1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 #define AUDIT_AUX_IPCPERM 0
106
107 /* Number of target pids per aux struct. */
108 #define AUDIT_AUX_PIDS 16
109
110 struct audit_aux_data_pids {
111 struct audit_aux_data d;
112 pid_t target_pid[AUDIT_AUX_PIDS];
113 kuid_t target_auid[AUDIT_AUX_PIDS];
114 kuid_t target_uid[AUDIT_AUX_PIDS];
115 unsigned int target_sessionid[AUDIT_AUX_PIDS];
116 u32 target_sid[AUDIT_AUX_PIDS];
117 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
118 int pid_count;
119 };
120
121 struct audit_aux_data_bprm_fcaps {
122 struct audit_aux_data d;
123 struct audit_cap_data fcap;
124 unsigned int fcap_ver;
125 struct audit_cap_data old_pcap;
126 struct audit_cap_data new_pcap;
127 };
128
129 struct audit_tree_refs {
130 struct audit_tree_refs *next;
131 struct audit_chunk *c[31];
132 };
133
134 struct audit_nfcfgop_tab {
135 enum audit_nfcfgop op;
136 const char *s;
137 };
138
139 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
140 { AUDIT_XT_OP_REGISTER, "xt_register" },
141 { AUDIT_XT_OP_REPLACE, "xt_replace" },
142 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
143 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
144 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
145 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
146 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
147 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
148 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
149 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
150 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
151 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
152 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
153 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
154 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
155 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
156 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
157 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
158 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
159 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
160 };
161
audit_match_perm(struct audit_context * ctx,int mask)162 static int audit_match_perm(struct audit_context *ctx, int mask)
163 {
164 unsigned n;
165 if (unlikely(!ctx))
166 return 0;
167 n = ctx->major;
168
169 switch (audit_classify_syscall(ctx->arch, n)) {
170 case 0: /* native */
171 if ((mask & AUDIT_PERM_WRITE) &&
172 audit_match_class(AUDIT_CLASS_WRITE, n))
173 return 1;
174 if ((mask & AUDIT_PERM_READ) &&
175 audit_match_class(AUDIT_CLASS_READ, n))
176 return 1;
177 if ((mask & AUDIT_PERM_ATTR) &&
178 audit_match_class(AUDIT_CLASS_CHATTR, n))
179 return 1;
180 return 0;
181 case 1: /* 32bit on biarch */
182 if ((mask & AUDIT_PERM_WRITE) &&
183 audit_match_class(AUDIT_CLASS_WRITE_32, n))
184 return 1;
185 if ((mask & AUDIT_PERM_READ) &&
186 audit_match_class(AUDIT_CLASS_READ_32, n))
187 return 1;
188 if ((mask & AUDIT_PERM_ATTR) &&
189 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
190 return 1;
191 return 0;
192 case 2: /* open */
193 return mask & ACC_MODE(ctx->argv[1]);
194 case 3: /* openat */
195 return mask & ACC_MODE(ctx->argv[2]);
196 case 4: /* socketcall */
197 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
198 case 5: /* execve */
199 return mask & AUDIT_PERM_EXEC;
200 default:
201 return 0;
202 }
203 }
204
audit_match_filetype(struct audit_context * ctx,int val)205 static int audit_match_filetype(struct audit_context *ctx, int val)
206 {
207 struct audit_names *n;
208 umode_t mode = (umode_t)val;
209
210 if (unlikely(!ctx))
211 return 0;
212
213 list_for_each_entry(n, &ctx->names_list, list) {
214 if ((n->ino != AUDIT_INO_UNSET) &&
215 ((n->mode & S_IFMT) == mode))
216 return 1;
217 }
218
219 return 0;
220 }
221
222 /*
223 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
224 * ->first_trees points to its beginning, ->trees - to the current end of data.
225 * ->tree_count is the number of free entries in array pointed to by ->trees.
226 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
227 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
228 * it's going to remain 1-element for almost any setup) until we free context itself.
229 * References in it _are_ dropped - at the same time we free/drop aux stuff.
230 */
231
audit_set_auditable(struct audit_context * ctx)232 static void audit_set_auditable(struct audit_context *ctx)
233 {
234 if (!ctx->prio) {
235 ctx->prio = 1;
236 ctx->current_state = AUDIT_RECORD_CONTEXT;
237 }
238 }
239
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)240 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
241 {
242 struct audit_tree_refs *p = ctx->trees;
243 int left = ctx->tree_count;
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
grow_tree_refs(struct audit_context * ctx)261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
265 if (!ctx->trees) {
266 ctx->trees = p;
267 return 0;
268 }
269 if (p)
270 p->next = ctx->trees;
271 else
272 ctx->first_trees = ctx->trees;
273 ctx->tree_count = 31;
274 return 1;
275 }
276
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)277 static void unroll_tree_refs(struct audit_context *ctx,
278 struct audit_tree_refs *p, int count)
279 {
280 struct audit_tree_refs *q;
281 int n;
282 if (!p) {
283 /* we started with empty chain */
284 p = ctx->first_trees;
285 count = 31;
286 /* if the very first allocation has failed, nothing to do */
287 if (!p)
288 return;
289 }
290 n = count;
291 for (q = p; q != ctx->trees; q = q->next, n = 31) {
292 while (n--) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 }
297 while (n-- > ctx->tree_count) {
298 audit_put_chunk(q->c[n]);
299 q->c[n] = NULL;
300 }
301 ctx->trees = p;
302 ctx->tree_count = count;
303 }
304
free_tree_refs(struct audit_context * ctx)305 static void free_tree_refs(struct audit_context *ctx)
306 {
307 struct audit_tree_refs *p, *q;
308 for (p = ctx->first_trees; p; p = q) {
309 q = p->next;
310 kfree(p);
311 }
312 }
313
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)314 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
315 {
316 struct audit_tree_refs *p;
317 int n;
318 if (!tree)
319 return 0;
320 /* full ones */
321 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
322 for (n = 0; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 /* partial */
327 if (p) {
328 for (n = ctx->tree_count; n < 31; n++)
329 if (audit_tree_match(p->c[n], tree))
330 return 1;
331 }
332 return 0;
333 }
334
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)335 static int audit_compare_uid(kuid_t uid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339 {
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_uid_comparator(uid, f->op, name->uid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_uid_comparator(uid, f->op, n->uid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357 }
358
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)359 static int audit_compare_gid(kgid_t gid,
360 struct audit_names *name,
361 struct audit_field *f,
362 struct audit_context *ctx)
363 {
364 struct audit_names *n;
365 int rc;
366
367 if (name) {
368 rc = audit_gid_comparator(gid, f->op, name->gid);
369 if (rc)
370 return rc;
371 }
372
373 if (ctx) {
374 list_for_each_entry(n, &ctx->names_list, list) {
375 rc = audit_gid_comparator(gid, f->op, n->gid);
376 if (rc)
377 return rc;
378 }
379 }
380 return 0;
381 }
382
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)383 static int audit_field_compare(struct task_struct *tsk,
384 const struct cred *cred,
385 struct audit_field *f,
386 struct audit_context *ctx,
387 struct audit_names *name)
388 {
389 switch (f->val) {
390 /* process to file object comparisons */
391 case AUDIT_COMPARE_UID_TO_OBJ_UID:
392 return audit_compare_uid(cred->uid, name, f, ctx);
393 case AUDIT_COMPARE_GID_TO_OBJ_GID:
394 return audit_compare_gid(cred->gid, name, f, ctx);
395 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->euid, name, f, ctx);
397 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->egid, name, f, ctx);
399 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
400 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
401 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
402 return audit_compare_uid(cred->suid, name, f, ctx);
403 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
404 return audit_compare_gid(cred->sgid, name, f, ctx);
405 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->fsuid, name, f, ctx);
407 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->fsgid, name, f, ctx);
409 /* uid comparisons */
410 case AUDIT_COMPARE_UID_TO_AUID:
411 return audit_uid_comparator(cred->uid, f->op,
412 audit_get_loginuid(tsk));
413 case AUDIT_COMPARE_UID_TO_EUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->euid);
415 case AUDIT_COMPARE_UID_TO_SUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->suid);
417 case AUDIT_COMPARE_UID_TO_FSUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
419 /* auid comparisons */
420 case AUDIT_COMPARE_AUID_TO_EUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->euid);
423 case AUDIT_COMPARE_AUID_TO_SUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->suid);
426 case AUDIT_COMPARE_AUID_TO_FSUID:
427 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
428 cred->fsuid);
429 /* euid comparisons */
430 case AUDIT_COMPARE_EUID_TO_SUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->suid);
432 case AUDIT_COMPARE_EUID_TO_FSUID:
433 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
434 /* suid comparisons */
435 case AUDIT_COMPARE_SUID_TO_FSUID:
436 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
437 /* gid comparisons */
438 case AUDIT_COMPARE_GID_TO_EGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->egid);
440 case AUDIT_COMPARE_GID_TO_SGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
442 case AUDIT_COMPARE_GID_TO_FSGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
444 /* egid comparisons */
445 case AUDIT_COMPARE_EGID_TO_SGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
447 case AUDIT_COMPARE_EGID_TO_FSGID:
448 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
449 /* sgid comparison */
450 case AUDIT_COMPARE_SGID_TO_FSGID:
451 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
452 default:
453 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
454 return 0;
455 }
456 return 0;
457 }
458
459 /* Determine if any context name data matches a rule's watch data */
460 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
461 * otherwise.
462 *
463 * If task_creation is true, this is an explicit indication that we are
464 * filtering a task rule at task creation time. This and tsk == current are
465 * the only situations where tsk->cred may be accessed without an rcu read lock.
466 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)467 static int audit_filter_rules(struct task_struct *tsk,
468 struct audit_krule *rule,
469 struct audit_context *ctx,
470 struct audit_names *name,
471 enum audit_state *state,
472 bool task_creation)
473 {
474 const struct cred *cred;
475 int i, need_sid = 1;
476 u32 sid;
477 unsigned int sessionid;
478
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
484 int result = 0;
485 pid_t pid;
486
487 switch (f->type) {
488 case AUDIT_PID:
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
491 break;
492 case AUDIT_PPID:
493 if (ctx) {
494 if (!ctx->ppid)
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
497 }
498 break;
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
502 result = !result;
503 break;
504 case AUDIT_UID:
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 break;
507 case AUDIT_EUID:
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 break;
510 case AUDIT_SUID:
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 break;
513 case AUDIT_FSUID:
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 break;
516 case AUDIT_GID:
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
519 if (!result)
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
522 if (result)
523 result = !groups_search(cred->group_info, f->gid);
524 }
525 break;
526 case AUDIT_EGID:
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
529 if (!result)
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
532 if (result)
533 result = !groups_search(cred->group_info, f->gid);
534 }
535 break;
536 case AUDIT_SGID:
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 break;
539 case AUDIT_FSGID:
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 break;
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
546 case AUDIT_PERS:
547 result = audit_comparator(tsk->personality, f->op, f->val);
548 break;
549 case AUDIT_ARCH:
550 if (ctx)
551 result = audit_comparator(ctx->arch, f->op, f->val);
552 break;
553
554 case AUDIT_EXIT:
555 if (ctx && ctx->return_valid)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
557 break;
558 case AUDIT_SUCCESS:
559 if (ctx && ctx->return_valid) {
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 else
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 }
565 break;
566 case AUDIT_DEVMAJOR:
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
597 if (name)
598 result = audit_comparator(name->ino, f->op, f->val);
599 else if (ctx) {
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
608 case AUDIT_OBJ_UID:
609 if (name) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
620 case AUDIT_OBJ_GID:
621 if (name) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
632 case AUDIT_WATCH:
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
640 break;
641 case AUDIT_DIR:
642 if (ctx) {
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
647 break;
648 case AUDIT_LOGINUID:
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
651 break;
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
655 case AUDIT_SADDR_FAM:
656 if (ctx && ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
669 logged upon error */
670 if (f->lsm_rule) {
671 if (need_sid) {
672 security_task_getsecid(tsk, &sid);
673 need_sid = 0;
674 }
675 result = security_audit_rule_match(sid, f->type,
676 f->op,
677 f->lsm_rule);
678 }
679 break;
680 case AUDIT_OBJ_USER:
681 case AUDIT_OBJ_ROLE:
682 case AUDIT_OBJ_TYPE:
683 case AUDIT_OBJ_LEV_LOW:
684 case AUDIT_OBJ_LEV_HIGH:
685 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
686 also applies here */
687 if (f->lsm_rule) {
688 /* Find files that match */
689 if (name) {
690 result = security_audit_rule_match(
691 name->osid,
692 f->type,
693 f->op,
694 f->lsm_rule);
695 } else if (ctx) {
696 list_for_each_entry(n, &ctx->names_list, list) {
697 if (security_audit_rule_match(
698 n->osid,
699 f->type,
700 f->op,
701 f->lsm_rule)) {
702 ++result;
703 break;
704 }
705 }
706 }
707 /* Find ipc objects that match */
708 if (!ctx || ctx->type != AUDIT_IPC)
709 break;
710 if (security_audit_rule_match(ctx->ipc.osid,
711 f->type, f->op,
712 f->lsm_rule))
713 ++result;
714 }
715 break;
716 case AUDIT_ARG0:
717 case AUDIT_ARG1:
718 case AUDIT_ARG2:
719 case AUDIT_ARG3:
720 if (ctx)
721 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
722 break;
723 case AUDIT_FILTERKEY:
724 /* ignore this field for filtering */
725 result = 1;
726 break;
727 case AUDIT_PERM:
728 result = audit_match_perm(ctx, f->val);
729 if (f->op == Audit_not_equal)
730 result = !result;
731 break;
732 case AUDIT_FILETYPE:
733 result = audit_match_filetype(ctx, f->val);
734 if (f->op == Audit_not_equal)
735 result = !result;
736 break;
737 case AUDIT_FIELD_COMPARE:
738 result = audit_field_compare(tsk, cred, f, ctx, name);
739 break;
740 }
741 if (!result)
742 return 0;
743 }
744
745 if (ctx) {
746 if (rule->prio <= ctx->prio)
747 return 0;
748 if (rule->filterkey) {
749 kfree(ctx->filterkey);
750 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
751 }
752 ctx->prio = rule->prio;
753 }
754 switch (rule->action) {
755 case AUDIT_NEVER:
756 *state = AUDIT_DISABLED;
757 break;
758 case AUDIT_ALWAYS:
759 *state = AUDIT_RECORD_CONTEXT;
760 break;
761 }
762 return 1;
763 }
764
765 /* At process creation time, we can determine if system-call auditing is
766 * completely disabled for this task. Since we only have the task
767 * structure at this point, we can only check uid and gid.
768 */
audit_filter_task(struct task_struct * tsk,char ** key)769 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
770 {
771 struct audit_entry *e;
772 enum audit_state state;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
776 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
777 &state, true)) {
778 if (state == AUDIT_RECORD_CONTEXT)
779 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
780 rcu_read_unlock();
781 return state;
782 }
783 }
784 rcu_read_unlock();
785 return AUDIT_BUILD_CONTEXT;
786 }
787
audit_in_mask(const struct audit_krule * rule,unsigned long val)788 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
789 {
790 int word, bit;
791
792 if (val > 0xffffffff)
793 return false;
794
795 word = AUDIT_WORD(val);
796 if (word >= AUDIT_BITMASK_SIZE)
797 return false;
798
799 bit = AUDIT_BIT(val);
800
801 return rule->mask[word] & bit;
802 }
803
804 /* At syscall entry and exit time, this filter is called if the
805 * audit_state is not low enough that auditing cannot take place, but is
806 * also not high enough that we already know we have to write an audit
807 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
808 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)809 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
810 struct audit_context *ctx,
811 struct list_head *list)
812 {
813 struct audit_entry *e;
814 enum audit_state state;
815
816 if (auditd_test_task(tsk))
817 return AUDIT_DISABLED;
818
819 rcu_read_lock();
820 list_for_each_entry_rcu(e, list, list) {
821 if (audit_in_mask(&e->rule, ctx->major) &&
822 audit_filter_rules(tsk, &e->rule, ctx, NULL,
823 &state, false)) {
824 rcu_read_unlock();
825 ctx->current_state = state;
826 return state;
827 }
828 }
829 rcu_read_unlock();
830 return AUDIT_BUILD_CONTEXT;
831 }
832
833 /*
834 * Given an audit_name check the inode hash table to see if they match.
835 * Called holding the rcu read lock to protect the use of audit_inode_hash
836 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)837 static int audit_filter_inode_name(struct task_struct *tsk,
838 struct audit_names *n,
839 struct audit_context *ctx) {
840 int h = audit_hash_ino((u32)n->ino);
841 struct list_head *list = &audit_inode_hash[h];
842 struct audit_entry *e;
843 enum audit_state state;
844
845 list_for_each_entry_rcu(e, list, list) {
846 if (audit_in_mask(&e->rule, ctx->major) &&
847 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
848 ctx->current_state = state;
849 return 1;
850 }
851 }
852 return 0;
853 }
854
855 /* At syscall exit time, this filter is called if any audit_names have been
856 * collected during syscall processing. We only check rules in sublists at hash
857 * buckets applicable to the inode numbers in audit_names.
858 * Regarding audit_state, same rules apply as for audit_filter_syscall().
859 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)860 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
861 {
862 struct audit_names *n;
863
864 if (auditd_test_task(tsk))
865 return;
866
867 rcu_read_lock();
868
869 list_for_each_entry(n, &ctx->names_list, list) {
870 if (audit_filter_inode_name(tsk, n, ctx))
871 break;
872 }
873 rcu_read_unlock();
874 }
875
audit_proctitle_free(struct audit_context * context)876 static inline void audit_proctitle_free(struct audit_context *context)
877 {
878 kfree(context->proctitle.value);
879 context->proctitle.value = NULL;
880 context->proctitle.len = 0;
881 }
882
audit_free_module(struct audit_context * context)883 static inline void audit_free_module(struct audit_context *context)
884 {
885 if (context->type == AUDIT_KERN_MODULE) {
886 kfree(context->module.name);
887 context->module.name = NULL;
888 }
889 }
audit_free_names(struct audit_context * context)890 static inline void audit_free_names(struct audit_context *context)
891 {
892 struct audit_names *n, *next;
893
894 list_for_each_entry_safe(n, next, &context->names_list, list) {
895 list_del(&n->list);
896 if (n->name)
897 putname(n->name);
898 if (n->should_free)
899 kfree(n);
900 }
901 context->name_count = 0;
902 path_put(&context->pwd);
903 context->pwd.dentry = NULL;
904 context->pwd.mnt = NULL;
905 }
906
audit_free_aux(struct audit_context * context)907 static inline void audit_free_aux(struct audit_context *context)
908 {
909 struct audit_aux_data *aux;
910
911 while ((aux = context->aux)) {
912 context->aux = aux->next;
913 kfree(aux);
914 }
915 while ((aux = context->aux_pids)) {
916 context->aux_pids = aux->next;
917 kfree(aux);
918 }
919 }
920
audit_alloc_context(enum audit_state state)921 static inline struct audit_context *audit_alloc_context(enum audit_state state)
922 {
923 struct audit_context *context;
924
925 context = kzalloc(sizeof(*context), GFP_KERNEL);
926 if (!context)
927 return NULL;
928 context->state = state;
929 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
930 INIT_LIST_HEAD(&context->killed_trees);
931 INIT_LIST_HEAD(&context->names_list);
932 return context;
933 }
934
935 /**
936 * audit_alloc - allocate an audit context block for a task
937 * @tsk: task
938 *
939 * Filter on the task information and allocate a per-task audit context
940 * if necessary. Doing so turns on system call auditing for the
941 * specified task. This is called from copy_process, so no lock is
942 * needed.
943 */
audit_alloc(struct task_struct * tsk)944 int audit_alloc(struct task_struct *tsk)
945 {
946 struct audit_context *context;
947 enum audit_state state;
948 char *key = NULL;
949
950 if (likely(!audit_ever_enabled))
951 return 0; /* Return if not auditing. */
952
953 state = audit_filter_task(tsk, &key);
954 if (state == AUDIT_DISABLED) {
955 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 return 0;
957 }
958
959 if (!(context = audit_alloc_context(state))) {
960 kfree(key);
961 audit_log_lost("out of memory in audit_alloc");
962 return -ENOMEM;
963 }
964 context->filterkey = key;
965
966 audit_set_context(tsk, context);
967 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
968 return 0;
969 }
970
audit_free_context(struct audit_context * context)971 static inline void audit_free_context(struct audit_context *context)
972 {
973 audit_free_module(context);
974 audit_free_names(context);
975 unroll_tree_refs(context, NULL, 0);
976 free_tree_refs(context);
977 audit_free_aux(context);
978 kfree(context->filterkey);
979 kfree(context->sockaddr);
980 audit_proctitle_free(context);
981 kfree(context);
982 }
983
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)984 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 u32 sid, char *comm)
987 {
988 struct audit_buffer *ab;
989 char *ctx = NULL;
990 u32 len;
991 int rc = 0;
992
993 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 if (!ab)
995 return rc;
996
997 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 from_kuid(&init_user_ns, auid),
999 from_kuid(&init_user_ns, uid), sessionid);
1000 if (sid) {
1001 if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 audit_log_format(ab, " obj=(none)");
1003 rc = 1;
1004 } else {
1005 audit_log_format(ab, " obj=%s", ctx);
1006 security_release_secctx(ctx, len);
1007 }
1008 }
1009 audit_log_format(ab, " ocomm=");
1010 audit_log_untrustedstring(ab, comm);
1011 audit_log_end(ab);
1012
1013 return rc;
1014 }
1015
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1016 static void audit_log_execve_info(struct audit_context *context,
1017 struct audit_buffer **ab)
1018 {
1019 long len_max;
1020 long len_rem;
1021 long len_full;
1022 long len_buf;
1023 long len_abuf = 0;
1024 long len_tmp;
1025 bool require_data;
1026 bool encode;
1027 unsigned int iter;
1028 unsigned int arg;
1029 char *buf_head;
1030 char *buf;
1031 const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 * data we put in the audit record for this argument (see the
1035 * code below) ... at this point in time 96 is plenty */
1036 char abuf[96];
1037
1038 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 * current value of 7500 is not as important as the fact that it
1040 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 * room if we go over a little bit in the logging below */
1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045 /* scratch buffer to hold the userspace args */
1046 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 if (!buf_head) {
1048 audit_panic("out of memory for argv string");
1049 return;
1050 }
1051 buf = buf_head;
1052
1053 audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055 len_rem = len_max;
1056 len_buf = 0;
1057 len_full = 0;
1058 require_data = true;
1059 encode = false;
1060 iter = 0;
1061 arg = 0;
1062 do {
1063 /* NOTE: we don't ever want to trust this value for anything
1064 * serious, but the audit record format insists we
1065 * provide an argument length for really long arguments,
1066 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 * to use strncpy_from_user() to obtain this value for
1068 * recording in the log, although we don't use it
1069 * anywhere here to avoid a double-fetch problem */
1070 if (len_full == 0)
1071 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073 /* read more data from userspace */
1074 if (require_data) {
1075 /* can we make more room in the buffer? */
1076 if (buf != buf_head) {
1077 memmove(buf_head, buf, len_buf);
1078 buf = buf_head;
1079 }
1080
1081 /* fetch as much as we can of the argument */
1082 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 len_max - len_buf);
1084 if (len_tmp == -EFAULT) {
1085 /* unable to copy from userspace */
1086 send_sig(SIGKILL, current, 0);
1087 goto out;
1088 } else if (len_tmp == (len_max - len_buf)) {
1089 /* buffer is not large enough */
1090 require_data = true;
1091 /* NOTE: if we are going to span multiple
1092 * buffers force the encoding so we stand
1093 * a chance at a sane len_full value and
1094 * consistent record encoding */
1095 encode = true;
1096 len_full = len_full * 2;
1097 p += len_tmp;
1098 } else {
1099 require_data = false;
1100 if (!encode)
1101 encode = audit_string_contains_control(
1102 buf, len_tmp);
1103 /* try to use a trusted value for len_full */
1104 if (len_full < len_max)
1105 len_full = (encode ?
1106 len_tmp * 2 : len_tmp);
1107 p += len_tmp + 1;
1108 }
1109 len_buf += len_tmp;
1110 buf_head[len_buf] = '\0';
1111
1112 /* length of the buffer in the audit record? */
1113 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 }
1115
1116 /* write as much as we can to the audit log */
1117 if (len_buf >= 0) {
1118 /* NOTE: some magic numbers here - basically if we
1119 * can't fit a reasonable amount of data into the
1120 * existing audit buffer, flush it and start with
1121 * a new buffer */
1122 if ((sizeof(abuf) + 8) > len_rem) {
1123 len_rem = len_max;
1124 audit_log_end(*ab);
1125 *ab = audit_log_start(context,
1126 GFP_KERNEL, AUDIT_EXECVE);
1127 if (!*ab)
1128 goto out;
1129 }
1130
1131 /* create the non-arg portion of the arg record */
1132 len_tmp = 0;
1133 if (require_data || (iter > 0) ||
1134 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 if (iter == 0) {
1136 len_tmp += snprintf(&abuf[len_tmp],
1137 sizeof(abuf) - len_tmp,
1138 " a%d_len=%lu",
1139 arg, len_full);
1140 }
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d[%d]=", arg, iter++);
1144 } else
1145 len_tmp += snprintf(&abuf[len_tmp],
1146 sizeof(abuf) - len_tmp,
1147 " a%d=", arg);
1148 WARN_ON(len_tmp >= sizeof(abuf));
1149 abuf[sizeof(abuf) - 1] = '\0';
1150
1151 /* log the arg in the audit record */
1152 audit_log_format(*ab, "%s", abuf);
1153 len_rem -= len_tmp;
1154 len_tmp = len_buf;
1155 if (encode) {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem / 2; /* encoding */
1158 audit_log_n_hex(*ab, buf, len_tmp);
1159 len_rem -= len_tmp * 2;
1160 len_abuf -= len_tmp * 2;
1161 } else {
1162 if (len_abuf > len_rem)
1163 len_tmp = len_rem - 2; /* quotes */
1164 audit_log_n_string(*ab, buf, len_tmp);
1165 len_rem -= len_tmp + 2;
1166 /* don't subtract the "2" because we still need
1167 * to add quotes to the remaining string */
1168 len_abuf -= len_tmp;
1169 }
1170 len_buf -= len_tmp;
1171 buf += len_tmp;
1172 }
1173
1174 /* ready to move to the next argument? */
1175 if ((len_buf == 0) && !require_data) {
1176 arg++;
1177 iter = 0;
1178 len_full = 0;
1179 require_data = true;
1180 encode = false;
1181 }
1182 } while (arg < context->execve.argc);
1183
1184 /* NOTE: the caller handles the final audit_log_end() call */
1185
1186 out:
1187 kfree(buf_head);
1188 }
1189
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 kernel_cap_t *cap)
1192 {
1193 int i;
1194
1195 if (cap_isclear(*cap)) {
1196 audit_log_format(ab, " %s=0", prefix);
1197 return;
1198 }
1199 audit_log_format(ab, " %s=", prefix);
1200 CAP_FOR_EACH_U32(i)
1201 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202 }
1203
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 {
1206 if (name->fcap_ver == -1) {
1207 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 return;
1209 }
1210 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 name->fcap.fE, name->fcap_ver,
1214 from_kuid(&init_user_ns, name->fcap.rootid));
1215 }
1216
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1217 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1218 {
1219 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1220 const struct timespec64 *tk = &context->time.tk_injoffset;
1221 static const char * const ntp_name[] = {
1222 "offset",
1223 "freq",
1224 "status",
1225 "tai",
1226 "tick",
1227 "adjust",
1228 };
1229 int type;
1230
1231 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1232 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1233 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1234 if (!*ab) {
1235 *ab = audit_log_start(context,
1236 GFP_KERNEL,
1237 AUDIT_TIME_ADJNTPVAL);
1238 if (!*ab)
1239 return;
1240 }
1241 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1242 ntp_name[type],
1243 ntp->vals[type].oldval,
1244 ntp->vals[type].newval);
1245 audit_log_end(*ab);
1246 *ab = NULL;
1247 }
1248 }
1249 }
1250 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1251 if (!*ab) {
1252 *ab = audit_log_start(context, GFP_KERNEL,
1253 AUDIT_TIME_INJOFFSET);
1254 if (!*ab)
1255 return;
1256 }
1257 audit_log_format(*ab, "sec=%lli nsec=%li",
1258 (long long)tk->tv_sec, tk->tv_nsec);
1259 audit_log_end(*ab);
1260 *ab = NULL;
1261 }
1262 }
1263
show_special(struct audit_context * context,int * call_panic)1264 static void show_special(struct audit_context *context, int *call_panic)
1265 {
1266 struct audit_buffer *ab;
1267 int i;
1268
1269 ab = audit_log_start(context, GFP_KERNEL, context->type);
1270 if (!ab)
1271 return;
1272
1273 switch (context->type) {
1274 case AUDIT_SOCKETCALL: {
1275 int nargs = context->socketcall.nargs;
1276 audit_log_format(ab, "nargs=%d", nargs);
1277 for (i = 0; i < nargs; i++)
1278 audit_log_format(ab, " a%d=%lx", i,
1279 context->socketcall.args[i]);
1280 break; }
1281 case AUDIT_IPC: {
1282 u32 osid = context->ipc.osid;
1283
1284 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1285 from_kuid(&init_user_ns, context->ipc.uid),
1286 from_kgid(&init_user_ns, context->ipc.gid),
1287 context->ipc.mode);
1288 if (osid) {
1289 char *ctx = NULL;
1290 u32 len;
1291 if (security_secid_to_secctx(osid, &ctx, &len)) {
1292 audit_log_format(ab, " osid=%u", osid);
1293 *call_panic = 1;
1294 } else {
1295 audit_log_format(ab, " obj=%s", ctx);
1296 security_release_secctx(ctx, len);
1297 }
1298 }
1299 if (context->ipc.has_perm) {
1300 audit_log_end(ab);
1301 ab = audit_log_start(context, GFP_KERNEL,
1302 AUDIT_IPC_SET_PERM);
1303 if (unlikely(!ab))
1304 return;
1305 audit_log_format(ab,
1306 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1307 context->ipc.qbytes,
1308 context->ipc.perm_uid,
1309 context->ipc.perm_gid,
1310 context->ipc.perm_mode);
1311 }
1312 break; }
1313 case AUDIT_MQ_OPEN:
1314 audit_log_format(ab,
1315 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1316 "mq_msgsize=%ld mq_curmsgs=%ld",
1317 context->mq_open.oflag, context->mq_open.mode,
1318 context->mq_open.attr.mq_flags,
1319 context->mq_open.attr.mq_maxmsg,
1320 context->mq_open.attr.mq_msgsize,
1321 context->mq_open.attr.mq_curmsgs);
1322 break;
1323 case AUDIT_MQ_SENDRECV:
1324 audit_log_format(ab,
1325 "mqdes=%d msg_len=%zd msg_prio=%u "
1326 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1327 context->mq_sendrecv.mqdes,
1328 context->mq_sendrecv.msg_len,
1329 context->mq_sendrecv.msg_prio,
1330 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1331 context->mq_sendrecv.abs_timeout.tv_nsec);
1332 break;
1333 case AUDIT_MQ_NOTIFY:
1334 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1335 context->mq_notify.mqdes,
1336 context->mq_notify.sigev_signo);
1337 break;
1338 case AUDIT_MQ_GETSETATTR: {
1339 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1340 audit_log_format(ab,
1341 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1342 "mq_curmsgs=%ld ",
1343 context->mq_getsetattr.mqdes,
1344 attr->mq_flags, attr->mq_maxmsg,
1345 attr->mq_msgsize, attr->mq_curmsgs);
1346 break; }
1347 case AUDIT_CAPSET:
1348 audit_log_format(ab, "pid=%d", context->capset.pid);
1349 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1350 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1351 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1352 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1353 break;
1354 case AUDIT_MMAP:
1355 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1356 context->mmap.flags);
1357 break;
1358 case AUDIT_EXECVE:
1359 audit_log_execve_info(context, &ab);
1360 break;
1361 case AUDIT_KERN_MODULE:
1362 audit_log_format(ab, "name=");
1363 if (context->module.name) {
1364 audit_log_untrustedstring(ab, context->module.name);
1365 } else
1366 audit_log_format(ab, "(null)");
1367
1368 break;
1369 case AUDIT_TIME_ADJNTPVAL:
1370 case AUDIT_TIME_INJOFFSET:
1371 /* this call deviates from the rest, eating the buffer */
1372 audit_log_time(context, &ab);
1373 break;
1374 }
1375 audit_log_end(ab);
1376 }
1377
audit_proctitle_rtrim(char * proctitle,int len)1378 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1379 {
1380 char *end = proctitle + len - 1;
1381 while (end > proctitle && !isprint(*end))
1382 end--;
1383
1384 /* catch the case where proctitle is only 1 non-print character */
1385 len = end - proctitle + 1;
1386 len -= isprint(proctitle[len-1]) == 0;
1387 return len;
1388 }
1389
1390 /*
1391 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1392 * @context: audit_context for the task
1393 * @n: audit_names structure with reportable details
1394 * @path: optional path to report instead of audit_names->name
1395 * @record_num: record number to report when handling a list of names
1396 * @call_panic: optional pointer to int that will be updated if secid fails
1397 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1398 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1399 const struct path *path, int record_num, int *call_panic)
1400 {
1401 struct audit_buffer *ab;
1402
1403 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1404 if (!ab)
1405 return;
1406
1407 audit_log_format(ab, "item=%d", record_num);
1408
1409 if (path)
1410 audit_log_d_path(ab, " name=", path);
1411 else if (n->name) {
1412 switch (n->name_len) {
1413 case AUDIT_NAME_FULL:
1414 /* log the full path */
1415 audit_log_format(ab, " name=");
1416 audit_log_untrustedstring(ab, n->name->name);
1417 break;
1418 case 0:
1419 /* name was specified as a relative path and the
1420 * directory component is the cwd
1421 */
1422 audit_log_d_path(ab, " name=", &context->pwd);
1423 break;
1424 default:
1425 /* log the name's directory component */
1426 audit_log_format(ab, " name=");
1427 audit_log_n_untrustedstring(ab, n->name->name,
1428 n->name_len);
1429 }
1430 } else
1431 audit_log_format(ab, " name=(null)");
1432
1433 if (n->ino != AUDIT_INO_UNSET)
1434 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1435 n->ino,
1436 MAJOR(n->dev),
1437 MINOR(n->dev),
1438 n->mode,
1439 from_kuid(&init_user_ns, n->uid),
1440 from_kgid(&init_user_ns, n->gid),
1441 MAJOR(n->rdev),
1442 MINOR(n->rdev));
1443 if (n->osid != 0) {
1444 char *ctx = NULL;
1445 u32 len;
1446
1447 if (security_secid_to_secctx(
1448 n->osid, &ctx, &len)) {
1449 audit_log_format(ab, " osid=%u", n->osid);
1450 if (call_panic)
1451 *call_panic = 2;
1452 } else {
1453 audit_log_format(ab, " obj=%s", ctx);
1454 security_release_secctx(ctx, len);
1455 }
1456 }
1457
1458 /* log the audit_names record type */
1459 switch (n->type) {
1460 case AUDIT_TYPE_NORMAL:
1461 audit_log_format(ab, " nametype=NORMAL");
1462 break;
1463 case AUDIT_TYPE_PARENT:
1464 audit_log_format(ab, " nametype=PARENT");
1465 break;
1466 case AUDIT_TYPE_CHILD_DELETE:
1467 audit_log_format(ab, " nametype=DELETE");
1468 break;
1469 case AUDIT_TYPE_CHILD_CREATE:
1470 audit_log_format(ab, " nametype=CREATE");
1471 break;
1472 default:
1473 audit_log_format(ab, " nametype=UNKNOWN");
1474 break;
1475 }
1476
1477 audit_log_fcaps(ab, n);
1478 audit_log_end(ab);
1479 }
1480
audit_log_proctitle(void)1481 static void audit_log_proctitle(void)
1482 {
1483 int res;
1484 char *buf;
1485 char *msg = "(null)";
1486 int len = strlen(msg);
1487 struct audit_context *context = audit_context();
1488 struct audit_buffer *ab;
1489
1490 if (!context || context->dummy)
1491 return;
1492
1493 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1494 if (!ab)
1495 return; /* audit_panic or being filtered */
1496
1497 audit_log_format(ab, "proctitle=");
1498
1499 /* Not cached */
1500 if (!context->proctitle.value) {
1501 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1502 if (!buf)
1503 goto out;
1504 /* Historically called this from procfs naming */
1505 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1506 if (res == 0) {
1507 kfree(buf);
1508 goto out;
1509 }
1510 res = audit_proctitle_rtrim(buf, res);
1511 if (res == 0) {
1512 kfree(buf);
1513 goto out;
1514 }
1515 context->proctitle.value = buf;
1516 context->proctitle.len = res;
1517 }
1518 msg = context->proctitle.value;
1519 len = context->proctitle.len;
1520 out:
1521 audit_log_n_untrustedstring(ab, msg, len);
1522 audit_log_end(ab);
1523 }
1524
audit_log_exit(void)1525 static void audit_log_exit(void)
1526 {
1527 int i, call_panic = 0;
1528 struct audit_context *context = audit_context();
1529 struct audit_buffer *ab;
1530 struct audit_aux_data *aux;
1531 struct audit_names *n;
1532
1533 context->personality = current->personality;
1534
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1536 if (!ab)
1537 return; /* audit_panic has been called */
1538 audit_log_format(ab, "arch=%x syscall=%d",
1539 context->arch, context->major);
1540 if (context->personality != PER_LINUX)
1541 audit_log_format(ab, " per=%lx", context->personality);
1542 if (context->return_valid)
1543 audit_log_format(ab, " success=%s exit=%ld",
1544 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1545 context->return_code);
1546
1547 audit_log_format(ab,
1548 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1549 context->argv[0],
1550 context->argv[1],
1551 context->argv[2],
1552 context->argv[3],
1553 context->name_count);
1554
1555 audit_log_task_info(ab);
1556 audit_log_key(ab, context->filterkey);
1557 audit_log_end(ab);
1558
1559 for (aux = context->aux; aux; aux = aux->next) {
1560
1561 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1562 if (!ab)
1563 continue; /* audit_panic has been called */
1564
1565 switch (aux->type) {
1566
1567 case AUDIT_BPRM_FCAPS: {
1568 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1569 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1570 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1571 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1572 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1573 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1574 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1575 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1576 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1577 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1578 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1579 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1580 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1581 audit_log_format(ab, " frootid=%d",
1582 from_kuid(&init_user_ns,
1583 axs->fcap.rootid));
1584 break; }
1585
1586 }
1587 audit_log_end(ab);
1588 }
1589
1590 if (context->type)
1591 show_special(context, &call_panic);
1592
1593 if (context->fds[0] >= 0) {
1594 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1595 if (ab) {
1596 audit_log_format(ab, "fd0=%d fd1=%d",
1597 context->fds[0], context->fds[1]);
1598 audit_log_end(ab);
1599 }
1600 }
1601
1602 if (context->sockaddr_len) {
1603 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1604 if (ab) {
1605 audit_log_format(ab, "saddr=");
1606 audit_log_n_hex(ab, (void *)context->sockaddr,
1607 context->sockaddr_len);
1608 audit_log_end(ab);
1609 }
1610 }
1611
1612 for (aux = context->aux_pids; aux; aux = aux->next) {
1613 struct audit_aux_data_pids *axs = (void *)aux;
1614
1615 for (i = 0; i < axs->pid_count; i++)
1616 if (audit_log_pid_context(context, axs->target_pid[i],
1617 axs->target_auid[i],
1618 axs->target_uid[i],
1619 axs->target_sessionid[i],
1620 axs->target_sid[i],
1621 axs->target_comm[i]))
1622 call_panic = 1;
1623 }
1624
1625 if (context->target_pid &&
1626 audit_log_pid_context(context, context->target_pid,
1627 context->target_auid, context->target_uid,
1628 context->target_sessionid,
1629 context->target_sid, context->target_comm))
1630 call_panic = 1;
1631
1632 if (context->pwd.dentry && context->pwd.mnt) {
1633 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1634 if (ab) {
1635 audit_log_d_path(ab, "cwd=", &context->pwd);
1636 audit_log_end(ab);
1637 }
1638 }
1639
1640 i = 0;
1641 list_for_each_entry(n, &context->names_list, list) {
1642 if (n->hidden)
1643 continue;
1644 audit_log_name(context, n, NULL, i++, &call_panic);
1645 }
1646
1647 audit_log_proctitle();
1648
1649 /* Send end of event record to help user space know we are finished */
1650 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1651 if (ab)
1652 audit_log_end(ab);
1653 if (call_panic)
1654 audit_panic("error converting sid to string");
1655 }
1656
1657 /**
1658 * __audit_free - free a per-task audit context
1659 * @tsk: task whose audit context block to free
1660 *
1661 * Called from copy_process and do_exit
1662 */
__audit_free(struct task_struct * tsk)1663 void __audit_free(struct task_struct *tsk)
1664 {
1665 struct audit_context *context = tsk->audit_context;
1666
1667 if (!context)
1668 return;
1669
1670 if (!list_empty(&context->killed_trees))
1671 audit_kill_trees(context);
1672
1673 /* We are called either by do_exit() or the fork() error handling code;
1674 * in the former case tsk == current and in the latter tsk is a
1675 * random task_struct that doesn't doesn't have any meaningful data we
1676 * need to log via audit_log_exit().
1677 */
1678 if (tsk == current && !context->dummy && context->in_syscall) {
1679 context->return_valid = 0;
1680 context->return_code = 0;
1681
1682 audit_filter_syscall(tsk, context,
1683 &audit_filter_list[AUDIT_FILTER_EXIT]);
1684 audit_filter_inodes(tsk, context);
1685 if (context->current_state == AUDIT_RECORD_CONTEXT)
1686 audit_log_exit();
1687 }
1688
1689 audit_set_context(tsk, NULL);
1690 audit_free_context(context);
1691 }
1692
1693 /**
1694 * __audit_syscall_entry - fill in an audit record at syscall entry
1695 * @major: major syscall type (function)
1696 * @a1: additional syscall register 1
1697 * @a2: additional syscall register 2
1698 * @a3: additional syscall register 3
1699 * @a4: additional syscall register 4
1700 *
1701 * Fill in audit context at syscall entry. This only happens if the
1702 * audit context was created when the task was created and the state or
1703 * filters demand the audit context be built. If the state from the
1704 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1705 * then the record will be written at syscall exit time (otherwise, it
1706 * will only be written if another part of the kernel requests that it
1707 * be written).
1708 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1709 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1710 unsigned long a3, unsigned long a4)
1711 {
1712 struct audit_context *context = audit_context();
1713 enum audit_state state;
1714
1715 if (!audit_enabled || !context)
1716 return;
1717
1718 BUG_ON(context->in_syscall || context->name_count);
1719
1720 state = context->state;
1721 if (state == AUDIT_DISABLED)
1722 return;
1723
1724 context->dummy = !audit_n_rules;
1725 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1726 context->prio = 0;
1727 if (auditd_test_task(current))
1728 return;
1729 }
1730
1731 context->arch = syscall_get_arch(current);
1732 context->major = major;
1733 context->argv[0] = a1;
1734 context->argv[1] = a2;
1735 context->argv[2] = a3;
1736 context->argv[3] = a4;
1737 context->serial = 0;
1738 context->in_syscall = 1;
1739 context->current_state = state;
1740 context->ppid = 0;
1741 ktime_get_coarse_real_ts64(&context->ctime);
1742 }
1743
1744 /**
1745 * __audit_syscall_exit - deallocate audit context after a system call
1746 * @success: success value of the syscall
1747 * @return_code: return value of the syscall
1748 *
1749 * Tear down after system call. If the audit context has been marked as
1750 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1751 * filtering, or because some other part of the kernel wrote an audit
1752 * message), then write out the syscall information. In call cases,
1753 * free the names stored from getname().
1754 */
__audit_syscall_exit(int success,long return_code)1755 void __audit_syscall_exit(int success, long return_code)
1756 {
1757 struct audit_context *context;
1758
1759 context = audit_context();
1760 if (!context)
1761 return;
1762
1763 if (!list_empty(&context->killed_trees))
1764 audit_kill_trees(context);
1765
1766 if (!context->dummy && context->in_syscall) {
1767 if (success)
1768 context->return_valid = AUDITSC_SUCCESS;
1769 else
1770 context->return_valid = AUDITSC_FAILURE;
1771
1772 /*
1773 * we need to fix up the return code in the audit logs if the
1774 * actual return codes are later going to be fixed up by the
1775 * arch specific signal handlers
1776 *
1777 * This is actually a test for:
1778 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1779 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1780 *
1781 * but is faster than a bunch of ||
1782 */
1783 if (unlikely(return_code <= -ERESTARTSYS) &&
1784 (return_code >= -ERESTART_RESTARTBLOCK) &&
1785 (return_code != -ENOIOCTLCMD))
1786 context->return_code = -EINTR;
1787 else
1788 context->return_code = return_code;
1789
1790 audit_filter_syscall(current, context,
1791 &audit_filter_list[AUDIT_FILTER_EXIT]);
1792 audit_filter_inodes(current, context);
1793 if (context->current_state == AUDIT_RECORD_CONTEXT)
1794 audit_log_exit();
1795 }
1796
1797 context->in_syscall = 0;
1798 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1799
1800 audit_free_module(context);
1801 audit_free_names(context);
1802 unroll_tree_refs(context, NULL, 0);
1803 audit_free_aux(context);
1804 context->aux = NULL;
1805 context->aux_pids = NULL;
1806 context->target_pid = 0;
1807 context->target_sid = 0;
1808 context->sockaddr_len = 0;
1809 context->type = 0;
1810 context->fds[0] = -1;
1811 if (context->state != AUDIT_RECORD_CONTEXT) {
1812 kfree(context->filterkey);
1813 context->filterkey = NULL;
1814 }
1815 }
1816
handle_one(const struct inode * inode)1817 static inline void handle_one(const struct inode *inode)
1818 {
1819 struct audit_context *context;
1820 struct audit_tree_refs *p;
1821 struct audit_chunk *chunk;
1822 int count;
1823 if (likely(!inode->i_fsnotify_marks))
1824 return;
1825 context = audit_context();
1826 p = context->trees;
1827 count = context->tree_count;
1828 rcu_read_lock();
1829 chunk = audit_tree_lookup(inode);
1830 rcu_read_unlock();
1831 if (!chunk)
1832 return;
1833 if (likely(put_tree_ref(context, chunk)))
1834 return;
1835 if (unlikely(!grow_tree_refs(context))) {
1836 pr_warn("out of memory, audit has lost a tree reference\n");
1837 audit_set_auditable(context);
1838 audit_put_chunk(chunk);
1839 unroll_tree_refs(context, p, count);
1840 return;
1841 }
1842 put_tree_ref(context, chunk);
1843 }
1844
handle_path(const struct dentry * dentry)1845 static void handle_path(const struct dentry *dentry)
1846 {
1847 struct audit_context *context;
1848 struct audit_tree_refs *p;
1849 const struct dentry *d, *parent;
1850 struct audit_chunk *drop;
1851 unsigned long seq;
1852 int count;
1853
1854 context = audit_context();
1855 p = context->trees;
1856 count = context->tree_count;
1857 retry:
1858 drop = NULL;
1859 d = dentry;
1860 rcu_read_lock();
1861 seq = read_seqbegin(&rename_lock);
1862 for(;;) {
1863 struct inode *inode = d_backing_inode(d);
1864 if (inode && unlikely(inode->i_fsnotify_marks)) {
1865 struct audit_chunk *chunk;
1866 chunk = audit_tree_lookup(inode);
1867 if (chunk) {
1868 if (unlikely(!put_tree_ref(context, chunk))) {
1869 drop = chunk;
1870 break;
1871 }
1872 }
1873 }
1874 parent = d->d_parent;
1875 if (parent == d)
1876 break;
1877 d = parent;
1878 }
1879 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1880 rcu_read_unlock();
1881 if (!drop) {
1882 /* just a race with rename */
1883 unroll_tree_refs(context, p, count);
1884 goto retry;
1885 }
1886 audit_put_chunk(drop);
1887 if (grow_tree_refs(context)) {
1888 /* OK, got more space */
1889 unroll_tree_refs(context, p, count);
1890 goto retry;
1891 }
1892 /* too bad */
1893 pr_warn("out of memory, audit has lost a tree reference\n");
1894 unroll_tree_refs(context, p, count);
1895 audit_set_auditable(context);
1896 return;
1897 }
1898 rcu_read_unlock();
1899 }
1900
audit_alloc_name(struct audit_context * context,unsigned char type)1901 static struct audit_names *audit_alloc_name(struct audit_context *context,
1902 unsigned char type)
1903 {
1904 struct audit_names *aname;
1905
1906 if (context->name_count < AUDIT_NAMES) {
1907 aname = &context->preallocated_names[context->name_count];
1908 memset(aname, 0, sizeof(*aname));
1909 } else {
1910 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1911 if (!aname)
1912 return NULL;
1913 aname->should_free = true;
1914 }
1915
1916 aname->ino = AUDIT_INO_UNSET;
1917 aname->type = type;
1918 list_add_tail(&aname->list, &context->names_list);
1919
1920 context->name_count++;
1921 return aname;
1922 }
1923
1924 /**
1925 * __audit_reusename - fill out filename with info from existing entry
1926 * @uptr: userland ptr to pathname
1927 *
1928 * Search the audit_names list for the current audit context. If there is an
1929 * existing entry with a matching "uptr" then return the filename
1930 * associated with that audit_name. If not, return NULL.
1931 */
1932 struct filename *
__audit_reusename(const __user char * uptr)1933 __audit_reusename(const __user char *uptr)
1934 {
1935 struct audit_context *context = audit_context();
1936 struct audit_names *n;
1937
1938 list_for_each_entry(n, &context->names_list, list) {
1939 if (!n->name)
1940 continue;
1941 if (n->name->uptr == uptr) {
1942 n->name->refcnt++;
1943 return n->name;
1944 }
1945 }
1946 return NULL;
1947 }
1948
_audit_getcwd(struct audit_context * context)1949 inline void _audit_getcwd(struct audit_context *context)
1950 {
1951 if (!context->pwd.dentry)
1952 get_fs_pwd(current->fs, &context->pwd);
1953 }
1954
__audit_getcwd(void)1955 void __audit_getcwd(void)
1956 {
1957 struct audit_context *context = audit_context();
1958
1959 if (context->in_syscall)
1960 _audit_getcwd(context);
1961 }
1962
1963 /**
1964 * __audit_getname - add a name to the list
1965 * @name: name to add
1966 *
1967 * Add a name to the list of audit names for this context.
1968 * Called from fs/namei.c:getname().
1969 */
__audit_getname(struct filename * name)1970 void __audit_getname(struct filename *name)
1971 {
1972 struct audit_context *context = audit_context();
1973 struct audit_names *n;
1974
1975 if (!context->in_syscall)
1976 return;
1977
1978 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1979 if (!n)
1980 return;
1981
1982 n->name = name;
1983 n->name_len = AUDIT_NAME_FULL;
1984 name->aname = n;
1985 name->refcnt++;
1986
1987 _audit_getcwd(context);
1988 }
1989
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1990 static inline int audit_copy_fcaps(struct audit_names *name,
1991 const struct dentry *dentry)
1992 {
1993 struct cpu_vfs_cap_data caps;
1994 int rc;
1995
1996 if (!dentry)
1997 return 0;
1998
1999 rc = get_vfs_caps_from_disk(dentry, &caps);
2000 if (rc)
2001 return rc;
2002
2003 name->fcap.permitted = caps.permitted;
2004 name->fcap.inheritable = caps.inheritable;
2005 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2006 name->fcap.rootid = caps.rootid;
2007 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2008 VFS_CAP_REVISION_SHIFT;
2009
2010 return 0;
2011 }
2012
2013 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2014 static void audit_copy_inode(struct audit_names *name,
2015 const struct dentry *dentry,
2016 struct inode *inode, unsigned int flags)
2017 {
2018 name->ino = inode->i_ino;
2019 name->dev = inode->i_sb->s_dev;
2020 name->mode = inode->i_mode;
2021 name->uid = inode->i_uid;
2022 name->gid = inode->i_gid;
2023 name->rdev = inode->i_rdev;
2024 security_inode_getsecid(inode, &name->osid);
2025 if (flags & AUDIT_INODE_NOEVAL) {
2026 name->fcap_ver = -1;
2027 return;
2028 }
2029 audit_copy_fcaps(name, dentry);
2030 }
2031
2032 /**
2033 * __audit_inode - store the inode and device from a lookup
2034 * @name: name being audited
2035 * @dentry: dentry being audited
2036 * @flags: attributes for this particular entry
2037 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2038 void __audit_inode(struct filename *name, const struct dentry *dentry,
2039 unsigned int flags)
2040 {
2041 struct audit_context *context = audit_context();
2042 struct inode *inode = d_backing_inode(dentry);
2043 struct audit_names *n;
2044 bool parent = flags & AUDIT_INODE_PARENT;
2045 struct audit_entry *e;
2046 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2047 int i;
2048
2049 if (!context->in_syscall)
2050 return;
2051
2052 rcu_read_lock();
2053 list_for_each_entry_rcu(e, list, list) {
2054 for (i = 0; i < e->rule.field_count; i++) {
2055 struct audit_field *f = &e->rule.fields[i];
2056
2057 if (f->type == AUDIT_FSTYPE
2058 && audit_comparator(inode->i_sb->s_magic,
2059 f->op, f->val)
2060 && e->rule.action == AUDIT_NEVER) {
2061 rcu_read_unlock();
2062 return;
2063 }
2064 }
2065 }
2066 rcu_read_unlock();
2067
2068 if (!name)
2069 goto out_alloc;
2070
2071 /*
2072 * If we have a pointer to an audit_names entry already, then we can
2073 * just use it directly if the type is correct.
2074 */
2075 n = name->aname;
2076 if (n) {
2077 if (parent) {
2078 if (n->type == AUDIT_TYPE_PARENT ||
2079 n->type == AUDIT_TYPE_UNKNOWN)
2080 goto out;
2081 } else {
2082 if (n->type != AUDIT_TYPE_PARENT)
2083 goto out;
2084 }
2085 }
2086
2087 list_for_each_entry_reverse(n, &context->names_list, list) {
2088 if (n->ino) {
2089 /* valid inode number, use that for the comparison */
2090 if (n->ino != inode->i_ino ||
2091 n->dev != inode->i_sb->s_dev)
2092 continue;
2093 } else if (n->name) {
2094 /* inode number has not been set, check the name */
2095 if (strcmp(n->name->name, name->name))
2096 continue;
2097 } else
2098 /* no inode and no name (?!) ... this is odd ... */
2099 continue;
2100
2101 /* match the correct record type */
2102 if (parent) {
2103 if (n->type == AUDIT_TYPE_PARENT ||
2104 n->type == AUDIT_TYPE_UNKNOWN)
2105 goto out;
2106 } else {
2107 if (n->type != AUDIT_TYPE_PARENT)
2108 goto out;
2109 }
2110 }
2111
2112 out_alloc:
2113 /* unable to find an entry with both a matching name and type */
2114 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2115 if (!n)
2116 return;
2117 if (name) {
2118 n->name = name;
2119 name->refcnt++;
2120 }
2121
2122 out:
2123 if (parent) {
2124 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2125 n->type = AUDIT_TYPE_PARENT;
2126 if (flags & AUDIT_INODE_HIDDEN)
2127 n->hidden = true;
2128 } else {
2129 n->name_len = AUDIT_NAME_FULL;
2130 n->type = AUDIT_TYPE_NORMAL;
2131 }
2132 handle_path(dentry);
2133 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2134 }
2135
__audit_file(const struct file * file)2136 void __audit_file(const struct file *file)
2137 {
2138 __audit_inode(NULL, file->f_path.dentry, 0);
2139 }
2140
2141 /**
2142 * __audit_inode_child - collect inode info for created/removed objects
2143 * @parent: inode of dentry parent
2144 * @dentry: dentry being audited
2145 * @type: AUDIT_TYPE_* value that we're looking for
2146 *
2147 * For syscalls that create or remove filesystem objects, audit_inode
2148 * can only collect information for the filesystem object's parent.
2149 * This call updates the audit context with the child's information.
2150 * Syscalls that create a new filesystem object must be hooked after
2151 * the object is created. Syscalls that remove a filesystem object
2152 * must be hooked prior, in order to capture the target inode during
2153 * unsuccessful attempts.
2154 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2155 void __audit_inode_child(struct inode *parent,
2156 const struct dentry *dentry,
2157 const unsigned char type)
2158 {
2159 struct audit_context *context = audit_context();
2160 struct inode *inode = d_backing_inode(dentry);
2161 const struct qstr *dname = &dentry->d_name;
2162 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2163 struct audit_entry *e;
2164 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2165 int i;
2166
2167 if (!context->in_syscall)
2168 return;
2169
2170 rcu_read_lock();
2171 list_for_each_entry_rcu(e, list, list) {
2172 for (i = 0; i < e->rule.field_count; i++) {
2173 struct audit_field *f = &e->rule.fields[i];
2174
2175 if (f->type == AUDIT_FSTYPE
2176 && audit_comparator(parent->i_sb->s_magic,
2177 f->op, f->val)
2178 && e->rule.action == AUDIT_NEVER) {
2179 rcu_read_unlock();
2180 return;
2181 }
2182 }
2183 }
2184 rcu_read_unlock();
2185
2186 if (inode)
2187 handle_one(inode);
2188
2189 /* look for a parent entry first */
2190 list_for_each_entry(n, &context->names_list, list) {
2191 if (!n->name ||
2192 (n->type != AUDIT_TYPE_PARENT &&
2193 n->type != AUDIT_TYPE_UNKNOWN))
2194 continue;
2195
2196 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2197 !audit_compare_dname_path(dname,
2198 n->name->name, n->name_len)) {
2199 if (n->type == AUDIT_TYPE_UNKNOWN)
2200 n->type = AUDIT_TYPE_PARENT;
2201 found_parent = n;
2202 break;
2203 }
2204 }
2205
2206 cond_resched();
2207
2208 /* is there a matching child entry? */
2209 list_for_each_entry(n, &context->names_list, list) {
2210 /* can only match entries that have a name */
2211 if (!n->name ||
2212 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2213 continue;
2214
2215 if (!strcmp(dname->name, n->name->name) ||
2216 !audit_compare_dname_path(dname, n->name->name,
2217 found_parent ?
2218 found_parent->name_len :
2219 AUDIT_NAME_FULL)) {
2220 if (n->type == AUDIT_TYPE_UNKNOWN)
2221 n->type = type;
2222 found_child = n;
2223 break;
2224 }
2225 }
2226
2227 if (!found_parent) {
2228 /* create a new, "anonymous" parent record */
2229 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2230 if (!n)
2231 return;
2232 audit_copy_inode(n, NULL, parent, 0);
2233 }
2234
2235 if (!found_child) {
2236 found_child = audit_alloc_name(context, type);
2237 if (!found_child)
2238 return;
2239
2240 /* Re-use the name belonging to the slot for a matching parent
2241 * directory. All names for this context are relinquished in
2242 * audit_free_names() */
2243 if (found_parent) {
2244 found_child->name = found_parent->name;
2245 found_child->name_len = AUDIT_NAME_FULL;
2246 found_child->name->refcnt++;
2247 }
2248 }
2249
2250 if (inode)
2251 audit_copy_inode(found_child, dentry, inode, 0);
2252 else
2253 found_child->ino = AUDIT_INO_UNSET;
2254 }
2255 EXPORT_SYMBOL_GPL(__audit_inode_child);
2256
2257 /**
2258 * auditsc_get_stamp - get local copies of audit_context values
2259 * @ctx: audit_context for the task
2260 * @t: timespec64 to store time recorded in the audit_context
2261 * @serial: serial value that is recorded in the audit_context
2262 *
2263 * Also sets the context as auditable.
2264 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2265 int auditsc_get_stamp(struct audit_context *ctx,
2266 struct timespec64 *t, unsigned int *serial)
2267 {
2268 if (!ctx->in_syscall)
2269 return 0;
2270 if (!ctx->serial)
2271 ctx->serial = audit_serial();
2272 t->tv_sec = ctx->ctime.tv_sec;
2273 t->tv_nsec = ctx->ctime.tv_nsec;
2274 *serial = ctx->serial;
2275 if (!ctx->prio) {
2276 ctx->prio = 1;
2277 ctx->current_state = AUDIT_RECORD_CONTEXT;
2278 }
2279 return 1;
2280 }
2281
2282 /**
2283 * __audit_mq_open - record audit data for a POSIX MQ open
2284 * @oflag: open flag
2285 * @mode: mode bits
2286 * @attr: queue attributes
2287 *
2288 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2289 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2290 {
2291 struct audit_context *context = audit_context();
2292
2293 if (attr)
2294 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2295 else
2296 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2297
2298 context->mq_open.oflag = oflag;
2299 context->mq_open.mode = mode;
2300
2301 context->type = AUDIT_MQ_OPEN;
2302 }
2303
2304 /**
2305 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2306 * @mqdes: MQ descriptor
2307 * @msg_len: Message length
2308 * @msg_prio: Message priority
2309 * @abs_timeout: Message timeout in absolute time
2310 *
2311 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2312 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2313 const struct timespec64 *abs_timeout)
2314 {
2315 struct audit_context *context = audit_context();
2316 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2317
2318 if (abs_timeout)
2319 memcpy(p, abs_timeout, sizeof(*p));
2320 else
2321 memset(p, 0, sizeof(*p));
2322
2323 context->mq_sendrecv.mqdes = mqdes;
2324 context->mq_sendrecv.msg_len = msg_len;
2325 context->mq_sendrecv.msg_prio = msg_prio;
2326
2327 context->type = AUDIT_MQ_SENDRECV;
2328 }
2329
2330 /**
2331 * __audit_mq_notify - record audit data for a POSIX MQ notify
2332 * @mqdes: MQ descriptor
2333 * @notification: Notification event
2334 *
2335 */
2336
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2337 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2338 {
2339 struct audit_context *context = audit_context();
2340
2341 if (notification)
2342 context->mq_notify.sigev_signo = notification->sigev_signo;
2343 else
2344 context->mq_notify.sigev_signo = 0;
2345
2346 context->mq_notify.mqdes = mqdes;
2347 context->type = AUDIT_MQ_NOTIFY;
2348 }
2349
2350 /**
2351 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2352 * @mqdes: MQ descriptor
2353 * @mqstat: MQ flags
2354 *
2355 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2356 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2357 {
2358 struct audit_context *context = audit_context();
2359 context->mq_getsetattr.mqdes = mqdes;
2360 context->mq_getsetattr.mqstat = *mqstat;
2361 context->type = AUDIT_MQ_GETSETATTR;
2362 }
2363
2364 /**
2365 * __audit_ipc_obj - record audit data for ipc object
2366 * @ipcp: ipc permissions
2367 *
2368 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2369 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2370 {
2371 struct audit_context *context = audit_context();
2372 context->ipc.uid = ipcp->uid;
2373 context->ipc.gid = ipcp->gid;
2374 context->ipc.mode = ipcp->mode;
2375 context->ipc.has_perm = 0;
2376 security_ipc_getsecid(ipcp, &context->ipc.osid);
2377 context->type = AUDIT_IPC;
2378 }
2379
2380 /**
2381 * __audit_ipc_set_perm - record audit data for new ipc permissions
2382 * @qbytes: msgq bytes
2383 * @uid: msgq user id
2384 * @gid: msgq group id
2385 * @mode: msgq mode (permissions)
2386 *
2387 * Called only after audit_ipc_obj().
2388 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2389 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2390 {
2391 struct audit_context *context = audit_context();
2392
2393 context->ipc.qbytes = qbytes;
2394 context->ipc.perm_uid = uid;
2395 context->ipc.perm_gid = gid;
2396 context->ipc.perm_mode = mode;
2397 context->ipc.has_perm = 1;
2398 }
2399
__audit_bprm(struct linux_binprm * bprm)2400 void __audit_bprm(struct linux_binprm *bprm)
2401 {
2402 struct audit_context *context = audit_context();
2403
2404 context->type = AUDIT_EXECVE;
2405 context->execve.argc = bprm->argc;
2406 }
2407
2408
2409 /**
2410 * __audit_socketcall - record audit data for sys_socketcall
2411 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2412 * @args: args array
2413 *
2414 */
__audit_socketcall(int nargs,unsigned long * args)2415 int __audit_socketcall(int nargs, unsigned long *args)
2416 {
2417 struct audit_context *context = audit_context();
2418
2419 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2420 return -EINVAL;
2421 context->type = AUDIT_SOCKETCALL;
2422 context->socketcall.nargs = nargs;
2423 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2424 return 0;
2425 }
2426
2427 /**
2428 * __audit_fd_pair - record audit data for pipe and socketpair
2429 * @fd1: the first file descriptor
2430 * @fd2: the second file descriptor
2431 *
2432 */
__audit_fd_pair(int fd1,int fd2)2433 void __audit_fd_pair(int fd1, int fd2)
2434 {
2435 struct audit_context *context = audit_context();
2436 context->fds[0] = fd1;
2437 context->fds[1] = fd2;
2438 }
2439
2440 /**
2441 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2442 * @len: data length in user space
2443 * @a: data address in kernel space
2444 *
2445 * Returns 0 for success or NULL context or < 0 on error.
2446 */
__audit_sockaddr(int len,void * a)2447 int __audit_sockaddr(int len, void *a)
2448 {
2449 struct audit_context *context = audit_context();
2450
2451 if (!context->sockaddr) {
2452 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2453 if (!p)
2454 return -ENOMEM;
2455 context->sockaddr = p;
2456 }
2457
2458 context->sockaddr_len = len;
2459 memcpy(context->sockaddr, a, len);
2460 return 0;
2461 }
2462
__audit_ptrace(struct task_struct * t)2463 void __audit_ptrace(struct task_struct *t)
2464 {
2465 struct audit_context *context = audit_context();
2466
2467 context->target_pid = task_tgid_nr(t);
2468 context->target_auid = audit_get_loginuid(t);
2469 context->target_uid = task_uid(t);
2470 context->target_sessionid = audit_get_sessionid(t);
2471 security_task_getsecid(t, &context->target_sid);
2472 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2473 }
2474
2475 /**
2476 * audit_signal_info_syscall - record signal info for syscalls
2477 * @t: task being signaled
2478 *
2479 * If the audit subsystem is being terminated, record the task (pid)
2480 * and uid that is doing that.
2481 */
audit_signal_info_syscall(struct task_struct * t)2482 int audit_signal_info_syscall(struct task_struct *t)
2483 {
2484 struct audit_aux_data_pids *axp;
2485 struct audit_context *ctx = audit_context();
2486 kuid_t t_uid = task_uid(t);
2487
2488 if (!audit_signals || audit_dummy_context())
2489 return 0;
2490
2491 /* optimize the common case by putting first signal recipient directly
2492 * in audit_context */
2493 if (!ctx->target_pid) {
2494 ctx->target_pid = task_tgid_nr(t);
2495 ctx->target_auid = audit_get_loginuid(t);
2496 ctx->target_uid = t_uid;
2497 ctx->target_sessionid = audit_get_sessionid(t);
2498 security_task_getsecid(t, &ctx->target_sid);
2499 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2500 return 0;
2501 }
2502
2503 axp = (void *)ctx->aux_pids;
2504 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2505 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2506 if (!axp)
2507 return -ENOMEM;
2508
2509 axp->d.type = AUDIT_OBJ_PID;
2510 axp->d.next = ctx->aux_pids;
2511 ctx->aux_pids = (void *)axp;
2512 }
2513 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2514
2515 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2516 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2517 axp->target_uid[axp->pid_count] = t_uid;
2518 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2519 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2520 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2521 axp->pid_count++;
2522
2523 return 0;
2524 }
2525
2526 /**
2527 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2528 * @bprm: pointer to the bprm being processed
2529 * @new: the proposed new credentials
2530 * @old: the old credentials
2531 *
2532 * Simply check if the proc already has the caps given by the file and if not
2533 * store the priv escalation info for later auditing at the end of the syscall
2534 *
2535 * -Eric
2536 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2537 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2538 const struct cred *new, const struct cred *old)
2539 {
2540 struct audit_aux_data_bprm_fcaps *ax;
2541 struct audit_context *context = audit_context();
2542 struct cpu_vfs_cap_data vcaps;
2543
2544 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2545 if (!ax)
2546 return -ENOMEM;
2547
2548 ax->d.type = AUDIT_BPRM_FCAPS;
2549 ax->d.next = context->aux;
2550 context->aux = (void *)ax;
2551
2552 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2553
2554 ax->fcap.permitted = vcaps.permitted;
2555 ax->fcap.inheritable = vcaps.inheritable;
2556 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2557 ax->fcap.rootid = vcaps.rootid;
2558 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2559
2560 ax->old_pcap.permitted = old->cap_permitted;
2561 ax->old_pcap.inheritable = old->cap_inheritable;
2562 ax->old_pcap.effective = old->cap_effective;
2563 ax->old_pcap.ambient = old->cap_ambient;
2564
2565 ax->new_pcap.permitted = new->cap_permitted;
2566 ax->new_pcap.inheritable = new->cap_inheritable;
2567 ax->new_pcap.effective = new->cap_effective;
2568 ax->new_pcap.ambient = new->cap_ambient;
2569 return 0;
2570 }
2571
2572 /**
2573 * __audit_log_capset - store information about the arguments to the capset syscall
2574 * @new: the new credentials
2575 * @old: the old (current) credentials
2576 *
2577 * Record the arguments userspace sent to sys_capset for later printing by the
2578 * audit system if applicable
2579 */
__audit_log_capset(const struct cred * new,const struct cred * old)2580 void __audit_log_capset(const struct cred *new, const struct cred *old)
2581 {
2582 struct audit_context *context = audit_context();
2583 context->capset.pid = task_tgid_nr(current);
2584 context->capset.cap.effective = new->cap_effective;
2585 context->capset.cap.inheritable = new->cap_effective;
2586 context->capset.cap.permitted = new->cap_permitted;
2587 context->capset.cap.ambient = new->cap_ambient;
2588 context->type = AUDIT_CAPSET;
2589 }
2590
__audit_mmap_fd(int fd,int flags)2591 void __audit_mmap_fd(int fd, int flags)
2592 {
2593 struct audit_context *context = audit_context();
2594 context->mmap.fd = fd;
2595 context->mmap.flags = flags;
2596 context->type = AUDIT_MMAP;
2597 }
2598
__audit_log_kern_module(char * name)2599 void __audit_log_kern_module(char *name)
2600 {
2601 struct audit_context *context = audit_context();
2602
2603 context->module.name = kstrdup(name, GFP_KERNEL);
2604 if (!context->module.name)
2605 audit_log_lost("out of memory in __audit_log_kern_module");
2606 context->type = AUDIT_KERN_MODULE;
2607 }
2608
__audit_fanotify(unsigned int response)2609 void __audit_fanotify(unsigned int response)
2610 {
2611 audit_log(audit_context(), GFP_KERNEL,
2612 AUDIT_FANOTIFY, "resp=%u", response);
2613 }
2614
__audit_tk_injoffset(struct timespec64 offset)2615 void __audit_tk_injoffset(struct timespec64 offset)
2616 {
2617 struct audit_context *context = audit_context();
2618
2619 /* only set type if not already set by NTP */
2620 if (!context->type)
2621 context->type = AUDIT_TIME_INJOFFSET;
2622 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2623 }
2624
__audit_ntp_log(const struct audit_ntp_data * ad)2625 void __audit_ntp_log(const struct audit_ntp_data *ad)
2626 {
2627 struct audit_context *context = audit_context();
2628 int type;
2629
2630 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2631 if (ad->vals[type].newval != ad->vals[type].oldval) {
2632 /* unconditionally set type, overwriting TK */
2633 context->type = AUDIT_TIME_ADJNTPVAL;
2634 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2635 break;
2636 }
2637 }
2638
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2639 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2640 enum audit_nfcfgop op, gfp_t gfp)
2641 {
2642 struct audit_buffer *ab;
2643 char comm[sizeof(current->comm)];
2644
2645 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2646 if (!ab)
2647 return;
2648 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2649 name, af, nentries, audit_nfcfgs[op].s);
2650
2651 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2652 audit_log_task_context(ab); /* subj= */
2653 audit_log_format(ab, " comm=");
2654 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2655 audit_log_end(ab);
2656 }
2657 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2658
audit_log_task(struct audit_buffer * ab)2659 static void audit_log_task(struct audit_buffer *ab)
2660 {
2661 kuid_t auid, uid;
2662 kgid_t gid;
2663 unsigned int sessionid;
2664 char comm[sizeof(current->comm)];
2665
2666 auid = audit_get_loginuid(current);
2667 sessionid = audit_get_sessionid(current);
2668 current_uid_gid(&uid, &gid);
2669
2670 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2671 from_kuid(&init_user_ns, auid),
2672 from_kuid(&init_user_ns, uid),
2673 from_kgid(&init_user_ns, gid),
2674 sessionid);
2675 audit_log_task_context(ab);
2676 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2677 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2678 audit_log_d_path_exe(ab, current->mm);
2679 }
2680
2681 /**
2682 * audit_core_dumps - record information about processes that end abnormally
2683 * @signr: signal value
2684 *
2685 * If a process ends with a core dump, something fishy is going on and we
2686 * should record the event for investigation.
2687 */
audit_core_dumps(long signr)2688 void audit_core_dumps(long signr)
2689 {
2690 struct audit_buffer *ab;
2691
2692 if (!audit_enabled)
2693 return;
2694
2695 if (signr == SIGQUIT) /* don't care for those */
2696 return;
2697
2698 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2699 if (unlikely(!ab))
2700 return;
2701 audit_log_task(ab);
2702 audit_log_format(ab, " sig=%ld res=1", signr);
2703 audit_log_end(ab);
2704 }
2705
2706 /**
2707 * audit_seccomp - record information about a seccomp action
2708 * @syscall: syscall number
2709 * @signr: signal value
2710 * @code: the seccomp action
2711 *
2712 * Record the information associated with a seccomp action. Event filtering for
2713 * seccomp actions that are not to be logged is done in seccomp_log().
2714 * Therefore, this function forces auditing independent of the audit_enabled
2715 * and dummy context state because seccomp actions should be logged even when
2716 * audit is not in use.
2717 */
audit_seccomp(unsigned long syscall,long signr,int code)2718 void audit_seccomp(unsigned long syscall, long signr, int code)
2719 {
2720 struct audit_buffer *ab;
2721
2722 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2723 if (unlikely(!ab))
2724 return;
2725 audit_log_task(ab);
2726 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2727 signr, syscall_get_arch(current), syscall,
2728 in_compat_syscall(), KSTK_EIP(current), code);
2729 audit_log_end(ab);
2730 }
2731
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2732 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2733 int res)
2734 {
2735 struct audit_buffer *ab;
2736
2737 if (!audit_enabled)
2738 return;
2739
2740 ab = audit_log_start(audit_context(), GFP_KERNEL,
2741 AUDIT_CONFIG_CHANGE);
2742 if (unlikely(!ab))
2743 return;
2744
2745 audit_log_format(ab,
2746 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2747 names, old_names, res);
2748 audit_log_end(ab);
2749 }
2750
audit_killed_trees(void)2751 struct list_head *audit_killed_trees(void)
2752 {
2753 struct audit_context *ctx = audit_context();
2754 if (likely(!ctx || !ctx->in_syscall))
2755 return NULL;
2756 return &ctx->killed_trees;
2757 }
2758