1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
lockdep_enabled(void)82 static __always_inline bool lockdep_enabled(void)
83 {
84 if (!debug_locks)
85 return false;
86
87 if (this_cpu_read(lockdep_recursion))
88 return false;
89
90 if (current->lockdep_recursion)
91 return false;
92
93 return true;
94 }
95
96 /*
97 * lockdep_lock: protects the lockdep graph, the hashes and the
98 * class/list/hash allocators.
99 *
100 * This is one of the rare exceptions where it's justified
101 * to use a raw spinlock - we really dont want the spinlock
102 * code to recurse back into the lockdep code...
103 */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
lockdep_lock(void)107 static inline void lockdep_lock(void)
108 {
109 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111 __this_cpu_inc(lockdep_recursion);
112 arch_spin_lock(&__lock);
113 __owner = current;
114 }
115
lockdep_unlock(void)116 static inline void lockdep_unlock(void)
117 {
118 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119
120 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 return;
122
123 __owner = NULL;
124 arch_spin_unlock(&__lock);
125 __this_cpu_dec(lockdep_recursion);
126 }
127
lockdep_assert_locked(void)128 static inline bool lockdep_assert_locked(void)
129 {
130 return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132
133 static struct task_struct *lockdep_selftest_task_struct;
134
135
graph_lock(void)136 static int graph_lock(void)
137 {
138 lockdep_lock();
139 /*
140 * Make sure that if another CPU detected a bug while
141 * walking the graph we dont change it (while the other
142 * CPU is busy printing out stuff with the graph lock
143 * dropped already)
144 */
145 if (!debug_locks) {
146 lockdep_unlock();
147 return 0;
148 }
149 return 1;
150 }
151
graph_unlock(void)152 static inline void graph_unlock(void)
153 {
154 lockdep_unlock();
155 }
156
157 /*
158 * Turn lock debugging off and return with 0 if it was off already,
159 * and also release the graph lock:
160 */
debug_locks_off_graph_unlock(void)161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 int ret = debug_locks_off();
164
165 lockdep_unlock();
166
167 return ret;
168 }
169
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173
174 /*
175 * All data structures here are protected by the global debug_lock.
176 *
177 * nr_lock_classes is the number of elements of lock_classes[] that is
178 * in use.
179 */
180 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 unsigned long max_lock_class_idx;
186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
187 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
188
hlock_class(struct held_lock * hlock)189 static inline struct lock_class *hlock_class(struct held_lock *hlock)
190 {
191 unsigned int class_idx = hlock->class_idx;
192
193 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
194 barrier();
195
196 if (!test_bit(class_idx, lock_classes_in_use)) {
197 /*
198 * Someone passed in garbage, we give up.
199 */
200 DEBUG_LOCKS_WARN_ON(1);
201 return NULL;
202 }
203
204 /*
205 * At this point, if the passed hlock->class_idx is still garbage,
206 * we just have to live with it
207 */
208 return lock_classes + class_idx;
209 }
210
211 #ifdef CONFIG_LOCK_STAT
212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
213
lockstat_clock(void)214 static inline u64 lockstat_clock(void)
215 {
216 return local_clock();
217 }
218
lock_point(unsigned long points[],unsigned long ip)219 static int lock_point(unsigned long points[], unsigned long ip)
220 {
221 int i;
222
223 for (i = 0; i < LOCKSTAT_POINTS; i++) {
224 if (points[i] == 0) {
225 points[i] = ip;
226 break;
227 }
228 if (points[i] == ip)
229 break;
230 }
231
232 return i;
233 }
234
lock_time_inc(struct lock_time * lt,u64 time)235 static void lock_time_inc(struct lock_time *lt, u64 time)
236 {
237 if (time > lt->max)
238 lt->max = time;
239
240 if (time < lt->min || !lt->nr)
241 lt->min = time;
242
243 lt->total += time;
244 lt->nr++;
245 }
246
lock_time_add(struct lock_time * src,struct lock_time * dst)247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
248 {
249 if (!src->nr)
250 return;
251
252 if (src->max > dst->max)
253 dst->max = src->max;
254
255 if (src->min < dst->min || !dst->nr)
256 dst->min = src->min;
257
258 dst->total += src->total;
259 dst->nr += src->nr;
260 }
261
lock_stats(struct lock_class * class)262 struct lock_class_stats lock_stats(struct lock_class *class)
263 {
264 struct lock_class_stats stats;
265 int cpu, i;
266
267 memset(&stats, 0, sizeof(struct lock_class_stats));
268 for_each_possible_cpu(cpu) {
269 struct lock_class_stats *pcs =
270 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
271
272 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
273 stats.contention_point[i] += pcs->contention_point[i];
274
275 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
276 stats.contending_point[i] += pcs->contending_point[i];
277
278 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
279 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
280
281 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
282 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
283
284 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
285 stats.bounces[i] += pcs->bounces[i];
286 }
287
288 return stats;
289 }
290
clear_lock_stats(struct lock_class * class)291 void clear_lock_stats(struct lock_class *class)
292 {
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 struct lock_class_stats *cpu_stats =
297 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
298
299 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
300 }
301 memset(class->contention_point, 0, sizeof(class->contention_point));
302 memset(class->contending_point, 0, sizeof(class->contending_point));
303 }
304
get_lock_stats(struct lock_class * class)305 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
306 {
307 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
308 }
309
lock_release_holdtime(struct held_lock * hlock)310 static void lock_release_holdtime(struct held_lock *hlock)
311 {
312 struct lock_class_stats *stats;
313 u64 holdtime;
314
315 if (!lock_stat)
316 return;
317
318 holdtime = lockstat_clock() - hlock->holdtime_stamp;
319
320 stats = get_lock_stats(hlock_class(hlock));
321 if (hlock->read)
322 lock_time_inc(&stats->read_holdtime, holdtime);
323 else
324 lock_time_inc(&stats->write_holdtime, holdtime);
325 }
326 #else
lock_release_holdtime(struct held_lock * hlock)327 static inline void lock_release_holdtime(struct held_lock *hlock)
328 {
329 }
330 #endif
331
332 /*
333 * We keep a global list of all lock classes. The list is only accessed with
334 * the lockdep spinlock lock held. free_lock_classes is a list with free
335 * elements. These elements are linked together by the lock_entry member in
336 * struct lock_class.
337 */
338 static LIST_HEAD(all_lock_classes);
339 static LIST_HEAD(free_lock_classes);
340
341 /**
342 * struct pending_free - information about data structures about to be freed
343 * @zapped: Head of a list with struct lock_class elements.
344 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
345 * are about to be freed.
346 */
347 struct pending_free {
348 struct list_head zapped;
349 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
350 };
351
352 /**
353 * struct delayed_free - data structures used for delayed freeing
354 *
355 * A data structure for delayed freeing of data structures that may be
356 * accessed by RCU readers at the time these were freed.
357 *
358 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
359 * @index: Index of @pf to which freed data structures are added.
360 * @scheduled: Whether or not an RCU callback has been scheduled.
361 * @pf: Array with information about data structures about to be freed.
362 */
363 static struct delayed_free {
364 struct rcu_head rcu_head;
365 int index;
366 int scheduled;
367 struct pending_free pf[2];
368 } delayed_free;
369
370 /*
371 * The lockdep classes are in a hash-table as well, for fast lookup:
372 */
373 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
374 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
375 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
376 #define classhashentry(key) (classhash_table + __classhashfn((key)))
377
378 static struct hlist_head classhash_table[CLASSHASH_SIZE];
379
380 /*
381 * We put the lock dependency chains into a hash-table as well, to cache
382 * their existence:
383 */
384 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
385 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
386 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
387 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
388
389 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
390
391 /*
392 * the id of held_lock
393 */
hlock_id(struct held_lock * hlock)394 static inline u16 hlock_id(struct held_lock *hlock)
395 {
396 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
397
398 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
399 }
400
chain_hlock_class_idx(u16 hlock_id)401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
402 {
403 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
404 }
405
406 /*
407 * The hash key of the lock dependency chains is a hash itself too:
408 * it's a hash of all locks taken up to that lock, including that lock.
409 * It's a 64-bit hash, because it's important for the keys to be
410 * unique.
411 */
iterate_chain_key(u64 key,u32 idx)412 static inline u64 iterate_chain_key(u64 key, u32 idx)
413 {
414 u32 k0 = key, k1 = key >> 32;
415
416 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
417
418 return k0 | (u64)k1 << 32;
419 }
420
lockdep_init_task(struct task_struct * task)421 void lockdep_init_task(struct task_struct *task)
422 {
423 task->lockdep_depth = 0; /* no locks held yet */
424 task->curr_chain_key = INITIAL_CHAIN_KEY;
425 task->lockdep_recursion = 0;
426 }
427
lockdep_recursion_inc(void)428 static __always_inline void lockdep_recursion_inc(void)
429 {
430 __this_cpu_inc(lockdep_recursion);
431 }
432
lockdep_recursion_finish(void)433 static __always_inline void lockdep_recursion_finish(void)
434 {
435 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
436 __this_cpu_write(lockdep_recursion, 0);
437 }
438
lockdep_set_selftest_task(struct task_struct * task)439 void lockdep_set_selftest_task(struct task_struct *task)
440 {
441 lockdep_selftest_task_struct = task;
442 }
443
444 /*
445 * Debugging switches:
446 */
447
448 #define VERBOSE 0
449 #define VERY_VERBOSE 0
450
451 #if VERBOSE
452 # define HARDIRQ_VERBOSE 1
453 # define SOFTIRQ_VERBOSE 1
454 #else
455 # define HARDIRQ_VERBOSE 0
456 # define SOFTIRQ_VERBOSE 0
457 #endif
458
459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
460 /*
461 * Quick filtering for interesting events:
462 */
class_filter(struct lock_class * class)463 static int class_filter(struct lock_class *class)
464 {
465 #if 0
466 /* Example */
467 if (class->name_version == 1 &&
468 !strcmp(class->name, "lockname"))
469 return 1;
470 if (class->name_version == 1 &&
471 !strcmp(class->name, "&struct->lockfield"))
472 return 1;
473 #endif
474 /* Filter everything else. 1 would be to allow everything else */
475 return 0;
476 }
477 #endif
478
verbose(struct lock_class * class)479 static int verbose(struct lock_class *class)
480 {
481 #if VERBOSE
482 return class_filter(class);
483 #endif
484 return 0;
485 }
486
print_lockdep_off(const char * bug_msg)487 static void print_lockdep_off(const char *bug_msg)
488 {
489 printk(KERN_DEBUG "%s\n", bug_msg);
490 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
491 #ifdef CONFIG_LOCK_STAT
492 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
493 #endif
494 }
495
496 unsigned long nr_stack_trace_entries;
497
498 #ifdef CONFIG_PROVE_LOCKING
499 /**
500 * struct lock_trace - single stack backtrace
501 * @hash_entry: Entry in a stack_trace_hash[] list.
502 * @hash: jhash() of @entries.
503 * @nr_entries: Number of entries in @entries.
504 * @entries: Actual stack backtrace.
505 */
506 struct lock_trace {
507 struct hlist_node hash_entry;
508 u32 hash;
509 u32 nr_entries;
510 unsigned long entries[] __aligned(sizeof(unsigned long));
511 };
512 #define LOCK_TRACE_SIZE_IN_LONGS \
513 (sizeof(struct lock_trace) / sizeof(unsigned long))
514 /*
515 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
516 */
517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
519
traces_identical(struct lock_trace * t1,struct lock_trace * t2)520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
521 {
522 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
523 memcmp(t1->entries, t2->entries,
524 t1->nr_entries * sizeof(t1->entries[0])) == 0;
525 }
526
save_trace(void)527 static struct lock_trace *save_trace(void)
528 {
529 struct lock_trace *trace, *t2;
530 struct hlist_head *hash_head;
531 u32 hash;
532 int max_entries;
533
534 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
535 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
536
537 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
538 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
539 LOCK_TRACE_SIZE_IN_LONGS;
540
541 if (max_entries <= 0) {
542 if (!debug_locks_off_graph_unlock())
543 return NULL;
544
545 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
546 dump_stack();
547
548 return NULL;
549 }
550 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
551
552 hash = jhash(trace->entries, trace->nr_entries *
553 sizeof(trace->entries[0]), 0);
554 trace->hash = hash;
555 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
556 hlist_for_each_entry(t2, hash_head, hash_entry) {
557 if (traces_identical(trace, t2))
558 return t2;
559 }
560 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
561 hlist_add_head(&trace->hash_entry, hash_head);
562
563 return trace;
564 }
565
566 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)567 u64 lockdep_stack_trace_count(void)
568 {
569 struct lock_trace *trace;
570 u64 c = 0;
571 int i;
572
573 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
574 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
575 c++;
576 }
577 }
578
579 return c;
580 }
581
582 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)583 u64 lockdep_stack_hash_count(void)
584 {
585 u64 c = 0;
586 int i;
587
588 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
589 if (!hlist_empty(&stack_trace_hash[i]))
590 c++;
591
592 return c;
593 }
594 #endif
595
596 unsigned int nr_hardirq_chains;
597 unsigned int nr_softirq_chains;
598 unsigned int nr_process_chains;
599 unsigned int max_lockdep_depth;
600
601 #ifdef CONFIG_DEBUG_LOCKDEP
602 /*
603 * Various lockdep statistics:
604 */
605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
606 #endif
607
608 #ifdef CONFIG_PROVE_LOCKING
609 /*
610 * Locking printouts:
611 */
612
613 #define __USAGE(__STATE) \
614 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
615 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
616 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
617 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
618
619 static const char *usage_str[] =
620 {
621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
622 #include "lockdep_states.h"
623 #undef LOCKDEP_STATE
624 [LOCK_USED] = "INITIAL USE",
625 [LOCK_USED_READ] = "INITIAL READ USE",
626 /* abused as string storage for verify_lock_unused() */
627 [LOCK_USAGE_STATES] = "IN-NMI",
628 };
629 #endif
630
__get_key_name(const struct lockdep_subclass_key * key,char * str)631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
632 {
633 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
634 }
635
lock_flag(enum lock_usage_bit bit)636 static inline unsigned long lock_flag(enum lock_usage_bit bit)
637 {
638 return 1UL << bit;
639 }
640
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
642 {
643 /*
644 * The usage character defaults to '.' (i.e., irqs disabled and not in
645 * irq context), which is the safest usage category.
646 */
647 char c = '.';
648
649 /*
650 * The order of the following usage checks matters, which will
651 * result in the outcome character as follows:
652 *
653 * - '+': irq is enabled and not in irq context
654 * - '-': in irq context and irq is disabled
655 * - '?': in irq context and irq is enabled
656 */
657 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
658 c = '+';
659 if (class->usage_mask & lock_flag(bit))
660 c = '?';
661 } else if (class->usage_mask & lock_flag(bit))
662 c = '-';
663
664 return c;
665 }
666
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
668 {
669 int i = 0;
670
671 #define LOCKDEP_STATE(__STATE) \
672 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
674 #include "lockdep_states.h"
675 #undef LOCKDEP_STATE
676
677 usage[i] = '\0';
678 }
679
__print_lock_name(struct lock_class * class)680 static void __print_lock_name(struct lock_class *class)
681 {
682 char str[KSYM_NAME_LEN];
683 const char *name;
684
685 name = class->name;
686 if (!name) {
687 name = __get_key_name(class->key, str);
688 printk(KERN_CONT "%s", name);
689 } else {
690 printk(KERN_CONT "%s", name);
691 if (class->name_version > 1)
692 printk(KERN_CONT "#%d", class->name_version);
693 if (class->subclass)
694 printk(KERN_CONT "/%d", class->subclass);
695 }
696 }
697
print_lock_name(struct lock_class * class)698 static void print_lock_name(struct lock_class *class)
699 {
700 char usage[LOCK_USAGE_CHARS];
701
702 get_usage_chars(class, usage);
703
704 printk(KERN_CONT " (");
705 __print_lock_name(class);
706 printk(KERN_CONT "){%s}-{%d:%d}", usage,
707 class->wait_type_outer ?: class->wait_type_inner,
708 class->wait_type_inner);
709 }
710
print_lockdep_cache(struct lockdep_map * lock)711 static void print_lockdep_cache(struct lockdep_map *lock)
712 {
713 const char *name;
714 char str[KSYM_NAME_LEN];
715
716 name = lock->name;
717 if (!name)
718 name = __get_key_name(lock->key->subkeys, str);
719
720 printk(KERN_CONT "%s", name);
721 }
722
print_lock(struct held_lock * hlock)723 static void print_lock(struct held_lock *hlock)
724 {
725 /*
726 * We can be called locklessly through debug_show_all_locks() so be
727 * extra careful, the hlock might have been released and cleared.
728 *
729 * If this indeed happens, lets pretend it does not hurt to continue
730 * to print the lock unless the hlock class_idx does not point to a
731 * registered class. The rationale here is: since we don't attempt
732 * to distinguish whether we are in this situation, if it just
733 * happened we can't count on class_idx to tell either.
734 */
735 struct lock_class *lock = hlock_class(hlock);
736
737 if (!lock) {
738 printk(KERN_CONT "<RELEASED>\n");
739 return;
740 }
741
742 printk(KERN_CONT "%px", hlock->instance);
743 print_lock_name(lock);
744 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
745 }
746
lockdep_print_held_locks(struct task_struct * p)747 static void lockdep_print_held_locks(struct task_struct *p)
748 {
749 int i, depth = READ_ONCE(p->lockdep_depth);
750
751 if (!depth)
752 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
753 else
754 printk("%d lock%s held by %s/%d:\n", depth,
755 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
756 /*
757 * It's not reliable to print a task's held locks if it's not sleeping
758 * and it's not the current task.
759 */
760 if (p->state == TASK_RUNNING && p != current)
761 return;
762 for (i = 0; i < depth; i++) {
763 printk(" #%d: ", i);
764 print_lock(p->held_locks + i);
765 }
766 }
767
print_kernel_ident(void)768 static void print_kernel_ident(void)
769 {
770 printk("%s %.*s %s\n", init_utsname()->release,
771 (int)strcspn(init_utsname()->version, " "),
772 init_utsname()->version,
773 print_tainted());
774 }
775
very_verbose(struct lock_class * class)776 static int very_verbose(struct lock_class *class)
777 {
778 #if VERY_VERBOSE
779 return class_filter(class);
780 #endif
781 return 0;
782 }
783
784 /*
785 * Is this the address of a static object:
786 */
787 #ifdef __KERNEL__
static_obj(const void * obj)788 static int static_obj(const void *obj)
789 {
790 unsigned long start = (unsigned long) &_stext,
791 end = (unsigned long) &_end,
792 addr = (unsigned long) obj;
793
794 if (arch_is_kernel_initmem_freed(addr))
795 return 0;
796
797 /*
798 * static variable?
799 */
800 if ((addr >= start) && (addr < end))
801 return 1;
802
803 if (arch_is_kernel_data(addr))
804 return 1;
805
806 /*
807 * in-kernel percpu var?
808 */
809 if (is_kernel_percpu_address(addr))
810 return 1;
811
812 /*
813 * module static or percpu var?
814 */
815 return is_module_address(addr) || is_module_percpu_address(addr);
816 }
817 #endif
818
819 /*
820 * To make lock name printouts unique, we calculate a unique
821 * class->name_version generation counter. The caller must hold the graph
822 * lock.
823 */
count_matching_names(struct lock_class * new_class)824 static int count_matching_names(struct lock_class *new_class)
825 {
826 struct lock_class *class;
827 int count = 0;
828
829 if (!new_class->name)
830 return 0;
831
832 list_for_each_entry(class, &all_lock_classes, lock_entry) {
833 if (new_class->key - new_class->subclass == class->key)
834 return class->name_version;
835 if (class->name && !strcmp(class->name, new_class->name))
836 count = max(count, class->name_version);
837 }
838
839 return count + 1;
840 }
841
842 /* used from NMI context -- must be lockless */
843 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
845 {
846 struct lockdep_subclass_key *key;
847 struct hlist_head *hash_head;
848 struct lock_class *class;
849
850 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
851 instrumentation_begin();
852 debug_locks_off();
853 printk(KERN_ERR
854 "BUG: looking up invalid subclass: %u\n", subclass);
855 printk(KERN_ERR
856 "turning off the locking correctness validator.\n");
857 dump_stack();
858 instrumentation_end();
859 return NULL;
860 }
861
862 /*
863 * If it is not initialised then it has never been locked,
864 * so it won't be present in the hash table.
865 */
866 if (unlikely(!lock->key))
867 return NULL;
868
869 /*
870 * NOTE: the class-key must be unique. For dynamic locks, a static
871 * lock_class_key variable is passed in through the mutex_init()
872 * (or spin_lock_init()) call - which acts as the key. For static
873 * locks we use the lock object itself as the key.
874 */
875 BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 sizeof(struct lockdep_map));
877
878 key = lock->key->subkeys + subclass;
879
880 hash_head = classhashentry(key);
881
882 /*
883 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 */
885 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 return NULL;
887
888 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
889 if (class->key == key) {
890 /*
891 * Huh! same key, different name? Did someone trample
892 * on some memory? We're most confused.
893 */
894 WARN_ON_ONCE(class->name != lock->name &&
895 lock->key != &__lockdep_no_validate__);
896 return class;
897 }
898 }
899
900 return NULL;
901 }
902
903 /*
904 * Static locks do not have their class-keys yet - for them the key is
905 * the lock object itself. If the lock is in the per cpu area, the
906 * canonical address of the lock (per cpu offset removed) is used.
907 */
assign_lock_key(struct lockdep_map * lock)908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 unsigned long can_addr, addr = (unsigned long)lock;
911
912 #ifdef __KERNEL__
913 /*
914 * lockdep_free_key_range() assumes that struct lock_class_key
915 * objects do not overlap. Since we use the address of lock
916 * objects as class key for static objects, check whether the
917 * size of lock_class_key objects does not exceed the size of
918 * the smallest lock object.
919 */
920 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922
923 if (__is_kernel_percpu_address(addr, &can_addr))
924 lock->key = (void *)can_addr;
925 else if (__is_module_percpu_address(addr, &can_addr))
926 lock->key = (void *)can_addr;
927 else if (static_obj(lock))
928 lock->key = (void *)lock;
929 else {
930 /* Debug-check: all keys must be persistent! */
931 debug_locks_off();
932 pr_err("INFO: trying to register non-static key.\n");
933 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
934 pr_err("you didn't initialize this object before use?\n");
935 pr_err("turning off the locking correctness validator.\n");
936 dump_stack();
937 return false;
938 }
939
940 return true;
941 }
942
943 #ifdef CONFIG_DEBUG_LOCKDEP
944
945 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)946 static bool in_list(struct list_head *e, struct list_head *h)
947 {
948 struct list_head *f;
949
950 list_for_each(f, h) {
951 if (e == f)
952 return true;
953 }
954
955 return false;
956 }
957
958 /*
959 * Check whether entry @e occurs in any of the locks_after or locks_before
960 * lists.
961 */
in_any_class_list(struct list_head * e)962 static bool in_any_class_list(struct list_head *e)
963 {
964 struct lock_class *class;
965 int i;
966
967 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
968 class = &lock_classes[i];
969 if (in_list(e, &class->locks_after) ||
970 in_list(e, &class->locks_before))
971 return true;
972 }
973 return false;
974 }
975
class_lock_list_valid(struct lock_class * c,struct list_head * h)976 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
977 {
978 struct lock_list *e;
979
980 list_for_each_entry(e, h, entry) {
981 if (e->links_to != c) {
982 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
983 c->name ? : "(?)",
984 (unsigned long)(e - list_entries),
985 e->links_to && e->links_to->name ?
986 e->links_to->name : "(?)",
987 e->class && e->class->name ? e->class->name :
988 "(?)");
989 return false;
990 }
991 }
992 return true;
993 }
994
995 #ifdef CONFIG_PROVE_LOCKING
996 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
997 #endif
998
check_lock_chain_key(struct lock_chain * chain)999 static bool check_lock_chain_key(struct lock_chain *chain)
1000 {
1001 #ifdef CONFIG_PROVE_LOCKING
1002 u64 chain_key = INITIAL_CHAIN_KEY;
1003 int i;
1004
1005 for (i = chain->base; i < chain->base + chain->depth; i++)
1006 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1007 /*
1008 * The 'unsigned long long' casts avoid that a compiler warning
1009 * is reported when building tools/lib/lockdep.
1010 */
1011 if (chain->chain_key != chain_key) {
1012 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1013 (unsigned long long)(chain - lock_chains),
1014 (unsigned long long)chain->chain_key,
1015 (unsigned long long)chain_key);
1016 return false;
1017 }
1018 #endif
1019 return true;
1020 }
1021
in_any_zapped_class_list(struct lock_class * class)1022 static bool in_any_zapped_class_list(struct lock_class *class)
1023 {
1024 struct pending_free *pf;
1025 int i;
1026
1027 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1028 if (in_list(&class->lock_entry, &pf->zapped))
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
__check_data_structures(void)1035 static bool __check_data_structures(void)
1036 {
1037 struct lock_class *class;
1038 struct lock_chain *chain;
1039 struct hlist_head *head;
1040 struct lock_list *e;
1041 int i;
1042
1043 /* Check whether all classes occur in a lock list. */
1044 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1045 class = &lock_classes[i];
1046 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1047 !in_list(&class->lock_entry, &free_lock_classes) &&
1048 !in_any_zapped_class_list(class)) {
1049 printk(KERN_INFO "class %px/%s is not in any class list\n",
1050 class, class->name ? : "(?)");
1051 return false;
1052 }
1053 }
1054
1055 /* Check whether all classes have valid lock lists. */
1056 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1057 class = &lock_classes[i];
1058 if (!class_lock_list_valid(class, &class->locks_before))
1059 return false;
1060 if (!class_lock_list_valid(class, &class->locks_after))
1061 return false;
1062 }
1063
1064 /* Check the chain_key of all lock chains. */
1065 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1066 head = chainhash_table + i;
1067 hlist_for_each_entry_rcu(chain, head, entry) {
1068 if (!check_lock_chain_key(chain))
1069 return false;
1070 }
1071 }
1072
1073 /*
1074 * Check whether all list entries that are in use occur in a class
1075 * lock list.
1076 */
1077 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1078 e = list_entries + i;
1079 if (!in_any_class_list(&e->entry)) {
1080 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1081 (unsigned int)(e - list_entries),
1082 e->class->name ? : "(?)",
1083 e->links_to->name ? : "(?)");
1084 return false;
1085 }
1086 }
1087
1088 /*
1089 * Check whether all list entries that are not in use do not occur in
1090 * a class lock list.
1091 */
1092 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093 e = list_entries + i;
1094 if (in_any_class_list(&e->entry)) {
1095 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1096 (unsigned int)(e - list_entries),
1097 e->class && e->class->name ? e->class->name :
1098 "(?)",
1099 e->links_to && e->links_to->name ?
1100 e->links_to->name : "(?)");
1101 return false;
1102 }
1103 }
1104
1105 return true;
1106 }
1107
1108 int check_consistency = 0;
1109 module_param(check_consistency, int, 0644);
1110
check_data_structures(void)1111 static void check_data_structures(void)
1112 {
1113 static bool once = false;
1114
1115 if (check_consistency && !once) {
1116 if (!__check_data_structures()) {
1117 once = true;
1118 WARN_ON(once);
1119 }
1120 }
1121 }
1122
1123 #else /* CONFIG_DEBUG_LOCKDEP */
1124
check_data_structures(void)1125 static inline void check_data_structures(void) { }
1126
1127 #endif /* CONFIG_DEBUG_LOCKDEP */
1128
1129 static void init_chain_block_buckets(void);
1130
1131 /*
1132 * Initialize the lock_classes[] array elements, the free_lock_classes list
1133 * and also the delayed_free structure.
1134 */
init_data_structures_once(void)1135 static void init_data_structures_once(void)
1136 {
1137 static bool __read_mostly ds_initialized, rcu_head_initialized;
1138 int i;
1139
1140 if (likely(rcu_head_initialized))
1141 return;
1142
1143 if (system_state >= SYSTEM_SCHEDULING) {
1144 init_rcu_head(&delayed_free.rcu_head);
1145 rcu_head_initialized = true;
1146 }
1147
1148 if (ds_initialized)
1149 return;
1150
1151 ds_initialized = true;
1152
1153 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1154 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1155
1156 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1157 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1158 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1159 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1160 }
1161 init_chain_block_buckets();
1162 }
1163
keyhashentry(const struct lock_class_key * key)1164 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1165 {
1166 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1167
1168 return lock_keys_hash + hash;
1169 }
1170
1171 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1172 void lockdep_register_key(struct lock_class_key *key)
1173 {
1174 struct hlist_head *hash_head;
1175 struct lock_class_key *k;
1176 unsigned long flags;
1177
1178 if (WARN_ON_ONCE(static_obj(key)))
1179 return;
1180 hash_head = keyhashentry(key);
1181
1182 raw_local_irq_save(flags);
1183 if (!graph_lock())
1184 goto restore_irqs;
1185 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1186 if (WARN_ON_ONCE(k == key))
1187 goto out_unlock;
1188 }
1189 hlist_add_head_rcu(&key->hash_entry, hash_head);
1190 out_unlock:
1191 graph_unlock();
1192 restore_irqs:
1193 raw_local_irq_restore(flags);
1194 }
1195 EXPORT_SYMBOL_GPL(lockdep_register_key);
1196
1197 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1198 static bool is_dynamic_key(const struct lock_class_key *key)
1199 {
1200 struct hlist_head *hash_head;
1201 struct lock_class_key *k;
1202 bool found = false;
1203
1204 if (WARN_ON_ONCE(static_obj(key)))
1205 return false;
1206
1207 /*
1208 * If lock debugging is disabled lock_keys_hash[] may contain
1209 * pointers to memory that has already been freed. Avoid triggering
1210 * a use-after-free in that case by returning early.
1211 */
1212 if (!debug_locks)
1213 return true;
1214
1215 hash_head = keyhashentry(key);
1216
1217 rcu_read_lock();
1218 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1219 if (k == key) {
1220 found = true;
1221 break;
1222 }
1223 }
1224 rcu_read_unlock();
1225
1226 return found;
1227 }
1228
1229 /*
1230 * Register a lock's class in the hash-table, if the class is not present
1231 * yet. Otherwise we look it up. We cache the result in the lock object
1232 * itself, so actual lookup of the hash should be once per lock object.
1233 */
1234 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1235 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1236 {
1237 struct lockdep_subclass_key *key;
1238 struct hlist_head *hash_head;
1239 struct lock_class *class;
1240 int idx;
1241
1242 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1243
1244 class = look_up_lock_class(lock, subclass);
1245 if (likely(class))
1246 goto out_set_class_cache;
1247
1248 if (!lock->key) {
1249 if (!assign_lock_key(lock))
1250 return NULL;
1251 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1252 return NULL;
1253 }
1254
1255 key = lock->key->subkeys + subclass;
1256 hash_head = classhashentry(key);
1257
1258 if (!graph_lock()) {
1259 return NULL;
1260 }
1261 /*
1262 * We have to do the hash-walk again, to avoid races
1263 * with another CPU:
1264 */
1265 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1266 if (class->key == key)
1267 goto out_unlock_set;
1268 }
1269
1270 init_data_structures_once();
1271
1272 /* Allocate a new lock class and add it to the hash. */
1273 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1274 lock_entry);
1275 if (!class) {
1276 if (!debug_locks_off_graph_unlock()) {
1277 return NULL;
1278 }
1279
1280 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1281 dump_stack();
1282 return NULL;
1283 }
1284 nr_lock_classes++;
1285 __set_bit(class - lock_classes, lock_classes_in_use);
1286 debug_atomic_inc(nr_unused_locks);
1287 class->key = key;
1288 class->name = lock->name;
1289 class->subclass = subclass;
1290 WARN_ON_ONCE(!list_empty(&class->locks_before));
1291 WARN_ON_ONCE(!list_empty(&class->locks_after));
1292 class->name_version = count_matching_names(class);
1293 class->wait_type_inner = lock->wait_type_inner;
1294 class->wait_type_outer = lock->wait_type_outer;
1295 class->lock_type = lock->lock_type;
1296 /*
1297 * We use RCU's safe list-add method to make
1298 * parallel walking of the hash-list safe:
1299 */
1300 hlist_add_head_rcu(&class->hash_entry, hash_head);
1301 /*
1302 * Remove the class from the free list and add it to the global list
1303 * of classes.
1304 */
1305 list_move_tail(&class->lock_entry, &all_lock_classes);
1306 idx = class - lock_classes;
1307 if (idx > max_lock_class_idx)
1308 max_lock_class_idx = idx;
1309
1310 if (verbose(class)) {
1311 graph_unlock();
1312
1313 printk("\nnew class %px: %s", class->key, class->name);
1314 if (class->name_version > 1)
1315 printk(KERN_CONT "#%d", class->name_version);
1316 printk(KERN_CONT "\n");
1317 dump_stack();
1318
1319 if (!graph_lock()) {
1320 return NULL;
1321 }
1322 }
1323 out_unlock_set:
1324 graph_unlock();
1325
1326 out_set_class_cache:
1327 if (!subclass || force)
1328 lock->class_cache[0] = class;
1329 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1330 lock->class_cache[subclass] = class;
1331
1332 /*
1333 * Hash collision, did we smoke some? We found a class with a matching
1334 * hash but the subclass -- which is hashed in -- didn't match.
1335 */
1336 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1337 return NULL;
1338
1339 return class;
1340 }
1341
1342 #ifdef CONFIG_PROVE_LOCKING
1343 /*
1344 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1345 * with NULL on failure)
1346 */
alloc_list_entry(void)1347 static struct lock_list *alloc_list_entry(void)
1348 {
1349 int idx = find_first_zero_bit(list_entries_in_use,
1350 ARRAY_SIZE(list_entries));
1351
1352 if (idx >= ARRAY_SIZE(list_entries)) {
1353 if (!debug_locks_off_graph_unlock())
1354 return NULL;
1355
1356 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1357 dump_stack();
1358 return NULL;
1359 }
1360 nr_list_entries++;
1361 __set_bit(idx, list_entries_in_use);
1362 return list_entries + idx;
1363 }
1364
1365 /*
1366 * Add a new dependency to the head of the list:
1367 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,u16 distance,u8 dep,const struct lock_trace * trace)1368 static int add_lock_to_list(struct lock_class *this,
1369 struct lock_class *links_to, struct list_head *head,
1370 unsigned long ip, u16 distance, u8 dep,
1371 const struct lock_trace *trace)
1372 {
1373 struct lock_list *entry;
1374 /*
1375 * Lock not present yet - get a new dependency struct and
1376 * add it to the list:
1377 */
1378 entry = alloc_list_entry();
1379 if (!entry)
1380 return 0;
1381
1382 entry->class = this;
1383 entry->links_to = links_to;
1384 entry->dep = dep;
1385 entry->distance = distance;
1386 entry->trace = trace;
1387 /*
1388 * Both allocation and removal are done under the graph lock; but
1389 * iteration is under RCU-sched; see look_up_lock_class() and
1390 * lockdep_free_key_range().
1391 */
1392 list_add_tail_rcu(&entry->entry, head);
1393
1394 return 1;
1395 }
1396
1397 /*
1398 * For good efficiency of modular, we use power of 2
1399 */
1400 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1401 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1402
1403 /*
1404 * The circular_queue and helpers are used to implement graph
1405 * breadth-first search (BFS) algorithm, by which we can determine
1406 * whether there is a path from a lock to another. In deadlock checks,
1407 * a path from the next lock to be acquired to a previous held lock
1408 * indicates that adding the <prev> -> <next> lock dependency will
1409 * produce a circle in the graph. Breadth-first search instead of
1410 * depth-first search is used in order to find the shortest (circular)
1411 * path.
1412 */
1413 struct circular_queue {
1414 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1415 unsigned int front, rear;
1416 };
1417
1418 static struct circular_queue lock_cq;
1419
1420 unsigned int max_bfs_queue_depth;
1421
1422 static unsigned int lockdep_dependency_gen_id;
1423
__cq_init(struct circular_queue * cq)1424 static inline void __cq_init(struct circular_queue *cq)
1425 {
1426 cq->front = cq->rear = 0;
1427 lockdep_dependency_gen_id++;
1428 }
1429
__cq_empty(struct circular_queue * cq)1430 static inline int __cq_empty(struct circular_queue *cq)
1431 {
1432 return (cq->front == cq->rear);
1433 }
1434
__cq_full(struct circular_queue * cq)1435 static inline int __cq_full(struct circular_queue *cq)
1436 {
1437 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1438 }
1439
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1440 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1441 {
1442 if (__cq_full(cq))
1443 return -1;
1444
1445 cq->element[cq->rear] = elem;
1446 cq->rear = (cq->rear + 1) & CQ_MASK;
1447 return 0;
1448 }
1449
1450 /*
1451 * Dequeue an element from the circular_queue, return a lock_list if
1452 * the queue is not empty, or NULL if otherwise.
1453 */
__cq_dequeue(struct circular_queue * cq)1454 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1455 {
1456 struct lock_list * lock;
1457
1458 if (__cq_empty(cq))
1459 return NULL;
1460
1461 lock = cq->element[cq->front];
1462 cq->front = (cq->front + 1) & CQ_MASK;
1463
1464 return lock;
1465 }
1466
__cq_get_elem_count(struct circular_queue * cq)1467 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1468 {
1469 return (cq->rear - cq->front) & CQ_MASK;
1470 }
1471
mark_lock_accessed(struct lock_list * lock)1472 static inline void mark_lock_accessed(struct lock_list *lock)
1473 {
1474 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1475 }
1476
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1477 static inline void visit_lock_entry(struct lock_list *lock,
1478 struct lock_list *parent)
1479 {
1480 lock->parent = parent;
1481 }
1482
lock_accessed(struct lock_list * lock)1483 static inline unsigned long lock_accessed(struct lock_list *lock)
1484 {
1485 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1486 }
1487
get_lock_parent(struct lock_list * child)1488 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1489 {
1490 return child->parent;
1491 }
1492
get_lock_depth(struct lock_list * child)1493 static inline int get_lock_depth(struct lock_list *child)
1494 {
1495 int depth = 0;
1496 struct lock_list *parent;
1497
1498 while ((parent = get_lock_parent(child))) {
1499 child = parent;
1500 depth++;
1501 }
1502 return depth;
1503 }
1504
1505 /*
1506 * Return the forward or backward dependency list.
1507 *
1508 * @lock: the lock_list to get its class's dependency list
1509 * @offset: the offset to struct lock_class to determine whether it is
1510 * locks_after or locks_before
1511 */
get_dep_list(struct lock_list * lock,int offset)1512 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1513 {
1514 void *lock_class = lock->class;
1515
1516 return lock_class + offset;
1517 }
1518 /*
1519 * Return values of a bfs search:
1520 *
1521 * BFS_E* indicates an error
1522 * BFS_R* indicates a result (match or not)
1523 *
1524 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1525 *
1526 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1527 *
1528 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1529 * *@target_entry.
1530 *
1531 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1532 * _unchanged_.
1533 */
1534 enum bfs_result {
1535 BFS_EINVALIDNODE = -2,
1536 BFS_EQUEUEFULL = -1,
1537 BFS_RMATCH = 0,
1538 BFS_RNOMATCH = 1,
1539 };
1540
1541 /*
1542 * bfs_result < 0 means error
1543 */
bfs_error(enum bfs_result res)1544 static inline bool bfs_error(enum bfs_result res)
1545 {
1546 return res < 0;
1547 }
1548
1549 /*
1550 * DEP_*_BIT in lock_list::dep
1551 *
1552 * For dependency @prev -> @next:
1553 *
1554 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1555 * (->read == 2)
1556 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1557 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1558 * EN: @prev is exclusive locker and @next is non-recursive locker
1559 *
1560 * Note that we define the value of DEP_*_BITs so that:
1561 * bit0 is prev->read == 0
1562 * bit1 is next->read != 2
1563 */
1564 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1565 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1566 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1567 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1568
1569 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1570 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1571 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1572 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1573
1574 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1575 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1576 {
1577 return (prev->read == 0) + ((next->read != 2) << 1);
1578 }
1579
calc_dep(struct held_lock * prev,struct held_lock * next)1580 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1581 {
1582 return 1U << __calc_dep_bit(prev, next);
1583 }
1584
1585 /*
1586 * calculate the dep_bit for backwards edges. We care about whether @prev is
1587 * shared and whether @next is recursive.
1588 */
1589 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1590 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1591 {
1592 return (next->read != 2) + ((prev->read == 0) << 1);
1593 }
1594
calc_depb(struct held_lock * prev,struct held_lock * next)1595 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1596 {
1597 return 1U << __calc_dep_bitb(prev, next);
1598 }
1599
1600 /*
1601 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1602 * search.
1603 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1604 static inline void __bfs_init_root(struct lock_list *lock,
1605 struct lock_class *class)
1606 {
1607 lock->class = class;
1608 lock->parent = NULL;
1609 lock->only_xr = 0;
1610 }
1611
1612 /*
1613 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1614 * root for a BFS search.
1615 *
1616 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1617 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1618 * and -(S*)->.
1619 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1620 static inline void bfs_init_root(struct lock_list *lock,
1621 struct held_lock *hlock)
1622 {
1623 __bfs_init_root(lock, hlock_class(hlock));
1624 lock->only_xr = (hlock->read == 2);
1625 }
1626
1627 /*
1628 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1629 *
1630 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1631 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1632 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1633 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1634 static inline void bfs_init_rootb(struct lock_list *lock,
1635 struct held_lock *hlock)
1636 {
1637 __bfs_init_root(lock, hlock_class(hlock));
1638 lock->only_xr = (hlock->read != 0);
1639 }
1640
__bfs_next(struct lock_list * lock,int offset)1641 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1642 {
1643 if (!lock || !lock->parent)
1644 return NULL;
1645
1646 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1647 &lock->entry, struct lock_list, entry);
1648 }
1649
1650 /*
1651 * Breadth-First Search to find a strong path in the dependency graph.
1652 *
1653 * @source_entry: the source of the path we are searching for.
1654 * @data: data used for the second parameter of @match function
1655 * @match: match function for the search
1656 * @target_entry: pointer to the target of a matched path
1657 * @offset: the offset to struct lock_class to determine whether it is
1658 * locks_after or locks_before
1659 *
1660 * We may have multiple edges (considering different kinds of dependencies,
1661 * e.g. ER and SN) between two nodes in the dependency graph. But
1662 * only the strong dependency path in the graph is relevant to deadlocks. A
1663 * strong dependency path is a dependency path that doesn't have two adjacent
1664 * dependencies as -(*R)-> -(S*)->, please see:
1665 *
1666 * Documentation/locking/lockdep-design.rst
1667 *
1668 * for more explanation of the definition of strong dependency paths
1669 *
1670 * In __bfs(), we only traverse in the strong dependency path:
1671 *
1672 * In lock_list::only_xr, we record whether the previous dependency only
1673 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1674 * filter out any -(S*)-> in the current dependency and after that, the
1675 * ->only_xr is set according to whether we only have -(*R)-> left.
1676 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1677 static enum bfs_result __bfs(struct lock_list *source_entry,
1678 void *data,
1679 bool (*match)(struct lock_list *entry, void *data),
1680 struct lock_list **target_entry,
1681 int offset)
1682 {
1683 struct circular_queue *cq = &lock_cq;
1684 struct lock_list *lock = NULL;
1685 struct lock_list *entry;
1686 struct list_head *head;
1687 unsigned int cq_depth;
1688 bool first;
1689
1690 lockdep_assert_locked();
1691
1692 __cq_init(cq);
1693 __cq_enqueue(cq, source_entry);
1694
1695 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 if (!lock->class)
1697 return BFS_EINVALIDNODE;
1698
1699 /*
1700 * Step 1: check whether we already finish on this one.
1701 *
1702 * If we have visited all the dependencies from this @lock to
1703 * others (iow, if we have visited all lock_list entries in
1704 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 * and visit all the dependencies in the list and mark this
1706 * list accessed.
1707 */
1708 if (lock_accessed(lock))
1709 continue;
1710 else
1711 mark_lock_accessed(lock);
1712
1713 /*
1714 * Step 2: check whether prev dependency and this form a strong
1715 * dependency path.
1716 */
1717 if (lock->parent) { /* Parent exists, check prev dependency */
1718 u8 dep = lock->dep;
1719 bool prev_only_xr = lock->parent->only_xr;
1720
1721 /*
1722 * Mask out all -(S*)-> if we only have *R in previous
1723 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 * dependency.
1725 */
1726 if (prev_only_xr)
1727 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729 /* If nothing left, we skip */
1730 if (!dep)
1731 continue;
1732
1733 /* If there are only -(*R)-> left, set that for the next step */
1734 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 }
1736
1737 /*
1738 * Step 3: we haven't visited this and there is a strong
1739 * dependency path to this, so check with @match.
1740 */
1741 if (match(lock, data)) {
1742 *target_entry = lock;
1743 return BFS_RMATCH;
1744 }
1745
1746 /*
1747 * Step 4: if not match, expand the path by adding the
1748 * forward or backwards dependencis in the search
1749 *
1750 */
1751 first = true;
1752 head = get_dep_list(lock, offset);
1753 list_for_each_entry_rcu(entry, head, entry) {
1754 visit_lock_entry(entry, lock);
1755
1756 /*
1757 * Note we only enqueue the first of the list into the
1758 * queue, because we can always find a sibling
1759 * dependency from one (see __bfs_next()), as a result
1760 * the space of queue is saved.
1761 */
1762 if (!first)
1763 continue;
1764
1765 first = false;
1766
1767 if (__cq_enqueue(cq, entry))
1768 return BFS_EQUEUEFULL;
1769
1770 cq_depth = __cq_get_elem_count(cq);
1771 if (max_bfs_queue_depth < cq_depth)
1772 max_bfs_queue_depth = cq_depth;
1773 }
1774 }
1775
1776 return BFS_RNOMATCH;
1777 }
1778
1779 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1780 __bfs_forwards(struct lock_list *src_entry,
1781 void *data,
1782 bool (*match)(struct lock_list *entry, void *data),
1783 struct lock_list **target_entry)
1784 {
1785 return __bfs(src_entry, data, match, target_entry,
1786 offsetof(struct lock_class, locks_after));
1787
1788 }
1789
1790 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1791 __bfs_backwards(struct lock_list *src_entry,
1792 void *data,
1793 bool (*match)(struct lock_list *entry, void *data),
1794 struct lock_list **target_entry)
1795 {
1796 return __bfs(src_entry, data, match, target_entry,
1797 offsetof(struct lock_class, locks_before));
1798
1799 }
1800
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1801 static void print_lock_trace(const struct lock_trace *trace,
1802 unsigned int spaces)
1803 {
1804 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1805 }
1806
1807 /*
1808 * Print a dependency chain entry (this is only done when a deadlock
1809 * has been detected):
1810 */
1811 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1812 print_circular_bug_entry(struct lock_list *target, int depth)
1813 {
1814 if (debug_locks_silent)
1815 return;
1816 printk("\n-> #%u", depth);
1817 print_lock_name(target->class);
1818 printk(KERN_CONT ":\n");
1819 print_lock_trace(target->trace, 6);
1820 }
1821
1822 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1823 print_circular_lock_scenario(struct held_lock *src,
1824 struct held_lock *tgt,
1825 struct lock_list *prt)
1826 {
1827 struct lock_class *source = hlock_class(src);
1828 struct lock_class *target = hlock_class(tgt);
1829 struct lock_class *parent = prt->class;
1830
1831 /*
1832 * A direct locking problem where unsafe_class lock is taken
1833 * directly by safe_class lock, then all we need to show
1834 * is the deadlock scenario, as it is obvious that the
1835 * unsafe lock is taken under the safe lock.
1836 *
1837 * But if there is a chain instead, where the safe lock takes
1838 * an intermediate lock (middle_class) where this lock is
1839 * not the same as the safe lock, then the lock chain is
1840 * used to describe the problem. Otherwise we would need
1841 * to show a different CPU case for each link in the chain
1842 * from the safe_class lock to the unsafe_class lock.
1843 */
1844 if (parent != source) {
1845 printk("Chain exists of:\n ");
1846 __print_lock_name(source);
1847 printk(KERN_CONT " --> ");
1848 __print_lock_name(parent);
1849 printk(KERN_CONT " --> ");
1850 __print_lock_name(target);
1851 printk(KERN_CONT "\n\n");
1852 }
1853
1854 printk(" Possible unsafe locking scenario:\n\n");
1855 printk(" CPU0 CPU1\n");
1856 printk(" ---- ----\n");
1857 printk(" lock(");
1858 __print_lock_name(target);
1859 printk(KERN_CONT ");\n");
1860 printk(" lock(");
1861 __print_lock_name(parent);
1862 printk(KERN_CONT ");\n");
1863 printk(" lock(");
1864 __print_lock_name(target);
1865 printk(KERN_CONT ");\n");
1866 printk(" lock(");
1867 __print_lock_name(source);
1868 printk(KERN_CONT ");\n");
1869 printk("\n *** DEADLOCK ***\n\n");
1870 }
1871
1872 /*
1873 * When a circular dependency is detected, print the
1874 * header first:
1875 */
1876 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1877 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1878 struct held_lock *check_src,
1879 struct held_lock *check_tgt)
1880 {
1881 struct task_struct *curr = current;
1882
1883 if (debug_locks_silent)
1884 return;
1885
1886 pr_warn("\n");
1887 pr_warn("======================================================\n");
1888 pr_warn("WARNING: possible circular locking dependency detected\n");
1889 print_kernel_ident();
1890 pr_warn("------------------------------------------------------\n");
1891 pr_warn("%s/%d is trying to acquire lock:\n",
1892 curr->comm, task_pid_nr(curr));
1893 print_lock(check_src);
1894
1895 pr_warn("\nbut task is already holding lock:\n");
1896
1897 print_lock(check_tgt);
1898 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1899 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1900
1901 print_circular_bug_entry(entry, depth);
1902 }
1903
1904 /*
1905 * We are about to add A -> B into the dependency graph, and in __bfs() a
1906 * strong dependency path A -> .. -> B is found: hlock_class equals
1907 * entry->class.
1908 *
1909 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1910 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1911 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1912 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1913 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1914 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1915 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1916 *
1917 * We need to make sure both the start and the end of A -> .. -> B is not
1918 * weaker than A -> B. For the start part, please see the comment in
1919 * check_redundant(). For the end part, we need:
1920 *
1921 * Either
1922 *
1923 * a) A -> B is -(*R)-> (everything is not weaker than that)
1924 *
1925 * or
1926 *
1927 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1928 *
1929 */
hlock_equal(struct lock_list * entry,void * data)1930 static inline bool hlock_equal(struct lock_list *entry, void *data)
1931 {
1932 struct held_lock *hlock = (struct held_lock *)data;
1933
1934 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1935 (hlock->read == 2 || /* A -> B is -(*R)-> */
1936 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1937 }
1938
1939 /*
1940 * We are about to add B -> A into the dependency graph, and in __bfs() a
1941 * strong dependency path A -> .. -> B is found: hlock_class equals
1942 * entry->class.
1943 *
1944 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1945 * dependency cycle, that means:
1946 *
1947 * Either
1948 *
1949 * a) B -> A is -(E*)->
1950 *
1951 * or
1952 *
1953 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1954 *
1955 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1956 */
hlock_conflict(struct lock_list * entry,void * data)1957 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1958 {
1959 struct held_lock *hlock = (struct held_lock *)data;
1960
1961 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1962 (hlock->read == 0 || /* B -> A is -(E*)-> */
1963 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1964 }
1965
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1966 static noinline void print_circular_bug(struct lock_list *this,
1967 struct lock_list *target,
1968 struct held_lock *check_src,
1969 struct held_lock *check_tgt)
1970 {
1971 struct task_struct *curr = current;
1972 struct lock_list *parent;
1973 struct lock_list *first_parent;
1974 int depth;
1975
1976 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1977 return;
1978
1979 this->trace = save_trace();
1980 if (!this->trace)
1981 return;
1982
1983 depth = get_lock_depth(target);
1984
1985 print_circular_bug_header(target, depth, check_src, check_tgt);
1986
1987 parent = get_lock_parent(target);
1988 first_parent = parent;
1989
1990 while (parent) {
1991 print_circular_bug_entry(parent, --depth);
1992 parent = get_lock_parent(parent);
1993 }
1994
1995 printk("\nother info that might help us debug this:\n\n");
1996 print_circular_lock_scenario(check_src, check_tgt,
1997 first_parent);
1998
1999 lockdep_print_held_locks(curr);
2000
2001 printk("\nstack backtrace:\n");
2002 dump_stack();
2003 }
2004
print_bfs_bug(int ret)2005 static noinline void print_bfs_bug(int ret)
2006 {
2007 if (!debug_locks_off_graph_unlock())
2008 return;
2009
2010 /*
2011 * Breadth-first-search failed, graph got corrupted?
2012 */
2013 WARN(1, "lockdep bfs error:%d\n", ret);
2014 }
2015
noop_count(struct lock_list * entry,void * data)2016 static bool noop_count(struct lock_list *entry, void *data)
2017 {
2018 (*(unsigned long *)data)++;
2019 return false;
2020 }
2021
__lockdep_count_forward_deps(struct lock_list * this)2022 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2023 {
2024 unsigned long count = 0;
2025 struct lock_list *target_entry;
2026
2027 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2028
2029 return count;
2030 }
lockdep_count_forward_deps(struct lock_class * class)2031 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2032 {
2033 unsigned long ret, flags;
2034 struct lock_list this;
2035
2036 __bfs_init_root(&this, class);
2037
2038 raw_local_irq_save(flags);
2039 lockdep_lock();
2040 ret = __lockdep_count_forward_deps(&this);
2041 lockdep_unlock();
2042 raw_local_irq_restore(flags);
2043
2044 return ret;
2045 }
2046
__lockdep_count_backward_deps(struct lock_list * this)2047 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2048 {
2049 unsigned long count = 0;
2050 struct lock_list *target_entry;
2051
2052 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2053
2054 return count;
2055 }
2056
lockdep_count_backward_deps(struct lock_class * class)2057 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2058 {
2059 unsigned long ret, flags;
2060 struct lock_list this;
2061
2062 __bfs_init_root(&this, class);
2063
2064 raw_local_irq_save(flags);
2065 lockdep_lock();
2066 ret = __lockdep_count_backward_deps(&this);
2067 lockdep_unlock();
2068 raw_local_irq_restore(flags);
2069
2070 return ret;
2071 }
2072
2073 /*
2074 * Check that the dependency graph starting at <src> can lead to
2075 * <target> or not.
2076 */
2077 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2078 check_path(struct held_lock *target, struct lock_list *src_entry,
2079 bool (*match)(struct lock_list *entry, void *data),
2080 struct lock_list **target_entry)
2081 {
2082 enum bfs_result ret;
2083
2084 ret = __bfs_forwards(src_entry, target, match, target_entry);
2085
2086 if (unlikely(bfs_error(ret)))
2087 print_bfs_bug(ret);
2088
2089 return ret;
2090 }
2091
2092 /*
2093 * Prove that the dependency graph starting at <src> can not
2094 * lead to <target>. If it can, there is a circle when adding
2095 * <target> -> <src> dependency.
2096 *
2097 * Print an error and return BFS_RMATCH if it does.
2098 */
2099 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2100 check_noncircular(struct held_lock *src, struct held_lock *target,
2101 struct lock_trace **const trace)
2102 {
2103 enum bfs_result ret;
2104 struct lock_list *target_entry;
2105 struct lock_list src_entry;
2106
2107 bfs_init_root(&src_entry, src);
2108
2109 debug_atomic_inc(nr_cyclic_checks);
2110
2111 ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2112
2113 if (unlikely(ret == BFS_RMATCH)) {
2114 if (!*trace) {
2115 /*
2116 * If save_trace fails here, the printing might
2117 * trigger a WARN but because of the !nr_entries it
2118 * should not do bad things.
2119 */
2120 *trace = save_trace();
2121 }
2122
2123 print_circular_bug(&src_entry, target_entry, src, target);
2124 }
2125
2126 return ret;
2127 }
2128
2129 #ifdef CONFIG_LOCKDEP_SMALL
2130 /*
2131 * Check that the dependency graph starting at <src> can lead to
2132 * <target> or not. If it can, <src> -> <target> dependency is already
2133 * in the graph.
2134 *
2135 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2136 * any error appears in the bfs search.
2137 */
2138 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2139 check_redundant(struct held_lock *src, struct held_lock *target)
2140 {
2141 enum bfs_result ret;
2142 struct lock_list *target_entry;
2143 struct lock_list src_entry;
2144
2145 bfs_init_root(&src_entry, src);
2146 /*
2147 * Special setup for check_redundant().
2148 *
2149 * To report redundant, we need to find a strong dependency path that
2150 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2151 * we need to let __bfs() only search for a path starting at a -(E*)->,
2152 * we achieve this by setting the initial node's ->only_xr to true in
2153 * that case. And if <prev> is S, we set initial ->only_xr to false
2154 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2155 */
2156 src_entry.only_xr = src->read == 0;
2157
2158 debug_atomic_inc(nr_redundant_checks);
2159
2160 ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2161
2162 if (ret == BFS_RMATCH)
2163 debug_atomic_inc(nr_redundant);
2164
2165 return ret;
2166 }
2167 #endif
2168
2169 #ifdef CONFIG_TRACE_IRQFLAGS
2170
2171 /*
2172 * Forwards and backwards subgraph searching, for the purposes of
2173 * proving that two subgraphs can be connected by a new dependency
2174 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2175 *
2176 * A irq safe->unsafe deadlock happens with the following conditions:
2177 *
2178 * 1) We have a strong dependency path A -> ... -> B
2179 *
2180 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2181 * irq can create a new dependency B -> A (consider the case that a holder
2182 * of B gets interrupted by an irq whose handler will try to acquire A).
2183 *
2184 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2185 * strong circle:
2186 *
2187 * For the usage bits of B:
2188 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2189 * ENABLED_IRQ usage suffices.
2190 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2191 * ENABLED_IRQ_*_READ usage suffices.
2192 *
2193 * For the usage bits of A:
2194 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2195 * USED_IN_IRQ usage suffices.
2196 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2197 * USED_IN_IRQ_*_READ usage suffices.
2198 */
2199
2200 /*
2201 * There is a strong dependency path in the dependency graph: A -> B, and now
2202 * we need to decide which usage bit of A should be accumulated to detect
2203 * safe->unsafe bugs.
2204 *
2205 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2206 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2207 *
2208 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2209 * path, any usage of A should be considered. Otherwise, we should only
2210 * consider _READ usage.
2211 */
usage_accumulate(struct lock_list * entry,void * mask)2212 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2213 {
2214 if (!entry->only_xr)
2215 *(unsigned long *)mask |= entry->class->usage_mask;
2216 else /* Mask out _READ usage bits */
2217 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2218
2219 return false;
2220 }
2221
2222 /*
2223 * There is a strong dependency path in the dependency graph: A -> B, and now
2224 * we need to decide which usage bit of B conflicts with the usage bits of A,
2225 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2226 *
2227 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2228 * path, any usage of B should be considered. Otherwise, we should only
2229 * consider _READ usage.
2230 */
usage_match(struct lock_list * entry,void * mask)2231 static inline bool usage_match(struct lock_list *entry, void *mask)
2232 {
2233 if (!entry->only_xr)
2234 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2235 else /* Mask out _READ usage bits */
2236 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2237 }
2238
2239 /*
2240 * Find a node in the forwards-direction dependency sub-graph starting
2241 * at @root->class that matches @bit.
2242 *
2243 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2244 * into *@target_entry.
2245 */
2246 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2247 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2248 struct lock_list **target_entry)
2249 {
2250 enum bfs_result result;
2251
2252 debug_atomic_inc(nr_find_usage_forwards_checks);
2253
2254 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2255
2256 return result;
2257 }
2258
2259 /*
2260 * Find a node in the backwards-direction dependency sub-graph starting
2261 * at @root->class that matches @bit.
2262 */
2263 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2264 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2265 struct lock_list **target_entry)
2266 {
2267 enum bfs_result result;
2268
2269 debug_atomic_inc(nr_find_usage_backwards_checks);
2270
2271 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2272
2273 return result;
2274 }
2275
print_lock_class_header(struct lock_class * class,int depth)2276 static void print_lock_class_header(struct lock_class *class, int depth)
2277 {
2278 int bit;
2279
2280 printk("%*s->", depth, "");
2281 print_lock_name(class);
2282 #ifdef CONFIG_DEBUG_LOCKDEP
2283 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2284 #endif
2285 printk(KERN_CONT " {\n");
2286
2287 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2288 if (class->usage_mask & (1 << bit)) {
2289 int len = depth;
2290
2291 len += printk("%*s %s", depth, "", usage_str[bit]);
2292 len += printk(KERN_CONT " at:\n");
2293 print_lock_trace(class->usage_traces[bit], len);
2294 }
2295 }
2296 printk("%*s }\n", depth, "");
2297
2298 printk("%*s ... key at: [<%px>] %pS\n",
2299 depth, "", class->key, class->key);
2300 }
2301
2302 /*
2303 * Dependency path printing:
2304 *
2305 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2306 * printing out each lock in the dependency path will help on understanding how
2307 * the deadlock could happen. Here are some details about dependency path
2308 * printing:
2309 *
2310 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2311 * for a lock dependency A -> B, there are two lock_lists:
2312 *
2313 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2314 * ->links_to is A. In this case, we can say the lock_list is
2315 * "A -> B" (forwards case).
2316 *
2317 * b) lock_list in the ->locks_before list of B, whose ->class is A
2318 * and ->links_to is B. In this case, we can say the lock_list is
2319 * "B <- A" (bacwards case).
2320 *
2321 * The ->trace of both a) and b) point to the call trace where B was
2322 * acquired with A held.
2323 *
2324 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2325 * represent a certain lock dependency, it only provides an initial entry
2326 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2327 * ->class is A, as a result BFS will search all dependencies starting with
2328 * A, e.g. A -> B or A -> C.
2329 *
2330 * The notation of a forwards helper lock_list is like "-> A", which means
2331 * we should search the forwards dependencies starting with "A", e.g A -> B
2332 * or A -> C.
2333 *
2334 * The notation of a bacwards helper lock_list is like "<- B", which means
2335 * we should search the backwards dependencies ending with "B", e.g.
2336 * B <- A or B <- C.
2337 */
2338
2339 /*
2340 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2341 *
2342 * We have a lock dependency path as follow:
2343 *
2344 * @root @leaf
2345 * | |
2346 * V V
2347 * ->parent ->parent
2348 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2349 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2350 *
2351 * , so it's natural that we start from @leaf and print every ->class and
2352 * ->trace until we reach the @root.
2353 */
2354 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2355 print_shortest_lock_dependencies(struct lock_list *leaf,
2356 struct lock_list *root)
2357 {
2358 struct lock_list *entry = leaf;
2359 int depth;
2360
2361 /*compute depth from generated tree by BFS*/
2362 depth = get_lock_depth(leaf);
2363
2364 do {
2365 print_lock_class_header(entry->class, depth);
2366 printk("%*s ... acquired at:\n", depth, "");
2367 print_lock_trace(entry->trace, 2);
2368 printk("\n");
2369
2370 if (depth == 0 && (entry != root)) {
2371 printk("lockdep:%s bad path found in chain graph\n", __func__);
2372 break;
2373 }
2374
2375 entry = get_lock_parent(entry);
2376 depth--;
2377 } while (entry && (depth >= 0));
2378 }
2379
2380 /*
2381 * printk the shortest lock dependencies from @leaf to @root.
2382 *
2383 * We have a lock dependency path (from a backwards search) as follow:
2384 *
2385 * @leaf @root
2386 * | |
2387 * V V
2388 * ->parent ->parent
2389 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2390 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2391 *
2392 * , so when we iterate from @leaf to @root, we actually print the lock
2393 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2394 *
2395 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2396 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2397 * trace of L1 in the dependency path, which is alright, because most of the
2398 * time we can figure out where L1 is held from the call trace of L2.
2399 */
2400 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2401 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2402 struct lock_list *root)
2403 {
2404 struct lock_list *entry = leaf;
2405 const struct lock_trace *trace = NULL;
2406 int depth;
2407
2408 /*compute depth from generated tree by BFS*/
2409 depth = get_lock_depth(leaf);
2410
2411 do {
2412 print_lock_class_header(entry->class, depth);
2413 if (trace) {
2414 printk("%*s ... acquired at:\n", depth, "");
2415 print_lock_trace(trace, 2);
2416 printk("\n");
2417 }
2418
2419 /*
2420 * Record the pointer to the trace for the next lock_list
2421 * entry, see the comments for the function.
2422 */
2423 trace = entry->trace;
2424
2425 if (depth == 0 && (entry != root)) {
2426 printk("lockdep:%s bad path found in chain graph\n", __func__);
2427 break;
2428 }
2429
2430 entry = get_lock_parent(entry);
2431 depth--;
2432 } while (entry && (depth >= 0));
2433 }
2434
2435 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2436 print_irq_lock_scenario(struct lock_list *safe_entry,
2437 struct lock_list *unsafe_entry,
2438 struct lock_class *prev_class,
2439 struct lock_class *next_class)
2440 {
2441 struct lock_class *safe_class = safe_entry->class;
2442 struct lock_class *unsafe_class = unsafe_entry->class;
2443 struct lock_class *middle_class = prev_class;
2444
2445 if (middle_class == safe_class)
2446 middle_class = next_class;
2447
2448 /*
2449 * A direct locking problem where unsafe_class lock is taken
2450 * directly by safe_class lock, then all we need to show
2451 * is the deadlock scenario, as it is obvious that the
2452 * unsafe lock is taken under the safe lock.
2453 *
2454 * But if there is a chain instead, where the safe lock takes
2455 * an intermediate lock (middle_class) where this lock is
2456 * not the same as the safe lock, then the lock chain is
2457 * used to describe the problem. Otherwise we would need
2458 * to show a different CPU case for each link in the chain
2459 * from the safe_class lock to the unsafe_class lock.
2460 */
2461 if (middle_class != unsafe_class) {
2462 printk("Chain exists of:\n ");
2463 __print_lock_name(safe_class);
2464 printk(KERN_CONT " --> ");
2465 __print_lock_name(middle_class);
2466 printk(KERN_CONT " --> ");
2467 __print_lock_name(unsafe_class);
2468 printk(KERN_CONT "\n\n");
2469 }
2470
2471 printk(" Possible interrupt unsafe locking scenario:\n\n");
2472 printk(" CPU0 CPU1\n");
2473 printk(" ---- ----\n");
2474 printk(" lock(");
2475 __print_lock_name(unsafe_class);
2476 printk(KERN_CONT ");\n");
2477 printk(" local_irq_disable();\n");
2478 printk(" lock(");
2479 __print_lock_name(safe_class);
2480 printk(KERN_CONT ");\n");
2481 printk(" lock(");
2482 __print_lock_name(middle_class);
2483 printk(KERN_CONT ");\n");
2484 printk(" <Interrupt>\n");
2485 printk(" lock(");
2486 __print_lock_name(safe_class);
2487 printk(KERN_CONT ");\n");
2488 printk("\n *** DEADLOCK ***\n\n");
2489 }
2490
2491 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2492 print_bad_irq_dependency(struct task_struct *curr,
2493 struct lock_list *prev_root,
2494 struct lock_list *next_root,
2495 struct lock_list *backwards_entry,
2496 struct lock_list *forwards_entry,
2497 struct held_lock *prev,
2498 struct held_lock *next,
2499 enum lock_usage_bit bit1,
2500 enum lock_usage_bit bit2,
2501 const char *irqclass)
2502 {
2503 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2504 return;
2505
2506 pr_warn("\n");
2507 pr_warn("=====================================================\n");
2508 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2509 irqclass, irqclass);
2510 print_kernel_ident();
2511 pr_warn("-----------------------------------------------------\n");
2512 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2513 curr->comm, task_pid_nr(curr),
2514 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2515 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2516 lockdep_hardirqs_enabled(),
2517 curr->softirqs_enabled);
2518 print_lock(next);
2519
2520 pr_warn("\nand this task is already holding:\n");
2521 print_lock(prev);
2522 pr_warn("which would create a new lock dependency:\n");
2523 print_lock_name(hlock_class(prev));
2524 pr_cont(" ->");
2525 print_lock_name(hlock_class(next));
2526 pr_cont("\n");
2527
2528 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2529 irqclass);
2530 print_lock_name(backwards_entry->class);
2531 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2532
2533 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2534
2535 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2536 print_lock_name(forwards_entry->class);
2537 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2538 pr_warn("...");
2539
2540 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2541
2542 pr_warn("\nother info that might help us debug this:\n\n");
2543 print_irq_lock_scenario(backwards_entry, forwards_entry,
2544 hlock_class(prev), hlock_class(next));
2545
2546 lockdep_print_held_locks(curr);
2547
2548 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2549 prev_root->trace = save_trace();
2550 if (!prev_root->trace)
2551 return;
2552 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2553
2554 pr_warn("\nthe dependencies between the lock to be acquired");
2555 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2556 next_root->trace = save_trace();
2557 if (!next_root->trace)
2558 return;
2559 print_shortest_lock_dependencies(forwards_entry, next_root);
2560
2561 pr_warn("\nstack backtrace:\n");
2562 dump_stack();
2563 }
2564
2565 static const char *state_names[] = {
2566 #define LOCKDEP_STATE(__STATE) \
2567 __stringify(__STATE),
2568 #include "lockdep_states.h"
2569 #undef LOCKDEP_STATE
2570 };
2571
2572 static const char *state_rnames[] = {
2573 #define LOCKDEP_STATE(__STATE) \
2574 __stringify(__STATE)"-READ",
2575 #include "lockdep_states.h"
2576 #undef LOCKDEP_STATE
2577 };
2578
state_name(enum lock_usage_bit bit)2579 static inline const char *state_name(enum lock_usage_bit bit)
2580 {
2581 if (bit & LOCK_USAGE_READ_MASK)
2582 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2583 else
2584 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2585 }
2586
2587 /*
2588 * The bit number is encoded like:
2589 *
2590 * bit0: 0 exclusive, 1 read lock
2591 * bit1: 0 used in irq, 1 irq enabled
2592 * bit2-n: state
2593 */
exclusive_bit(int new_bit)2594 static int exclusive_bit(int new_bit)
2595 {
2596 int state = new_bit & LOCK_USAGE_STATE_MASK;
2597 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2598
2599 /*
2600 * keep state, bit flip the direction and strip read.
2601 */
2602 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2603 }
2604
2605 /*
2606 * Observe that when given a bitmask where each bitnr is encoded as above, a
2607 * right shift of the mask transforms the individual bitnrs as -1 and
2608 * conversely, a left shift transforms into +1 for the individual bitnrs.
2609 *
2610 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2611 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2612 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2613 *
2614 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2615 *
2616 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2617 * all bits set) and recompose with bitnr1 flipped.
2618 */
invert_dir_mask(unsigned long mask)2619 static unsigned long invert_dir_mask(unsigned long mask)
2620 {
2621 unsigned long excl = 0;
2622
2623 /* Invert dir */
2624 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2625 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2626
2627 return excl;
2628 }
2629
2630 /*
2631 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2632 * usage may cause deadlock too, for example:
2633 *
2634 * P1 P2
2635 * <irq disabled>
2636 * write_lock(l1); <irq enabled>
2637 * read_lock(l2);
2638 * write_lock(l2);
2639 * <in irq>
2640 * read_lock(l1);
2641 *
2642 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2643 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2644 * deadlock.
2645 *
2646 * In fact, all of the following cases may cause deadlocks:
2647 *
2648 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2649 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2650 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2651 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2652 *
2653 * As a result, to calculate the "exclusive mask", first we invert the
2654 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2655 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2656 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2657 */
exclusive_mask(unsigned long mask)2658 static unsigned long exclusive_mask(unsigned long mask)
2659 {
2660 unsigned long excl = invert_dir_mask(mask);
2661
2662 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2663 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2664
2665 return excl;
2666 }
2667
2668 /*
2669 * Retrieve the _possible_ original mask to which @mask is
2670 * exclusive. Ie: this is the opposite of exclusive_mask().
2671 * Note that 2 possible original bits can match an exclusive
2672 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2673 * cleared. So both are returned for each exclusive bit.
2674 */
original_mask(unsigned long mask)2675 static unsigned long original_mask(unsigned long mask)
2676 {
2677 unsigned long excl = invert_dir_mask(mask);
2678
2679 /* Include read in existing usages */
2680 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2681 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2682
2683 return excl;
2684 }
2685
2686 /*
2687 * Find the first pair of bit match between an original
2688 * usage mask and an exclusive usage mask.
2689 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2690 static int find_exclusive_match(unsigned long mask,
2691 unsigned long excl_mask,
2692 enum lock_usage_bit *bitp,
2693 enum lock_usage_bit *excl_bitp)
2694 {
2695 int bit, excl, excl_read;
2696
2697 for_each_set_bit(bit, &mask, LOCK_USED) {
2698 /*
2699 * exclusive_bit() strips the read bit, however,
2700 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2701 * to search excl | LOCK_USAGE_READ_MASK as well.
2702 */
2703 excl = exclusive_bit(bit);
2704 excl_read = excl | LOCK_USAGE_READ_MASK;
2705 if (excl_mask & lock_flag(excl)) {
2706 *bitp = bit;
2707 *excl_bitp = excl;
2708 return 0;
2709 } else if (excl_mask & lock_flag(excl_read)) {
2710 *bitp = bit;
2711 *excl_bitp = excl_read;
2712 return 0;
2713 }
2714 }
2715 return -1;
2716 }
2717
2718 /*
2719 * Prove that the new dependency does not connect a hardirq-safe(-read)
2720 * lock with a hardirq-unsafe lock - to achieve this we search
2721 * the backwards-subgraph starting at <prev>, and the
2722 * forwards-subgraph starting at <next>:
2723 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2724 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2725 struct held_lock *next)
2726 {
2727 unsigned long usage_mask = 0, forward_mask, backward_mask;
2728 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2729 struct lock_list *target_entry1;
2730 struct lock_list *target_entry;
2731 struct lock_list this, that;
2732 enum bfs_result ret;
2733
2734 /*
2735 * Step 1: gather all hard/soft IRQs usages backward in an
2736 * accumulated usage mask.
2737 */
2738 bfs_init_rootb(&this, prev);
2739
2740 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2741 if (bfs_error(ret)) {
2742 print_bfs_bug(ret);
2743 return 0;
2744 }
2745
2746 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2747 if (!usage_mask)
2748 return 1;
2749
2750 /*
2751 * Step 2: find exclusive uses forward that match the previous
2752 * backward accumulated mask.
2753 */
2754 forward_mask = exclusive_mask(usage_mask);
2755
2756 bfs_init_root(&that, next);
2757
2758 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2759 if (bfs_error(ret)) {
2760 print_bfs_bug(ret);
2761 return 0;
2762 }
2763 if (ret == BFS_RNOMATCH)
2764 return 1;
2765
2766 /*
2767 * Step 3: we found a bad match! Now retrieve a lock from the backward
2768 * list whose usage mask matches the exclusive usage mask from the
2769 * lock found on the forward list.
2770 *
2771 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2772 * the follow case:
2773 *
2774 * When trying to add A -> B to the graph, we find that there is a
2775 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2776 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2777 * invert bits of M's usage_mask, we will find another lock N that is
2778 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2779 * cause a inversion deadlock.
2780 */
2781 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2782
2783 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2784 if (bfs_error(ret)) {
2785 print_bfs_bug(ret);
2786 return 0;
2787 }
2788 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2789 return 1;
2790
2791 /*
2792 * Step 4: narrow down to a pair of incompatible usage bits
2793 * and report it.
2794 */
2795 ret = find_exclusive_match(target_entry->class->usage_mask,
2796 target_entry1->class->usage_mask,
2797 &backward_bit, &forward_bit);
2798 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2799 return 1;
2800
2801 print_bad_irq_dependency(curr, &this, &that,
2802 target_entry, target_entry1,
2803 prev, next,
2804 backward_bit, forward_bit,
2805 state_name(backward_bit));
2806
2807 return 0;
2808 }
2809
2810 #else
2811
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2812 static inline int check_irq_usage(struct task_struct *curr,
2813 struct held_lock *prev, struct held_lock *next)
2814 {
2815 return 1;
2816 }
2817 #endif /* CONFIG_TRACE_IRQFLAGS */
2818
inc_chains(int irq_context)2819 static void inc_chains(int irq_context)
2820 {
2821 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2822 nr_hardirq_chains++;
2823 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2824 nr_softirq_chains++;
2825 else
2826 nr_process_chains++;
2827 }
2828
dec_chains(int irq_context)2829 static void dec_chains(int irq_context)
2830 {
2831 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2832 nr_hardirq_chains--;
2833 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2834 nr_softirq_chains--;
2835 else
2836 nr_process_chains--;
2837 }
2838
2839 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2840 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2841 {
2842 struct lock_class *next = hlock_class(nxt);
2843 struct lock_class *prev = hlock_class(prv);
2844
2845 printk(" Possible unsafe locking scenario:\n\n");
2846 printk(" CPU0\n");
2847 printk(" ----\n");
2848 printk(" lock(");
2849 __print_lock_name(prev);
2850 printk(KERN_CONT ");\n");
2851 printk(" lock(");
2852 __print_lock_name(next);
2853 printk(KERN_CONT ");\n");
2854 printk("\n *** DEADLOCK ***\n\n");
2855 printk(" May be due to missing lock nesting notation\n\n");
2856 }
2857
2858 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2859 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2860 struct held_lock *next)
2861 {
2862 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2863 return;
2864
2865 pr_warn("\n");
2866 pr_warn("============================================\n");
2867 pr_warn("WARNING: possible recursive locking detected\n");
2868 print_kernel_ident();
2869 pr_warn("--------------------------------------------\n");
2870 pr_warn("%s/%d is trying to acquire lock:\n",
2871 curr->comm, task_pid_nr(curr));
2872 print_lock(next);
2873 pr_warn("\nbut task is already holding lock:\n");
2874 print_lock(prev);
2875
2876 pr_warn("\nother info that might help us debug this:\n");
2877 print_deadlock_scenario(next, prev);
2878 lockdep_print_held_locks(curr);
2879
2880 pr_warn("\nstack backtrace:\n");
2881 dump_stack();
2882 }
2883
2884 /*
2885 * Check whether we are holding such a class already.
2886 *
2887 * (Note that this has to be done separately, because the graph cannot
2888 * detect such classes of deadlocks.)
2889 *
2890 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2891 * lock class is held but nest_lock is also held, i.e. we rely on the
2892 * nest_lock to avoid the deadlock.
2893 */
2894 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2895 check_deadlock(struct task_struct *curr, struct held_lock *next)
2896 {
2897 struct held_lock *prev;
2898 struct held_lock *nest = NULL;
2899 int i;
2900
2901 for (i = 0; i < curr->lockdep_depth; i++) {
2902 prev = curr->held_locks + i;
2903
2904 if (prev->instance == next->nest_lock)
2905 nest = prev;
2906
2907 if (hlock_class(prev) != hlock_class(next))
2908 continue;
2909
2910 /*
2911 * Allow read-after-read recursion of the same
2912 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2913 */
2914 if ((next->read == 2) && prev->read)
2915 continue;
2916
2917 /*
2918 * We're holding the nest_lock, which serializes this lock's
2919 * nesting behaviour.
2920 */
2921 if (nest)
2922 return 2;
2923
2924 print_deadlock_bug(curr, prev, next);
2925 return 0;
2926 }
2927 return 1;
2928 }
2929
2930 /*
2931 * There was a chain-cache miss, and we are about to add a new dependency
2932 * to a previous lock. We validate the following rules:
2933 *
2934 * - would the adding of the <prev> -> <next> dependency create a
2935 * circular dependency in the graph? [== circular deadlock]
2936 *
2937 * - does the new prev->next dependency connect any hardirq-safe lock
2938 * (in the full backwards-subgraph starting at <prev>) with any
2939 * hardirq-unsafe lock (in the full forwards-subgraph starting at
2940 * <next>)? [== illegal lock inversion with hardirq contexts]
2941 *
2942 * - does the new prev->next dependency connect any softirq-safe lock
2943 * (in the full backwards-subgraph starting at <prev>) with any
2944 * softirq-unsafe lock (in the full forwards-subgraph starting at
2945 * <next>)? [== illegal lock inversion with softirq contexts]
2946 *
2947 * any of these scenarios could lead to a deadlock.
2948 *
2949 * Then if all the validations pass, we add the forwards and backwards
2950 * dependency.
2951 */
2952 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)2953 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2954 struct held_lock *next, u16 distance,
2955 struct lock_trace **const trace)
2956 {
2957 struct lock_list *entry;
2958 enum bfs_result ret;
2959
2960 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2961 /*
2962 * The warning statements below may trigger a use-after-free
2963 * of the class name. It is better to trigger a use-after free
2964 * and to have the class name most of the time instead of not
2965 * having the class name available.
2966 */
2967 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2968 "Detected use-after-free of lock class %px/%s\n",
2969 hlock_class(prev),
2970 hlock_class(prev)->name);
2971 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2972 "Detected use-after-free of lock class %px/%s\n",
2973 hlock_class(next),
2974 hlock_class(next)->name);
2975 return 2;
2976 }
2977
2978 /*
2979 * Prove that the new <prev> -> <next> dependency would not
2980 * create a circular dependency in the graph. (We do this by
2981 * a breadth-first search into the graph starting at <next>,
2982 * and check whether we can reach <prev>.)
2983 *
2984 * The search is limited by the size of the circular queue (i.e.,
2985 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2986 * in the graph whose neighbours are to be checked.
2987 */
2988 ret = check_noncircular(next, prev, trace);
2989 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2990 return 0;
2991
2992 if (!check_irq_usage(curr, prev, next))
2993 return 0;
2994
2995 /*
2996 * Is the <prev> -> <next> dependency already present?
2997 *
2998 * (this may occur even though this is a new chain: consider
2999 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3000 * chains - the second one will be new, but L1 already has
3001 * L2 added to its dependency list, due to the first chain.)
3002 */
3003 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3004 if (entry->class == hlock_class(next)) {
3005 if (distance == 1)
3006 entry->distance = 1;
3007 entry->dep |= calc_dep(prev, next);
3008
3009 /*
3010 * Also, update the reverse dependency in @next's
3011 * ->locks_before list.
3012 *
3013 * Here we reuse @entry as the cursor, which is fine
3014 * because we won't go to the next iteration of the
3015 * outer loop:
3016 *
3017 * For normal cases, we return in the inner loop.
3018 *
3019 * If we fail to return, we have inconsistency, i.e.
3020 * <prev>::locks_after contains <next> while
3021 * <next>::locks_before doesn't contain <prev>. In
3022 * that case, we return after the inner and indicate
3023 * something is wrong.
3024 */
3025 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3026 if (entry->class == hlock_class(prev)) {
3027 if (distance == 1)
3028 entry->distance = 1;
3029 entry->dep |= calc_depb(prev, next);
3030 return 1;
3031 }
3032 }
3033
3034 /* <prev> is not found in <next>::locks_before */
3035 return 0;
3036 }
3037 }
3038
3039 #ifdef CONFIG_LOCKDEP_SMALL
3040 /*
3041 * Is the <prev> -> <next> link redundant?
3042 */
3043 ret = check_redundant(prev, next);
3044 if (bfs_error(ret))
3045 return 0;
3046 else if (ret == BFS_RMATCH)
3047 return 2;
3048 #endif
3049
3050 if (!*trace) {
3051 *trace = save_trace();
3052 if (!*trace)
3053 return 0;
3054 }
3055
3056 /*
3057 * Ok, all validations passed, add the new lock
3058 * to the previous lock's dependency list:
3059 */
3060 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3061 &hlock_class(prev)->locks_after,
3062 next->acquire_ip, distance,
3063 calc_dep(prev, next),
3064 *trace);
3065
3066 if (!ret)
3067 return 0;
3068
3069 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3070 &hlock_class(next)->locks_before,
3071 next->acquire_ip, distance,
3072 calc_depb(prev, next),
3073 *trace);
3074 if (!ret)
3075 return 0;
3076
3077 return 2;
3078 }
3079
3080 /*
3081 * Add the dependency to all directly-previous locks that are 'relevant'.
3082 * The ones that are relevant are (in increasing distance from curr):
3083 * all consecutive trylock entries and the final non-trylock entry - or
3084 * the end of this context's lock-chain - whichever comes first.
3085 */
3086 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3087 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3088 {
3089 struct lock_trace *trace = NULL;
3090 int depth = curr->lockdep_depth;
3091 struct held_lock *hlock;
3092
3093 /*
3094 * Debugging checks.
3095 *
3096 * Depth must not be zero for a non-head lock:
3097 */
3098 if (!depth)
3099 goto out_bug;
3100 /*
3101 * At least two relevant locks must exist for this
3102 * to be a head:
3103 */
3104 if (curr->held_locks[depth].irq_context !=
3105 curr->held_locks[depth-1].irq_context)
3106 goto out_bug;
3107
3108 for (;;) {
3109 u16 distance = curr->lockdep_depth - depth + 1;
3110 hlock = curr->held_locks + depth - 1;
3111
3112 if (hlock->check) {
3113 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3114 if (!ret)
3115 return 0;
3116
3117 /*
3118 * Stop after the first non-trylock entry,
3119 * as non-trylock entries have added their
3120 * own direct dependencies already, so this
3121 * lock is connected to them indirectly:
3122 */
3123 if (!hlock->trylock)
3124 break;
3125 }
3126
3127 depth--;
3128 /*
3129 * End of lock-stack?
3130 */
3131 if (!depth)
3132 break;
3133 /*
3134 * Stop the search if we cross into another context:
3135 */
3136 if (curr->held_locks[depth].irq_context !=
3137 curr->held_locks[depth-1].irq_context)
3138 break;
3139 }
3140 return 1;
3141 out_bug:
3142 if (!debug_locks_off_graph_unlock())
3143 return 0;
3144
3145 /*
3146 * Clearly we all shouldn't be here, but since we made it we
3147 * can reliable say we messed up our state. See the above two
3148 * gotos for reasons why we could possibly end up here.
3149 */
3150 WARN_ON(1);
3151
3152 return 0;
3153 }
3154
3155 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3156 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3157 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3158 unsigned long nr_zapped_lock_chains;
3159 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3160 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3161 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3162
3163 /*
3164 * The first 2 chain_hlocks entries in the chain block in the bucket
3165 * list contains the following meta data:
3166 *
3167 * entry[0]:
3168 * Bit 15 - always set to 1 (it is not a class index)
3169 * Bits 0-14 - upper 15 bits of the next block index
3170 * entry[1] - lower 16 bits of next block index
3171 *
3172 * A next block index of all 1 bits means it is the end of the list.
3173 *
3174 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3175 * the chain block size:
3176 *
3177 * entry[2] - upper 16 bits of the chain block size
3178 * entry[3] - lower 16 bits of the chain block size
3179 */
3180 #define MAX_CHAIN_BUCKETS 16
3181 #define CHAIN_BLK_FLAG (1U << 15)
3182 #define CHAIN_BLK_LIST_END 0xFFFFU
3183
3184 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3185
size_to_bucket(int size)3186 static inline int size_to_bucket(int size)
3187 {
3188 if (size > MAX_CHAIN_BUCKETS)
3189 return 0;
3190
3191 return size - 1;
3192 }
3193
3194 /*
3195 * Iterate all the chain blocks in a bucket.
3196 */
3197 #define for_each_chain_block(bucket, prev, curr) \
3198 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3199 (curr) >= 0; \
3200 (prev) = (curr), (curr) = chain_block_next(curr))
3201
3202 /*
3203 * next block or -1
3204 */
chain_block_next(int offset)3205 static inline int chain_block_next(int offset)
3206 {
3207 int next = chain_hlocks[offset];
3208
3209 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3210
3211 if (next == CHAIN_BLK_LIST_END)
3212 return -1;
3213
3214 next &= ~CHAIN_BLK_FLAG;
3215 next <<= 16;
3216 next |= chain_hlocks[offset + 1];
3217
3218 return next;
3219 }
3220
3221 /*
3222 * bucket-0 only
3223 */
chain_block_size(int offset)3224 static inline int chain_block_size(int offset)
3225 {
3226 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3227 }
3228
init_chain_block(int offset,int next,int bucket,int size)3229 static inline void init_chain_block(int offset, int next, int bucket, int size)
3230 {
3231 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3232 chain_hlocks[offset + 1] = (u16)next;
3233
3234 if (size && !bucket) {
3235 chain_hlocks[offset + 2] = size >> 16;
3236 chain_hlocks[offset + 3] = (u16)size;
3237 }
3238 }
3239
add_chain_block(int offset,int size)3240 static inline void add_chain_block(int offset, int size)
3241 {
3242 int bucket = size_to_bucket(size);
3243 int next = chain_block_buckets[bucket];
3244 int prev, curr;
3245
3246 if (unlikely(size < 2)) {
3247 /*
3248 * We can't store single entries on the freelist. Leak them.
3249 *
3250 * One possible way out would be to uniquely mark them, other
3251 * than with CHAIN_BLK_FLAG, such that we can recover them when
3252 * the block before it is re-added.
3253 */
3254 if (size)
3255 nr_lost_chain_hlocks++;
3256 return;
3257 }
3258
3259 nr_free_chain_hlocks += size;
3260 if (!bucket) {
3261 nr_large_chain_blocks++;
3262
3263 /*
3264 * Variable sized, sort large to small.
3265 */
3266 for_each_chain_block(0, prev, curr) {
3267 if (size >= chain_block_size(curr))
3268 break;
3269 }
3270 init_chain_block(offset, curr, 0, size);
3271 if (prev < 0)
3272 chain_block_buckets[0] = offset;
3273 else
3274 init_chain_block(prev, offset, 0, 0);
3275 return;
3276 }
3277 /*
3278 * Fixed size, add to head.
3279 */
3280 init_chain_block(offset, next, bucket, size);
3281 chain_block_buckets[bucket] = offset;
3282 }
3283
3284 /*
3285 * Only the first block in the list can be deleted.
3286 *
3287 * For the variable size bucket[0], the first block (the largest one) is
3288 * returned, broken up and put back into the pool. So if a chain block of
3289 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3290 * queued up after the primordial chain block and never be used until the
3291 * hlock entries in the primordial chain block is almost used up. That
3292 * causes fragmentation and reduce allocation efficiency. That can be
3293 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3294 */
del_chain_block(int bucket,int size,int next)3295 static inline void del_chain_block(int bucket, int size, int next)
3296 {
3297 nr_free_chain_hlocks -= size;
3298 chain_block_buckets[bucket] = next;
3299
3300 if (!bucket)
3301 nr_large_chain_blocks--;
3302 }
3303
init_chain_block_buckets(void)3304 static void init_chain_block_buckets(void)
3305 {
3306 int i;
3307
3308 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3309 chain_block_buckets[i] = -1;
3310
3311 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3312 }
3313
3314 /*
3315 * Return offset of a chain block of the right size or -1 if not found.
3316 *
3317 * Fairly simple worst-fit allocator with the addition of a number of size
3318 * specific free lists.
3319 */
alloc_chain_hlocks(int req)3320 static int alloc_chain_hlocks(int req)
3321 {
3322 int bucket, curr, size;
3323
3324 /*
3325 * We rely on the MSB to act as an escape bit to denote freelist
3326 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3327 */
3328 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3329
3330 init_data_structures_once();
3331
3332 if (nr_free_chain_hlocks < req)
3333 return -1;
3334
3335 /*
3336 * We require a minimum of 2 (u16) entries to encode a freelist
3337 * 'pointer'.
3338 */
3339 req = max(req, 2);
3340 bucket = size_to_bucket(req);
3341 curr = chain_block_buckets[bucket];
3342
3343 if (bucket) {
3344 if (curr >= 0) {
3345 del_chain_block(bucket, req, chain_block_next(curr));
3346 return curr;
3347 }
3348 /* Try bucket 0 */
3349 curr = chain_block_buckets[0];
3350 }
3351
3352 /*
3353 * The variable sized freelist is sorted by size; the first entry is
3354 * the largest. Use it if it fits.
3355 */
3356 if (curr >= 0) {
3357 size = chain_block_size(curr);
3358 if (likely(size >= req)) {
3359 del_chain_block(0, size, chain_block_next(curr));
3360 if (size > req)
3361 add_chain_block(curr + req, size - req);
3362 return curr;
3363 }
3364 }
3365
3366 /*
3367 * Last resort, split a block in a larger sized bucket.
3368 */
3369 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3370 bucket = size_to_bucket(size);
3371 curr = chain_block_buckets[bucket];
3372 if (curr < 0)
3373 continue;
3374
3375 del_chain_block(bucket, size, chain_block_next(curr));
3376 add_chain_block(curr + req, size - req);
3377 return curr;
3378 }
3379
3380 return -1;
3381 }
3382
free_chain_hlocks(int base,int size)3383 static inline void free_chain_hlocks(int base, int size)
3384 {
3385 add_chain_block(base, max(size, 2));
3386 }
3387
lock_chain_get_class(struct lock_chain * chain,int i)3388 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3389 {
3390 u16 chain_hlock = chain_hlocks[chain->base + i];
3391 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3392
3393 return lock_classes + class_idx;
3394 }
3395
3396 /*
3397 * Returns the index of the first held_lock of the current chain
3398 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3399 static inline int get_first_held_lock(struct task_struct *curr,
3400 struct held_lock *hlock)
3401 {
3402 int i;
3403 struct held_lock *hlock_curr;
3404
3405 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3406 hlock_curr = curr->held_locks + i;
3407 if (hlock_curr->irq_context != hlock->irq_context)
3408 break;
3409
3410 }
3411
3412 return ++i;
3413 }
3414
3415 #ifdef CONFIG_DEBUG_LOCKDEP
3416 /*
3417 * Returns the next chain_key iteration
3418 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3419 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3420 {
3421 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3422
3423 printk(" hlock_id:%d -> chain_key:%016Lx",
3424 (unsigned int)hlock_id,
3425 (unsigned long long)new_chain_key);
3426 return new_chain_key;
3427 }
3428
3429 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3430 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3431 {
3432 struct held_lock *hlock;
3433 u64 chain_key = INITIAL_CHAIN_KEY;
3434 int depth = curr->lockdep_depth;
3435 int i = get_first_held_lock(curr, hlock_next);
3436
3437 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3438 hlock_next->irq_context);
3439 for (; i < depth; i++) {
3440 hlock = curr->held_locks + i;
3441 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3442
3443 print_lock(hlock);
3444 }
3445
3446 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3447 print_lock(hlock_next);
3448 }
3449
print_chain_keys_chain(struct lock_chain * chain)3450 static void print_chain_keys_chain(struct lock_chain *chain)
3451 {
3452 int i;
3453 u64 chain_key = INITIAL_CHAIN_KEY;
3454 u16 hlock_id;
3455
3456 printk("depth: %u\n", chain->depth);
3457 for (i = 0; i < chain->depth; i++) {
3458 hlock_id = chain_hlocks[chain->base + i];
3459 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3460
3461 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3462 printk("\n");
3463 }
3464 }
3465
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3466 static void print_collision(struct task_struct *curr,
3467 struct held_lock *hlock_next,
3468 struct lock_chain *chain)
3469 {
3470 pr_warn("\n");
3471 pr_warn("============================\n");
3472 pr_warn("WARNING: chain_key collision\n");
3473 print_kernel_ident();
3474 pr_warn("----------------------------\n");
3475 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3476 pr_warn("Hash chain already cached but the contents don't match!\n");
3477
3478 pr_warn("Held locks:");
3479 print_chain_keys_held_locks(curr, hlock_next);
3480
3481 pr_warn("Locks in cached chain:");
3482 print_chain_keys_chain(chain);
3483
3484 pr_warn("\nstack backtrace:\n");
3485 dump_stack();
3486 }
3487 #endif
3488
3489 /*
3490 * Checks whether the chain and the current held locks are consistent
3491 * in depth and also in content. If they are not it most likely means
3492 * that there was a collision during the calculation of the chain_key.
3493 * Returns: 0 not passed, 1 passed
3494 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3495 static int check_no_collision(struct task_struct *curr,
3496 struct held_lock *hlock,
3497 struct lock_chain *chain)
3498 {
3499 #ifdef CONFIG_DEBUG_LOCKDEP
3500 int i, j, id;
3501
3502 i = get_first_held_lock(curr, hlock);
3503
3504 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3505 print_collision(curr, hlock, chain);
3506 return 0;
3507 }
3508
3509 for (j = 0; j < chain->depth - 1; j++, i++) {
3510 id = hlock_id(&curr->held_locks[i]);
3511
3512 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3513 print_collision(curr, hlock, chain);
3514 return 0;
3515 }
3516 }
3517 #endif
3518 return 1;
3519 }
3520
3521 /*
3522 * Given an index that is >= -1, return the index of the next lock chain.
3523 * Return -2 if there is no next lock chain.
3524 */
lockdep_next_lockchain(long i)3525 long lockdep_next_lockchain(long i)
3526 {
3527 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3528 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3529 }
3530
lock_chain_count(void)3531 unsigned long lock_chain_count(void)
3532 {
3533 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3534 }
3535
3536 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3537 static struct lock_chain *alloc_lock_chain(void)
3538 {
3539 int idx = find_first_zero_bit(lock_chains_in_use,
3540 ARRAY_SIZE(lock_chains));
3541
3542 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3543 return NULL;
3544 __set_bit(idx, lock_chains_in_use);
3545 return lock_chains + idx;
3546 }
3547
3548 /*
3549 * Adds a dependency chain into chain hashtable. And must be called with
3550 * graph_lock held.
3551 *
3552 * Return 0 if fail, and graph_lock is released.
3553 * Return 1 if succeed, with graph_lock held.
3554 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3555 static inline int add_chain_cache(struct task_struct *curr,
3556 struct held_lock *hlock,
3557 u64 chain_key)
3558 {
3559 struct hlist_head *hash_head = chainhashentry(chain_key);
3560 struct lock_chain *chain;
3561 int i, j;
3562
3563 /*
3564 * The caller must hold the graph lock, ensure we've got IRQs
3565 * disabled to make this an IRQ-safe lock.. for recursion reasons
3566 * lockdep won't complain about its own locking errors.
3567 */
3568 if (lockdep_assert_locked())
3569 return 0;
3570
3571 chain = alloc_lock_chain();
3572 if (!chain) {
3573 if (!debug_locks_off_graph_unlock())
3574 return 0;
3575
3576 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3577 dump_stack();
3578 return 0;
3579 }
3580 chain->chain_key = chain_key;
3581 chain->irq_context = hlock->irq_context;
3582 i = get_first_held_lock(curr, hlock);
3583 chain->depth = curr->lockdep_depth + 1 - i;
3584
3585 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3586 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3587 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3588
3589 j = alloc_chain_hlocks(chain->depth);
3590 if (j < 0) {
3591 if (!debug_locks_off_graph_unlock())
3592 return 0;
3593
3594 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3595 dump_stack();
3596 return 0;
3597 }
3598
3599 chain->base = j;
3600 for (j = 0; j < chain->depth - 1; j++, i++) {
3601 int lock_id = hlock_id(curr->held_locks + i);
3602
3603 chain_hlocks[chain->base + j] = lock_id;
3604 }
3605 chain_hlocks[chain->base + j] = hlock_id(hlock);
3606 hlist_add_head_rcu(&chain->entry, hash_head);
3607 debug_atomic_inc(chain_lookup_misses);
3608 inc_chains(chain->irq_context);
3609
3610 return 1;
3611 }
3612
3613 /*
3614 * Look up a dependency chain. Must be called with either the graph lock or
3615 * the RCU read lock held.
3616 */
lookup_chain_cache(u64 chain_key)3617 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3618 {
3619 struct hlist_head *hash_head = chainhashentry(chain_key);
3620 struct lock_chain *chain;
3621
3622 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3623 if (READ_ONCE(chain->chain_key) == chain_key) {
3624 debug_atomic_inc(chain_lookup_hits);
3625 return chain;
3626 }
3627 }
3628 return NULL;
3629 }
3630
3631 /*
3632 * If the key is not present yet in dependency chain cache then
3633 * add it and return 1 - in this case the new dependency chain is
3634 * validated. If the key is already hashed, return 0.
3635 * (On return with 1 graph_lock is held.)
3636 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3637 static inline int lookup_chain_cache_add(struct task_struct *curr,
3638 struct held_lock *hlock,
3639 u64 chain_key)
3640 {
3641 struct lock_class *class = hlock_class(hlock);
3642 struct lock_chain *chain = lookup_chain_cache(chain_key);
3643
3644 if (chain) {
3645 cache_hit:
3646 if (!check_no_collision(curr, hlock, chain))
3647 return 0;
3648
3649 if (very_verbose(class)) {
3650 printk("\nhash chain already cached, key: "
3651 "%016Lx tail class: [%px] %s\n",
3652 (unsigned long long)chain_key,
3653 class->key, class->name);
3654 }
3655
3656 return 0;
3657 }
3658
3659 if (very_verbose(class)) {
3660 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3661 (unsigned long long)chain_key, class->key, class->name);
3662 }
3663
3664 if (!graph_lock())
3665 return 0;
3666
3667 /*
3668 * We have to walk the chain again locked - to avoid duplicates:
3669 */
3670 chain = lookup_chain_cache(chain_key);
3671 if (chain) {
3672 graph_unlock();
3673 goto cache_hit;
3674 }
3675
3676 if (!add_chain_cache(curr, hlock, chain_key))
3677 return 0;
3678
3679 return 1;
3680 }
3681
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3682 static int validate_chain(struct task_struct *curr,
3683 struct held_lock *hlock,
3684 int chain_head, u64 chain_key)
3685 {
3686 /*
3687 * Trylock needs to maintain the stack of held locks, but it
3688 * does not add new dependencies, because trylock can be done
3689 * in any order.
3690 *
3691 * We look up the chain_key and do the O(N^2) check and update of
3692 * the dependencies only if this is a new dependency chain.
3693 * (If lookup_chain_cache_add() return with 1 it acquires
3694 * graph_lock for us)
3695 */
3696 if (!hlock->trylock && hlock->check &&
3697 lookup_chain_cache_add(curr, hlock, chain_key)) {
3698 /*
3699 * Check whether last held lock:
3700 *
3701 * - is irq-safe, if this lock is irq-unsafe
3702 * - is softirq-safe, if this lock is hardirq-unsafe
3703 *
3704 * And check whether the new lock's dependency graph
3705 * could lead back to the previous lock:
3706 *
3707 * - within the current held-lock stack
3708 * - across our accumulated lock dependency records
3709 *
3710 * any of these scenarios could lead to a deadlock.
3711 */
3712 /*
3713 * The simple case: does the current hold the same lock
3714 * already?
3715 */
3716 int ret = check_deadlock(curr, hlock);
3717
3718 if (!ret)
3719 return 0;
3720 /*
3721 * Add dependency only if this lock is not the head
3722 * of the chain, and if the new lock introduces no more
3723 * lock dependency (because we already hold a lock with the
3724 * same lock class) nor deadlock (because the nest_lock
3725 * serializes nesting locks), see the comments for
3726 * check_deadlock().
3727 */
3728 if (!chain_head && ret != 2) {
3729 if (!check_prevs_add(curr, hlock))
3730 return 0;
3731 }
3732
3733 graph_unlock();
3734 } else {
3735 /* after lookup_chain_cache_add(): */
3736 if (unlikely(!debug_locks))
3737 return 0;
3738 }
3739
3740 return 1;
3741 }
3742 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3743 static inline int validate_chain(struct task_struct *curr,
3744 struct held_lock *hlock,
3745 int chain_head, u64 chain_key)
3746 {
3747 return 1;
3748 }
3749
init_chain_block_buckets(void)3750 static void init_chain_block_buckets(void) { }
3751 #endif /* CONFIG_PROVE_LOCKING */
3752
3753 /*
3754 * We are building curr_chain_key incrementally, so double-check
3755 * it from scratch, to make sure that it's done correctly:
3756 */
check_chain_key(struct task_struct * curr)3757 static void check_chain_key(struct task_struct *curr)
3758 {
3759 #ifdef CONFIG_DEBUG_LOCKDEP
3760 struct held_lock *hlock, *prev_hlock = NULL;
3761 unsigned int i;
3762 u64 chain_key = INITIAL_CHAIN_KEY;
3763
3764 for (i = 0; i < curr->lockdep_depth; i++) {
3765 hlock = curr->held_locks + i;
3766 if (chain_key != hlock->prev_chain_key) {
3767 debug_locks_off();
3768 /*
3769 * We got mighty confused, our chain keys don't match
3770 * with what we expect, someone trample on our task state?
3771 */
3772 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3773 curr->lockdep_depth, i,
3774 (unsigned long long)chain_key,
3775 (unsigned long long)hlock->prev_chain_key);
3776 return;
3777 }
3778
3779 /*
3780 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3781 * it registered lock class index?
3782 */
3783 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3784 return;
3785
3786 if (prev_hlock && (prev_hlock->irq_context !=
3787 hlock->irq_context))
3788 chain_key = INITIAL_CHAIN_KEY;
3789 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3790 prev_hlock = hlock;
3791 }
3792 if (chain_key != curr->curr_chain_key) {
3793 debug_locks_off();
3794 /*
3795 * More smoking hash instead of calculating it, damn see these
3796 * numbers float.. I bet that a pink elephant stepped on my memory.
3797 */
3798 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3799 curr->lockdep_depth, i,
3800 (unsigned long long)chain_key,
3801 (unsigned long long)curr->curr_chain_key);
3802 }
3803 #endif
3804 }
3805
3806 #ifdef CONFIG_PROVE_LOCKING
3807 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3808 enum lock_usage_bit new_bit);
3809
print_usage_bug_scenario(struct held_lock * lock)3810 static void print_usage_bug_scenario(struct held_lock *lock)
3811 {
3812 struct lock_class *class = hlock_class(lock);
3813
3814 printk(" Possible unsafe locking scenario:\n\n");
3815 printk(" CPU0\n");
3816 printk(" ----\n");
3817 printk(" lock(");
3818 __print_lock_name(class);
3819 printk(KERN_CONT ");\n");
3820 printk(" <Interrupt>\n");
3821 printk(" lock(");
3822 __print_lock_name(class);
3823 printk(KERN_CONT ");\n");
3824 printk("\n *** DEADLOCK ***\n\n");
3825 }
3826
3827 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3828 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3829 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3830 {
3831 if (!debug_locks_off() || debug_locks_silent)
3832 return;
3833
3834 pr_warn("\n");
3835 pr_warn("================================\n");
3836 pr_warn("WARNING: inconsistent lock state\n");
3837 print_kernel_ident();
3838 pr_warn("--------------------------------\n");
3839
3840 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3841 usage_str[prev_bit], usage_str[new_bit]);
3842
3843 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3844 curr->comm, task_pid_nr(curr),
3845 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3846 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3847 lockdep_hardirqs_enabled(),
3848 lockdep_softirqs_enabled(curr));
3849 print_lock(this);
3850
3851 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3852 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3853
3854 print_irqtrace_events(curr);
3855 pr_warn("\nother info that might help us debug this:\n");
3856 print_usage_bug_scenario(this);
3857
3858 lockdep_print_held_locks(curr);
3859
3860 pr_warn("\nstack backtrace:\n");
3861 dump_stack();
3862 }
3863
3864 /*
3865 * Print out an error if an invalid bit is set:
3866 */
3867 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3868 valid_state(struct task_struct *curr, struct held_lock *this,
3869 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3870 {
3871 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3872 graph_unlock();
3873 print_usage_bug(curr, this, bad_bit, new_bit);
3874 return 0;
3875 }
3876 return 1;
3877 }
3878
3879
3880 /*
3881 * print irq inversion bug:
3882 */
3883 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3884 print_irq_inversion_bug(struct task_struct *curr,
3885 struct lock_list *root, struct lock_list *other,
3886 struct held_lock *this, int forwards,
3887 const char *irqclass)
3888 {
3889 struct lock_list *entry = other;
3890 struct lock_list *middle = NULL;
3891 int depth;
3892
3893 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3894 return;
3895
3896 pr_warn("\n");
3897 pr_warn("========================================================\n");
3898 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3899 print_kernel_ident();
3900 pr_warn("--------------------------------------------------------\n");
3901 pr_warn("%s/%d just changed the state of lock:\n",
3902 curr->comm, task_pid_nr(curr));
3903 print_lock(this);
3904 if (forwards)
3905 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3906 else
3907 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3908 print_lock_name(other->class);
3909 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3910
3911 pr_warn("\nother info that might help us debug this:\n");
3912
3913 /* Find a middle lock (if one exists) */
3914 depth = get_lock_depth(other);
3915 do {
3916 if (depth == 0 && (entry != root)) {
3917 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3918 break;
3919 }
3920 middle = entry;
3921 entry = get_lock_parent(entry);
3922 depth--;
3923 } while (entry && entry != root && (depth >= 0));
3924 if (forwards)
3925 print_irq_lock_scenario(root, other,
3926 middle ? middle->class : root->class, other->class);
3927 else
3928 print_irq_lock_scenario(other, root,
3929 middle ? middle->class : other->class, root->class);
3930
3931 lockdep_print_held_locks(curr);
3932
3933 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3934 root->trace = save_trace();
3935 if (!root->trace)
3936 return;
3937 print_shortest_lock_dependencies(other, root);
3938
3939 pr_warn("\nstack backtrace:\n");
3940 dump_stack();
3941 }
3942
3943 /*
3944 * Prove that in the forwards-direction subgraph starting at <this>
3945 * there is no lock matching <mask>:
3946 */
3947 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3948 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3949 enum lock_usage_bit bit)
3950 {
3951 enum bfs_result ret;
3952 struct lock_list root;
3953 struct lock_list *target_entry;
3954 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3955 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3956
3957 bfs_init_root(&root, this);
3958 ret = find_usage_forwards(&root, usage_mask, &target_entry);
3959 if (bfs_error(ret)) {
3960 print_bfs_bug(ret);
3961 return 0;
3962 }
3963 if (ret == BFS_RNOMATCH)
3964 return 1;
3965
3966 /* Check whether write or read usage is the match */
3967 if (target_entry->class->usage_mask & lock_flag(bit)) {
3968 print_irq_inversion_bug(curr, &root, target_entry,
3969 this, 1, state_name(bit));
3970 } else {
3971 print_irq_inversion_bug(curr, &root, target_entry,
3972 this, 1, state_name(read_bit));
3973 }
3974
3975 return 0;
3976 }
3977
3978 /*
3979 * Prove that in the backwards-direction subgraph starting at <this>
3980 * there is no lock matching <mask>:
3981 */
3982 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3983 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3984 enum lock_usage_bit bit)
3985 {
3986 enum bfs_result ret;
3987 struct lock_list root;
3988 struct lock_list *target_entry;
3989 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3990 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3991
3992 bfs_init_rootb(&root, this);
3993 ret = find_usage_backwards(&root, usage_mask, &target_entry);
3994 if (bfs_error(ret)) {
3995 print_bfs_bug(ret);
3996 return 0;
3997 }
3998 if (ret == BFS_RNOMATCH)
3999 return 1;
4000
4001 /* Check whether write or read usage is the match */
4002 if (target_entry->class->usage_mask & lock_flag(bit)) {
4003 print_irq_inversion_bug(curr, &root, target_entry,
4004 this, 0, state_name(bit));
4005 } else {
4006 print_irq_inversion_bug(curr, &root, target_entry,
4007 this, 0, state_name(read_bit));
4008 }
4009
4010 return 0;
4011 }
4012
print_irqtrace_events(struct task_struct * curr)4013 void print_irqtrace_events(struct task_struct *curr)
4014 {
4015 const struct irqtrace_events *trace = &curr->irqtrace;
4016
4017 printk("irq event stamp: %u\n", trace->irq_events);
4018 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4019 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4020 (void *)trace->hardirq_enable_ip);
4021 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4022 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4023 (void *)trace->hardirq_disable_ip);
4024 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4025 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4026 (void *)trace->softirq_enable_ip);
4027 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4028 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4029 (void *)trace->softirq_disable_ip);
4030 }
4031
HARDIRQ_verbose(struct lock_class * class)4032 static int HARDIRQ_verbose(struct lock_class *class)
4033 {
4034 #if HARDIRQ_VERBOSE
4035 return class_filter(class);
4036 #endif
4037 return 0;
4038 }
4039
SOFTIRQ_verbose(struct lock_class * class)4040 static int SOFTIRQ_verbose(struct lock_class *class)
4041 {
4042 #if SOFTIRQ_VERBOSE
4043 return class_filter(class);
4044 #endif
4045 return 0;
4046 }
4047
4048 static int (*state_verbose_f[])(struct lock_class *class) = {
4049 #define LOCKDEP_STATE(__STATE) \
4050 __STATE##_verbose,
4051 #include "lockdep_states.h"
4052 #undef LOCKDEP_STATE
4053 };
4054
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4055 static inline int state_verbose(enum lock_usage_bit bit,
4056 struct lock_class *class)
4057 {
4058 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4059 }
4060
4061 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4062 enum lock_usage_bit bit, const char *name);
4063
4064 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4065 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4066 enum lock_usage_bit new_bit)
4067 {
4068 int excl_bit = exclusive_bit(new_bit);
4069 int read = new_bit & LOCK_USAGE_READ_MASK;
4070 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4071
4072 /*
4073 * Validate that this particular lock does not have conflicting
4074 * usage states.
4075 */
4076 if (!valid_state(curr, this, new_bit, excl_bit))
4077 return 0;
4078
4079 /*
4080 * Check for read in write conflicts
4081 */
4082 if (!read && !valid_state(curr, this, new_bit,
4083 excl_bit + LOCK_USAGE_READ_MASK))
4084 return 0;
4085
4086
4087 /*
4088 * Validate that the lock dependencies don't have conflicting usage
4089 * states.
4090 */
4091 if (dir) {
4092 /*
4093 * mark ENABLED has to look backwards -- to ensure no dependee
4094 * has USED_IN state, which, again, would allow recursion deadlocks.
4095 */
4096 if (!check_usage_backwards(curr, this, excl_bit))
4097 return 0;
4098 } else {
4099 /*
4100 * mark USED_IN has to look forwards -- to ensure no dependency
4101 * has ENABLED state, which would allow recursion deadlocks.
4102 */
4103 if (!check_usage_forwards(curr, this, excl_bit))
4104 return 0;
4105 }
4106
4107 if (state_verbose(new_bit, hlock_class(this)))
4108 return 2;
4109
4110 return 1;
4111 }
4112
4113 /*
4114 * Mark all held locks with a usage bit:
4115 */
4116 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4117 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4118 {
4119 struct held_lock *hlock;
4120 int i;
4121
4122 for (i = 0; i < curr->lockdep_depth; i++) {
4123 enum lock_usage_bit hlock_bit = base_bit;
4124 hlock = curr->held_locks + i;
4125
4126 if (hlock->read)
4127 hlock_bit += LOCK_USAGE_READ_MASK;
4128
4129 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4130
4131 if (!hlock->check)
4132 continue;
4133
4134 if (!mark_lock(curr, hlock, hlock_bit))
4135 return 0;
4136 }
4137
4138 return 1;
4139 }
4140
4141 /*
4142 * Hardirqs will be enabled:
4143 */
__trace_hardirqs_on_caller(void)4144 static void __trace_hardirqs_on_caller(void)
4145 {
4146 struct task_struct *curr = current;
4147
4148 /*
4149 * We are going to turn hardirqs on, so set the
4150 * usage bit for all held locks:
4151 */
4152 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4153 return;
4154 /*
4155 * If we have softirqs enabled, then set the usage
4156 * bit for all held locks. (disabled hardirqs prevented
4157 * this bit from being set before)
4158 */
4159 if (curr->softirqs_enabled)
4160 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4161 }
4162
4163 /**
4164 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4165 * @ip: Caller address
4166 *
4167 * Invoked before a possible transition to RCU idle from exit to user or
4168 * guest mode. This ensures that all RCU operations are done before RCU
4169 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4170 * invoked to set the final state.
4171 */
lockdep_hardirqs_on_prepare(unsigned long ip)4172 void lockdep_hardirqs_on_prepare(unsigned long ip)
4173 {
4174 if (unlikely(!debug_locks))
4175 return;
4176
4177 /*
4178 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4179 */
4180 if (unlikely(in_nmi()))
4181 return;
4182
4183 if (unlikely(this_cpu_read(lockdep_recursion)))
4184 return;
4185
4186 if (unlikely(lockdep_hardirqs_enabled())) {
4187 /*
4188 * Neither irq nor preemption are disabled here
4189 * so this is racy by nature but losing one hit
4190 * in a stat is not a big deal.
4191 */
4192 __debug_atomic_inc(redundant_hardirqs_on);
4193 return;
4194 }
4195
4196 /*
4197 * We're enabling irqs and according to our state above irqs weren't
4198 * already enabled, yet we find the hardware thinks they are in fact
4199 * enabled.. someone messed up their IRQ state tracing.
4200 */
4201 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4202 return;
4203
4204 /*
4205 * See the fine text that goes along with this variable definition.
4206 */
4207 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4208 return;
4209
4210 /*
4211 * Can't allow enabling interrupts while in an interrupt handler,
4212 * that's general bad form and such. Recursion, limited stack etc..
4213 */
4214 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4215 return;
4216
4217 current->hardirq_chain_key = current->curr_chain_key;
4218
4219 lockdep_recursion_inc();
4220 __trace_hardirqs_on_caller();
4221 lockdep_recursion_finish();
4222 }
4223 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4224
lockdep_hardirqs_on(unsigned long ip)4225 void noinstr lockdep_hardirqs_on(unsigned long ip)
4226 {
4227 struct irqtrace_events *trace = ¤t->irqtrace;
4228
4229 if (unlikely(!debug_locks))
4230 return;
4231
4232 /*
4233 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4234 * tracking state and hardware state are out of sync.
4235 *
4236 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4237 * and not rely on hardware state like normal interrupts.
4238 */
4239 if (unlikely(in_nmi())) {
4240 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4241 return;
4242
4243 /*
4244 * Skip:
4245 * - recursion check, because NMI can hit lockdep;
4246 * - hardware state check, because above;
4247 * - chain_key check, see lockdep_hardirqs_on_prepare().
4248 */
4249 goto skip_checks;
4250 }
4251
4252 if (unlikely(this_cpu_read(lockdep_recursion)))
4253 return;
4254
4255 if (lockdep_hardirqs_enabled()) {
4256 /*
4257 * Neither irq nor preemption are disabled here
4258 * so this is racy by nature but losing one hit
4259 * in a stat is not a big deal.
4260 */
4261 __debug_atomic_inc(redundant_hardirqs_on);
4262 return;
4263 }
4264
4265 /*
4266 * We're enabling irqs and according to our state above irqs weren't
4267 * already enabled, yet we find the hardware thinks they are in fact
4268 * enabled.. someone messed up their IRQ state tracing.
4269 */
4270 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4271 return;
4272
4273 /*
4274 * Ensure the lock stack remained unchanged between
4275 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4276 */
4277 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4278 current->curr_chain_key);
4279
4280 skip_checks:
4281 /* we'll do an OFF -> ON transition: */
4282 __this_cpu_write(hardirqs_enabled, 1);
4283 trace->hardirq_enable_ip = ip;
4284 trace->hardirq_enable_event = ++trace->irq_events;
4285 debug_atomic_inc(hardirqs_on_events);
4286 }
4287 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4288
4289 /*
4290 * Hardirqs were disabled:
4291 */
lockdep_hardirqs_off(unsigned long ip)4292 void noinstr lockdep_hardirqs_off(unsigned long ip)
4293 {
4294 if (unlikely(!debug_locks))
4295 return;
4296
4297 /*
4298 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4299 * they will restore the software state. This ensures the software
4300 * state is consistent inside NMIs as well.
4301 */
4302 if (in_nmi()) {
4303 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4304 return;
4305 } else if (__this_cpu_read(lockdep_recursion))
4306 return;
4307
4308 /*
4309 * So we're supposed to get called after you mask local IRQs, but for
4310 * some reason the hardware doesn't quite think you did a proper job.
4311 */
4312 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4313 return;
4314
4315 if (lockdep_hardirqs_enabled()) {
4316 struct irqtrace_events *trace = ¤t->irqtrace;
4317
4318 /*
4319 * We have done an ON -> OFF transition:
4320 */
4321 __this_cpu_write(hardirqs_enabled, 0);
4322 trace->hardirq_disable_ip = ip;
4323 trace->hardirq_disable_event = ++trace->irq_events;
4324 debug_atomic_inc(hardirqs_off_events);
4325 } else {
4326 debug_atomic_inc(redundant_hardirqs_off);
4327 }
4328 }
4329 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4330
4331 /*
4332 * Softirqs will be enabled:
4333 */
lockdep_softirqs_on(unsigned long ip)4334 void lockdep_softirqs_on(unsigned long ip)
4335 {
4336 struct irqtrace_events *trace = ¤t->irqtrace;
4337
4338 if (unlikely(!lockdep_enabled()))
4339 return;
4340
4341 /*
4342 * We fancy IRQs being disabled here, see softirq.c, avoids
4343 * funny state and nesting things.
4344 */
4345 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4346 return;
4347
4348 if (current->softirqs_enabled) {
4349 debug_atomic_inc(redundant_softirqs_on);
4350 return;
4351 }
4352
4353 lockdep_recursion_inc();
4354 /*
4355 * We'll do an OFF -> ON transition:
4356 */
4357 current->softirqs_enabled = 1;
4358 trace->softirq_enable_ip = ip;
4359 trace->softirq_enable_event = ++trace->irq_events;
4360 debug_atomic_inc(softirqs_on_events);
4361 /*
4362 * We are going to turn softirqs on, so set the
4363 * usage bit for all held locks, if hardirqs are
4364 * enabled too:
4365 */
4366 if (lockdep_hardirqs_enabled())
4367 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4368 lockdep_recursion_finish();
4369 }
4370
4371 /*
4372 * Softirqs were disabled:
4373 */
lockdep_softirqs_off(unsigned long ip)4374 void lockdep_softirqs_off(unsigned long ip)
4375 {
4376 if (unlikely(!lockdep_enabled()))
4377 return;
4378
4379 /*
4380 * We fancy IRQs being disabled here, see softirq.c
4381 */
4382 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4383 return;
4384
4385 if (current->softirqs_enabled) {
4386 struct irqtrace_events *trace = ¤t->irqtrace;
4387
4388 /*
4389 * We have done an ON -> OFF transition:
4390 */
4391 current->softirqs_enabled = 0;
4392 trace->softirq_disable_ip = ip;
4393 trace->softirq_disable_event = ++trace->irq_events;
4394 debug_atomic_inc(softirqs_off_events);
4395 /*
4396 * Whoops, we wanted softirqs off, so why aren't they?
4397 */
4398 DEBUG_LOCKS_WARN_ON(!softirq_count());
4399 } else
4400 debug_atomic_inc(redundant_softirqs_off);
4401 }
4402
4403 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4404 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4405 {
4406 if (!check)
4407 goto lock_used;
4408
4409 /*
4410 * If non-trylock use in a hardirq or softirq context, then
4411 * mark the lock as used in these contexts:
4412 */
4413 if (!hlock->trylock) {
4414 if (hlock->read) {
4415 if (lockdep_hardirq_context())
4416 if (!mark_lock(curr, hlock,
4417 LOCK_USED_IN_HARDIRQ_READ))
4418 return 0;
4419 if (curr->softirq_context)
4420 if (!mark_lock(curr, hlock,
4421 LOCK_USED_IN_SOFTIRQ_READ))
4422 return 0;
4423 } else {
4424 if (lockdep_hardirq_context())
4425 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4426 return 0;
4427 if (curr->softirq_context)
4428 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4429 return 0;
4430 }
4431 }
4432 if (!hlock->hardirqs_off) {
4433 if (hlock->read) {
4434 if (!mark_lock(curr, hlock,
4435 LOCK_ENABLED_HARDIRQ_READ))
4436 return 0;
4437 if (curr->softirqs_enabled)
4438 if (!mark_lock(curr, hlock,
4439 LOCK_ENABLED_SOFTIRQ_READ))
4440 return 0;
4441 } else {
4442 if (!mark_lock(curr, hlock,
4443 LOCK_ENABLED_HARDIRQ))
4444 return 0;
4445 if (curr->softirqs_enabled)
4446 if (!mark_lock(curr, hlock,
4447 LOCK_ENABLED_SOFTIRQ))
4448 return 0;
4449 }
4450 }
4451
4452 lock_used:
4453 /* mark it as used: */
4454 if (!mark_lock(curr, hlock, LOCK_USED))
4455 return 0;
4456
4457 return 1;
4458 }
4459
task_irq_context(struct task_struct * task)4460 static inline unsigned int task_irq_context(struct task_struct *task)
4461 {
4462 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4463 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4464 }
4465
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4466 static int separate_irq_context(struct task_struct *curr,
4467 struct held_lock *hlock)
4468 {
4469 unsigned int depth = curr->lockdep_depth;
4470
4471 /*
4472 * Keep track of points where we cross into an interrupt context:
4473 */
4474 if (depth) {
4475 struct held_lock *prev_hlock;
4476
4477 prev_hlock = curr->held_locks + depth-1;
4478 /*
4479 * If we cross into another context, reset the
4480 * hash key (this also prevents the checking and the
4481 * adding of the dependency to 'prev'):
4482 */
4483 if (prev_hlock->irq_context != hlock->irq_context)
4484 return 1;
4485 }
4486 return 0;
4487 }
4488
4489 /*
4490 * Mark a lock with a usage bit, and validate the state transition:
4491 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4492 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4493 enum lock_usage_bit new_bit)
4494 {
4495 unsigned int new_mask, ret = 1;
4496
4497 if (new_bit >= LOCK_USAGE_STATES) {
4498 DEBUG_LOCKS_WARN_ON(1);
4499 return 0;
4500 }
4501
4502 if (new_bit == LOCK_USED && this->read)
4503 new_bit = LOCK_USED_READ;
4504
4505 new_mask = 1 << new_bit;
4506
4507 /*
4508 * If already set then do not dirty the cacheline,
4509 * nor do any checks:
4510 */
4511 if (likely(hlock_class(this)->usage_mask & new_mask))
4512 return 1;
4513
4514 if (!graph_lock())
4515 return 0;
4516 /*
4517 * Make sure we didn't race:
4518 */
4519 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4520 goto unlock;
4521
4522 if (!hlock_class(this)->usage_mask)
4523 debug_atomic_dec(nr_unused_locks);
4524
4525 hlock_class(this)->usage_mask |= new_mask;
4526
4527 if (new_bit < LOCK_TRACE_STATES) {
4528 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4529 return 0;
4530 }
4531
4532 if (new_bit < LOCK_USED) {
4533 ret = mark_lock_irq(curr, this, new_bit);
4534 if (!ret)
4535 return 0;
4536 }
4537
4538 unlock:
4539 graph_unlock();
4540
4541 /*
4542 * We must printk outside of the graph_lock:
4543 */
4544 if (ret == 2) {
4545 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4546 print_lock(this);
4547 print_irqtrace_events(curr);
4548 dump_stack();
4549 }
4550
4551 return ret;
4552 }
4553
task_wait_context(struct task_struct * curr)4554 static inline short task_wait_context(struct task_struct *curr)
4555 {
4556 /*
4557 * Set appropriate wait type for the context; for IRQs we have to take
4558 * into account force_irqthread as that is implied by PREEMPT_RT.
4559 */
4560 if (lockdep_hardirq_context()) {
4561 /*
4562 * Check if force_irqthreads will run us threaded.
4563 */
4564 if (curr->hardirq_threaded || curr->irq_config)
4565 return LD_WAIT_CONFIG;
4566
4567 return LD_WAIT_SPIN;
4568 } else if (curr->softirq_context) {
4569 /*
4570 * Softirqs are always threaded.
4571 */
4572 return LD_WAIT_CONFIG;
4573 }
4574
4575 return LD_WAIT_MAX;
4576 }
4577
4578 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4579 print_lock_invalid_wait_context(struct task_struct *curr,
4580 struct held_lock *hlock)
4581 {
4582 short curr_inner;
4583
4584 if (!debug_locks_off())
4585 return 0;
4586 if (debug_locks_silent)
4587 return 0;
4588
4589 pr_warn("\n");
4590 pr_warn("=============================\n");
4591 pr_warn("[ BUG: Invalid wait context ]\n");
4592 print_kernel_ident();
4593 pr_warn("-----------------------------\n");
4594
4595 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4596 print_lock(hlock);
4597
4598 pr_warn("other info that might help us debug this:\n");
4599
4600 curr_inner = task_wait_context(curr);
4601 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4602
4603 lockdep_print_held_locks(curr);
4604
4605 pr_warn("stack backtrace:\n");
4606 dump_stack();
4607
4608 return 0;
4609 }
4610
4611 /*
4612 * Verify the wait_type context.
4613 *
4614 * This check validates we takes locks in the right wait-type order; that is it
4615 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4616 * acquire spinlocks inside raw_spinlocks and the sort.
4617 *
4618 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4619 * can be taken from (pretty much) any context but also has constraints.
4620 * However when taken in a stricter environment the RCU lock does not loosen
4621 * the constraints.
4622 *
4623 * Therefore we must look for the strictest environment in the lock stack and
4624 * compare that to the lock we're trying to acquire.
4625 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4626 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4627 {
4628 u8 next_inner = hlock_class(next)->wait_type_inner;
4629 u8 next_outer = hlock_class(next)->wait_type_outer;
4630 u8 curr_inner;
4631 int depth;
4632
4633 if (!next_inner || next->trylock)
4634 return 0;
4635
4636 if (!next_outer)
4637 next_outer = next_inner;
4638
4639 /*
4640 * Find start of current irq_context..
4641 */
4642 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4643 struct held_lock *prev = curr->held_locks + depth;
4644 if (prev->irq_context != next->irq_context)
4645 break;
4646 }
4647 depth++;
4648
4649 curr_inner = task_wait_context(curr);
4650
4651 for (; depth < curr->lockdep_depth; depth++) {
4652 struct held_lock *prev = curr->held_locks + depth;
4653 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4654
4655 if (prev_inner) {
4656 /*
4657 * We can have a bigger inner than a previous one
4658 * when outer is smaller than inner, as with RCU.
4659 *
4660 * Also due to trylocks.
4661 */
4662 curr_inner = min(curr_inner, prev_inner);
4663 }
4664 }
4665
4666 if (next_outer > curr_inner)
4667 return print_lock_invalid_wait_context(curr, next);
4668
4669 return 0;
4670 }
4671
4672 #else /* CONFIG_PROVE_LOCKING */
4673
4674 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4675 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4676 {
4677 return 1;
4678 }
4679
task_irq_context(struct task_struct * task)4680 static inline unsigned int task_irq_context(struct task_struct *task)
4681 {
4682 return 0;
4683 }
4684
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4685 static inline int separate_irq_context(struct task_struct *curr,
4686 struct held_lock *hlock)
4687 {
4688 return 0;
4689 }
4690
check_wait_context(struct task_struct * curr,struct held_lock * next)4691 static inline int check_wait_context(struct task_struct *curr,
4692 struct held_lock *next)
4693 {
4694 return 0;
4695 }
4696
4697 #endif /* CONFIG_PROVE_LOCKING */
4698
4699 /*
4700 * Initialize a lock instance's lock-class mapping info:
4701 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4702 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4703 struct lock_class_key *key, int subclass,
4704 u8 inner, u8 outer, u8 lock_type)
4705 {
4706 int i;
4707
4708 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4709 lock->class_cache[i] = NULL;
4710
4711 #ifdef CONFIG_LOCK_STAT
4712 lock->cpu = raw_smp_processor_id();
4713 #endif
4714
4715 /*
4716 * Can't be having no nameless bastards around this place!
4717 */
4718 if (DEBUG_LOCKS_WARN_ON(!name)) {
4719 lock->name = "NULL";
4720 return;
4721 }
4722
4723 lock->name = name;
4724
4725 lock->wait_type_outer = outer;
4726 lock->wait_type_inner = inner;
4727 lock->lock_type = lock_type;
4728
4729 /*
4730 * No key, no joy, we need to hash something.
4731 */
4732 if (DEBUG_LOCKS_WARN_ON(!key))
4733 return;
4734 /*
4735 * Sanity check, the lock-class key must either have been allocated
4736 * statically or must have been registered as a dynamic key.
4737 */
4738 if (!static_obj(key) && !is_dynamic_key(key)) {
4739 if (debug_locks)
4740 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4741 DEBUG_LOCKS_WARN_ON(1);
4742 return;
4743 }
4744 lock->key = key;
4745
4746 if (unlikely(!debug_locks))
4747 return;
4748
4749 if (subclass) {
4750 unsigned long flags;
4751
4752 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4753 return;
4754
4755 raw_local_irq_save(flags);
4756 lockdep_recursion_inc();
4757 register_lock_class(lock, subclass, 1);
4758 lockdep_recursion_finish();
4759 raw_local_irq_restore(flags);
4760 }
4761 }
4762 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4763
4764 struct lock_class_key __lockdep_no_validate__;
4765 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4766
4767 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)4768 print_lock_nested_lock_not_held(struct task_struct *curr,
4769 struct held_lock *hlock,
4770 unsigned long ip)
4771 {
4772 if (!debug_locks_off())
4773 return;
4774 if (debug_locks_silent)
4775 return;
4776
4777 pr_warn("\n");
4778 pr_warn("==================================\n");
4779 pr_warn("WARNING: Nested lock was not taken\n");
4780 print_kernel_ident();
4781 pr_warn("----------------------------------\n");
4782
4783 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4784 print_lock(hlock);
4785
4786 pr_warn("\nbut this task is not holding:\n");
4787 pr_warn("%s\n", hlock->nest_lock->name);
4788
4789 pr_warn("\nstack backtrace:\n");
4790 dump_stack();
4791
4792 pr_warn("\nother info that might help us debug this:\n");
4793 lockdep_print_held_locks(curr);
4794
4795 pr_warn("\nstack backtrace:\n");
4796 dump_stack();
4797 }
4798
4799 static int __lock_is_held(const struct lockdep_map *lock, int read);
4800
4801 /*
4802 * This gets called for every mutex_lock*()/spin_lock*() operation.
4803 * We maintain the dependency maps and validate the locking attempt:
4804 *
4805 * The callers must make sure that IRQs are disabled before calling it,
4806 * otherwise we could get an interrupt which would want to take locks,
4807 * which would end up in lockdep again.
4808 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4809 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4810 int trylock, int read, int check, int hardirqs_off,
4811 struct lockdep_map *nest_lock, unsigned long ip,
4812 int references, int pin_count)
4813 {
4814 struct task_struct *curr = current;
4815 struct lock_class *class = NULL;
4816 struct held_lock *hlock;
4817 unsigned int depth;
4818 int chain_head = 0;
4819 int class_idx;
4820 u64 chain_key;
4821
4822 if (unlikely(!debug_locks))
4823 return 0;
4824
4825 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4826 check = 0;
4827
4828 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4829 class = lock->class_cache[subclass];
4830 /*
4831 * Not cached?
4832 */
4833 if (unlikely(!class)) {
4834 class = register_lock_class(lock, subclass, 0);
4835 if (!class)
4836 return 0;
4837 }
4838
4839 debug_class_ops_inc(class);
4840
4841 if (very_verbose(class)) {
4842 printk("\nacquire class [%px] %s", class->key, class->name);
4843 if (class->name_version > 1)
4844 printk(KERN_CONT "#%d", class->name_version);
4845 printk(KERN_CONT "\n");
4846 dump_stack();
4847 }
4848
4849 /*
4850 * Add the lock to the list of currently held locks.
4851 * (we dont increase the depth just yet, up until the
4852 * dependency checks are done)
4853 */
4854 depth = curr->lockdep_depth;
4855 /*
4856 * Ran out of static storage for our per-task lock stack again have we?
4857 */
4858 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4859 return 0;
4860
4861 class_idx = class - lock_classes;
4862
4863 if (depth) { /* we're holding locks */
4864 hlock = curr->held_locks + depth - 1;
4865 if (hlock->class_idx == class_idx && nest_lock) {
4866 if (!references)
4867 references++;
4868
4869 if (!hlock->references)
4870 hlock->references++;
4871
4872 hlock->references += references;
4873
4874 /* Overflow */
4875 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4876 return 0;
4877
4878 return 2;
4879 }
4880 }
4881
4882 hlock = curr->held_locks + depth;
4883 /*
4884 * Plain impossible, we just registered it and checked it weren't no
4885 * NULL like.. I bet this mushroom I ate was good!
4886 */
4887 if (DEBUG_LOCKS_WARN_ON(!class))
4888 return 0;
4889 hlock->class_idx = class_idx;
4890 hlock->acquire_ip = ip;
4891 hlock->instance = lock;
4892 hlock->nest_lock = nest_lock;
4893 hlock->irq_context = task_irq_context(curr);
4894 hlock->trylock = trylock;
4895 hlock->read = read;
4896 hlock->check = check;
4897 hlock->hardirqs_off = !!hardirqs_off;
4898 hlock->references = references;
4899 #ifdef CONFIG_LOCK_STAT
4900 hlock->waittime_stamp = 0;
4901 hlock->holdtime_stamp = lockstat_clock();
4902 #endif
4903 hlock->pin_count = pin_count;
4904
4905 if (check_wait_context(curr, hlock))
4906 return 0;
4907
4908 /* Initialize the lock usage bit */
4909 if (!mark_usage(curr, hlock, check))
4910 return 0;
4911
4912 /*
4913 * Calculate the chain hash: it's the combined hash of all the
4914 * lock keys along the dependency chain. We save the hash value
4915 * at every step so that we can get the current hash easily
4916 * after unlock. The chain hash is then used to cache dependency
4917 * results.
4918 *
4919 * The 'key ID' is what is the most compact key value to drive
4920 * the hash, not class->key.
4921 */
4922 /*
4923 * Whoops, we did it again.. class_idx is invalid.
4924 */
4925 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4926 return 0;
4927
4928 chain_key = curr->curr_chain_key;
4929 if (!depth) {
4930 /*
4931 * How can we have a chain hash when we ain't got no keys?!
4932 */
4933 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4934 return 0;
4935 chain_head = 1;
4936 }
4937
4938 hlock->prev_chain_key = chain_key;
4939 if (separate_irq_context(curr, hlock)) {
4940 chain_key = INITIAL_CHAIN_KEY;
4941 chain_head = 1;
4942 }
4943 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4944
4945 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4946 print_lock_nested_lock_not_held(curr, hlock, ip);
4947 return 0;
4948 }
4949
4950 if (!debug_locks_silent) {
4951 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4952 WARN_ON_ONCE(!hlock_class(hlock)->key);
4953 }
4954
4955 if (!validate_chain(curr, hlock, chain_head, chain_key))
4956 return 0;
4957
4958 curr->curr_chain_key = chain_key;
4959 curr->lockdep_depth++;
4960 check_chain_key(curr);
4961 #ifdef CONFIG_DEBUG_LOCKDEP
4962 if (unlikely(!debug_locks))
4963 return 0;
4964 #endif
4965 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4966 debug_locks_off();
4967 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4968 printk(KERN_DEBUG "depth: %i max: %lu!\n",
4969 curr->lockdep_depth, MAX_LOCK_DEPTH);
4970
4971 lockdep_print_held_locks(current);
4972 debug_show_all_locks();
4973 dump_stack();
4974
4975 return 0;
4976 }
4977
4978 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4979 max_lockdep_depth = curr->lockdep_depth;
4980
4981 return 1;
4982 }
4983
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4984 static void print_unlock_imbalance_bug(struct task_struct *curr,
4985 struct lockdep_map *lock,
4986 unsigned long ip)
4987 {
4988 if (!debug_locks_off())
4989 return;
4990 if (debug_locks_silent)
4991 return;
4992
4993 pr_warn("\n");
4994 pr_warn("=====================================\n");
4995 pr_warn("WARNING: bad unlock balance detected!\n");
4996 print_kernel_ident();
4997 pr_warn("-------------------------------------\n");
4998 pr_warn("%s/%d is trying to release lock (",
4999 curr->comm, task_pid_nr(curr));
5000 print_lockdep_cache(lock);
5001 pr_cont(") at:\n");
5002 print_ip_sym(KERN_WARNING, ip);
5003 pr_warn("but there are no more locks to release!\n");
5004 pr_warn("\nother info that might help us debug this:\n");
5005 lockdep_print_held_locks(curr);
5006
5007 pr_warn("\nstack backtrace:\n");
5008 dump_stack();
5009 }
5010
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5011 static noinstr int match_held_lock(const struct held_lock *hlock,
5012 const struct lockdep_map *lock)
5013 {
5014 if (hlock->instance == lock)
5015 return 1;
5016
5017 if (hlock->references) {
5018 const struct lock_class *class = lock->class_cache[0];
5019
5020 if (!class)
5021 class = look_up_lock_class(lock, 0);
5022
5023 /*
5024 * If look_up_lock_class() failed to find a class, we're trying
5025 * to test if we hold a lock that has never yet been acquired.
5026 * Clearly if the lock hasn't been acquired _ever_, we're not
5027 * holding it either, so report failure.
5028 */
5029 if (!class)
5030 return 0;
5031
5032 /*
5033 * References, but not a lock we're actually ref-counting?
5034 * State got messed up, follow the sites that change ->references
5035 * and try to make sense of it.
5036 */
5037 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5038 return 0;
5039
5040 if (hlock->class_idx == class - lock_classes)
5041 return 1;
5042 }
5043
5044 return 0;
5045 }
5046
5047 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5048 static struct held_lock *find_held_lock(struct task_struct *curr,
5049 struct lockdep_map *lock,
5050 unsigned int depth, int *idx)
5051 {
5052 struct held_lock *ret, *hlock, *prev_hlock;
5053 int i;
5054
5055 i = depth - 1;
5056 hlock = curr->held_locks + i;
5057 ret = hlock;
5058 if (match_held_lock(hlock, lock))
5059 goto out;
5060
5061 ret = NULL;
5062 for (i--, prev_hlock = hlock--;
5063 i >= 0;
5064 i--, prev_hlock = hlock--) {
5065 /*
5066 * We must not cross into another context:
5067 */
5068 if (prev_hlock->irq_context != hlock->irq_context) {
5069 ret = NULL;
5070 break;
5071 }
5072 if (match_held_lock(hlock, lock)) {
5073 ret = hlock;
5074 break;
5075 }
5076 }
5077
5078 out:
5079 *idx = i;
5080 return ret;
5081 }
5082
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5083 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5084 int idx, unsigned int *merged)
5085 {
5086 struct held_lock *hlock;
5087 int first_idx = idx;
5088
5089 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5090 return 0;
5091
5092 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5093 switch (__lock_acquire(hlock->instance,
5094 hlock_class(hlock)->subclass,
5095 hlock->trylock,
5096 hlock->read, hlock->check,
5097 hlock->hardirqs_off,
5098 hlock->nest_lock, hlock->acquire_ip,
5099 hlock->references, hlock->pin_count)) {
5100 case 0:
5101 return 1;
5102 case 1:
5103 break;
5104 case 2:
5105 *merged += (idx == first_idx);
5106 break;
5107 default:
5108 WARN_ON(1);
5109 return 0;
5110 }
5111 }
5112 return 0;
5113 }
5114
5115 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5116 __lock_set_class(struct lockdep_map *lock, const char *name,
5117 struct lock_class_key *key, unsigned int subclass,
5118 unsigned long ip)
5119 {
5120 struct task_struct *curr = current;
5121 unsigned int depth, merged = 0;
5122 struct held_lock *hlock;
5123 struct lock_class *class;
5124 int i;
5125
5126 if (unlikely(!debug_locks))
5127 return 0;
5128
5129 depth = curr->lockdep_depth;
5130 /*
5131 * This function is about (re)setting the class of a held lock,
5132 * yet we're not actually holding any locks. Naughty user!
5133 */
5134 if (DEBUG_LOCKS_WARN_ON(!depth))
5135 return 0;
5136
5137 hlock = find_held_lock(curr, lock, depth, &i);
5138 if (!hlock) {
5139 print_unlock_imbalance_bug(curr, lock, ip);
5140 return 0;
5141 }
5142
5143 lockdep_init_map_type(lock, name, key, 0,
5144 lock->wait_type_inner,
5145 lock->wait_type_outer,
5146 lock->lock_type);
5147 class = register_lock_class(lock, subclass, 0);
5148 hlock->class_idx = class - lock_classes;
5149
5150 curr->lockdep_depth = i;
5151 curr->curr_chain_key = hlock->prev_chain_key;
5152
5153 if (reacquire_held_locks(curr, depth, i, &merged))
5154 return 0;
5155
5156 /*
5157 * I took it apart and put it back together again, except now I have
5158 * these 'spare' parts.. where shall I put them.
5159 */
5160 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5161 return 0;
5162 return 1;
5163 }
5164
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5165 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5166 {
5167 struct task_struct *curr = current;
5168 unsigned int depth, merged = 0;
5169 struct held_lock *hlock;
5170 int i;
5171
5172 if (unlikely(!debug_locks))
5173 return 0;
5174
5175 depth = curr->lockdep_depth;
5176 /*
5177 * This function is about (re)setting the class of a held lock,
5178 * yet we're not actually holding any locks. Naughty user!
5179 */
5180 if (DEBUG_LOCKS_WARN_ON(!depth))
5181 return 0;
5182
5183 hlock = find_held_lock(curr, lock, depth, &i);
5184 if (!hlock) {
5185 print_unlock_imbalance_bug(curr, lock, ip);
5186 return 0;
5187 }
5188
5189 curr->lockdep_depth = i;
5190 curr->curr_chain_key = hlock->prev_chain_key;
5191
5192 WARN(hlock->read, "downgrading a read lock");
5193 hlock->read = 1;
5194 hlock->acquire_ip = ip;
5195
5196 if (reacquire_held_locks(curr, depth, i, &merged))
5197 return 0;
5198
5199 /* Merging can't happen with unchanged classes.. */
5200 if (DEBUG_LOCKS_WARN_ON(merged))
5201 return 0;
5202
5203 /*
5204 * I took it apart and put it back together again, except now I have
5205 * these 'spare' parts.. where shall I put them.
5206 */
5207 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5208 return 0;
5209
5210 return 1;
5211 }
5212
5213 /*
5214 * Remove the lock from the list of currently held locks - this gets
5215 * called on mutex_unlock()/spin_unlock*() (or on a failed
5216 * mutex_lock_interruptible()).
5217 */
5218 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5219 __lock_release(struct lockdep_map *lock, unsigned long ip)
5220 {
5221 struct task_struct *curr = current;
5222 unsigned int depth, merged = 1;
5223 struct held_lock *hlock;
5224 int i;
5225
5226 if (unlikely(!debug_locks))
5227 return 0;
5228
5229 depth = curr->lockdep_depth;
5230 /*
5231 * So we're all set to release this lock.. wait what lock? We don't
5232 * own any locks, you've been drinking again?
5233 */
5234 if (depth <= 0) {
5235 print_unlock_imbalance_bug(curr, lock, ip);
5236 return 0;
5237 }
5238
5239 /*
5240 * Check whether the lock exists in the current stack
5241 * of held locks:
5242 */
5243 hlock = find_held_lock(curr, lock, depth, &i);
5244 if (!hlock) {
5245 print_unlock_imbalance_bug(curr, lock, ip);
5246 return 0;
5247 }
5248
5249 if (hlock->instance == lock)
5250 lock_release_holdtime(hlock);
5251
5252 WARN(hlock->pin_count, "releasing a pinned lock\n");
5253
5254 if (hlock->references) {
5255 hlock->references--;
5256 if (hlock->references) {
5257 /*
5258 * We had, and after removing one, still have
5259 * references, the current lock stack is still
5260 * valid. We're done!
5261 */
5262 return 1;
5263 }
5264 }
5265
5266 /*
5267 * We have the right lock to unlock, 'hlock' points to it.
5268 * Now we remove it from the stack, and add back the other
5269 * entries (if any), recalculating the hash along the way:
5270 */
5271
5272 curr->lockdep_depth = i;
5273 curr->curr_chain_key = hlock->prev_chain_key;
5274
5275 /*
5276 * The most likely case is when the unlock is on the innermost
5277 * lock. In this case, we are done!
5278 */
5279 if (i == depth-1)
5280 return 1;
5281
5282 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5283 return 0;
5284
5285 /*
5286 * We had N bottles of beer on the wall, we drank one, but now
5287 * there's not N-1 bottles of beer left on the wall...
5288 * Pouring two of the bottles together is acceptable.
5289 */
5290 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5291
5292 /*
5293 * Since reacquire_held_locks() would have called check_chain_key()
5294 * indirectly via __lock_acquire(), we don't need to do it again
5295 * on return.
5296 */
5297 return 0;
5298 }
5299
5300 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5301 int __lock_is_held(const struct lockdep_map *lock, int read)
5302 {
5303 struct task_struct *curr = current;
5304 int i;
5305
5306 for (i = 0; i < curr->lockdep_depth; i++) {
5307 struct held_lock *hlock = curr->held_locks + i;
5308
5309 if (match_held_lock(hlock, lock)) {
5310 if (read == -1 || !!hlock->read == read)
5311 return 1;
5312
5313 return 0;
5314 }
5315 }
5316
5317 return 0;
5318 }
5319
__lock_pin_lock(struct lockdep_map * lock)5320 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5321 {
5322 struct pin_cookie cookie = NIL_COOKIE;
5323 struct task_struct *curr = current;
5324 int i;
5325
5326 if (unlikely(!debug_locks))
5327 return cookie;
5328
5329 for (i = 0; i < curr->lockdep_depth; i++) {
5330 struct held_lock *hlock = curr->held_locks + i;
5331
5332 if (match_held_lock(hlock, lock)) {
5333 /*
5334 * Grab 16bits of randomness; this is sufficient to not
5335 * be guessable and still allows some pin nesting in
5336 * our u32 pin_count.
5337 */
5338 cookie.val = 1 + (prandom_u32() >> 16);
5339 hlock->pin_count += cookie.val;
5340 return cookie;
5341 }
5342 }
5343
5344 WARN(1, "pinning an unheld lock\n");
5345 return cookie;
5346 }
5347
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5348 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5349 {
5350 struct task_struct *curr = current;
5351 int i;
5352
5353 if (unlikely(!debug_locks))
5354 return;
5355
5356 for (i = 0; i < curr->lockdep_depth; i++) {
5357 struct held_lock *hlock = curr->held_locks + i;
5358
5359 if (match_held_lock(hlock, lock)) {
5360 hlock->pin_count += cookie.val;
5361 return;
5362 }
5363 }
5364
5365 WARN(1, "pinning an unheld lock\n");
5366 }
5367
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5368 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5369 {
5370 struct task_struct *curr = current;
5371 int i;
5372
5373 if (unlikely(!debug_locks))
5374 return;
5375
5376 for (i = 0; i < curr->lockdep_depth; i++) {
5377 struct held_lock *hlock = curr->held_locks + i;
5378
5379 if (match_held_lock(hlock, lock)) {
5380 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5381 return;
5382
5383 hlock->pin_count -= cookie.val;
5384
5385 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5386 hlock->pin_count = 0;
5387
5388 return;
5389 }
5390 }
5391
5392 WARN(1, "unpinning an unheld lock\n");
5393 }
5394
5395 /*
5396 * Check whether we follow the irq-flags state precisely:
5397 */
check_flags(unsigned long flags)5398 static noinstr void check_flags(unsigned long flags)
5399 {
5400 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5401 if (!debug_locks)
5402 return;
5403
5404 /* Get the warning out.. */
5405 instrumentation_begin();
5406
5407 if (irqs_disabled_flags(flags)) {
5408 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5409 printk("possible reason: unannotated irqs-off.\n");
5410 }
5411 } else {
5412 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5413 printk("possible reason: unannotated irqs-on.\n");
5414 }
5415 }
5416
5417 /*
5418 * We dont accurately track softirq state in e.g.
5419 * hardirq contexts (such as on 4KSTACKS), so only
5420 * check if not in hardirq contexts:
5421 */
5422 if (!hardirq_count()) {
5423 if (softirq_count()) {
5424 /* like the above, but with softirqs */
5425 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5426 } else {
5427 /* lick the above, does it taste good? */
5428 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5429 }
5430 }
5431
5432 if (!debug_locks)
5433 print_irqtrace_events(current);
5434
5435 instrumentation_end();
5436 #endif
5437 }
5438
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5439 void lock_set_class(struct lockdep_map *lock, const char *name,
5440 struct lock_class_key *key, unsigned int subclass,
5441 unsigned long ip)
5442 {
5443 unsigned long flags;
5444
5445 if (unlikely(!lockdep_enabled()))
5446 return;
5447
5448 raw_local_irq_save(flags);
5449 lockdep_recursion_inc();
5450 check_flags(flags);
5451 if (__lock_set_class(lock, name, key, subclass, ip))
5452 check_chain_key(current);
5453 lockdep_recursion_finish();
5454 raw_local_irq_restore(flags);
5455 }
5456 EXPORT_SYMBOL_GPL(lock_set_class);
5457
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5458 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5459 {
5460 unsigned long flags;
5461
5462 if (unlikely(!lockdep_enabled()))
5463 return;
5464
5465 raw_local_irq_save(flags);
5466 lockdep_recursion_inc();
5467 check_flags(flags);
5468 if (__lock_downgrade(lock, ip))
5469 check_chain_key(current);
5470 lockdep_recursion_finish();
5471 raw_local_irq_restore(flags);
5472 }
5473 EXPORT_SYMBOL_GPL(lock_downgrade);
5474
5475 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5476 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5477 {
5478 #ifdef CONFIG_PROVE_LOCKING
5479 struct lock_class *class = look_up_lock_class(lock, subclass);
5480 unsigned long mask = LOCKF_USED;
5481
5482 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5483 if (!class)
5484 return;
5485
5486 /*
5487 * READ locks only conflict with USED, such that if we only ever use
5488 * READ locks, there is no deadlock possible -- RCU.
5489 */
5490 if (!hlock->read)
5491 mask |= LOCKF_USED_READ;
5492
5493 if (!(class->usage_mask & mask))
5494 return;
5495
5496 hlock->class_idx = class - lock_classes;
5497
5498 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5499 #endif
5500 }
5501
lockdep_nmi(void)5502 static bool lockdep_nmi(void)
5503 {
5504 if (raw_cpu_read(lockdep_recursion))
5505 return false;
5506
5507 if (!in_nmi())
5508 return false;
5509
5510 return true;
5511 }
5512
5513 /*
5514 * read_lock() is recursive if:
5515 * 1. We force lockdep think this way in selftests or
5516 * 2. The implementation is not queued read/write lock or
5517 * 3. The locker is at an in_interrupt() context.
5518 */
read_lock_is_recursive(void)5519 bool read_lock_is_recursive(void)
5520 {
5521 return force_read_lock_recursive ||
5522 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5523 in_interrupt();
5524 }
5525 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5526
5527 /*
5528 * We are not always called with irqs disabled - do that here,
5529 * and also avoid lockdep recursion:
5530 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5531 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5532 int trylock, int read, int check,
5533 struct lockdep_map *nest_lock, unsigned long ip)
5534 {
5535 unsigned long flags;
5536
5537 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5538
5539 if (!debug_locks)
5540 return;
5541
5542 if (unlikely(!lockdep_enabled())) {
5543 /* XXX allow trylock from NMI ?!? */
5544 if (lockdep_nmi() && !trylock) {
5545 struct held_lock hlock;
5546
5547 hlock.acquire_ip = ip;
5548 hlock.instance = lock;
5549 hlock.nest_lock = nest_lock;
5550 hlock.irq_context = 2; // XXX
5551 hlock.trylock = trylock;
5552 hlock.read = read;
5553 hlock.check = check;
5554 hlock.hardirqs_off = true;
5555 hlock.references = 0;
5556
5557 verify_lock_unused(lock, &hlock, subclass);
5558 }
5559 return;
5560 }
5561
5562 raw_local_irq_save(flags);
5563 check_flags(flags);
5564
5565 lockdep_recursion_inc();
5566 __lock_acquire(lock, subclass, trylock, read, check,
5567 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5568 lockdep_recursion_finish();
5569 raw_local_irq_restore(flags);
5570 }
5571 EXPORT_SYMBOL_GPL(lock_acquire);
5572
lock_release(struct lockdep_map * lock,unsigned long ip)5573 void lock_release(struct lockdep_map *lock, unsigned long ip)
5574 {
5575 unsigned long flags;
5576
5577 trace_lock_release(lock, ip);
5578
5579 if (unlikely(!lockdep_enabled()))
5580 return;
5581
5582 raw_local_irq_save(flags);
5583 check_flags(flags);
5584
5585 lockdep_recursion_inc();
5586 if (__lock_release(lock, ip))
5587 check_chain_key(current);
5588 lockdep_recursion_finish();
5589 raw_local_irq_restore(flags);
5590 }
5591 EXPORT_SYMBOL_GPL(lock_release);
5592
lock_is_held_type(const struct lockdep_map * lock,int read)5593 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5594 {
5595 unsigned long flags;
5596 int ret = 0;
5597
5598 if (unlikely(!lockdep_enabled()))
5599 return 1; /* avoid false negative lockdep_assert_held() */
5600
5601 raw_local_irq_save(flags);
5602 check_flags(flags);
5603
5604 lockdep_recursion_inc();
5605 ret = __lock_is_held(lock, read);
5606 lockdep_recursion_finish();
5607 raw_local_irq_restore(flags);
5608
5609 return ret;
5610 }
5611 EXPORT_SYMBOL_GPL(lock_is_held_type);
5612 NOKPROBE_SYMBOL(lock_is_held_type);
5613
lock_pin_lock(struct lockdep_map * lock)5614 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5615 {
5616 struct pin_cookie cookie = NIL_COOKIE;
5617 unsigned long flags;
5618
5619 if (unlikely(!lockdep_enabled()))
5620 return cookie;
5621
5622 raw_local_irq_save(flags);
5623 check_flags(flags);
5624
5625 lockdep_recursion_inc();
5626 cookie = __lock_pin_lock(lock);
5627 lockdep_recursion_finish();
5628 raw_local_irq_restore(flags);
5629
5630 return cookie;
5631 }
5632 EXPORT_SYMBOL_GPL(lock_pin_lock);
5633
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5634 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5635 {
5636 unsigned long flags;
5637
5638 if (unlikely(!lockdep_enabled()))
5639 return;
5640
5641 raw_local_irq_save(flags);
5642 check_flags(flags);
5643
5644 lockdep_recursion_inc();
5645 __lock_repin_lock(lock, cookie);
5646 lockdep_recursion_finish();
5647 raw_local_irq_restore(flags);
5648 }
5649 EXPORT_SYMBOL_GPL(lock_repin_lock);
5650
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5651 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5652 {
5653 unsigned long flags;
5654
5655 if (unlikely(!lockdep_enabled()))
5656 return;
5657
5658 raw_local_irq_save(flags);
5659 check_flags(flags);
5660
5661 lockdep_recursion_inc();
5662 __lock_unpin_lock(lock, cookie);
5663 lockdep_recursion_finish();
5664 raw_local_irq_restore(flags);
5665 }
5666 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5667
5668 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5669 static void print_lock_contention_bug(struct task_struct *curr,
5670 struct lockdep_map *lock,
5671 unsigned long ip)
5672 {
5673 if (!debug_locks_off())
5674 return;
5675 if (debug_locks_silent)
5676 return;
5677
5678 pr_warn("\n");
5679 pr_warn("=================================\n");
5680 pr_warn("WARNING: bad contention detected!\n");
5681 print_kernel_ident();
5682 pr_warn("---------------------------------\n");
5683 pr_warn("%s/%d is trying to contend lock (",
5684 curr->comm, task_pid_nr(curr));
5685 print_lockdep_cache(lock);
5686 pr_cont(") at:\n");
5687 print_ip_sym(KERN_WARNING, ip);
5688 pr_warn("but there are no locks held!\n");
5689 pr_warn("\nother info that might help us debug this:\n");
5690 lockdep_print_held_locks(curr);
5691
5692 pr_warn("\nstack backtrace:\n");
5693 dump_stack();
5694 }
5695
5696 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5697 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5698 {
5699 struct task_struct *curr = current;
5700 struct held_lock *hlock;
5701 struct lock_class_stats *stats;
5702 unsigned int depth;
5703 int i, contention_point, contending_point;
5704
5705 depth = curr->lockdep_depth;
5706 /*
5707 * Whee, we contended on this lock, except it seems we're not
5708 * actually trying to acquire anything much at all..
5709 */
5710 if (DEBUG_LOCKS_WARN_ON(!depth))
5711 return;
5712
5713 hlock = find_held_lock(curr, lock, depth, &i);
5714 if (!hlock) {
5715 print_lock_contention_bug(curr, lock, ip);
5716 return;
5717 }
5718
5719 if (hlock->instance != lock)
5720 return;
5721
5722 hlock->waittime_stamp = lockstat_clock();
5723
5724 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5725 contending_point = lock_point(hlock_class(hlock)->contending_point,
5726 lock->ip);
5727
5728 stats = get_lock_stats(hlock_class(hlock));
5729 if (contention_point < LOCKSTAT_POINTS)
5730 stats->contention_point[contention_point]++;
5731 if (contending_point < LOCKSTAT_POINTS)
5732 stats->contending_point[contending_point]++;
5733 if (lock->cpu != smp_processor_id())
5734 stats->bounces[bounce_contended + !!hlock->read]++;
5735 }
5736
5737 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5738 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5739 {
5740 struct task_struct *curr = current;
5741 struct held_lock *hlock;
5742 struct lock_class_stats *stats;
5743 unsigned int depth;
5744 u64 now, waittime = 0;
5745 int i, cpu;
5746
5747 depth = curr->lockdep_depth;
5748 /*
5749 * Yay, we acquired ownership of this lock we didn't try to
5750 * acquire, how the heck did that happen?
5751 */
5752 if (DEBUG_LOCKS_WARN_ON(!depth))
5753 return;
5754
5755 hlock = find_held_lock(curr, lock, depth, &i);
5756 if (!hlock) {
5757 print_lock_contention_bug(curr, lock, _RET_IP_);
5758 return;
5759 }
5760
5761 if (hlock->instance != lock)
5762 return;
5763
5764 cpu = smp_processor_id();
5765 if (hlock->waittime_stamp) {
5766 now = lockstat_clock();
5767 waittime = now - hlock->waittime_stamp;
5768 hlock->holdtime_stamp = now;
5769 }
5770
5771 stats = get_lock_stats(hlock_class(hlock));
5772 if (waittime) {
5773 if (hlock->read)
5774 lock_time_inc(&stats->read_waittime, waittime);
5775 else
5776 lock_time_inc(&stats->write_waittime, waittime);
5777 }
5778 if (lock->cpu != cpu)
5779 stats->bounces[bounce_acquired + !!hlock->read]++;
5780
5781 lock->cpu = cpu;
5782 lock->ip = ip;
5783 }
5784
lock_contended(struct lockdep_map * lock,unsigned long ip)5785 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5786 {
5787 unsigned long flags;
5788
5789 trace_lock_contended(lock, ip);
5790
5791 if (unlikely(!lock_stat || !lockdep_enabled()))
5792 return;
5793
5794 raw_local_irq_save(flags);
5795 check_flags(flags);
5796 lockdep_recursion_inc();
5797 __lock_contended(lock, ip);
5798 lockdep_recursion_finish();
5799 raw_local_irq_restore(flags);
5800 }
5801 EXPORT_SYMBOL_GPL(lock_contended);
5802
lock_acquired(struct lockdep_map * lock,unsigned long ip)5803 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5804 {
5805 unsigned long flags;
5806
5807 trace_lock_acquired(lock, ip);
5808
5809 if (unlikely(!lock_stat || !lockdep_enabled()))
5810 return;
5811
5812 raw_local_irq_save(flags);
5813 check_flags(flags);
5814 lockdep_recursion_inc();
5815 __lock_acquired(lock, ip);
5816 lockdep_recursion_finish();
5817 raw_local_irq_restore(flags);
5818 }
5819 EXPORT_SYMBOL_GPL(lock_acquired);
5820 #endif
5821
5822 /*
5823 * Used by the testsuite, sanitize the validator state
5824 * after a simulated failure:
5825 */
5826
lockdep_reset(void)5827 void lockdep_reset(void)
5828 {
5829 unsigned long flags;
5830 int i;
5831
5832 raw_local_irq_save(flags);
5833 lockdep_init_task(current);
5834 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5835 nr_hardirq_chains = 0;
5836 nr_softirq_chains = 0;
5837 nr_process_chains = 0;
5838 debug_locks = 1;
5839 for (i = 0; i < CHAINHASH_SIZE; i++)
5840 INIT_HLIST_HEAD(chainhash_table + i);
5841 raw_local_irq_restore(flags);
5842 }
5843
5844 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5845 static void remove_class_from_lock_chain(struct pending_free *pf,
5846 struct lock_chain *chain,
5847 struct lock_class *class)
5848 {
5849 #ifdef CONFIG_PROVE_LOCKING
5850 int i;
5851
5852 for (i = chain->base; i < chain->base + chain->depth; i++) {
5853 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5854 continue;
5855 /*
5856 * Each lock class occurs at most once in a lock chain so once
5857 * we found a match we can break out of this loop.
5858 */
5859 goto free_lock_chain;
5860 }
5861 /* Since the chain has not been modified, return. */
5862 return;
5863
5864 free_lock_chain:
5865 free_chain_hlocks(chain->base, chain->depth);
5866 /* Overwrite the chain key for concurrent RCU readers. */
5867 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5868 dec_chains(chain->irq_context);
5869
5870 /*
5871 * Note: calling hlist_del_rcu() from inside a
5872 * hlist_for_each_entry_rcu() loop is safe.
5873 */
5874 hlist_del_rcu(&chain->entry);
5875 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5876 nr_zapped_lock_chains++;
5877 #endif
5878 }
5879
5880 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5881 static void remove_class_from_lock_chains(struct pending_free *pf,
5882 struct lock_class *class)
5883 {
5884 struct lock_chain *chain;
5885 struct hlist_head *head;
5886 int i;
5887
5888 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5889 head = chainhash_table + i;
5890 hlist_for_each_entry_rcu(chain, head, entry) {
5891 remove_class_from_lock_chain(pf, chain, class);
5892 }
5893 }
5894 }
5895
5896 /*
5897 * Remove all references to a lock class. The caller must hold the graph lock.
5898 */
zap_class(struct pending_free * pf,struct lock_class * class)5899 static void zap_class(struct pending_free *pf, struct lock_class *class)
5900 {
5901 struct lock_list *entry;
5902 int i;
5903
5904 WARN_ON_ONCE(!class->key);
5905
5906 /*
5907 * Remove all dependencies this lock is
5908 * involved in:
5909 */
5910 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5911 entry = list_entries + i;
5912 if (entry->class != class && entry->links_to != class)
5913 continue;
5914 __clear_bit(i, list_entries_in_use);
5915 nr_list_entries--;
5916 list_del_rcu(&entry->entry);
5917 }
5918 if (list_empty(&class->locks_after) &&
5919 list_empty(&class->locks_before)) {
5920 list_move_tail(&class->lock_entry, &pf->zapped);
5921 hlist_del_rcu(&class->hash_entry);
5922 WRITE_ONCE(class->key, NULL);
5923 WRITE_ONCE(class->name, NULL);
5924 nr_lock_classes--;
5925 __clear_bit(class - lock_classes, lock_classes_in_use);
5926 if (class - lock_classes == max_lock_class_idx)
5927 max_lock_class_idx--;
5928 } else {
5929 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5930 class->name);
5931 }
5932
5933 remove_class_from_lock_chains(pf, class);
5934 nr_zapped_classes++;
5935 }
5936
reinit_class(struct lock_class * class)5937 static void reinit_class(struct lock_class *class)
5938 {
5939 void *const p = class;
5940 const unsigned int offset = offsetof(struct lock_class, key);
5941
5942 WARN_ON_ONCE(!class->lock_entry.next);
5943 WARN_ON_ONCE(!list_empty(&class->locks_after));
5944 WARN_ON_ONCE(!list_empty(&class->locks_before));
5945 memset(p + offset, 0, sizeof(*class) - offset);
5946 WARN_ON_ONCE(!class->lock_entry.next);
5947 WARN_ON_ONCE(!list_empty(&class->locks_after));
5948 WARN_ON_ONCE(!list_empty(&class->locks_before));
5949 }
5950
within(const void * addr,void * start,unsigned long size)5951 static inline int within(const void *addr, void *start, unsigned long size)
5952 {
5953 return addr >= start && addr < start + size;
5954 }
5955
inside_selftest(void)5956 static bool inside_selftest(void)
5957 {
5958 return current == lockdep_selftest_task_struct;
5959 }
5960
5961 /* The caller must hold the graph lock. */
get_pending_free(void)5962 static struct pending_free *get_pending_free(void)
5963 {
5964 return delayed_free.pf + delayed_free.index;
5965 }
5966
5967 static void free_zapped_rcu(struct rcu_head *cb);
5968
5969 /*
5970 * Schedule an RCU callback if no RCU callback is pending. Must be called with
5971 * the graph lock held.
5972 */
call_rcu_zapped(struct pending_free * pf)5973 static void call_rcu_zapped(struct pending_free *pf)
5974 {
5975 WARN_ON_ONCE(inside_selftest());
5976
5977 if (list_empty(&pf->zapped))
5978 return;
5979
5980 if (delayed_free.scheduled)
5981 return;
5982
5983 delayed_free.scheduled = true;
5984
5985 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5986 delayed_free.index ^= 1;
5987
5988 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5989 }
5990
5991 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)5992 static void __free_zapped_classes(struct pending_free *pf)
5993 {
5994 struct lock_class *class;
5995
5996 check_data_structures();
5997
5998 list_for_each_entry(class, &pf->zapped, lock_entry)
5999 reinit_class(class);
6000
6001 list_splice_init(&pf->zapped, &free_lock_classes);
6002
6003 #ifdef CONFIG_PROVE_LOCKING
6004 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6005 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6006 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6007 #endif
6008 }
6009
free_zapped_rcu(struct rcu_head * ch)6010 static void free_zapped_rcu(struct rcu_head *ch)
6011 {
6012 struct pending_free *pf;
6013 unsigned long flags;
6014
6015 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6016 return;
6017
6018 raw_local_irq_save(flags);
6019 lockdep_lock();
6020
6021 /* closed head */
6022 pf = delayed_free.pf + (delayed_free.index ^ 1);
6023 __free_zapped_classes(pf);
6024 delayed_free.scheduled = false;
6025
6026 /*
6027 * If there's anything on the open list, close and start a new callback.
6028 */
6029 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6030
6031 lockdep_unlock();
6032 raw_local_irq_restore(flags);
6033 }
6034
6035 /*
6036 * Remove all lock classes from the class hash table and from the
6037 * all_lock_classes list whose key or name is in the address range [start,
6038 * start + size). Move these lock classes to the zapped_classes list. Must
6039 * be called with the graph lock held.
6040 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6041 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6042 unsigned long size)
6043 {
6044 struct lock_class *class;
6045 struct hlist_head *head;
6046 int i;
6047
6048 /* Unhash all classes that were created by a module. */
6049 for (i = 0; i < CLASSHASH_SIZE; i++) {
6050 head = classhash_table + i;
6051 hlist_for_each_entry_rcu(class, head, hash_entry) {
6052 if (!within(class->key, start, size) &&
6053 !within(class->name, start, size))
6054 continue;
6055 zap_class(pf, class);
6056 }
6057 }
6058 }
6059
6060 /*
6061 * Used in module.c to remove lock classes from memory that is going to be
6062 * freed; and possibly re-used by other modules.
6063 *
6064 * We will have had one synchronize_rcu() before getting here, so we're
6065 * guaranteed nobody will look up these exact classes -- they're properly dead
6066 * but still allocated.
6067 */
lockdep_free_key_range_reg(void * start,unsigned long size)6068 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6069 {
6070 struct pending_free *pf;
6071 unsigned long flags;
6072
6073 init_data_structures_once();
6074
6075 raw_local_irq_save(flags);
6076 lockdep_lock();
6077 pf = get_pending_free();
6078 __lockdep_free_key_range(pf, start, size);
6079 call_rcu_zapped(pf);
6080 lockdep_unlock();
6081 raw_local_irq_restore(flags);
6082
6083 /*
6084 * Wait for any possible iterators from look_up_lock_class() to pass
6085 * before continuing to free the memory they refer to.
6086 */
6087 synchronize_rcu();
6088 }
6089
6090 /*
6091 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6092 * Ignores debug_locks. Must only be used by the lockdep selftests.
6093 */
lockdep_free_key_range_imm(void * start,unsigned long size)6094 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6095 {
6096 struct pending_free *pf = delayed_free.pf;
6097 unsigned long flags;
6098
6099 init_data_structures_once();
6100
6101 raw_local_irq_save(flags);
6102 lockdep_lock();
6103 __lockdep_free_key_range(pf, start, size);
6104 __free_zapped_classes(pf);
6105 lockdep_unlock();
6106 raw_local_irq_restore(flags);
6107 }
6108
lockdep_free_key_range(void * start,unsigned long size)6109 void lockdep_free_key_range(void *start, unsigned long size)
6110 {
6111 init_data_structures_once();
6112
6113 if (inside_selftest())
6114 lockdep_free_key_range_imm(start, size);
6115 else
6116 lockdep_free_key_range_reg(start, size);
6117 }
6118
6119 /*
6120 * Check whether any element of the @lock->class_cache[] array refers to a
6121 * registered lock class. The caller must hold either the graph lock or the
6122 * RCU read lock.
6123 */
lock_class_cache_is_registered(struct lockdep_map * lock)6124 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6125 {
6126 struct lock_class *class;
6127 struct hlist_head *head;
6128 int i, j;
6129
6130 for (i = 0; i < CLASSHASH_SIZE; i++) {
6131 head = classhash_table + i;
6132 hlist_for_each_entry_rcu(class, head, hash_entry) {
6133 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6134 if (lock->class_cache[j] == class)
6135 return true;
6136 }
6137 }
6138 return false;
6139 }
6140
6141 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6142 static void __lockdep_reset_lock(struct pending_free *pf,
6143 struct lockdep_map *lock)
6144 {
6145 struct lock_class *class;
6146 int j;
6147
6148 /*
6149 * Remove all classes this lock might have:
6150 */
6151 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6152 /*
6153 * If the class exists we look it up and zap it:
6154 */
6155 class = look_up_lock_class(lock, j);
6156 if (class)
6157 zap_class(pf, class);
6158 }
6159 /*
6160 * Debug check: in the end all mapped classes should
6161 * be gone.
6162 */
6163 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6164 debug_locks_off();
6165 }
6166
6167 /*
6168 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6169 * released data structures from RCU context.
6170 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6171 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6172 {
6173 struct pending_free *pf;
6174 unsigned long flags;
6175 int locked;
6176
6177 raw_local_irq_save(flags);
6178 locked = graph_lock();
6179 if (!locked)
6180 goto out_irq;
6181
6182 pf = get_pending_free();
6183 __lockdep_reset_lock(pf, lock);
6184 call_rcu_zapped(pf);
6185
6186 graph_unlock();
6187 out_irq:
6188 raw_local_irq_restore(flags);
6189 }
6190
6191 /*
6192 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6193 * lockdep selftests.
6194 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6195 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6196 {
6197 struct pending_free *pf = delayed_free.pf;
6198 unsigned long flags;
6199
6200 raw_local_irq_save(flags);
6201 lockdep_lock();
6202 __lockdep_reset_lock(pf, lock);
6203 __free_zapped_classes(pf);
6204 lockdep_unlock();
6205 raw_local_irq_restore(flags);
6206 }
6207
lockdep_reset_lock(struct lockdep_map * lock)6208 void lockdep_reset_lock(struct lockdep_map *lock)
6209 {
6210 init_data_structures_once();
6211
6212 if (inside_selftest())
6213 lockdep_reset_lock_imm(lock);
6214 else
6215 lockdep_reset_lock_reg(lock);
6216 }
6217
6218 /*
6219 * Unregister a dynamically allocated key.
6220 *
6221 * Unlike lockdep_register_key(), a search is always done to find a matching
6222 * key irrespective of debug_locks to avoid potential invalid access to freed
6223 * memory in lock_class entry.
6224 */
lockdep_unregister_key(struct lock_class_key * key)6225 void lockdep_unregister_key(struct lock_class_key *key)
6226 {
6227 struct hlist_head *hash_head = keyhashentry(key);
6228 struct lock_class_key *k;
6229 struct pending_free *pf;
6230 unsigned long flags;
6231 bool found = false;
6232
6233 might_sleep();
6234
6235 if (WARN_ON_ONCE(static_obj(key)))
6236 return;
6237
6238 raw_local_irq_save(flags);
6239 lockdep_lock();
6240
6241 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6242 if (k == key) {
6243 hlist_del_rcu(&k->hash_entry);
6244 found = true;
6245 break;
6246 }
6247 }
6248 WARN_ON_ONCE(!found && debug_locks);
6249 if (found) {
6250 pf = get_pending_free();
6251 __lockdep_free_key_range(pf, key, 1);
6252 call_rcu_zapped(pf);
6253 }
6254 lockdep_unlock();
6255 raw_local_irq_restore(flags);
6256
6257 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6258 synchronize_rcu();
6259 }
6260 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6261
lockdep_init(void)6262 void __init lockdep_init(void)
6263 {
6264 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6265
6266 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6267 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6268 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6269 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6270 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6271 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6272 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6273
6274 printk(" memory used by lock dependency info: %zu kB\n",
6275 (sizeof(lock_classes) +
6276 sizeof(lock_classes_in_use) +
6277 sizeof(classhash_table) +
6278 sizeof(list_entries) +
6279 sizeof(list_entries_in_use) +
6280 sizeof(chainhash_table) +
6281 sizeof(delayed_free)
6282 #ifdef CONFIG_PROVE_LOCKING
6283 + sizeof(lock_cq)
6284 + sizeof(lock_chains)
6285 + sizeof(lock_chains_in_use)
6286 + sizeof(chain_hlocks)
6287 #endif
6288 ) / 1024
6289 );
6290
6291 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6292 printk(" memory used for stack traces: %zu kB\n",
6293 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6294 );
6295 #endif
6296
6297 printk(" per task-struct memory footprint: %zu bytes\n",
6298 sizeof(((struct task_struct *)NULL)->held_locks));
6299 }
6300
6301 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6302 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6303 const void *mem_to, struct held_lock *hlock)
6304 {
6305 if (!debug_locks_off())
6306 return;
6307 if (debug_locks_silent)
6308 return;
6309
6310 pr_warn("\n");
6311 pr_warn("=========================\n");
6312 pr_warn("WARNING: held lock freed!\n");
6313 print_kernel_ident();
6314 pr_warn("-------------------------\n");
6315 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6316 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6317 print_lock(hlock);
6318 lockdep_print_held_locks(curr);
6319
6320 pr_warn("\nstack backtrace:\n");
6321 dump_stack();
6322 }
6323
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6324 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6325 const void* lock_from, unsigned long lock_len)
6326 {
6327 return lock_from + lock_len <= mem_from ||
6328 mem_from + mem_len <= lock_from;
6329 }
6330
6331 /*
6332 * Called when kernel memory is freed (or unmapped), or if a lock
6333 * is destroyed or reinitialized - this code checks whether there is
6334 * any held lock in the memory range of <from> to <to>:
6335 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6336 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6337 {
6338 struct task_struct *curr = current;
6339 struct held_lock *hlock;
6340 unsigned long flags;
6341 int i;
6342
6343 if (unlikely(!debug_locks))
6344 return;
6345
6346 raw_local_irq_save(flags);
6347 for (i = 0; i < curr->lockdep_depth; i++) {
6348 hlock = curr->held_locks + i;
6349
6350 if (not_in_range(mem_from, mem_len, hlock->instance,
6351 sizeof(*hlock->instance)))
6352 continue;
6353
6354 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6355 break;
6356 }
6357 raw_local_irq_restore(flags);
6358 }
6359 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6360
print_held_locks_bug(void)6361 static void print_held_locks_bug(void)
6362 {
6363 if (!debug_locks_off())
6364 return;
6365 if (debug_locks_silent)
6366 return;
6367
6368 pr_warn("\n");
6369 pr_warn("====================================\n");
6370 pr_warn("WARNING: %s/%d still has locks held!\n",
6371 current->comm, task_pid_nr(current));
6372 print_kernel_ident();
6373 pr_warn("------------------------------------\n");
6374 lockdep_print_held_locks(current);
6375 pr_warn("\nstack backtrace:\n");
6376 dump_stack();
6377 }
6378
debug_check_no_locks_held(void)6379 void debug_check_no_locks_held(void)
6380 {
6381 if (unlikely(current->lockdep_depth > 0))
6382 print_held_locks_bug();
6383 }
6384 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6385
6386 #ifdef __KERNEL__
debug_show_all_locks(void)6387 void debug_show_all_locks(void)
6388 {
6389 struct task_struct *g, *p;
6390
6391 if (unlikely(!debug_locks)) {
6392 pr_warn("INFO: lockdep is turned off.\n");
6393 return;
6394 }
6395 pr_warn("\nShowing all locks held in the system:\n");
6396
6397 rcu_read_lock();
6398 for_each_process_thread(g, p) {
6399 if (!p->lockdep_depth)
6400 continue;
6401 lockdep_print_held_locks(p);
6402 touch_nmi_watchdog();
6403 touch_all_softlockup_watchdogs();
6404 }
6405 rcu_read_unlock();
6406
6407 pr_warn("\n");
6408 pr_warn("=============================================\n\n");
6409 }
6410 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6411 #endif
6412
6413 /*
6414 * Careful: only use this function if you are sure that
6415 * the task cannot run in parallel!
6416 */
debug_show_held_locks(struct task_struct * task)6417 void debug_show_held_locks(struct task_struct *task)
6418 {
6419 if (unlikely(!debug_locks)) {
6420 printk("INFO: lockdep is turned off.\n");
6421 return;
6422 }
6423 lockdep_print_held_locks(task);
6424 }
6425 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6426
lockdep_sys_exit(void)6427 asmlinkage __visible void lockdep_sys_exit(void)
6428 {
6429 struct task_struct *curr = current;
6430
6431 if (unlikely(curr->lockdep_depth)) {
6432 if (!debug_locks_off())
6433 return;
6434 pr_warn("\n");
6435 pr_warn("================================================\n");
6436 pr_warn("WARNING: lock held when returning to user space!\n");
6437 print_kernel_ident();
6438 pr_warn("------------------------------------------------\n");
6439 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6440 curr->comm, curr->pid);
6441 lockdep_print_held_locks(curr);
6442 }
6443
6444 /*
6445 * The lock history for each syscall should be independent. So wipe the
6446 * slate clean on return to userspace.
6447 */
6448 lockdep_invariant_state(false);
6449 }
6450
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6451 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6452 {
6453 struct task_struct *curr = current;
6454
6455 /* Note: the following can be executed concurrently, so be careful. */
6456 pr_warn("\n");
6457 pr_warn("=============================\n");
6458 pr_warn("WARNING: suspicious RCU usage\n");
6459 print_kernel_ident();
6460 pr_warn("-----------------------------\n");
6461 pr_warn("%s:%d %s!\n", file, line, s);
6462 pr_warn("\nother info that might help us debug this:\n\n");
6463 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6464 !rcu_lockdep_current_cpu_online()
6465 ? "RCU used illegally from offline CPU!\n"
6466 : "",
6467 rcu_scheduler_active, debug_locks);
6468
6469 /*
6470 * If a CPU is in the RCU-free window in idle (ie: in the section
6471 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6472 * considers that CPU to be in an "extended quiescent state",
6473 * which means that RCU will be completely ignoring that CPU.
6474 * Therefore, rcu_read_lock() and friends have absolutely no
6475 * effect on a CPU running in that state. In other words, even if
6476 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6477 * delete data structures out from under it. RCU really has no
6478 * choice here: we need to keep an RCU-free window in idle where
6479 * the CPU may possibly enter into low power mode. This way we can
6480 * notice an extended quiescent state to other CPUs that started a grace
6481 * period. Otherwise we would delay any grace period as long as we run
6482 * in the idle task.
6483 *
6484 * So complain bitterly if someone does call rcu_read_lock(),
6485 * rcu_read_lock_bh() and so on from extended quiescent states.
6486 */
6487 if (!rcu_is_watching())
6488 pr_warn("RCU used illegally from extended quiescent state!\n");
6489
6490 lockdep_print_held_locks(curr);
6491 pr_warn("\nstack backtrace:\n");
6492 dump_stack();
6493 }
6494 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6495