
1070 ktime_t expires, *timeout = NULL;
1071 struct posix_msg_tree_node *new_leaf = NULL;
1072 int ret = 0;
1073 DEFINE_WAKE_Q(wake_q);
1074
1075 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1076 return -EINVAL;
1077
1078 if (ts) {
1079 expires = timespec64_to_ktime(*ts);
1080 timeout = &expires;
1081 }
1082
1083 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1084
1085 f = fdget(mqdes);
1086 if (unlikely(!f.file)) {
1087 ret = -EBADF;
1088 goto out;
1089 }
1090
1091 inode = file_inode(f.file);
1092 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1093 ret = -EBADF;
1094 goto out_fput;
1095 }
1096 info = MQUEUE_I(inode);
1097 audit_file(f.file);
1098
1099 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1100 ret = -EBADF;
1101 goto out_fput;
1102 }
1103
1104 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1105 ret = -EMSGSIZE;
1106 goto out_fput;
1107 }
1108
1109 /* First try to allocate memory, before doing anything with
1110 * existing queues. */
1111 msg_ptr = load_msg(u_msg_ptr, msg_len);
1112 if (IS_ERR(msg_ptr)) {
1113 ret = PTR_ERR(msg_ptr);
1114 goto out_fput;
1115 }
1116 msg_ptr->m_ts = msg_len;
1117 msg_ptr->m_type = msg_prio;
1118
1119 /*
1120 * msg_insert really wants us to have a valid, spare node struct so
1121 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1122 * fall back to that if necessary.
1123 */
1124 if (!info->node_cache)
1125 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1126
1127 spin_lock(&info->lock);
1128
1129 if (!info->node_cache && new_leaf) {
1130 /* Save our speculative allocation into the cache */
1131 INIT_LIST_HEAD(&new_leaf->msg_list);
1132 info->node_cache = new_leaf;
1133 new_leaf = NULL;
1134 } else {
1135 kfree(new_leaf);
1136 }
1137
1138 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1139 if (f.file->f_flags & O_NONBLOCK) {
1140 ret = -EAGAIN;
1141 } else {
1142 wait.task = current;
1143 wait.msg = (void *) msg_ptr;
1144
1145 /* memory barrier not required, we hold info->lock */
1146 WRITE_ONCE(wait.state, STATE_NONE);
1147 ret = wq_sleep(info, SEND, timeout, &wait);
1148 /*
1149 * wq_sleep must be called with info->lock held, and
1150 * returns with the lock released
1151 */
1152 goto out_free;
1153 }
1154 } else {
1155 receiver = wq_get_first_waiter(info, RECV);
1156 if (receiver) {
1157 pipelined_send(&wake_q, info, msg_ptr, receiver);
1158 } else {
1159 /* adds message to the queue */
1160 ret = msg_insert(msg_ptr, info);
1161 if (ret)
1162 goto out_unlock;
1163 __do_notify(info);
1164 }
1165 inode->i_atime = inode->i_mtime = inode->i_ctime =
1166 current_time(inode);
1167 }
1168 out_unlock:
1169 spin_unlock(&info->lock);
1170 wake_up_q(&wake_q);
1171 out_free:
1172 if (ret)
1173 free_msg(msg_ptr);
1174 out_fput:
1175 fdput(f);
1176 out:
1177 return ret;
1178 }
1179
do_mq_timedreceive(mqd_t mqdes,char __user * u_msg_ptr,size_t msg_len,unsigned int __user * u_msg_prio,struct timespec64 * ts)1180 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1181 size_t msg_len, unsigned int __user *u_msg_prio,
1182 struct timespec64 *ts)
1183 {
1184 ssize_t ret;
1185 struct msg_msg *msg_ptr;
1186 struct fd f;
1187 struct inode *inode;
1188 struct mqueue_inode_info *info;
1189 struct ext_wait_queue wait;
1190 ktime_t expires, *timeout = NULL;
1191 struct posix_msg_tree_node *new_leaf = NULL;
1192
1193 if (ts) {
1194 expires = timespec64_to_ktime(*ts);
1195 timeout = &expires;
1196 }
1197
1198 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1199
1200 f = fdget(mqdes);
1201 if (unlikely(!f.file)) {
1202 ret = -EBADF;
1203 goto out;
1204 }
1205
1206 inode = file_inode(f.file);
1207 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1208 ret = -EBADF;
1209 goto out_fput;
1210 }
1211 info = MQUEUE_I(inode);
1212 audit_file(f.file);
1213
1214 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1215 ret = -EBADF;
1216 goto out_fput;
1217 }
1218
1219 /* checks if buffer is big enough */
1220 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1221 ret = -EMSGSIZE;
1222 goto out_fput;
1223 }
1224
1225 /*
1226 * msg_insert really wants us to have a valid, spare node struct so
1227 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1228 * fall back to that if necessary.
1229 */
1230 if (!info->node_cache)
1231 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1232
1233 spin_lock(&info->lock);
1234
1235 if (!info->node_cache && new_leaf) {
1236 /* Save our speculative allocation into the cache */
1237 INIT_LIST_HEAD(&new_leaf->msg_list);
1238 info->node_cache = new_leaf;
1239 } else {
1240 kfree(new_leaf);
1241 }
1242
1243 if (info->attr.mq_curmsgs == 0) {
1244 if (f.file->f_flags & O_NONBLOCK) {
1245 spin_unlock(&info->lock);
1246 ret = -EAGAIN;
1247 } else {
1248 wait.task = current;
1249
1250 /* memory barrier not required, we hold info->lock */
1251 WRITE_ONCE(wait.state, STATE_NONE);
1252 ret = wq_sleep(info, RECV, timeout, &wait);
1253 msg_ptr = wait.msg;
1254 }
1255 } else {
1256 DEFINE_WAKE_Q(wake_q);
1257
1258 msg_ptr = msg_get(info);
1259
1260 inode->i_atime = inode->i_mtime = inode->i_ctime =
1261 current_time(inode);
1262
1263 /* There is now free space in queue. */
1264 pipelined_receive(&wake_q, info);
1265 spin_unlock(&info->lock);
1266 wake_up_q(&wake_q);
1267 ret = 0;
1268 }
1269 if (ret == 0) {
1270 ret = msg_ptr->m_ts;
1271
1272 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1273 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1274 ret = -EFAULT;
1275 }
1276 free_msg(msg_ptr);
1277 }
1278 out_fput:
1279 fdput(f);
1280 out:
1281 return ret;
1282 }
1283
SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,size_t,msg_len,unsigned int,msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1284 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1285 size_t, msg_len, unsigned int, msg_prio,
1286 const struct __kernel_timespec __user *, u_abs_timeout)
1287 {
1288 struct timespec64 ts, *p = NULL;
1289 if (u_abs_timeout) {
1290 int res = prepare_timeout(u_abs_timeout, &ts);
1291 if (res)
1292 return res;
1293 p = &ts;
1294 }
1295 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1296 }
1297
SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,size_t,msg_len,unsigned int __user *,u_msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1298 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1299 size_t, msg_len, unsigned int __user *, u_msg_prio,
1300 const struct __kernel_timespec __user *, u_abs_timeout)
1301 {
1302 struct timespec64 ts, *p = NULL;
1303 if (u_abs_timeout) {
1304 int res = prepare_timeout(u_abs_timeout, &ts);
1305 if (res)
1306 return res;
1307 p = &ts;
1308 }
1309 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1310 }
1311
1312 /*
1313 * Notes: the case when user wants us to deregister (with NULL as pointer)
1314 * and he isn't currently owner of notification, will be silently discarded.
1315 * It isn't explicitly defined in the POSIX.
1316 */
do_mq_notify(mqd_t mqdes,const struct sigevent * notification)1317 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1318 {
1319 int ret;
1320 struct fd f;
1321 struct sock *sock;
1322 struct inode *inode;
1323 struct mqueue_inode_info *info;
1324 struct sk_buff *nc;
1325
1326 audit_mq_notify(mqdes, notification);
1327
1328 nc = NULL;
1329 sock = NULL;
1330 if (notification != NULL) {
1331 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1332 notification->sigev_notify != SIGEV_SIGNAL &&
1333 notification->sigev_notify != SIGEV_THREAD))
1334 return -EINVAL;
1335 if (notification->sigev_notify == SIGEV_SIGNAL &&
1336 !valid_signal(notification->sigev_signo)) {
1337 return -EINVAL;
1338 }
1339 if (notification->sigev_notify == SIGEV_THREAD) {
1340 long timeo;
1341
1342 /* create the notify skb */
1343 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1344 if (!nc)
1345 return -ENOMEM;
1346
1347 if (copy_from_user(nc->data,
1348 notification->sigev_value.sival_ptr,
1349 NOTIFY_COOKIE_LEN)) {
1350 ret = -EFAULT;
1351 goto free_skb;
1352 }
1353
1354 /* TODO: add a header? */
1355 skb_put(nc, NOTIFY_COOKIE_LEN);
1356 /* and attach it to the socket */
1357 retry:
1358 f = fdget(notification->sigev_signo);
1359 if (!f.file) {
1360 ret = -EBADF;
1361 goto out;
1362 }
1363 sock = netlink_getsockbyfilp(f.file);
1364 fdput(f);
1365 if (IS_ERR(sock)) {
1366 ret = PTR_ERR(sock);
1367 goto free_skb;
1368 }
1369
1370 timeo = MAX_SCHEDULE_TIMEOUT;
1371 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1372 if (ret == 1) {
1373 sock = NULL;
1374 goto retry;
1375 }
1376 if (ret)
1377 return ret;
1378 }
1379 }
1380
1381 f = fdget(mqdes);
1382 if (!f.file) {
1383 ret = -EBADF;
1384 goto out;
1385 }
1386
1387 inode = file_inode(f.file);
1388 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1389 ret = -EBADF;
1390 goto out_fput;
1391 }
1392 info = MQUEUE_I(inode);
1393
1394 ret = 0;
1395 spin_lock(&info->lock);
1396 if (notification == NULL) {
1397 if (info->notify_owner == task_tgid(current)) {
1398 remove_notification(info);
1399 inode->i_atime = inode->i_ctime = current_time(inode);
1400 }
1401 } else if (info->notify_owner != NULL) {
1402 ret = -EBUSY;
1403 } else {
1404 switch (notification->sigev_notify) {
1405 case SIGEV_NONE:
1406 info->notify.sigev_notify = SIGEV_NONE;
1407 break;
1408 case SIGEV_THREAD:
1409 info->notify_sock = sock;
1410 info->notify_cookie = nc;
1411 sock = NULL;
1412 nc = NULL;
1413 info->notify.sigev_notify = SIGEV_THREAD;
1414 break;
1415 case SIGEV_SIGNAL:
1416 info->notify.sigev_signo = notification->sigev_signo;
1417 info->notify.sigev_value = notification->sigev_value;
1418 info->notify.sigev_notify = SIGEV_SIGNAL;
1419 info->notify_self_exec_id = current->self_exec_id;
1420 break;
1421 }
1422
1423 info->notify_owner = get_pid(task_tgid(current));
1424 info->notify_user_ns = get_user_ns(current_user_ns());
1425 inode->i_atime = inode->i_ctime = current_time(inode);
1426 }
1427 spin_unlock(&info->lock);
1428 out_fput:
1429 fdput(f);
1430 out:
1431 if (sock)
1432 netlink_detachskb(sock, nc);
1433 else
1434 free_skb:
1435 dev_kfree_skb(nc);
1436
1437 return ret;
1438 }
1439
SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct sigevent __user *,u_notification)1440 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1441 const struct sigevent __user *, u_notification)
1442 {
1443 struct sigevent n, *p = NULL;
1444 if (u_notification) {
1445 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1446 return -EFAULT;
1447 p = &n;
1448 }
1449 return do_mq_notify(mqdes, p);
1450 }
1451
do_mq_getsetattr(int mqdes,struct mq_attr * new,struct mq_attr * old)1452 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1453 {
1454 struct fd f;
1455 struct inode *inode;
1456 struct mqueue_inode_info *info;
1457
1458 if (new && (new->mq_flags & (~O_NONBLOCK)))
1459 return -EINVAL;
1460
1461 f = fdget(mqdes);
1462 if (!f.file)
1463 return -EBADF;
1464
1465 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1466 fdput(f);
1467 return -EBADF;
1468 }
1469
1470 inode = file_inode(f.file);
1471 info = MQUEUE_I(inode);
1472
1473 spin_lock(&info->lock);
1474
1475 if (old) {
1476 *old = info->attr;
1477 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1478 }
1479 if (new) {
1480 audit_mq_getsetattr(mqdes, new);
1481 spin_lock(&f.file->f_lock);
1482 if (new->mq_flags & O_NONBLOCK)
1483 f.file->f_flags |= O_NONBLOCK;
1484 else
1485 f.file->f_flags &= ~O_NONBLOCK;
1486 spin_unlock(&f.file->f_lock);
1487
1488 inode->i_atime = inode->i_ctime = current_time(inode);
1489 }
1490
1491 spin_unlock(&info->lock);
1492 fdput(f);
1493 return 0;
1494 }
1495
SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct mq_attr __user *,u_mqstat,struct mq_attr __user *,u_omqstat)1496 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1497 const struct mq_attr __user *, u_mqstat,
1498 struct mq_attr __user *, u_omqstat)
1499 {
1500 int ret;
1501 struct mq_attr mqstat, omqstat;
1502 struct mq_attr *new = NULL, *old = NULL;
1503
1504 if (u_mqstat) {
1505 new = &mqstat;
1506 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1507 return -EFAULT;
1508 }
1509 if (u_omqstat)
1510 old = &omqstat;
1511
1512 ret = do_mq_getsetattr(mqdes, new, old);
1513 if (ret || !old)
1514 return ret;
1515
1516 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1517 return -EFAULT;
1518 return 0;
1519 }
1520
1521 #ifdef CONFIG_COMPAT
1522
1523 struct compat_mq_attr {
1524 compat_long_t mq_flags; /* message queue flags */
1525 compat_long_t mq_maxmsg; /* maximum number of messages */
1526 compat_long_t mq_msgsize; /* maximum message size */
1527 compat_long_t mq_curmsgs; /* number of messages currently queued */
1528 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1529 };
1530
get_compat_mq_attr(struct mq_attr * attr,const struct compat_mq_attr __user * uattr)1531 static inline int get_compat_mq_attr(struct mq_attr *attr,
1532 const struct compat_mq_attr __user *uattr)
1533 {
1534 struct compat_mq_attr v;
1535
1536 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1537 return -EFAULT;
1538
1539 memset(attr, 0, sizeof(*attr));
1540 attr->mq_flags = v.mq_flags;
1541 attr->mq_maxmsg = v.mq_maxmsg;
1542 attr->mq_msgsize = v.mq_msgsize;
1543 attr->mq_curmsgs = v.mq_curmsgs;
1544 return 0;
1545 }
1546
put_compat_mq_attr(const struct mq_attr * attr,struct compat_mq_attr __user * uattr)1547 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1548 struct compat_mq_attr __user *uattr)
1549 {
1550 struct compat_mq_attr v;
1551
1552 memset(&v, 0, sizeof(v));
1553 v.mq_flags = attr->mq_flags;
1554 v.mq_maxmsg = attr->mq_maxmsg;
1555 v.mq_msgsize = attr->mq_msgsize;
1556 v.mq_curmsgs = attr->mq_curmsgs;
1557 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1558 return -EFAULT;
1559 return 0;
1560 }
1561
COMPAT_SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,compat_mode_t,mode,struct compat_mq_attr __user *,u_attr)1562 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1563 int, oflag, compat_mode_t, mode,
1564 struct compat_mq_attr __user *, u_attr)
1565 {
1566 struct mq_attr attr, *p = NULL;
1567 if (u_attr && oflag & O_CREAT) {
1568 p = &attr;
1569 if (get_compat_mq_attr(&attr, u_attr))
1570 return -EFAULT;
1571 }
1572 return do_mq_open(u_name, oflag, mode, p);
1573 }
1574
COMPAT_SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct compat_sigevent __user *,u_notification)1575 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1576 const struct compat_sigevent __user *, u_notification)
1577 {
1578 struct sigevent n, *p = NULL;
1579 if (u_notification) {
1580 if (get_compat_sigevent(&n, u_notification))
1581 return -EFAULT;
1582 if (n.sigev_notify == SIGEV_THREAD)
1583 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1584 p = &n;
1585 }
1586 return do_mq_notify(mqdes, p);
1587 }
1588
COMPAT_SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct compat_mq_attr __user *,u_mqstat,struct compat_mq_attr __user *,u_omqstat)1589 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1590 const struct compat_mq_attr __user *, u_mqstat,
1591 struct compat_mq_attr __user *, u_omqstat)
1592 {
1593 int ret;
1594 struct mq_attr mqstat, omqstat;
1595 struct mq_attr *new = NULL, *old = NULL;
1596
1597 if (u_mqstat) {
1598 new = &mqstat;
1599 if (get_compat_mq_attr(new, u_mqstat))
1600 return -EFAULT;
1601 }
1602 if (u_omqstat)
1603 old = &omqstat;
1604
1605 ret = do_mq_getsetattr(mqdes, new, old);
1606 if (ret || !old)
1607 return ret;
1608
1609 if (put_compat_mq_attr(old, u_omqstat))
1610 return -EFAULT;
1611 return 0;
1612 }
1613 #endif
1614
1615 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_prepare_timeout(const struct old_timespec32 __user * p,struct timespec64 * ts)1616 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1617 struct timespec64 *ts)
1618 {
1619 if (get_old_timespec32(ts, p))
1620 return -EFAULT;
1621 if (!timespec64_valid(ts))
1622 return -EINVAL;
1623 return 0;
1624 }
1625
SYSCALL_DEFINE5(mq_timedsend_time32,mqd_t,mqdes,const char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int,msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1626 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1627 const char __user *, u_msg_ptr,
1628 unsigned int, msg_len, unsigned int, msg_prio,
1629 const struct old_timespec32 __user *, u_abs_timeout)
1630 {
1631 struct timespec64 ts, *p = NULL;
1632 if (u_abs_timeout) {
1633 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1634 if (res)
1635 return res;
1636 p = &ts;
1637 }
1638 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1639 }
1640
SYSCALL_DEFINE5(mq_timedreceive_time32,mqd_t,mqdes,char __user *,u_msg_ptr,unsigned int,msg_len,unsigned int __user *,u_msg_prio,const struct old_timespec32 __user *,u_abs_timeout)1641 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1642 char __user *, u_msg_ptr,
1643 unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1644 const struct old_timespec32 __user *, u_abs_timeout)
1645 {
1646 struct timespec64 ts, *p = NULL;
1647 if (u_abs_timeout) {
1648 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1649 if (res)
1650 return res;
1651 p = &ts;
1652 }
1653 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1654 }
1655 #endif
1656
1657 static const struct inode_operations mqueue_dir_inode_operations = {
1658 .lookup = simple_lookup,
1659 .create = mqueue_create,
1660 .unlink = mqueue_unlink,
1661 };
1662
1663 static const struct file_operations mqueue_file_operations = {
1664 .flush = mqueue_flush_file,
1665 .poll = mqueue_poll_file,
1666 .read = mqueue_read_file,
1667 .llseek = default_llseek,
1668 };
1669
1670 static const struct super_operations mqueue_super_ops = {
1671 .alloc_inode = mqueue_alloc_inode,
1672 .free_inode = mqueue_free_inode,
1673 .evict_inode = mqueue_evict_inode,
1674 .statfs = simple_statfs,
1675 };
1676
1677 static const struct fs_context_operations mqueue_fs_context_ops = {
1678 .free = mqueue_fs_context_free,
1679 .get_tree = mqueue_get_tree,
1680 };
1681
1682 static struct file_system_type mqueue_fs_type = {
1683 .name = "mqueue",
1684 .init_fs_context = mqueue_init_fs_context,
1685 .kill_sb = kill_litter_super,
1686 .fs_flags = FS_USERNS_MOUNT,
1687 };
1688
mq_init_ns(struct ipc_namespace * ns)1689 int mq_init_ns(struct ipc_namespace *ns)
1690 {
1691 struct vfsmount *m;
1692
1693 ns->mq_queues_count = 0;
1694 ns->mq_queues_max = DFLT_QUEUESMAX;
1695 ns->mq_msg_max = DFLT_MSGMAX;
1696 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1697 ns->mq_msg_default = DFLT_MSG;
1698 ns->mq_msgsize_default = DFLT_MSGSIZE;
1699
1700 m = mq_create_mount(ns);
1701 if (IS_ERR(m))
1702 return PTR_ERR(m);
1703 ns->mq_mnt = m;
1704 return 0;
1705 }
1706
mq_clear_sbinfo(struct ipc_namespace * ns)1707 void mq_clear_sbinfo(struct ipc_namespace *ns)
1708 {
1709 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1710 }
1711
mq_put_mnt(struct ipc_namespace * ns)1712 void mq_put_mnt(struct ipc_namespace *ns)
1713 {
1714 kern_unmount(ns->mq_mnt);
1715 }
1716
init_mqueue_fs(void)1717 static int __init init_mqueue_fs(void)
1718 {
1719 int error;
1720
1721 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1722 sizeof(struct mqueue_inode_info), 0,
1723 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1724 if (mqueue_inode_cachep == NULL)
1725 return -ENOMEM;
1726
1727 /* ignore failures - they are not fatal */
1728 mq_sysctl_table = mq_register_sysctl_table();
1729
1730 error = register_filesystem(&mqueue_fs_type);
1731 if (error)
1732 goto out_sysctl;
1733
1734 spin_lock_init(&mq_lock);
1735
1736 error = mq_init_ns(&init_ipc_ns);
1737 if (error)
1738 goto out_filesystem;
1739
1740 return 0;
1741
1742 out_filesystem:
1743 unregister_filesystem(&mqueue_fs_type);
1744 out_sysctl:
1745 if (mq_sysctl_table)
1746 unregister_sysctl_table(mq_sysctl_table);
1747 kmem_cache_destroy(mqueue_inode_cachep);
1748 return error;
1749 }
1750
1751 device_initcall(init_mqueue_fs);
1752