• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81 
lockdep_enabled(void)82 static __always_inline bool lockdep_enabled(void)
83 {
84 	if (!debug_locks)
85 		return false;
86 
87 	if (this_cpu_read(lockdep_recursion))
88 		return false;
89 
90 	if (current->lockdep_recursion)
91 		return false;
92 
93 	return true;
94 }
95 
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106 
lockdep_lock(void)107 static inline void lockdep_lock(void)
108 {
109 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110 
111 	__this_cpu_inc(lockdep_recursion);
112 	arch_spin_lock(&__lock);
113 	__owner = current;
114 }
115 
lockdep_unlock(void)116 static inline void lockdep_unlock(void)
117 {
118 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119 
120 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 		return;
122 
123 	__owner = NULL;
124 	arch_spin_unlock(&__lock);
125 	__this_cpu_dec(lockdep_recursion);
126 }
127 
lockdep_assert_locked(void)128 static inline bool lockdep_assert_locked(void)
129 {
130 	return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132 
133 static struct task_struct *lockdep_selftest_task_struct;
134 
135 
graph_lock(void)136 static int graph_lock(void)
137 {
138 	lockdep_lock();
139 	/*
140 	 * Make sure that if another CPU detected a bug while
141 	 * walking the graph we dont change it (while the other
142 	 * CPU is busy printing out stuff with the graph lock
143 	 * dropped already)
144 	 */
145 	if (!debug_locks) {
146 		lockdep_unlock();
147 		return 0;
148 	}
149 	return 1;
150 }
151 
graph_unlock(void)152 static inline void graph_unlock(void)
153 {
154 	lockdep_unlock();
155 }
156 
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
debug_locks_off_graph_unlock(void)161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 	int ret = debug_locks_off();
164 
165 	lockdep_unlock();
166 
167 	return ret;
168 }
169 
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173 
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 unsigned long max_lock_class_idx;
186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
187 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
188 
hlock_class(struct held_lock * hlock)189 static inline struct lock_class *hlock_class(struct held_lock *hlock)
190 {
191 	unsigned int class_idx = hlock->class_idx;
192 
193 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
194 	barrier();
195 
196 	if (!test_bit(class_idx, lock_classes_in_use)) {
197 		/*
198 		 * Someone passed in garbage, we give up.
199 		 */
200 		DEBUG_LOCKS_WARN_ON(1);
201 		return NULL;
202 	}
203 
204 	/*
205 	 * At this point, if the passed hlock->class_idx is still garbage,
206 	 * we just have to live with it
207 	 */
208 	return lock_classes + class_idx;
209 }
210 
211 #ifdef CONFIG_LOCK_STAT
212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
213 
lockstat_clock(void)214 static inline u64 lockstat_clock(void)
215 {
216 	return local_clock();
217 }
218 
lock_point(unsigned long points[],unsigned long ip)219 static int lock_point(unsigned long points[], unsigned long ip)
220 {
221 	int i;
222 
223 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
224 		if (points[i] == 0) {
225 			points[i] = ip;
226 			break;
227 		}
228 		if (points[i] == ip)
229 			break;
230 	}
231 
232 	return i;
233 }
234 
lock_time_inc(struct lock_time * lt,u64 time)235 static void lock_time_inc(struct lock_time *lt, u64 time)
236 {
237 	if (time > lt->max)
238 		lt->max = time;
239 
240 	if (time < lt->min || !lt->nr)
241 		lt->min = time;
242 
243 	lt->total += time;
244 	lt->nr++;
245 }
246 
lock_time_add(struct lock_time * src,struct lock_time * dst)247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
248 {
249 	if (!src->nr)
250 		return;
251 
252 	if (src->max > dst->max)
253 		dst->max = src->max;
254 
255 	if (src->min < dst->min || !dst->nr)
256 		dst->min = src->min;
257 
258 	dst->total += src->total;
259 	dst->nr += src->nr;
260 }
261 
lock_stats(struct lock_class * class)262 struct lock_class_stats lock_stats(struct lock_class *class)
263 {
264 	struct lock_class_stats stats;
265 	int cpu, i;
266 
267 	memset(&stats, 0, sizeof(struct lock_class_stats));
268 	for_each_possible_cpu(cpu) {
269 		struct lock_class_stats *pcs =
270 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
271 
272 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
273 			stats.contention_point[i] += pcs->contention_point[i];
274 
275 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
276 			stats.contending_point[i] += pcs->contending_point[i];
277 
278 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
279 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
280 
281 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
282 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
283 
284 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
285 			stats.bounces[i] += pcs->bounces[i];
286 	}
287 
288 	return stats;
289 }
290 
clear_lock_stats(struct lock_class * class)291 void clear_lock_stats(struct lock_class *class)
292 {
293 	int cpu;
294 
295 	for_each_possible_cpu(cpu) {
296 		struct lock_class_stats *cpu_stats =
297 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
298 
299 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
300 	}
301 	memset(class->contention_point, 0, sizeof(class->contention_point));
302 	memset(class->contending_point, 0, sizeof(class->contending_point));
303 }
304 
get_lock_stats(struct lock_class * class)305 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
306 {
307 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
308 }
309 
lock_release_holdtime(struct held_lock * hlock)310 static void lock_release_holdtime(struct held_lock *hlock)
311 {
312 	struct lock_class_stats *stats;
313 	u64 holdtime;
314 
315 	if (!lock_stat)
316 		return;
317 
318 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
319 
320 	stats = get_lock_stats(hlock_class(hlock));
321 	if (hlock->read)
322 		lock_time_inc(&stats->read_holdtime, holdtime);
323 	else
324 		lock_time_inc(&stats->write_holdtime, holdtime);
325 }
326 #else
lock_release_holdtime(struct held_lock * hlock)327 static inline void lock_release_holdtime(struct held_lock *hlock)
328 {
329 }
330 #endif
331 
332 /*
333  * We keep a global list of all lock classes. The list is only accessed with
334  * the lockdep spinlock lock held. free_lock_classes is a list with free
335  * elements. These elements are linked together by the lock_entry member in
336  * struct lock_class.
337  */
338 static LIST_HEAD(all_lock_classes);
339 static LIST_HEAD(free_lock_classes);
340 
341 /**
342  * struct pending_free - information about data structures about to be freed
343  * @zapped: Head of a list with struct lock_class elements.
344  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
345  *	are about to be freed.
346  */
347 struct pending_free {
348 	struct list_head zapped;
349 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
350 };
351 
352 /**
353  * struct delayed_free - data structures used for delayed freeing
354  *
355  * A data structure for delayed freeing of data structures that may be
356  * accessed by RCU readers at the time these were freed.
357  *
358  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
359  * @index:     Index of @pf to which freed data structures are added.
360  * @scheduled: Whether or not an RCU callback has been scheduled.
361  * @pf:        Array with information about data structures about to be freed.
362  */
363 static struct delayed_free {
364 	struct rcu_head		rcu_head;
365 	int			index;
366 	int			scheduled;
367 	struct pending_free	pf[2];
368 } delayed_free;
369 
370 /*
371  * The lockdep classes are in a hash-table as well, for fast lookup:
372  */
373 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
374 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
375 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
376 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
377 
378 static struct hlist_head classhash_table[CLASSHASH_SIZE];
379 
380 /*
381  * We put the lock dependency chains into a hash-table as well, to cache
382  * their existence:
383  */
384 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
385 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
386 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
387 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
388 
389 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
390 
391 /*
392  * the id of held_lock
393  */
hlock_id(struct held_lock * hlock)394 static inline u16 hlock_id(struct held_lock *hlock)
395 {
396 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
397 
398 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
399 }
400 
chain_hlock_class_idx(u16 hlock_id)401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
402 {
403 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
404 }
405 
406 /*
407  * The hash key of the lock dependency chains is a hash itself too:
408  * it's a hash of all locks taken up to that lock, including that lock.
409  * It's a 64-bit hash, because it's important for the keys to be
410  * unique.
411  */
iterate_chain_key(u64 key,u32 idx)412 static inline u64 iterate_chain_key(u64 key, u32 idx)
413 {
414 	u32 k0 = key, k1 = key >> 32;
415 
416 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
417 
418 	return k0 | (u64)k1 << 32;
419 }
420 
lockdep_init_task(struct task_struct * task)421 void lockdep_init_task(struct task_struct *task)
422 {
423 	task->lockdep_depth = 0; /* no locks held yet */
424 	task->curr_chain_key = INITIAL_CHAIN_KEY;
425 	task->lockdep_recursion = 0;
426 }
427 
lockdep_recursion_inc(void)428 static __always_inline void lockdep_recursion_inc(void)
429 {
430 	__this_cpu_inc(lockdep_recursion);
431 }
432 
lockdep_recursion_finish(void)433 static __always_inline void lockdep_recursion_finish(void)
434 {
435 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
436 		__this_cpu_write(lockdep_recursion, 0);
437 }
438 
lockdep_set_selftest_task(struct task_struct * task)439 void lockdep_set_selftest_task(struct task_struct *task)
440 {
441 	lockdep_selftest_task_struct = task;
442 }
443 
444 /*
445  * Debugging switches:
446  */
447 
448 #define VERBOSE			0
449 #define VERY_VERBOSE		0
450 
451 #if VERBOSE
452 # define HARDIRQ_VERBOSE	1
453 # define SOFTIRQ_VERBOSE	1
454 #else
455 # define HARDIRQ_VERBOSE	0
456 # define SOFTIRQ_VERBOSE	0
457 #endif
458 
459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
460 /*
461  * Quick filtering for interesting events:
462  */
class_filter(struct lock_class * class)463 static int class_filter(struct lock_class *class)
464 {
465 #if 0
466 	/* Example */
467 	if (class->name_version == 1 &&
468 			!strcmp(class->name, "lockname"))
469 		return 1;
470 	if (class->name_version == 1 &&
471 			!strcmp(class->name, "&struct->lockfield"))
472 		return 1;
473 #endif
474 	/* Filter everything else. 1 would be to allow everything else */
475 	return 0;
476 }
477 #endif
478 
verbose(struct lock_class * class)479 static int verbose(struct lock_class *class)
480 {
481 #if VERBOSE
482 	return class_filter(class);
483 #endif
484 	return 0;
485 }
486 
print_lockdep_off(const char * bug_msg)487 static void print_lockdep_off(const char *bug_msg)
488 {
489 	printk(KERN_DEBUG "%s\n", bug_msg);
490 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
491 #ifdef CONFIG_LOCK_STAT
492 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
493 #endif
494 }
495 
496 unsigned long nr_stack_trace_entries;
497 
498 #ifdef CONFIG_PROVE_LOCKING
499 /**
500  * struct lock_trace - single stack backtrace
501  * @hash_entry:	Entry in a stack_trace_hash[] list.
502  * @hash:	jhash() of @entries.
503  * @nr_entries:	Number of entries in @entries.
504  * @entries:	Actual stack backtrace.
505  */
506 struct lock_trace {
507 	struct hlist_node	hash_entry;
508 	u32			hash;
509 	u32			nr_entries;
510 	unsigned long		entries[] __aligned(sizeof(unsigned long));
511 };
512 #define LOCK_TRACE_SIZE_IN_LONGS				\
513 	(sizeof(struct lock_trace) / sizeof(unsigned long))
514 /*
515  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
516  */
517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
519 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
521 {
522 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
523 		memcmp(t1->entries, t2->entries,
524 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
525 }
526 
save_trace(void)527 static struct lock_trace *save_trace(void)
528 {
529 	struct lock_trace *trace, *t2;
530 	struct hlist_head *hash_head;
531 	u32 hash;
532 	int max_entries;
533 
534 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
535 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
536 
537 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
538 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
539 		LOCK_TRACE_SIZE_IN_LONGS;
540 
541 	if (max_entries <= 0) {
542 		if (!debug_locks_off_graph_unlock())
543 			return NULL;
544 
545 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
546 		dump_stack();
547 
548 		return NULL;
549 	}
550 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
551 
552 	hash = jhash(trace->entries, trace->nr_entries *
553 		     sizeof(trace->entries[0]), 0);
554 	trace->hash = hash;
555 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
556 	hlist_for_each_entry(t2, hash_head, hash_entry) {
557 		if (traces_identical(trace, t2))
558 			return t2;
559 	}
560 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
561 	hlist_add_head(&trace->hash_entry, hash_head);
562 
563 	return trace;
564 }
565 
566 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)567 u64 lockdep_stack_trace_count(void)
568 {
569 	struct lock_trace *trace;
570 	u64 c = 0;
571 	int i;
572 
573 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
574 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
575 			c++;
576 		}
577 	}
578 
579 	return c;
580 }
581 
582 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)583 u64 lockdep_stack_hash_count(void)
584 {
585 	u64 c = 0;
586 	int i;
587 
588 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
589 		if (!hlist_empty(&stack_trace_hash[i]))
590 			c++;
591 
592 	return c;
593 }
594 #endif
595 
596 unsigned int nr_hardirq_chains;
597 unsigned int nr_softirq_chains;
598 unsigned int nr_process_chains;
599 unsigned int max_lockdep_depth;
600 
601 #ifdef CONFIG_DEBUG_LOCKDEP
602 /*
603  * Various lockdep statistics:
604  */
605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
606 #endif
607 
608 #ifdef CONFIG_PROVE_LOCKING
609 /*
610  * Locking printouts:
611  */
612 
613 #define __USAGE(__STATE)						\
614 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
615 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
616 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
617 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
618 
619 static const char *usage_str[] =
620 {
621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
622 #include "lockdep_states.h"
623 #undef LOCKDEP_STATE
624 	[LOCK_USED] = "INITIAL USE",
625 	[LOCK_USED_READ] = "INITIAL READ USE",
626 	/* abused as string storage for verify_lock_unused() */
627 	[LOCK_USAGE_STATES] = "IN-NMI",
628 };
629 #endif
630 
__get_key_name(const struct lockdep_subclass_key * key,char * str)631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
632 {
633 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
634 }
635 
lock_flag(enum lock_usage_bit bit)636 static inline unsigned long lock_flag(enum lock_usage_bit bit)
637 {
638 	return 1UL << bit;
639 }
640 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
642 {
643 	/*
644 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
645 	 * irq context), which is the safest usage category.
646 	 */
647 	char c = '.';
648 
649 	/*
650 	 * The order of the following usage checks matters, which will
651 	 * result in the outcome character as follows:
652 	 *
653 	 * - '+': irq is enabled and not in irq context
654 	 * - '-': in irq context and irq is disabled
655 	 * - '?': in irq context and irq is enabled
656 	 */
657 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
658 		c = '+';
659 		if (class->usage_mask & lock_flag(bit))
660 			c = '?';
661 	} else if (class->usage_mask & lock_flag(bit))
662 		c = '-';
663 
664 	return c;
665 }
666 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
668 {
669 	int i = 0;
670 
671 #define LOCKDEP_STATE(__STATE) 						\
672 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
673 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
674 #include "lockdep_states.h"
675 #undef LOCKDEP_STATE
676 
677 	usage[i] = '\0';
678 }
679 
__print_lock_name(struct lock_class * class)680 static void __print_lock_name(struct lock_class *class)
681 {
682 	char str[KSYM_NAME_LEN];
683 	const char *name;
684 
685 	name = class->name;
686 	if (!name) {
687 		name = __get_key_name(class->key, str);
688 		printk(KERN_CONT "%s", name);
689 	} else {
690 		printk(KERN_CONT "%s", name);
691 		if (class->name_version > 1)
692 			printk(KERN_CONT "#%d", class->name_version);
693 		if (class->subclass)
694 			printk(KERN_CONT "/%d", class->subclass);
695 	}
696 }
697 
print_lock_name(struct lock_class * class)698 static void print_lock_name(struct lock_class *class)
699 {
700 	char usage[LOCK_USAGE_CHARS];
701 
702 	get_usage_chars(class, usage);
703 
704 	printk(KERN_CONT " (");
705 	__print_lock_name(class);
706 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
707 			class->wait_type_outer ?: class->wait_type_inner,
708 			class->wait_type_inner);
709 }
710 
print_lockdep_cache(struct lockdep_map * lock)711 static void print_lockdep_cache(struct lockdep_map *lock)
712 {
713 	const char *name;
714 	char str[KSYM_NAME_LEN];
715 
716 	name = lock->name;
717 	if (!name)
718 		name = __get_key_name(lock->key->subkeys, str);
719 
720 	printk(KERN_CONT "%s", name);
721 }
722 
print_lock(struct held_lock * hlock)723 static void print_lock(struct held_lock *hlock)
724 {
725 	/*
726 	 * We can be called locklessly through debug_show_all_locks() so be
727 	 * extra careful, the hlock might have been released and cleared.
728 	 *
729 	 * If this indeed happens, lets pretend it does not hurt to continue
730 	 * to print the lock unless the hlock class_idx does not point to a
731 	 * registered class. The rationale here is: since we don't attempt
732 	 * to distinguish whether we are in this situation, if it just
733 	 * happened we can't count on class_idx to tell either.
734 	 */
735 	struct lock_class *lock = hlock_class(hlock);
736 
737 	if (!lock) {
738 		printk(KERN_CONT "<RELEASED>\n");
739 		return;
740 	}
741 
742 	printk(KERN_CONT "%px", hlock->instance);
743 	print_lock_name(lock);
744 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
745 }
746 
lockdep_print_held_locks(struct task_struct * p)747 static void lockdep_print_held_locks(struct task_struct *p)
748 {
749 	int i, depth = READ_ONCE(p->lockdep_depth);
750 
751 	if (!depth)
752 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
753 	else
754 		printk("%d lock%s held by %s/%d:\n", depth,
755 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
756 	/*
757 	 * It's not reliable to print a task's held locks if it's not sleeping
758 	 * and it's not the current task.
759 	 */
760 	if (p->state == TASK_RUNNING && p != current)
761 		return;
762 	for (i = 0; i < depth; i++) {
763 		printk(" #%d: ", i);
764 		print_lock(p->held_locks + i);
765 	}
766 }
767 
print_kernel_ident(void)768 static void print_kernel_ident(void)
769 {
770 	printk("%s %.*s %s\n", init_utsname()->release,
771 		(int)strcspn(init_utsname()->version, " "),
772 		init_utsname()->version,
773 		print_tainted());
774 }
775 
very_verbose(struct lock_class * class)776 static int very_verbose(struct lock_class *class)
777 {
778 #if VERY_VERBOSE
779 	return class_filter(class);
780 #endif
781 	return 0;
782 }
783 
784 /*
785  * Is this the address of a static object:
786  */
787 #ifdef __KERNEL__
static_obj(const void * obj)788 static int static_obj(const void *obj)
789 {
790 	unsigned long start = (unsigned long) &_stext,
791 		      end   = (unsigned long) &_end,
792 		      addr  = (unsigned long) obj;
793 
794 	if (arch_is_kernel_initmem_freed(addr))
795 		return 0;
796 
797 	/*
798 	 * static variable?
799 	 */
800 	if ((addr >= start) && (addr < end))
801 		return 1;
802 
803 	if (arch_is_kernel_data(addr))
804 		return 1;
805 
806 	/*
807 	 * in-kernel percpu var?
808 	 */
809 	if (is_kernel_percpu_address(addr))
810 		return 1;
811 
812 	/*
813 	 * module static or percpu var?
814 	 */
815 	return is_module_address(addr) || is_module_percpu_address(addr);
816 }
817 #endif
818 
819 /*
820  * To make lock name printouts unique, we calculate a unique
821  * class->name_version generation counter. The caller must hold the graph
822  * lock.
823  */
count_matching_names(struct lock_class * new_class)824 static int count_matching_names(struct lock_class *new_class)
825 {
826 	struct lock_class *class;
827 	int count = 0;
828 
829 	if (!new_class->name)
830 		return 0;
831 
832 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
833 		if (new_class->key - new_class->subclass == class->key)
834 			return class->name_version;
835 		if (class->name && !strcmp(class->name, new_class->name))
836 			count = max(count, class->name_version);
837 	}
838 
839 	return count + 1;
840 }
841 
842 /* used from NMI context -- must be lockless */
843 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
845 {
846 	struct lockdep_subclass_key *key;
847 	struct hlist_head *hash_head;
848 	struct lock_class *class;
849 
850 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
851 		instrumentation_begin();
852 		debug_locks_off();
853 		printk(KERN_ERR
854 			"BUG: looking up invalid subclass: %u\n", subclass);
855 		printk(KERN_ERR
856 			"turning off the locking correctness validator.\n");
857 		dump_stack();
858 		instrumentation_end();
859 		return NULL;
860 	}
861 
862 	/*
863 	 * If it is not initialised then it has never been locked,
864 	 * so it won't be present in the hash table.
865 	 */
866 	if (unlikely(!lock->key))
867 		return NULL;
868 
869 	/*
870 	 * NOTE: the class-key must be unique. For dynamic locks, a static
871 	 * lock_class_key variable is passed in through the mutex_init()
872 	 * (or spin_lock_init()) call - which acts as the key. For static
873 	 * locks we use the lock object itself as the key.
874 	 */
875 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 			sizeof(struct lockdep_map));
877 
878 	key = lock->key->subkeys + subclass;
879 
880 	hash_head = classhashentry(key);
881 
882 	/*
883 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 	 */
885 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 		return NULL;
887 
888 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
889 		if (class->key == key) {
890 			/*
891 			 * Huh! same key, different name? Did someone trample
892 			 * on some memory? We're most confused.
893 			 */
894 			WARN_ON_ONCE(class->name != lock->name &&
895 				     lock->key != &__lockdep_no_validate__);
896 			return class;
897 		}
898 	}
899 
900 	return NULL;
901 }
902 
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
assign_lock_key(struct lockdep_map * lock)908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 	unsigned long can_addr, addr = (unsigned long)lock;
911 
912 #ifdef __KERNEL__
913 	/*
914 	 * lockdep_free_key_range() assumes that struct lock_class_key
915 	 * objects do not overlap. Since we use the address of lock
916 	 * objects as class key for static objects, check whether the
917 	 * size of lock_class_key objects does not exceed the size of
918 	 * the smallest lock object.
919 	 */
920 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922 
923 	if (__is_kernel_percpu_address(addr, &can_addr))
924 		lock->key = (void *)can_addr;
925 	else if (__is_module_percpu_address(addr, &can_addr))
926 		lock->key = (void *)can_addr;
927 	else if (static_obj(lock))
928 		lock->key = (void *)lock;
929 	else {
930 		/* Debug-check: all keys must be persistent! */
931 		debug_locks_off();
932 		pr_err("INFO: trying to register non-static key.\n");
933 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
934 		pr_err("you didn't initialize this object before use?\n");
935 		pr_err("turning off the locking correctness validator.\n");
936 		dump_stack();
937 		return false;
938 	}
939 
940 	return true;
941 }
942 
943 #ifdef CONFIG_DEBUG_LOCKDEP
944 
945 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)946 static bool in_list(struct list_head *e, struct list_head *h)
947 {
948 	struct list_head *f;
949 
950 	list_for_each(f, h) {
951 		if (e == f)
952 			return true;
953 	}
954 
955 	return false;
956 }
957 
958 /*
959  * Check whether entry @e occurs in any of the locks_after or locks_before
960  * lists.
961  */
in_any_class_list(struct list_head * e)962 static bool in_any_class_list(struct list_head *e)
963 {
964 	struct lock_class *class;
965 	int i;
966 
967 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
968 		class = &lock_classes[i];
969 		if (in_list(e, &class->locks_after) ||
970 		    in_list(e, &class->locks_before))
971 			return true;
972 	}
973 	return false;
974 }
975 
class_lock_list_valid(struct lock_class * c,struct list_head * h)976 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
977 {
978 	struct lock_list *e;
979 
980 	list_for_each_entry(e, h, entry) {
981 		if (e->links_to != c) {
982 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
983 			       c->name ? : "(?)",
984 			       (unsigned long)(e - list_entries),
985 			       e->links_to && e->links_to->name ?
986 			       e->links_to->name : "(?)",
987 			       e->class && e->class->name ? e->class->name :
988 			       "(?)");
989 			return false;
990 		}
991 	}
992 	return true;
993 }
994 
995 #ifdef CONFIG_PROVE_LOCKING
996 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
997 #endif
998 
check_lock_chain_key(struct lock_chain * chain)999 static bool check_lock_chain_key(struct lock_chain *chain)
1000 {
1001 #ifdef CONFIG_PROVE_LOCKING
1002 	u64 chain_key = INITIAL_CHAIN_KEY;
1003 	int i;
1004 
1005 	for (i = chain->base; i < chain->base + chain->depth; i++)
1006 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1007 	/*
1008 	 * The 'unsigned long long' casts avoid that a compiler warning
1009 	 * is reported when building tools/lib/lockdep.
1010 	 */
1011 	if (chain->chain_key != chain_key) {
1012 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1013 		       (unsigned long long)(chain - lock_chains),
1014 		       (unsigned long long)chain->chain_key,
1015 		       (unsigned long long)chain_key);
1016 		return false;
1017 	}
1018 #endif
1019 	return true;
1020 }
1021 
in_any_zapped_class_list(struct lock_class * class)1022 static bool in_any_zapped_class_list(struct lock_class *class)
1023 {
1024 	struct pending_free *pf;
1025 	int i;
1026 
1027 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1028 		if (in_list(&class->lock_entry, &pf->zapped))
1029 			return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
__check_data_structures(void)1035 static bool __check_data_structures(void)
1036 {
1037 	struct lock_class *class;
1038 	struct lock_chain *chain;
1039 	struct hlist_head *head;
1040 	struct lock_list *e;
1041 	int i;
1042 
1043 	/* Check whether all classes occur in a lock list. */
1044 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1045 		class = &lock_classes[i];
1046 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1047 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1048 		    !in_any_zapped_class_list(class)) {
1049 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1050 			       class, class->name ? : "(?)");
1051 			return false;
1052 		}
1053 	}
1054 
1055 	/* Check whether all classes have valid lock lists. */
1056 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1057 		class = &lock_classes[i];
1058 		if (!class_lock_list_valid(class, &class->locks_before))
1059 			return false;
1060 		if (!class_lock_list_valid(class, &class->locks_after))
1061 			return false;
1062 	}
1063 
1064 	/* Check the chain_key of all lock chains. */
1065 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1066 		head = chainhash_table + i;
1067 		hlist_for_each_entry_rcu(chain, head, entry) {
1068 			if (!check_lock_chain_key(chain))
1069 				return false;
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * Check whether all list entries that are in use occur in a class
1075 	 * lock list.
1076 	 */
1077 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1078 		e = list_entries + i;
1079 		if (!in_any_class_list(&e->entry)) {
1080 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1081 			       (unsigned int)(e - list_entries),
1082 			       e->class->name ? : "(?)",
1083 			       e->links_to->name ? : "(?)");
1084 			return false;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Check whether all list entries that are not in use do not occur in
1090 	 * a class lock list.
1091 	 */
1092 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093 		e = list_entries + i;
1094 		if (in_any_class_list(&e->entry)) {
1095 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1096 			       (unsigned int)(e - list_entries),
1097 			       e->class && e->class->name ? e->class->name :
1098 			       "(?)",
1099 			       e->links_to && e->links_to->name ?
1100 			       e->links_to->name : "(?)");
1101 			return false;
1102 		}
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 int check_consistency = 0;
1109 module_param(check_consistency, int, 0644);
1110 
check_data_structures(void)1111 static void check_data_structures(void)
1112 {
1113 	static bool once = false;
1114 
1115 	if (check_consistency && !once) {
1116 		if (!__check_data_structures()) {
1117 			once = true;
1118 			WARN_ON(once);
1119 		}
1120 	}
1121 }
1122 
1123 #else /* CONFIG_DEBUG_LOCKDEP */
1124 
check_data_structures(void)1125 static inline void check_data_structures(void) { }
1126 
1127 #endif /* CONFIG_DEBUG_LOCKDEP */
1128 
1129 static void init_chain_block_buckets(void);
1130 
1131 /*
1132  * Initialize the lock_classes[] array elements, the free_lock_classes list
1133  * and also the delayed_free structure.
1134  */
init_data_structures_once(void)1135 static void init_data_structures_once(void)
1136 {
1137 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1138 	int i;
1139 
1140 	if (likely(rcu_head_initialized))
1141 		return;
1142 
1143 	if (system_state >= SYSTEM_SCHEDULING) {
1144 		init_rcu_head(&delayed_free.rcu_head);
1145 		rcu_head_initialized = true;
1146 	}
1147 
1148 	if (ds_initialized)
1149 		return;
1150 
1151 	ds_initialized = true;
1152 
1153 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1154 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1155 
1156 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1157 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1158 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1159 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1160 	}
1161 	init_chain_block_buckets();
1162 }
1163 
keyhashentry(const struct lock_class_key * key)1164 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1165 {
1166 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1167 
1168 	return lock_keys_hash + hash;
1169 }
1170 
1171 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1172 void lockdep_register_key(struct lock_class_key *key)
1173 {
1174 	struct hlist_head *hash_head;
1175 	struct lock_class_key *k;
1176 	unsigned long flags;
1177 
1178 	if (WARN_ON_ONCE(static_obj(key)))
1179 		return;
1180 	hash_head = keyhashentry(key);
1181 
1182 	raw_local_irq_save(flags);
1183 	if (!graph_lock())
1184 		goto restore_irqs;
1185 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1186 		if (WARN_ON_ONCE(k == key))
1187 			goto out_unlock;
1188 	}
1189 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1190 out_unlock:
1191 	graph_unlock();
1192 restore_irqs:
1193 	raw_local_irq_restore(flags);
1194 }
1195 EXPORT_SYMBOL_GPL(lockdep_register_key);
1196 
1197 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1198 static bool is_dynamic_key(const struct lock_class_key *key)
1199 {
1200 	struct hlist_head *hash_head;
1201 	struct lock_class_key *k;
1202 	bool found = false;
1203 
1204 	if (WARN_ON_ONCE(static_obj(key)))
1205 		return false;
1206 
1207 	/*
1208 	 * If lock debugging is disabled lock_keys_hash[] may contain
1209 	 * pointers to memory that has already been freed. Avoid triggering
1210 	 * a use-after-free in that case by returning early.
1211 	 */
1212 	if (!debug_locks)
1213 		return true;
1214 
1215 	hash_head = keyhashentry(key);
1216 
1217 	rcu_read_lock();
1218 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1219 		if (k == key) {
1220 			found = true;
1221 			break;
1222 		}
1223 	}
1224 	rcu_read_unlock();
1225 
1226 	return found;
1227 }
1228 
1229 /*
1230  * Register a lock's class in the hash-table, if the class is not present
1231  * yet. Otherwise we look it up. We cache the result in the lock object
1232  * itself, so actual lookup of the hash should be once per lock object.
1233  */
1234 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1235 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1236 {
1237 	struct lockdep_subclass_key *key;
1238 	struct hlist_head *hash_head;
1239 	struct lock_class *class;
1240 	int idx;
1241 
1242 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1243 
1244 	class = look_up_lock_class(lock, subclass);
1245 	if (likely(class))
1246 		goto out_set_class_cache;
1247 
1248 	if (!lock->key) {
1249 		if (!assign_lock_key(lock))
1250 			return NULL;
1251 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1252 		return NULL;
1253 	}
1254 
1255 	key = lock->key->subkeys + subclass;
1256 	hash_head = classhashentry(key);
1257 
1258 	if (!graph_lock()) {
1259 		return NULL;
1260 	}
1261 	/*
1262 	 * We have to do the hash-walk again, to avoid races
1263 	 * with another CPU:
1264 	 */
1265 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1266 		if (class->key == key)
1267 			goto out_unlock_set;
1268 	}
1269 
1270 	init_data_structures_once();
1271 
1272 	/* Allocate a new lock class and add it to the hash. */
1273 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1274 					 lock_entry);
1275 	if (!class) {
1276 		if (!debug_locks_off_graph_unlock()) {
1277 			return NULL;
1278 		}
1279 
1280 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1281 		dump_stack();
1282 		return NULL;
1283 	}
1284 	nr_lock_classes++;
1285 	__set_bit(class - lock_classes, lock_classes_in_use);
1286 	debug_atomic_inc(nr_unused_locks);
1287 	class->key = key;
1288 	class->name = lock->name;
1289 	class->subclass = subclass;
1290 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1291 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1292 	class->name_version = count_matching_names(class);
1293 	class->wait_type_inner = lock->wait_type_inner;
1294 	class->wait_type_outer = lock->wait_type_outer;
1295 	class->lock_type = lock->lock_type;
1296 	/*
1297 	 * We use RCU's safe list-add method to make
1298 	 * parallel walking of the hash-list safe:
1299 	 */
1300 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1301 	/*
1302 	 * Remove the class from the free list and add it to the global list
1303 	 * of classes.
1304 	 */
1305 	list_move_tail(&class->lock_entry, &all_lock_classes);
1306 	idx = class - lock_classes;
1307 	if (idx > max_lock_class_idx)
1308 		max_lock_class_idx = idx;
1309 
1310 	if (verbose(class)) {
1311 		graph_unlock();
1312 
1313 		printk("\nnew class %px: %s", class->key, class->name);
1314 		if (class->name_version > 1)
1315 			printk(KERN_CONT "#%d", class->name_version);
1316 		printk(KERN_CONT "\n");
1317 		dump_stack();
1318 
1319 		if (!graph_lock()) {
1320 			return NULL;
1321 		}
1322 	}
1323 out_unlock_set:
1324 	graph_unlock();
1325 
1326 out_set_class_cache:
1327 	if (!subclass || force)
1328 		lock->class_cache[0] = class;
1329 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1330 		lock->class_cache[subclass] = class;
1331 
1332 	/*
1333 	 * Hash collision, did we smoke some? We found a class with a matching
1334 	 * hash but the subclass -- which is hashed in -- didn't match.
1335 	 */
1336 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1337 		return NULL;
1338 
1339 	return class;
1340 }
1341 
1342 #ifdef CONFIG_PROVE_LOCKING
1343 /*
1344  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1345  * with NULL on failure)
1346  */
alloc_list_entry(void)1347 static struct lock_list *alloc_list_entry(void)
1348 {
1349 	int idx = find_first_zero_bit(list_entries_in_use,
1350 				      ARRAY_SIZE(list_entries));
1351 
1352 	if (idx >= ARRAY_SIZE(list_entries)) {
1353 		if (!debug_locks_off_graph_unlock())
1354 			return NULL;
1355 
1356 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1357 		dump_stack();
1358 		return NULL;
1359 	}
1360 	nr_list_entries++;
1361 	__set_bit(idx, list_entries_in_use);
1362 	return list_entries + idx;
1363 }
1364 
1365 /*
1366  * Add a new dependency to the head of the list:
1367  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,u16 distance,u8 dep,const struct lock_trace * trace)1368 static int add_lock_to_list(struct lock_class *this,
1369 			    struct lock_class *links_to, struct list_head *head,
1370 			    unsigned long ip, u16 distance, u8 dep,
1371 			    const struct lock_trace *trace)
1372 {
1373 	struct lock_list *entry;
1374 	/*
1375 	 * Lock not present yet - get a new dependency struct and
1376 	 * add it to the list:
1377 	 */
1378 	entry = alloc_list_entry();
1379 	if (!entry)
1380 		return 0;
1381 
1382 	entry->class = this;
1383 	entry->links_to = links_to;
1384 	entry->dep = dep;
1385 	entry->distance = distance;
1386 	entry->trace = trace;
1387 	/*
1388 	 * Both allocation and removal are done under the graph lock; but
1389 	 * iteration is under RCU-sched; see look_up_lock_class() and
1390 	 * lockdep_free_key_range().
1391 	 */
1392 	list_add_tail_rcu(&entry->entry, head);
1393 
1394 	return 1;
1395 }
1396 
1397 /*
1398  * For good efficiency of modular, we use power of 2
1399  */
1400 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1401 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1402 
1403 /*
1404  * The circular_queue and helpers are used to implement graph
1405  * breadth-first search (BFS) algorithm, by which we can determine
1406  * whether there is a path from a lock to another. In deadlock checks,
1407  * a path from the next lock to be acquired to a previous held lock
1408  * indicates that adding the <prev> -> <next> lock dependency will
1409  * produce a circle in the graph. Breadth-first search instead of
1410  * depth-first search is used in order to find the shortest (circular)
1411  * path.
1412  */
1413 struct circular_queue {
1414 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1415 	unsigned int  front, rear;
1416 };
1417 
1418 static struct circular_queue lock_cq;
1419 
1420 unsigned int max_bfs_queue_depth;
1421 
1422 static unsigned int lockdep_dependency_gen_id;
1423 
__cq_init(struct circular_queue * cq)1424 static inline void __cq_init(struct circular_queue *cq)
1425 {
1426 	cq->front = cq->rear = 0;
1427 	lockdep_dependency_gen_id++;
1428 }
1429 
__cq_empty(struct circular_queue * cq)1430 static inline int __cq_empty(struct circular_queue *cq)
1431 {
1432 	return (cq->front == cq->rear);
1433 }
1434 
__cq_full(struct circular_queue * cq)1435 static inline int __cq_full(struct circular_queue *cq)
1436 {
1437 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1438 }
1439 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1440 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1441 {
1442 	if (__cq_full(cq))
1443 		return -1;
1444 
1445 	cq->element[cq->rear] = elem;
1446 	cq->rear = (cq->rear + 1) & CQ_MASK;
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Dequeue an element from the circular_queue, return a lock_list if
1452  * the queue is not empty, or NULL if otherwise.
1453  */
__cq_dequeue(struct circular_queue * cq)1454 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1455 {
1456 	struct lock_list * lock;
1457 
1458 	if (__cq_empty(cq))
1459 		return NULL;
1460 
1461 	lock = cq->element[cq->front];
1462 	cq->front = (cq->front + 1) & CQ_MASK;
1463 
1464 	return lock;
1465 }
1466 
__cq_get_elem_count(struct circular_queue * cq)1467 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1468 {
1469 	return (cq->rear - cq->front) & CQ_MASK;
1470 }
1471 
mark_lock_accessed(struct lock_list * lock)1472 static inline void mark_lock_accessed(struct lock_list *lock)
1473 {
1474 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1475 }
1476 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1477 static inline void visit_lock_entry(struct lock_list *lock,
1478 				    struct lock_list *parent)
1479 {
1480 	lock->parent = parent;
1481 }
1482 
lock_accessed(struct lock_list * lock)1483 static inline unsigned long lock_accessed(struct lock_list *lock)
1484 {
1485 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1486 }
1487 
get_lock_parent(struct lock_list * child)1488 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1489 {
1490 	return child->parent;
1491 }
1492 
get_lock_depth(struct lock_list * child)1493 static inline int get_lock_depth(struct lock_list *child)
1494 {
1495 	int depth = 0;
1496 	struct lock_list *parent;
1497 
1498 	while ((parent = get_lock_parent(child))) {
1499 		child = parent;
1500 		depth++;
1501 	}
1502 	return depth;
1503 }
1504 
1505 /*
1506  * Return the forward or backward dependency list.
1507  *
1508  * @lock:   the lock_list to get its class's dependency list
1509  * @offset: the offset to struct lock_class to determine whether it is
1510  *          locks_after or locks_before
1511  */
get_dep_list(struct lock_list * lock,int offset)1512 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1513 {
1514 	void *lock_class = lock->class;
1515 
1516 	return lock_class + offset;
1517 }
1518 /*
1519  * Return values of a bfs search:
1520  *
1521  * BFS_E* indicates an error
1522  * BFS_R* indicates a result (match or not)
1523  *
1524  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1525  *
1526  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1527  *
1528  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1529  *             *@target_entry.
1530  *
1531  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1532  *               _unchanged_.
1533  */
1534 enum bfs_result {
1535 	BFS_EINVALIDNODE = -2,
1536 	BFS_EQUEUEFULL = -1,
1537 	BFS_RMATCH = 0,
1538 	BFS_RNOMATCH = 1,
1539 };
1540 
1541 /*
1542  * bfs_result < 0 means error
1543  */
bfs_error(enum bfs_result res)1544 static inline bool bfs_error(enum bfs_result res)
1545 {
1546 	return res < 0;
1547 }
1548 
1549 /*
1550  * DEP_*_BIT in lock_list::dep
1551  *
1552  * For dependency @prev -> @next:
1553  *
1554  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1555  *       (->read == 2)
1556  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1557  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1558  *   EN: @prev is exclusive locker and @next is non-recursive locker
1559  *
1560  * Note that we define the value of DEP_*_BITs so that:
1561  *   bit0 is prev->read == 0
1562  *   bit1 is next->read != 2
1563  */
1564 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1565 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1566 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1567 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1568 
1569 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1570 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1571 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1572 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1573 
1574 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1575 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1576 {
1577 	return (prev->read == 0) + ((next->read != 2) << 1);
1578 }
1579 
calc_dep(struct held_lock * prev,struct held_lock * next)1580 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1581 {
1582 	return 1U << __calc_dep_bit(prev, next);
1583 }
1584 
1585 /*
1586  * calculate the dep_bit for backwards edges. We care about whether @prev is
1587  * shared and whether @next is recursive.
1588  */
1589 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1590 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1591 {
1592 	return (next->read != 2) + ((prev->read == 0) << 1);
1593 }
1594 
calc_depb(struct held_lock * prev,struct held_lock * next)1595 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1596 {
1597 	return 1U << __calc_dep_bitb(prev, next);
1598 }
1599 
1600 /*
1601  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1602  * search.
1603  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1604 static inline void __bfs_init_root(struct lock_list *lock,
1605 				   struct lock_class *class)
1606 {
1607 	lock->class = class;
1608 	lock->parent = NULL;
1609 	lock->only_xr = 0;
1610 }
1611 
1612 /*
1613  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1614  * root for a BFS search.
1615  *
1616  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1617  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1618  * and -(S*)->.
1619  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1620 static inline void bfs_init_root(struct lock_list *lock,
1621 				 struct held_lock *hlock)
1622 {
1623 	__bfs_init_root(lock, hlock_class(hlock));
1624 	lock->only_xr = (hlock->read == 2);
1625 }
1626 
1627 /*
1628  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1629  *
1630  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1631  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1632  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1633  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1634 static inline void bfs_init_rootb(struct lock_list *lock,
1635 				  struct held_lock *hlock)
1636 {
1637 	__bfs_init_root(lock, hlock_class(hlock));
1638 	lock->only_xr = (hlock->read != 0);
1639 }
1640 
__bfs_next(struct lock_list * lock,int offset)1641 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1642 {
1643 	if (!lock || !lock->parent)
1644 		return NULL;
1645 
1646 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1647 				     &lock->entry, struct lock_list, entry);
1648 }
1649 
1650 /*
1651  * Breadth-First Search to find a strong path in the dependency graph.
1652  *
1653  * @source_entry: the source of the path we are searching for.
1654  * @data: data used for the second parameter of @match function
1655  * @match: match function for the search
1656  * @target_entry: pointer to the target of a matched path
1657  * @offset: the offset to struct lock_class to determine whether it is
1658  *          locks_after or locks_before
1659  *
1660  * We may have multiple edges (considering different kinds of dependencies,
1661  * e.g. ER and SN) between two nodes in the dependency graph. But
1662  * only the strong dependency path in the graph is relevant to deadlocks. A
1663  * strong dependency path is a dependency path that doesn't have two adjacent
1664  * dependencies as -(*R)-> -(S*)->, please see:
1665  *
1666  *         Documentation/locking/lockdep-design.rst
1667  *
1668  * for more explanation of the definition of strong dependency paths
1669  *
1670  * In __bfs(), we only traverse in the strong dependency path:
1671  *
1672  *     In lock_list::only_xr, we record whether the previous dependency only
1673  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1674  *     filter out any -(S*)-> in the current dependency and after that, the
1675  *     ->only_xr is set according to whether we only have -(*R)-> left.
1676  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1677 static enum bfs_result __bfs(struct lock_list *source_entry,
1678 			     void *data,
1679 			     bool (*match)(struct lock_list *entry, void *data),
1680 			     struct lock_list **target_entry,
1681 			     int offset)
1682 {
1683 	struct circular_queue *cq = &lock_cq;
1684 	struct lock_list *lock = NULL;
1685 	struct lock_list *entry;
1686 	struct list_head *head;
1687 	unsigned int cq_depth;
1688 	bool first;
1689 
1690 	lockdep_assert_locked();
1691 
1692 	__cq_init(cq);
1693 	__cq_enqueue(cq, source_entry);
1694 
1695 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 		if (!lock->class)
1697 			return BFS_EINVALIDNODE;
1698 
1699 		/*
1700 		 * Step 1: check whether we already finish on this one.
1701 		 *
1702 		 * If we have visited all the dependencies from this @lock to
1703 		 * others (iow, if we have visited all lock_list entries in
1704 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 		 * and visit all the dependencies in the list and mark this
1706 		 * list accessed.
1707 		 */
1708 		if (lock_accessed(lock))
1709 			continue;
1710 		else
1711 			mark_lock_accessed(lock);
1712 
1713 		/*
1714 		 * Step 2: check whether prev dependency and this form a strong
1715 		 *         dependency path.
1716 		 */
1717 		if (lock->parent) { /* Parent exists, check prev dependency */
1718 			u8 dep = lock->dep;
1719 			bool prev_only_xr = lock->parent->only_xr;
1720 
1721 			/*
1722 			 * Mask out all -(S*)-> if we only have *R in previous
1723 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 			 * dependency.
1725 			 */
1726 			if (prev_only_xr)
1727 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728 
1729 			/* If nothing left, we skip */
1730 			if (!dep)
1731 				continue;
1732 
1733 			/* If there are only -(*R)-> left, set that for the next step */
1734 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 		}
1736 
1737 		/*
1738 		 * Step 3: we haven't visited this and there is a strong
1739 		 *         dependency path to this, so check with @match.
1740 		 */
1741 		if (match(lock, data)) {
1742 			*target_entry = lock;
1743 			return BFS_RMATCH;
1744 		}
1745 
1746 		/*
1747 		 * Step 4: if not match, expand the path by adding the
1748 		 *         forward or backwards dependencis in the search
1749 		 *
1750 		 */
1751 		first = true;
1752 		head = get_dep_list(lock, offset);
1753 		list_for_each_entry_rcu(entry, head, entry) {
1754 			visit_lock_entry(entry, lock);
1755 
1756 			/*
1757 			 * Note we only enqueue the first of the list into the
1758 			 * queue, because we can always find a sibling
1759 			 * dependency from one (see __bfs_next()), as a result
1760 			 * the space of queue is saved.
1761 			 */
1762 			if (!first)
1763 				continue;
1764 
1765 			first = false;
1766 
1767 			if (__cq_enqueue(cq, entry))
1768 				return BFS_EQUEUEFULL;
1769 
1770 			cq_depth = __cq_get_elem_count(cq);
1771 			if (max_bfs_queue_depth < cq_depth)
1772 				max_bfs_queue_depth = cq_depth;
1773 		}
1774 	}
1775 
1776 	return BFS_RNOMATCH;
1777 }
1778 
1779 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1780 __bfs_forwards(struct lock_list *src_entry,
1781 	       void *data,
1782 	       bool (*match)(struct lock_list *entry, void *data),
1783 	       struct lock_list **target_entry)
1784 {
1785 	return __bfs(src_entry, data, match, target_entry,
1786 		     offsetof(struct lock_class, locks_after));
1787 
1788 }
1789 
1790 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1791 __bfs_backwards(struct lock_list *src_entry,
1792 		void *data,
1793 		bool (*match)(struct lock_list *entry, void *data),
1794 		struct lock_list **target_entry)
1795 {
1796 	return __bfs(src_entry, data, match, target_entry,
1797 		     offsetof(struct lock_class, locks_before));
1798 
1799 }
1800 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1801 static void print_lock_trace(const struct lock_trace *trace,
1802 			     unsigned int spaces)
1803 {
1804 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1805 }
1806 
1807 /*
1808  * Print a dependency chain entry (this is only done when a deadlock
1809  * has been detected):
1810  */
1811 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1812 print_circular_bug_entry(struct lock_list *target, int depth)
1813 {
1814 	if (debug_locks_silent)
1815 		return;
1816 	printk("\n-> #%u", depth);
1817 	print_lock_name(target->class);
1818 	printk(KERN_CONT ":\n");
1819 	print_lock_trace(target->trace, 6);
1820 }
1821 
1822 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1823 print_circular_lock_scenario(struct held_lock *src,
1824 			     struct held_lock *tgt,
1825 			     struct lock_list *prt)
1826 {
1827 	struct lock_class *source = hlock_class(src);
1828 	struct lock_class *target = hlock_class(tgt);
1829 	struct lock_class *parent = prt->class;
1830 
1831 	/*
1832 	 * A direct locking problem where unsafe_class lock is taken
1833 	 * directly by safe_class lock, then all we need to show
1834 	 * is the deadlock scenario, as it is obvious that the
1835 	 * unsafe lock is taken under the safe lock.
1836 	 *
1837 	 * But if there is a chain instead, where the safe lock takes
1838 	 * an intermediate lock (middle_class) where this lock is
1839 	 * not the same as the safe lock, then the lock chain is
1840 	 * used to describe the problem. Otherwise we would need
1841 	 * to show a different CPU case for each link in the chain
1842 	 * from the safe_class lock to the unsafe_class lock.
1843 	 */
1844 	if (parent != source) {
1845 		printk("Chain exists of:\n  ");
1846 		__print_lock_name(source);
1847 		printk(KERN_CONT " --> ");
1848 		__print_lock_name(parent);
1849 		printk(KERN_CONT " --> ");
1850 		__print_lock_name(target);
1851 		printk(KERN_CONT "\n\n");
1852 	}
1853 
1854 	printk(" Possible unsafe locking scenario:\n\n");
1855 	printk("       CPU0                    CPU1\n");
1856 	printk("       ----                    ----\n");
1857 	printk("  lock(");
1858 	__print_lock_name(target);
1859 	printk(KERN_CONT ");\n");
1860 	printk("                               lock(");
1861 	__print_lock_name(parent);
1862 	printk(KERN_CONT ");\n");
1863 	printk("                               lock(");
1864 	__print_lock_name(target);
1865 	printk(KERN_CONT ");\n");
1866 	printk("  lock(");
1867 	__print_lock_name(source);
1868 	printk(KERN_CONT ");\n");
1869 	printk("\n *** DEADLOCK ***\n\n");
1870 }
1871 
1872 /*
1873  * When a circular dependency is detected, print the
1874  * header first:
1875  */
1876 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1877 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1878 			struct held_lock *check_src,
1879 			struct held_lock *check_tgt)
1880 {
1881 	struct task_struct *curr = current;
1882 
1883 	if (debug_locks_silent)
1884 		return;
1885 
1886 	pr_warn("\n");
1887 	pr_warn("======================================================\n");
1888 	pr_warn("WARNING: possible circular locking dependency detected\n");
1889 	print_kernel_ident();
1890 	pr_warn("------------------------------------------------------\n");
1891 	pr_warn("%s/%d is trying to acquire lock:\n",
1892 		curr->comm, task_pid_nr(curr));
1893 	print_lock(check_src);
1894 
1895 	pr_warn("\nbut task is already holding lock:\n");
1896 
1897 	print_lock(check_tgt);
1898 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1899 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1900 
1901 	print_circular_bug_entry(entry, depth);
1902 }
1903 
1904 /*
1905  * We are about to add A -> B into the dependency graph, and in __bfs() a
1906  * strong dependency path A -> .. -> B is found: hlock_class equals
1907  * entry->class.
1908  *
1909  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1910  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1911  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1912  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1913  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1914  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1915  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1916  *
1917  * We need to make sure both the start and the end of A -> .. -> B is not
1918  * weaker than A -> B. For the start part, please see the comment in
1919  * check_redundant(). For the end part, we need:
1920  *
1921  * Either
1922  *
1923  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1924  *
1925  * or
1926  *
1927  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1928  *
1929  */
hlock_equal(struct lock_list * entry,void * data)1930 static inline bool hlock_equal(struct lock_list *entry, void *data)
1931 {
1932 	struct held_lock *hlock = (struct held_lock *)data;
1933 
1934 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1935 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1936 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1937 }
1938 
1939 /*
1940  * We are about to add B -> A into the dependency graph, and in __bfs() a
1941  * strong dependency path A -> .. -> B is found: hlock_class equals
1942  * entry->class.
1943  *
1944  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1945  * dependency cycle, that means:
1946  *
1947  * Either
1948  *
1949  *     a) B -> A is -(E*)->
1950  *
1951  * or
1952  *
1953  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1954  *
1955  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1956  */
hlock_conflict(struct lock_list * entry,void * data)1957 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1958 {
1959 	struct held_lock *hlock = (struct held_lock *)data;
1960 
1961 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1962 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1963 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1964 }
1965 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1966 static noinline void print_circular_bug(struct lock_list *this,
1967 				struct lock_list *target,
1968 				struct held_lock *check_src,
1969 				struct held_lock *check_tgt)
1970 {
1971 	struct task_struct *curr = current;
1972 	struct lock_list *parent;
1973 	struct lock_list *first_parent;
1974 	int depth;
1975 
1976 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1977 		return;
1978 
1979 	this->trace = save_trace();
1980 	if (!this->trace)
1981 		return;
1982 
1983 	depth = get_lock_depth(target);
1984 
1985 	print_circular_bug_header(target, depth, check_src, check_tgt);
1986 
1987 	parent = get_lock_parent(target);
1988 	first_parent = parent;
1989 
1990 	while (parent) {
1991 		print_circular_bug_entry(parent, --depth);
1992 		parent = get_lock_parent(parent);
1993 	}
1994 
1995 	printk("\nother info that might help us debug this:\n\n");
1996 	print_circular_lock_scenario(check_src, check_tgt,
1997 				     first_parent);
1998 
1999 	lockdep_print_held_locks(curr);
2000 
2001 	printk("\nstack backtrace:\n");
2002 	dump_stack();
2003 }
2004 
print_bfs_bug(int ret)2005 static noinline void print_bfs_bug(int ret)
2006 {
2007 	if (!debug_locks_off_graph_unlock())
2008 		return;
2009 
2010 	/*
2011 	 * Breadth-first-search failed, graph got corrupted?
2012 	 */
2013 	WARN(1, "lockdep bfs error:%d\n", ret);
2014 }
2015 
noop_count(struct lock_list * entry,void * data)2016 static bool noop_count(struct lock_list *entry, void *data)
2017 {
2018 	(*(unsigned long *)data)++;
2019 	return false;
2020 }
2021 
__lockdep_count_forward_deps(struct lock_list * this)2022 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2023 {
2024 	unsigned long  count = 0;
2025 	struct lock_list *target_entry;
2026 
2027 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2028 
2029 	return count;
2030 }
lockdep_count_forward_deps(struct lock_class * class)2031 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2032 {
2033 	unsigned long ret, flags;
2034 	struct lock_list this;
2035 
2036 	__bfs_init_root(&this, class);
2037 
2038 	raw_local_irq_save(flags);
2039 	lockdep_lock();
2040 	ret = __lockdep_count_forward_deps(&this);
2041 	lockdep_unlock();
2042 	raw_local_irq_restore(flags);
2043 
2044 	return ret;
2045 }
2046 
__lockdep_count_backward_deps(struct lock_list * this)2047 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2048 {
2049 	unsigned long  count = 0;
2050 	struct lock_list *target_entry;
2051 
2052 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2053 
2054 	return count;
2055 }
2056 
lockdep_count_backward_deps(struct lock_class * class)2057 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2058 {
2059 	unsigned long ret, flags;
2060 	struct lock_list this;
2061 
2062 	__bfs_init_root(&this, class);
2063 
2064 	raw_local_irq_save(flags);
2065 	lockdep_lock();
2066 	ret = __lockdep_count_backward_deps(&this);
2067 	lockdep_unlock();
2068 	raw_local_irq_restore(flags);
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * Check that the dependency graph starting at <src> can lead to
2075  * <target> or not.
2076  */
2077 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2078 check_path(struct held_lock *target, struct lock_list *src_entry,
2079 	   bool (*match)(struct lock_list *entry, void *data),
2080 	   struct lock_list **target_entry)
2081 {
2082 	enum bfs_result ret;
2083 
2084 	ret = __bfs_forwards(src_entry, target, match, target_entry);
2085 
2086 	if (unlikely(bfs_error(ret)))
2087 		print_bfs_bug(ret);
2088 
2089 	return ret;
2090 }
2091 
2092 /*
2093  * Prove that the dependency graph starting at <src> can not
2094  * lead to <target>. If it can, there is a circle when adding
2095  * <target> -> <src> dependency.
2096  *
2097  * Print an error and return BFS_RMATCH if it does.
2098  */
2099 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2100 check_noncircular(struct held_lock *src, struct held_lock *target,
2101 		  struct lock_trace **const trace)
2102 {
2103 	enum bfs_result ret;
2104 	struct lock_list *target_entry;
2105 	struct lock_list src_entry;
2106 
2107 	bfs_init_root(&src_entry, src);
2108 
2109 	debug_atomic_inc(nr_cyclic_checks);
2110 
2111 	ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2112 
2113 	if (unlikely(ret == BFS_RMATCH)) {
2114 		if (!*trace) {
2115 			/*
2116 			 * If save_trace fails here, the printing might
2117 			 * trigger a WARN but because of the !nr_entries it
2118 			 * should not do bad things.
2119 			 */
2120 			*trace = save_trace();
2121 		}
2122 
2123 		print_circular_bug(&src_entry, target_entry, src, target);
2124 	}
2125 
2126 	return ret;
2127 }
2128 
2129 #ifdef CONFIG_LOCKDEP_SMALL
2130 /*
2131  * Check that the dependency graph starting at <src> can lead to
2132  * <target> or not. If it can, <src> -> <target> dependency is already
2133  * in the graph.
2134  *
2135  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2136  * any error appears in the bfs search.
2137  */
2138 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2139 check_redundant(struct held_lock *src, struct held_lock *target)
2140 {
2141 	enum bfs_result ret;
2142 	struct lock_list *target_entry;
2143 	struct lock_list src_entry;
2144 
2145 	bfs_init_root(&src_entry, src);
2146 	/*
2147 	 * Special setup for check_redundant().
2148 	 *
2149 	 * To report redundant, we need to find a strong dependency path that
2150 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2151 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2152 	 * we achieve this by setting the initial node's ->only_xr to true in
2153 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2154 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2155 	 */
2156 	src_entry.only_xr = src->read == 0;
2157 
2158 	debug_atomic_inc(nr_redundant_checks);
2159 
2160 	ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2161 
2162 	if (ret == BFS_RMATCH)
2163 		debug_atomic_inc(nr_redundant);
2164 
2165 	return ret;
2166 }
2167 #endif
2168 
2169 #ifdef CONFIG_TRACE_IRQFLAGS
2170 
2171 /*
2172  * Forwards and backwards subgraph searching, for the purposes of
2173  * proving that two subgraphs can be connected by a new dependency
2174  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2175  *
2176  * A irq safe->unsafe deadlock happens with the following conditions:
2177  *
2178  * 1) We have a strong dependency path A -> ... -> B
2179  *
2180  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2181  *    irq can create a new dependency B -> A (consider the case that a holder
2182  *    of B gets interrupted by an irq whose handler will try to acquire A).
2183  *
2184  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2185  *    strong circle:
2186  *
2187  *      For the usage bits of B:
2188  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2189  *           ENABLED_IRQ usage suffices.
2190  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2191  *           ENABLED_IRQ_*_READ usage suffices.
2192  *
2193  *      For the usage bits of A:
2194  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2195  *           USED_IN_IRQ usage suffices.
2196  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2197  *           USED_IN_IRQ_*_READ usage suffices.
2198  */
2199 
2200 /*
2201  * There is a strong dependency path in the dependency graph: A -> B, and now
2202  * we need to decide which usage bit of A should be accumulated to detect
2203  * safe->unsafe bugs.
2204  *
2205  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2206  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2207  *
2208  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2209  * path, any usage of A should be considered. Otherwise, we should only
2210  * consider _READ usage.
2211  */
usage_accumulate(struct lock_list * entry,void * mask)2212 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2213 {
2214 	if (!entry->only_xr)
2215 		*(unsigned long *)mask |= entry->class->usage_mask;
2216 	else /* Mask out _READ usage bits */
2217 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2218 
2219 	return false;
2220 }
2221 
2222 /*
2223  * There is a strong dependency path in the dependency graph: A -> B, and now
2224  * we need to decide which usage bit of B conflicts with the usage bits of A,
2225  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2226  *
2227  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2228  * path, any usage of B should be considered. Otherwise, we should only
2229  * consider _READ usage.
2230  */
usage_match(struct lock_list * entry,void * mask)2231 static inline bool usage_match(struct lock_list *entry, void *mask)
2232 {
2233 	if (!entry->only_xr)
2234 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2235 	else /* Mask out _READ usage bits */
2236 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2237 }
2238 
2239 /*
2240  * Find a node in the forwards-direction dependency sub-graph starting
2241  * at @root->class that matches @bit.
2242  *
2243  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2244  * into *@target_entry.
2245  */
2246 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2247 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2248 			struct lock_list **target_entry)
2249 {
2250 	enum bfs_result result;
2251 
2252 	debug_atomic_inc(nr_find_usage_forwards_checks);
2253 
2254 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2255 
2256 	return result;
2257 }
2258 
2259 /*
2260  * Find a node in the backwards-direction dependency sub-graph starting
2261  * at @root->class that matches @bit.
2262  */
2263 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2264 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2265 			struct lock_list **target_entry)
2266 {
2267 	enum bfs_result result;
2268 
2269 	debug_atomic_inc(nr_find_usage_backwards_checks);
2270 
2271 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2272 
2273 	return result;
2274 }
2275 
print_lock_class_header(struct lock_class * class,int depth)2276 static void print_lock_class_header(struct lock_class *class, int depth)
2277 {
2278 	int bit;
2279 
2280 	printk("%*s->", depth, "");
2281 	print_lock_name(class);
2282 #ifdef CONFIG_DEBUG_LOCKDEP
2283 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2284 #endif
2285 	printk(KERN_CONT " {\n");
2286 
2287 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2288 		if (class->usage_mask & (1 << bit)) {
2289 			int len = depth;
2290 
2291 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2292 			len += printk(KERN_CONT " at:\n");
2293 			print_lock_trace(class->usage_traces[bit], len);
2294 		}
2295 	}
2296 	printk("%*s }\n", depth, "");
2297 
2298 	printk("%*s ... key      at: [<%px>] %pS\n",
2299 		depth, "", class->key, class->key);
2300 }
2301 
2302 /*
2303  * Dependency path printing:
2304  *
2305  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2306  * printing out each lock in the dependency path will help on understanding how
2307  * the deadlock could happen. Here are some details about dependency path
2308  * printing:
2309  *
2310  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2311  * 	for a lock dependency A -> B, there are two lock_lists:
2312  *
2313  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2314  * 		->links_to is A. In this case, we can say the lock_list is
2315  * 		"A -> B" (forwards case).
2316  *
2317  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2318  * 		and ->links_to is B. In this case, we can say the lock_list is
2319  * 		"B <- A" (bacwards case).
2320  *
2321  * 	The ->trace of both a) and b) point to the call trace where B was
2322  * 	acquired with A held.
2323  *
2324  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2325  * 	represent a certain lock dependency, it only provides an initial entry
2326  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2327  * 	->class is A, as a result BFS will search all dependencies starting with
2328  * 	A, e.g. A -> B or A -> C.
2329  *
2330  * 	The notation of a forwards helper lock_list is like "-> A", which means
2331  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2332  * 	or A -> C.
2333  *
2334  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2335  * 	we should search the backwards dependencies ending with "B", e.g.
2336  * 	B <- A or B <- C.
2337  */
2338 
2339 /*
2340  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2341  *
2342  * We have a lock dependency path as follow:
2343  *
2344  *    @root                                                                 @leaf
2345  *      |                                                                     |
2346  *      V                                                                     V
2347  *	          ->parent                                   ->parent
2348  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2349  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2350  *
2351  * , so it's natural that we start from @leaf and print every ->class and
2352  * ->trace until we reach the @root.
2353  */
2354 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2355 print_shortest_lock_dependencies(struct lock_list *leaf,
2356 				 struct lock_list *root)
2357 {
2358 	struct lock_list *entry = leaf;
2359 	int depth;
2360 
2361 	/*compute depth from generated tree by BFS*/
2362 	depth = get_lock_depth(leaf);
2363 
2364 	do {
2365 		print_lock_class_header(entry->class, depth);
2366 		printk("%*s ... acquired at:\n", depth, "");
2367 		print_lock_trace(entry->trace, 2);
2368 		printk("\n");
2369 
2370 		if (depth == 0 && (entry != root)) {
2371 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2372 			break;
2373 		}
2374 
2375 		entry = get_lock_parent(entry);
2376 		depth--;
2377 	} while (entry && (depth >= 0));
2378 }
2379 
2380 /*
2381  * printk the shortest lock dependencies from @leaf to @root.
2382  *
2383  * We have a lock dependency path (from a backwards search) as follow:
2384  *
2385  *    @leaf                                                                 @root
2386  *      |                                                                     |
2387  *      V                                                                     V
2388  *	          ->parent                                   ->parent
2389  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2390  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2391  *
2392  * , so when we iterate from @leaf to @root, we actually print the lock
2393  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2394  *
2395  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2396  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2397  * trace of L1 in the dependency path, which is alright, because most of the
2398  * time we can figure out where L1 is held from the call trace of L2.
2399  */
2400 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2401 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2402 					   struct lock_list *root)
2403 {
2404 	struct lock_list *entry = leaf;
2405 	const struct lock_trace *trace = NULL;
2406 	int depth;
2407 
2408 	/*compute depth from generated tree by BFS*/
2409 	depth = get_lock_depth(leaf);
2410 
2411 	do {
2412 		print_lock_class_header(entry->class, depth);
2413 		if (trace) {
2414 			printk("%*s ... acquired at:\n", depth, "");
2415 			print_lock_trace(trace, 2);
2416 			printk("\n");
2417 		}
2418 
2419 		/*
2420 		 * Record the pointer to the trace for the next lock_list
2421 		 * entry, see the comments for the function.
2422 		 */
2423 		trace = entry->trace;
2424 
2425 		if (depth == 0 && (entry != root)) {
2426 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2427 			break;
2428 		}
2429 
2430 		entry = get_lock_parent(entry);
2431 		depth--;
2432 	} while (entry && (depth >= 0));
2433 }
2434 
2435 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2436 print_irq_lock_scenario(struct lock_list *safe_entry,
2437 			struct lock_list *unsafe_entry,
2438 			struct lock_class *prev_class,
2439 			struct lock_class *next_class)
2440 {
2441 	struct lock_class *safe_class = safe_entry->class;
2442 	struct lock_class *unsafe_class = unsafe_entry->class;
2443 	struct lock_class *middle_class = prev_class;
2444 
2445 	if (middle_class == safe_class)
2446 		middle_class = next_class;
2447 
2448 	/*
2449 	 * A direct locking problem where unsafe_class lock is taken
2450 	 * directly by safe_class lock, then all we need to show
2451 	 * is the deadlock scenario, as it is obvious that the
2452 	 * unsafe lock is taken under the safe lock.
2453 	 *
2454 	 * But if there is a chain instead, where the safe lock takes
2455 	 * an intermediate lock (middle_class) where this lock is
2456 	 * not the same as the safe lock, then the lock chain is
2457 	 * used to describe the problem. Otherwise we would need
2458 	 * to show a different CPU case for each link in the chain
2459 	 * from the safe_class lock to the unsafe_class lock.
2460 	 */
2461 	if (middle_class != unsafe_class) {
2462 		printk("Chain exists of:\n  ");
2463 		__print_lock_name(safe_class);
2464 		printk(KERN_CONT " --> ");
2465 		__print_lock_name(middle_class);
2466 		printk(KERN_CONT " --> ");
2467 		__print_lock_name(unsafe_class);
2468 		printk(KERN_CONT "\n\n");
2469 	}
2470 
2471 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2472 	printk("       CPU0                    CPU1\n");
2473 	printk("       ----                    ----\n");
2474 	printk("  lock(");
2475 	__print_lock_name(unsafe_class);
2476 	printk(KERN_CONT ");\n");
2477 	printk("                               local_irq_disable();\n");
2478 	printk("                               lock(");
2479 	__print_lock_name(safe_class);
2480 	printk(KERN_CONT ");\n");
2481 	printk("                               lock(");
2482 	__print_lock_name(middle_class);
2483 	printk(KERN_CONT ");\n");
2484 	printk("  <Interrupt>\n");
2485 	printk("    lock(");
2486 	__print_lock_name(safe_class);
2487 	printk(KERN_CONT ");\n");
2488 	printk("\n *** DEADLOCK ***\n\n");
2489 }
2490 
2491 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2492 print_bad_irq_dependency(struct task_struct *curr,
2493 			 struct lock_list *prev_root,
2494 			 struct lock_list *next_root,
2495 			 struct lock_list *backwards_entry,
2496 			 struct lock_list *forwards_entry,
2497 			 struct held_lock *prev,
2498 			 struct held_lock *next,
2499 			 enum lock_usage_bit bit1,
2500 			 enum lock_usage_bit bit2,
2501 			 const char *irqclass)
2502 {
2503 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2504 		return;
2505 
2506 	pr_warn("\n");
2507 	pr_warn("=====================================================\n");
2508 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2509 		irqclass, irqclass);
2510 	print_kernel_ident();
2511 	pr_warn("-----------------------------------------------------\n");
2512 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2513 		curr->comm, task_pid_nr(curr),
2514 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2515 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2516 		lockdep_hardirqs_enabled(),
2517 		curr->softirqs_enabled);
2518 	print_lock(next);
2519 
2520 	pr_warn("\nand this task is already holding:\n");
2521 	print_lock(prev);
2522 	pr_warn("which would create a new lock dependency:\n");
2523 	print_lock_name(hlock_class(prev));
2524 	pr_cont(" ->");
2525 	print_lock_name(hlock_class(next));
2526 	pr_cont("\n");
2527 
2528 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2529 		irqclass);
2530 	print_lock_name(backwards_entry->class);
2531 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2532 
2533 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2534 
2535 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2536 	print_lock_name(forwards_entry->class);
2537 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2538 	pr_warn("...");
2539 
2540 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2541 
2542 	pr_warn("\nother info that might help us debug this:\n\n");
2543 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2544 				hlock_class(prev), hlock_class(next));
2545 
2546 	lockdep_print_held_locks(curr);
2547 
2548 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2549 	prev_root->trace = save_trace();
2550 	if (!prev_root->trace)
2551 		return;
2552 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2553 
2554 	pr_warn("\nthe dependencies between the lock to be acquired");
2555 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2556 	next_root->trace = save_trace();
2557 	if (!next_root->trace)
2558 		return;
2559 	print_shortest_lock_dependencies(forwards_entry, next_root);
2560 
2561 	pr_warn("\nstack backtrace:\n");
2562 	dump_stack();
2563 }
2564 
2565 static const char *state_names[] = {
2566 #define LOCKDEP_STATE(__STATE) \
2567 	__stringify(__STATE),
2568 #include "lockdep_states.h"
2569 #undef LOCKDEP_STATE
2570 };
2571 
2572 static const char *state_rnames[] = {
2573 #define LOCKDEP_STATE(__STATE) \
2574 	__stringify(__STATE)"-READ",
2575 #include "lockdep_states.h"
2576 #undef LOCKDEP_STATE
2577 };
2578 
state_name(enum lock_usage_bit bit)2579 static inline const char *state_name(enum lock_usage_bit bit)
2580 {
2581 	if (bit & LOCK_USAGE_READ_MASK)
2582 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2583 	else
2584 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2585 }
2586 
2587 /*
2588  * The bit number is encoded like:
2589  *
2590  *  bit0: 0 exclusive, 1 read lock
2591  *  bit1: 0 used in irq, 1 irq enabled
2592  *  bit2-n: state
2593  */
exclusive_bit(int new_bit)2594 static int exclusive_bit(int new_bit)
2595 {
2596 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2597 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2598 
2599 	/*
2600 	 * keep state, bit flip the direction and strip read.
2601 	 */
2602 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2603 }
2604 
2605 /*
2606  * Observe that when given a bitmask where each bitnr is encoded as above, a
2607  * right shift of the mask transforms the individual bitnrs as -1 and
2608  * conversely, a left shift transforms into +1 for the individual bitnrs.
2609  *
2610  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2611  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2612  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2613  *
2614  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2615  *
2616  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2617  * all bits set) and recompose with bitnr1 flipped.
2618  */
invert_dir_mask(unsigned long mask)2619 static unsigned long invert_dir_mask(unsigned long mask)
2620 {
2621 	unsigned long excl = 0;
2622 
2623 	/* Invert dir */
2624 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2625 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2626 
2627 	return excl;
2628 }
2629 
2630 /*
2631  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2632  * usage may cause deadlock too, for example:
2633  *
2634  * P1				P2
2635  * <irq disabled>
2636  * write_lock(l1);		<irq enabled>
2637  *				read_lock(l2);
2638  * write_lock(l2);
2639  * 				<in irq>
2640  * 				read_lock(l1);
2641  *
2642  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2643  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2644  * deadlock.
2645  *
2646  * In fact, all of the following cases may cause deadlocks:
2647  *
2648  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2649  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2650  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2651  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2652  *
2653  * As a result, to calculate the "exclusive mask", first we invert the
2654  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2655  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2656  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2657  */
exclusive_mask(unsigned long mask)2658 static unsigned long exclusive_mask(unsigned long mask)
2659 {
2660 	unsigned long excl = invert_dir_mask(mask);
2661 
2662 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2663 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2664 
2665 	return excl;
2666 }
2667 
2668 /*
2669  * Retrieve the _possible_ original mask to which @mask is
2670  * exclusive. Ie: this is the opposite of exclusive_mask().
2671  * Note that 2 possible original bits can match an exclusive
2672  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2673  * cleared. So both are returned for each exclusive bit.
2674  */
original_mask(unsigned long mask)2675 static unsigned long original_mask(unsigned long mask)
2676 {
2677 	unsigned long excl = invert_dir_mask(mask);
2678 
2679 	/* Include read in existing usages */
2680 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2681 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2682 
2683 	return excl;
2684 }
2685 
2686 /*
2687  * Find the first pair of bit match between an original
2688  * usage mask and an exclusive usage mask.
2689  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2690 static int find_exclusive_match(unsigned long mask,
2691 				unsigned long excl_mask,
2692 				enum lock_usage_bit *bitp,
2693 				enum lock_usage_bit *excl_bitp)
2694 {
2695 	int bit, excl, excl_read;
2696 
2697 	for_each_set_bit(bit, &mask, LOCK_USED) {
2698 		/*
2699 		 * exclusive_bit() strips the read bit, however,
2700 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2701 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2702 		 */
2703 		excl = exclusive_bit(bit);
2704 		excl_read = excl | LOCK_USAGE_READ_MASK;
2705 		if (excl_mask & lock_flag(excl)) {
2706 			*bitp = bit;
2707 			*excl_bitp = excl;
2708 			return 0;
2709 		} else if (excl_mask & lock_flag(excl_read)) {
2710 			*bitp = bit;
2711 			*excl_bitp = excl_read;
2712 			return 0;
2713 		}
2714 	}
2715 	return -1;
2716 }
2717 
2718 /*
2719  * Prove that the new dependency does not connect a hardirq-safe(-read)
2720  * lock with a hardirq-unsafe lock - to achieve this we search
2721  * the backwards-subgraph starting at <prev>, and the
2722  * forwards-subgraph starting at <next>:
2723  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2724 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2725 			   struct held_lock *next)
2726 {
2727 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2728 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2729 	struct lock_list *target_entry1;
2730 	struct lock_list *target_entry;
2731 	struct lock_list this, that;
2732 	enum bfs_result ret;
2733 
2734 	/*
2735 	 * Step 1: gather all hard/soft IRQs usages backward in an
2736 	 * accumulated usage mask.
2737 	 */
2738 	bfs_init_rootb(&this, prev);
2739 
2740 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2741 	if (bfs_error(ret)) {
2742 		print_bfs_bug(ret);
2743 		return 0;
2744 	}
2745 
2746 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2747 	if (!usage_mask)
2748 		return 1;
2749 
2750 	/*
2751 	 * Step 2: find exclusive uses forward that match the previous
2752 	 * backward accumulated mask.
2753 	 */
2754 	forward_mask = exclusive_mask(usage_mask);
2755 
2756 	bfs_init_root(&that, next);
2757 
2758 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2759 	if (bfs_error(ret)) {
2760 		print_bfs_bug(ret);
2761 		return 0;
2762 	}
2763 	if (ret == BFS_RNOMATCH)
2764 		return 1;
2765 
2766 	/*
2767 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2768 	 * list whose usage mask matches the exclusive usage mask from the
2769 	 * lock found on the forward list.
2770 	 *
2771 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2772 	 * the follow case:
2773 	 *
2774 	 * When trying to add A -> B to the graph, we find that there is a
2775 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2776 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2777 	 * invert bits of M's usage_mask, we will find another lock N that is
2778 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2779 	 * cause a inversion deadlock.
2780 	 */
2781 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2782 
2783 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2784 	if (bfs_error(ret)) {
2785 		print_bfs_bug(ret);
2786 		return 0;
2787 	}
2788 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2789 		return 1;
2790 
2791 	/*
2792 	 * Step 4: narrow down to a pair of incompatible usage bits
2793 	 * and report it.
2794 	 */
2795 	ret = find_exclusive_match(target_entry->class->usage_mask,
2796 				   target_entry1->class->usage_mask,
2797 				   &backward_bit, &forward_bit);
2798 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2799 		return 1;
2800 
2801 	print_bad_irq_dependency(curr, &this, &that,
2802 				 target_entry, target_entry1,
2803 				 prev, next,
2804 				 backward_bit, forward_bit,
2805 				 state_name(backward_bit));
2806 
2807 	return 0;
2808 }
2809 
2810 #else
2811 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2812 static inline int check_irq_usage(struct task_struct *curr,
2813 				  struct held_lock *prev, struct held_lock *next)
2814 {
2815 	return 1;
2816 }
2817 #endif /* CONFIG_TRACE_IRQFLAGS */
2818 
inc_chains(int irq_context)2819 static void inc_chains(int irq_context)
2820 {
2821 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2822 		nr_hardirq_chains++;
2823 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2824 		nr_softirq_chains++;
2825 	else
2826 		nr_process_chains++;
2827 }
2828 
dec_chains(int irq_context)2829 static void dec_chains(int irq_context)
2830 {
2831 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2832 		nr_hardirq_chains--;
2833 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2834 		nr_softirq_chains--;
2835 	else
2836 		nr_process_chains--;
2837 }
2838 
2839 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2840 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2841 {
2842 	struct lock_class *next = hlock_class(nxt);
2843 	struct lock_class *prev = hlock_class(prv);
2844 
2845 	printk(" Possible unsafe locking scenario:\n\n");
2846 	printk("       CPU0\n");
2847 	printk("       ----\n");
2848 	printk("  lock(");
2849 	__print_lock_name(prev);
2850 	printk(KERN_CONT ");\n");
2851 	printk("  lock(");
2852 	__print_lock_name(next);
2853 	printk(KERN_CONT ");\n");
2854 	printk("\n *** DEADLOCK ***\n\n");
2855 	printk(" May be due to missing lock nesting notation\n\n");
2856 }
2857 
2858 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2859 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2860 		   struct held_lock *next)
2861 {
2862 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2863 		return;
2864 
2865 	pr_warn("\n");
2866 	pr_warn("============================================\n");
2867 	pr_warn("WARNING: possible recursive locking detected\n");
2868 	print_kernel_ident();
2869 	pr_warn("--------------------------------------------\n");
2870 	pr_warn("%s/%d is trying to acquire lock:\n",
2871 		curr->comm, task_pid_nr(curr));
2872 	print_lock(next);
2873 	pr_warn("\nbut task is already holding lock:\n");
2874 	print_lock(prev);
2875 
2876 	pr_warn("\nother info that might help us debug this:\n");
2877 	print_deadlock_scenario(next, prev);
2878 	lockdep_print_held_locks(curr);
2879 
2880 	pr_warn("\nstack backtrace:\n");
2881 	dump_stack();
2882 }
2883 
2884 /*
2885  * Check whether we are holding such a class already.
2886  *
2887  * (Note that this has to be done separately, because the graph cannot
2888  * detect such classes of deadlocks.)
2889  *
2890  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2891  * lock class is held but nest_lock is also held, i.e. we rely on the
2892  * nest_lock to avoid the deadlock.
2893  */
2894 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2895 check_deadlock(struct task_struct *curr, struct held_lock *next)
2896 {
2897 	struct held_lock *prev;
2898 	struct held_lock *nest = NULL;
2899 	int i;
2900 
2901 	for (i = 0; i < curr->lockdep_depth; i++) {
2902 		prev = curr->held_locks + i;
2903 
2904 		if (prev->instance == next->nest_lock)
2905 			nest = prev;
2906 
2907 		if (hlock_class(prev) != hlock_class(next))
2908 			continue;
2909 
2910 		/*
2911 		 * Allow read-after-read recursion of the same
2912 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2913 		 */
2914 		if ((next->read == 2) && prev->read)
2915 			continue;
2916 
2917 		/*
2918 		 * We're holding the nest_lock, which serializes this lock's
2919 		 * nesting behaviour.
2920 		 */
2921 		if (nest)
2922 			return 2;
2923 
2924 		print_deadlock_bug(curr, prev, next);
2925 		return 0;
2926 	}
2927 	return 1;
2928 }
2929 
2930 /*
2931  * There was a chain-cache miss, and we are about to add a new dependency
2932  * to a previous lock. We validate the following rules:
2933  *
2934  *  - would the adding of the <prev> -> <next> dependency create a
2935  *    circular dependency in the graph? [== circular deadlock]
2936  *
2937  *  - does the new prev->next dependency connect any hardirq-safe lock
2938  *    (in the full backwards-subgraph starting at <prev>) with any
2939  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2940  *    <next>)? [== illegal lock inversion with hardirq contexts]
2941  *
2942  *  - does the new prev->next dependency connect any softirq-safe lock
2943  *    (in the full backwards-subgraph starting at <prev>) with any
2944  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2945  *    <next>)? [== illegal lock inversion with softirq contexts]
2946  *
2947  * any of these scenarios could lead to a deadlock.
2948  *
2949  * Then if all the validations pass, we add the forwards and backwards
2950  * dependency.
2951  */
2952 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)2953 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2954 	       struct held_lock *next, u16 distance,
2955 	       struct lock_trace **const trace)
2956 {
2957 	struct lock_list *entry;
2958 	enum bfs_result ret;
2959 
2960 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2961 		/*
2962 		 * The warning statements below may trigger a use-after-free
2963 		 * of the class name. It is better to trigger a use-after free
2964 		 * and to have the class name most of the time instead of not
2965 		 * having the class name available.
2966 		 */
2967 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2968 			  "Detected use-after-free of lock class %px/%s\n",
2969 			  hlock_class(prev),
2970 			  hlock_class(prev)->name);
2971 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2972 			  "Detected use-after-free of lock class %px/%s\n",
2973 			  hlock_class(next),
2974 			  hlock_class(next)->name);
2975 		return 2;
2976 	}
2977 
2978 	/*
2979 	 * Prove that the new <prev> -> <next> dependency would not
2980 	 * create a circular dependency in the graph. (We do this by
2981 	 * a breadth-first search into the graph starting at <next>,
2982 	 * and check whether we can reach <prev>.)
2983 	 *
2984 	 * The search is limited by the size of the circular queue (i.e.,
2985 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2986 	 * in the graph whose neighbours are to be checked.
2987 	 */
2988 	ret = check_noncircular(next, prev, trace);
2989 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2990 		return 0;
2991 
2992 	if (!check_irq_usage(curr, prev, next))
2993 		return 0;
2994 
2995 	/*
2996 	 * Is the <prev> -> <next> dependency already present?
2997 	 *
2998 	 * (this may occur even though this is a new chain: consider
2999 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3000 	 *  chains - the second one will be new, but L1 already has
3001 	 *  L2 added to its dependency list, due to the first chain.)
3002 	 */
3003 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3004 		if (entry->class == hlock_class(next)) {
3005 			if (distance == 1)
3006 				entry->distance = 1;
3007 			entry->dep |= calc_dep(prev, next);
3008 
3009 			/*
3010 			 * Also, update the reverse dependency in @next's
3011 			 * ->locks_before list.
3012 			 *
3013 			 *  Here we reuse @entry as the cursor, which is fine
3014 			 *  because we won't go to the next iteration of the
3015 			 *  outer loop:
3016 			 *
3017 			 *  For normal cases, we return in the inner loop.
3018 			 *
3019 			 *  If we fail to return, we have inconsistency, i.e.
3020 			 *  <prev>::locks_after contains <next> while
3021 			 *  <next>::locks_before doesn't contain <prev>. In
3022 			 *  that case, we return after the inner and indicate
3023 			 *  something is wrong.
3024 			 */
3025 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3026 				if (entry->class == hlock_class(prev)) {
3027 					if (distance == 1)
3028 						entry->distance = 1;
3029 					entry->dep |= calc_depb(prev, next);
3030 					return 1;
3031 				}
3032 			}
3033 
3034 			/* <prev> is not found in <next>::locks_before */
3035 			return 0;
3036 		}
3037 	}
3038 
3039 #ifdef CONFIG_LOCKDEP_SMALL
3040 	/*
3041 	 * Is the <prev> -> <next> link redundant?
3042 	 */
3043 	ret = check_redundant(prev, next);
3044 	if (bfs_error(ret))
3045 		return 0;
3046 	else if (ret == BFS_RMATCH)
3047 		return 2;
3048 #endif
3049 
3050 	if (!*trace) {
3051 		*trace = save_trace();
3052 		if (!*trace)
3053 			return 0;
3054 	}
3055 
3056 	/*
3057 	 * Ok, all validations passed, add the new lock
3058 	 * to the previous lock's dependency list:
3059 	 */
3060 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3061 			       &hlock_class(prev)->locks_after,
3062 			       next->acquire_ip, distance,
3063 			       calc_dep(prev, next),
3064 			       *trace);
3065 
3066 	if (!ret)
3067 		return 0;
3068 
3069 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3070 			       &hlock_class(next)->locks_before,
3071 			       next->acquire_ip, distance,
3072 			       calc_depb(prev, next),
3073 			       *trace);
3074 	if (!ret)
3075 		return 0;
3076 
3077 	return 2;
3078 }
3079 
3080 /*
3081  * Add the dependency to all directly-previous locks that are 'relevant'.
3082  * The ones that are relevant are (in increasing distance from curr):
3083  * all consecutive trylock entries and the final non-trylock entry - or
3084  * the end of this context's lock-chain - whichever comes first.
3085  */
3086 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3087 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3088 {
3089 	struct lock_trace *trace = NULL;
3090 	int depth = curr->lockdep_depth;
3091 	struct held_lock *hlock;
3092 
3093 	/*
3094 	 * Debugging checks.
3095 	 *
3096 	 * Depth must not be zero for a non-head lock:
3097 	 */
3098 	if (!depth)
3099 		goto out_bug;
3100 	/*
3101 	 * At least two relevant locks must exist for this
3102 	 * to be a head:
3103 	 */
3104 	if (curr->held_locks[depth].irq_context !=
3105 			curr->held_locks[depth-1].irq_context)
3106 		goto out_bug;
3107 
3108 	for (;;) {
3109 		u16 distance = curr->lockdep_depth - depth + 1;
3110 		hlock = curr->held_locks + depth - 1;
3111 
3112 		if (hlock->check) {
3113 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3114 			if (!ret)
3115 				return 0;
3116 
3117 			/*
3118 			 * Stop after the first non-trylock entry,
3119 			 * as non-trylock entries have added their
3120 			 * own direct dependencies already, so this
3121 			 * lock is connected to them indirectly:
3122 			 */
3123 			if (!hlock->trylock)
3124 				break;
3125 		}
3126 
3127 		depth--;
3128 		/*
3129 		 * End of lock-stack?
3130 		 */
3131 		if (!depth)
3132 			break;
3133 		/*
3134 		 * Stop the search if we cross into another context:
3135 		 */
3136 		if (curr->held_locks[depth].irq_context !=
3137 				curr->held_locks[depth-1].irq_context)
3138 			break;
3139 	}
3140 	return 1;
3141 out_bug:
3142 	if (!debug_locks_off_graph_unlock())
3143 		return 0;
3144 
3145 	/*
3146 	 * Clearly we all shouldn't be here, but since we made it we
3147 	 * can reliable say we messed up our state. See the above two
3148 	 * gotos for reasons why we could possibly end up here.
3149 	 */
3150 	WARN_ON(1);
3151 
3152 	return 0;
3153 }
3154 
3155 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3156 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3157 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3158 unsigned long nr_zapped_lock_chains;
3159 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3160 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3161 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3162 
3163 /*
3164  * The first 2 chain_hlocks entries in the chain block in the bucket
3165  * list contains the following meta data:
3166  *
3167  *   entry[0]:
3168  *     Bit    15 - always set to 1 (it is not a class index)
3169  *     Bits 0-14 - upper 15 bits of the next block index
3170  *   entry[1]    - lower 16 bits of next block index
3171  *
3172  * A next block index of all 1 bits means it is the end of the list.
3173  *
3174  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3175  * the chain block size:
3176  *
3177  *   entry[2] - upper 16 bits of the chain block size
3178  *   entry[3] - lower 16 bits of the chain block size
3179  */
3180 #define MAX_CHAIN_BUCKETS	16
3181 #define CHAIN_BLK_FLAG		(1U << 15)
3182 #define CHAIN_BLK_LIST_END	0xFFFFU
3183 
3184 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3185 
size_to_bucket(int size)3186 static inline int size_to_bucket(int size)
3187 {
3188 	if (size > MAX_CHAIN_BUCKETS)
3189 		return 0;
3190 
3191 	return size - 1;
3192 }
3193 
3194 /*
3195  * Iterate all the chain blocks in a bucket.
3196  */
3197 #define for_each_chain_block(bucket, prev, curr)		\
3198 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3199 	     (curr) >= 0;					\
3200 	     (prev) = (curr), (curr) = chain_block_next(curr))
3201 
3202 /*
3203  * next block or -1
3204  */
chain_block_next(int offset)3205 static inline int chain_block_next(int offset)
3206 {
3207 	int next = chain_hlocks[offset];
3208 
3209 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3210 
3211 	if (next == CHAIN_BLK_LIST_END)
3212 		return -1;
3213 
3214 	next &= ~CHAIN_BLK_FLAG;
3215 	next <<= 16;
3216 	next |= chain_hlocks[offset + 1];
3217 
3218 	return next;
3219 }
3220 
3221 /*
3222  * bucket-0 only
3223  */
chain_block_size(int offset)3224 static inline int chain_block_size(int offset)
3225 {
3226 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3227 }
3228 
init_chain_block(int offset,int next,int bucket,int size)3229 static inline void init_chain_block(int offset, int next, int bucket, int size)
3230 {
3231 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3232 	chain_hlocks[offset + 1] = (u16)next;
3233 
3234 	if (size && !bucket) {
3235 		chain_hlocks[offset + 2] = size >> 16;
3236 		chain_hlocks[offset + 3] = (u16)size;
3237 	}
3238 }
3239 
add_chain_block(int offset,int size)3240 static inline void add_chain_block(int offset, int size)
3241 {
3242 	int bucket = size_to_bucket(size);
3243 	int next = chain_block_buckets[bucket];
3244 	int prev, curr;
3245 
3246 	if (unlikely(size < 2)) {
3247 		/*
3248 		 * We can't store single entries on the freelist. Leak them.
3249 		 *
3250 		 * One possible way out would be to uniquely mark them, other
3251 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3252 		 * the block before it is re-added.
3253 		 */
3254 		if (size)
3255 			nr_lost_chain_hlocks++;
3256 		return;
3257 	}
3258 
3259 	nr_free_chain_hlocks += size;
3260 	if (!bucket) {
3261 		nr_large_chain_blocks++;
3262 
3263 		/*
3264 		 * Variable sized, sort large to small.
3265 		 */
3266 		for_each_chain_block(0, prev, curr) {
3267 			if (size >= chain_block_size(curr))
3268 				break;
3269 		}
3270 		init_chain_block(offset, curr, 0, size);
3271 		if (prev < 0)
3272 			chain_block_buckets[0] = offset;
3273 		else
3274 			init_chain_block(prev, offset, 0, 0);
3275 		return;
3276 	}
3277 	/*
3278 	 * Fixed size, add to head.
3279 	 */
3280 	init_chain_block(offset, next, bucket, size);
3281 	chain_block_buckets[bucket] = offset;
3282 }
3283 
3284 /*
3285  * Only the first block in the list can be deleted.
3286  *
3287  * For the variable size bucket[0], the first block (the largest one) is
3288  * returned, broken up and put back into the pool. So if a chain block of
3289  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3290  * queued up after the primordial chain block and never be used until the
3291  * hlock entries in the primordial chain block is almost used up. That
3292  * causes fragmentation and reduce allocation efficiency. That can be
3293  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3294  */
del_chain_block(int bucket,int size,int next)3295 static inline void del_chain_block(int bucket, int size, int next)
3296 {
3297 	nr_free_chain_hlocks -= size;
3298 	chain_block_buckets[bucket] = next;
3299 
3300 	if (!bucket)
3301 		nr_large_chain_blocks--;
3302 }
3303 
init_chain_block_buckets(void)3304 static void init_chain_block_buckets(void)
3305 {
3306 	int i;
3307 
3308 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3309 		chain_block_buckets[i] = -1;
3310 
3311 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3312 }
3313 
3314 /*
3315  * Return offset of a chain block of the right size or -1 if not found.
3316  *
3317  * Fairly simple worst-fit allocator with the addition of a number of size
3318  * specific free lists.
3319  */
alloc_chain_hlocks(int req)3320 static int alloc_chain_hlocks(int req)
3321 {
3322 	int bucket, curr, size;
3323 
3324 	/*
3325 	 * We rely on the MSB to act as an escape bit to denote freelist
3326 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3327 	 */
3328 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3329 
3330 	init_data_structures_once();
3331 
3332 	if (nr_free_chain_hlocks < req)
3333 		return -1;
3334 
3335 	/*
3336 	 * We require a minimum of 2 (u16) entries to encode a freelist
3337 	 * 'pointer'.
3338 	 */
3339 	req = max(req, 2);
3340 	bucket = size_to_bucket(req);
3341 	curr = chain_block_buckets[bucket];
3342 
3343 	if (bucket) {
3344 		if (curr >= 0) {
3345 			del_chain_block(bucket, req, chain_block_next(curr));
3346 			return curr;
3347 		}
3348 		/* Try bucket 0 */
3349 		curr = chain_block_buckets[0];
3350 	}
3351 
3352 	/*
3353 	 * The variable sized freelist is sorted by size; the first entry is
3354 	 * the largest. Use it if it fits.
3355 	 */
3356 	if (curr >= 0) {
3357 		size = chain_block_size(curr);
3358 		if (likely(size >= req)) {
3359 			del_chain_block(0, size, chain_block_next(curr));
3360 			if (size > req)
3361 				add_chain_block(curr + req, size - req);
3362 			return curr;
3363 		}
3364 	}
3365 
3366 	/*
3367 	 * Last resort, split a block in a larger sized bucket.
3368 	 */
3369 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3370 		bucket = size_to_bucket(size);
3371 		curr = chain_block_buckets[bucket];
3372 		if (curr < 0)
3373 			continue;
3374 
3375 		del_chain_block(bucket, size, chain_block_next(curr));
3376 		add_chain_block(curr + req, size - req);
3377 		return curr;
3378 	}
3379 
3380 	return -1;
3381 }
3382 
free_chain_hlocks(int base,int size)3383 static inline void free_chain_hlocks(int base, int size)
3384 {
3385 	add_chain_block(base, max(size, 2));
3386 }
3387 
lock_chain_get_class(struct lock_chain * chain,int i)3388 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3389 {
3390 	u16 chain_hlock = chain_hlocks[chain->base + i];
3391 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3392 
3393 	return lock_classes + class_idx;
3394 }
3395 
3396 /*
3397  * Returns the index of the first held_lock of the current chain
3398  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3399 static inline int get_first_held_lock(struct task_struct *curr,
3400 					struct held_lock *hlock)
3401 {
3402 	int i;
3403 	struct held_lock *hlock_curr;
3404 
3405 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3406 		hlock_curr = curr->held_locks + i;
3407 		if (hlock_curr->irq_context != hlock->irq_context)
3408 			break;
3409 
3410 	}
3411 
3412 	return ++i;
3413 }
3414 
3415 #ifdef CONFIG_DEBUG_LOCKDEP
3416 /*
3417  * Returns the next chain_key iteration
3418  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3419 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3420 {
3421 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3422 
3423 	printk(" hlock_id:%d -> chain_key:%016Lx",
3424 		(unsigned int)hlock_id,
3425 		(unsigned long long)new_chain_key);
3426 	return new_chain_key;
3427 }
3428 
3429 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3430 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3431 {
3432 	struct held_lock *hlock;
3433 	u64 chain_key = INITIAL_CHAIN_KEY;
3434 	int depth = curr->lockdep_depth;
3435 	int i = get_first_held_lock(curr, hlock_next);
3436 
3437 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3438 		hlock_next->irq_context);
3439 	for (; i < depth; i++) {
3440 		hlock = curr->held_locks + i;
3441 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3442 
3443 		print_lock(hlock);
3444 	}
3445 
3446 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3447 	print_lock(hlock_next);
3448 }
3449 
print_chain_keys_chain(struct lock_chain * chain)3450 static void print_chain_keys_chain(struct lock_chain *chain)
3451 {
3452 	int i;
3453 	u64 chain_key = INITIAL_CHAIN_KEY;
3454 	u16 hlock_id;
3455 
3456 	printk("depth: %u\n", chain->depth);
3457 	for (i = 0; i < chain->depth; i++) {
3458 		hlock_id = chain_hlocks[chain->base + i];
3459 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3460 
3461 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3462 		printk("\n");
3463 	}
3464 }
3465 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3466 static void print_collision(struct task_struct *curr,
3467 			struct held_lock *hlock_next,
3468 			struct lock_chain *chain)
3469 {
3470 	pr_warn("\n");
3471 	pr_warn("============================\n");
3472 	pr_warn("WARNING: chain_key collision\n");
3473 	print_kernel_ident();
3474 	pr_warn("----------------------------\n");
3475 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3476 	pr_warn("Hash chain already cached but the contents don't match!\n");
3477 
3478 	pr_warn("Held locks:");
3479 	print_chain_keys_held_locks(curr, hlock_next);
3480 
3481 	pr_warn("Locks in cached chain:");
3482 	print_chain_keys_chain(chain);
3483 
3484 	pr_warn("\nstack backtrace:\n");
3485 	dump_stack();
3486 }
3487 #endif
3488 
3489 /*
3490  * Checks whether the chain and the current held locks are consistent
3491  * in depth and also in content. If they are not it most likely means
3492  * that there was a collision during the calculation of the chain_key.
3493  * Returns: 0 not passed, 1 passed
3494  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3495 static int check_no_collision(struct task_struct *curr,
3496 			struct held_lock *hlock,
3497 			struct lock_chain *chain)
3498 {
3499 #ifdef CONFIG_DEBUG_LOCKDEP
3500 	int i, j, id;
3501 
3502 	i = get_first_held_lock(curr, hlock);
3503 
3504 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3505 		print_collision(curr, hlock, chain);
3506 		return 0;
3507 	}
3508 
3509 	for (j = 0; j < chain->depth - 1; j++, i++) {
3510 		id = hlock_id(&curr->held_locks[i]);
3511 
3512 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3513 			print_collision(curr, hlock, chain);
3514 			return 0;
3515 		}
3516 	}
3517 #endif
3518 	return 1;
3519 }
3520 
3521 /*
3522  * Given an index that is >= -1, return the index of the next lock chain.
3523  * Return -2 if there is no next lock chain.
3524  */
lockdep_next_lockchain(long i)3525 long lockdep_next_lockchain(long i)
3526 {
3527 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3528 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3529 }
3530 
lock_chain_count(void)3531 unsigned long lock_chain_count(void)
3532 {
3533 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3534 }
3535 
3536 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3537 static struct lock_chain *alloc_lock_chain(void)
3538 {
3539 	int idx = find_first_zero_bit(lock_chains_in_use,
3540 				      ARRAY_SIZE(lock_chains));
3541 
3542 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3543 		return NULL;
3544 	__set_bit(idx, lock_chains_in_use);
3545 	return lock_chains + idx;
3546 }
3547 
3548 /*
3549  * Adds a dependency chain into chain hashtable. And must be called with
3550  * graph_lock held.
3551  *
3552  * Return 0 if fail, and graph_lock is released.
3553  * Return 1 if succeed, with graph_lock held.
3554  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3555 static inline int add_chain_cache(struct task_struct *curr,
3556 				  struct held_lock *hlock,
3557 				  u64 chain_key)
3558 {
3559 	struct hlist_head *hash_head = chainhashentry(chain_key);
3560 	struct lock_chain *chain;
3561 	int i, j;
3562 
3563 	/*
3564 	 * The caller must hold the graph lock, ensure we've got IRQs
3565 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3566 	 * lockdep won't complain about its own locking errors.
3567 	 */
3568 	if (lockdep_assert_locked())
3569 		return 0;
3570 
3571 	chain = alloc_lock_chain();
3572 	if (!chain) {
3573 		if (!debug_locks_off_graph_unlock())
3574 			return 0;
3575 
3576 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3577 		dump_stack();
3578 		return 0;
3579 	}
3580 	chain->chain_key = chain_key;
3581 	chain->irq_context = hlock->irq_context;
3582 	i = get_first_held_lock(curr, hlock);
3583 	chain->depth = curr->lockdep_depth + 1 - i;
3584 
3585 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3586 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3587 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3588 
3589 	j = alloc_chain_hlocks(chain->depth);
3590 	if (j < 0) {
3591 		if (!debug_locks_off_graph_unlock())
3592 			return 0;
3593 
3594 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3595 		dump_stack();
3596 		return 0;
3597 	}
3598 
3599 	chain->base = j;
3600 	for (j = 0; j < chain->depth - 1; j++, i++) {
3601 		int lock_id = hlock_id(curr->held_locks + i);
3602 
3603 		chain_hlocks[chain->base + j] = lock_id;
3604 	}
3605 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3606 	hlist_add_head_rcu(&chain->entry, hash_head);
3607 	debug_atomic_inc(chain_lookup_misses);
3608 	inc_chains(chain->irq_context);
3609 
3610 	return 1;
3611 }
3612 
3613 /*
3614  * Look up a dependency chain. Must be called with either the graph lock or
3615  * the RCU read lock held.
3616  */
lookup_chain_cache(u64 chain_key)3617 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3618 {
3619 	struct hlist_head *hash_head = chainhashentry(chain_key);
3620 	struct lock_chain *chain;
3621 
3622 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3623 		if (READ_ONCE(chain->chain_key) == chain_key) {
3624 			debug_atomic_inc(chain_lookup_hits);
3625 			return chain;
3626 		}
3627 	}
3628 	return NULL;
3629 }
3630 
3631 /*
3632  * If the key is not present yet in dependency chain cache then
3633  * add it and return 1 - in this case the new dependency chain is
3634  * validated. If the key is already hashed, return 0.
3635  * (On return with 1 graph_lock is held.)
3636  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3637 static inline int lookup_chain_cache_add(struct task_struct *curr,
3638 					 struct held_lock *hlock,
3639 					 u64 chain_key)
3640 {
3641 	struct lock_class *class = hlock_class(hlock);
3642 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3643 
3644 	if (chain) {
3645 cache_hit:
3646 		if (!check_no_collision(curr, hlock, chain))
3647 			return 0;
3648 
3649 		if (very_verbose(class)) {
3650 			printk("\nhash chain already cached, key: "
3651 					"%016Lx tail class: [%px] %s\n",
3652 					(unsigned long long)chain_key,
3653 					class->key, class->name);
3654 		}
3655 
3656 		return 0;
3657 	}
3658 
3659 	if (very_verbose(class)) {
3660 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3661 			(unsigned long long)chain_key, class->key, class->name);
3662 	}
3663 
3664 	if (!graph_lock())
3665 		return 0;
3666 
3667 	/*
3668 	 * We have to walk the chain again locked - to avoid duplicates:
3669 	 */
3670 	chain = lookup_chain_cache(chain_key);
3671 	if (chain) {
3672 		graph_unlock();
3673 		goto cache_hit;
3674 	}
3675 
3676 	if (!add_chain_cache(curr, hlock, chain_key))
3677 		return 0;
3678 
3679 	return 1;
3680 }
3681 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3682 static int validate_chain(struct task_struct *curr,
3683 			  struct held_lock *hlock,
3684 			  int chain_head, u64 chain_key)
3685 {
3686 	/*
3687 	 * Trylock needs to maintain the stack of held locks, but it
3688 	 * does not add new dependencies, because trylock can be done
3689 	 * in any order.
3690 	 *
3691 	 * We look up the chain_key and do the O(N^2) check and update of
3692 	 * the dependencies only if this is a new dependency chain.
3693 	 * (If lookup_chain_cache_add() return with 1 it acquires
3694 	 * graph_lock for us)
3695 	 */
3696 	if (!hlock->trylock && hlock->check &&
3697 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3698 		/*
3699 		 * Check whether last held lock:
3700 		 *
3701 		 * - is irq-safe, if this lock is irq-unsafe
3702 		 * - is softirq-safe, if this lock is hardirq-unsafe
3703 		 *
3704 		 * And check whether the new lock's dependency graph
3705 		 * could lead back to the previous lock:
3706 		 *
3707 		 * - within the current held-lock stack
3708 		 * - across our accumulated lock dependency records
3709 		 *
3710 		 * any of these scenarios could lead to a deadlock.
3711 		 */
3712 		/*
3713 		 * The simple case: does the current hold the same lock
3714 		 * already?
3715 		 */
3716 		int ret = check_deadlock(curr, hlock);
3717 
3718 		if (!ret)
3719 			return 0;
3720 		/*
3721 		 * Add dependency only if this lock is not the head
3722 		 * of the chain, and if the new lock introduces no more
3723 		 * lock dependency (because we already hold a lock with the
3724 		 * same lock class) nor deadlock (because the nest_lock
3725 		 * serializes nesting locks), see the comments for
3726 		 * check_deadlock().
3727 		 */
3728 		if (!chain_head && ret != 2) {
3729 			if (!check_prevs_add(curr, hlock))
3730 				return 0;
3731 		}
3732 
3733 		graph_unlock();
3734 	} else {
3735 		/* after lookup_chain_cache_add(): */
3736 		if (unlikely(!debug_locks))
3737 			return 0;
3738 	}
3739 
3740 	return 1;
3741 }
3742 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3743 static inline int validate_chain(struct task_struct *curr,
3744 				 struct held_lock *hlock,
3745 				 int chain_head, u64 chain_key)
3746 {
3747 	return 1;
3748 }
3749 
init_chain_block_buckets(void)3750 static void init_chain_block_buckets(void)	{ }
3751 #endif /* CONFIG_PROVE_LOCKING */
3752 
3753 /*
3754  * We are building curr_chain_key incrementally, so double-check
3755  * it from scratch, to make sure that it's done correctly:
3756  */
check_chain_key(struct task_struct * curr)3757 static void check_chain_key(struct task_struct *curr)
3758 {
3759 #ifdef CONFIG_DEBUG_LOCKDEP
3760 	struct held_lock *hlock, *prev_hlock = NULL;
3761 	unsigned int i;
3762 	u64 chain_key = INITIAL_CHAIN_KEY;
3763 
3764 	for (i = 0; i < curr->lockdep_depth; i++) {
3765 		hlock = curr->held_locks + i;
3766 		if (chain_key != hlock->prev_chain_key) {
3767 			debug_locks_off();
3768 			/*
3769 			 * We got mighty confused, our chain keys don't match
3770 			 * with what we expect, someone trample on our task state?
3771 			 */
3772 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3773 				curr->lockdep_depth, i,
3774 				(unsigned long long)chain_key,
3775 				(unsigned long long)hlock->prev_chain_key);
3776 			return;
3777 		}
3778 
3779 		/*
3780 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3781 		 * it registered lock class index?
3782 		 */
3783 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3784 			return;
3785 
3786 		if (prev_hlock && (prev_hlock->irq_context !=
3787 							hlock->irq_context))
3788 			chain_key = INITIAL_CHAIN_KEY;
3789 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3790 		prev_hlock = hlock;
3791 	}
3792 	if (chain_key != curr->curr_chain_key) {
3793 		debug_locks_off();
3794 		/*
3795 		 * More smoking hash instead of calculating it, damn see these
3796 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3797 		 */
3798 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3799 			curr->lockdep_depth, i,
3800 			(unsigned long long)chain_key,
3801 			(unsigned long long)curr->curr_chain_key);
3802 	}
3803 #endif
3804 }
3805 
3806 #ifdef CONFIG_PROVE_LOCKING
3807 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3808 		     enum lock_usage_bit new_bit);
3809 
print_usage_bug_scenario(struct held_lock * lock)3810 static void print_usage_bug_scenario(struct held_lock *lock)
3811 {
3812 	struct lock_class *class = hlock_class(lock);
3813 
3814 	printk(" Possible unsafe locking scenario:\n\n");
3815 	printk("       CPU0\n");
3816 	printk("       ----\n");
3817 	printk("  lock(");
3818 	__print_lock_name(class);
3819 	printk(KERN_CONT ");\n");
3820 	printk("  <Interrupt>\n");
3821 	printk("    lock(");
3822 	__print_lock_name(class);
3823 	printk(KERN_CONT ");\n");
3824 	printk("\n *** DEADLOCK ***\n\n");
3825 }
3826 
3827 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3828 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3829 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3830 {
3831 	if (!debug_locks_off() || debug_locks_silent)
3832 		return;
3833 
3834 	pr_warn("\n");
3835 	pr_warn("================================\n");
3836 	pr_warn("WARNING: inconsistent lock state\n");
3837 	print_kernel_ident();
3838 	pr_warn("--------------------------------\n");
3839 
3840 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3841 		usage_str[prev_bit], usage_str[new_bit]);
3842 
3843 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3844 		curr->comm, task_pid_nr(curr),
3845 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3846 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3847 		lockdep_hardirqs_enabled(),
3848 		lockdep_softirqs_enabled(curr));
3849 	print_lock(this);
3850 
3851 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3852 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3853 
3854 	print_irqtrace_events(curr);
3855 	pr_warn("\nother info that might help us debug this:\n");
3856 	print_usage_bug_scenario(this);
3857 
3858 	lockdep_print_held_locks(curr);
3859 
3860 	pr_warn("\nstack backtrace:\n");
3861 	dump_stack();
3862 }
3863 
3864 /*
3865  * Print out an error if an invalid bit is set:
3866  */
3867 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3868 valid_state(struct task_struct *curr, struct held_lock *this,
3869 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3870 {
3871 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3872 		graph_unlock();
3873 		print_usage_bug(curr, this, bad_bit, new_bit);
3874 		return 0;
3875 	}
3876 	return 1;
3877 }
3878 
3879 
3880 /*
3881  * print irq inversion bug:
3882  */
3883 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3884 print_irq_inversion_bug(struct task_struct *curr,
3885 			struct lock_list *root, struct lock_list *other,
3886 			struct held_lock *this, int forwards,
3887 			const char *irqclass)
3888 {
3889 	struct lock_list *entry = other;
3890 	struct lock_list *middle = NULL;
3891 	int depth;
3892 
3893 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3894 		return;
3895 
3896 	pr_warn("\n");
3897 	pr_warn("========================================================\n");
3898 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3899 	print_kernel_ident();
3900 	pr_warn("--------------------------------------------------------\n");
3901 	pr_warn("%s/%d just changed the state of lock:\n",
3902 		curr->comm, task_pid_nr(curr));
3903 	print_lock(this);
3904 	if (forwards)
3905 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3906 	else
3907 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3908 	print_lock_name(other->class);
3909 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3910 
3911 	pr_warn("\nother info that might help us debug this:\n");
3912 
3913 	/* Find a middle lock (if one exists) */
3914 	depth = get_lock_depth(other);
3915 	do {
3916 		if (depth == 0 && (entry != root)) {
3917 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3918 			break;
3919 		}
3920 		middle = entry;
3921 		entry = get_lock_parent(entry);
3922 		depth--;
3923 	} while (entry && entry != root && (depth >= 0));
3924 	if (forwards)
3925 		print_irq_lock_scenario(root, other,
3926 			middle ? middle->class : root->class, other->class);
3927 	else
3928 		print_irq_lock_scenario(other, root,
3929 			middle ? middle->class : other->class, root->class);
3930 
3931 	lockdep_print_held_locks(curr);
3932 
3933 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3934 	root->trace = save_trace();
3935 	if (!root->trace)
3936 		return;
3937 	print_shortest_lock_dependencies(other, root);
3938 
3939 	pr_warn("\nstack backtrace:\n");
3940 	dump_stack();
3941 }
3942 
3943 /*
3944  * Prove that in the forwards-direction subgraph starting at <this>
3945  * there is no lock matching <mask>:
3946  */
3947 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3948 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3949 		     enum lock_usage_bit bit)
3950 {
3951 	enum bfs_result ret;
3952 	struct lock_list root;
3953 	struct lock_list *target_entry;
3954 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3955 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3956 
3957 	bfs_init_root(&root, this);
3958 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3959 	if (bfs_error(ret)) {
3960 		print_bfs_bug(ret);
3961 		return 0;
3962 	}
3963 	if (ret == BFS_RNOMATCH)
3964 		return 1;
3965 
3966 	/* Check whether write or read usage is the match */
3967 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3968 		print_irq_inversion_bug(curr, &root, target_entry,
3969 					this, 1, state_name(bit));
3970 	} else {
3971 		print_irq_inversion_bug(curr, &root, target_entry,
3972 					this, 1, state_name(read_bit));
3973 	}
3974 
3975 	return 0;
3976 }
3977 
3978 /*
3979  * Prove that in the backwards-direction subgraph starting at <this>
3980  * there is no lock matching <mask>:
3981  */
3982 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3983 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3984 		      enum lock_usage_bit bit)
3985 {
3986 	enum bfs_result ret;
3987 	struct lock_list root;
3988 	struct lock_list *target_entry;
3989 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3990 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3991 
3992 	bfs_init_rootb(&root, this);
3993 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3994 	if (bfs_error(ret)) {
3995 		print_bfs_bug(ret);
3996 		return 0;
3997 	}
3998 	if (ret == BFS_RNOMATCH)
3999 		return 1;
4000 
4001 	/* Check whether write or read usage is the match */
4002 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4003 		print_irq_inversion_bug(curr, &root, target_entry,
4004 					this, 0, state_name(bit));
4005 	} else {
4006 		print_irq_inversion_bug(curr, &root, target_entry,
4007 					this, 0, state_name(read_bit));
4008 	}
4009 
4010 	return 0;
4011 }
4012 
print_irqtrace_events(struct task_struct * curr)4013 void print_irqtrace_events(struct task_struct *curr)
4014 {
4015 	const struct irqtrace_events *trace = &curr->irqtrace;
4016 
4017 	printk("irq event stamp: %u\n", trace->irq_events);
4018 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4019 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4020 		(void *)trace->hardirq_enable_ip);
4021 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4022 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4023 		(void *)trace->hardirq_disable_ip);
4024 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4025 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4026 		(void *)trace->softirq_enable_ip);
4027 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4028 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4029 		(void *)trace->softirq_disable_ip);
4030 }
4031 
HARDIRQ_verbose(struct lock_class * class)4032 static int HARDIRQ_verbose(struct lock_class *class)
4033 {
4034 #if HARDIRQ_VERBOSE
4035 	return class_filter(class);
4036 #endif
4037 	return 0;
4038 }
4039 
SOFTIRQ_verbose(struct lock_class * class)4040 static int SOFTIRQ_verbose(struct lock_class *class)
4041 {
4042 #if SOFTIRQ_VERBOSE
4043 	return class_filter(class);
4044 #endif
4045 	return 0;
4046 }
4047 
4048 static int (*state_verbose_f[])(struct lock_class *class) = {
4049 #define LOCKDEP_STATE(__STATE) \
4050 	__STATE##_verbose,
4051 #include "lockdep_states.h"
4052 #undef LOCKDEP_STATE
4053 };
4054 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4055 static inline int state_verbose(enum lock_usage_bit bit,
4056 				struct lock_class *class)
4057 {
4058 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4059 }
4060 
4061 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4062 			     enum lock_usage_bit bit, const char *name);
4063 
4064 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4065 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4066 		enum lock_usage_bit new_bit)
4067 {
4068 	int excl_bit = exclusive_bit(new_bit);
4069 	int read = new_bit & LOCK_USAGE_READ_MASK;
4070 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4071 
4072 	/*
4073 	 * Validate that this particular lock does not have conflicting
4074 	 * usage states.
4075 	 */
4076 	if (!valid_state(curr, this, new_bit, excl_bit))
4077 		return 0;
4078 
4079 	/*
4080 	 * Check for read in write conflicts
4081 	 */
4082 	if (!read && !valid_state(curr, this, new_bit,
4083 				  excl_bit + LOCK_USAGE_READ_MASK))
4084 		return 0;
4085 
4086 
4087 	/*
4088 	 * Validate that the lock dependencies don't have conflicting usage
4089 	 * states.
4090 	 */
4091 	if (dir) {
4092 		/*
4093 		 * mark ENABLED has to look backwards -- to ensure no dependee
4094 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4095 		 */
4096 		if (!check_usage_backwards(curr, this, excl_bit))
4097 			return 0;
4098 	} else {
4099 		/*
4100 		 * mark USED_IN has to look forwards -- to ensure no dependency
4101 		 * has ENABLED state, which would allow recursion deadlocks.
4102 		 */
4103 		if (!check_usage_forwards(curr, this, excl_bit))
4104 			return 0;
4105 	}
4106 
4107 	if (state_verbose(new_bit, hlock_class(this)))
4108 		return 2;
4109 
4110 	return 1;
4111 }
4112 
4113 /*
4114  * Mark all held locks with a usage bit:
4115  */
4116 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4117 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4118 {
4119 	struct held_lock *hlock;
4120 	int i;
4121 
4122 	for (i = 0; i < curr->lockdep_depth; i++) {
4123 		enum lock_usage_bit hlock_bit = base_bit;
4124 		hlock = curr->held_locks + i;
4125 
4126 		if (hlock->read)
4127 			hlock_bit += LOCK_USAGE_READ_MASK;
4128 
4129 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4130 
4131 		if (!hlock->check)
4132 			continue;
4133 
4134 		if (!mark_lock(curr, hlock, hlock_bit))
4135 			return 0;
4136 	}
4137 
4138 	return 1;
4139 }
4140 
4141 /*
4142  * Hardirqs will be enabled:
4143  */
__trace_hardirqs_on_caller(void)4144 static void __trace_hardirqs_on_caller(void)
4145 {
4146 	struct task_struct *curr = current;
4147 
4148 	/*
4149 	 * We are going to turn hardirqs on, so set the
4150 	 * usage bit for all held locks:
4151 	 */
4152 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4153 		return;
4154 	/*
4155 	 * If we have softirqs enabled, then set the usage
4156 	 * bit for all held locks. (disabled hardirqs prevented
4157 	 * this bit from being set before)
4158 	 */
4159 	if (curr->softirqs_enabled)
4160 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4161 }
4162 
4163 /**
4164  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4165  * @ip:		Caller address
4166  *
4167  * Invoked before a possible transition to RCU idle from exit to user or
4168  * guest mode. This ensures that all RCU operations are done before RCU
4169  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4170  * invoked to set the final state.
4171  */
lockdep_hardirqs_on_prepare(unsigned long ip)4172 void lockdep_hardirqs_on_prepare(unsigned long ip)
4173 {
4174 	if (unlikely(!debug_locks))
4175 		return;
4176 
4177 	/*
4178 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4179 	 */
4180 	if (unlikely(in_nmi()))
4181 		return;
4182 
4183 	if (unlikely(this_cpu_read(lockdep_recursion)))
4184 		return;
4185 
4186 	if (unlikely(lockdep_hardirqs_enabled())) {
4187 		/*
4188 		 * Neither irq nor preemption are disabled here
4189 		 * so this is racy by nature but losing one hit
4190 		 * in a stat is not a big deal.
4191 		 */
4192 		__debug_atomic_inc(redundant_hardirqs_on);
4193 		return;
4194 	}
4195 
4196 	/*
4197 	 * We're enabling irqs and according to our state above irqs weren't
4198 	 * already enabled, yet we find the hardware thinks they are in fact
4199 	 * enabled.. someone messed up their IRQ state tracing.
4200 	 */
4201 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4202 		return;
4203 
4204 	/*
4205 	 * See the fine text that goes along with this variable definition.
4206 	 */
4207 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4208 		return;
4209 
4210 	/*
4211 	 * Can't allow enabling interrupts while in an interrupt handler,
4212 	 * that's general bad form and such. Recursion, limited stack etc..
4213 	 */
4214 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4215 		return;
4216 
4217 	current->hardirq_chain_key = current->curr_chain_key;
4218 
4219 	lockdep_recursion_inc();
4220 	__trace_hardirqs_on_caller();
4221 	lockdep_recursion_finish();
4222 }
4223 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4224 
lockdep_hardirqs_on(unsigned long ip)4225 void noinstr lockdep_hardirqs_on(unsigned long ip)
4226 {
4227 	struct irqtrace_events *trace = &current->irqtrace;
4228 
4229 	if (unlikely(!debug_locks))
4230 		return;
4231 
4232 	/*
4233 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4234 	 * tracking state and hardware state are out of sync.
4235 	 *
4236 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4237 	 * and not rely on hardware state like normal interrupts.
4238 	 */
4239 	if (unlikely(in_nmi())) {
4240 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4241 			return;
4242 
4243 		/*
4244 		 * Skip:
4245 		 *  - recursion check, because NMI can hit lockdep;
4246 		 *  - hardware state check, because above;
4247 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4248 		 */
4249 		goto skip_checks;
4250 	}
4251 
4252 	if (unlikely(this_cpu_read(lockdep_recursion)))
4253 		return;
4254 
4255 	if (lockdep_hardirqs_enabled()) {
4256 		/*
4257 		 * Neither irq nor preemption are disabled here
4258 		 * so this is racy by nature but losing one hit
4259 		 * in a stat is not a big deal.
4260 		 */
4261 		__debug_atomic_inc(redundant_hardirqs_on);
4262 		return;
4263 	}
4264 
4265 	/*
4266 	 * We're enabling irqs and according to our state above irqs weren't
4267 	 * already enabled, yet we find the hardware thinks they are in fact
4268 	 * enabled.. someone messed up their IRQ state tracing.
4269 	 */
4270 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4271 		return;
4272 
4273 	/*
4274 	 * Ensure the lock stack remained unchanged between
4275 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4276 	 */
4277 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4278 			    current->curr_chain_key);
4279 
4280 skip_checks:
4281 	/* we'll do an OFF -> ON transition: */
4282 	__this_cpu_write(hardirqs_enabled, 1);
4283 	trace->hardirq_enable_ip = ip;
4284 	trace->hardirq_enable_event = ++trace->irq_events;
4285 	debug_atomic_inc(hardirqs_on_events);
4286 }
4287 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4288 
4289 /*
4290  * Hardirqs were disabled:
4291  */
lockdep_hardirqs_off(unsigned long ip)4292 void noinstr lockdep_hardirqs_off(unsigned long ip)
4293 {
4294 	if (unlikely(!debug_locks))
4295 		return;
4296 
4297 	/*
4298 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4299 	 * they will restore the software state. This ensures the software
4300 	 * state is consistent inside NMIs as well.
4301 	 */
4302 	if (in_nmi()) {
4303 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4304 			return;
4305 	} else if (__this_cpu_read(lockdep_recursion))
4306 		return;
4307 
4308 	/*
4309 	 * So we're supposed to get called after you mask local IRQs, but for
4310 	 * some reason the hardware doesn't quite think you did a proper job.
4311 	 */
4312 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4313 		return;
4314 
4315 	if (lockdep_hardirqs_enabled()) {
4316 		struct irqtrace_events *trace = &current->irqtrace;
4317 
4318 		/*
4319 		 * We have done an ON -> OFF transition:
4320 		 */
4321 		__this_cpu_write(hardirqs_enabled, 0);
4322 		trace->hardirq_disable_ip = ip;
4323 		trace->hardirq_disable_event = ++trace->irq_events;
4324 		debug_atomic_inc(hardirqs_off_events);
4325 	} else {
4326 		debug_atomic_inc(redundant_hardirqs_off);
4327 	}
4328 }
4329 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4330 
4331 /*
4332  * Softirqs will be enabled:
4333  */
lockdep_softirqs_on(unsigned long ip)4334 void lockdep_softirqs_on(unsigned long ip)
4335 {
4336 	struct irqtrace_events *trace = &current->irqtrace;
4337 
4338 	if (unlikely(!lockdep_enabled()))
4339 		return;
4340 
4341 	/*
4342 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4343 	 * funny state and nesting things.
4344 	 */
4345 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4346 		return;
4347 
4348 	if (current->softirqs_enabled) {
4349 		debug_atomic_inc(redundant_softirqs_on);
4350 		return;
4351 	}
4352 
4353 	lockdep_recursion_inc();
4354 	/*
4355 	 * We'll do an OFF -> ON transition:
4356 	 */
4357 	current->softirqs_enabled = 1;
4358 	trace->softirq_enable_ip = ip;
4359 	trace->softirq_enable_event = ++trace->irq_events;
4360 	debug_atomic_inc(softirqs_on_events);
4361 	/*
4362 	 * We are going to turn softirqs on, so set the
4363 	 * usage bit for all held locks, if hardirqs are
4364 	 * enabled too:
4365 	 */
4366 	if (lockdep_hardirqs_enabled())
4367 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4368 	lockdep_recursion_finish();
4369 }
4370 
4371 /*
4372  * Softirqs were disabled:
4373  */
lockdep_softirqs_off(unsigned long ip)4374 void lockdep_softirqs_off(unsigned long ip)
4375 {
4376 	if (unlikely(!lockdep_enabled()))
4377 		return;
4378 
4379 	/*
4380 	 * We fancy IRQs being disabled here, see softirq.c
4381 	 */
4382 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4383 		return;
4384 
4385 	if (current->softirqs_enabled) {
4386 		struct irqtrace_events *trace = &current->irqtrace;
4387 
4388 		/*
4389 		 * We have done an ON -> OFF transition:
4390 		 */
4391 		current->softirqs_enabled = 0;
4392 		trace->softirq_disable_ip = ip;
4393 		trace->softirq_disable_event = ++trace->irq_events;
4394 		debug_atomic_inc(softirqs_off_events);
4395 		/*
4396 		 * Whoops, we wanted softirqs off, so why aren't they?
4397 		 */
4398 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4399 	} else
4400 		debug_atomic_inc(redundant_softirqs_off);
4401 }
4402 
4403 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4404 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4405 {
4406 	if (!check)
4407 		goto lock_used;
4408 
4409 	/*
4410 	 * If non-trylock use in a hardirq or softirq context, then
4411 	 * mark the lock as used in these contexts:
4412 	 */
4413 	if (!hlock->trylock) {
4414 		if (hlock->read) {
4415 			if (lockdep_hardirq_context())
4416 				if (!mark_lock(curr, hlock,
4417 						LOCK_USED_IN_HARDIRQ_READ))
4418 					return 0;
4419 			if (curr->softirq_context)
4420 				if (!mark_lock(curr, hlock,
4421 						LOCK_USED_IN_SOFTIRQ_READ))
4422 					return 0;
4423 		} else {
4424 			if (lockdep_hardirq_context())
4425 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4426 					return 0;
4427 			if (curr->softirq_context)
4428 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4429 					return 0;
4430 		}
4431 	}
4432 	if (!hlock->hardirqs_off) {
4433 		if (hlock->read) {
4434 			if (!mark_lock(curr, hlock,
4435 					LOCK_ENABLED_HARDIRQ_READ))
4436 				return 0;
4437 			if (curr->softirqs_enabled)
4438 				if (!mark_lock(curr, hlock,
4439 						LOCK_ENABLED_SOFTIRQ_READ))
4440 					return 0;
4441 		} else {
4442 			if (!mark_lock(curr, hlock,
4443 					LOCK_ENABLED_HARDIRQ))
4444 				return 0;
4445 			if (curr->softirqs_enabled)
4446 				if (!mark_lock(curr, hlock,
4447 						LOCK_ENABLED_SOFTIRQ))
4448 					return 0;
4449 		}
4450 	}
4451 
4452 lock_used:
4453 	/* mark it as used: */
4454 	if (!mark_lock(curr, hlock, LOCK_USED))
4455 		return 0;
4456 
4457 	return 1;
4458 }
4459 
task_irq_context(struct task_struct * task)4460 static inline unsigned int task_irq_context(struct task_struct *task)
4461 {
4462 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4463 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4464 }
4465 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4466 static int separate_irq_context(struct task_struct *curr,
4467 		struct held_lock *hlock)
4468 {
4469 	unsigned int depth = curr->lockdep_depth;
4470 
4471 	/*
4472 	 * Keep track of points where we cross into an interrupt context:
4473 	 */
4474 	if (depth) {
4475 		struct held_lock *prev_hlock;
4476 
4477 		prev_hlock = curr->held_locks + depth-1;
4478 		/*
4479 		 * If we cross into another context, reset the
4480 		 * hash key (this also prevents the checking and the
4481 		 * adding of the dependency to 'prev'):
4482 		 */
4483 		if (prev_hlock->irq_context != hlock->irq_context)
4484 			return 1;
4485 	}
4486 	return 0;
4487 }
4488 
4489 /*
4490  * Mark a lock with a usage bit, and validate the state transition:
4491  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4492 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4493 			     enum lock_usage_bit new_bit)
4494 {
4495 	unsigned int new_mask, ret = 1;
4496 
4497 	if (new_bit >= LOCK_USAGE_STATES) {
4498 		DEBUG_LOCKS_WARN_ON(1);
4499 		return 0;
4500 	}
4501 
4502 	if (new_bit == LOCK_USED && this->read)
4503 		new_bit = LOCK_USED_READ;
4504 
4505 	new_mask = 1 << new_bit;
4506 
4507 	/*
4508 	 * If already set then do not dirty the cacheline,
4509 	 * nor do any checks:
4510 	 */
4511 	if (likely(hlock_class(this)->usage_mask & new_mask))
4512 		return 1;
4513 
4514 	if (!graph_lock())
4515 		return 0;
4516 	/*
4517 	 * Make sure we didn't race:
4518 	 */
4519 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4520 		goto unlock;
4521 
4522 	if (!hlock_class(this)->usage_mask)
4523 		debug_atomic_dec(nr_unused_locks);
4524 
4525 	hlock_class(this)->usage_mask |= new_mask;
4526 
4527 	if (new_bit < LOCK_TRACE_STATES) {
4528 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4529 			return 0;
4530 	}
4531 
4532 	if (new_bit < LOCK_USED) {
4533 		ret = mark_lock_irq(curr, this, new_bit);
4534 		if (!ret)
4535 			return 0;
4536 	}
4537 
4538 unlock:
4539 	graph_unlock();
4540 
4541 	/*
4542 	 * We must printk outside of the graph_lock:
4543 	 */
4544 	if (ret == 2) {
4545 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4546 		print_lock(this);
4547 		print_irqtrace_events(curr);
4548 		dump_stack();
4549 	}
4550 
4551 	return ret;
4552 }
4553 
task_wait_context(struct task_struct * curr)4554 static inline short task_wait_context(struct task_struct *curr)
4555 {
4556 	/*
4557 	 * Set appropriate wait type for the context; for IRQs we have to take
4558 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4559 	 */
4560 	if (lockdep_hardirq_context()) {
4561 		/*
4562 		 * Check if force_irqthreads will run us threaded.
4563 		 */
4564 		if (curr->hardirq_threaded || curr->irq_config)
4565 			return LD_WAIT_CONFIG;
4566 
4567 		return LD_WAIT_SPIN;
4568 	} else if (curr->softirq_context) {
4569 		/*
4570 		 * Softirqs are always threaded.
4571 		 */
4572 		return LD_WAIT_CONFIG;
4573 	}
4574 
4575 	return LD_WAIT_MAX;
4576 }
4577 
4578 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4579 print_lock_invalid_wait_context(struct task_struct *curr,
4580 				struct held_lock *hlock)
4581 {
4582 	short curr_inner;
4583 
4584 	if (!debug_locks_off())
4585 		return 0;
4586 	if (debug_locks_silent)
4587 		return 0;
4588 
4589 	pr_warn("\n");
4590 	pr_warn("=============================\n");
4591 	pr_warn("[ BUG: Invalid wait context ]\n");
4592 	print_kernel_ident();
4593 	pr_warn("-----------------------------\n");
4594 
4595 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4596 	print_lock(hlock);
4597 
4598 	pr_warn("other info that might help us debug this:\n");
4599 
4600 	curr_inner = task_wait_context(curr);
4601 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4602 
4603 	lockdep_print_held_locks(curr);
4604 
4605 	pr_warn("stack backtrace:\n");
4606 	dump_stack();
4607 
4608 	return 0;
4609 }
4610 
4611 /*
4612  * Verify the wait_type context.
4613  *
4614  * This check validates we takes locks in the right wait-type order; that is it
4615  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4616  * acquire spinlocks inside raw_spinlocks and the sort.
4617  *
4618  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4619  * can be taken from (pretty much) any context but also has constraints.
4620  * However when taken in a stricter environment the RCU lock does not loosen
4621  * the constraints.
4622  *
4623  * Therefore we must look for the strictest environment in the lock stack and
4624  * compare that to the lock we're trying to acquire.
4625  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4626 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4627 {
4628 	u8 next_inner = hlock_class(next)->wait_type_inner;
4629 	u8 next_outer = hlock_class(next)->wait_type_outer;
4630 	u8 curr_inner;
4631 	int depth;
4632 
4633 	if (!next_inner || next->trylock)
4634 		return 0;
4635 
4636 	if (!next_outer)
4637 		next_outer = next_inner;
4638 
4639 	/*
4640 	 * Find start of current irq_context..
4641 	 */
4642 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4643 		struct held_lock *prev = curr->held_locks + depth;
4644 		if (prev->irq_context != next->irq_context)
4645 			break;
4646 	}
4647 	depth++;
4648 
4649 	curr_inner = task_wait_context(curr);
4650 
4651 	for (; depth < curr->lockdep_depth; depth++) {
4652 		struct held_lock *prev = curr->held_locks + depth;
4653 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4654 
4655 		if (prev_inner) {
4656 			/*
4657 			 * We can have a bigger inner than a previous one
4658 			 * when outer is smaller than inner, as with RCU.
4659 			 *
4660 			 * Also due to trylocks.
4661 			 */
4662 			curr_inner = min(curr_inner, prev_inner);
4663 		}
4664 	}
4665 
4666 	if (next_outer > curr_inner)
4667 		return print_lock_invalid_wait_context(curr, next);
4668 
4669 	return 0;
4670 }
4671 
4672 #else /* CONFIG_PROVE_LOCKING */
4673 
4674 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4675 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4676 {
4677 	return 1;
4678 }
4679 
task_irq_context(struct task_struct * task)4680 static inline unsigned int task_irq_context(struct task_struct *task)
4681 {
4682 	return 0;
4683 }
4684 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4685 static inline int separate_irq_context(struct task_struct *curr,
4686 		struct held_lock *hlock)
4687 {
4688 	return 0;
4689 }
4690 
check_wait_context(struct task_struct * curr,struct held_lock * next)4691 static inline int check_wait_context(struct task_struct *curr,
4692 				     struct held_lock *next)
4693 {
4694 	return 0;
4695 }
4696 
4697 #endif /* CONFIG_PROVE_LOCKING */
4698 
4699 /*
4700  * Initialize a lock instance's lock-class mapping info:
4701  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4702 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4703 			    struct lock_class_key *key, int subclass,
4704 			    u8 inner, u8 outer, u8 lock_type)
4705 {
4706 	int i;
4707 
4708 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4709 		lock->class_cache[i] = NULL;
4710 
4711 #ifdef CONFIG_LOCK_STAT
4712 	lock->cpu = raw_smp_processor_id();
4713 #endif
4714 
4715 	/*
4716 	 * Can't be having no nameless bastards around this place!
4717 	 */
4718 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4719 		lock->name = "NULL";
4720 		return;
4721 	}
4722 
4723 	lock->name = name;
4724 
4725 	lock->wait_type_outer = outer;
4726 	lock->wait_type_inner = inner;
4727 	lock->lock_type = lock_type;
4728 
4729 	/*
4730 	 * No key, no joy, we need to hash something.
4731 	 */
4732 	if (DEBUG_LOCKS_WARN_ON(!key))
4733 		return;
4734 	/*
4735 	 * Sanity check, the lock-class key must either have been allocated
4736 	 * statically or must have been registered as a dynamic key.
4737 	 */
4738 	if (!static_obj(key) && !is_dynamic_key(key)) {
4739 		if (debug_locks)
4740 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4741 		DEBUG_LOCKS_WARN_ON(1);
4742 		return;
4743 	}
4744 	lock->key = key;
4745 
4746 	if (unlikely(!debug_locks))
4747 		return;
4748 
4749 	if (subclass) {
4750 		unsigned long flags;
4751 
4752 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4753 			return;
4754 
4755 		raw_local_irq_save(flags);
4756 		lockdep_recursion_inc();
4757 		register_lock_class(lock, subclass, 1);
4758 		lockdep_recursion_finish();
4759 		raw_local_irq_restore(flags);
4760 	}
4761 }
4762 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4763 
4764 struct lock_class_key __lockdep_no_validate__;
4765 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4766 
4767 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)4768 print_lock_nested_lock_not_held(struct task_struct *curr,
4769 				struct held_lock *hlock,
4770 				unsigned long ip)
4771 {
4772 	if (!debug_locks_off())
4773 		return;
4774 	if (debug_locks_silent)
4775 		return;
4776 
4777 	pr_warn("\n");
4778 	pr_warn("==================================\n");
4779 	pr_warn("WARNING: Nested lock was not taken\n");
4780 	print_kernel_ident();
4781 	pr_warn("----------------------------------\n");
4782 
4783 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4784 	print_lock(hlock);
4785 
4786 	pr_warn("\nbut this task is not holding:\n");
4787 	pr_warn("%s\n", hlock->nest_lock->name);
4788 
4789 	pr_warn("\nstack backtrace:\n");
4790 	dump_stack();
4791 
4792 	pr_warn("\nother info that might help us debug this:\n");
4793 	lockdep_print_held_locks(curr);
4794 
4795 	pr_warn("\nstack backtrace:\n");
4796 	dump_stack();
4797 }
4798 
4799 static int __lock_is_held(const struct lockdep_map *lock, int read);
4800 
4801 /*
4802  * This gets called for every mutex_lock*()/spin_lock*() operation.
4803  * We maintain the dependency maps and validate the locking attempt:
4804  *
4805  * The callers must make sure that IRQs are disabled before calling it,
4806  * otherwise we could get an interrupt which would want to take locks,
4807  * which would end up in lockdep again.
4808  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4809 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4810 			  int trylock, int read, int check, int hardirqs_off,
4811 			  struct lockdep_map *nest_lock, unsigned long ip,
4812 			  int references, int pin_count)
4813 {
4814 	struct task_struct *curr = current;
4815 	struct lock_class *class = NULL;
4816 	struct held_lock *hlock;
4817 	unsigned int depth;
4818 	int chain_head = 0;
4819 	int class_idx;
4820 	u64 chain_key;
4821 
4822 	if (unlikely(!debug_locks))
4823 		return 0;
4824 
4825 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4826 		check = 0;
4827 
4828 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4829 		class = lock->class_cache[subclass];
4830 	/*
4831 	 * Not cached?
4832 	 */
4833 	if (unlikely(!class)) {
4834 		class = register_lock_class(lock, subclass, 0);
4835 		if (!class)
4836 			return 0;
4837 	}
4838 
4839 	debug_class_ops_inc(class);
4840 
4841 	if (very_verbose(class)) {
4842 		printk("\nacquire class [%px] %s", class->key, class->name);
4843 		if (class->name_version > 1)
4844 			printk(KERN_CONT "#%d", class->name_version);
4845 		printk(KERN_CONT "\n");
4846 		dump_stack();
4847 	}
4848 
4849 	/*
4850 	 * Add the lock to the list of currently held locks.
4851 	 * (we dont increase the depth just yet, up until the
4852 	 * dependency checks are done)
4853 	 */
4854 	depth = curr->lockdep_depth;
4855 	/*
4856 	 * Ran out of static storage for our per-task lock stack again have we?
4857 	 */
4858 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4859 		return 0;
4860 
4861 	class_idx = class - lock_classes;
4862 
4863 	if (depth) { /* we're holding locks */
4864 		hlock = curr->held_locks + depth - 1;
4865 		if (hlock->class_idx == class_idx && nest_lock) {
4866 			if (!references)
4867 				references++;
4868 
4869 			if (!hlock->references)
4870 				hlock->references++;
4871 
4872 			hlock->references += references;
4873 
4874 			/* Overflow */
4875 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4876 				return 0;
4877 
4878 			return 2;
4879 		}
4880 	}
4881 
4882 	hlock = curr->held_locks + depth;
4883 	/*
4884 	 * Plain impossible, we just registered it and checked it weren't no
4885 	 * NULL like.. I bet this mushroom I ate was good!
4886 	 */
4887 	if (DEBUG_LOCKS_WARN_ON(!class))
4888 		return 0;
4889 	hlock->class_idx = class_idx;
4890 	hlock->acquire_ip = ip;
4891 	hlock->instance = lock;
4892 	hlock->nest_lock = nest_lock;
4893 	hlock->irq_context = task_irq_context(curr);
4894 	hlock->trylock = trylock;
4895 	hlock->read = read;
4896 	hlock->check = check;
4897 	hlock->hardirqs_off = !!hardirqs_off;
4898 	hlock->references = references;
4899 #ifdef CONFIG_LOCK_STAT
4900 	hlock->waittime_stamp = 0;
4901 	hlock->holdtime_stamp = lockstat_clock();
4902 #endif
4903 	hlock->pin_count = pin_count;
4904 
4905 	if (check_wait_context(curr, hlock))
4906 		return 0;
4907 
4908 	/* Initialize the lock usage bit */
4909 	if (!mark_usage(curr, hlock, check))
4910 		return 0;
4911 
4912 	/*
4913 	 * Calculate the chain hash: it's the combined hash of all the
4914 	 * lock keys along the dependency chain. We save the hash value
4915 	 * at every step so that we can get the current hash easily
4916 	 * after unlock. The chain hash is then used to cache dependency
4917 	 * results.
4918 	 *
4919 	 * The 'key ID' is what is the most compact key value to drive
4920 	 * the hash, not class->key.
4921 	 */
4922 	/*
4923 	 * Whoops, we did it again.. class_idx is invalid.
4924 	 */
4925 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4926 		return 0;
4927 
4928 	chain_key = curr->curr_chain_key;
4929 	if (!depth) {
4930 		/*
4931 		 * How can we have a chain hash when we ain't got no keys?!
4932 		 */
4933 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4934 			return 0;
4935 		chain_head = 1;
4936 	}
4937 
4938 	hlock->prev_chain_key = chain_key;
4939 	if (separate_irq_context(curr, hlock)) {
4940 		chain_key = INITIAL_CHAIN_KEY;
4941 		chain_head = 1;
4942 	}
4943 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4944 
4945 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4946 		print_lock_nested_lock_not_held(curr, hlock, ip);
4947 		return 0;
4948 	}
4949 
4950 	if (!debug_locks_silent) {
4951 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4952 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4953 	}
4954 
4955 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4956 		return 0;
4957 
4958 	curr->curr_chain_key = chain_key;
4959 	curr->lockdep_depth++;
4960 	check_chain_key(curr);
4961 #ifdef CONFIG_DEBUG_LOCKDEP
4962 	if (unlikely(!debug_locks))
4963 		return 0;
4964 #endif
4965 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4966 		debug_locks_off();
4967 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4968 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4969 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4970 
4971 		lockdep_print_held_locks(current);
4972 		debug_show_all_locks();
4973 		dump_stack();
4974 
4975 		return 0;
4976 	}
4977 
4978 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4979 		max_lockdep_depth = curr->lockdep_depth;
4980 
4981 	return 1;
4982 }
4983 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4984 static void print_unlock_imbalance_bug(struct task_struct *curr,
4985 				       struct lockdep_map *lock,
4986 				       unsigned long ip)
4987 {
4988 	if (!debug_locks_off())
4989 		return;
4990 	if (debug_locks_silent)
4991 		return;
4992 
4993 	pr_warn("\n");
4994 	pr_warn("=====================================\n");
4995 	pr_warn("WARNING: bad unlock balance detected!\n");
4996 	print_kernel_ident();
4997 	pr_warn("-------------------------------------\n");
4998 	pr_warn("%s/%d is trying to release lock (",
4999 		curr->comm, task_pid_nr(curr));
5000 	print_lockdep_cache(lock);
5001 	pr_cont(") at:\n");
5002 	print_ip_sym(KERN_WARNING, ip);
5003 	pr_warn("but there are no more locks to release!\n");
5004 	pr_warn("\nother info that might help us debug this:\n");
5005 	lockdep_print_held_locks(curr);
5006 
5007 	pr_warn("\nstack backtrace:\n");
5008 	dump_stack();
5009 }
5010 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5011 static noinstr int match_held_lock(const struct held_lock *hlock,
5012 				   const struct lockdep_map *lock)
5013 {
5014 	if (hlock->instance == lock)
5015 		return 1;
5016 
5017 	if (hlock->references) {
5018 		const struct lock_class *class = lock->class_cache[0];
5019 
5020 		if (!class)
5021 			class = look_up_lock_class(lock, 0);
5022 
5023 		/*
5024 		 * If look_up_lock_class() failed to find a class, we're trying
5025 		 * to test if we hold a lock that has never yet been acquired.
5026 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5027 		 * holding it either, so report failure.
5028 		 */
5029 		if (!class)
5030 			return 0;
5031 
5032 		/*
5033 		 * References, but not a lock we're actually ref-counting?
5034 		 * State got messed up, follow the sites that change ->references
5035 		 * and try to make sense of it.
5036 		 */
5037 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5038 			return 0;
5039 
5040 		if (hlock->class_idx == class - lock_classes)
5041 			return 1;
5042 	}
5043 
5044 	return 0;
5045 }
5046 
5047 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5048 static struct held_lock *find_held_lock(struct task_struct *curr,
5049 					struct lockdep_map *lock,
5050 					unsigned int depth, int *idx)
5051 {
5052 	struct held_lock *ret, *hlock, *prev_hlock;
5053 	int i;
5054 
5055 	i = depth - 1;
5056 	hlock = curr->held_locks + i;
5057 	ret = hlock;
5058 	if (match_held_lock(hlock, lock))
5059 		goto out;
5060 
5061 	ret = NULL;
5062 	for (i--, prev_hlock = hlock--;
5063 	     i >= 0;
5064 	     i--, prev_hlock = hlock--) {
5065 		/*
5066 		 * We must not cross into another context:
5067 		 */
5068 		if (prev_hlock->irq_context != hlock->irq_context) {
5069 			ret = NULL;
5070 			break;
5071 		}
5072 		if (match_held_lock(hlock, lock)) {
5073 			ret = hlock;
5074 			break;
5075 		}
5076 	}
5077 
5078 out:
5079 	*idx = i;
5080 	return ret;
5081 }
5082 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5083 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5084 				int idx, unsigned int *merged)
5085 {
5086 	struct held_lock *hlock;
5087 	int first_idx = idx;
5088 
5089 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5090 		return 0;
5091 
5092 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5093 		switch (__lock_acquire(hlock->instance,
5094 				    hlock_class(hlock)->subclass,
5095 				    hlock->trylock,
5096 				    hlock->read, hlock->check,
5097 				    hlock->hardirqs_off,
5098 				    hlock->nest_lock, hlock->acquire_ip,
5099 				    hlock->references, hlock->pin_count)) {
5100 		case 0:
5101 			return 1;
5102 		case 1:
5103 			break;
5104 		case 2:
5105 			*merged += (idx == first_idx);
5106 			break;
5107 		default:
5108 			WARN_ON(1);
5109 			return 0;
5110 		}
5111 	}
5112 	return 0;
5113 }
5114 
5115 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5116 __lock_set_class(struct lockdep_map *lock, const char *name,
5117 		 struct lock_class_key *key, unsigned int subclass,
5118 		 unsigned long ip)
5119 {
5120 	struct task_struct *curr = current;
5121 	unsigned int depth, merged = 0;
5122 	struct held_lock *hlock;
5123 	struct lock_class *class;
5124 	int i;
5125 
5126 	if (unlikely(!debug_locks))
5127 		return 0;
5128 
5129 	depth = curr->lockdep_depth;
5130 	/*
5131 	 * This function is about (re)setting the class of a held lock,
5132 	 * yet we're not actually holding any locks. Naughty user!
5133 	 */
5134 	if (DEBUG_LOCKS_WARN_ON(!depth))
5135 		return 0;
5136 
5137 	hlock = find_held_lock(curr, lock, depth, &i);
5138 	if (!hlock) {
5139 		print_unlock_imbalance_bug(curr, lock, ip);
5140 		return 0;
5141 	}
5142 
5143 	lockdep_init_map_type(lock, name, key, 0,
5144 			      lock->wait_type_inner,
5145 			      lock->wait_type_outer,
5146 			      lock->lock_type);
5147 	class = register_lock_class(lock, subclass, 0);
5148 	hlock->class_idx = class - lock_classes;
5149 
5150 	curr->lockdep_depth = i;
5151 	curr->curr_chain_key = hlock->prev_chain_key;
5152 
5153 	if (reacquire_held_locks(curr, depth, i, &merged))
5154 		return 0;
5155 
5156 	/*
5157 	 * I took it apart and put it back together again, except now I have
5158 	 * these 'spare' parts.. where shall I put them.
5159 	 */
5160 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5161 		return 0;
5162 	return 1;
5163 }
5164 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5165 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5166 {
5167 	struct task_struct *curr = current;
5168 	unsigned int depth, merged = 0;
5169 	struct held_lock *hlock;
5170 	int i;
5171 
5172 	if (unlikely(!debug_locks))
5173 		return 0;
5174 
5175 	depth = curr->lockdep_depth;
5176 	/*
5177 	 * This function is about (re)setting the class of a held lock,
5178 	 * yet we're not actually holding any locks. Naughty user!
5179 	 */
5180 	if (DEBUG_LOCKS_WARN_ON(!depth))
5181 		return 0;
5182 
5183 	hlock = find_held_lock(curr, lock, depth, &i);
5184 	if (!hlock) {
5185 		print_unlock_imbalance_bug(curr, lock, ip);
5186 		return 0;
5187 	}
5188 
5189 	curr->lockdep_depth = i;
5190 	curr->curr_chain_key = hlock->prev_chain_key;
5191 
5192 	WARN(hlock->read, "downgrading a read lock");
5193 	hlock->read = 1;
5194 	hlock->acquire_ip = ip;
5195 
5196 	if (reacquire_held_locks(curr, depth, i, &merged))
5197 		return 0;
5198 
5199 	/* Merging can't happen with unchanged classes.. */
5200 	if (DEBUG_LOCKS_WARN_ON(merged))
5201 		return 0;
5202 
5203 	/*
5204 	 * I took it apart and put it back together again, except now I have
5205 	 * these 'spare' parts.. where shall I put them.
5206 	 */
5207 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5208 		return 0;
5209 
5210 	return 1;
5211 }
5212 
5213 /*
5214  * Remove the lock from the list of currently held locks - this gets
5215  * called on mutex_unlock()/spin_unlock*() (or on a failed
5216  * mutex_lock_interruptible()).
5217  */
5218 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5219 __lock_release(struct lockdep_map *lock, unsigned long ip)
5220 {
5221 	struct task_struct *curr = current;
5222 	unsigned int depth, merged = 1;
5223 	struct held_lock *hlock;
5224 	int i;
5225 
5226 	if (unlikely(!debug_locks))
5227 		return 0;
5228 
5229 	depth = curr->lockdep_depth;
5230 	/*
5231 	 * So we're all set to release this lock.. wait what lock? We don't
5232 	 * own any locks, you've been drinking again?
5233 	 */
5234 	if (depth <= 0) {
5235 		print_unlock_imbalance_bug(curr, lock, ip);
5236 		return 0;
5237 	}
5238 
5239 	/*
5240 	 * Check whether the lock exists in the current stack
5241 	 * of held locks:
5242 	 */
5243 	hlock = find_held_lock(curr, lock, depth, &i);
5244 	if (!hlock) {
5245 		print_unlock_imbalance_bug(curr, lock, ip);
5246 		return 0;
5247 	}
5248 
5249 	if (hlock->instance == lock)
5250 		lock_release_holdtime(hlock);
5251 
5252 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5253 
5254 	if (hlock->references) {
5255 		hlock->references--;
5256 		if (hlock->references) {
5257 			/*
5258 			 * We had, and after removing one, still have
5259 			 * references, the current lock stack is still
5260 			 * valid. We're done!
5261 			 */
5262 			return 1;
5263 		}
5264 	}
5265 
5266 	/*
5267 	 * We have the right lock to unlock, 'hlock' points to it.
5268 	 * Now we remove it from the stack, and add back the other
5269 	 * entries (if any), recalculating the hash along the way:
5270 	 */
5271 
5272 	curr->lockdep_depth = i;
5273 	curr->curr_chain_key = hlock->prev_chain_key;
5274 
5275 	/*
5276 	 * The most likely case is when the unlock is on the innermost
5277 	 * lock. In this case, we are done!
5278 	 */
5279 	if (i == depth-1)
5280 		return 1;
5281 
5282 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5283 		return 0;
5284 
5285 	/*
5286 	 * We had N bottles of beer on the wall, we drank one, but now
5287 	 * there's not N-1 bottles of beer left on the wall...
5288 	 * Pouring two of the bottles together is acceptable.
5289 	 */
5290 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5291 
5292 	/*
5293 	 * Since reacquire_held_locks() would have called check_chain_key()
5294 	 * indirectly via __lock_acquire(), we don't need to do it again
5295 	 * on return.
5296 	 */
5297 	return 0;
5298 }
5299 
5300 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5301 int __lock_is_held(const struct lockdep_map *lock, int read)
5302 {
5303 	struct task_struct *curr = current;
5304 	int i;
5305 
5306 	for (i = 0; i < curr->lockdep_depth; i++) {
5307 		struct held_lock *hlock = curr->held_locks + i;
5308 
5309 		if (match_held_lock(hlock, lock)) {
5310 			if (read == -1 || !!hlock->read == read)
5311 				return 1;
5312 
5313 			return 0;
5314 		}
5315 	}
5316 
5317 	return 0;
5318 }
5319 
__lock_pin_lock(struct lockdep_map * lock)5320 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5321 {
5322 	struct pin_cookie cookie = NIL_COOKIE;
5323 	struct task_struct *curr = current;
5324 	int i;
5325 
5326 	if (unlikely(!debug_locks))
5327 		return cookie;
5328 
5329 	for (i = 0; i < curr->lockdep_depth; i++) {
5330 		struct held_lock *hlock = curr->held_locks + i;
5331 
5332 		if (match_held_lock(hlock, lock)) {
5333 			/*
5334 			 * Grab 16bits of randomness; this is sufficient to not
5335 			 * be guessable and still allows some pin nesting in
5336 			 * our u32 pin_count.
5337 			 */
5338 			cookie.val = 1 + (prandom_u32() >> 16);
5339 			hlock->pin_count += cookie.val;
5340 			return cookie;
5341 		}
5342 	}
5343 
5344 	WARN(1, "pinning an unheld lock\n");
5345 	return cookie;
5346 }
5347 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5348 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5349 {
5350 	struct task_struct *curr = current;
5351 	int i;
5352 
5353 	if (unlikely(!debug_locks))
5354 		return;
5355 
5356 	for (i = 0; i < curr->lockdep_depth; i++) {
5357 		struct held_lock *hlock = curr->held_locks + i;
5358 
5359 		if (match_held_lock(hlock, lock)) {
5360 			hlock->pin_count += cookie.val;
5361 			return;
5362 		}
5363 	}
5364 
5365 	WARN(1, "pinning an unheld lock\n");
5366 }
5367 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5368 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5369 {
5370 	struct task_struct *curr = current;
5371 	int i;
5372 
5373 	if (unlikely(!debug_locks))
5374 		return;
5375 
5376 	for (i = 0; i < curr->lockdep_depth; i++) {
5377 		struct held_lock *hlock = curr->held_locks + i;
5378 
5379 		if (match_held_lock(hlock, lock)) {
5380 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5381 				return;
5382 
5383 			hlock->pin_count -= cookie.val;
5384 
5385 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5386 				hlock->pin_count = 0;
5387 
5388 			return;
5389 		}
5390 	}
5391 
5392 	WARN(1, "unpinning an unheld lock\n");
5393 }
5394 
5395 /*
5396  * Check whether we follow the irq-flags state precisely:
5397  */
check_flags(unsigned long flags)5398 static noinstr void check_flags(unsigned long flags)
5399 {
5400 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5401 	if (!debug_locks)
5402 		return;
5403 
5404 	/* Get the warning out..  */
5405 	instrumentation_begin();
5406 
5407 	if (irqs_disabled_flags(flags)) {
5408 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5409 			printk("possible reason: unannotated irqs-off.\n");
5410 		}
5411 	} else {
5412 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5413 			printk("possible reason: unannotated irqs-on.\n");
5414 		}
5415 	}
5416 
5417 	/*
5418 	 * We dont accurately track softirq state in e.g.
5419 	 * hardirq contexts (such as on 4KSTACKS), so only
5420 	 * check if not in hardirq contexts:
5421 	 */
5422 	if (!hardirq_count()) {
5423 		if (softirq_count()) {
5424 			/* like the above, but with softirqs */
5425 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5426 		} else {
5427 			/* lick the above, does it taste good? */
5428 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5429 		}
5430 	}
5431 
5432 	if (!debug_locks)
5433 		print_irqtrace_events(current);
5434 
5435 	instrumentation_end();
5436 #endif
5437 }
5438 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5439 void lock_set_class(struct lockdep_map *lock, const char *name,
5440 		    struct lock_class_key *key, unsigned int subclass,
5441 		    unsigned long ip)
5442 {
5443 	unsigned long flags;
5444 
5445 	if (unlikely(!lockdep_enabled()))
5446 		return;
5447 
5448 	raw_local_irq_save(flags);
5449 	lockdep_recursion_inc();
5450 	check_flags(flags);
5451 	if (__lock_set_class(lock, name, key, subclass, ip))
5452 		check_chain_key(current);
5453 	lockdep_recursion_finish();
5454 	raw_local_irq_restore(flags);
5455 }
5456 EXPORT_SYMBOL_GPL(lock_set_class);
5457 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5458 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5459 {
5460 	unsigned long flags;
5461 
5462 	if (unlikely(!lockdep_enabled()))
5463 		return;
5464 
5465 	raw_local_irq_save(flags);
5466 	lockdep_recursion_inc();
5467 	check_flags(flags);
5468 	if (__lock_downgrade(lock, ip))
5469 		check_chain_key(current);
5470 	lockdep_recursion_finish();
5471 	raw_local_irq_restore(flags);
5472 }
5473 EXPORT_SYMBOL_GPL(lock_downgrade);
5474 
5475 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5476 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5477 {
5478 #ifdef CONFIG_PROVE_LOCKING
5479 	struct lock_class *class = look_up_lock_class(lock, subclass);
5480 	unsigned long mask = LOCKF_USED;
5481 
5482 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5483 	if (!class)
5484 		return;
5485 
5486 	/*
5487 	 * READ locks only conflict with USED, such that if we only ever use
5488 	 * READ locks, there is no deadlock possible -- RCU.
5489 	 */
5490 	if (!hlock->read)
5491 		mask |= LOCKF_USED_READ;
5492 
5493 	if (!(class->usage_mask & mask))
5494 		return;
5495 
5496 	hlock->class_idx = class - lock_classes;
5497 
5498 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5499 #endif
5500 }
5501 
lockdep_nmi(void)5502 static bool lockdep_nmi(void)
5503 {
5504 	if (raw_cpu_read(lockdep_recursion))
5505 		return false;
5506 
5507 	if (!in_nmi())
5508 		return false;
5509 
5510 	return true;
5511 }
5512 
5513 /*
5514  * read_lock() is recursive if:
5515  * 1. We force lockdep think this way in selftests or
5516  * 2. The implementation is not queued read/write lock or
5517  * 3. The locker is at an in_interrupt() context.
5518  */
read_lock_is_recursive(void)5519 bool read_lock_is_recursive(void)
5520 {
5521 	return force_read_lock_recursive ||
5522 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5523 	       in_interrupt();
5524 }
5525 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5526 
5527 /*
5528  * We are not always called with irqs disabled - do that here,
5529  * and also avoid lockdep recursion:
5530  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5531 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5532 			  int trylock, int read, int check,
5533 			  struct lockdep_map *nest_lock, unsigned long ip)
5534 {
5535 	unsigned long flags;
5536 
5537 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5538 
5539 	if (!debug_locks)
5540 		return;
5541 
5542 	if (unlikely(!lockdep_enabled())) {
5543 		/* XXX allow trylock from NMI ?!? */
5544 		if (lockdep_nmi() && !trylock) {
5545 			struct held_lock hlock;
5546 
5547 			hlock.acquire_ip = ip;
5548 			hlock.instance = lock;
5549 			hlock.nest_lock = nest_lock;
5550 			hlock.irq_context = 2; // XXX
5551 			hlock.trylock = trylock;
5552 			hlock.read = read;
5553 			hlock.check = check;
5554 			hlock.hardirqs_off = true;
5555 			hlock.references = 0;
5556 
5557 			verify_lock_unused(lock, &hlock, subclass);
5558 		}
5559 		return;
5560 	}
5561 
5562 	raw_local_irq_save(flags);
5563 	check_flags(flags);
5564 
5565 	lockdep_recursion_inc();
5566 	__lock_acquire(lock, subclass, trylock, read, check,
5567 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5568 	lockdep_recursion_finish();
5569 	raw_local_irq_restore(flags);
5570 }
5571 EXPORT_SYMBOL_GPL(lock_acquire);
5572 
lock_release(struct lockdep_map * lock,unsigned long ip)5573 void lock_release(struct lockdep_map *lock, unsigned long ip)
5574 {
5575 	unsigned long flags;
5576 
5577 	trace_lock_release(lock, ip);
5578 
5579 	if (unlikely(!lockdep_enabled()))
5580 		return;
5581 
5582 	raw_local_irq_save(flags);
5583 	check_flags(flags);
5584 
5585 	lockdep_recursion_inc();
5586 	if (__lock_release(lock, ip))
5587 		check_chain_key(current);
5588 	lockdep_recursion_finish();
5589 	raw_local_irq_restore(flags);
5590 }
5591 EXPORT_SYMBOL_GPL(lock_release);
5592 
lock_is_held_type(const struct lockdep_map * lock,int read)5593 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5594 {
5595 	unsigned long flags;
5596 	int ret = 0;
5597 
5598 	if (unlikely(!lockdep_enabled()))
5599 		return 1; /* avoid false negative lockdep_assert_held() */
5600 
5601 	raw_local_irq_save(flags);
5602 	check_flags(flags);
5603 
5604 	lockdep_recursion_inc();
5605 	ret = __lock_is_held(lock, read);
5606 	lockdep_recursion_finish();
5607 	raw_local_irq_restore(flags);
5608 
5609 	return ret;
5610 }
5611 EXPORT_SYMBOL_GPL(lock_is_held_type);
5612 NOKPROBE_SYMBOL(lock_is_held_type);
5613 
lock_pin_lock(struct lockdep_map * lock)5614 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5615 {
5616 	struct pin_cookie cookie = NIL_COOKIE;
5617 	unsigned long flags;
5618 
5619 	if (unlikely(!lockdep_enabled()))
5620 		return cookie;
5621 
5622 	raw_local_irq_save(flags);
5623 	check_flags(flags);
5624 
5625 	lockdep_recursion_inc();
5626 	cookie = __lock_pin_lock(lock);
5627 	lockdep_recursion_finish();
5628 	raw_local_irq_restore(flags);
5629 
5630 	return cookie;
5631 }
5632 EXPORT_SYMBOL_GPL(lock_pin_lock);
5633 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5634 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5635 {
5636 	unsigned long flags;
5637 
5638 	if (unlikely(!lockdep_enabled()))
5639 		return;
5640 
5641 	raw_local_irq_save(flags);
5642 	check_flags(flags);
5643 
5644 	lockdep_recursion_inc();
5645 	__lock_repin_lock(lock, cookie);
5646 	lockdep_recursion_finish();
5647 	raw_local_irq_restore(flags);
5648 }
5649 EXPORT_SYMBOL_GPL(lock_repin_lock);
5650 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5651 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5652 {
5653 	unsigned long flags;
5654 
5655 	if (unlikely(!lockdep_enabled()))
5656 		return;
5657 
5658 	raw_local_irq_save(flags);
5659 	check_flags(flags);
5660 
5661 	lockdep_recursion_inc();
5662 	__lock_unpin_lock(lock, cookie);
5663 	lockdep_recursion_finish();
5664 	raw_local_irq_restore(flags);
5665 }
5666 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5667 
5668 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5669 static void print_lock_contention_bug(struct task_struct *curr,
5670 				      struct lockdep_map *lock,
5671 				      unsigned long ip)
5672 {
5673 	if (!debug_locks_off())
5674 		return;
5675 	if (debug_locks_silent)
5676 		return;
5677 
5678 	pr_warn("\n");
5679 	pr_warn("=================================\n");
5680 	pr_warn("WARNING: bad contention detected!\n");
5681 	print_kernel_ident();
5682 	pr_warn("---------------------------------\n");
5683 	pr_warn("%s/%d is trying to contend lock (",
5684 		curr->comm, task_pid_nr(curr));
5685 	print_lockdep_cache(lock);
5686 	pr_cont(") at:\n");
5687 	print_ip_sym(KERN_WARNING, ip);
5688 	pr_warn("but there are no locks held!\n");
5689 	pr_warn("\nother info that might help us debug this:\n");
5690 	lockdep_print_held_locks(curr);
5691 
5692 	pr_warn("\nstack backtrace:\n");
5693 	dump_stack();
5694 }
5695 
5696 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5697 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5698 {
5699 	struct task_struct *curr = current;
5700 	struct held_lock *hlock;
5701 	struct lock_class_stats *stats;
5702 	unsigned int depth;
5703 	int i, contention_point, contending_point;
5704 
5705 	depth = curr->lockdep_depth;
5706 	/*
5707 	 * Whee, we contended on this lock, except it seems we're not
5708 	 * actually trying to acquire anything much at all..
5709 	 */
5710 	if (DEBUG_LOCKS_WARN_ON(!depth))
5711 		return;
5712 
5713 	hlock = find_held_lock(curr, lock, depth, &i);
5714 	if (!hlock) {
5715 		print_lock_contention_bug(curr, lock, ip);
5716 		return;
5717 	}
5718 
5719 	if (hlock->instance != lock)
5720 		return;
5721 
5722 	hlock->waittime_stamp = lockstat_clock();
5723 
5724 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5725 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5726 				      lock->ip);
5727 
5728 	stats = get_lock_stats(hlock_class(hlock));
5729 	if (contention_point < LOCKSTAT_POINTS)
5730 		stats->contention_point[contention_point]++;
5731 	if (contending_point < LOCKSTAT_POINTS)
5732 		stats->contending_point[contending_point]++;
5733 	if (lock->cpu != smp_processor_id())
5734 		stats->bounces[bounce_contended + !!hlock->read]++;
5735 }
5736 
5737 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5738 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5739 {
5740 	struct task_struct *curr = current;
5741 	struct held_lock *hlock;
5742 	struct lock_class_stats *stats;
5743 	unsigned int depth;
5744 	u64 now, waittime = 0;
5745 	int i, cpu;
5746 
5747 	depth = curr->lockdep_depth;
5748 	/*
5749 	 * Yay, we acquired ownership of this lock we didn't try to
5750 	 * acquire, how the heck did that happen?
5751 	 */
5752 	if (DEBUG_LOCKS_WARN_ON(!depth))
5753 		return;
5754 
5755 	hlock = find_held_lock(curr, lock, depth, &i);
5756 	if (!hlock) {
5757 		print_lock_contention_bug(curr, lock, _RET_IP_);
5758 		return;
5759 	}
5760 
5761 	if (hlock->instance != lock)
5762 		return;
5763 
5764 	cpu = smp_processor_id();
5765 	if (hlock->waittime_stamp) {
5766 		now = lockstat_clock();
5767 		waittime = now - hlock->waittime_stamp;
5768 		hlock->holdtime_stamp = now;
5769 	}
5770 
5771 	stats = get_lock_stats(hlock_class(hlock));
5772 	if (waittime) {
5773 		if (hlock->read)
5774 			lock_time_inc(&stats->read_waittime, waittime);
5775 		else
5776 			lock_time_inc(&stats->write_waittime, waittime);
5777 	}
5778 	if (lock->cpu != cpu)
5779 		stats->bounces[bounce_acquired + !!hlock->read]++;
5780 
5781 	lock->cpu = cpu;
5782 	lock->ip = ip;
5783 }
5784 
lock_contended(struct lockdep_map * lock,unsigned long ip)5785 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5786 {
5787 	unsigned long flags;
5788 
5789 	trace_lock_contended(lock, ip);
5790 
5791 	if (unlikely(!lock_stat || !lockdep_enabled()))
5792 		return;
5793 
5794 	raw_local_irq_save(flags);
5795 	check_flags(flags);
5796 	lockdep_recursion_inc();
5797 	__lock_contended(lock, ip);
5798 	lockdep_recursion_finish();
5799 	raw_local_irq_restore(flags);
5800 }
5801 EXPORT_SYMBOL_GPL(lock_contended);
5802 
lock_acquired(struct lockdep_map * lock,unsigned long ip)5803 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5804 {
5805 	unsigned long flags;
5806 
5807 	trace_lock_acquired(lock, ip);
5808 
5809 	if (unlikely(!lock_stat || !lockdep_enabled()))
5810 		return;
5811 
5812 	raw_local_irq_save(flags);
5813 	check_flags(flags);
5814 	lockdep_recursion_inc();
5815 	__lock_acquired(lock, ip);
5816 	lockdep_recursion_finish();
5817 	raw_local_irq_restore(flags);
5818 }
5819 EXPORT_SYMBOL_GPL(lock_acquired);
5820 #endif
5821 
5822 /*
5823  * Used by the testsuite, sanitize the validator state
5824  * after a simulated failure:
5825  */
5826 
lockdep_reset(void)5827 void lockdep_reset(void)
5828 {
5829 	unsigned long flags;
5830 	int i;
5831 
5832 	raw_local_irq_save(flags);
5833 	lockdep_init_task(current);
5834 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5835 	nr_hardirq_chains = 0;
5836 	nr_softirq_chains = 0;
5837 	nr_process_chains = 0;
5838 	debug_locks = 1;
5839 	for (i = 0; i < CHAINHASH_SIZE; i++)
5840 		INIT_HLIST_HEAD(chainhash_table + i);
5841 	raw_local_irq_restore(flags);
5842 }
5843 
5844 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5845 static void remove_class_from_lock_chain(struct pending_free *pf,
5846 					 struct lock_chain *chain,
5847 					 struct lock_class *class)
5848 {
5849 #ifdef CONFIG_PROVE_LOCKING
5850 	int i;
5851 
5852 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5853 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5854 			continue;
5855 		/*
5856 		 * Each lock class occurs at most once in a lock chain so once
5857 		 * we found a match we can break out of this loop.
5858 		 */
5859 		goto free_lock_chain;
5860 	}
5861 	/* Since the chain has not been modified, return. */
5862 	return;
5863 
5864 free_lock_chain:
5865 	free_chain_hlocks(chain->base, chain->depth);
5866 	/* Overwrite the chain key for concurrent RCU readers. */
5867 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5868 	dec_chains(chain->irq_context);
5869 
5870 	/*
5871 	 * Note: calling hlist_del_rcu() from inside a
5872 	 * hlist_for_each_entry_rcu() loop is safe.
5873 	 */
5874 	hlist_del_rcu(&chain->entry);
5875 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5876 	nr_zapped_lock_chains++;
5877 #endif
5878 }
5879 
5880 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5881 static void remove_class_from_lock_chains(struct pending_free *pf,
5882 					  struct lock_class *class)
5883 {
5884 	struct lock_chain *chain;
5885 	struct hlist_head *head;
5886 	int i;
5887 
5888 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5889 		head = chainhash_table + i;
5890 		hlist_for_each_entry_rcu(chain, head, entry) {
5891 			remove_class_from_lock_chain(pf, chain, class);
5892 		}
5893 	}
5894 }
5895 
5896 /*
5897  * Remove all references to a lock class. The caller must hold the graph lock.
5898  */
zap_class(struct pending_free * pf,struct lock_class * class)5899 static void zap_class(struct pending_free *pf, struct lock_class *class)
5900 {
5901 	struct lock_list *entry;
5902 	int i;
5903 
5904 	WARN_ON_ONCE(!class->key);
5905 
5906 	/*
5907 	 * Remove all dependencies this lock is
5908 	 * involved in:
5909 	 */
5910 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5911 		entry = list_entries + i;
5912 		if (entry->class != class && entry->links_to != class)
5913 			continue;
5914 		__clear_bit(i, list_entries_in_use);
5915 		nr_list_entries--;
5916 		list_del_rcu(&entry->entry);
5917 	}
5918 	if (list_empty(&class->locks_after) &&
5919 	    list_empty(&class->locks_before)) {
5920 		list_move_tail(&class->lock_entry, &pf->zapped);
5921 		hlist_del_rcu(&class->hash_entry);
5922 		WRITE_ONCE(class->key, NULL);
5923 		WRITE_ONCE(class->name, NULL);
5924 		nr_lock_classes--;
5925 		__clear_bit(class - lock_classes, lock_classes_in_use);
5926 		if (class - lock_classes == max_lock_class_idx)
5927 			max_lock_class_idx--;
5928 	} else {
5929 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5930 			  class->name);
5931 	}
5932 
5933 	remove_class_from_lock_chains(pf, class);
5934 	nr_zapped_classes++;
5935 }
5936 
reinit_class(struct lock_class * class)5937 static void reinit_class(struct lock_class *class)
5938 {
5939 	void *const p = class;
5940 	const unsigned int offset = offsetof(struct lock_class, key);
5941 
5942 	WARN_ON_ONCE(!class->lock_entry.next);
5943 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5944 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5945 	memset(p + offset, 0, sizeof(*class) - offset);
5946 	WARN_ON_ONCE(!class->lock_entry.next);
5947 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5948 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5949 }
5950 
within(const void * addr,void * start,unsigned long size)5951 static inline int within(const void *addr, void *start, unsigned long size)
5952 {
5953 	return addr >= start && addr < start + size;
5954 }
5955 
inside_selftest(void)5956 static bool inside_selftest(void)
5957 {
5958 	return current == lockdep_selftest_task_struct;
5959 }
5960 
5961 /* The caller must hold the graph lock. */
get_pending_free(void)5962 static struct pending_free *get_pending_free(void)
5963 {
5964 	return delayed_free.pf + delayed_free.index;
5965 }
5966 
5967 static void free_zapped_rcu(struct rcu_head *cb);
5968 
5969 /*
5970  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5971  * the graph lock held.
5972  */
call_rcu_zapped(struct pending_free * pf)5973 static void call_rcu_zapped(struct pending_free *pf)
5974 {
5975 	WARN_ON_ONCE(inside_selftest());
5976 
5977 	if (list_empty(&pf->zapped))
5978 		return;
5979 
5980 	if (delayed_free.scheduled)
5981 		return;
5982 
5983 	delayed_free.scheduled = true;
5984 
5985 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5986 	delayed_free.index ^= 1;
5987 
5988 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5989 }
5990 
5991 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)5992 static void __free_zapped_classes(struct pending_free *pf)
5993 {
5994 	struct lock_class *class;
5995 
5996 	check_data_structures();
5997 
5998 	list_for_each_entry(class, &pf->zapped, lock_entry)
5999 		reinit_class(class);
6000 
6001 	list_splice_init(&pf->zapped, &free_lock_classes);
6002 
6003 #ifdef CONFIG_PROVE_LOCKING
6004 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6005 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6006 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6007 #endif
6008 }
6009 
free_zapped_rcu(struct rcu_head * ch)6010 static void free_zapped_rcu(struct rcu_head *ch)
6011 {
6012 	struct pending_free *pf;
6013 	unsigned long flags;
6014 
6015 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6016 		return;
6017 
6018 	raw_local_irq_save(flags);
6019 	lockdep_lock();
6020 
6021 	/* closed head */
6022 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6023 	__free_zapped_classes(pf);
6024 	delayed_free.scheduled = false;
6025 
6026 	/*
6027 	 * If there's anything on the open list, close and start a new callback.
6028 	 */
6029 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6030 
6031 	lockdep_unlock();
6032 	raw_local_irq_restore(flags);
6033 }
6034 
6035 /*
6036  * Remove all lock classes from the class hash table and from the
6037  * all_lock_classes list whose key or name is in the address range [start,
6038  * start + size). Move these lock classes to the zapped_classes list. Must
6039  * be called with the graph lock held.
6040  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6041 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6042 				     unsigned long size)
6043 {
6044 	struct lock_class *class;
6045 	struct hlist_head *head;
6046 	int i;
6047 
6048 	/* Unhash all classes that were created by a module. */
6049 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6050 		head = classhash_table + i;
6051 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6052 			if (!within(class->key, start, size) &&
6053 			    !within(class->name, start, size))
6054 				continue;
6055 			zap_class(pf, class);
6056 		}
6057 	}
6058 }
6059 
6060 /*
6061  * Used in module.c to remove lock classes from memory that is going to be
6062  * freed; and possibly re-used by other modules.
6063  *
6064  * We will have had one synchronize_rcu() before getting here, so we're
6065  * guaranteed nobody will look up these exact classes -- they're properly dead
6066  * but still allocated.
6067  */
lockdep_free_key_range_reg(void * start,unsigned long size)6068 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6069 {
6070 	struct pending_free *pf;
6071 	unsigned long flags;
6072 
6073 	init_data_structures_once();
6074 
6075 	raw_local_irq_save(flags);
6076 	lockdep_lock();
6077 	pf = get_pending_free();
6078 	__lockdep_free_key_range(pf, start, size);
6079 	call_rcu_zapped(pf);
6080 	lockdep_unlock();
6081 	raw_local_irq_restore(flags);
6082 
6083 	/*
6084 	 * Wait for any possible iterators from look_up_lock_class() to pass
6085 	 * before continuing to free the memory they refer to.
6086 	 */
6087 	synchronize_rcu();
6088 }
6089 
6090 /*
6091  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6092  * Ignores debug_locks. Must only be used by the lockdep selftests.
6093  */
lockdep_free_key_range_imm(void * start,unsigned long size)6094 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6095 {
6096 	struct pending_free *pf = delayed_free.pf;
6097 	unsigned long flags;
6098 
6099 	init_data_structures_once();
6100 
6101 	raw_local_irq_save(flags);
6102 	lockdep_lock();
6103 	__lockdep_free_key_range(pf, start, size);
6104 	__free_zapped_classes(pf);
6105 	lockdep_unlock();
6106 	raw_local_irq_restore(flags);
6107 }
6108 
lockdep_free_key_range(void * start,unsigned long size)6109 void lockdep_free_key_range(void *start, unsigned long size)
6110 {
6111 	init_data_structures_once();
6112 
6113 	if (inside_selftest())
6114 		lockdep_free_key_range_imm(start, size);
6115 	else
6116 		lockdep_free_key_range_reg(start, size);
6117 }
6118 
6119 /*
6120  * Check whether any element of the @lock->class_cache[] array refers to a
6121  * registered lock class. The caller must hold either the graph lock or the
6122  * RCU read lock.
6123  */
lock_class_cache_is_registered(struct lockdep_map * lock)6124 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6125 {
6126 	struct lock_class *class;
6127 	struct hlist_head *head;
6128 	int i, j;
6129 
6130 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6131 		head = classhash_table + i;
6132 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6133 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6134 				if (lock->class_cache[j] == class)
6135 					return true;
6136 		}
6137 	}
6138 	return false;
6139 }
6140 
6141 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6142 static void __lockdep_reset_lock(struct pending_free *pf,
6143 				 struct lockdep_map *lock)
6144 {
6145 	struct lock_class *class;
6146 	int j;
6147 
6148 	/*
6149 	 * Remove all classes this lock might have:
6150 	 */
6151 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6152 		/*
6153 		 * If the class exists we look it up and zap it:
6154 		 */
6155 		class = look_up_lock_class(lock, j);
6156 		if (class)
6157 			zap_class(pf, class);
6158 	}
6159 	/*
6160 	 * Debug check: in the end all mapped classes should
6161 	 * be gone.
6162 	 */
6163 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6164 		debug_locks_off();
6165 }
6166 
6167 /*
6168  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6169  * released data structures from RCU context.
6170  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6171 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6172 {
6173 	struct pending_free *pf;
6174 	unsigned long flags;
6175 	int locked;
6176 
6177 	raw_local_irq_save(flags);
6178 	locked = graph_lock();
6179 	if (!locked)
6180 		goto out_irq;
6181 
6182 	pf = get_pending_free();
6183 	__lockdep_reset_lock(pf, lock);
6184 	call_rcu_zapped(pf);
6185 
6186 	graph_unlock();
6187 out_irq:
6188 	raw_local_irq_restore(flags);
6189 }
6190 
6191 /*
6192  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6193  * lockdep selftests.
6194  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6195 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6196 {
6197 	struct pending_free *pf = delayed_free.pf;
6198 	unsigned long flags;
6199 
6200 	raw_local_irq_save(flags);
6201 	lockdep_lock();
6202 	__lockdep_reset_lock(pf, lock);
6203 	__free_zapped_classes(pf);
6204 	lockdep_unlock();
6205 	raw_local_irq_restore(flags);
6206 }
6207 
lockdep_reset_lock(struct lockdep_map * lock)6208 void lockdep_reset_lock(struct lockdep_map *lock)
6209 {
6210 	init_data_structures_once();
6211 
6212 	if (inside_selftest())
6213 		lockdep_reset_lock_imm(lock);
6214 	else
6215 		lockdep_reset_lock_reg(lock);
6216 }
6217 
6218 /*
6219  * Unregister a dynamically allocated key.
6220  *
6221  * Unlike lockdep_register_key(), a search is always done to find a matching
6222  * key irrespective of debug_locks to avoid potential invalid access to freed
6223  * memory in lock_class entry.
6224  */
lockdep_unregister_key(struct lock_class_key * key)6225 void lockdep_unregister_key(struct lock_class_key *key)
6226 {
6227 	struct hlist_head *hash_head = keyhashentry(key);
6228 	struct lock_class_key *k;
6229 	struct pending_free *pf;
6230 	unsigned long flags;
6231 	bool found = false;
6232 
6233 	might_sleep();
6234 
6235 	if (WARN_ON_ONCE(static_obj(key)))
6236 		return;
6237 
6238 	raw_local_irq_save(flags);
6239 	lockdep_lock();
6240 
6241 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6242 		if (k == key) {
6243 			hlist_del_rcu(&k->hash_entry);
6244 			found = true;
6245 			break;
6246 		}
6247 	}
6248 	WARN_ON_ONCE(!found && debug_locks);
6249 	if (found) {
6250 		pf = get_pending_free();
6251 		__lockdep_free_key_range(pf, key, 1);
6252 		call_rcu_zapped(pf);
6253 	}
6254 	lockdep_unlock();
6255 	raw_local_irq_restore(flags);
6256 
6257 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6258 	synchronize_rcu();
6259 }
6260 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6261 
lockdep_init(void)6262 void __init lockdep_init(void)
6263 {
6264 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6265 
6266 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6267 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6268 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6269 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6270 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6271 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6272 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6273 
6274 	printk(" memory used by lock dependency info: %zu kB\n",
6275 	       (sizeof(lock_classes) +
6276 		sizeof(lock_classes_in_use) +
6277 		sizeof(classhash_table) +
6278 		sizeof(list_entries) +
6279 		sizeof(list_entries_in_use) +
6280 		sizeof(chainhash_table) +
6281 		sizeof(delayed_free)
6282 #ifdef CONFIG_PROVE_LOCKING
6283 		+ sizeof(lock_cq)
6284 		+ sizeof(lock_chains)
6285 		+ sizeof(lock_chains_in_use)
6286 		+ sizeof(chain_hlocks)
6287 #endif
6288 		) / 1024
6289 		);
6290 
6291 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6292 	printk(" memory used for stack traces: %zu kB\n",
6293 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6294 	       );
6295 #endif
6296 
6297 	printk(" per task-struct memory footprint: %zu bytes\n",
6298 	       sizeof(((struct task_struct *)NULL)->held_locks));
6299 }
6300 
6301 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6302 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6303 		     const void *mem_to, struct held_lock *hlock)
6304 {
6305 	if (!debug_locks_off())
6306 		return;
6307 	if (debug_locks_silent)
6308 		return;
6309 
6310 	pr_warn("\n");
6311 	pr_warn("=========================\n");
6312 	pr_warn("WARNING: held lock freed!\n");
6313 	print_kernel_ident();
6314 	pr_warn("-------------------------\n");
6315 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6316 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6317 	print_lock(hlock);
6318 	lockdep_print_held_locks(curr);
6319 
6320 	pr_warn("\nstack backtrace:\n");
6321 	dump_stack();
6322 }
6323 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6324 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6325 				const void* lock_from, unsigned long lock_len)
6326 {
6327 	return lock_from + lock_len <= mem_from ||
6328 		mem_from + mem_len <= lock_from;
6329 }
6330 
6331 /*
6332  * Called when kernel memory is freed (or unmapped), or if a lock
6333  * is destroyed or reinitialized - this code checks whether there is
6334  * any held lock in the memory range of <from> to <to>:
6335  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6336 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6337 {
6338 	struct task_struct *curr = current;
6339 	struct held_lock *hlock;
6340 	unsigned long flags;
6341 	int i;
6342 
6343 	if (unlikely(!debug_locks))
6344 		return;
6345 
6346 	raw_local_irq_save(flags);
6347 	for (i = 0; i < curr->lockdep_depth; i++) {
6348 		hlock = curr->held_locks + i;
6349 
6350 		if (not_in_range(mem_from, mem_len, hlock->instance,
6351 					sizeof(*hlock->instance)))
6352 			continue;
6353 
6354 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6355 		break;
6356 	}
6357 	raw_local_irq_restore(flags);
6358 }
6359 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6360 
print_held_locks_bug(void)6361 static void print_held_locks_bug(void)
6362 {
6363 	if (!debug_locks_off())
6364 		return;
6365 	if (debug_locks_silent)
6366 		return;
6367 
6368 	pr_warn("\n");
6369 	pr_warn("====================================\n");
6370 	pr_warn("WARNING: %s/%d still has locks held!\n",
6371 	       current->comm, task_pid_nr(current));
6372 	print_kernel_ident();
6373 	pr_warn("------------------------------------\n");
6374 	lockdep_print_held_locks(current);
6375 	pr_warn("\nstack backtrace:\n");
6376 	dump_stack();
6377 }
6378 
debug_check_no_locks_held(void)6379 void debug_check_no_locks_held(void)
6380 {
6381 	if (unlikely(current->lockdep_depth > 0))
6382 		print_held_locks_bug();
6383 }
6384 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6385 
6386 #ifdef __KERNEL__
debug_show_all_locks(void)6387 void debug_show_all_locks(void)
6388 {
6389 	struct task_struct *g, *p;
6390 
6391 	if (unlikely(!debug_locks)) {
6392 		pr_warn("INFO: lockdep is turned off.\n");
6393 		return;
6394 	}
6395 	pr_warn("\nShowing all locks held in the system:\n");
6396 
6397 	rcu_read_lock();
6398 	for_each_process_thread(g, p) {
6399 		if (!p->lockdep_depth)
6400 			continue;
6401 		lockdep_print_held_locks(p);
6402 		touch_nmi_watchdog();
6403 		touch_all_softlockup_watchdogs();
6404 	}
6405 	rcu_read_unlock();
6406 
6407 	pr_warn("\n");
6408 	pr_warn("=============================================\n\n");
6409 }
6410 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6411 #endif
6412 
6413 /*
6414  * Careful: only use this function if you are sure that
6415  * the task cannot run in parallel!
6416  */
debug_show_held_locks(struct task_struct * task)6417 void debug_show_held_locks(struct task_struct *task)
6418 {
6419 	if (unlikely(!debug_locks)) {
6420 		printk("INFO: lockdep is turned off.\n");
6421 		return;
6422 	}
6423 	lockdep_print_held_locks(task);
6424 }
6425 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6426 
lockdep_sys_exit(void)6427 asmlinkage __visible void lockdep_sys_exit(void)
6428 {
6429 	struct task_struct *curr = current;
6430 
6431 	if (unlikely(curr->lockdep_depth)) {
6432 		if (!debug_locks_off())
6433 			return;
6434 		pr_warn("\n");
6435 		pr_warn("================================================\n");
6436 		pr_warn("WARNING: lock held when returning to user space!\n");
6437 		print_kernel_ident();
6438 		pr_warn("------------------------------------------------\n");
6439 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6440 				curr->comm, curr->pid);
6441 		lockdep_print_held_locks(curr);
6442 	}
6443 
6444 	/*
6445 	 * The lock history for each syscall should be independent. So wipe the
6446 	 * slate clean on return to userspace.
6447 	 */
6448 	lockdep_invariant_state(false);
6449 }
6450 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6451 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6452 {
6453 	struct task_struct *curr = current;
6454 
6455 	/* Note: the following can be executed concurrently, so be careful. */
6456 	pr_warn("\n");
6457 	pr_warn("=============================\n");
6458 	pr_warn("WARNING: suspicious RCU usage\n");
6459 	print_kernel_ident();
6460 	pr_warn("-----------------------------\n");
6461 	pr_warn("%s:%d %s!\n", file, line, s);
6462 	pr_warn("\nother info that might help us debug this:\n\n");
6463 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6464 	       !rcu_lockdep_current_cpu_online()
6465 			? "RCU used illegally from offline CPU!\n"
6466 			: "",
6467 	       rcu_scheduler_active, debug_locks);
6468 
6469 	/*
6470 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6471 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6472 	 * considers that CPU to be in an "extended quiescent state",
6473 	 * which means that RCU will be completely ignoring that CPU.
6474 	 * Therefore, rcu_read_lock() and friends have absolutely no
6475 	 * effect on a CPU running in that state. In other words, even if
6476 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6477 	 * delete data structures out from under it.  RCU really has no
6478 	 * choice here: we need to keep an RCU-free window in idle where
6479 	 * the CPU may possibly enter into low power mode. This way we can
6480 	 * notice an extended quiescent state to other CPUs that started a grace
6481 	 * period. Otherwise we would delay any grace period as long as we run
6482 	 * in the idle task.
6483 	 *
6484 	 * So complain bitterly if someone does call rcu_read_lock(),
6485 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6486 	 */
6487 	if (!rcu_is_watching())
6488 		pr_warn("RCU used illegally from extended quiescent state!\n");
6489 
6490 	lockdep_print_held_locks(curr);
6491 	pr_warn("\nstack backtrace:\n");
6492 	dump_stack();
6493 }
6494 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6495