1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20
21 /**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76 /*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct *work);
98 static void clocksource_select(void);
99
100 static LIST_HEAD(watchdog_list);
101 static struct clocksource *watchdog;
102 static struct timer_list watchdog_timer;
103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104 static DEFINE_SPINLOCK(watchdog_lock);
105 static int watchdog_running;
106 static atomic_t watchdog_reset_pending;
107
clocksource_watchdog_lock(unsigned long * flags)108 static inline void clocksource_watchdog_lock(unsigned long *flags)
109 {
110 spin_lock_irqsave(&watchdog_lock, *flags);
111 }
112
clocksource_watchdog_unlock(unsigned long * flags)113 static inline void clocksource_watchdog_unlock(unsigned long *flags)
114 {
115 spin_unlock_irqrestore(&watchdog_lock, *flags);
116 }
117
118 static int clocksource_watchdog_kthread(void *data);
119 static void __clocksource_change_rating(struct clocksource *cs, int rating);
120
121 /*
122 * Interval: 0.5sec Threshold: 0.0625s
123 */
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126
127 /*
128 * Maximum permissible delay between two readouts of the watchdog
129 * clocksource surrounding a read of the clocksource being validated.
130 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.
131 */
132 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
133
clocksource_watchdog_work(struct work_struct * work)134 static void clocksource_watchdog_work(struct work_struct *work)
135 {
136 /*
137 * We cannot directly run clocksource_watchdog_kthread() here, because
138 * clocksource_select() calls timekeeping_notify() which uses
139 * stop_machine(). One cannot use stop_machine() from a workqueue() due
140 * lock inversions wrt CPU hotplug.
141 *
142 * Also, we only ever run this work once or twice during the lifetime
143 * of the kernel, so there is no point in creating a more permanent
144 * kthread for this.
145 *
146 * If kthread_run fails the next watchdog scan over the
147 * watchdog_list will find the unstable clock again.
148 */
149 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
150 }
151
__clocksource_unstable(struct clocksource * cs)152 static void __clocksource_unstable(struct clocksource *cs)
153 {
154 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
155 cs->flags |= CLOCK_SOURCE_UNSTABLE;
156
157 /*
158 * If the clocksource is registered clocksource_watchdog_kthread() will
159 * re-rate and re-select.
160 */
161 if (list_empty(&cs->list)) {
162 cs->rating = 0;
163 return;
164 }
165
166 if (cs->mark_unstable)
167 cs->mark_unstable(cs);
168
169 /* kick clocksource_watchdog_kthread() */
170 if (finished_booting)
171 schedule_work(&watchdog_work);
172 }
173
174 /**
175 * clocksource_mark_unstable - mark clocksource unstable via watchdog
176 * @cs: clocksource to be marked unstable
177 *
178 * This function is called by the x86 TSC code to mark clocksources as unstable;
179 * it defers demotion and re-selection to a kthread.
180 */
clocksource_mark_unstable(struct clocksource * cs)181 void clocksource_mark_unstable(struct clocksource *cs)
182 {
183 unsigned long flags;
184
185 spin_lock_irqsave(&watchdog_lock, flags);
186 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
187 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
188 list_add(&cs->wd_list, &watchdog_list);
189 __clocksource_unstable(cs);
190 }
191 spin_unlock_irqrestore(&watchdog_lock, flags);
192 }
193
194 static ulong max_cswd_read_retries = 3;
195 module_param(max_cswd_read_retries, ulong, 0644);
196
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)197 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
198 {
199 unsigned int nretries;
200 u64 wd_end, wd_delta;
201 int64_t wd_delay;
202
203 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
204 local_irq_disable();
205 *wdnow = watchdog->read(watchdog);
206 *csnow = cs->read(cs);
207 wd_end = watchdog->read(watchdog);
208 local_irq_enable();
209
210 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
211 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
212 watchdog->shift);
213 if (wd_delay <= WATCHDOG_MAX_SKEW) {
214 if (nretries > 1 || nretries >= max_cswd_read_retries) {
215 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
216 smp_processor_id(), watchdog->name, nretries);
217 }
218 return true;
219 }
220 }
221
222 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
223 smp_processor_id(), watchdog->name, wd_delay, nretries);
224 return false;
225 }
226
227 static u64 csnow_mid;
228 static cpumask_t cpus_ahead;
229 static cpumask_t cpus_behind;
230
clocksource_verify_one_cpu(void * csin)231 static void clocksource_verify_one_cpu(void *csin)
232 {
233 struct clocksource *cs = (struct clocksource *)csin;
234
235 csnow_mid = cs->read(cs);
236 }
237
clocksource_verify_percpu(struct clocksource * cs)238 static void clocksource_verify_percpu(struct clocksource *cs)
239 {
240 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
241 u64 csnow_begin, csnow_end;
242 int cpu, testcpu;
243 s64 delta;
244
245 cpumask_clear(&cpus_ahead);
246 cpumask_clear(&cpus_behind);
247 preempt_disable();
248 testcpu = smp_processor_id();
249 pr_warn("Checking clocksource %s synchronization from CPU %d.\n", cs->name, testcpu);
250 for_each_online_cpu(cpu) {
251 if (cpu == testcpu)
252 continue;
253 csnow_begin = cs->read(cs);
254 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
255 csnow_end = cs->read(cs);
256 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
257 if (delta < 0)
258 cpumask_set_cpu(cpu, &cpus_behind);
259 delta = (csnow_end - csnow_mid) & cs->mask;
260 if (delta < 0)
261 cpumask_set_cpu(cpu, &cpus_ahead);
262 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
263 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
264 if (cs_nsec > cs_nsec_max)
265 cs_nsec_max = cs_nsec;
266 if (cs_nsec < cs_nsec_min)
267 cs_nsec_min = cs_nsec;
268 }
269 preempt_enable();
270 if (!cpumask_empty(&cpus_ahead))
271 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
272 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
273 if (!cpumask_empty(&cpus_behind))
274 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
275 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
276 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
277 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
278 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
279 }
280
clocksource_watchdog(struct timer_list * unused)281 static void clocksource_watchdog(struct timer_list *unused)
282 {
283 u64 csnow, wdnow, cslast, wdlast, delta;
284 int next_cpu, reset_pending;
285 int64_t wd_nsec, cs_nsec;
286 struct clocksource *cs;
287
288 spin_lock(&watchdog_lock);
289 if (!watchdog_running)
290 goto out;
291
292 reset_pending = atomic_read(&watchdog_reset_pending);
293
294 list_for_each_entry(cs, &watchdog_list, wd_list) {
295
296 /* Clocksource already marked unstable? */
297 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
298 if (finished_booting)
299 schedule_work(&watchdog_work);
300 continue;
301 }
302
303 if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
304 /* Clock readout unreliable, so give it up. */
305 __clocksource_unstable(cs);
306 continue;
307 }
308
309 /* Clocksource initialized ? */
310 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
311 atomic_read(&watchdog_reset_pending)) {
312 cs->flags |= CLOCK_SOURCE_WATCHDOG;
313 cs->wd_last = wdnow;
314 cs->cs_last = csnow;
315 continue;
316 }
317
318 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
319 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
320 watchdog->shift);
321
322 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
323 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
324 wdlast = cs->wd_last; /* save these in case we print them */
325 cslast = cs->cs_last;
326 cs->cs_last = csnow;
327 cs->wd_last = wdnow;
328
329 if (atomic_read(&watchdog_reset_pending))
330 continue;
331
332 /* Check the deviation from the watchdog clocksource. */
333 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
334 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
335 smp_processor_id(), cs->name);
336 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
337 watchdog->name, wdnow, wdlast, watchdog->mask);
338 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
339 cs->name, csnow, cslast, cs->mask);
340 __clocksource_unstable(cs);
341 continue;
342 }
343
344 if (cs == curr_clocksource && cs->tick_stable)
345 cs->tick_stable(cs);
346
347 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
348 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
349 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
350 /* Mark it valid for high-res. */
351 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
352
353 /*
354 * clocksource_done_booting() will sort it if
355 * finished_booting is not set yet.
356 */
357 if (!finished_booting)
358 continue;
359
360 /*
361 * If this is not the current clocksource let
362 * the watchdog thread reselect it. Due to the
363 * change to high res this clocksource might
364 * be preferred now. If it is the current
365 * clocksource let the tick code know about
366 * that change.
367 */
368 if (cs != curr_clocksource) {
369 cs->flags |= CLOCK_SOURCE_RESELECT;
370 schedule_work(&watchdog_work);
371 } else {
372 tick_clock_notify();
373 }
374 }
375 }
376
377 /*
378 * We only clear the watchdog_reset_pending, when we did a
379 * full cycle through all clocksources.
380 */
381 if (reset_pending)
382 atomic_dec(&watchdog_reset_pending);
383
384 /*
385 * Cycle through CPUs to check if the CPUs stay synchronized
386 * to each other.
387 */
388 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
389 if (next_cpu >= nr_cpu_ids)
390 next_cpu = cpumask_first(cpu_online_mask);
391
392 /*
393 * Arm timer if not already pending: could race with concurrent
394 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
395 */
396 if (!timer_pending(&watchdog_timer)) {
397 watchdog_timer.expires += WATCHDOG_INTERVAL;
398 add_timer_on(&watchdog_timer, next_cpu);
399 }
400 out:
401 spin_unlock(&watchdog_lock);
402 }
403
clocksource_start_watchdog(void)404 static inline void clocksource_start_watchdog(void)
405 {
406 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
407 return;
408 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
409 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
410 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
411 watchdog_running = 1;
412 }
413
clocksource_stop_watchdog(void)414 static inline void clocksource_stop_watchdog(void)
415 {
416 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
417 return;
418 del_timer(&watchdog_timer);
419 watchdog_running = 0;
420 }
421
clocksource_reset_watchdog(void)422 static inline void clocksource_reset_watchdog(void)
423 {
424 struct clocksource *cs;
425
426 list_for_each_entry(cs, &watchdog_list, wd_list)
427 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
428 }
429
clocksource_resume_watchdog(void)430 static void clocksource_resume_watchdog(void)
431 {
432 atomic_inc(&watchdog_reset_pending);
433 }
434
clocksource_enqueue_watchdog(struct clocksource * cs)435 static void clocksource_enqueue_watchdog(struct clocksource *cs)
436 {
437 INIT_LIST_HEAD(&cs->wd_list);
438
439 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
440 /* cs is a clocksource to be watched. */
441 list_add(&cs->wd_list, &watchdog_list);
442 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
443 } else {
444 /* cs is a watchdog. */
445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447 }
448 }
449
clocksource_select_watchdog(bool fallback)450 static void clocksource_select_watchdog(bool fallback)
451 {
452 struct clocksource *cs, *old_wd;
453 unsigned long flags;
454
455 spin_lock_irqsave(&watchdog_lock, flags);
456 /* save current watchdog */
457 old_wd = watchdog;
458 if (fallback)
459 watchdog = NULL;
460
461 list_for_each_entry(cs, &clocksource_list, list) {
462 /* cs is a clocksource to be watched. */
463 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
464 continue;
465
466 /* Skip current if we were requested for a fallback. */
467 if (fallback && cs == old_wd)
468 continue;
469
470 /* Pick the best watchdog. */
471 if (!watchdog || cs->rating > watchdog->rating)
472 watchdog = cs;
473 }
474 /* If we failed to find a fallback restore the old one. */
475 if (!watchdog)
476 watchdog = old_wd;
477
478 /* If we changed the watchdog we need to reset cycles. */
479 if (watchdog != old_wd)
480 clocksource_reset_watchdog();
481
482 /* Check if the watchdog timer needs to be started. */
483 clocksource_start_watchdog();
484 spin_unlock_irqrestore(&watchdog_lock, flags);
485 }
486
clocksource_dequeue_watchdog(struct clocksource * cs)487 static void clocksource_dequeue_watchdog(struct clocksource *cs)
488 {
489 if (cs != watchdog) {
490 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
491 /* cs is a watched clocksource. */
492 list_del_init(&cs->wd_list);
493 /* Check if the watchdog timer needs to be stopped. */
494 clocksource_stop_watchdog();
495 }
496 }
497 }
498
__clocksource_watchdog_kthread(void)499 static int __clocksource_watchdog_kthread(void)
500 {
501 struct clocksource *cs, *tmp;
502 unsigned long flags;
503 int select = 0;
504
505 /* Do any required per-CPU skew verification. */
506 if (curr_clocksource &&
507 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
508 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
509 clocksource_verify_percpu(curr_clocksource);
510
511 spin_lock_irqsave(&watchdog_lock, flags);
512 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
513 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
514 list_del_init(&cs->wd_list);
515 __clocksource_change_rating(cs, 0);
516 select = 1;
517 }
518 if (cs->flags & CLOCK_SOURCE_RESELECT) {
519 cs->flags &= ~CLOCK_SOURCE_RESELECT;
520 select = 1;
521 }
522 }
523 /* Check if the watchdog timer needs to be stopped. */
524 clocksource_stop_watchdog();
525 spin_unlock_irqrestore(&watchdog_lock, flags);
526
527 return select;
528 }
529
clocksource_watchdog_kthread(void * data)530 static int clocksource_watchdog_kthread(void *data)
531 {
532 mutex_lock(&clocksource_mutex);
533 if (__clocksource_watchdog_kthread())
534 clocksource_select();
535 mutex_unlock(&clocksource_mutex);
536 return 0;
537 }
538
clocksource_is_watchdog(struct clocksource * cs)539 static bool clocksource_is_watchdog(struct clocksource *cs)
540 {
541 return cs == watchdog;
542 }
543
544 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
545
clocksource_enqueue_watchdog(struct clocksource * cs)546 static void clocksource_enqueue_watchdog(struct clocksource *cs)
547 {
548 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
549 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
550 }
551
clocksource_select_watchdog(bool fallback)552 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)553 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)554 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)555 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)556 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)557 void clocksource_mark_unstable(struct clocksource *cs) { }
558
clocksource_watchdog_lock(unsigned long * flags)559 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)560 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
561
562 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
563
clocksource_is_suspend(struct clocksource * cs)564 static bool clocksource_is_suspend(struct clocksource *cs)
565 {
566 return cs == suspend_clocksource;
567 }
568
__clocksource_suspend_select(struct clocksource * cs)569 static void __clocksource_suspend_select(struct clocksource *cs)
570 {
571 /*
572 * Skip the clocksource which will be stopped in suspend state.
573 */
574 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
575 return;
576
577 /*
578 * The nonstop clocksource can be selected as the suspend clocksource to
579 * calculate the suspend time, so it should not supply suspend/resume
580 * interfaces to suspend the nonstop clocksource when system suspends.
581 */
582 if (cs->suspend || cs->resume) {
583 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
584 cs->name);
585 }
586
587 /* Pick the best rating. */
588 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
589 suspend_clocksource = cs;
590 }
591
592 /**
593 * clocksource_suspend_select - Select the best clocksource for suspend timing
594 * @fallback: if select a fallback clocksource
595 */
clocksource_suspend_select(bool fallback)596 static void clocksource_suspend_select(bool fallback)
597 {
598 struct clocksource *cs, *old_suspend;
599
600 old_suspend = suspend_clocksource;
601 if (fallback)
602 suspend_clocksource = NULL;
603
604 list_for_each_entry(cs, &clocksource_list, list) {
605 /* Skip current if we were requested for a fallback. */
606 if (fallback && cs == old_suspend)
607 continue;
608
609 __clocksource_suspend_select(cs);
610 }
611 }
612
613 /**
614 * clocksource_start_suspend_timing - Start measuring the suspend timing
615 * @cs: current clocksource from timekeeping
616 * @start_cycles: current cycles from timekeeping
617 *
618 * This function will save the start cycle values of suspend timer to calculate
619 * the suspend time when resuming system.
620 *
621 * This function is called late in the suspend process from timekeeping_suspend(),
622 * that means processes are freezed, non-boot cpus and interrupts are disabled
623 * now. It is therefore possible to start the suspend timer without taking the
624 * clocksource mutex.
625 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)626 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
627 {
628 if (!suspend_clocksource)
629 return;
630
631 /*
632 * If current clocksource is the suspend timer, we should use the
633 * tkr_mono.cycle_last value as suspend_start to avoid same reading
634 * from suspend timer.
635 */
636 if (clocksource_is_suspend(cs)) {
637 suspend_start = start_cycles;
638 return;
639 }
640
641 if (suspend_clocksource->enable &&
642 suspend_clocksource->enable(suspend_clocksource)) {
643 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
644 return;
645 }
646
647 suspend_start = suspend_clocksource->read(suspend_clocksource);
648 }
649
650 /**
651 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
652 * @cs: current clocksource from timekeeping
653 * @cycle_now: current cycles from timekeeping
654 *
655 * This function will calculate the suspend time from suspend timer.
656 *
657 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
658 *
659 * This function is called early in the resume process from timekeeping_resume(),
660 * that means there is only one cpu, no processes are running and the interrupts
661 * are disabled. It is therefore possible to stop the suspend timer without
662 * taking the clocksource mutex.
663 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)664 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
665 {
666 u64 now, delta, nsec = 0;
667
668 if (!suspend_clocksource)
669 return 0;
670
671 /*
672 * If current clocksource is the suspend timer, we should use the
673 * tkr_mono.cycle_last value from timekeeping as current cycle to
674 * avoid same reading from suspend timer.
675 */
676 if (clocksource_is_suspend(cs))
677 now = cycle_now;
678 else
679 now = suspend_clocksource->read(suspend_clocksource);
680
681 if (now > suspend_start) {
682 delta = clocksource_delta(now, suspend_start,
683 suspend_clocksource->mask);
684 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
685 suspend_clocksource->shift);
686 }
687
688 /*
689 * Disable the suspend timer to save power if current clocksource is
690 * not the suspend timer.
691 */
692 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
693 suspend_clocksource->disable(suspend_clocksource);
694
695 return nsec;
696 }
697
698 /**
699 * clocksource_suspend - suspend the clocksource(s)
700 */
clocksource_suspend(void)701 void clocksource_suspend(void)
702 {
703 struct clocksource *cs;
704
705 list_for_each_entry_reverse(cs, &clocksource_list, list)
706 if (cs->suspend)
707 cs->suspend(cs);
708 }
709
710 /**
711 * clocksource_resume - resume the clocksource(s)
712 */
clocksource_resume(void)713 void clocksource_resume(void)
714 {
715 struct clocksource *cs;
716
717 list_for_each_entry(cs, &clocksource_list, list)
718 if (cs->resume)
719 cs->resume(cs);
720
721 clocksource_resume_watchdog();
722 }
723
724 /**
725 * clocksource_touch_watchdog - Update watchdog
726 *
727 * Update the watchdog after exception contexts such as kgdb so as not
728 * to incorrectly trip the watchdog. This might fail when the kernel
729 * was stopped in code which holds watchdog_lock.
730 */
clocksource_touch_watchdog(void)731 void clocksource_touch_watchdog(void)
732 {
733 clocksource_resume_watchdog();
734 }
735
736 /**
737 * clocksource_max_adjustment- Returns max adjustment amount
738 * @cs: Pointer to clocksource
739 *
740 */
clocksource_max_adjustment(struct clocksource * cs)741 static u32 clocksource_max_adjustment(struct clocksource *cs)
742 {
743 u64 ret;
744 /*
745 * We won't try to correct for more than 11% adjustments (110,000 ppm),
746 */
747 ret = (u64)cs->mult * 11;
748 do_div(ret,100);
749 return (u32)ret;
750 }
751
752 /**
753 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
754 * @mult: cycle to nanosecond multiplier
755 * @shift: cycle to nanosecond divisor (power of two)
756 * @maxadj: maximum adjustment value to mult (~11%)
757 * @mask: bitmask for two's complement subtraction of non 64 bit counters
758 * @max_cyc: maximum cycle value before potential overflow (does not include
759 * any safety margin)
760 *
761 * NOTE: This function includes a safety margin of 50%, in other words, we
762 * return half the number of nanoseconds the hardware counter can technically
763 * cover. This is done so that we can potentially detect problems caused by
764 * delayed timers or bad hardware, which might result in time intervals that
765 * are larger than what the math used can handle without overflows.
766 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)767 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
768 {
769 u64 max_nsecs, max_cycles;
770
771 /*
772 * Calculate the maximum number of cycles that we can pass to the
773 * cyc2ns() function without overflowing a 64-bit result.
774 */
775 max_cycles = ULLONG_MAX;
776 do_div(max_cycles, mult+maxadj);
777
778 /*
779 * The actual maximum number of cycles we can defer the clocksource is
780 * determined by the minimum of max_cycles and mask.
781 * Note: Here we subtract the maxadj to make sure we don't sleep for
782 * too long if there's a large negative adjustment.
783 */
784 max_cycles = min(max_cycles, mask);
785 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
786
787 /* return the max_cycles value as well if requested */
788 if (max_cyc)
789 *max_cyc = max_cycles;
790
791 /* Return 50% of the actual maximum, so we can detect bad values */
792 max_nsecs >>= 1;
793
794 return max_nsecs;
795 }
796
797 /**
798 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
799 * @cs: Pointer to clocksource to be updated
800 *
801 */
clocksource_update_max_deferment(struct clocksource * cs)802 static inline void clocksource_update_max_deferment(struct clocksource *cs)
803 {
804 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
805 cs->maxadj, cs->mask,
806 &cs->max_cycles);
807 }
808
809 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
810
clocksource_find_best(bool oneshot,bool skipcur)811 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
812 {
813 struct clocksource *cs;
814
815 if (!finished_booting || list_empty(&clocksource_list))
816 return NULL;
817
818 /*
819 * We pick the clocksource with the highest rating. If oneshot
820 * mode is active, we pick the highres valid clocksource with
821 * the best rating.
822 */
823 list_for_each_entry(cs, &clocksource_list, list) {
824 if (skipcur && cs == curr_clocksource)
825 continue;
826 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
827 continue;
828 return cs;
829 }
830 return NULL;
831 }
832
__clocksource_select(bool skipcur)833 static void __clocksource_select(bool skipcur)
834 {
835 bool oneshot = tick_oneshot_mode_active();
836 struct clocksource *best, *cs;
837
838 /* Find the best suitable clocksource */
839 best = clocksource_find_best(oneshot, skipcur);
840 if (!best)
841 return;
842
843 if (!strlen(override_name))
844 goto found;
845
846 /* Check for the override clocksource. */
847 list_for_each_entry(cs, &clocksource_list, list) {
848 if (skipcur && cs == curr_clocksource)
849 continue;
850 if (strcmp(cs->name, override_name) != 0)
851 continue;
852 /*
853 * Check to make sure we don't switch to a non-highres
854 * capable clocksource if the tick code is in oneshot
855 * mode (highres or nohz)
856 */
857 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
858 /* Override clocksource cannot be used. */
859 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
860 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
861 cs->name);
862 override_name[0] = 0;
863 } else {
864 /*
865 * The override cannot be currently verified.
866 * Deferring to let the watchdog check.
867 */
868 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
869 cs->name);
870 }
871 } else
872 /* Override clocksource can be used. */
873 best = cs;
874 break;
875 }
876
877 found:
878 if (curr_clocksource != best && !timekeeping_notify(best)) {
879 pr_info("Switched to clocksource %s\n", best->name);
880 curr_clocksource = best;
881 }
882 }
883
884 /**
885 * clocksource_select - Select the best clocksource available
886 *
887 * Private function. Must hold clocksource_mutex when called.
888 *
889 * Select the clocksource with the best rating, or the clocksource,
890 * which is selected by userspace override.
891 */
clocksource_select(void)892 static void clocksource_select(void)
893 {
894 __clocksource_select(false);
895 }
896
clocksource_select_fallback(void)897 static void clocksource_select_fallback(void)
898 {
899 __clocksource_select(true);
900 }
901
902 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)903 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)904 static inline void clocksource_select_fallback(void) { }
905
906 #endif
907
908 /*
909 * clocksource_done_booting - Called near the end of core bootup
910 *
911 * Hack to avoid lots of clocksource churn at boot time.
912 * We use fs_initcall because we want this to start before
913 * device_initcall but after subsys_initcall.
914 */
clocksource_done_booting(void)915 static int __init clocksource_done_booting(void)
916 {
917 mutex_lock(&clocksource_mutex);
918 curr_clocksource = clocksource_default_clock();
919 finished_booting = 1;
920 /*
921 * Run the watchdog first to eliminate unstable clock sources
922 */
923 __clocksource_watchdog_kthread();
924 clocksource_select();
925 mutex_unlock(&clocksource_mutex);
926 return 0;
927 }
928 fs_initcall(clocksource_done_booting);
929
930 /*
931 * Enqueue the clocksource sorted by rating
932 */
clocksource_enqueue(struct clocksource * cs)933 static void clocksource_enqueue(struct clocksource *cs)
934 {
935 struct list_head *entry = &clocksource_list;
936 struct clocksource *tmp;
937
938 list_for_each_entry(tmp, &clocksource_list, list) {
939 /* Keep track of the place, where to insert */
940 if (tmp->rating < cs->rating)
941 break;
942 entry = &tmp->list;
943 }
944 list_add(&cs->list, entry);
945 }
946
947 /**
948 * __clocksource_update_freq_scale - Used update clocksource with new freq
949 * @cs: clocksource to be registered
950 * @scale: Scale factor multiplied against freq to get clocksource hz
951 * @freq: clocksource frequency (cycles per second) divided by scale
952 *
953 * This should only be called from the clocksource->enable() method.
954 *
955 * This *SHOULD NOT* be called directly! Please use the
956 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
957 * functions.
958 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)959 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
960 {
961 u64 sec;
962
963 /*
964 * Default clocksources are *special* and self-define their mult/shift.
965 * But, you're not special, so you should specify a freq value.
966 */
967 if (freq) {
968 /*
969 * Calc the maximum number of seconds which we can run before
970 * wrapping around. For clocksources which have a mask > 32-bit
971 * we need to limit the max sleep time to have a good
972 * conversion precision. 10 minutes is still a reasonable
973 * amount. That results in a shift value of 24 for a
974 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
975 * ~ 0.06ppm granularity for NTP.
976 */
977 sec = cs->mask;
978 do_div(sec, freq);
979 do_div(sec, scale);
980 if (!sec)
981 sec = 1;
982 else if (sec > 600 && cs->mask > UINT_MAX)
983 sec = 600;
984
985 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
986 NSEC_PER_SEC / scale, sec * scale);
987 }
988 /*
989 * Ensure clocksources that have large 'mult' values don't overflow
990 * when adjusted.
991 */
992 cs->maxadj = clocksource_max_adjustment(cs);
993 while (freq && ((cs->mult + cs->maxadj < cs->mult)
994 || (cs->mult - cs->maxadj > cs->mult))) {
995 cs->mult >>= 1;
996 cs->shift--;
997 cs->maxadj = clocksource_max_adjustment(cs);
998 }
999
1000 /*
1001 * Only warn for *special* clocksources that self-define
1002 * their mult/shift values and don't specify a freq.
1003 */
1004 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1005 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1006 cs->name);
1007
1008 clocksource_update_max_deferment(cs);
1009
1010 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1011 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1012 }
1013 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1014
1015 /**
1016 * __clocksource_register_scale - Used to install new clocksources
1017 * @cs: clocksource to be registered
1018 * @scale: Scale factor multiplied against freq to get clocksource hz
1019 * @freq: clocksource frequency (cycles per second) divided by scale
1020 *
1021 * Returns -EBUSY if registration fails, zero otherwise.
1022 *
1023 * This *SHOULD NOT* be called directly! Please use the
1024 * clocksource_register_hz() or clocksource_register_khz helper functions.
1025 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1026 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1027 {
1028 unsigned long flags;
1029
1030 clocksource_arch_init(cs);
1031
1032 if (cs->vdso_clock_mode < 0 ||
1033 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1034 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1035 cs->name, cs->vdso_clock_mode);
1036 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1037 }
1038
1039 /* Initialize mult/shift and max_idle_ns */
1040 __clocksource_update_freq_scale(cs, scale, freq);
1041
1042 /* Add clocksource to the clocksource list */
1043 mutex_lock(&clocksource_mutex);
1044
1045 clocksource_watchdog_lock(&flags);
1046 clocksource_enqueue(cs);
1047 clocksource_enqueue_watchdog(cs);
1048 clocksource_watchdog_unlock(&flags);
1049
1050 clocksource_select();
1051 clocksource_select_watchdog(false);
1052 __clocksource_suspend_select(cs);
1053 mutex_unlock(&clocksource_mutex);
1054 return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1057
__clocksource_change_rating(struct clocksource * cs,int rating)1058 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1059 {
1060 list_del(&cs->list);
1061 cs->rating = rating;
1062 clocksource_enqueue(cs);
1063 }
1064
1065 /**
1066 * clocksource_change_rating - Change the rating of a registered clocksource
1067 * @cs: clocksource to be changed
1068 * @rating: new rating
1069 */
clocksource_change_rating(struct clocksource * cs,int rating)1070 void clocksource_change_rating(struct clocksource *cs, int rating)
1071 {
1072 unsigned long flags;
1073
1074 mutex_lock(&clocksource_mutex);
1075 clocksource_watchdog_lock(&flags);
1076 __clocksource_change_rating(cs, rating);
1077 clocksource_watchdog_unlock(&flags);
1078
1079 clocksource_select();
1080 clocksource_select_watchdog(false);
1081 clocksource_suspend_select(false);
1082 mutex_unlock(&clocksource_mutex);
1083 }
1084 EXPORT_SYMBOL(clocksource_change_rating);
1085
1086 /*
1087 * Unbind clocksource @cs. Called with clocksource_mutex held
1088 */
clocksource_unbind(struct clocksource * cs)1089 static int clocksource_unbind(struct clocksource *cs)
1090 {
1091 unsigned long flags;
1092
1093 if (clocksource_is_watchdog(cs)) {
1094 /* Select and try to install a replacement watchdog. */
1095 clocksource_select_watchdog(true);
1096 if (clocksource_is_watchdog(cs))
1097 return -EBUSY;
1098 }
1099
1100 if (cs == curr_clocksource) {
1101 /* Select and try to install a replacement clock source */
1102 clocksource_select_fallback();
1103 if (curr_clocksource == cs)
1104 return -EBUSY;
1105 }
1106
1107 if (clocksource_is_suspend(cs)) {
1108 /*
1109 * Select and try to install a replacement suspend clocksource.
1110 * If no replacement suspend clocksource, we will just let the
1111 * clocksource go and have no suspend clocksource.
1112 */
1113 clocksource_suspend_select(true);
1114 }
1115
1116 clocksource_watchdog_lock(&flags);
1117 clocksource_dequeue_watchdog(cs);
1118 list_del_init(&cs->list);
1119 clocksource_watchdog_unlock(&flags);
1120
1121 return 0;
1122 }
1123
1124 /**
1125 * clocksource_unregister - remove a registered clocksource
1126 * @cs: clocksource to be unregistered
1127 */
clocksource_unregister(struct clocksource * cs)1128 int clocksource_unregister(struct clocksource *cs)
1129 {
1130 int ret = 0;
1131
1132 mutex_lock(&clocksource_mutex);
1133 if (!list_empty(&cs->list))
1134 ret = clocksource_unbind(cs);
1135 mutex_unlock(&clocksource_mutex);
1136 return ret;
1137 }
1138 EXPORT_SYMBOL(clocksource_unregister);
1139
1140 #ifdef CONFIG_SYSFS
1141 /**
1142 * current_clocksource_show - sysfs interface for current clocksource
1143 * @dev: unused
1144 * @attr: unused
1145 * @buf: char buffer to be filled with clocksource list
1146 *
1147 * Provides sysfs interface for listing current clocksource.
1148 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1149 static ssize_t current_clocksource_show(struct device *dev,
1150 struct device_attribute *attr,
1151 char *buf)
1152 {
1153 ssize_t count = 0;
1154
1155 mutex_lock(&clocksource_mutex);
1156 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1157 mutex_unlock(&clocksource_mutex);
1158
1159 return count;
1160 }
1161
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1162 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1163 {
1164 size_t ret = cnt;
1165
1166 /* strings from sysfs write are not 0 terminated! */
1167 if (!cnt || cnt >= CS_NAME_LEN)
1168 return -EINVAL;
1169
1170 /* strip of \n: */
1171 if (buf[cnt-1] == '\n')
1172 cnt--;
1173 if (cnt > 0)
1174 memcpy(dst, buf, cnt);
1175 dst[cnt] = 0;
1176 return ret;
1177 }
1178
1179 /**
1180 * current_clocksource_store - interface for manually overriding clocksource
1181 * @dev: unused
1182 * @attr: unused
1183 * @buf: name of override clocksource
1184 * @count: length of buffer
1185 *
1186 * Takes input from sysfs interface for manually overriding the default
1187 * clocksource selection.
1188 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1189 static ssize_t current_clocksource_store(struct device *dev,
1190 struct device_attribute *attr,
1191 const char *buf, size_t count)
1192 {
1193 ssize_t ret;
1194
1195 mutex_lock(&clocksource_mutex);
1196
1197 ret = sysfs_get_uname(buf, override_name, count);
1198 if (ret >= 0)
1199 clocksource_select();
1200
1201 mutex_unlock(&clocksource_mutex);
1202
1203 return ret;
1204 }
1205 static DEVICE_ATTR_RW(current_clocksource);
1206
1207 /**
1208 * unbind_clocksource_store - interface for manually unbinding clocksource
1209 * @dev: unused
1210 * @attr: unused
1211 * @buf: unused
1212 * @count: length of buffer
1213 *
1214 * Takes input from sysfs interface for manually unbinding a clocksource.
1215 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1216 static ssize_t unbind_clocksource_store(struct device *dev,
1217 struct device_attribute *attr,
1218 const char *buf, size_t count)
1219 {
1220 struct clocksource *cs;
1221 char name[CS_NAME_LEN];
1222 ssize_t ret;
1223
1224 ret = sysfs_get_uname(buf, name, count);
1225 if (ret < 0)
1226 return ret;
1227
1228 ret = -ENODEV;
1229 mutex_lock(&clocksource_mutex);
1230 list_for_each_entry(cs, &clocksource_list, list) {
1231 if (strcmp(cs->name, name))
1232 continue;
1233 ret = clocksource_unbind(cs);
1234 break;
1235 }
1236 mutex_unlock(&clocksource_mutex);
1237
1238 return ret ? ret : count;
1239 }
1240 static DEVICE_ATTR_WO(unbind_clocksource);
1241
1242 /**
1243 * available_clocksource_show - sysfs interface for listing clocksource
1244 * @dev: unused
1245 * @attr: unused
1246 * @buf: char buffer to be filled with clocksource list
1247 *
1248 * Provides sysfs interface for listing registered clocksources
1249 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1250 static ssize_t available_clocksource_show(struct device *dev,
1251 struct device_attribute *attr,
1252 char *buf)
1253 {
1254 struct clocksource *src;
1255 ssize_t count = 0;
1256
1257 mutex_lock(&clocksource_mutex);
1258 list_for_each_entry(src, &clocksource_list, list) {
1259 /*
1260 * Don't show non-HRES clocksource if the tick code is
1261 * in one shot mode (highres=on or nohz=on)
1262 */
1263 if (!tick_oneshot_mode_active() ||
1264 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1265 count += snprintf(buf + count,
1266 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1267 "%s ", src->name);
1268 }
1269 mutex_unlock(&clocksource_mutex);
1270
1271 count += snprintf(buf + count,
1272 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1273
1274 return count;
1275 }
1276 static DEVICE_ATTR_RO(available_clocksource);
1277
1278 static struct attribute *clocksource_attrs[] = {
1279 &dev_attr_current_clocksource.attr,
1280 &dev_attr_unbind_clocksource.attr,
1281 &dev_attr_available_clocksource.attr,
1282 NULL
1283 };
1284 ATTRIBUTE_GROUPS(clocksource);
1285
1286 static struct bus_type clocksource_subsys = {
1287 .name = "clocksource",
1288 .dev_name = "clocksource",
1289 };
1290
1291 static struct device device_clocksource = {
1292 .id = 0,
1293 .bus = &clocksource_subsys,
1294 .groups = clocksource_groups,
1295 };
1296
init_clocksource_sysfs(void)1297 static int __init init_clocksource_sysfs(void)
1298 {
1299 int error = subsys_system_register(&clocksource_subsys, NULL);
1300
1301 if (!error)
1302 error = device_register(&device_clocksource);
1303
1304 return error;
1305 }
1306
1307 device_initcall(init_clocksource_sysfs);
1308 #endif /* CONFIG_SYSFS */
1309
1310 /**
1311 * boot_override_clocksource - boot clock override
1312 * @str: override name
1313 *
1314 * Takes a clocksource= boot argument and uses it
1315 * as the clocksource override name.
1316 */
boot_override_clocksource(char * str)1317 static int __init boot_override_clocksource(char* str)
1318 {
1319 mutex_lock(&clocksource_mutex);
1320 if (str)
1321 strlcpy(override_name, str, sizeof(override_name));
1322 mutex_unlock(&clocksource_mutex);
1323 return 1;
1324 }
1325
1326 __setup("clocksource=", boot_override_clocksource);
1327
1328 /**
1329 * boot_override_clock - Compatibility layer for deprecated boot option
1330 * @str: override name
1331 *
1332 * DEPRECATED! Takes a clock= boot argument and uses it
1333 * as the clocksource override name
1334 */
boot_override_clock(char * str)1335 static int __init boot_override_clock(char* str)
1336 {
1337 if (!strcmp(str, "pmtmr")) {
1338 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1339 return boot_override_clocksource("acpi_pm");
1340 }
1341 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1342 return boot_override_clocksource(str);
1343 }
1344
1345 __setup("clock=", boot_override_clock);
1346