• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/cpufreq_times.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 #undef CREATE_TRACE_POINTS
113 #include <trace/hooks/sched.h>
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
125 
126 /*
127  * Protected counters by write_lock_irq(&tasklist_lock)
128  */
129 unsigned long total_forks;	/* Handle normal Linux uptimes. */
130 int nr_threads;			/* The idle threads do not count.. */
131 
132 static int max_threads;		/* tunable limit on nr_threads */
133 
134 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
135 
136 static const char * const resident_page_types[] = {
137 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142 
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144 
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
146 EXPORT_SYMBOL_GPL(tasklist_lock);
147 
148 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)149 int lockdep_tasklist_lock_is_held(void)
150 {
151 	return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155 
nr_processes(void)156 int nr_processes(void)
157 {
158 	int cpu;
159 	int total = 0;
160 
161 	for_each_possible_cpu(cpu)
162 		total += per_cpu(process_counts, cpu);
163 
164 	return total;
165 }
166 
arch_release_task_struct(struct task_struct * tsk)167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170 
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173 
alloc_task_struct_node(int node)174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
free_task_struct(struct task_struct * tsk)179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184 
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186 
187 /*
188  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189  * kmemcache based allocator.
190  */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192 
193 #ifdef CONFIG_VMAP_STACK
194 /*
195  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196  * flush.  Try to minimize the number of calls by caching stacks.
197  */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200 
free_vm_stack_cache(unsigned int cpu)201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 	int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		struct vm_struct *vm_stack = cached_vm_stacks[i];
208 
209 		if (!vm_stack)
210 			continue;
211 
212 		vfree(vm_stack->addr);
213 		cached_vm_stacks[i] = NULL;
214 	}
215 
216 	return 0;
217 }
218 #endif
219 
alloc_thread_stack_node(struct task_struct * tsk,int node)220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 	void *stack;
224 	int i;
225 
226 	for (i = 0; i < NR_CACHED_STACKS; i++) {
227 		struct vm_struct *s;
228 
229 		s = this_cpu_xchg(cached_stacks[i], NULL);
230 
231 		if (!s)
232 			continue;
233 
234 		/* Mark stack accessible for KASAN. */
235 		kasan_unpoison_range(s->addr, THREAD_SIZE);
236 
237 		/* Clear stale pointers from reused stack. */
238 		memset(s->addr, 0, THREAD_SIZE);
239 
240 		tsk->stack_vm_area = s;
241 		tsk->stack = s->addr;
242 		return s->addr;
243 	}
244 
245 	/*
246 	 * Allocated stacks are cached and later reused by new threads,
247 	 * so memcg accounting is performed manually on assigning/releasing
248 	 * stacks to tasks. Drop __GFP_ACCOUNT.
249 	 */
250 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 				     VMALLOC_START, VMALLOC_END,
252 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
253 				     PAGE_KERNEL,
254 				     0, node, __builtin_return_address(0));
255 
256 	/*
257 	 * We can't call find_vm_area() in interrupt context, and
258 	 * free_thread_stack() can be called in interrupt context,
259 	 * so cache the vm_struct.
260 	 */
261 	if (stack) {
262 		tsk->stack_vm_area = find_vm_area(stack);
263 		tsk->stack = stack;
264 	}
265 	return stack;
266 #else
267 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 					     THREAD_SIZE_ORDER);
269 
270 	if (likely(page)) {
271 		tsk->stack = kasan_reset_tag(page_address(page));
272 		return tsk->stack;
273 	}
274 	return NULL;
275 #endif
276 }
277 
free_thread_stack(struct task_struct * tsk)278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 	struct vm_struct *vm = task_stack_vm_area(tsk);
282 
283 	if (vm) {
284 		int i;
285 
286 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 			memcg_kmem_uncharge_page(vm->pages[i], 0);
288 
289 		for (i = 0; i < NR_CACHED_STACKS; i++) {
290 			if (this_cpu_cmpxchg(cached_stacks[i],
291 					NULL, tsk->stack_vm_area) != NULL)
292 				continue;
293 
294 			return;
295 		}
296 
297 		vfree_atomic(tsk->stack);
298 		return;
299 	}
300 #endif
301 
302 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306 
alloc_thread_stack_node(struct task_struct * tsk,int node)307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 						  int node)
309 {
310 	unsigned long *stack;
311 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 	stack = kasan_reset_tag(stack);
313 	tsk->stack = stack;
314 	return stack;
315 }
316 
free_thread_stack(struct task_struct * tsk)317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 	kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321 
thread_stack_cache_init(void)322 void thread_stack_cache_init(void)
323 {
324 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 					THREAD_SIZE, THREAD_SIZE, 0, 0,
326 					THREAD_SIZE, NULL);
327 	BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331 
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334 
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337 
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340 
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343 
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346 
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349 
vm_area_alloc(struct mm_struct * mm)350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 	struct vm_area_struct *vma;
353 
354 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 	if (vma)
356 		vma_init(vma, mm);
357 	return vma;
358 }
359 
vm_area_dup(struct vm_area_struct * orig)360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 
364 	if (new) {
365 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 		/*
368 		 * orig->shared.rb may be modified concurrently, but the clone
369 		 * will be reinitialized.
370 		 */
371 		*new = data_race(*orig);
372 		INIT_VMA(new);
373 		new->vm_next = new->vm_prev = NULL;
374 	}
375 	return new;
376 }
377 
vm_area_free(struct vm_area_struct * vma)378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 	kmem_cache_free(vm_area_cachep, vma);
381 }
382 
account_kernel_stack(struct task_struct * tsk,int account)383 static void account_kernel_stack(struct task_struct *tsk, int account)
384 {
385 	void *stack = task_stack_page(tsk);
386 	struct vm_struct *vm = task_stack_vm_area(tsk);
387 
388 
389 	/* All stack pages are in the same node. */
390 	if (vm)
391 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
392 				      account * (THREAD_SIZE / 1024));
393 	else
394 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
395 				      account * (THREAD_SIZE / 1024));
396 }
397 
memcg_charge_kernel_stack(struct task_struct * tsk)398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 	struct vm_struct *vm = task_stack_vm_area(tsk);
402 	int ret;
403 
404 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
405 
406 	if (vm) {
407 		int i;
408 
409 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
414 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
415 			 * free_thread_stack() will ignore this page.
416 			 */
417 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
418 						     0);
419 			if (ret)
420 				return ret;
421 		}
422 	}
423 #endif
424 	return 0;
425 }
426 
release_task_stack(struct task_struct * tsk)427 static void release_task_stack(struct task_struct *tsk)
428 {
429 	if (WARN_ON(tsk->state != TASK_DEAD))
430 		return;  /* Better to leak the stack than to free prematurely */
431 
432 	account_kernel_stack(tsk, -1);
433 	free_thread_stack(tsk);
434 	tsk->stack = NULL;
435 #ifdef CONFIG_VMAP_STACK
436 	tsk->stack_vm_area = NULL;
437 #endif
438 }
439 
440 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)441 void put_task_stack(struct task_struct *tsk)
442 {
443 	if (refcount_dec_and_test(&tsk->stack_refcount))
444 		release_task_stack(tsk);
445 }
446 EXPORT_SYMBOL_GPL(put_task_stack);
447 #endif
448 
free_task(struct task_struct * tsk)449 void free_task(struct task_struct *tsk)
450 {
451 #ifdef CONFIG_SECCOMP
452 	WARN_ON_ONCE(tsk->seccomp.filter);
453 #endif
454 	cpufreq_task_times_exit(tsk);
455 	scs_release(tsk);
456 
457 	trace_android_vh_free_task(tsk);
458 #ifndef CONFIG_THREAD_INFO_IN_TASK
459 	/*
460 	 * The task is finally done with both the stack and thread_info,
461 	 * so free both.
462 	 */
463 	release_task_stack(tsk);
464 #else
465 	/*
466 	 * If the task had a separate stack allocation, it should be gone
467 	 * by now.
468 	 */
469 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
470 #endif
471 	rt_mutex_debug_task_free(tsk);
472 	ftrace_graph_exit_task(tsk);
473 	arch_release_task_struct(tsk);
474 	if (tsk->flags & PF_KTHREAD)
475 		free_kthread_struct(tsk);
476 	free_task_struct(tsk);
477 }
478 EXPORT_SYMBOL(free_task);
479 
480 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)481 static __latent_entropy int dup_mmap(struct mm_struct *mm,
482 					struct mm_struct *oldmm)
483 {
484 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev, *last = NULL;
485 	struct rb_node **rb_link, *rb_parent;
486 	int retval;
487 	unsigned long charge;
488 	LIST_HEAD(uf);
489 
490 	uprobe_start_dup_mmap();
491 	if (mmap_write_lock_killable(oldmm)) {
492 		retval = -EINTR;
493 		goto fail_uprobe_end;
494 	}
495 	flush_cache_dup_mm(oldmm);
496 	uprobe_dup_mmap(oldmm, mm);
497 	/*
498 	 * Not linked in yet - no deadlock potential:
499 	 */
500 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
501 
502 	/* No ordering required: file already has been exposed. */
503 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
504 
505 	mm->total_vm = oldmm->total_vm;
506 	mm->data_vm = oldmm->data_vm;
507 	mm->exec_vm = oldmm->exec_vm;
508 	mm->stack_vm = oldmm->stack_vm;
509 
510 	rb_link = &mm->mm_rb.rb_node;
511 	rb_parent = NULL;
512 	pprev = &mm->mmap;
513 	retval = ksm_fork(mm, oldmm);
514 	if (retval)
515 		goto out;
516 	retval = khugepaged_fork(mm, oldmm);
517 	if (retval)
518 		goto out;
519 
520 	prev = NULL;
521 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
522 		struct file *file;
523 
524 		if (mpnt->vm_flags & VM_DONTCOPY) {
525 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
526 			continue;
527 		}
528 		charge = 0;
529 		/*
530 		 * Don't duplicate many vmas if we've been oom-killed (for
531 		 * example)
532 		 */
533 		if (fatal_signal_pending(current)) {
534 			retval = -EINTR;
535 			goto out;
536 		}
537 		if (mpnt->vm_flags & VM_ACCOUNT) {
538 			unsigned long len = vma_pages(mpnt);
539 
540 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
541 				goto fail_nomem;
542 			charge = len;
543 		}
544 		tmp = vm_area_dup(mpnt);
545 		if (!tmp)
546 			goto fail_nomem;
547 		retval = vma_dup_policy(mpnt, tmp);
548 		if (retval)
549 			goto fail_nomem_policy;
550 		tmp->vm_mm = mm;
551 		retval = dup_userfaultfd(tmp, &uf);
552 		if (retval)
553 			goto fail_nomem_anon_vma_fork;
554 		if (tmp->vm_flags & VM_WIPEONFORK) {
555 			/*
556 			 * VM_WIPEONFORK gets a clean slate in the child.
557 			 * Don't prepare anon_vma until fault since we don't
558 			 * copy page for current vma.
559 			 */
560 			tmp->anon_vma = NULL;
561 		} else if (anon_vma_fork(tmp, mpnt))
562 			goto fail_nomem_anon_vma_fork;
563 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
564 		file = tmp->vm_file;
565 		if (file) {
566 			struct inode *inode = file_inode(file);
567 			struct address_space *mapping = file->f_mapping;
568 
569 			get_file(file);
570 			if (tmp->vm_flags & VM_DENYWRITE)
571 				put_write_access(inode);
572 			i_mmap_lock_write(mapping);
573 			if (tmp->vm_flags & VM_SHARED)
574 				mapping_allow_writable(mapping);
575 			flush_dcache_mmap_lock(mapping);
576 			/* insert tmp into the share list, just after mpnt */
577 			vma_interval_tree_insert_after(tmp, mpnt,
578 					&mapping->i_mmap);
579 			flush_dcache_mmap_unlock(mapping);
580 			i_mmap_unlock_write(mapping);
581 		}
582 
583 		/*
584 		 * Clear hugetlb-related page reserves for children. This only
585 		 * affects MAP_PRIVATE mappings. Faults generated by the child
586 		 * are not guaranteed to succeed, even if read-only
587 		 */
588 		if (is_vm_hugetlb_page(tmp))
589 			reset_vma_resv_huge_pages(tmp);
590 
591 		/*
592 		 * Link in the new vma and copy the page table entries.
593 		 */
594 		*pprev = tmp;
595 		pprev = &tmp->vm_next;
596 		tmp->vm_prev = prev;
597 		prev = tmp;
598 
599 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
600 		rb_link = &tmp->vm_rb.rb_right;
601 		rb_parent = &tmp->vm_rb;
602 
603 		mm->map_count++;
604 		if (!(tmp->vm_flags & VM_WIPEONFORK)) {
605 			if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
606 				/*
607 				 * Mark this VMA as changing to prevent the
608 				 * speculative page fault hanlder to process
609 				 * it until the TLB are flushed below.
610 				 */
611 				last = mpnt;
612 				vm_write_begin(mpnt);
613 			}
614 			retval = copy_page_range(tmp, mpnt);
615 		}
616 
617 		if (tmp->vm_ops && tmp->vm_ops->open)
618 			tmp->vm_ops->open(tmp);
619 
620 		if (retval)
621 			goto out;
622 	}
623 	/* a new mm has just been created */
624 	retval = arch_dup_mmap(oldmm, mm);
625 out:
626 	mmap_write_unlock(mm);
627 	flush_tlb_mm(oldmm);
628 
629 	if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
630 		/*
631 		 * Since the TLB has been flush, we can safely unmark the
632 		 * copied VMAs and allows the speculative page fault handler to
633 		 * process them again.
634 		 * Walk back the VMA list from the last marked VMA.
635 		 */
636 		for (; last; last = last->vm_prev) {
637 			if (last->vm_flags & VM_DONTCOPY)
638 				continue;
639 			if (!(last->vm_flags & VM_WIPEONFORK))
640 				vm_write_end(last);
641 		}
642 	}
643 
644 	mmap_write_unlock(oldmm);
645 	dup_userfaultfd_complete(&uf);
646 fail_uprobe_end:
647 	uprobe_end_dup_mmap();
648 	return retval;
649 fail_nomem_anon_vma_fork:
650 	mpol_put(vma_policy(tmp));
651 fail_nomem_policy:
652 	vm_area_free(tmp);
653 fail_nomem:
654 	retval = -ENOMEM;
655 	vm_unacct_memory(charge);
656 	goto out;
657 }
658 
mm_alloc_pgd(struct mm_struct * mm)659 static inline int mm_alloc_pgd(struct mm_struct *mm)
660 {
661 	mm->pgd = pgd_alloc(mm);
662 	if (unlikely(!mm->pgd))
663 		return -ENOMEM;
664 	return 0;
665 }
666 
mm_free_pgd(struct mm_struct * mm)667 static inline void mm_free_pgd(struct mm_struct *mm)
668 {
669 	pgd_free(mm, mm->pgd);
670 }
671 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)672 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
673 {
674 	mmap_write_lock(oldmm);
675 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
676 	mmap_write_unlock(oldmm);
677 	return 0;
678 }
679 #define mm_alloc_pgd(mm)	(0)
680 #define mm_free_pgd(mm)
681 #endif /* CONFIG_MMU */
682 
check_mm(struct mm_struct * mm)683 static void check_mm(struct mm_struct *mm)
684 {
685 	int i;
686 
687 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
688 			 "Please make sure 'struct resident_page_types[]' is updated as well");
689 
690 	for (i = 0; i < NR_MM_COUNTERS; i++) {
691 		long x = atomic_long_read(&mm->rss_stat.count[i]);
692 
693 		if (unlikely(x))
694 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
695 				 mm, resident_page_types[i], x);
696 	}
697 
698 	if (mm_pgtables_bytes(mm))
699 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
700 				mm_pgtables_bytes(mm));
701 
702 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
703 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
704 #endif
705 }
706 
707 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
708 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
709 
710 /*
711  * Called when the last reference to the mm
712  * is dropped: either by a lazy thread or by
713  * mmput. Free the page directory and the mm.
714  */
__mmdrop(struct mm_struct * mm)715 void __mmdrop(struct mm_struct *mm)
716 {
717 	BUG_ON(mm == &init_mm);
718 	WARN_ON_ONCE(mm == current->mm);
719 	WARN_ON_ONCE(mm == current->active_mm);
720 	mm_free_pgd(mm);
721 	destroy_context(mm);
722 	mmu_notifier_subscriptions_destroy(mm);
723 	check_mm(mm);
724 	put_user_ns(mm->user_ns);
725 	free_mm(mm);
726 }
727 EXPORT_SYMBOL_GPL(__mmdrop);
728 
mmdrop_async_fn(struct work_struct * work)729 static void mmdrop_async_fn(struct work_struct *work)
730 {
731 	struct mm_struct *mm;
732 
733 	mm = container_of(work, struct mm_struct, async_put_work);
734 	__mmdrop(mm);
735 }
736 
mmdrop_async(struct mm_struct * mm)737 static void mmdrop_async(struct mm_struct *mm)
738 {
739 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
740 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
741 		schedule_work(&mm->async_put_work);
742 	}
743 }
744 
free_signal_struct(struct signal_struct * sig)745 static inline void free_signal_struct(struct signal_struct *sig)
746 {
747 	taskstats_tgid_free(sig);
748 	sched_autogroup_exit(sig);
749 	/*
750 	 * __mmdrop is not safe to call from softirq context on x86 due to
751 	 * pgd_dtor so postpone it to the async context
752 	 */
753 	if (sig->oom_mm)
754 		mmdrop_async(sig->oom_mm);
755 	kmem_cache_free(signal_cachep, sig);
756 }
757 
put_signal_struct(struct signal_struct * sig)758 static inline void put_signal_struct(struct signal_struct *sig)
759 {
760 	if (refcount_dec_and_test(&sig->sigcnt))
761 		free_signal_struct(sig);
762 }
763 
__put_task_struct(struct task_struct * tsk)764 void __put_task_struct(struct task_struct *tsk)
765 {
766 	WARN_ON(!tsk->exit_state);
767 	WARN_ON(refcount_read(&tsk->usage));
768 	WARN_ON(tsk == current);
769 
770 	io_uring_free(tsk);
771 	cgroup_free(tsk);
772 	task_numa_free(tsk, true);
773 	security_task_free(tsk);
774 	exit_creds(tsk);
775 	delayacct_tsk_free(tsk);
776 	put_signal_struct(tsk->signal);
777 
778 	if (!profile_handoff_task(tsk))
779 		free_task(tsk);
780 }
781 EXPORT_SYMBOL_GPL(__put_task_struct);
782 
__put_task_struct_rcu_cb(struct rcu_head * rhp)783 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
784 {
785 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
786 
787 	__put_task_struct(task);
788 }
789 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
790 
arch_task_cache_init(void)791 void __init __weak arch_task_cache_init(void) { }
792 
793 /*
794  * set_max_threads
795  */
set_max_threads(unsigned int max_threads_suggested)796 static void set_max_threads(unsigned int max_threads_suggested)
797 {
798 	u64 threads;
799 	unsigned long nr_pages = totalram_pages();
800 
801 	/*
802 	 * The number of threads shall be limited such that the thread
803 	 * structures may only consume a small part of the available memory.
804 	 */
805 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
806 		threads = MAX_THREADS;
807 	else
808 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
809 				    (u64) THREAD_SIZE * 8UL);
810 
811 	if (threads > max_threads_suggested)
812 		threads = max_threads_suggested;
813 
814 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
815 }
816 
817 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
818 /* Initialized by the architecture: */
819 int arch_task_struct_size __read_mostly;
820 #endif
821 
822 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)823 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
824 {
825 	/* Fetch thread_struct whitelist for the architecture. */
826 	arch_thread_struct_whitelist(offset, size);
827 
828 	/*
829 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
830 	 * adjust offset to position of thread_struct in task_struct.
831 	 */
832 	if (unlikely(*size == 0))
833 		*offset = 0;
834 	else
835 		*offset += offsetof(struct task_struct, thread);
836 }
837 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
838 
fork_init(void)839 void __init fork_init(void)
840 {
841 	int i;
842 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
843 #ifndef ARCH_MIN_TASKALIGN
844 #define ARCH_MIN_TASKALIGN	0
845 #endif
846 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
847 	unsigned long useroffset, usersize;
848 
849 	/* create a slab on which task_structs can be allocated */
850 	task_struct_whitelist(&useroffset, &usersize);
851 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
852 			arch_task_struct_size, align,
853 			SLAB_PANIC|SLAB_ACCOUNT,
854 			useroffset, usersize, NULL);
855 #endif
856 
857 	/* do the arch specific task caches init */
858 	arch_task_cache_init();
859 
860 	set_max_threads(MAX_THREADS);
861 
862 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
863 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
864 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
865 		init_task.signal->rlim[RLIMIT_NPROC];
866 
867 	for (i = 0; i < UCOUNT_COUNTS; i++) {
868 		init_user_ns.ucount_max[i] = max_threads/2;
869 	}
870 
871 #ifdef CONFIG_VMAP_STACK
872 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
873 			  NULL, free_vm_stack_cache);
874 #endif
875 
876 	scs_init();
877 
878 	lockdep_init_task(&init_task);
879 	uprobes_init();
880 }
881 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)882 int __weak arch_dup_task_struct(struct task_struct *dst,
883 					       struct task_struct *src)
884 {
885 	*dst = *src;
886 	return 0;
887 }
888 
set_task_stack_end_magic(struct task_struct * tsk)889 void set_task_stack_end_magic(struct task_struct *tsk)
890 {
891 	unsigned long *stackend;
892 
893 	stackend = end_of_stack(tsk);
894 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
895 }
896 
dup_task_struct(struct task_struct * orig,int node)897 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
898 {
899 	struct task_struct *tsk;
900 	unsigned long *stack;
901 	struct vm_struct *stack_vm_area __maybe_unused;
902 	int err;
903 
904 	if (node == NUMA_NO_NODE)
905 		node = tsk_fork_get_node(orig);
906 	tsk = alloc_task_struct_node(node);
907 	if (!tsk)
908 		return NULL;
909 
910 	stack = alloc_thread_stack_node(tsk, node);
911 	if (!stack)
912 		goto free_tsk;
913 
914 	if (memcg_charge_kernel_stack(tsk))
915 		goto free_stack;
916 
917 	stack_vm_area = task_stack_vm_area(tsk);
918 
919 	err = arch_dup_task_struct(tsk, orig);
920 
921 	/*
922 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
923 	 * sure they're properly initialized before using any stack-related
924 	 * functions again.
925 	 */
926 	tsk->stack = stack;
927 #ifdef CONFIG_VMAP_STACK
928 	tsk->stack_vm_area = stack_vm_area;
929 #endif
930 #ifdef CONFIG_THREAD_INFO_IN_TASK
931 	refcount_set(&tsk->stack_refcount, 1);
932 #endif
933 
934 	if (err)
935 		goto free_stack;
936 
937 	err = scs_prepare(tsk, node);
938 	if (err)
939 		goto free_stack;
940 
941 #ifdef CONFIG_SECCOMP
942 	/*
943 	 * We must handle setting up seccomp filters once we're under
944 	 * the sighand lock in case orig has changed between now and
945 	 * then. Until then, filter must be NULL to avoid messing up
946 	 * the usage counts on the error path calling free_task.
947 	 */
948 	tsk->seccomp.filter = NULL;
949 #endif
950 
951 	setup_thread_stack(tsk, orig);
952 	clear_user_return_notifier(tsk);
953 	clear_tsk_need_resched(tsk);
954 	set_task_stack_end_magic(tsk);
955 
956 #ifdef CONFIG_STACKPROTECTOR
957 	tsk->stack_canary = get_random_canary();
958 #endif
959 	if (orig->cpus_ptr == &orig->cpus_mask)
960 		tsk->cpus_ptr = &tsk->cpus_mask;
961 
962 	/*
963 	 * One for the user space visible state that goes away when reaped.
964 	 * One for the scheduler.
965 	 */
966 	refcount_set(&tsk->rcu_users, 2);
967 	/* One for the rcu users */
968 	refcount_set(&tsk->usage, 1);
969 #ifdef CONFIG_BLK_DEV_IO_TRACE
970 	tsk->btrace_seq = 0;
971 #endif
972 	tsk->splice_pipe = NULL;
973 	tsk->task_frag.page = NULL;
974 	tsk->wake_q.next = NULL;
975 	tsk->pf_io_worker = NULL;
976 
977 	account_kernel_stack(tsk, 1);
978 
979 	kcov_task_init(tsk);
980 
981 #ifdef CONFIG_FAULT_INJECTION
982 	tsk->fail_nth = 0;
983 #endif
984 
985 #ifdef CONFIG_BLK_CGROUP
986 	tsk->throttle_queue = NULL;
987 	tsk->use_memdelay = 0;
988 #endif
989 
990 #ifdef CONFIG_MEMCG
991 	tsk->active_memcg = NULL;
992 #endif
993 
994 	android_init_vendor_data(tsk, 1);
995 	android_init_oem_data(tsk, 1);
996 
997 	trace_android_vh_dup_task_struct(tsk, orig);
998 	return tsk;
999 
1000 free_stack:
1001 	free_thread_stack(tsk);
1002 free_tsk:
1003 	free_task_struct(tsk);
1004 	return NULL;
1005 }
1006 
1007 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1008 
1009 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1010 
coredump_filter_setup(char * s)1011 static int __init coredump_filter_setup(char *s)
1012 {
1013 	default_dump_filter =
1014 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1015 		MMF_DUMP_FILTER_MASK;
1016 	return 1;
1017 }
1018 
1019 __setup("coredump_filter=", coredump_filter_setup);
1020 
1021 #include <linux/init_task.h>
1022 
mm_init_aio(struct mm_struct * mm)1023 static void mm_init_aio(struct mm_struct *mm)
1024 {
1025 #ifdef CONFIG_AIO
1026 	spin_lock_init(&mm->ioctx_lock);
1027 	mm->ioctx_table = NULL;
1028 #endif
1029 }
1030 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1031 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1032 					   struct task_struct *p)
1033 {
1034 #ifdef CONFIG_MEMCG
1035 	if (mm->owner == p)
1036 		WRITE_ONCE(mm->owner, NULL);
1037 #endif
1038 }
1039 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1040 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1041 {
1042 #ifdef CONFIG_MEMCG
1043 	mm->owner = p;
1044 #endif
1045 }
1046 
mm_init_pasid(struct mm_struct * mm)1047 static void mm_init_pasid(struct mm_struct *mm)
1048 {
1049 #ifdef CONFIG_IOMMU_SUPPORT
1050 	mm->pasid = INIT_PASID;
1051 #endif
1052 }
1053 
mm_init_uprobes_state(struct mm_struct * mm)1054 static void mm_init_uprobes_state(struct mm_struct *mm)
1055 {
1056 #ifdef CONFIG_UPROBES
1057 	mm->uprobes_state.xol_area = NULL;
1058 #endif
1059 }
1060 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1061 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1062 	struct user_namespace *user_ns)
1063 {
1064 	mm->mmap = NULL;
1065 	mm->mm_rb = RB_ROOT;
1066 	mm->vmacache_seqnum = 0;
1067 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1068 	rwlock_init(&mm->mm_rb_lock);
1069 #endif
1070 	atomic_set(&mm->mm_users, 1);
1071 	atomic_set(&mm->mm_count, 1);
1072 	seqcount_init(&mm->write_protect_seq);
1073 	mmap_init_lock(mm);
1074 	INIT_LIST_HEAD(&mm->mmlist);
1075 	mm->core_state = NULL;
1076 	mm_pgtables_bytes_init(mm);
1077 	mm->map_count = 0;
1078 	mm->locked_vm = 0;
1079 	atomic_set(&mm->has_pinned, 0);
1080 	atomic64_set(&mm->pinned_vm, 0);
1081 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1082 	spin_lock_init(&mm->page_table_lock);
1083 	spin_lock_init(&mm->arg_lock);
1084 	mm_init_cpumask(mm);
1085 	mm_init_aio(mm);
1086 	mm_init_owner(mm, p);
1087 	mm_init_pasid(mm);
1088 	RCU_INIT_POINTER(mm->exe_file, NULL);
1089 	if (!mmu_notifier_subscriptions_init(mm))
1090 		goto fail_nopgd;
1091 	init_tlb_flush_pending(mm);
1092 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1093 	mm->pmd_huge_pte = NULL;
1094 #endif
1095 	mm_init_uprobes_state(mm);
1096 	hugetlb_count_init(mm);
1097 
1098 	if (current->mm) {
1099 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1100 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1101 	} else {
1102 		mm->flags = default_dump_filter;
1103 		mm->def_flags = 0;
1104 	}
1105 
1106 	if (mm_alloc_pgd(mm))
1107 		goto fail_nopgd;
1108 
1109 	if (init_new_context(p, mm))
1110 		goto fail_nocontext;
1111 
1112 	mm->user_ns = get_user_ns(user_ns);
1113 	return mm;
1114 
1115 fail_nocontext:
1116 	mm_free_pgd(mm);
1117 fail_nopgd:
1118 	free_mm(mm);
1119 	return NULL;
1120 }
1121 
1122 /*
1123  * Allocate and initialize an mm_struct.
1124  */
mm_alloc(void)1125 struct mm_struct *mm_alloc(void)
1126 {
1127 	struct mm_struct *mm;
1128 
1129 	mm = allocate_mm();
1130 	if (!mm)
1131 		return NULL;
1132 
1133 	memset(mm, 0, sizeof(*mm));
1134 	return mm_init(mm, current, current_user_ns());
1135 }
1136 
__mmput(struct mm_struct * mm)1137 static inline void __mmput(struct mm_struct *mm)
1138 {
1139 	VM_BUG_ON(atomic_read(&mm->mm_users));
1140 
1141 	uprobe_clear_state(mm);
1142 	exit_aio(mm);
1143 	ksm_exit(mm);
1144 	khugepaged_exit(mm); /* must run before exit_mmap */
1145 	exit_mmap(mm);
1146 	mm_put_huge_zero_page(mm);
1147 	set_mm_exe_file(mm, NULL);
1148 	if (!list_empty(&mm->mmlist)) {
1149 		spin_lock(&mmlist_lock);
1150 		list_del(&mm->mmlist);
1151 		spin_unlock(&mmlist_lock);
1152 	}
1153 	if (mm->binfmt)
1154 		module_put(mm->binfmt->module);
1155 	mmdrop(mm);
1156 }
1157 
1158 /*
1159  * Decrement the use count and release all resources for an mm.
1160  */
mmput(struct mm_struct * mm)1161 void mmput(struct mm_struct *mm)
1162 {
1163 	might_sleep();
1164 
1165 	if (atomic_dec_and_test(&mm->mm_users)) {
1166 		trace_android_vh_mmput(NULL);
1167 		__mmput(mm);
1168 	}
1169 }
1170 EXPORT_SYMBOL_GPL(mmput);
1171 
1172 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1173 static void mmput_async_fn(struct work_struct *work)
1174 {
1175 	struct mm_struct *mm = container_of(work, struct mm_struct,
1176 					    async_put_work);
1177 
1178 	__mmput(mm);
1179 }
1180 
mmput_async(struct mm_struct * mm)1181 void mmput_async(struct mm_struct *mm)
1182 {
1183 	if (atomic_dec_and_test(&mm->mm_users)) {
1184 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1185 		schedule_work(&mm->async_put_work);
1186 	}
1187 }
1188 EXPORT_SYMBOL_GPL(mmput_async);
1189 #endif
1190 
1191 /**
1192  * set_mm_exe_file - change a reference to the mm's executable file
1193  *
1194  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1195  *
1196  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1197  * invocations: in mmput() nobody alive left, in execve task is single
1198  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1199  * mm->exe_file, but does so without using set_mm_exe_file() in order
1200  * to do avoid the need for any locks.
1201  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1202 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1203 {
1204 	struct file *old_exe_file;
1205 
1206 	/*
1207 	 * It is safe to dereference the exe_file without RCU as
1208 	 * this function is only called if nobody else can access
1209 	 * this mm -- see comment above for justification.
1210 	 */
1211 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1212 
1213 	if (new_exe_file)
1214 		get_file(new_exe_file);
1215 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1216 	if (old_exe_file)
1217 		fput(old_exe_file);
1218 }
1219 
1220 /**
1221  * get_mm_exe_file - acquire a reference to the mm's executable file
1222  *
1223  * Returns %NULL if mm has no associated executable file.
1224  * User must release file via fput().
1225  */
get_mm_exe_file(struct mm_struct * mm)1226 struct file *get_mm_exe_file(struct mm_struct *mm)
1227 {
1228 	struct file *exe_file;
1229 
1230 	rcu_read_lock();
1231 	exe_file = rcu_dereference(mm->exe_file);
1232 	if (exe_file && !get_file_rcu(exe_file))
1233 		exe_file = NULL;
1234 	rcu_read_unlock();
1235 	return exe_file;
1236 }
1237 EXPORT_SYMBOL(get_mm_exe_file);
1238 
1239 /**
1240  * get_task_exe_file - acquire a reference to the task's executable file
1241  *
1242  * Returns %NULL if task's mm (if any) has no associated executable file or
1243  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1244  * User must release file via fput().
1245  */
get_task_exe_file(struct task_struct * task)1246 struct file *get_task_exe_file(struct task_struct *task)
1247 {
1248 	struct file *exe_file = NULL;
1249 	struct mm_struct *mm;
1250 
1251 	task_lock(task);
1252 	mm = task->mm;
1253 	if (mm) {
1254 		if (!(task->flags & PF_KTHREAD))
1255 			exe_file = get_mm_exe_file(mm);
1256 	}
1257 	task_unlock(task);
1258 	return exe_file;
1259 }
1260 EXPORT_SYMBOL(get_task_exe_file);
1261 
1262 /**
1263  * get_task_mm - acquire a reference to the task's mm
1264  *
1265  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1266  * this kernel workthread has transiently adopted a user mm with use_mm,
1267  * to do its AIO) is not set and if so returns a reference to it, after
1268  * bumping up the use count.  User must release the mm via mmput()
1269  * after use.  Typically used by /proc and ptrace.
1270  */
get_task_mm(struct task_struct * task)1271 struct mm_struct *get_task_mm(struct task_struct *task)
1272 {
1273 	struct mm_struct *mm;
1274 
1275 	task_lock(task);
1276 	mm = task->mm;
1277 	if (mm) {
1278 		if (task->flags & PF_KTHREAD)
1279 			mm = NULL;
1280 		else
1281 			mmget(mm);
1282 	}
1283 	task_unlock(task);
1284 	return mm;
1285 }
1286 EXPORT_SYMBOL_GPL(get_task_mm);
1287 
mm_access(struct task_struct * task,unsigned int mode)1288 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1289 {
1290 	struct mm_struct *mm;
1291 	int err;
1292 
1293 	err =  down_read_killable(&task->signal->exec_update_lock);
1294 	if (err)
1295 		return ERR_PTR(err);
1296 
1297 	mm = get_task_mm(task);
1298 	if (mm && mm != current->mm &&
1299 			!ptrace_may_access(task, mode)) {
1300 		mmput(mm);
1301 		mm = ERR_PTR(-EACCES);
1302 	}
1303 	up_read(&task->signal->exec_update_lock);
1304 
1305 	return mm;
1306 }
1307 
complete_vfork_done(struct task_struct * tsk)1308 static void complete_vfork_done(struct task_struct *tsk)
1309 {
1310 	struct completion *vfork;
1311 
1312 	task_lock(tsk);
1313 	vfork = tsk->vfork_done;
1314 	if (likely(vfork)) {
1315 		tsk->vfork_done = NULL;
1316 		complete(vfork);
1317 	}
1318 	task_unlock(tsk);
1319 }
1320 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1321 static int wait_for_vfork_done(struct task_struct *child,
1322 				struct completion *vfork)
1323 {
1324 	int killed;
1325 
1326 	freezer_do_not_count();
1327 	cgroup_enter_frozen();
1328 	killed = wait_for_completion_killable(vfork);
1329 	cgroup_leave_frozen(false);
1330 	freezer_count();
1331 
1332 	if (killed) {
1333 		task_lock(child);
1334 		child->vfork_done = NULL;
1335 		task_unlock(child);
1336 	}
1337 
1338 	put_task_struct(child);
1339 	return killed;
1340 }
1341 
1342 /* Please note the differences between mmput and mm_release.
1343  * mmput is called whenever we stop holding onto a mm_struct,
1344  * error success whatever.
1345  *
1346  * mm_release is called after a mm_struct has been removed
1347  * from the current process.
1348  *
1349  * This difference is important for error handling, when we
1350  * only half set up a mm_struct for a new process and need to restore
1351  * the old one.  Because we mmput the new mm_struct before
1352  * restoring the old one. . .
1353  * Eric Biederman 10 January 1998
1354  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1355 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1356 {
1357 	uprobe_free_utask(tsk);
1358 
1359 	/* Get rid of any cached register state */
1360 	deactivate_mm(tsk, mm);
1361 
1362 	/*
1363 	 * Signal userspace if we're not exiting with a core dump
1364 	 * because we want to leave the value intact for debugging
1365 	 * purposes.
1366 	 */
1367 	if (tsk->clear_child_tid) {
1368 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1369 		    atomic_read(&mm->mm_users) > 1) {
1370 			/*
1371 			 * We don't check the error code - if userspace has
1372 			 * not set up a proper pointer then tough luck.
1373 			 */
1374 			put_user(0, tsk->clear_child_tid);
1375 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1376 					1, NULL, NULL, 0, 0);
1377 		}
1378 		tsk->clear_child_tid = NULL;
1379 	}
1380 
1381 	/*
1382 	 * All done, finally we can wake up parent and return this mm to him.
1383 	 * Also kthread_stop() uses this completion for synchronization.
1384 	 */
1385 	if (tsk->vfork_done)
1386 		complete_vfork_done(tsk);
1387 }
1388 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1389 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1390 {
1391 	futex_exit_release(tsk);
1392 	mm_release(tsk, mm);
1393 }
1394 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1395 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1396 {
1397 	futex_exec_release(tsk);
1398 	mm_release(tsk, mm);
1399 }
1400 
1401 /**
1402  * dup_mm() - duplicates an existing mm structure
1403  * @tsk: the task_struct with which the new mm will be associated.
1404  * @oldmm: the mm to duplicate.
1405  *
1406  * Allocates a new mm structure and duplicates the provided @oldmm structure
1407  * content into it.
1408  *
1409  * Return: the duplicated mm or NULL on failure.
1410  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1411 static struct mm_struct *dup_mm(struct task_struct *tsk,
1412 				struct mm_struct *oldmm)
1413 {
1414 	struct mm_struct *mm;
1415 	int err;
1416 
1417 	mm = allocate_mm();
1418 	if (!mm)
1419 		goto fail_nomem;
1420 
1421 	memcpy(mm, oldmm, sizeof(*mm));
1422 
1423 	if (!mm_init(mm, tsk, mm->user_ns))
1424 		goto fail_nomem;
1425 
1426 	err = dup_mmap(mm, oldmm);
1427 	if (err)
1428 		goto free_pt;
1429 
1430 	mm->hiwater_rss = get_mm_rss(mm);
1431 	mm->hiwater_vm = mm->total_vm;
1432 
1433 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1434 		goto free_pt;
1435 
1436 	return mm;
1437 
1438 free_pt:
1439 	/* don't put binfmt in mmput, we haven't got module yet */
1440 	mm->binfmt = NULL;
1441 	mm_init_owner(mm, NULL);
1442 	mmput(mm);
1443 
1444 fail_nomem:
1445 	return NULL;
1446 }
1447 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1448 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1449 {
1450 	struct mm_struct *mm, *oldmm;
1451 	int retval;
1452 
1453 	tsk->min_flt = tsk->maj_flt = 0;
1454 	tsk->nvcsw = tsk->nivcsw = 0;
1455 #ifdef CONFIG_DETECT_HUNG_TASK
1456 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1457 	tsk->last_switch_time = 0;
1458 #endif
1459 
1460 	tsk->mm = NULL;
1461 	tsk->active_mm = NULL;
1462 
1463 	/*
1464 	 * Are we cloning a kernel thread?
1465 	 *
1466 	 * We need to steal a active VM for that..
1467 	 */
1468 	oldmm = current->mm;
1469 	if (!oldmm)
1470 		return 0;
1471 
1472 	/* initialize the new vmacache entries */
1473 	vmacache_flush(tsk);
1474 
1475 	if (clone_flags & CLONE_VM) {
1476 		mmget(oldmm);
1477 		mm = oldmm;
1478 		goto good_mm;
1479 	}
1480 
1481 	retval = -ENOMEM;
1482 	mm = dup_mm(tsk, current->mm);
1483 	if (!mm)
1484 		goto fail_nomem;
1485 
1486 good_mm:
1487 	tsk->mm = mm;
1488 	tsk->active_mm = mm;
1489 	return 0;
1490 
1491 fail_nomem:
1492 	return retval;
1493 }
1494 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1495 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1496 {
1497 	struct fs_struct *fs = current->fs;
1498 	if (clone_flags & CLONE_FS) {
1499 		/* tsk->fs is already what we want */
1500 		spin_lock(&fs->lock);
1501 		if (fs->in_exec) {
1502 			spin_unlock(&fs->lock);
1503 			return -EAGAIN;
1504 		}
1505 		fs->users++;
1506 		spin_unlock(&fs->lock);
1507 		return 0;
1508 	}
1509 	tsk->fs = copy_fs_struct(fs);
1510 	if (!tsk->fs)
1511 		return -ENOMEM;
1512 	return 0;
1513 }
1514 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1515 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 	struct files_struct *oldf, *newf;
1518 	int error = 0;
1519 
1520 	/*
1521 	 * A background process may not have any files ...
1522 	 */
1523 	oldf = current->files;
1524 	if (!oldf)
1525 		goto out;
1526 
1527 	if (clone_flags & CLONE_FILES) {
1528 		atomic_inc(&oldf->count);
1529 		goto out;
1530 	}
1531 
1532 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1533 	if (!newf)
1534 		goto out;
1535 
1536 	tsk->files = newf;
1537 	error = 0;
1538 out:
1539 	return error;
1540 }
1541 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1542 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1543 {
1544 #ifdef CONFIG_BLOCK
1545 	struct io_context *ioc = current->io_context;
1546 	struct io_context *new_ioc;
1547 
1548 	if (!ioc)
1549 		return 0;
1550 	/*
1551 	 * Share io context with parent, if CLONE_IO is set
1552 	 */
1553 	if (clone_flags & CLONE_IO) {
1554 		ioc_task_link(ioc);
1555 		tsk->io_context = ioc;
1556 	} else if (ioprio_valid(ioc->ioprio)) {
1557 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1558 		if (unlikely(!new_ioc))
1559 			return -ENOMEM;
1560 
1561 		new_ioc->ioprio = ioc->ioprio;
1562 		put_io_context(new_ioc);
1563 	}
1564 #endif
1565 	return 0;
1566 }
1567 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1568 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1569 {
1570 	struct sighand_struct *sig;
1571 
1572 	if (clone_flags & CLONE_SIGHAND) {
1573 		refcount_inc(&current->sighand->count);
1574 		return 0;
1575 	}
1576 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1577 	RCU_INIT_POINTER(tsk->sighand, sig);
1578 	if (!sig)
1579 		return -ENOMEM;
1580 
1581 	refcount_set(&sig->count, 1);
1582 	spin_lock_irq(&current->sighand->siglock);
1583 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1584 	spin_unlock_irq(&current->sighand->siglock);
1585 
1586 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1587 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1588 		flush_signal_handlers(tsk, 0);
1589 
1590 	return 0;
1591 }
1592 
__cleanup_sighand(struct sighand_struct * sighand)1593 void __cleanup_sighand(struct sighand_struct *sighand)
1594 {
1595 	if (refcount_dec_and_test(&sighand->count)) {
1596 		signalfd_cleanup(sighand);
1597 		/*
1598 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1599 		 * without an RCU grace period, see __lock_task_sighand().
1600 		 */
1601 		kmem_cache_free(sighand_cachep, sighand);
1602 	}
1603 }
1604 
1605 /*
1606  * Initialize POSIX timer handling for a thread group.
1607  */
posix_cpu_timers_init_group(struct signal_struct * sig)1608 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1609 {
1610 	struct posix_cputimers *pct = &sig->posix_cputimers;
1611 	unsigned long cpu_limit;
1612 
1613 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1614 	posix_cputimers_group_init(pct, cpu_limit);
1615 }
1616 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1617 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1618 {
1619 	struct signal_struct *sig;
1620 
1621 	if (clone_flags & CLONE_THREAD)
1622 		return 0;
1623 
1624 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1625 	tsk->signal = sig;
1626 	if (!sig)
1627 		return -ENOMEM;
1628 
1629 	sig->nr_threads = 1;
1630 	atomic_set(&sig->live, 1);
1631 	refcount_set(&sig->sigcnt, 1);
1632 
1633 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1634 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1635 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1636 
1637 	init_waitqueue_head(&sig->wait_chldexit);
1638 	sig->curr_target = tsk;
1639 	init_sigpending(&sig->shared_pending);
1640 	INIT_HLIST_HEAD(&sig->multiprocess);
1641 	seqlock_init(&sig->stats_lock);
1642 	prev_cputime_init(&sig->prev_cputime);
1643 
1644 #ifdef CONFIG_POSIX_TIMERS
1645 	INIT_LIST_HEAD(&sig->posix_timers);
1646 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1647 	sig->real_timer.function = it_real_fn;
1648 #endif
1649 
1650 	task_lock(current->group_leader);
1651 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1652 	task_unlock(current->group_leader);
1653 
1654 	posix_cpu_timers_init_group(sig);
1655 
1656 	tty_audit_fork(sig);
1657 	sched_autogroup_fork(sig);
1658 
1659 	sig->oom_score_adj = current->signal->oom_score_adj;
1660 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1661 
1662 	mutex_init(&sig->cred_guard_mutex);
1663 	init_rwsem(&sig->exec_update_lock);
1664 
1665 	return 0;
1666 }
1667 
copy_seccomp(struct task_struct * p)1668 static void copy_seccomp(struct task_struct *p)
1669 {
1670 #ifdef CONFIG_SECCOMP
1671 	/*
1672 	 * Must be called with sighand->lock held, which is common to
1673 	 * all threads in the group. Holding cred_guard_mutex is not
1674 	 * needed because this new task is not yet running and cannot
1675 	 * be racing exec.
1676 	 */
1677 	assert_spin_locked(&current->sighand->siglock);
1678 
1679 	/* Ref-count the new filter user, and assign it. */
1680 	get_seccomp_filter(current);
1681 	p->seccomp = current->seccomp;
1682 
1683 	/*
1684 	 * Explicitly enable no_new_privs here in case it got set
1685 	 * between the task_struct being duplicated and holding the
1686 	 * sighand lock. The seccomp state and nnp must be in sync.
1687 	 */
1688 	if (task_no_new_privs(current))
1689 		task_set_no_new_privs(p);
1690 
1691 	/*
1692 	 * If the parent gained a seccomp mode after copying thread
1693 	 * flags and between before we held the sighand lock, we have
1694 	 * to manually enable the seccomp thread flag here.
1695 	 */
1696 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1697 		set_tsk_thread_flag(p, TIF_SECCOMP);
1698 #endif
1699 }
1700 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1701 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1702 {
1703 	current->clear_child_tid = tidptr;
1704 
1705 	return task_pid_vnr(current);
1706 }
1707 
rt_mutex_init_task(struct task_struct * p)1708 static void rt_mutex_init_task(struct task_struct *p)
1709 {
1710 	raw_spin_lock_init(&p->pi_lock);
1711 #ifdef CONFIG_RT_MUTEXES
1712 	p->pi_waiters = RB_ROOT_CACHED;
1713 	p->pi_top_task = NULL;
1714 	p->pi_blocked_on = NULL;
1715 #endif
1716 }
1717 
init_task_pid_links(struct task_struct * task)1718 static inline void init_task_pid_links(struct task_struct *task)
1719 {
1720 	enum pid_type type;
1721 
1722 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1723 		INIT_HLIST_NODE(&task->pid_links[type]);
1724 	}
1725 }
1726 
1727 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1728 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1729 {
1730 	if (type == PIDTYPE_PID)
1731 		task->thread_pid = pid;
1732 	else
1733 		task->signal->pids[type] = pid;
1734 }
1735 
rcu_copy_process(struct task_struct * p)1736 static inline void rcu_copy_process(struct task_struct *p)
1737 {
1738 #ifdef CONFIG_PREEMPT_RCU
1739 	p->rcu_read_lock_nesting = 0;
1740 	p->rcu_read_unlock_special.s = 0;
1741 	p->rcu_blocked_node = NULL;
1742 	INIT_LIST_HEAD(&p->rcu_node_entry);
1743 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1744 #ifdef CONFIG_TASKS_RCU
1745 	p->rcu_tasks_holdout = false;
1746 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1747 	p->rcu_tasks_idle_cpu = -1;
1748 #endif /* #ifdef CONFIG_TASKS_RCU */
1749 #ifdef CONFIG_TASKS_TRACE_RCU
1750 	p->trc_reader_nesting = 0;
1751 	p->trc_reader_special.s = 0;
1752 	INIT_LIST_HEAD(&p->trc_holdout_list);
1753 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1754 }
1755 
pidfd_pid(const struct file * file)1756 struct pid *pidfd_pid(const struct file *file)
1757 {
1758 	if (file->f_op == &pidfd_fops)
1759 		return file->private_data;
1760 
1761 	return ERR_PTR(-EBADF);
1762 }
1763 
pidfd_release(struct inode * inode,struct file * file)1764 static int pidfd_release(struct inode *inode, struct file *file)
1765 {
1766 	struct pid *pid = file->private_data;
1767 
1768 	file->private_data = NULL;
1769 	put_pid(pid);
1770 	return 0;
1771 }
1772 
1773 #ifdef CONFIG_PROC_FS
1774 /**
1775  * pidfd_show_fdinfo - print information about a pidfd
1776  * @m: proc fdinfo file
1777  * @f: file referencing a pidfd
1778  *
1779  * Pid:
1780  * This function will print the pid that a given pidfd refers to in the
1781  * pid namespace of the procfs instance.
1782  * If the pid namespace of the process is not a descendant of the pid
1783  * namespace of the procfs instance 0 will be shown as its pid. This is
1784  * similar to calling getppid() on a process whose parent is outside of
1785  * its pid namespace.
1786  *
1787  * NSpid:
1788  * If pid namespaces are supported then this function will also print
1789  * the pid of a given pidfd refers to for all descendant pid namespaces
1790  * starting from the current pid namespace of the instance, i.e. the
1791  * Pid field and the first entry in the NSpid field will be identical.
1792  * If the pid namespace of the process is not a descendant of the pid
1793  * namespace of the procfs instance 0 will be shown as its first NSpid
1794  * entry and no others will be shown.
1795  * Note that this differs from the Pid and NSpid fields in
1796  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1797  * the  pid namespace of the procfs instance. The difference becomes
1798  * obvious when sending around a pidfd between pid namespaces from a
1799  * different branch of the tree, i.e. where no ancestoral relation is
1800  * present between the pid namespaces:
1801  * - create two new pid namespaces ns1 and ns2 in the initial pid
1802  *   namespace (also take care to create new mount namespaces in the
1803  *   new pid namespace and mount procfs)
1804  * - create a process with a pidfd in ns1
1805  * - send pidfd from ns1 to ns2
1806  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1807  *   have exactly one entry, which is 0
1808  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1809 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1810 {
1811 	struct pid *pid = f->private_data;
1812 	struct pid_namespace *ns;
1813 	pid_t nr = -1;
1814 
1815 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1816 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1817 		nr = pid_nr_ns(pid, ns);
1818 	}
1819 
1820 	seq_put_decimal_ll(m, "Pid:\t", nr);
1821 
1822 #ifdef CONFIG_PID_NS
1823 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1824 	if (nr > 0) {
1825 		int i;
1826 
1827 		/* If nr is non-zero it means that 'pid' is valid and that
1828 		 * ns, i.e. the pid namespace associated with the procfs
1829 		 * instance, is in the pid namespace hierarchy of pid.
1830 		 * Start at one below the already printed level.
1831 		 */
1832 		for (i = ns->level + 1; i <= pid->level; i++)
1833 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1834 	}
1835 #endif
1836 	seq_putc(m, '\n');
1837 }
1838 #endif
1839 
1840 /*
1841  * Poll support for process exit notification.
1842  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1843 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1844 {
1845 	struct pid *pid = file->private_data;
1846 	__poll_t poll_flags = 0;
1847 
1848 	poll_wait(file, &pid->wait_pidfd, pts);
1849 
1850 	/*
1851 	 * Inform pollers only when the whole thread group exits.
1852 	 * If the thread group leader exits before all other threads in the
1853 	 * group, then poll(2) should block, similar to the wait(2) family.
1854 	 */
1855 	if (thread_group_exited(pid))
1856 		poll_flags = EPOLLIN | EPOLLRDNORM;
1857 
1858 	return poll_flags;
1859 }
1860 
1861 const struct file_operations pidfd_fops = {
1862 	.release = pidfd_release,
1863 	.poll = pidfd_poll,
1864 #ifdef CONFIG_PROC_FS
1865 	.show_fdinfo = pidfd_show_fdinfo,
1866 #endif
1867 };
1868 
__delayed_free_task(struct rcu_head * rhp)1869 static void __delayed_free_task(struct rcu_head *rhp)
1870 {
1871 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1872 
1873 	free_task(tsk);
1874 }
1875 
delayed_free_task(struct task_struct * tsk)1876 static __always_inline void delayed_free_task(struct task_struct *tsk)
1877 {
1878 	if (IS_ENABLED(CONFIG_MEMCG))
1879 		call_rcu(&tsk->rcu, __delayed_free_task);
1880 	else
1881 		free_task(tsk);
1882 }
1883 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1884 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1885 {
1886 	/* Skip if kernel thread */
1887 	if (!tsk->mm)
1888 		return;
1889 
1890 	/* Skip if spawning a thread or using vfork */
1891 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1892 		return;
1893 
1894 	/* We need to synchronize with __set_oom_adj */
1895 	mutex_lock(&oom_adj_mutex);
1896 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1897 	/* Update the values in case they were changed after copy_signal */
1898 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1899 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1900 	mutex_unlock(&oom_adj_mutex);
1901 }
1902 
1903 /*
1904  * This creates a new process as a copy of the old one,
1905  * but does not actually start it yet.
1906  *
1907  * It copies the registers, and all the appropriate
1908  * parts of the process environment (as per the clone
1909  * flags). The actual kick-off is left to the caller.
1910  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1911 static __latent_entropy struct task_struct *copy_process(
1912 					struct pid *pid,
1913 					int trace,
1914 					int node,
1915 					struct kernel_clone_args *args)
1916 {
1917 	int pidfd = -1, retval;
1918 	struct task_struct *p;
1919 	struct multiprocess_signals delayed;
1920 	struct file *pidfile = NULL;
1921 	u64 clone_flags = args->flags;
1922 	struct nsproxy *nsp = current->nsproxy;
1923 
1924 	/*
1925 	 * Don't allow sharing the root directory with processes in a different
1926 	 * namespace
1927 	 */
1928 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1929 		return ERR_PTR(-EINVAL);
1930 
1931 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1932 		return ERR_PTR(-EINVAL);
1933 
1934 	/*
1935 	 * Thread groups must share signals as well, and detached threads
1936 	 * can only be started up within the thread group.
1937 	 */
1938 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1939 		return ERR_PTR(-EINVAL);
1940 
1941 	/*
1942 	 * Shared signal handlers imply shared VM. By way of the above,
1943 	 * thread groups also imply shared VM. Blocking this case allows
1944 	 * for various simplifications in other code.
1945 	 */
1946 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1947 		return ERR_PTR(-EINVAL);
1948 
1949 	/*
1950 	 * Siblings of global init remain as zombies on exit since they are
1951 	 * not reaped by their parent (swapper). To solve this and to avoid
1952 	 * multi-rooted process trees, prevent global and container-inits
1953 	 * from creating siblings.
1954 	 */
1955 	if ((clone_flags & CLONE_PARENT) &&
1956 				current->signal->flags & SIGNAL_UNKILLABLE)
1957 		return ERR_PTR(-EINVAL);
1958 
1959 	/*
1960 	 * If the new process will be in a different pid or user namespace
1961 	 * do not allow it to share a thread group with the forking task.
1962 	 */
1963 	if (clone_flags & CLONE_THREAD) {
1964 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1965 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1966 			return ERR_PTR(-EINVAL);
1967 	}
1968 
1969 	/*
1970 	 * If the new process will be in a different time namespace
1971 	 * do not allow it to share VM or a thread group with the forking task.
1972 	 */
1973 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1974 		if (nsp->time_ns != nsp->time_ns_for_children)
1975 			return ERR_PTR(-EINVAL);
1976 	}
1977 
1978 	if (clone_flags & CLONE_PIDFD) {
1979 		/*
1980 		 * - CLONE_DETACHED is blocked so that we can potentially
1981 		 *   reuse it later for CLONE_PIDFD.
1982 		 * - CLONE_THREAD is blocked until someone really needs it.
1983 		 */
1984 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1985 			return ERR_PTR(-EINVAL);
1986 	}
1987 
1988 	/*
1989 	 * Force any signals received before this point to be delivered
1990 	 * before the fork happens.  Collect up signals sent to multiple
1991 	 * processes that happen during the fork and delay them so that
1992 	 * they appear to happen after the fork.
1993 	 */
1994 	sigemptyset(&delayed.signal);
1995 	INIT_HLIST_NODE(&delayed.node);
1996 
1997 	spin_lock_irq(&current->sighand->siglock);
1998 	if (!(clone_flags & CLONE_THREAD))
1999 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2000 	recalc_sigpending();
2001 	spin_unlock_irq(&current->sighand->siglock);
2002 	retval = -ERESTARTNOINTR;
2003 	if (task_sigpending(current))
2004 		goto fork_out;
2005 
2006 	retval = -ENOMEM;
2007 	p = dup_task_struct(current, node);
2008 	if (!p)
2009 		goto fork_out;
2010 	if (args->io_thread) {
2011 		/*
2012 		 * Mark us an IO worker, and block any signal that isn't
2013 		 * fatal or STOP
2014 		 */
2015 		p->flags |= PF_IO_WORKER;
2016 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2017 	}
2018 
2019 	cpufreq_task_times_init(p);
2020 
2021 	/*
2022 	 * This _must_ happen before we call free_task(), i.e. before we jump
2023 	 * to any of the bad_fork_* labels. This is to avoid freeing
2024 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2025 	 * kernel threads (PF_KTHREAD).
2026 	 */
2027 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2028 	/*
2029 	 * Clear TID on mm_release()?
2030 	 */
2031 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2032 
2033 	ftrace_graph_init_task(p);
2034 
2035 	rt_mutex_init_task(p);
2036 
2037 	lockdep_assert_irqs_enabled();
2038 #ifdef CONFIG_PROVE_LOCKING
2039 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2040 #endif
2041 	retval = -EAGAIN;
2042 	if (atomic_read(&p->real_cred->user->processes) >=
2043 			task_rlimit(p, RLIMIT_NPROC)) {
2044 		if (p->real_cred->user != INIT_USER &&
2045 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2046 			goto bad_fork_free;
2047 	}
2048 	current->flags &= ~PF_NPROC_EXCEEDED;
2049 
2050 	retval = copy_creds(p, clone_flags);
2051 	if (retval < 0)
2052 		goto bad_fork_free;
2053 
2054 	/*
2055 	 * If multiple threads are within copy_process(), then this check
2056 	 * triggers too late. This doesn't hurt, the check is only there
2057 	 * to stop root fork bombs.
2058 	 */
2059 	retval = -EAGAIN;
2060 	if (data_race(nr_threads >= max_threads))
2061 		goto bad_fork_cleanup_count;
2062 
2063 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2064 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2065 	p->flags |= PF_FORKNOEXEC;
2066 	INIT_LIST_HEAD(&p->children);
2067 	INIT_LIST_HEAD(&p->sibling);
2068 	rcu_copy_process(p);
2069 	p->vfork_done = NULL;
2070 	spin_lock_init(&p->alloc_lock);
2071 
2072 	init_sigpending(&p->pending);
2073 
2074 	p->utime = p->stime = p->gtime = 0;
2075 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2076 	p->utimescaled = p->stimescaled = 0;
2077 #endif
2078 	prev_cputime_init(&p->prev_cputime);
2079 
2080 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2081 	seqcount_init(&p->vtime.seqcount);
2082 	p->vtime.starttime = 0;
2083 	p->vtime.state = VTIME_INACTIVE;
2084 #endif
2085 
2086 #ifdef CONFIG_IO_URING
2087 	p->io_uring = NULL;
2088 #endif
2089 
2090 #if defined(SPLIT_RSS_COUNTING)
2091 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2092 #endif
2093 
2094 	p->default_timer_slack_ns = current->timer_slack_ns;
2095 
2096 #ifdef CONFIG_PSI
2097 	p->psi_flags = 0;
2098 #endif
2099 
2100 	task_io_accounting_init(&p->ioac);
2101 	acct_clear_integrals(p);
2102 
2103 	posix_cputimers_init(&p->posix_cputimers);
2104 
2105 	p->io_context = NULL;
2106 	audit_set_context(p, NULL);
2107 	cgroup_fork(p);
2108 #ifdef CONFIG_NUMA
2109 	p->mempolicy = mpol_dup(p->mempolicy);
2110 	if (IS_ERR(p->mempolicy)) {
2111 		retval = PTR_ERR(p->mempolicy);
2112 		p->mempolicy = NULL;
2113 		goto bad_fork_cleanup_threadgroup_lock;
2114 	}
2115 #endif
2116 #ifdef CONFIG_CPUSETS
2117 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2118 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2119 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2120 #endif
2121 #ifdef CONFIG_TRACE_IRQFLAGS
2122 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2123 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2124 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2125 	p->softirqs_enabled		= 1;
2126 	p->softirq_context		= 0;
2127 #endif
2128 
2129 	p->pagefault_disabled = 0;
2130 
2131 #ifdef CONFIG_LOCKDEP
2132 	lockdep_init_task(p);
2133 #endif
2134 
2135 #ifdef CONFIG_DEBUG_MUTEXES
2136 	p->blocked_on = NULL; /* not blocked yet */
2137 #endif
2138 #ifdef CONFIG_BCACHE
2139 	p->sequential_io	= 0;
2140 	p->sequential_io_avg	= 0;
2141 #endif
2142 
2143 	/* Perform scheduler related setup. Assign this task to a CPU. */
2144 	retval = sched_fork(clone_flags, p);
2145 	if (retval)
2146 		goto bad_fork_cleanup_policy;
2147 
2148 	retval = perf_event_init_task(p);
2149 	if (retval)
2150 		goto bad_fork_cleanup_policy;
2151 	retval = audit_alloc(p);
2152 	if (retval)
2153 		goto bad_fork_cleanup_perf;
2154 	/* copy all the process information */
2155 	shm_init_task(p);
2156 	retval = security_task_alloc(p, clone_flags);
2157 	if (retval)
2158 		goto bad_fork_cleanup_audit;
2159 	retval = copy_semundo(clone_flags, p);
2160 	if (retval)
2161 		goto bad_fork_cleanup_security;
2162 	retval = copy_files(clone_flags, p);
2163 	if (retval)
2164 		goto bad_fork_cleanup_semundo;
2165 	retval = copy_fs(clone_flags, p);
2166 	if (retval)
2167 		goto bad_fork_cleanup_files;
2168 	retval = copy_sighand(clone_flags, p);
2169 	if (retval)
2170 		goto bad_fork_cleanup_fs;
2171 	retval = copy_signal(clone_flags, p);
2172 	if (retval)
2173 		goto bad_fork_cleanup_sighand;
2174 	retval = copy_mm(clone_flags, p);
2175 	if (retval)
2176 		goto bad_fork_cleanup_signal;
2177 	retval = copy_namespaces(clone_flags, p);
2178 	if (retval)
2179 		goto bad_fork_cleanup_mm;
2180 	retval = copy_io(clone_flags, p);
2181 	if (retval)
2182 		goto bad_fork_cleanup_namespaces;
2183 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2184 	if (retval)
2185 		goto bad_fork_cleanup_io;
2186 
2187 	stackleak_task_init(p);
2188 
2189 	if (pid != &init_struct_pid) {
2190 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2191 				args->set_tid_size);
2192 		if (IS_ERR(pid)) {
2193 			retval = PTR_ERR(pid);
2194 			goto bad_fork_cleanup_thread;
2195 		}
2196 	}
2197 
2198 	/*
2199 	 * This has to happen after we've potentially unshared the file
2200 	 * descriptor table (so that the pidfd doesn't leak into the child
2201 	 * if the fd table isn't shared).
2202 	 */
2203 	if (clone_flags & CLONE_PIDFD) {
2204 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2205 		if (retval < 0)
2206 			goto bad_fork_free_pid;
2207 
2208 		pidfd = retval;
2209 
2210 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2211 					      O_RDWR | O_CLOEXEC);
2212 		if (IS_ERR(pidfile)) {
2213 			put_unused_fd(pidfd);
2214 			retval = PTR_ERR(pidfile);
2215 			goto bad_fork_free_pid;
2216 		}
2217 		get_pid(pid);	/* held by pidfile now */
2218 
2219 		retval = put_user(pidfd, args->pidfd);
2220 		if (retval)
2221 			goto bad_fork_put_pidfd;
2222 	}
2223 
2224 #ifdef CONFIG_BLOCK
2225 	p->plug = NULL;
2226 #endif
2227 	futex_init_task(p);
2228 
2229 	/*
2230 	 * sigaltstack should be cleared when sharing the same VM
2231 	 */
2232 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2233 		sas_ss_reset(p);
2234 
2235 	/*
2236 	 * Syscall tracing and stepping should be turned off in the
2237 	 * child regardless of CLONE_PTRACE.
2238 	 */
2239 	user_disable_single_step(p);
2240 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2241 #ifdef TIF_SYSCALL_EMU
2242 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2243 #endif
2244 	clear_tsk_latency_tracing(p);
2245 
2246 	/* ok, now we should be set up.. */
2247 	p->pid = pid_nr(pid);
2248 	if (clone_flags & CLONE_THREAD) {
2249 		p->group_leader = current->group_leader;
2250 		p->tgid = current->tgid;
2251 	} else {
2252 		p->group_leader = p;
2253 		p->tgid = p->pid;
2254 	}
2255 
2256 	p->nr_dirtied = 0;
2257 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2258 	p->dirty_paused_when = 0;
2259 
2260 	p->pdeath_signal = 0;
2261 	INIT_LIST_HEAD(&p->thread_group);
2262 	p->task_works = NULL;
2263 	clear_posix_cputimers_work(p);
2264 
2265 	/*
2266 	 * Ensure that the cgroup subsystem policies allow the new process to be
2267 	 * forked. It should be noted that the new process's css_set can be changed
2268 	 * between here and cgroup_post_fork() if an organisation operation is in
2269 	 * progress.
2270 	 */
2271 	retval = cgroup_can_fork(p, args);
2272 	if (retval)
2273 		goto bad_fork_put_pidfd;
2274 
2275 	/*
2276 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2277 	 * the new task on the correct runqueue. All this *before* the task
2278 	 * becomes visible.
2279 	 *
2280 	 * This isn't part of ->can_fork() because while the re-cloning is
2281 	 * cgroup specific, it unconditionally needs to place the task on a
2282 	 * runqueue.
2283 	 */
2284 	sched_cgroup_fork(p, args);
2285 
2286 	/*
2287 	 * From this point on we must avoid any synchronous user-space
2288 	 * communication until we take the tasklist-lock. In particular, we do
2289 	 * not want user-space to be able to predict the process start-time by
2290 	 * stalling fork(2) after we recorded the start_time but before it is
2291 	 * visible to the system.
2292 	 */
2293 
2294 	p->start_time = ktime_get_ns();
2295 	p->start_boottime = ktime_get_boottime_ns();
2296 
2297 	/*
2298 	 * Make it visible to the rest of the system, but dont wake it up yet.
2299 	 * Need tasklist lock for parent etc handling!
2300 	 */
2301 	write_lock_irq(&tasklist_lock);
2302 
2303 	/* CLONE_PARENT re-uses the old parent */
2304 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2305 		p->real_parent = current->real_parent;
2306 		p->parent_exec_id = current->parent_exec_id;
2307 		if (clone_flags & CLONE_THREAD)
2308 			p->exit_signal = -1;
2309 		else
2310 			p->exit_signal = current->group_leader->exit_signal;
2311 	} else {
2312 		p->real_parent = current;
2313 		p->parent_exec_id = current->self_exec_id;
2314 		p->exit_signal = args->exit_signal;
2315 	}
2316 
2317 	klp_copy_process(p);
2318 
2319 	spin_lock(&current->sighand->siglock);
2320 
2321 	rseq_fork(p, clone_flags);
2322 
2323 	/* Don't start children in a dying pid namespace */
2324 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2325 		retval = -ENOMEM;
2326 		goto bad_fork_cancel_cgroup;
2327 	}
2328 
2329 	/* Let kill terminate clone/fork in the middle */
2330 	if (fatal_signal_pending(current)) {
2331 		retval = -EINTR;
2332 		goto bad_fork_cancel_cgroup;
2333 	}
2334 
2335 	/* No more failure paths after this point. */
2336 
2337 	/*
2338 	 * Copy seccomp details explicitly here, in case they were changed
2339 	 * before holding sighand lock.
2340 	 */
2341 	copy_seccomp(p);
2342 
2343 	init_task_pid_links(p);
2344 	if (likely(p->pid)) {
2345 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2346 
2347 		init_task_pid(p, PIDTYPE_PID, pid);
2348 		if (thread_group_leader(p)) {
2349 			init_task_pid(p, PIDTYPE_TGID, pid);
2350 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2351 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2352 
2353 			if (is_child_reaper(pid)) {
2354 				ns_of_pid(pid)->child_reaper = p;
2355 				p->signal->flags |= SIGNAL_UNKILLABLE;
2356 			}
2357 			p->signal->shared_pending.signal = delayed.signal;
2358 			p->signal->tty = tty_kref_get(current->signal->tty);
2359 			/*
2360 			 * Inherit has_child_subreaper flag under the same
2361 			 * tasklist_lock with adding child to the process tree
2362 			 * for propagate_has_child_subreaper optimization.
2363 			 */
2364 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2365 							 p->real_parent->signal->is_child_subreaper;
2366 			list_add_tail(&p->sibling, &p->real_parent->children);
2367 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2368 			attach_pid(p, PIDTYPE_TGID);
2369 			attach_pid(p, PIDTYPE_PGID);
2370 			attach_pid(p, PIDTYPE_SID);
2371 			__this_cpu_inc(process_counts);
2372 		} else {
2373 			current->signal->nr_threads++;
2374 			atomic_inc(&current->signal->live);
2375 			refcount_inc(&current->signal->sigcnt);
2376 			task_join_group_stop(p);
2377 			list_add_tail_rcu(&p->thread_group,
2378 					  &p->group_leader->thread_group);
2379 			list_add_tail_rcu(&p->thread_node,
2380 					  &p->signal->thread_head);
2381 		}
2382 		attach_pid(p, PIDTYPE_PID);
2383 		nr_threads++;
2384 	}
2385 	total_forks++;
2386 	hlist_del_init(&delayed.node);
2387 	spin_unlock(&current->sighand->siglock);
2388 	syscall_tracepoint_update(p);
2389 	write_unlock_irq(&tasklist_lock);
2390 
2391 	if (pidfile)
2392 		fd_install(pidfd, pidfile);
2393 
2394 	proc_fork_connector(p);
2395 	sched_post_fork(p);
2396 	cgroup_post_fork(p, args);
2397 	perf_event_fork(p);
2398 
2399 	trace_task_newtask(p, clone_flags);
2400 	uprobe_copy_process(p, clone_flags);
2401 
2402 	copy_oom_score_adj(clone_flags, p);
2403 
2404 	return p;
2405 
2406 bad_fork_cancel_cgroup:
2407 	spin_unlock(&current->sighand->siglock);
2408 	write_unlock_irq(&tasklist_lock);
2409 	cgroup_cancel_fork(p, args);
2410 bad_fork_put_pidfd:
2411 	if (clone_flags & CLONE_PIDFD) {
2412 		fput(pidfile);
2413 		put_unused_fd(pidfd);
2414 	}
2415 bad_fork_free_pid:
2416 	if (pid != &init_struct_pid)
2417 		free_pid(pid);
2418 bad_fork_cleanup_thread:
2419 	exit_thread(p);
2420 bad_fork_cleanup_io:
2421 	if (p->io_context)
2422 		exit_io_context(p);
2423 bad_fork_cleanup_namespaces:
2424 	exit_task_namespaces(p);
2425 bad_fork_cleanup_mm:
2426 	if (p->mm) {
2427 		mm_clear_owner(p->mm, p);
2428 		mmput(p->mm);
2429 	}
2430 bad_fork_cleanup_signal:
2431 	if (!(clone_flags & CLONE_THREAD))
2432 		free_signal_struct(p->signal);
2433 bad_fork_cleanup_sighand:
2434 	__cleanup_sighand(p->sighand);
2435 bad_fork_cleanup_fs:
2436 	exit_fs(p); /* blocking */
2437 bad_fork_cleanup_files:
2438 	exit_files(p); /* blocking */
2439 bad_fork_cleanup_semundo:
2440 	exit_sem(p);
2441 bad_fork_cleanup_security:
2442 	security_task_free(p);
2443 bad_fork_cleanup_audit:
2444 	audit_free(p);
2445 bad_fork_cleanup_perf:
2446 	perf_event_free_task(p);
2447 bad_fork_cleanup_policy:
2448 	lockdep_free_task(p);
2449 #ifdef CONFIG_NUMA
2450 	mpol_put(p->mempolicy);
2451 bad_fork_cleanup_threadgroup_lock:
2452 #endif
2453 	delayacct_tsk_free(p);
2454 bad_fork_cleanup_count:
2455 	atomic_dec(&p->cred->user->processes);
2456 	exit_creds(p);
2457 bad_fork_free:
2458 	p->state = TASK_DEAD;
2459 	put_task_stack(p);
2460 	delayed_free_task(p);
2461 fork_out:
2462 	spin_lock_irq(&current->sighand->siglock);
2463 	hlist_del_init(&delayed.node);
2464 	spin_unlock_irq(&current->sighand->siglock);
2465 	return ERR_PTR(retval);
2466 }
2467 
init_idle_pids(struct task_struct * idle)2468 static inline void init_idle_pids(struct task_struct *idle)
2469 {
2470 	enum pid_type type;
2471 
2472 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2473 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2474 		init_task_pid(idle, type, &init_struct_pid);
2475 	}
2476 }
2477 
fork_idle(int cpu)2478 struct task_struct * __init fork_idle(int cpu)
2479 {
2480 	struct task_struct *task;
2481 	struct kernel_clone_args args = {
2482 		.flags = CLONE_VM,
2483 	};
2484 
2485 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2486 	if (!IS_ERR(task)) {
2487 		init_idle_pids(task);
2488 		init_idle(task, cpu);
2489 	}
2490 
2491 	return task;
2492 }
2493 
2494 /*
2495  * This is like kernel_clone(), but shaved down and tailored to just
2496  * creating io_uring workers. It returns a created task, or an error pointer.
2497  * The returned task is inactive, and the caller must fire it up through
2498  * wake_up_new_task(p). All signals are blocked in the created task.
2499  */
create_io_thread(int (* fn)(void *),void * arg,int node)2500 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2501 {
2502 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2503 				CLONE_IO;
2504 	struct kernel_clone_args args = {
2505 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2506 				    CLONE_UNTRACED) & ~CSIGNAL),
2507 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2508 		.stack		= (unsigned long)fn,
2509 		.stack_size	= (unsigned long)arg,
2510 		.io_thread	= 1,
2511 	};
2512 
2513 	return copy_process(NULL, 0, node, &args);
2514 }
2515 
2516 /*
2517  *  Ok, this is the main fork-routine.
2518  *
2519  * It copies the process, and if successful kick-starts
2520  * it and waits for it to finish using the VM if required.
2521  *
2522  * args->exit_signal is expected to be checked for sanity by the caller.
2523  */
kernel_clone(struct kernel_clone_args * args)2524 pid_t kernel_clone(struct kernel_clone_args *args)
2525 {
2526 	u64 clone_flags = args->flags;
2527 	struct completion vfork;
2528 	struct pid *pid;
2529 	struct task_struct *p;
2530 	int trace = 0;
2531 	pid_t nr;
2532 
2533 	/*
2534 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2535 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2536 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2537 	 * field in struct clone_args and it still doesn't make sense to have
2538 	 * them both point at the same memory location. Performing this check
2539 	 * here has the advantage that we don't need to have a separate helper
2540 	 * to check for legacy clone().
2541 	 */
2542 	if ((args->flags & CLONE_PIDFD) &&
2543 	    (args->flags & CLONE_PARENT_SETTID) &&
2544 	    (args->pidfd == args->parent_tid))
2545 		return -EINVAL;
2546 
2547 	/*
2548 	 * Determine whether and which event to report to ptracer.  When
2549 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2550 	 * requested, no event is reported; otherwise, report if the event
2551 	 * for the type of forking is enabled.
2552 	 */
2553 	if (!(clone_flags & CLONE_UNTRACED)) {
2554 		if (clone_flags & CLONE_VFORK)
2555 			trace = PTRACE_EVENT_VFORK;
2556 		else if (args->exit_signal != SIGCHLD)
2557 			trace = PTRACE_EVENT_CLONE;
2558 		else
2559 			trace = PTRACE_EVENT_FORK;
2560 
2561 		if (likely(!ptrace_event_enabled(current, trace)))
2562 			trace = 0;
2563 	}
2564 
2565 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2566 	add_latent_entropy();
2567 
2568 	if (IS_ERR(p))
2569 		return PTR_ERR(p);
2570 
2571 	cpufreq_task_times_alloc(p);
2572 
2573 	/*
2574 	 * Do this prior waking up the new thread - the thread pointer
2575 	 * might get invalid after that point, if the thread exits quickly.
2576 	 */
2577 	trace_sched_process_fork(current, p);
2578 
2579 	pid = get_task_pid(p, PIDTYPE_PID);
2580 	nr = pid_vnr(pid);
2581 
2582 	if (clone_flags & CLONE_PARENT_SETTID)
2583 		put_user(nr, args->parent_tid);
2584 
2585 	if (clone_flags & CLONE_VFORK) {
2586 		p->vfork_done = &vfork;
2587 		init_completion(&vfork);
2588 		get_task_struct(p);
2589 	}
2590 
2591 	wake_up_new_task(p);
2592 
2593 	/* forking complete and child started to run, tell ptracer */
2594 	if (unlikely(trace))
2595 		ptrace_event_pid(trace, pid);
2596 
2597 	if (clone_flags & CLONE_VFORK) {
2598 		if (!wait_for_vfork_done(p, &vfork))
2599 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2600 	}
2601 
2602 	put_pid(pid);
2603 	return nr;
2604 }
2605 
2606 /*
2607  * Create a kernel thread.
2608  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2609 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2610 {
2611 	struct kernel_clone_args args = {
2612 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2613 				    CLONE_UNTRACED) & ~CSIGNAL),
2614 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2615 		.stack		= (unsigned long)fn,
2616 		.stack_size	= (unsigned long)arg,
2617 	};
2618 
2619 	return kernel_clone(&args);
2620 }
2621 
2622 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2623 SYSCALL_DEFINE0(fork)
2624 {
2625 #ifdef CONFIG_MMU
2626 	struct kernel_clone_args args = {
2627 		.exit_signal = SIGCHLD,
2628 	};
2629 
2630 	return kernel_clone(&args);
2631 #else
2632 	/* can not support in nommu mode */
2633 	return -EINVAL;
2634 #endif
2635 }
2636 #endif
2637 
2638 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2639 SYSCALL_DEFINE0(vfork)
2640 {
2641 	struct kernel_clone_args args = {
2642 		.flags		= CLONE_VFORK | CLONE_VM,
2643 		.exit_signal	= SIGCHLD,
2644 	};
2645 
2646 	return kernel_clone(&args);
2647 }
2648 #endif
2649 
2650 #ifdef __ARCH_WANT_SYS_CLONE
2651 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2652 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2653 		 int __user *, parent_tidptr,
2654 		 unsigned long, tls,
2655 		 int __user *, child_tidptr)
2656 #elif defined(CONFIG_CLONE_BACKWARDS2)
2657 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2658 		 int __user *, parent_tidptr,
2659 		 int __user *, child_tidptr,
2660 		 unsigned long, tls)
2661 #elif defined(CONFIG_CLONE_BACKWARDS3)
2662 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2663 		int, stack_size,
2664 		int __user *, parent_tidptr,
2665 		int __user *, child_tidptr,
2666 		unsigned long, tls)
2667 #else
2668 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2669 		 int __user *, parent_tidptr,
2670 		 int __user *, child_tidptr,
2671 		 unsigned long, tls)
2672 #endif
2673 {
2674 	struct kernel_clone_args args = {
2675 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2676 		.pidfd		= parent_tidptr,
2677 		.child_tid	= child_tidptr,
2678 		.parent_tid	= parent_tidptr,
2679 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2680 		.stack		= newsp,
2681 		.tls		= tls,
2682 	};
2683 
2684 	return kernel_clone(&args);
2685 }
2686 #endif
2687 
2688 #ifdef __ARCH_WANT_SYS_CLONE3
2689 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2690 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2691 					      struct clone_args __user *uargs,
2692 					      size_t usize)
2693 {
2694 	int err;
2695 	struct clone_args args;
2696 	pid_t *kset_tid = kargs->set_tid;
2697 
2698 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2699 		     CLONE_ARGS_SIZE_VER0);
2700 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2701 		     CLONE_ARGS_SIZE_VER1);
2702 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2703 		     CLONE_ARGS_SIZE_VER2);
2704 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2705 
2706 	if (unlikely(usize > PAGE_SIZE))
2707 		return -E2BIG;
2708 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2709 		return -EINVAL;
2710 
2711 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2712 	if (err)
2713 		return err;
2714 
2715 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2716 		return -EINVAL;
2717 
2718 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2719 		return -EINVAL;
2720 
2721 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2722 		return -EINVAL;
2723 
2724 	/*
2725 	 * Verify that higher 32bits of exit_signal are unset and that
2726 	 * it is a valid signal
2727 	 */
2728 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2729 		     !valid_signal(args.exit_signal)))
2730 		return -EINVAL;
2731 
2732 	if ((args.flags & CLONE_INTO_CGROUP) &&
2733 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2734 		return -EINVAL;
2735 
2736 	*kargs = (struct kernel_clone_args){
2737 		.flags		= args.flags,
2738 		.pidfd		= u64_to_user_ptr(args.pidfd),
2739 		.child_tid	= u64_to_user_ptr(args.child_tid),
2740 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2741 		.exit_signal	= args.exit_signal,
2742 		.stack		= args.stack,
2743 		.stack_size	= args.stack_size,
2744 		.tls		= args.tls,
2745 		.set_tid_size	= args.set_tid_size,
2746 		.cgroup		= args.cgroup,
2747 	};
2748 
2749 	if (args.set_tid &&
2750 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2751 			(kargs->set_tid_size * sizeof(pid_t))))
2752 		return -EFAULT;
2753 
2754 	kargs->set_tid = kset_tid;
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  * clone3_stack_valid - check and prepare stack
2761  * @kargs: kernel clone args
2762  *
2763  * Verify that the stack arguments userspace gave us are sane.
2764  * In addition, set the stack direction for userspace since it's easy for us to
2765  * determine.
2766  */
clone3_stack_valid(struct kernel_clone_args * kargs)2767 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2768 {
2769 	if (kargs->stack == 0) {
2770 		if (kargs->stack_size > 0)
2771 			return false;
2772 	} else {
2773 		if (kargs->stack_size == 0)
2774 			return false;
2775 
2776 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2777 			return false;
2778 
2779 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2780 		kargs->stack += kargs->stack_size;
2781 #endif
2782 	}
2783 
2784 	return true;
2785 }
2786 
clone3_args_valid(struct kernel_clone_args * kargs)2787 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2788 {
2789 	/* Verify that no unknown flags are passed along. */
2790 	if (kargs->flags &
2791 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2792 		return false;
2793 
2794 	/*
2795 	 * - make the CLONE_DETACHED bit reuseable for clone3
2796 	 * - make the CSIGNAL bits reuseable for clone3
2797 	 */
2798 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2799 		return false;
2800 
2801 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2802 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2803 		return false;
2804 
2805 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2806 	    kargs->exit_signal)
2807 		return false;
2808 
2809 	if (!clone3_stack_valid(kargs))
2810 		return false;
2811 
2812 	return true;
2813 }
2814 
2815 /**
2816  * clone3 - create a new process with specific properties
2817  * @uargs: argument structure
2818  * @size:  size of @uargs
2819  *
2820  * clone3() is the extensible successor to clone()/clone2().
2821  * It takes a struct as argument that is versioned by its size.
2822  *
2823  * Return: On success, a positive PID for the child process.
2824  *         On error, a negative errno number.
2825  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2826 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2827 {
2828 	int err;
2829 
2830 	struct kernel_clone_args kargs;
2831 	pid_t set_tid[MAX_PID_NS_LEVEL];
2832 
2833 	kargs.set_tid = set_tid;
2834 
2835 	err = copy_clone_args_from_user(&kargs, uargs, size);
2836 	if (err)
2837 		return err;
2838 
2839 	if (!clone3_args_valid(&kargs))
2840 		return -EINVAL;
2841 
2842 	return kernel_clone(&kargs);
2843 }
2844 #endif
2845 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2846 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2847 {
2848 	struct task_struct *leader, *parent, *child;
2849 	int res;
2850 
2851 	read_lock(&tasklist_lock);
2852 	leader = top = top->group_leader;
2853 down:
2854 	for_each_thread(leader, parent) {
2855 		list_for_each_entry(child, &parent->children, sibling) {
2856 			res = visitor(child, data);
2857 			if (res) {
2858 				if (res < 0)
2859 					goto out;
2860 				leader = child;
2861 				goto down;
2862 			}
2863 up:
2864 			;
2865 		}
2866 	}
2867 
2868 	if (leader != top) {
2869 		child = leader;
2870 		parent = child->real_parent;
2871 		leader = parent->group_leader;
2872 		goto up;
2873 	}
2874 out:
2875 	read_unlock(&tasklist_lock);
2876 }
2877 
2878 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2879 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2880 #endif
2881 
sighand_ctor(void * data)2882 static void sighand_ctor(void *data)
2883 {
2884 	struct sighand_struct *sighand = data;
2885 
2886 	spin_lock_init(&sighand->siglock);
2887 	init_waitqueue_head(&sighand->signalfd_wqh);
2888 }
2889 
mm_cache_init(void)2890 void __init mm_cache_init(void)
2891 {
2892 	unsigned int mm_size;
2893 
2894 	/*
2895 	 * The mm_cpumask is located at the end of mm_struct, and is
2896 	 * dynamically sized based on the maximum CPU number this system
2897 	 * can have, taking hotplug into account (nr_cpu_ids).
2898 	 */
2899 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2900 
2901 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2902 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2903 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2904 			offsetof(struct mm_struct, saved_auxv),
2905 			sizeof_field(struct mm_struct, saved_auxv),
2906 			NULL);
2907 }
2908 
proc_caches_init(void)2909 void __init proc_caches_init(void)
2910 {
2911 	sighand_cachep = kmem_cache_create("sighand_cache",
2912 			sizeof(struct sighand_struct), 0,
2913 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2914 			SLAB_ACCOUNT, sighand_ctor);
2915 	signal_cachep = kmem_cache_create("signal_cache",
2916 			sizeof(struct signal_struct), 0,
2917 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2918 			NULL);
2919 	files_cachep = kmem_cache_create("files_cache",
2920 			sizeof(struct files_struct), 0,
2921 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2922 			NULL);
2923 	fs_cachep = kmem_cache_create("fs_cache",
2924 			sizeof(struct fs_struct), 0,
2925 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2926 			NULL);
2927 
2928 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2929 	mmap_init();
2930 	nsproxy_cache_init();
2931 }
2932 
2933 /*
2934  * Check constraints on flags passed to the unshare system call.
2935  */
check_unshare_flags(unsigned long unshare_flags)2936 static int check_unshare_flags(unsigned long unshare_flags)
2937 {
2938 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2939 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2940 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2941 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2942 				CLONE_NEWTIME))
2943 		return -EINVAL;
2944 	/*
2945 	 * Not implemented, but pretend it works if there is nothing
2946 	 * to unshare.  Note that unsharing the address space or the
2947 	 * signal handlers also need to unshare the signal queues (aka
2948 	 * CLONE_THREAD).
2949 	 */
2950 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2951 		if (!thread_group_empty(current))
2952 			return -EINVAL;
2953 	}
2954 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2955 		if (refcount_read(&current->sighand->count) > 1)
2956 			return -EINVAL;
2957 	}
2958 	if (unshare_flags & CLONE_VM) {
2959 		if (!current_is_single_threaded())
2960 			return -EINVAL;
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * Unshare the filesystem structure if it is being shared
2968  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2969 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2970 {
2971 	struct fs_struct *fs = current->fs;
2972 
2973 	if (!(unshare_flags & CLONE_FS) || !fs)
2974 		return 0;
2975 
2976 	/* don't need lock here; in the worst case we'll do useless copy */
2977 	if (fs->users == 1)
2978 		return 0;
2979 
2980 	*new_fsp = copy_fs_struct(fs);
2981 	if (!*new_fsp)
2982 		return -ENOMEM;
2983 
2984 	return 0;
2985 }
2986 
2987 /*
2988  * Unshare file descriptor table if it is being shared
2989  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2990 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2991 	       struct files_struct **new_fdp)
2992 {
2993 	struct files_struct *fd = current->files;
2994 	int error = 0;
2995 
2996 	if ((unshare_flags & CLONE_FILES) &&
2997 	    (fd && atomic_read(&fd->count) > 1)) {
2998 		*new_fdp = dup_fd(fd, max_fds, &error);
2999 		if (!*new_fdp)
3000 			return error;
3001 	}
3002 
3003 	return 0;
3004 }
3005 
3006 /*
3007  * unshare allows a process to 'unshare' part of the process
3008  * context which was originally shared using clone.  copy_*
3009  * functions used by kernel_clone() cannot be used here directly
3010  * because they modify an inactive task_struct that is being
3011  * constructed. Here we are modifying the current, active,
3012  * task_struct.
3013  */
ksys_unshare(unsigned long unshare_flags)3014 int ksys_unshare(unsigned long unshare_flags)
3015 {
3016 	struct fs_struct *fs, *new_fs = NULL;
3017 	struct files_struct *fd, *new_fd = NULL;
3018 	struct cred *new_cred = NULL;
3019 	struct nsproxy *new_nsproxy = NULL;
3020 	int do_sysvsem = 0;
3021 	int err;
3022 
3023 	/*
3024 	 * If unsharing a user namespace must also unshare the thread group
3025 	 * and unshare the filesystem root and working directories.
3026 	 */
3027 	if (unshare_flags & CLONE_NEWUSER)
3028 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3029 	/*
3030 	 * If unsharing vm, must also unshare signal handlers.
3031 	 */
3032 	if (unshare_flags & CLONE_VM)
3033 		unshare_flags |= CLONE_SIGHAND;
3034 	/*
3035 	 * If unsharing a signal handlers, must also unshare the signal queues.
3036 	 */
3037 	if (unshare_flags & CLONE_SIGHAND)
3038 		unshare_flags |= CLONE_THREAD;
3039 	/*
3040 	 * If unsharing namespace, must also unshare filesystem information.
3041 	 */
3042 	if (unshare_flags & CLONE_NEWNS)
3043 		unshare_flags |= CLONE_FS;
3044 
3045 	err = check_unshare_flags(unshare_flags);
3046 	if (err)
3047 		goto bad_unshare_out;
3048 	/*
3049 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3050 	 * to a new ipc namespace, the semaphore arrays from the old
3051 	 * namespace are unreachable.
3052 	 */
3053 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3054 		do_sysvsem = 1;
3055 	err = unshare_fs(unshare_flags, &new_fs);
3056 	if (err)
3057 		goto bad_unshare_out;
3058 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3059 	if (err)
3060 		goto bad_unshare_cleanup_fs;
3061 	err = unshare_userns(unshare_flags, &new_cred);
3062 	if (err)
3063 		goto bad_unshare_cleanup_fd;
3064 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3065 					 new_cred, new_fs);
3066 	if (err)
3067 		goto bad_unshare_cleanup_cred;
3068 
3069 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3070 		if (do_sysvsem) {
3071 			/*
3072 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3073 			 */
3074 			exit_sem(current);
3075 		}
3076 		if (unshare_flags & CLONE_NEWIPC) {
3077 			/* Orphan segments in old ns (see sem above). */
3078 			exit_shm(current);
3079 			shm_init_task(current);
3080 		}
3081 
3082 		if (new_nsproxy)
3083 			switch_task_namespaces(current, new_nsproxy);
3084 
3085 		task_lock(current);
3086 
3087 		if (new_fs) {
3088 			fs = current->fs;
3089 			spin_lock(&fs->lock);
3090 			current->fs = new_fs;
3091 			if (--fs->users)
3092 				new_fs = NULL;
3093 			else
3094 				new_fs = fs;
3095 			spin_unlock(&fs->lock);
3096 		}
3097 
3098 		if (new_fd) {
3099 			fd = current->files;
3100 			current->files = new_fd;
3101 			new_fd = fd;
3102 		}
3103 
3104 		task_unlock(current);
3105 
3106 		if (new_cred) {
3107 			/* Install the new user namespace */
3108 			commit_creds(new_cred);
3109 			new_cred = NULL;
3110 		}
3111 	}
3112 
3113 	perf_event_namespaces(current);
3114 
3115 bad_unshare_cleanup_cred:
3116 	if (new_cred)
3117 		put_cred(new_cred);
3118 bad_unshare_cleanup_fd:
3119 	if (new_fd)
3120 		put_files_struct(new_fd);
3121 
3122 bad_unshare_cleanup_fs:
3123 	if (new_fs)
3124 		free_fs_struct(new_fs);
3125 
3126 bad_unshare_out:
3127 	return err;
3128 }
3129 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3130 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3131 {
3132 	return ksys_unshare(unshare_flags);
3133 }
3134 
3135 /*
3136  *	Helper to unshare the files of the current task.
3137  *	We don't want to expose copy_files internals to
3138  *	the exec layer of the kernel.
3139  */
3140 
unshare_files(struct files_struct ** displaced)3141 int unshare_files(struct files_struct **displaced)
3142 {
3143 	struct task_struct *task = current;
3144 	struct files_struct *copy = NULL;
3145 	int error;
3146 
3147 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3148 	if (error || !copy) {
3149 		*displaced = NULL;
3150 		return error;
3151 	}
3152 	*displaced = task->files;
3153 	task_lock(task);
3154 	task->files = copy;
3155 	task_unlock(task);
3156 	return 0;
3157 }
3158 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3159 int sysctl_max_threads(struct ctl_table *table, int write,
3160 		       void *buffer, size_t *lenp, loff_t *ppos)
3161 {
3162 	struct ctl_table t;
3163 	int ret;
3164 	int threads = max_threads;
3165 	int min = 1;
3166 	int max = MAX_THREADS;
3167 
3168 	t = *table;
3169 	t.data = &threads;
3170 	t.extra1 = &min;
3171 	t.extra2 = &max;
3172 
3173 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3174 	if (ret || !write)
3175 		return ret;
3176 
3177 	max_threads = threads;
3178 
3179 	return 0;
3180 }
3181