• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20 
21 /**
22  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23  * @mult:	pointer to mult variable
24  * @shift:	pointer to shift variable
25  * @from:	frequency to convert from
26  * @to:		frequency to convert to
27  * @maxsec:	guaranteed runtime conversion range in seconds
28  *
29  * The function evaluates the shift/mult pair for the scaled math
30  * operations of clocksources and clockevents.
31  *
32  * @to and @from are frequency values in HZ. For clock sources @to is
33  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34  * event @to is the counter frequency and @from is NSEC_PER_SEC.
35  *
36  * The @maxsec conversion range argument controls the time frame in
37  * seconds which must be covered by the runtime conversion with the
38  * calculated mult and shift factors. This guarantees that no 64bit
39  * overflow happens when the input value of the conversion is
40  * multiplied with the calculated mult factor. Larger ranges may
41  * reduce the conversion accuracy by chosing smaller mult and shift
42  * factors.
43  */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 	u64 tmp;
48 	u32 sft, sftacc= 32;
49 
50 	/*
51 	 * Calculate the shift factor which is limiting the conversion
52 	 * range:
53 	 */
54 	tmp = ((u64)maxsec * from) >> 32;
55 	while (tmp) {
56 		tmp >>=1;
57 		sftacc--;
58 	}
59 
60 	/*
61 	 * Find the conversion shift/mult pair which has the best
62 	 * accuracy and fits the maxsec conversion range:
63 	 */
64 	for (sft = 32; sft > 0; sft--) {
65 		tmp = (u64) to << sft;
66 		tmp += from / 2;
67 		do_div(tmp, from);
68 		if ((tmp >> sftacc) == 0)
69 			break;
70 	}
71 	*mult = tmp;
72 	*shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75 
76 /*[Clocksource internal variables]---------
77  * curr_clocksource:
78  *	currently selected clocksource.
79  * suspend_clocksource:
80  *	used to calculate the suspend time.
81  * clocksource_list:
82  *	linked list with the registered clocksources
83  * clocksource_mutex:
84  *	protects manipulations to curr_clocksource and the clocksource_list
85  * override_name:
86  *	Name of the user-specified clocksource.
87  */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95 
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct *work);
98 static void clocksource_select(void);
99 
100 static LIST_HEAD(watchdog_list);
101 static struct clocksource *watchdog;
102 static struct timer_list watchdog_timer;
103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104 static DEFINE_SPINLOCK(watchdog_lock);
105 static int watchdog_running;
106 static atomic_t watchdog_reset_pending;
107 
clocksource_watchdog_lock(unsigned long * flags)108 static inline void clocksource_watchdog_lock(unsigned long *flags)
109 {
110 	spin_lock_irqsave(&watchdog_lock, *flags);
111 }
112 
clocksource_watchdog_unlock(unsigned long * flags)113 static inline void clocksource_watchdog_unlock(unsigned long *flags)
114 {
115 	spin_unlock_irqrestore(&watchdog_lock, *flags);
116 }
117 
118 static int clocksource_watchdog_kthread(void *data);
119 static void __clocksource_change_rating(struct clocksource *cs, int rating);
120 
121 /*
122  * Interval: 0.5sec Threshold: 0.0625s
123  */
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126 
127 /*
128  * Maximum permissible delay between two readouts of the watchdog
129  * clocksource surrounding a read of the clocksource being validated.
130  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.
131  */
132 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
133 
clocksource_watchdog_work(struct work_struct * work)134 static void clocksource_watchdog_work(struct work_struct *work)
135 {
136 	/*
137 	 * We cannot directly run clocksource_watchdog_kthread() here, because
138 	 * clocksource_select() calls timekeeping_notify() which uses
139 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
140 	 * lock inversions wrt CPU hotplug.
141 	 *
142 	 * Also, we only ever run this work once or twice during the lifetime
143 	 * of the kernel, so there is no point in creating a more permanent
144 	 * kthread for this.
145 	 *
146 	 * If kthread_run fails the next watchdog scan over the
147 	 * watchdog_list will find the unstable clock again.
148 	 */
149 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
150 }
151 
__clocksource_unstable(struct clocksource * cs)152 static void __clocksource_unstable(struct clocksource *cs)
153 {
154 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
155 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
156 
157 	/*
158 	 * If the clocksource is registered clocksource_watchdog_kthread() will
159 	 * re-rate and re-select.
160 	 */
161 	if (list_empty(&cs->list)) {
162 		cs->rating = 0;
163 		return;
164 	}
165 
166 	if (cs->mark_unstable)
167 		cs->mark_unstable(cs);
168 
169 	/* kick clocksource_watchdog_kthread() */
170 	if (finished_booting)
171 		schedule_work(&watchdog_work);
172 }
173 
174 /**
175  * clocksource_mark_unstable - mark clocksource unstable via watchdog
176  * @cs:		clocksource to be marked unstable
177  *
178  * This function is called by the x86 TSC code to mark clocksources as unstable;
179  * it defers demotion and re-selection to a kthread.
180  */
clocksource_mark_unstable(struct clocksource * cs)181 void clocksource_mark_unstable(struct clocksource *cs)
182 {
183 	unsigned long flags;
184 
185 	spin_lock_irqsave(&watchdog_lock, flags);
186 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
187 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
188 			list_add(&cs->wd_list, &watchdog_list);
189 		__clocksource_unstable(cs);
190 	}
191 	spin_unlock_irqrestore(&watchdog_lock, flags);
192 }
193 
194 static ulong max_cswd_read_retries = 3;
195 module_param(max_cswd_read_retries, ulong, 0644);
196 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)197 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
198 {
199 	unsigned int nretries;
200 	u64 wd_end, wd_delta;
201 	int64_t wd_delay;
202 
203 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
204 		local_irq_disable();
205 		*wdnow = watchdog->read(watchdog);
206 		*csnow = cs->read(cs);
207 		wd_end = watchdog->read(watchdog);
208 		local_irq_enable();
209 
210 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
211 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
212 					      watchdog->shift);
213 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
214 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
215 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
216 					smp_processor_id(), watchdog->name, nretries);
217 			}
218 			return true;
219 		}
220 	}
221 
222 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
223 		smp_processor_id(), watchdog->name, wd_delay, nretries);
224 	return false;
225 }
226 
227 static u64 csnow_mid;
228 static cpumask_t cpus_ahead;
229 static cpumask_t cpus_behind;
230 
clocksource_verify_one_cpu(void * csin)231 static void clocksource_verify_one_cpu(void *csin)
232 {
233 	struct clocksource *cs = (struct clocksource *)csin;
234 
235 	csnow_mid = cs->read(cs);
236 }
237 
clocksource_verify_percpu(struct clocksource * cs)238 static void clocksource_verify_percpu(struct clocksource *cs)
239 {
240 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
241 	u64 csnow_begin, csnow_end;
242 	int cpu, testcpu;
243 	s64 delta;
244 
245 	cpumask_clear(&cpus_ahead);
246 	cpumask_clear(&cpus_behind);
247 	preempt_disable();
248 	testcpu = smp_processor_id();
249 	pr_warn("Checking clocksource %s synchronization from CPU %d.\n", cs->name, testcpu);
250 	for_each_online_cpu(cpu) {
251 		if (cpu == testcpu)
252 			continue;
253 		csnow_begin = cs->read(cs);
254 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
255 		csnow_end = cs->read(cs);
256 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
257 		if (delta < 0)
258 			cpumask_set_cpu(cpu, &cpus_behind);
259 		delta = (csnow_end - csnow_mid) & cs->mask;
260 		if (delta < 0)
261 			cpumask_set_cpu(cpu, &cpus_ahead);
262 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
263 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
264 		if (cs_nsec > cs_nsec_max)
265 			cs_nsec_max = cs_nsec;
266 		if (cs_nsec < cs_nsec_min)
267 			cs_nsec_min = cs_nsec;
268 	}
269 	preempt_enable();
270 	if (!cpumask_empty(&cpus_ahead))
271 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
272 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
273 	if (!cpumask_empty(&cpus_behind))
274 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
275 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
276 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
277 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
278 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
279 }
280 
clocksource_watchdog(struct timer_list * unused)281 static void clocksource_watchdog(struct timer_list *unused)
282 {
283 	u64 csnow, wdnow, cslast, wdlast, delta;
284 	int next_cpu, reset_pending;
285 	int64_t wd_nsec, cs_nsec;
286 	struct clocksource *cs;
287 
288 	spin_lock(&watchdog_lock);
289 	if (!watchdog_running)
290 		goto out;
291 
292 	reset_pending = atomic_read(&watchdog_reset_pending);
293 
294 	list_for_each_entry(cs, &watchdog_list, wd_list) {
295 
296 		/* Clocksource already marked unstable? */
297 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
298 			if (finished_booting)
299 				schedule_work(&watchdog_work);
300 			continue;
301 		}
302 
303 		if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
304 			/* Clock readout unreliable, so give it up. */
305 			__clocksource_unstable(cs);
306 			continue;
307 		}
308 
309 		/* Clocksource initialized ? */
310 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
311 		    atomic_read(&watchdog_reset_pending)) {
312 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
313 			cs->wd_last = wdnow;
314 			cs->cs_last = csnow;
315 			continue;
316 		}
317 
318 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
319 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
320 					     watchdog->shift);
321 
322 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
323 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
324 		wdlast = cs->wd_last; /* save these in case we print them */
325 		cslast = cs->cs_last;
326 		cs->cs_last = csnow;
327 		cs->wd_last = wdnow;
328 
329 		if (atomic_read(&watchdog_reset_pending))
330 			continue;
331 
332 		/* Check the deviation from the watchdog clocksource. */
333 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
334 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
335 				smp_processor_id(), cs->name);
336 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
337 				watchdog->name, wdnow, wdlast, watchdog->mask);
338 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
339 				cs->name, csnow, cslast, cs->mask);
340 			__clocksource_unstable(cs);
341 			continue;
342 		}
343 
344 		if (cs == curr_clocksource && cs->tick_stable)
345 			cs->tick_stable(cs);
346 
347 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
348 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
349 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
350 			/* Mark it valid for high-res. */
351 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
352 
353 			/*
354 			 * clocksource_done_booting() will sort it if
355 			 * finished_booting is not set yet.
356 			 */
357 			if (!finished_booting)
358 				continue;
359 
360 			/*
361 			 * If this is not the current clocksource let
362 			 * the watchdog thread reselect it. Due to the
363 			 * change to high res this clocksource might
364 			 * be preferred now. If it is the current
365 			 * clocksource let the tick code know about
366 			 * that change.
367 			 */
368 			if (cs != curr_clocksource) {
369 				cs->flags |= CLOCK_SOURCE_RESELECT;
370 				schedule_work(&watchdog_work);
371 			} else {
372 				tick_clock_notify();
373 			}
374 		}
375 	}
376 
377 	/*
378 	 * We only clear the watchdog_reset_pending, when we did a
379 	 * full cycle through all clocksources.
380 	 */
381 	if (reset_pending)
382 		atomic_dec(&watchdog_reset_pending);
383 
384 	/*
385 	 * Cycle through CPUs to check if the CPUs stay synchronized
386 	 * to each other.
387 	 */
388 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
389 	if (next_cpu >= nr_cpu_ids)
390 		next_cpu = cpumask_first(cpu_online_mask);
391 
392 	/*
393 	 * Arm timer if not already pending: could race with concurrent
394 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
395 	 */
396 	if (!timer_pending(&watchdog_timer)) {
397 		watchdog_timer.expires += WATCHDOG_INTERVAL;
398 		add_timer_on(&watchdog_timer, next_cpu);
399 	}
400 out:
401 	spin_unlock(&watchdog_lock);
402 }
403 
clocksource_start_watchdog(void)404 static inline void clocksource_start_watchdog(void)
405 {
406 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
407 		return;
408 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
409 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
410 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
411 	watchdog_running = 1;
412 }
413 
clocksource_stop_watchdog(void)414 static inline void clocksource_stop_watchdog(void)
415 {
416 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
417 		return;
418 	del_timer(&watchdog_timer);
419 	watchdog_running = 0;
420 }
421 
clocksource_reset_watchdog(void)422 static inline void clocksource_reset_watchdog(void)
423 {
424 	struct clocksource *cs;
425 
426 	list_for_each_entry(cs, &watchdog_list, wd_list)
427 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
428 }
429 
clocksource_resume_watchdog(void)430 static void clocksource_resume_watchdog(void)
431 {
432 	atomic_inc(&watchdog_reset_pending);
433 }
434 
clocksource_enqueue_watchdog(struct clocksource * cs)435 static void clocksource_enqueue_watchdog(struct clocksource *cs)
436 {
437 	INIT_LIST_HEAD(&cs->wd_list);
438 
439 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
440 		/* cs is a clocksource to be watched. */
441 		list_add(&cs->wd_list, &watchdog_list);
442 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
443 	} else {
444 		/* cs is a watchdog. */
445 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447 	}
448 }
449 
clocksource_select_watchdog(bool fallback)450 static void clocksource_select_watchdog(bool fallback)
451 {
452 	struct clocksource *cs, *old_wd;
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&watchdog_lock, flags);
456 	/* save current watchdog */
457 	old_wd = watchdog;
458 	if (fallback)
459 		watchdog = NULL;
460 
461 	list_for_each_entry(cs, &clocksource_list, list) {
462 		/* cs is a clocksource to be watched. */
463 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
464 			continue;
465 
466 		/* Skip current if we were requested for a fallback. */
467 		if (fallback && cs == old_wd)
468 			continue;
469 
470 		/* Pick the best watchdog. */
471 		if (!watchdog || cs->rating > watchdog->rating)
472 			watchdog = cs;
473 	}
474 	/* If we failed to find a fallback restore the old one. */
475 	if (!watchdog)
476 		watchdog = old_wd;
477 
478 	/* If we changed the watchdog we need to reset cycles. */
479 	if (watchdog != old_wd)
480 		clocksource_reset_watchdog();
481 
482 	/* Check if the watchdog timer needs to be started. */
483 	clocksource_start_watchdog();
484 	spin_unlock_irqrestore(&watchdog_lock, flags);
485 }
486 
clocksource_dequeue_watchdog(struct clocksource * cs)487 static void clocksource_dequeue_watchdog(struct clocksource *cs)
488 {
489 	if (cs != watchdog) {
490 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
491 			/* cs is a watched clocksource. */
492 			list_del_init(&cs->wd_list);
493 			/* Check if the watchdog timer needs to be stopped. */
494 			clocksource_stop_watchdog();
495 		}
496 	}
497 }
498 
__clocksource_watchdog_kthread(void)499 static int __clocksource_watchdog_kthread(void)
500 {
501 	struct clocksource *cs, *tmp;
502 	unsigned long flags;
503 	int select = 0;
504 
505 	/* Do any required per-CPU skew verification. */
506 	if (curr_clocksource &&
507 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
508 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
509 		clocksource_verify_percpu(curr_clocksource);
510 
511 	spin_lock_irqsave(&watchdog_lock, flags);
512 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
513 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
514 			list_del_init(&cs->wd_list);
515 			__clocksource_change_rating(cs, 0);
516 			select = 1;
517 		}
518 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
519 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
520 			select = 1;
521 		}
522 	}
523 	/* Check if the watchdog timer needs to be stopped. */
524 	clocksource_stop_watchdog();
525 	spin_unlock_irqrestore(&watchdog_lock, flags);
526 
527 	return select;
528 }
529 
clocksource_watchdog_kthread(void * data)530 static int clocksource_watchdog_kthread(void *data)
531 {
532 	mutex_lock(&clocksource_mutex);
533 	if (__clocksource_watchdog_kthread())
534 		clocksource_select();
535 	mutex_unlock(&clocksource_mutex);
536 	return 0;
537 }
538 
clocksource_is_watchdog(struct clocksource * cs)539 static bool clocksource_is_watchdog(struct clocksource *cs)
540 {
541 	return cs == watchdog;
542 }
543 
544 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
545 
clocksource_enqueue_watchdog(struct clocksource * cs)546 static void clocksource_enqueue_watchdog(struct clocksource *cs)
547 {
548 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
549 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
550 }
551 
clocksource_select_watchdog(bool fallback)552 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)553 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)554 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)555 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)556 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)557 void clocksource_mark_unstable(struct clocksource *cs) { }
558 
clocksource_watchdog_lock(unsigned long * flags)559 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)560 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
561 
562 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
563 
clocksource_is_suspend(struct clocksource * cs)564 static bool clocksource_is_suspend(struct clocksource *cs)
565 {
566 	return cs == suspend_clocksource;
567 }
568 
__clocksource_suspend_select(struct clocksource * cs)569 static void __clocksource_suspend_select(struct clocksource *cs)
570 {
571 	/*
572 	 * Skip the clocksource which will be stopped in suspend state.
573 	 */
574 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
575 		return;
576 
577 	/*
578 	 * The nonstop clocksource can be selected as the suspend clocksource to
579 	 * calculate the suspend time, so it should not supply suspend/resume
580 	 * interfaces to suspend the nonstop clocksource when system suspends.
581 	 */
582 	if (cs->suspend || cs->resume) {
583 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
584 			cs->name);
585 	}
586 
587 	/* Pick the best rating. */
588 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
589 		suspend_clocksource = cs;
590 }
591 
592 /**
593  * clocksource_suspend_select - Select the best clocksource for suspend timing
594  * @fallback:	if select a fallback clocksource
595  */
clocksource_suspend_select(bool fallback)596 static void clocksource_suspend_select(bool fallback)
597 {
598 	struct clocksource *cs, *old_suspend;
599 
600 	old_suspend = suspend_clocksource;
601 	if (fallback)
602 		suspend_clocksource = NULL;
603 
604 	list_for_each_entry(cs, &clocksource_list, list) {
605 		/* Skip current if we were requested for a fallback. */
606 		if (fallback && cs == old_suspend)
607 			continue;
608 
609 		__clocksource_suspend_select(cs);
610 	}
611 }
612 
613 /**
614  * clocksource_start_suspend_timing - Start measuring the suspend timing
615  * @cs:			current clocksource from timekeeping
616  * @start_cycles:	current cycles from timekeeping
617  *
618  * This function will save the start cycle values of suspend timer to calculate
619  * the suspend time when resuming system.
620  *
621  * This function is called late in the suspend process from timekeeping_suspend(),
622  * that means processes are freezed, non-boot cpus and interrupts are disabled
623  * now. It is therefore possible to start the suspend timer without taking the
624  * clocksource mutex.
625  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)626 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
627 {
628 	if (!suspend_clocksource)
629 		return;
630 
631 	/*
632 	 * If current clocksource is the suspend timer, we should use the
633 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
634 	 * from suspend timer.
635 	 */
636 	if (clocksource_is_suspend(cs)) {
637 		suspend_start = start_cycles;
638 		return;
639 	}
640 
641 	if (suspend_clocksource->enable &&
642 	    suspend_clocksource->enable(suspend_clocksource)) {
643 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
644 		return;
645 	}
646 
647 	suspend_start = suspend_clocksource->read(suspend_clocksource);
648 }
649 
650 /**
651  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
652  * @cs:		current clocksource from timekeeping
653  * @cycle_now:	current cycles from timekeeping
654  *
655  * This function will calculate the suspend time from suspend timer.
656  *
657  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
658  *
659  * This function is called early in the resume process from timekeeping_resume(),
660  * that means there is only one cpu, no processes are running and the interrupts
661  * are disabled. It is therefore possible to stop the suspend timer without
662  * taking the clocksource mutex.
663  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)664 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
665 {
666 	u64 now, delta, nsec = 0;
667 
668 	if (!suspend_clocksource)
669 		return 0;
670 
671 	/*
672 	 * If current clocksource is the suspend timer, we should use the
673 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
674 	 * avoid same reading from suspend timer.
675 	 */
676 	if (clocksource_is_suspend(cs))
677 		now = cycle_now;
678 	else
679 		now = suspend_clocksource->read(suspend_clocksource);
680 
681 	if (now > suspend_start) {
682 		delta = clocksource_delta(now, suspend_start,
683 					  suspend_clocksource->mask);
684 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
685 				       suspend_clocksource->shift);
686 	}
687 
688 	/*
689 	 * Disable the suspend timer to save power if current clocksource is
690 	 * not the suspend timer.
691 	 */
692 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
693 		suspend_clocksource->disable(suspend_clocksource);
694 
695 	return nsec;
696 }
697 
698 /**
699  * clocksource_suspend - suspend the clocksource(s)
700  */
clocksource_suspend(void)701 void clocksource_suspend(void)
702 {
703 	struct clocksource *cs;
704 
705 	list_for_each_entry_reverse(cs, &clocksource_list, list)
706 		if (cs->suspend)
707 			cs->suspend(cs);
708 }
709 
710 /**
711  * clocksource_resume - resume the clocksource(s)
712  */
clocksource_resume(void)713 void clocksource_resume(void)
714 {
715 	struct clocksource *cs;
716 
717 	list_for_each_entry(cs, &clocksource_list, list)
718 		if (cs->resume)
719 			cs->resume(cs);
720 
721 	clocksource_resume_watchdog();
722 }
723 
724 /**
725  * clocksource_touch_watchdog - Update watchdog
726  *
727  * Update the watchdog after exception contexts such as kgdb so as not
728  * to incorrectly trip the watchdog. This might fail when the kernel
729  * was stopped in code which holds watchdog_lock.
730  */
clocksource_touch_watchdog(void)731 void clocksource_touch_watchdog(void)
732 {
733 	clocksource_resume_watchdog();
734 }
735 
736 /**
737  * clocksource_max_adjustment- Returns max adjustment amount
738  * @cs:         Pointer to clocksource
739  *
740  */
clocksource_max_adjustment(struct clocksource * cs)741 static u32 clocksource_max_adjustment(struct clocksource *cs)
742 {
743 	u64 ret;
744 	/*
745 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
746 	 */
747 	ret = (u64)cs->mult * 11;
748 	do_div(ret,100);
749 	return (u32)ret;
750 }
751 
752 /**
753  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
754  * @mult:	cycle to nanosecond multiplier
755  * @shift:	cycle to nanosecond divisor (power of two)
756  * @maxadj:	maximum adjustment value to mult (~11%)
757  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
758  * @max_cyc:	maximum cycle value before potential overflow (does not include
759  *		any safety margin)
760  *
761  * NOTE: This function includes a safety margin of 50%, in other words, we
762  * return half the number of nanoseconds the hardware counter can technically
763  * cover. This is done so that we can potentially detect problems caused by
764  * delayed timers or bad hardware, which might result in time intervals that
765  * are larger than what the math used can handle without overflows.
766  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)767 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
768 {
769 	u64 max_nsecs, max_cycles;
770 
771 	/*
772 	 * Calculate the maximum number of cycles that we can pass to the
773 	 * cyc2ns() function without overflowing a 64-bit result.
774 	 */
775 	max_cycles = ULLONG_MAX;
776 	do_div(max_cycles, mult+maxadj);
777 
778 	/*
779 	 * The actual maximum number of cycles we can defer the clocksource is
780 	 * determined by the minimum of max_cycles and mask.
781 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
782 	 * too long if there's a large negative adjustment.
783 	 */
784 	max_cycles = min(max_cycles, mask);
785 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
786 
787 	/* return the max_cycles value as well if requested */
788 	if (max_cyc)
789 		*max_cyc = max_cycles;
790 
791 	/* Return 50% of the actual maximum, so we can detect bad values */
792 	max_nsecs >>= 1;
793 
794 	return max_nsecs;
795 }
796 
797 /**
798  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
799  * @cs:         Pointer to clocksource to be updated
800  *
801  */
clocksource_update_max_deferment(struct clocksource * cs)802 static inline void clocksource_update_max_deferment(struct clocksource *cs)
803 {
804 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
805 						cs->maxadj, cs->mask,
806 						&cs->max_cycles);
807 }
808 
809 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
810 
clocksource_find_best(bool oneshot,bool skipcur)811 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
812 {
813 	struct clocksource *cs;
814 
815 	if (!finished_booting || list_empty(&clocksource_list))
816 		return NULL;
817 
818 	/*
819 	 * We pick the clocksource with the highest rating. If oneshot
820 	 * mode is active, we pick the highres valid clocksource with
821 	 * the best rating.
822 	 */
823 	list_for_each_entry(cs, &clocksource_list, list) {
824 		if (skipcur && cs == curr_clocksource)
825 			continue;
826 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
827 			continue;
828 		return cs;
829 	}
830 	return NULL;
831 }
832 
__clocksource_select(bool skipcur)833 static void __clocksource_select(bool skipcur)
834 {
835 	bool oneshot = tick_oneshot_mode_active();
836 	struct clocksource *best, *cs;
837 
838 	/* Find the best suitable clocksource */
839 	best = clocksource_find_best(oneshot, skipcur);
840 	if (!best)
841 		return;
842 
843 	if (!strlen(override_name))
844 		goto found;
845 
846 	/* Check for the override clocksource. */
847 	list_for_each_entry(cs, &clocksource_list, list) {
848 		if (skipcur && cs == curr_clocksource)
849 			continue;
850 		if (strcmp(cs->name, override_name) != 0)
851 			continue;
852 		/*
853 		 * Check to make sure we don't switch to a non-highres
854 		 * capable clocksource if the tick code is in oneshot
855 		 * mode (highres or nohz)
856 		 */
857 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
858 			/* Override clocksource cannot be used. */
859 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
860 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
861 					cs->name);
862 				override_name[0] = 0;
863 			} else {
864 				/*
865 				 * The override cannot be currently verified.
866 				 * Deferring to let the watchdog check.
867 				 */
868 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
869 					cs->name);
870 			}
871 		} else
872 			/* Override clocksource can be used. */
873 			best = cs;
874 		break;
875 	}
876 
877 found:
878 	if (curr_clocksource != best && !timekeeping_notify(best)) {
879 		pr_info("Switched to clocksource %s\n", best->name);
880 		curr_clocksource = best;
881 	}
882 }
883 
884 /**
885  * clocksource_select - Select the best clocksource available
886  *
887  * Private function. Must hold clocksource_mutex when called.
888  *
889  * Select the clocksource with the best rating, or the clocksource,
890  * which is selected by userspace override.
891  */
clocksource_select(void)892 static void clocksource_select(void)
893 {
894 	__clocksource_select(false);
895 }
896 
clocksource_select_fallback(void)897 static void clocksource_select_fallback(void)
898 {
899 	__clocksource_select(true);
900 }
901 
902 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)903 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)904 static inline void clocksource_select_fallback(void) { }
905 
906 #endif
907 
908 /*
909  * clocksource_done_booting - Called near the end of core bootup
910  *
911  * Hack to avoid lots of clocksource churn at boot time.
912  * We use fs_initcall because we want this to start before
913  * device_initcall but after subsys_initcall.
914  */
clocksource_done_booting(void)915 static int __init clocksource_done_booting(void)
916 {
917 	mutex_lock(&clocksource_mutex);
918 	curr_clocksource = clocksource_default_clock();
919 	finished_booting = 1;
920 	/*
921 	 * Run the watchdog first to eliminate unstable clock sources
922 	 */
923 	__clocksource_watchdog_kthread();
924 	clocksource_select();
925 	mutex_unlock(&clocksource_mutex);
926 	return 0;
927 }
928 fs_initcall(clocksource_done_booting);
929 
930 /*
931  * Enqueue the clocksource sorted by rating
932  */
clocksource_enqueue(struct clocksource * cs)933 static void clocksource_enqueue(struct clocksource *cs)
934 {
935 	struct list_head *entry = &clocksource_list;
936 	struct clocksource *tmp;
937 
938 	list_for_each_entry(tmp, &clocksource_list, list) {
939 		/* Keep track of the place, where to insert */
940 		if (tmp->rating < cs->rating)
941 			break;
942 		entry = &tmp->list;
943 	}
944 	list_add(&cs->list, entry);
945 }
946 
947 /**
948  * __clocksource_update_freq_scale - Used update clocksource with new freq
949  * @cs:		clocksource to be registered
950  * @scale:	Scale factor multiplied against freq to get clocksource hz
951  * @freq:	clocksource frequency (cycles per second) divided by scale
952  *
953  * This should only be called from the clocksource->enable() method.
954  *
955  * This *SHOULD NOT* be called directly! Please use the
956  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
957  * functions.
958  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)959 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
960 {
961 	u64 sec;
962 
963 	/*
964 	 * Default clocksources are *special* and self-define their mult/shift.
965 	 * But, you're not special, so you should specify a freq value.
966 	 */
967 	if (freq) {
968 		/*
969 		 * Calc the maximum number of seconds which we can run before
970 		 * wrapping around. For clocksources which have a mask > 32-bit
971 		 * we need to limit the max sleep time to have a good
972 		 * conversion precision. 10 minutes is still a reasonable
973 		 * amount. That results in a shift value of 24 for a
974 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
975 		 * ~ 0.06ppm granularity for NTP.
976 		 */
977 		sec = cs->mask;
978 		do_div(sec, freq);
979 		do_div(sec, scale);
980 		if (!sec)
981 			sec = 1;
982 		else if (sec > 600 && cs->mask > UINT_MAX)
983 			sec = 600;
984 
985 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
986 				       NSEC_PER_SEC / scale, sec * scale);
987 	}
988 	/*
989 	 * Ensure clocksources that have large 'mult' values don't overflow
990 	 * when adjusted.
991 	 */
992 	cs->maxadj = clocksource_max_adjustment(cs);
993 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
994 		|| (cs->mult - cs->maxadj > cs->mult))) {
995 		cs->mult >>= 1;
996 		cs->shift--;
997 		cs->maxadj = clocksource_max_adjustment(cs);
998 	}
999 
1000 	/*
1001 	 * Only warn for *special* clocksources that self-define
1002 	 * their mult/shift values and don't specify a freq.
1003 	 */
1004 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1005 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1006 		cs->name);
1007 
1008 	clocksource_update_max_deferment(cs);
1009 
1010 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1011 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1012 }
1013 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1014 
1015 /**
1016  * __clocksource_register_scale - Used to install new clocksources
1017  * @cs:		clocksource to be registered
1018  * @scale:	Scale factor multiplied against freq to get clocksource hz
1019  * @freq:	clocksource frequency (cycles per second) divided by scale
1020  *
1021  * Returns -EBUSY if registration fails, zero otherwise.
1022  *
1023  * This *SHOULD NOT* be called directly! Please use the
1024  * clocksource_register_hz() or clocksource_register_khz helper functions.
1025  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1026 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1027 {
1028 	unsigned long flags;
1029 
1030 	clocksource_arch_init(cs);
1031 
1032 	if (cs->vdso_clock_mode < 0 ||
1033 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1034 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1035 			cs->name, cs->vdso_clock_mode);
1036 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1037 	}
1038 
1039 	/* Initialize mult/shift and max_idle_ns */
1040 	__clocksource_update_freq_scale(cs, scale, freq);
1041 
1042 	/* Add clocksource to the clocksource list */
1043 	mutex_lock(&clocksource_mutex);
1044 
1045 	clocksource_watchdog_lock(&flags);
1046 	clocksource_enqueue(cs);
1047 	clocksource_enqueue_watchdog(cs);
1048 	clocksource_watchdog_unlock(&flags);
1049 
1050 	clocksource_select();
1051 	clocksource_select_watchdog(false);
1052 	__clocksource_suspend_select(cs);
1053 	mutex_unlock(&clocksource_mutex);
1054 	return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1057 
__clocksource_change_rating(struct clocksource * cs,int rating)1058 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1059 {
1060 	list_del(&cs->list);
1061 	cs->rating = rating;
1062 	clocksource_enqueue(cs);
1063 }
1064 
1065 /**
1066  * clocksource_change_rating - Change the rating of a registered clocksource
1067  * @cs:		clocksource to be changed
1068  * @rating:	new rating
1069  */
clocksource_change_rating(struct clocksource * cs,int rating)1070 void clocksource_change_rating(struct clocksource *cs, int rating)
1071 {
1072 	unsigned long flags;
1073 
1074 	mutex_lock(&clocksource_mutex);
1075 	clocksource_watchdog_lock(&flags);
1076 	__clocksource_change_rating(cs, rating);
1077 	clocksource_watchdog_unlock(&flags);
1078 
1079 	clocksource_select();
1080 	clocksource_select_watchdog(false);
1081 	clocksource_suspend_select(false);
1082 	mutex_unlock(&clocksource_mutex);
1083 }
1084 EXPORT_SYMBOL(clocksource_change_rating);
1085 
1086 /*
1087  * Unbind clocksource @cs. Called with clocksource_mutex held
1088  */
clocksource_unbind(struct clocksource * cs)1089 static int clocksource_unbind(struct clocksource *cs)
1090 {
1091 	unsigned long flags;
1092 
1093 	if (clocksource_is_watchdog(cs)) {
1094 		/* Select and try to install a replacement watchdog. */
1095 		clocksource_select_watchdog(true);
1096 		if (clocksource_is_watchdog(cs))
1097 			return -EBUSY;
1098 	}
1099 
1100 	if (cs == curr_clocksource) {
1101 		/* Select and try to install a replacement clock source */
1102 		clocksource_select_fallback();
1103 		if (curr_clocksource == cs)
1104 			return -EBUSY;
1105 	}
1106 
1107 	if (clocksource_is_suspend(cs)) {
1108 		/*
1109 		 * Select and try to install a replacement suspend clocksource.
1110 		 * If no replacement suspend clocksource, we will just let the
1111 		 * clocksource go and have no suspend clocksource.
1112 		 */
1113 		clocksource_suspend_select(true);
1114 	}
1115 
1116 	clocksource_watchdog_lock(&flags);
1117 	clocksource_dequeue_watchdog(cs);
1118 	list_del_init(&cs->list);
1119 	clocksource_watchdog_unlock(&flags);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * clocksource_unregister - remove a registered clocksource
1126  * @cs:	clocksource to be unregistered
1127  */
clocksource_unregister(struct clocksource * cs)1128 int clocksource_unregister(struct clocksource *cs)
1129 {
1130 	int ret = 0;
1131 
1132 	mutex_lock(&clocksource_mutex);
1133 	if (!list_empty(&cs->list))
1134 		ret = clocksource_unbind(cs);
1135 	mutex_unlock(&clocksource_mutex);
1136 	return ret;
1137 }
1138 EXPORT_SYMBOL(clocksource_unregister);
1139 
1140 #ifdef CONFIG_SYSFS
1141 /**
1142  * current_clocksource_show - sysfs interface for current clocksource
1143  * @dev:	unused
1144  * @attr:	unused
1145  * @buf:	char buffer to be filled with clocksource list
1146  *
1147  * Provides sysfs interface for listing current clocksource.
1148  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1149 static ssize_t current_clocksource_show(struct device *dev,
1150 					struct device_attribute *attr,
1151 					char *buf)
1152 {
1153 	ssize_t count = 0;
1154 
1155 	mutex_lock(&clocksource_mutex);
1156 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1157 	mutex_unlock(&clocksource_mutex);
1158 
1159 	return count;
1160 }
1161 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1162 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1163 {
1164 	size_t ret = cnt;
1165 
1166 	/* strings from sysfs write are not 0 terminated! */
1167 	if (!cnt || cnt >= CS_NAME_LEN)
1168 		return -EINVAL;
1169 
1170 	/* strip of \n: */
1171 	if (buf[cnt-1] == '\n')
1172 		cnt--;
1173 	if (cnt > 0)
1174 		memcpy(dst, buf, cnt);
1175 	dst[cnt] = 0;
1176 	return ret;
1177 }
1178 
1179 /**
1180  * current_clocksource_store - interface for manually overriding clocksource
1181  * @dev:	unused
1182  * @attr:	unused
1183  * @buf:	name of override clocksource
1184  * @count:	length of buffer
1185  *
1186  * Takes input from sysfs interface for manually overriding the default
1187  * clocksource selection.
1188  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1189 static ssize_t current_clocksource_store(struct device *dev,
1190 					 struct device_attribute *attr,
1191 					 const char *buf, size_t count)
1192 {
1193 	ssize_t ret;
1194 
1195 	mutex_lock(&clocksource_mutex);
1196 
1197 	ret = sysfs_get_uname(buf, override_name, count);
1198 	if (ret >= 0)
1199 		clocksource_select();
1200 
1201 	mutex_unlock(&clocksource_mutex);
1202 
1203 	return ret;
1204 }
1205 static DEVICE_ATTR_RW(current_clocksource);
1206 
1207 /**
1208  * unbind_clocksource_store - interface for manually unbinding clocksource
1209  * @dev:	unused
1210  * @attr:	unused
1211  * @buf:	unused
1212  * @count:	length of buffer
1213  *
1214  * Takes input from sysfs interface for manually unbinding a clocksource.
1215  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1216 static ssize_t unbind_clocksource_store(struct device *dev,
1217 					struct device_attribute *attr,
1218 					const char *buf, size_t count)
1219 {
1220 	struct clocksource *cs;
1221 	char name[CS_NAME_LEN];
1222 	ssize_t ret;
1223 
1224 	ret = sysfs_get_uname(buf, name, count);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	ret = -ENODEV;
1229 	mutex_lock(&clocksource_mutex);
1230 	list_for_each_entry(cs, &clocksource_list, list) {
1231 		if (strcmp(cs->name, name))
1232 			continue;
1233 		ret = clocksource_unbind(cs);
1234 		break;
1235 	}
1236 	mutex_unlock(&clocksource_mutex);
1237 
1238 	return ret ? ret : count;
1239 }
1240 static DEVICE_ATTR_WO(unbind_clocksource);
1241 
1242 /**
1243  * available_clocksource_show - sysfs interface for listing clocksource
1244  * @dev:	unused
1245  * @attr:	unused
1246  * @buf:	char buffer to be filled with clocksource list
1247  *
1248  * Provides sysfs interface for listing registered clocksources
1249  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1250 static ssize_t available_clocksource_show(struct device *dev,
1251 					  struct device_attribute *attr,
1252 					  char *buf)
1253 {
1254 	struct clocksource *src;
1255 	ssize_t count = 0;
1256 
1257 	mutex_lock(&clocksource_mutex);
1258 	list_for_each_entry(src, &clocksource_list, list) {
1259 		/*
1260 		 * Don't show non-HRES clocksource if the tick code is
1261 		 * in one shot mode (highres=on or nohz=on)
1262 		 */
1263 		if (!tick_oneshot_mode_active() ||
1264 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1265 			count += snprintf(buf + count,
1266 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1267 				  "%s ", src->name);
1268 	}
1269 	mutex_unlock(&clocksource_mutex);
1270 
1271 	count += snprintf(buf + count,
1272 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1273 
1274 	return count;
1275 }
1276 static DEVICE_ATTR_RO(available_clocksource);
1277 
1278 static struct attribute *clocksource_attrs[] = {
1279 	&dev_attr_current_clocksource.attr,
1280 	&dev_attr_unbind_clocksource.attr,
1281 	&dev_attr_available_clocksource.attr,
1282 	NULL
1283 };
1284 ATTRIBUTE_GROUPS(clocksource);
1285 
1286 static struct bus_type clocksource_subsys = {
1287 	.name = "clocksource",
1288 	.dev_name = "clocksource",
1289 };
1290 
1291 static struct device device_clocksource = {
1292 	.id	= 0,
1293 	.bus	= &clocksource_subsys,
1294 	.groups	= clocksource_groups,
1295 };
1296 
init_clocksource_sysfs(void)1297 static int __init init_clocksource_sysfs(void)
1298 {
1299 	int error = subsys_system_register(&clocksource_subsys, NULL);
1300 
1301 	if (!error)
1302 		error = device_register(&device_clocksource);
1303 
1304 	return error;
1305 }
1306 
1307 device_initcall(init_clocksource_sysfs);
1308 #endif /* CONFIG_SYSFS */
1309 
1310 /**
1311  * boot_override_clocksource - boot clock override
1312  * @str:	override name
1313  *
1314  * Takes a clocksource= boot argument and uses it
1315  * as the clocksource override name.
1316  */
boot_override_clocksource(char * str)1317 static int __init boot_override_clocksource(char* str)
1318 {
1319 	mutex_lock(&clocksource_mutex);
1320 	if (str)
1321 		strlcpy(override_name, str, sizeof(override_name));
1322 	mutex_unlock(&clocksource_mutex);
1323 	return 1;
1324 }
1325 
1326 __setup("clocksource=", boot_override_clocksource);
1327 
1328 /**
1329  * boot_override_clock - Compatibility layer for deprecated boot option
1330  * @str:	override name
1331  *
1332  * DEPRECATED! Takes a clock= boot argument and uses it
1333  * as the clocksource override name
1334  */
boot_override_clock(char * str)1335 static int __init boot_override_clock(char* str)
1336 {
1337 	if (!strcmp(str, "pmtmr")) {
1338 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1339 		return boot_override_clocksource("acpi_pm");
1340 	}
1341 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1342 	return boot_override_clocksource(str);
1343 }
1344 
1345 __setup("clock=", boot_override_clock);
1346