1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16
17 #define HTAB_CREATE_FLAG_MASK \
18 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
19 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20
21 #define BATCH_OPS(_name) \
22 .map_lookup_batch = \
23 _name##_map_lookup_batch, \
24 .map_lookup_and_delete_batch = \
25 _name##_map_lookup_and_delete_batch, \
26 .map_update_batch = \
27 generic_map_update_batch, \
28 .map_delete_batch = \
29 generic_map_delete_batch
30
31 /*
32 * The bucket lock has two protection scopes:
33 *
34 * 1) Serializing concurrent operations from BPF programs on differrent
35 * CPUs
36 *
37 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38 *
39 * BPF programs can execute in any context including perf, kprobes and
40 * tracing. As there are almost no limits where perf, kprobes and tracing
41 * can be invoked from the lock operations need to be protected against
42 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43 * the lock held section when functions which acquire this lock are invoked
44 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45 * variable bpf_prog_active, which prevents BPF programs attached to perf
46 * events, kprobes and tracing to be invoked before the prior invocation
47 * from one of these contexts completed. sys_bpf() uses the same mechanism
48 * by pinning the task to the current CPU and incrementing the recursion
49 * protection accross the map operation.
50 *
51 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52 * operations like memory allocations (even with GFP_ATOMIC) from atomic
53 * contexts. This is required because even with GFP_ATOMIC the memory
54 * allocator calls into code pathes which acquire locks with long held lock
55 * sections. To ensure the deterministic behaviour these locks are regular
56 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57 * true atomic contexts on an RT kernel are the low level hardware
58 * handling, scheduling, low level interrupt handling, NMIs etc. None of
59 * these contexts should ever do memory allocations.
60 *
61 * As regular device interrupt handlers and soft interrupts are forced into
62 * thread context, the existing code which does
63 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64 * just works.
65 *
66 * In theory the BPF locks could be converted to regular spinlocks as well,
67 * but the bucket locks and percpu_freelist locks can be taken from
68 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69 * atomic contexts even on RT. These mechanisms require preallocated maps,
70 * so there is no need to invoke memory allocations within the lock held
71 * sections.
72 *
73 * BPF maps which need dynamic allocation are only used from (forced)
74 * thread context on RT and can therefore use regular spinlocks which in
75 * turn allows to invoke memory allocations from the lock held section.
76 *
77 * On a non RT kernel this distinction is neither possible nor required.
78 * spinlock maps to raw_spinlock and the extra code is optimized out by the
79 * compiler.
80 */
81 struct bucket {
82 struct hlist_nulls_head head;
83 union {
84 raw_spinlock_t raw_lock;
85 spinlock_t lock;
86 };
87 };
88
89 struct bpf_htab {
90 struct bpf_map map;
91 struct bucket *buckets;
92 void *elems;
93 union {
94 struct pcpu_freelist freelist;
95 struct bpf_lru lru;
96 };
97 struct htab_elem *__percpu *extra_elems;
98 atomic_t count; /* number of elements in this hashtable */
99 u32 n_buckets; /* number of hash buckets */
100 u32 elem_size; /* size of each element in bytes */
101 u32 hashrnd;
102 };
103
104 /* each htab element is struct htab_elem + key + value */
105 struct htab_elem {
106 union {
107 struct hlist_nulls_node hash_node;
108 struct {
109 void *padding;
110 union {
111 struct bpf_htab *htab;
112 struct pcpu_freelist_node fnode;
113 struct htab_elem *batch_flink;
114 };
115 };
116 };
117 union {
118 struct rcu_head rcu;
119 struct bpf_lru_node lru_node;
120 };
121 u32 hash;
122 char key[] __aligned(8);
123 };
124
htab_is_prealloc(const struct bpf_htab * htab)125 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
126 {
127 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
128 }
129
htab_use_raw_lock(const struct bpf_htab * htab)130 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
131 {
132 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
133 }
134
htab_init_buckets(struct bpf_htab * htab)135 static void htab_init_buckets(struct bpf_htab *htab)
136 {
137 unsigned i;
138
139 for (i = 0; i < htab->n_buckets; i++) {
140 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
141 if (htab_use_raw_lock(htab))
142 raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 else
144 spin_lock_init(&htab->buckets[i].lock);
145 }
146 }
147
htab_lock_bucket(const struct bpf_htab * htab,struct bucket * b)148 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
149 struct bucket *b)
150 {
151 unsigned long flags;
152
153 if (htab_use_raw_lock(htab))
154 raw_spin_lock_irqsave(&b->raw_lock, flags);
155 else
156 spin_lock_irqsave(&b->lock, flags);
157 return flags;
158 }
159
htab_unlock_bucket(const struct bpf_htab * htab,struct bucket * b,unsigned long flags)160 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
161 struct bucket *b,
162 unsigned long flags)
163 {
164 if (htab_use_raw_lock(htab))
165 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
166 else
167 spin_unlock_irqrestore(&b->lock, flags);
168 }
169
170 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
171
htab_is_lru(const struct bpf_htab * htab)172 static bool htab_is_lru(const struct bpf_htab *htab)
173 {
174 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
175 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
176 }
177
htab_is_percpu(const struct bpf_htab * htab)178 static bool htab_is_percpu(const struct bpf_htab *htab)
179 {
180 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
181 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
182 }
183
htab_elem_set_ptr(struct htab_elem * l,u32 key_size,void __percpu * pptr)184 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
185 void __percpu *pptr)
186 {
187 *(void __percpu **)(l->key + key_size) = pptr;
188 }
189
htab_elem_get_ptr(struct htab_elem * l,u32 key_size)190 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
191 {
192 return *(void __percpu **)(l->key + key_size);
193 }
194
fd_htab_map_get_ptr(const struct bpf_map * map,struct htab_elem * l)195 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
196 {
197 return *(void **)(l->key + roundup(map->key_size, 8));
198 }
199
get_htab_elem(struct bpf_htab * htab,int i)200 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
201 {
202 return (struct htab_elem *) (htab->elems + i * htab->elem_size);
203 }
204
htab_free_elems(struct bpf_htab * htab)205 static void htab_free_elems(struct bpf_htab *htab)
206 {
207 int i;
208
209 if (!htab_is_percpu(htab))
210 goto free_elems;
211
212 for (i = 0; i < htab->map.max_entries; i++) {
213 void __percpu *pptr;
214
215 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
216 htab->map.key_size);
217 free_percpu(pptr);
218 cond_resched();
219 }
220 free_elems:
221 bpf_map_area_free(htab->elems);
222 }
223
224 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
225 * (bucket_lock). If both locks need to be acquired together, the lock
226 * order is always lru_lock -> bucket_lock and this only happens in
227 * bpf_lru_list.c logic. For example, certain code path of
228 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
229 * will acquire lru_lock first followed by acquiring bucket_lock.
230 *
231 * In hashtab.c, to avoid deadlock, lock acquisition of
232 * bucket_lock followed by lru_lock is not allowed. In such cases,
233 * bucket_lock needs to be released first before acquiring lru_lock.
234 */
prealloc_lru_pop(struct bpf_htab * htab,void * key,u32 hash)235 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
236 u32 hash)
237 {
238 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
239 struct htab_elem *l;
240
241 if (node) {
242 l = container_of(node, struct htab_elem, lru_node);
243 memcpy(l->key, key, htab->map.key_size);
244 return l;
245 }
246
247 return NULL;
248 }
249
prealloc_init(struct bpf_htab * htab)250 static int prealloc_init(struct bpf_htab *htab)
251 {
252 u32 num_entries = htab->map.max_entries;
253 int err = -ENOMEM, i;
254
255 if (!htab_is_percpu(htab) && !htab_is_lru(htab))
256 num_entries += num_possible_cpus();
257
258 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
259 htab->map.numa_node);
260 if (!htab->elems)
261 return -ENOMEM;
262
263 if (!htab_is_percpu(htab))
264 goto skip_percpu_elems;
265
266 for (i = 0; i < num_entries; i++) {
267 u32 size = round_up(htab->map.value_size, 8);
268 void __percpu *pptr;
269
270 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
271 if (!pptr)
272 goto free_elems;
273 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
274 pptr);
275 cond_resched();
276 }
277
278 skip_percpu_elems:
279 if (htab_is_lru(htab))
280 err = bpf_lru_init(&htab->lru,
281 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
282 offsetof(struct htab_elem, hash) -
283 offsetof(struct htab_elem, lru_node),
284 htab_lru_map_delete_node,
285 htab);
286 else
287 err = pcpu_freelist_init(&htab->freelist);
288
289 if (err)
290 goto free_elems;
291
292 if (htab_is_lru(htab))
293 bpf_lru_populate(&htab->lru, htab->elems,
294 offsetof(struct htab_elem, lru_node),
295 htab->elem_size, num_entries);
296 else
297 pcpu_freelist_populate(&htab->freelist,
298 htab->elems + offsetof(struct htab_elem, fnode),
299 htab->elem_size, num_entries);
300
301 return 0;
302
303 free_elems:
304 htab_free_elems(htab);
305 return err;
306 }
307
prealloc_destroy(struct bpf_htab * htab)308 static void prealloc_destroy(struct bpf_htab *htab)
309 {
310 htab_free_elems(htab);
311
312 if (htab_is_lru(htab))
313 bpf_lru_destroy(&htab->lru);
314 else
315 pcpu_freelist_destroy(&htab->freelist);
316 }
317
alloc_extra_elems(struct bpf_htab * htab)318 static int alloc_extra_elems(struct bpf_htab *htab)
319 {
320 struct htab_elem *__percpu *pptr, *l_new;
321 struct pcpu_freelist_node *l;
322 int cpu;
323
324 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
325 GFP_USER | __GFP_NOWARN);
326 if (!pptr)
327 return -ENOMEM;
328
329 for_each_possible_cpu(cpu) {
330 l = pcpu_freelist_pop(&htab->freelist);
331 /* pop will succeed, since prealloc_init()
332 * preallocated extra num_possible_cpus elements
333 */
334 l_new = container_of(l, struct htab_elem, fnode);
335 *per_cpu_ptr(pptr, cpu) = l_new;
336 }
337 htab->extra_elems = pptr;
338 return 0;
339 }
340
341 /* Called from syscall */
htab_map_alloc_check(union bpf_attr * attr)342 static int htab_map_alloc_check(union bpf_attr *attr)
343 {
344 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
345 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
346 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
347 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
348 /* percpu_lru means each cpu has its own LRU list.
349 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
350 * the map's value itself is percpu. percpu_lru has
351 * nothing to do with the map's value.
352 */
353 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
354 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
355 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
356 int numa_node = bpf_map_attr_numa_node(attr);
357
358 BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
359 offsetof(struct htab_elem, hash_node.pprev));
360 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
361 offsetof(struct htab_elem, hash_node.pprev));
362
363 if (lru && !bpf_capable())
364 /* LRU implementation is much complicated than other
365 * maps. Hence, limit to CAP_BPF.
366 */
367 return -EPERM;
368
369 if (zero_seed && !capable(CAP_SYS_ADMIN))
370 /* Guard against local DoS, and discourage production use. */
371 return -EPERM;
372
373 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
374 !bpf_map_flags_access_ok(attr->map_flags))
375 return -EINVAL;
376
377 if (!lru && percpu_lru)
378 return -EINVAL;
379
380 if (lru && !prealloc)
381 return -ENOTSUPP;
382
383 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
384 return -EINVAL;
385
386 /* check sanity of attributes.
387 * value_size == 0 may be allowed in the future to use map as a set
388 */
389 if (attr->max_entries == 0 || attr->key_size == 0 ||
390 attr->value_size == 0)
391 return -EINVAL;
392
393 if (attr->key_size > MAX_BPF_STACK)
394 /* eBPF programs initialize keys on stack, so they cannot be
395 * larger than max stack size
396 */
397 return -E2BIG;
398
399 if (attr->value_size >= KMALLOC_MAX_SIZE -
400 MAX_BPF_STACK - sizeof(struct htab_elem))
401 /* if value_size is bigger, the user space won't be able to
402 * access the elements via bpf syscall. This check also makes
403 * sure that the elem_size doesn't overflow and it's
404 * kmalloc-able later in htab_map_update_elem()
405 */
406 return -E2BIG;
407
408 return 0;
409 }
410
htab_map_alloc(union bpf_attr * attr)411 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
412 {
413 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
414 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
415 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
416 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
417 /* percpu_lru means each cpu has its own LRU list.
418 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
419 * the map's value itself is percpu. percpu_lru has
420 * nothing to do with the map's value.
421 */
422 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
423 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
424 struct bpf_htab *htab;
425 u64 cost;
426 int err;
427
428 htab = kzalloc(sizeof(*htab), GFP_USER);
429 if (!htab)
430 return ERR_PTR(-ENOMEM);
431
432 bpf_map_init_from_attr(&htab->map, attr);
433
434 if (percpu_lru) {
435 /* ensure each CPU's lru list has >=1 elements.
436 * since we are at it, make each lru list has the same
437 * number of elements.
438 */
439 htab->map.max_entries = roundup(attr->max_entries,
440 num_possible_cpus());
441 if (htab->map.max_entries < attr->max_entries)
442 htab->map.max_entries = rounddown(attr->max_entries,
443 num_possible_cpus());
444 }
445
446 /* hash table size must be power of 2 */
447 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
448
449 htab->elem_size = sizeof(struct htab_elem) +
450 round_up(htab->map.key_size, 8);
451 if (percpu)
452 htab->elem_size += sizeof(void *);
453 else
454 htab->elem_size += round_up(htab->map.value_size, 8);
455
456 err = -E2BIG;
457 /* prevent zero size kmalloc and check for u32 overflow */
458 if (htab->n_buckets == 0 ||
459 htab->n_buckets > U32_MAX / sizeof(struct bucket))
460 goto free_htab;
461
462 cost = (u64) htab->n_buckets * sizeof(struct bucket) +
463 (u64) htab->elem_size * htab->map.max_entries;
464
465 if (percpu)
466 cost += (u64) round_up(htab->map.value_size, 8) *
467 num_possible_cpus() * htab->map.max_entries;
468 else
469 cost += (u64) htab->elem_size * num_possible_cpus();
470
471 /* if map size is larger than memlock limit, reject it */
472 err = bpf_map_charge_init(&htab->map.memory, cost);
473 if (err)
474 goto free_htab;
475
476 err = -ENOMEM;
477 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
478 sizeof(struct bucket),
479 htab->map.numa_node);
480 if (!htab->buckets)
481 goto free_charge;
482
483 if (htab->map.map_flags & BPF_F_ZERO_SEED)
484 htab->hashrnd = 0;
485 else
486 htab->hashrnd = get_random_int();
487
488 htab_init_buckets(htab);
489
490 if (prealloc) {
491 err = prealloc_init(htab);
492 if (err)
493 goto free_buckets;
494
495 if (!percpu && !lru) {
496 /* lru itself can remove the least used element, so
497 * there is no need for an extra elem during map_update.
498 */
499 err = alloc_extra_elems(htab);
500 if (err)
501 goto free_prealloc;
502 }
503 }
504
505 return &htab->map;
506
507 free_prealloc:
508 prealloc_destroy(htab);
509 free_buckets:
510 bpf_map_area_free(htab->buckets);
511 free_charge:
512 bpf_map_charge_finish(&htab->map.memory);
513 free_htab:
514 kfree(htab);
515 return ERR_PTR(err);
516 }
517
htab_map_hash(const void * key,u32 key_len,u32 hashrnd)518 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
519 {
520 return jhash(key, key_len, hashrnd);
521 }
522
__select_bucket(struct bpf_htab * htab,u32 hash)523 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
524 {
525 return &htab->buckets[hash & (htab->n_buckets - 1)];
526 }
527
select_bucket(struct bpf_htab * htab,u32 hash)528 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
529 {
530 return &__select_bucket(htab, hash)->head;
531 }
532
533 /* this lookup function can only be called with bucket lock taken */
lookup_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size)534 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
535 void *key, u32 key_size)
536 {
537 struct hlist_nulls_node *n;
538 struct htab_elem *l;
539
540 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
541 if (l->hash == hash && !memcmp(&l->key, key, key_size))
542 return l;
543
544 return NULL;
545 }
546
547 /* can be called without bucket lock. it will repeat the loop in
548 * the unlikely event when elements moved from one bucket into another
549 * while link list is being walked
550 */
lookup_nulls_elem_raw(struct hlist_nulls_head * head,u32 hash,void * key,u32 key_size,u32 n_buckets)551 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
552 u32 hash, void *key,
553 u32 key_size, u32 n_buckets)
554 {
555 struct hlist_nulls_node *n;
556 struct htab_elem *l;
557
558 again:
559 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
560 if (l->hash == hash && !memcmp(&l->key, key, key_size))
561 return l;
562
563 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
564 goto again;
565
566 return NULL;
567 }
568
569 /* Called from syscall or from eBPF program directly, so
570 * arguments have to match bpf_map_lookup_elem() exactly.
571 * The return value is adjusted by BPF instructions
572 * in htab_map_gen_lookup().
573 */
__htab_map_lookup_elem(struct bpf_map * map,void * key)574 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
575 {
576 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
577 struct hlist_nulls_head *head;
578 struct htab_elem *l;
579 u32 hash, key_size;
580
581 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
582
583 key_size = map->key_size;
584
585 hash = htab_map_hash(key, key_size, htab->hashrnd);
586
587 head = select_bucket(htab, hash);
588
589 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
590
591 return l;
592 }
593
htab_map_lookup_elem(struct bpf_map * map,void * key)594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
595 {
596 struct htab_elem *l = __htab_map_lookup_elem(map, key);
597
598 if (l)
599 return l->key + round_up(map->key_size, 8);
600
601 return NULL;
602 }
603
604 /* inline bpf_map_lookup_elem() call.
605 * Instead of:
606 * bpf_prog
607 * bpf_map_lookup_elem
608 * map->ops->map_lookup_elem
609 * htab_map_lookup_elem
610 * __htab_map_lookup_elem
611 * do:
612 * bpf_prog
613 * __htab_map_lookup_elem
614 */
htab_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)615 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
616 {
617 struct bpf_insn *insn = insn_buf;
618 const int ret = BPF_REG_0;
619
620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
621 (void *(*)(struct bpf_map *map, void *key))NULL));
622 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
623 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
624 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
625 offsetof(struct htab_elem, key) +
626 round_up(map->key_size, 8));
627 return insn - insn_buf;
628 }
629
__htab_lru_map_lookup_elem(struct bpf_map * map,void * key,const bool mark)630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
631 void *key, const bool mark)
632 {
633 struct htab_elem *l = __htab_map_lookup_elem(map, key);
634
635 if (l) {
636 if (mark)
637 bpf_lru_node_set_ref(&l->lru_node);
638 return l->key + round_up(map->key_size, 8);
639 }
640
641 return NULL;
642 }
643
htab_lru_map_lookup_elem(struct bpf_map * map,void * key)644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
645 {
646 return __htab_lru_map_lookup_elem(map, key, true);
647 }
648
htab_lru_map_lookup_elem_sys(struct bpf_map * map,void * key)649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
650 {
651 return __htab_lru_map_lookup_elem(map, key, false);
652 }
653
htab_lru_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)654 static int htab_lru_map_gen_lookup(struct bpf_map *map,
655 struct bpf_insn *insn_buf)
656 {
657 struct bpf_insn *insn = insn_buf;
658 const int ret = BPF_REG_0;
659 const int ref_reg = BPF_REG_1;
660
661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
662 (void *(*)(struct bpf_map *map, void *key))NULL));
663 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
664 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
665 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
666 offsetof(struct htab_elem, lru_node) +
667 offsetof(struct bpf_lru_node, ref));
668 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
669 *insn++ = BPF_ST_MEM(BPF_B, ret,
670 offsetof(struct htab_elem, lru_node) +
671 offsetof(struct bpf_lru_node, ref),
672 1);
673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 offsetof(struct htab_elem, key) +
675 round_up(map->key_size, 8));
676 return insn - insn_buf;
677 }
678
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680 * older elements from the htab.
681 */
htab_lru_map_delete_node(void * arg,struct bpf_lru_node * node)682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
683 {
684 struct bpf_htab *htab = (struct bpf_htab *)arg;
685 struct htab_elem *l = NULL, *tgt_l;
686 struct hlist_nulls_head *head;
687 struct hlist_nulls_node *n;
688 unsigned long flags;
689 struct bucket *b;
690
691 tgt_l = container_of(node, struct htab_elem, lru_node);
692 b = __select_bucket(htab, tgt_l->hash);
693 head = &b->head;
694
695 flags = htab_lock_bucket(htab, b);
696
697 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
698 if (l == tgt_l) {
699 hlist_nulls_del_rcu(&l->hash_node);
700 break;
701 }
702
703 htab_unlock_bucket(htab, b, flags);
704
705 return l == tgt_l;
706 }
707
708 /* Called from syscall */
htab_map_get_next_key(struct bpf_map * map,void * key,void * next_key)709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
710 {
711 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
712 struct hlist_nulls_head *head;
713 struct htab_elem *l, *next_l;
714 u32 hash, key_size;
715 int i = 0;
716
717 WARN_ON_ONCE(!rcu_read_lock_held());
718
719 key_size = map->key_size;
720
721 if (!key)
722 goto find_first_elem;
723
724 hash = htab_map_hash(key, key_size, htab->hashrnd);
725
726 head = select_bucket(htab, hash);
727
728 /* lookup the key */
729 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
730
731 if (!l)
732 goto find_first_elem;
733
734 /* key was found, get next key in the same bucket */
735 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
736 struct htab_elem, hash_node);
737
738 if (next_l) {
739 /* if next elem in this hash list is non-zero, just return it */
740 memcpy(next_key, next_l->key, key_size);
741 return 0;
742 }
743
744 /* no more elements in this hash list, go to the next bucket */
745 i = hash & (htab->n_buckets - 1);
746 i++;
747
748 find_first_elem:
749 /* iterate over buckets */
750 for (; i < htab->n_buckets; i++) {
751 head = select_bucket(htab, i);
752
753 /* pick first element in the bucket */
754 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
755 struct htab_elem, hash_node);
756 if (next_l) {
757 /* if it's not empty, just return it */
758 memcpy(next_key, next_l->key, key_size);
759 return 0;
760 }
761 }
762
763 /* iterated over all buckets and all elements */
764 return -ENOENT;
765 }
766
htab_elem_free(struct bpf_htab * htab,struct htab_elem * l)767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
768 {
769 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
770 free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
771 kfree(l);
772 }
773
htab_elem_free_rcu(struct rcu_head * head)774 static void htab_elem_free_rcu(struct rcu_head *head)
775 {
776 struct htab_elem *l = container_of(head, struct htab_elem, rcu);
777 struct bpf_htab *htab = l->htab;
778
779 htab_elem_free(htab, l);
780 }
781
htab_put_fd_value(struct bpf_htab * htab,struct htab_elem * l)782 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
783 {
784 struct bpf_map *map = &htab->map;
785 void *ptr;
786
787 if (map->ops->map_fd_put_ptr) {
788 ptr = fd_htab_map_get_ptr(map, l);
789 map->ops->map_fd_put_ptr(ptr);
790 }
791 }
792
free_htab_elem(struct bpf_htab * htab,struct htab_elem * l)793 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
794 {
795 htab_put_fd_value(htab, l);
796
797 if (htab_is_prealloc(htab)) {
798 __pcpu_freelist_push(&htab->freelist, &l->fnode);
799 } else {
800 atomic_dec(&htab->count);
801 l->htab = htab;
802 call_rcu(&l->rcu, htab_elem_free_rcu);
803 }
804 }
805
pcpu_copy_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)806 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
807 void *value, bool onallcpus)
808 {
809 if (!onallcpus) {
810 /* copy true value_size bytes */
811 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
812 } else {
813 u32 size = round_up(htab->map.value_size, 8);
814 int off = 0, cpu;
815
816 for_each_possible_cpu(cpu) {
817 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
818 value + off, size);
819 off += size;
820 }
821 }
822 }
823
pcpu_init_value(struct bpf_htab * htab,void __percpu * pptr,void * value,bool onallcpus)824 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
825 void *value, bool onallcpus)
826 {
827 /* When using prealloc and not setting the initial value on all cpus,
828 * zero-fill element values for other cpus (just as what happens when
829 * not using prealloc). Otherwise, bpf program has no way to ensure
830 * known initial values for cpus other than current one
831 * (onallcpus=false always when coming from bpf prog).
832 */
833 if (htab_is_prealloc(htab) && !onallcpus) {
834 u32 size = round_up(htab->map.value_size, 8);
835 int current_cpu = raw_smp_processor_id();
836 int cpu;
837
838 for_each_possible_cpu(cpu) {
839 if (cpu == current_cpu)
840 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
841 size);
842 else
843 memset(per_cpu_ptr(pptr, cpu), 0, size);
844 }
845 } else {
846 pcpu_copy_value(htab, pptr, value, onallcpus);
847 }
848 }
849
fd_htab_map_needs_adjust(const struct bpf_htab * htab)850 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
851 {
852 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
853 BITS_PER_LONG == 64;
854 }
855
alloc_htab_elem(struct bpf_htab * htab,void * key,void * value,u32 key_size,u32 hash,bool percpu,bool onallcpus,struct htab_elem * old_elem)856 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
857 void *value, u32 key_size, u32 hash,
858 bool percpu, bool onallcpus,
859 struct htab_elem *old_elem)
860 {
861 u32 size = htab->map.value_size;
862 bool prealloc = htab_is_prealloc(htab);
863 struct htab_elem *l_new, **pl_new;
864 void __percpu *pptr;
865
866 if (prealloc) {
867 if (old_elem) {
868 /* if we're updating the existing element,
869 * use per-cpu extra elems to avoid freelist_pop/push
870 */
871 pl_new = this_cpu_ptr(htab->extra_elems);
872 l_new = *pl_new;
873 htab_put_fd_value(htab, old_elem);
874 *pl_new = old_elem;
875 } else {
876 struct pcpu_freelist_node *l;
877
878 l = __pcpu_freelist_pop(&htab->freelist);
879 if (!l)
880 return ERR_PTR(-E2BIG);
881 l_new = container_of(l, struct htab_elem, fnode);
882 }
883 } else {
884 if (atomic_inc_return(&htab->count) > htab->map.max_entries)
885 if (!old_elem) {
886 /* when map is full and update() is replacing
887 * old element, it's ok to allocate, since
888 * old element will be freed immediately.
889 * Otherwise return an error
890 */
891 l_new = ERR_PTR(-E2BIG);
892 goto dec_count;
893 }
894 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
895 htab->map.numa_node);
896 if (!l_new) {
897 l_new = ERR_PTR(-ENOMEM);
898 goto dec_count;
899 }
900 check_and_init_map_lock(&htab->map,
901 l_new->key + round_up(key_size, 8));
902 }
903
904 memcpy(l_new->key, key, key_size);
905 if (percpu) {
906 size = round_up(size, 8);
907 if (prealloc) {
908 pptr = htab_elem_get_ptr(l_new, key_size);
909 } else {
910 /* alloc_percpu zero-fills */
911 pptr = __alloc_percpu_gfp(size, 8,
912 GFP_ATOMIC | __GFP_NOWARN);
913 if (!pptr) {
914 kfree(l_new);
915 l_new = ERR_PTR(-ENOMEM);
916 goto dec_count;
917 }
918 }
919
920 pcpu_init_value(htab, pptr, value, onallcpus);
921
922 if (!prealloc)
923 htab_elem_set_ptr(l_new, key_size, pptr);
924 } else if (fd_htab_map_needs_adjust(htab)) {
925 size = round_up(size, 8);
926 memcpy(l_new->key + round_up(key_size, 8), value, size);
927 } else {
928 copy_map_value(&htab->map,
929 l_new->key + round_up(key_size, 8),
930 value);
931 }
932
933 l_new->hash = hash;
934 return l_new;
935 dec_count:
936 atomic_dec(&htab->count);
937 return l_new;
938 }
939
check_flags(struct bpf_htab * htab,struct htab_elem * l_old,u64 map_flags)940 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
941 u64 map_flags)
942 {
943 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
944 /* elem already exists */
945 return -EEXIST;
946
947 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
948 /* elem doesn't exist, cannot update it */
949 return -ENOENT;
950
951 return 0;
952 }
953
954 /* Called from syscall or from eBPF program */
htab_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)955 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
956 u64 map_flags)
957 {
958 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
959 struct htab_elem *l_new = NULL, *l_old;
960 struct hlist_nulls_head *head;
961 unsigned long flags;
962 struct bucket *b;
963 u32 key_size, hash;
964 int ret;
965
966 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
967 /* unknown flags */
968 return -EINVAL;
969
970 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
971
972 key_size = map->key_size;
973
974 hash = htab_map_hash(key, key_size, htab->hashrnd);
975
976 b = __select_bucket(htab, hash);
977 head = &b->head;
978
979 if (unlikely(map_flags & BPF_F_LOCK)) {
980 if (unlikely(!map_value_has_spin_lock(map)))
981 return -EINVAL;
982 /* find an element without taking the bucket lock */
983 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
984 htab->n_buckets);
985 ret = check_flags(htab, l_old, map_flags);
986 if (ret)
987 return ret;
988 if (l_old) {
989 /* grab the element lock and update value in place */
990 copy_map_value_locked(map,
991 l_old->key + round_up(key_size, 8),
992 value, false);
993 return 0;
994 }
995 /* fall through, grab the bucket lock and lookup again.
996 * 99.9% chance that the element won't be found,
997 * but second lookup under lock has to be done.
998 */
999 }
1000
1001 flags = htab_lock_bucket(htab, b);
1002
1003 l_old = lookup_elem_raw(head, hash, key, key_size);
1004
1005 ret = check_flags(htab, l_old, map_flags);
1006 if (ret)
1007 goto err;
1008
1009 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1010 /* first lookup without the bucket lock didn't find the element,
1011 * but second lookup with the bucket lock found it.
1012 * This case is highly unlikely, but has to be dealt with:
1013 * grab the element lock in addition to the bucket lock
1014 * and update element in place
1015 */
1016 copy_map_value_locked(map,
1017 l_old->key + round_up(key_size, 8),
1018 value, false);
1019 ret = 0;
1020 goto err;
1021 }
1022
1023 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1024 l_old);
1025 if (IS_ERR(l_new)) {
1026 /* all pre-allocated elements are in use or memory exhausted */
1027 ret = PTR_ERR(l_new);
1028 goto err;
1029 }
1030
1031 /* add new element to the head of the list, so that
1032 * concurrent search will find it before old elem
1033 */
1034 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1035 if (l_old) {
1036 hlist_nulls_del_rcu(&l_old->hash_node);
1037 if (!htab_is_prealloc(htab))
1038 free_htab_elem(htab, l_old);
1039 }
1040 ret = 0;
1041 err:
1042 htab_unlock_bucket(htab, b, flags);
1043 return ret;
1044 }
1045
htab_lru_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1046 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1047 u64 map_flags)
1048 {
1049 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1050 struct htab_elem *l_new, *l_old = NULL;
1051 struct hlist_nulls_head *head;
1052 unsigned long flags;
1053 struct bucket *b;
1054 u32 key_size, hash;
1055 int ret;
1056
1057 if (unlikely(map_flags > BPF_EXIST))
1058 /* unknown flags */
1059 return -EINVAL;
1060
1061 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1062
1063 key_size = map->key_size;
1064
1065 hash = htab_map_hash(key, key_size, htab->hashrnd);
1066
1067 b = __select_bucket(htab, hash);
1068 head = &b->head;
1069
1070 /* For LRU, we need to alloc before taking bucket's
1071 * spinlock because getting free nodes from LRU may need
1072 * to remove older elements from htab and this removal
1073 * operation will need a bucket lock.
1074 */
1075 l_new = prealloc_lru_pop(htab, key, hash);
1076 if (!l_new)
1077 return -ENOMEM;
1078 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1079
1080 flags = htab_lock_bucket(htab, b);
1081
1082 l_old = lookup_elem_raw(head, hash, key, key_size);
1083
1084 ret = check_flags(htab, l_old, map_flags);
1085 if (ret)
1086 goto err;
1087
1088 /* add new element to the head of the list, so that
1089 * concurrent search will find it before old elem
1090 */
1091 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1092 if (l_old) {
1093 bpf_lru_node_set_ref(&l_new->lru_node);
1094 hlist_nulls_del_rcu(&l_old->hash_node);
1095 }
1096 ret = 0;
1097
1098 err:
1099 htab_unlock_bucket(htab, b, flags);
1100
1101 if (ret)
1102 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1103 else if (l_old)
1104 bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1105
1106 return ret;
1107 }
1108
__htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1109 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1110 void *value, u64 map_flags,
1111 bool onallcpus)
1112 {
1113 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1114 struct htab_elem *l_new = NULL, *l_old;
1115 struct hlist_nulls_head *head;
1116 unsigned long flags;
1117 struct bucket *b;
1118 u32 key_size, hash;
1119 int ret;
1120
1121 if (unlikely(map_flags > BPF_EXIST))
1122 /* unknown flags */
1123 return -EINVAL;
1124
1125 WARN_ON_ONCE(!rcu_read_lock_held());
1126
1127 key_size = map->key_size;
1128
1129 hash = htab_map_hash(key, key_size, htab->hashrnd);
1130
1131 b = __select_bucket(htab, hash);
1132 head = &b->head;
1133
1134 flags = htab_lock_bucket(htab, b);
1135
1136 l_old = lookup_elem_raw(head, hash, key, key_size);
1137
1138 ret = check_flags(htab, l_old, map_flags);
1139 if (ret)
1140 goto err;
1141
1142 if (l_old) {
1143 /* per-cpu hash map can update value in-place */
1144 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1145 value, onallcpus);
1146 } else {
1147 l_new = alloc_htab_elem(htab, key, value, key_size,
1148 hash, true, onallcpus, NULL);
1149 if (IS_ERR(l_new)) {
1150 ret = PTR_ERR(l_new);
1151 goto err;
1152 }
1153 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1154 }
1155 ret = 0;
1156 err:
1157 htab_unlock_bucket(htab, b, flags);
1158 return ret;
1159 }
1160
__htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags,bool onallcpus)1161 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1162 void *value, u64 map_flags,
1163 bool onallcpus)
1164 {
1165 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1166 struct htab_elem *l_new = NULL, *l_old;
1167 struct hlist_nulls_head *head;
1168 unsigned long flags;
1169 struct bucket *b;
1170 u32 key_size, hash;
1171 int ret;
1172
1173 if (unlikely(map_flags > BPF_EXIST))
1174 /* unknown flags */
1175 return -EINVAL;
1176
1177 WARN_ON_ONCE(!rcu_read_lock_held());
1178
1179 key_size = map->key_size;
1180
1181 hash = htab_map_hash(key, key_size, htab->hashrnd);
1182
1183 b = __select_bucket(htab, hash);
1184 head = &b->head;
1185
1186 /* For LRU, we need to alloc before taking bucket's
1187 * spinlock because LRU's elem alloc may need
1188 * to remove older elem from htab and this removal
1189 * operation will need a bucket lock.
1190 */
1191 if (map_flags != BPF_EXIST) {
1192 l_new = prealloc_lru_pop(htab, key, hash);
1193 if (!l_new)
1194 return -ENOMEM;
1195 }
1196
1197 flags = htab_lock_bucket(htab, b);
1198
1199 l_old = lookup_elem_raw(head, hash, key, key_size);
1200
1201 ret = check_flags(htab, l_old, map_flags);
1202 if (ret)
1203 goto err;
1204
1205 if (l_old) {
1206 bpf_lru_node_set_ref(&l_old->lru_node);
1207
1208 /* per-cpu hash map can update value in-place */
1209 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1210 value, onallcpus);
1211 } else {
1212 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1213 value, onallcpus);
1214 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1215 l_new = NULL;
1216 }
1217 ret = 0;
1218 err:
1219 htab_unlock_bucket(htab, b, flags);
1220 if (l_new)
1221 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1222 return ret;
1223 }
1224
htab_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1225 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1226 void *value, u64 map_flags)
1227 {
1228 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1229 }
1230
htab_lru_percpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)1231 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1232 void *value, u64 map_flags)
1233 {
1234 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1235 false);
1236 }
1237
1238 /* Called from syscall or from eBPF program */
htab_map_delete_elem(struct bpf_map * map,void * key)1239 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1240 {
1241 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1242 struct hlist_nulls_head *head;
1243 struct bucket *b;
1244 struct htab_elem *l;
1245 unsigned long flags;
1246 u32 hash, key_size;
1247 int ret = -ENOENT;
1248
1249 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1250
1251 key_size = map->key_size;
1252
1253 hash = htab_map_hash(key, key_size, htab->hashrnd);
1254 b = __select_bucket(htab, hash);
1255 head = &b->head;
1256
1257 flags = htab_lock_bucket(htab, b);
1258
1259 l = lookup_elem_raw(head, hash, key, key_size);
1260
1261 if (l) {
1262 hlist_nulls_del_rcu(&l->hash_node);
1263 free_htab_elem(htab, l);
1264 ret = 0;
1265 }
1266
1267 htab_unlock_bucket(htab, b, flags);
1268 return ret;
1269 }
1270
htab_lru_map_delete_elem(struct bpf_map * map,void * key)1271 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1272 {
1273 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1274 struct hlist_nulls_head *head;
1275 struct bucket *b;
1276 struct htab_elem *l;
1277 unsigned long flags;
1278 u32 hash, key_size;
1279 int ret = -ENOENT;
1280
1281 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1282
1283 key_size = map->key_size;
1284
1285 hash = htab_map_hash(key, key_size, htab->hashrnd);
1286 b = __select_bucket(htab, hash);
1287 head = &b->head;
1288
1289 flags = htab_lock_bucket(htab, b);
1290
1291 l = lookup_elem_raw(head, hash, key, key_size);
1292
1293 if (l) {
1294 hlist_nulls_del_rcu(&l->hash_node);
1295 ret = 0;
1296 }
1297
1298 htab_unlock_bucket(htab, b, flags);
1299 if (l)
1300 bpf_lru_push_free(&htab->lru, &l->lru_node);
1301 return ret;
1302 }
1303
delete_all_elements(struct bpf_htab * htab)1304 static void delete_all_elements(struct bpf_htab *htab)
1305 {
1306 int i;
1307
1308 for (i = 0; i < htab->n_buckets; i++) {
1309 struct hlist_nulls_head *head = select_bucket(htab, i);
1310 struct hlist_nulls_node *n;
1311 struct htab_elem *l;
1312
1313 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1314 hlist_nulls_del_rcu(&l->hash_node);
1315 htab_elem_free(htab, l);
1316 }
1317 }
1318 }
1319
1320 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
htab_map_free(struct bpf_map * map)1321 static void htab_map_free(struct bpf_map *map)
1322 {
1323 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1324
1325 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1326 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1327 * There is no need to synchronize_rcu() here to protect map elements.
1328 */
1329
1330 /* some of free_htab_elem() callbacks for elements of this map may
1331 * not have executed. Wait for them.
1332 */
1333 rcu_barrier();
1334 if (!htab_is_prealloc(htab))
1335 delete_all_elements(htab);
1336 else
1337 prealloc_destroy(htab);
1338
1339 free_percpu(htab->extra_elems);
1340 bpf_map_area_free(htab->buckets);
1341 kfree(htab);
1342 }
1343
htab_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)1344 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1345 struct seq_file *m)
1346 {
1347 void *value;
1348
1349 rcu_read_lock();
1350
1351 value = htab_map_lookup_elem(map, key);
1352 if (!value) {
1353 rcu_read_unlock();
1354 return;
1355 }
1356
1357 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1358 seq_puts(m, ": ");
1359 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1360 seq_puts(m, "\n");
1361
1362 rcu_read_unlock();
1363 }
1364
1365 static int
__htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr,bool do_delete,bool is_lru_map,bool is_percpu)1366 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1367 const union bpf_attr *attr,
1368 union bpf_attr __user *uattr,
1369 bool do_delete, bool is_lru_map,
1370 bool is_percpu)
1371 {
1372 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1373 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1374 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1375 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1376 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1377 void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1378 u32 batch, max_count, size, bucket_size;
1379 struct htab_elem *node_to_free = NULL;
1380 u64 elem_map_flags, map_flags;
1381 struct hlist_nulls_head *head;
1382 struct hlist_nulls_node *n;
1383 unsigned long flags = 0;
1384 bool locked = false;
1385 struct htab_elem *l;
1386 struct bucket *b;
1387 int ret = 0;
1388
1389 elem_map_flags = attr->batch.elem_flags;
1390 if ((elem_map_flags & ~BPF_F_LOCK) ||
1391 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1392 return -EINVAL;
1393
1394 map_flags = attr->batch.flags;
1395 if (map_flags)
1396 return -EINVAL;
1397
1398 max_count = attr->batch.count;
1399 if (!max_count)
1400 return 0;
1401
1402 if (put_user(0, &uattr->batch.count))
1403 return -EFAULT;
1404
1405 batch = 0;
1406 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1407 return -EFAULT;
1408
1409 if (batch >= htab->n_buckets)
1410 return -ENOENT;
1411
1412 key_size = htab->map.key_size;
1413 roundup_key_size = round_up(htab->map.key_size, 8);
1414 value_size = htab->map.value_size;
1415 size = round_up(value_size, 8);
1416 if (is_percpu)
1417 value_size = size * num_possible_cpus();
1418 total = 0;
1419 /* while experimenting with hash tables with sizes ranging from 10 to
1420 * 1000, it was observed that a bucket can have upto 5 entries.
1421 */
1422 bucket_size = 5;
1423
1424 alloc:
1425 /* We cannot do copy_from_user or copy_to_user inside
1426 * the rcu_read_lock. Allocate enough space here.
1427 */
1428 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1429 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1430 if (!keys || !values) {
1431 ret = -ENOMEM;
1432 goto after_loop;
1433 }
1434
1435 again:
1436 bpf_disable_instrumentation();
1437 rcu_read_lock();
1438 again_nocopy:
1439 dst_key = keys;
1440 dst_val = values;
1441 b = &htab->buckets[batch];
1442 head = &b->head;
1443 /* do not grab the lock unless need it (bucket_cnt > 0). */
1444 if (locked)
1445 flags = htab_lock_bucket(htab, b);
1446
1447 bucket_cnt = 0;
1448 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1449 bucket_cnt++;
1450
1451 if (bucket_cnt && !locked) {
1452 locked = true;
1453 goto again_nocopy;
1454 }
1455
1456 if (bucket_cnt > (max_count - total)) {
1457 if (total == 0)
1458 ret = -ENOSPC;
1459 /* Note that since bucket_cnt > 0 here, it is implicit
1460 * that the locked was grabbed, so release it.
1461 */
1462 htab_unlock_bucket(htab, b, flags);
1463 rcu_read_unlock();
1464 bpf_enable_instrumentation();
1465 goto after_loop;
1466 }
1467
1468 if (bucket_cnt > bucket_size) {
1469 bucket_size = bucket_cnt;
1470 /* Note that since bucket_cnt > 0 here, it is implicit
1471 * that the locked was grabbed, so release it.
1472 */
1473 htab_unlock_bucket(htab, b, flags);
1474 rcu_read_unlock();
1475 bpf_enable_instrumentation();
1476 kvfree(keys);
1477 kvfree(values);
1478 goto alloc;
1479 }
1480
1481 /* Next block is only safe to run if you have grabbed the lock */
1482 if (!locked)
1483 goto next_batch;
1484
1485 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1486 memcpy(dst_key, l->key, key_size);
1487
1488 if (is_percpu) {
1489 int off = 0, cpu;
1490 void __percpu *pptr;
1491
1492 pptr = htab_elem_get_ptr(l, map->key_size);
1493 for_each_possible_cpu(cpu) {
1494 bpf_long_memcpy(dst_val + off,
1495 per_cpu_ptr(pptr, cpu), size);
1496 off += size;
1497 }
1498 } else {
1499 value = l->key + roundup_key_size;
1500 if (elem_map_flags & BPF_F_LOCK)
1501 copy_map_value_locked(map, dst_val, value,
1502 true);
1503 else
1504 copy_map_value(map, dst_val, value);
1505 check_and_init_map_lock(map, dst_val);
1506 }
1507 if (do_delete) {
1508 hlist_nulls_del_rcu(&l->hash_node);
1509
1510 /* bpf_lru_push_free() will acquire lru_lock, which
1511 * may cause deadlock. See comments in function
1512 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1513 * after releasing the bucket lock.
1514 */
1515 if (is_lru_map) {
1516 l->batch_flink = node_to_free;
1517 node_to_free = l;
1518 } else {
1519 free_htab_elem(htab, l);
1520 }
1521 }
1522 dst_key += key_size;
1523 dst_val += value_size;
1524 }
1525
1526 htab_unlock_bucket(htab, b, flags);
1527 locked = false;
1528
1529 while (node_to_free) {
1530 l = node_to_free;
1531 node_to_free = node_to_free->batch_flink;
1532 bpf_lru_push_free(&htab->lru, &l->lru_node);
1533 }
1534
1535 next_batch:
1536 /* If we are not copying data, we can go to next bucket and avoid
1537 * unlocking the rcu.
1538 */
1539 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1540 batch++;
1541 goto again_nocopy;
1542 }
1543
1544 rcu_read_unlock();
1545 bpf_enable_instrumentation();
1546 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1547 key_size * bucket_cnt) ||
1548 copy_to_user(uvalues + total * value_size, values,
1549 value_size * bucket_cnt))) {
1550 ret = -EFAULT;
1551 goto after_loop;
1552 }
1553
1554 total += bucket_cnt;
1555 batch++;
1556 if (batch >= htab->n_buckets) {
1557 ret = -ENOENT;
1558 goto after_loop;
1559 }
1560 goto again;
1561
1562 after_loop:
1563 if (ret == -EFAULT)
1564 goto out;
1565
1566 /* copy # of entries and next batch */
1567 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1568 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1569 put_user(total, &uattr->batch.count))
1570 ret = -EFAULT;
1571
1572 out:
1573 kvfree(keys);
1574 kvfree(values);
1575 return ret;
1576 }
1577
1578 static int
htab_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1579 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1580 union bpf_attr __user *uattr)
1581 {
1582 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1583 false, true);
1584 }
1585
1586 static int
htab_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1587 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1588 const union bpf_attr *attr,
1589 union bpf_attr __user *uattr)
1590 {
1591 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1592 false, true);
1593 }
1594
1595 static int
htab_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1596 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1597 union bpf_attr __user *uattr)
1598 {
1599 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1600 false, false);
1601 }
1602
1603 static int
htab_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1604 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1605 const union bpf_attr *attr,
1606 union bpf_attr __user *uattr)
1607 {
1608 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1609 false, false);
1610 }
1611
1612 static int
htab_lru_percpu_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1613 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1614 const union bpf_attr *attr,
1615 union bpf_attr __user *uattr)
1616 {
1617 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1618 true, true);
1619 }
1620
1621 static int
htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1622 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1623 const union bpf_attr *attr,
1624 union bpf_attr __user *uattr)
1625 {
1626 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1627 true, true);
1628 }
1629
1630 static int
htab_lru_map_lookup_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1631 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1632 union bpf_attr __user *uattr)
1633 {
1634 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1635 true, false);
1636 }
1637
1638 static int
htab_lru_map_lookup_and_delete_batch(struct bpf_map * map,const union bpf_attr * attr,union bpf_attr __user * uattr)1639 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1640 const union bpf_attr *attr,
1641 union bpf_attr __user *uattr)
1642 {
1643 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1644 true, false);
1645 }
1646
1647 struct bpf_iter_seq_hash_map_info {
1648 struct bpf_map *map;
1649 struct bpf_htab *htab;
1650 void *percpu_value_buf; // non-zero means percpu hash
1651 u32 bucket_id;
1652 u32 skip_elems;
1653 };
1654
1655 static struct htab_elem *
bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info * info,struct htab_elem * prev_elem)1656 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1657 struct htab_elem *prev_elem)
1658 {
1659 const struct bpf_htab *htab = info->htab;
1660 u32 skip_elems = info->skip_elems;
1661 u32 bucket_id = info->bucket_id;
1662 struct hlist_nulls_head *head;
1663 struct hlist_nulls_node *n;
1664 struct htab_elem *elem;
1665 struct bucket *b;
1666 u32 i, count;
1667
1668 if (bucket_id >= htab->n_buckets)
1669 return NULL;
1670
1671 /* try to find next elem in the same bucket */
1672 if (prev_elem) {
1673 /* no update/deletion on this bucket, prev_elem should be still valid
1674 * and we won't skip elements.
1675 */
1676 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1677 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1678 if (elem)
1679 return elem;
1680
1681 /* not found, unlock and go to the next bucket */
1682 b = &htab->buckets[bucket_id++];
1683 rcu_read_unlock();
1684 skip_elems = 0;
1685 }
1686
1687 for (i = bucket_id; i < htab->n_buckets; i++) {
1688 b = &htab->buckets[i];
1689 rcu_read_lock();
1690
1691 count = 0;
1692 head = &b->head;
1693 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1694 if (count >= skip_elems) {
1695 info->bucket_id = i;
1696 info->skip_elems = count;
1697 return elem;
1698 }
1699 count++;
1700 }
1701
1702 rcu_read_unlock();
1703 skip_elems = 0;
1704 }
1705
1706 info->bucket_id = i;
1707 info->skip_elems = 0;
1708 return NULL;
1709 }
1710
bpf_hash_map_seq_start(struct seq_file * seq,loff_t * pos)1711 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1712 {
1713 struct bpf_iter_seq_hash_map_info *info = seq->private;
1714 struct htab_elem *elem;
1715
1716 elem = bpf_hash_map_seq_find_next(info, NULL);
1717 if (!elem)
1718 return NULL;
1719
1720 if (*pos == 0)
1721 ++*pos;
1722 return elem;
1723 }
1724
bpf_hash_map_seq_next(struct seq_file * seq,void * v,loff_t * pos)1725 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1726 {
1727 struct bpf_iter_seq_hash_map_info *info = seq->private;
1728
1729 ++*pos;
1730 ++info->skip_elems;
1731 return bpf_hash_map_seq_find_next(info, v);
1732 }
1733
__bpf_hash_map_seq_show(struct seq_file * seq,struct htab_elem * elem)1734 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1735 {
1736 struct bpf_iter_seq_hash_map_info *info = seq->private;
1737 u32 roundup_key_size, roundup_value_size;
1738 struct bpf_iter__bpf_map_elem ctx = {};
1739 struct bpf_map *map = info->map;
1740 struct bpf_iter_meta meta;
1741 int ret = 0, off = 0, cpu;
1742 struct bpf_prog *prog;
1743 void __percpu *pptr;
1744
1745 meta.seq = seq;
1746 prog = bpf_iter_get_info(&meta, elem == NULL);
1747 if (prog) {
1748 ctx.meta = &meta;
1749 ctx.map = info->map;
1750 if (elem) {
1751 roundup_key_size = round_up(map->key_size, 8);
1752 ctx.key = elem->key;
1753 if (!info->percpu_value_buf) {
1754 ctx.value = elem->key + roundup_key_size;
1755 } else {
1756 roundup_value_size = round_up(map->value_size, 8);
1757 pptr = htab_elem_get_ptr(elem, map->key_size);
1758 for_each_possible_cpu(cpu) {
1759 bpf_long_memcpy(info->percpu_value_buf + off,
1760 per_cpu_ptr(pptr, cpu),
1761 roundup_value_size);
1762 off += roundup_value_size;
1763 }
1764 ctx.value = info->percpu_value_buf;
1765 }
1766 }
1767 ret = bpf_iter_run_prog(prog, &ctx);
1768 }
1769
1770 return ret;
1771 }
1772
bpf_hash_map_seq_show(struct seq_file * seq,void * v)1773 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1774 {
1775 return __bpf_hash_map_seq_show(seq, v);
1776 }
1777
bpf_hash_map_seq_stop(struct seq_file * seq,void * v)1778 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1779 {
1780 if (!v)
1781 (void)__bpf_hash_map_seq_show(seq, NULL);
1782 else
1783 rcu_read_unlock();
1784 }
1785
bpf_iter_init_hash_map(void * priv_data,struct bpf_iter_aux_info * aux)1786 static int bpf_iter_init_hash_map(void *priv_data,
1787 struct bpf_iter_aux_info *aux)
1788 {
1789 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1790 struct bpf_map *map = aux->map;
1791 void *value_buf;
1792 u32 buf_size;
1793
1794 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1795 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1796 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1797 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1798 if (!value_buf)
1799 return -ENOMEM;
1800
1801 seq_info->percpu_value_buf = value_buf;
1802 }
1803
1804 bpf_map_inc_with_uref(map);
1805 seq_info->map = map;
1806 seq_info->htab = container_of(map, struct bpf_htab, map);
1807 return 0;
1808 }
1809
bpf_iter_fini_hash_map(void * priv_data)1810 static void bpf_iter_fini_hash_map(void *priv_data)
1811 {
1812 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1813
1814 bpf_map_put_with_uref(seq_info->map);
1815 kfree(seq_info->percpu_value_buf);
1816 }
1817
1818 static const struct seq_operations bpf_hash_map_seq_ops = {
1819 .start = bpf_hash_map_seq_start,
1820 .next = bpf_hash_map_seq_next,
1821 .stop = bpf_hash_map_seq_stop,
1822 .show = bpf_hash_map_seq_show,
1823 };
1824
1825 static const struct bpf_iter_seq_info iter_seq_info = {
1826 .seq_ops = &bpf_hash_map_seq_ops,
1827 .init_seq_private = bpf_iter_init_hash_map,
1828 .fini_seq_private = bpf_iter_fini_hash_map,
1829 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
1830 };
1831
1832 static int htab_map_btf_id;
1833 const struct bpf_map_ops htab_map_ops = {
1834 .map_meta_equal = bpf_map_meta_equal,
1835 .map_alloc_check = htab_map_alloc_check,
1836 .map_alloc = htab_map_alloc,
1837 .map_free = htab_map_free,
1838 .map_get_next_key = htab_map_get_next_key,
1839 .map_lookup_elem = htab_map_lookup_elem,
1840 .map_update_elem = htab_map_update_elem,
1841 .map_delete_elem = htab_map_delete_elem,
1842 .map_gen_lookup = htab_map_gen_lookup,
1843 .map_seq_show_elem = htab_map_seq_show_elem,
1844 BATCH_OPS(htab),
1845 .map_btf_name = "bpf_htab",
1846 .map_btf_id = &htab_map_btf_id,
1847 .iter_seq_info = &iter_seq_info,
1848 };
1849
1850 static int htab_lru_map_btf_id;
1851 const struct bpf_map_ops htab_lru_map_ops = {
1852 .map_meta_equal = bpf_map_meta_equal,
1853 .map_alloc_check = htab_map_alloc_check,
1854 .map_alloc = htab_map_alloc,
1855 .map_free = htab_map_free,
1856 .map_get_next_key = htab_map_get_next_key,
1857 .map_lookup_elem = htab_lru_map_lookup_elem,
1858 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1859 .map_update_elem = htab_lru_map_update_elem,
1860 .map_delete_elem = htab_lru_map_delete_elem,
1861 .map_gen_lookup = htab_lru_map_gen_lookup,
1862 .map_seq_show_elem = htab_map_seq_show_elem,
1863 BATCH_OPS(htab_lru),
1864 .map_btf_name = "bpf_htab",
1865 .map_btf_id = &htab_lru_map_btf_id,
1866 .iter_seq_info = &iter_seq_info,
1867 };
1868
1869 /* Called from eBPF program */
htab_percpu_map_lookup_elem(struct bpf_map * map,void * key)1870 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1871 {
1872 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1873
1874 if (l)
1875 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1876 else
1877 return NULL;
1878 }
1879
htab_lru_percpu_map_lookup_elem(struct bpf_map * map,void * key)1880 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1881 {
1882 struct htab_elem *l = __htab_map_lookup_elem(map, key);
1883
1884 if (l) {
1885 bpf_lru_node_set_ref(&l->lru_node);
1886 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1887 }
1888
1889 return NULL;
1890 }
1891
bpf_percpu_hash_copy(struct bpf_map * map,void * key,void * value)1892 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1893 {
1894 struct htab_elem *l;
1895 void __percpu *pptr;
1896 int ret = -ENOENT;
1897 int cpu, off = 0;
1898 u32 size;
1899
1900 /* per_cpu areas are zero-filled and bpf programs can only
1901 * access 'value_size' of them, so copying rounded areas
1902 * will not leak any kernel data
1903 */
1904 size = round_up(map->value_size, 8);
1905 rcu_read_lock();
1906 l = __htab_map_lookup_elem(map, key);
1907 if (!l)
1908 goto out;
1909 /* We do not mark LRU map element here in order to not mess up
1910 * eviction heuristics when user space does a map walk.
1911 */
1912 pptr = htab_elem_get_ptr(l, map->key_size);
1913 for_each_possible_cpu(cpu) {
1914 bpf_long_memcpy(value + off,
1915 per_cpu_ptr(pptr, cpu), size);
1916 off += size;
1917 }
1918 ret = 0;
1919 out:
1920 rcu_read_unlock();
1921 return ret;
1922 }
1923
bpf_percpu_hash_update(struct bpf_map * map,void * key,void * value,u64 map_flags)1924 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1925 u64 map_flags)
1926 {
1927 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1928 int ret;
1929
1930 rcu_read_lock();
1931 if (htab_is_lru(htab))
1932 ret = __htab_lru_percpu_map_update_elem(map, key, value,
1933 map_flags, true);
1934 else
1935 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1936 true);
1937 rcu_read_unlock();
1938
1939 return ret;
1940 }
1941
htab_percpu_map_seq_show_elem(struct bpf_map * map,void * key,struct seq_file * m)1942 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1943 struct seq_file *m)
1944 {
1945 struct htab_elem *l;
1946 void __percpu *pptr;
1947 int cpu;
1948
1949 rcu_read_lock();
1950
1951 l = __htab_map_lookup_elem(map, key);
1952 if (!l) {
1953 rcu_read_unlock();
1954 return;
1955 }
1956
1957 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1958 seq_puts(m, ": {\n");
1959 pptr = htab_elem_get_ptr(l, map->key_size);
1960 for_each_possible_cpu(cpu) {
1961 seq_printf(m, "\tcpu%d: ", cpu);
1962 btf_type_seq_show(map->btf, map->btf_value_type_id,
1963 per_cpu_ptr(pptr, cpu), m);
1964 seq_puts(m, "\n");
1965 }
1966 seq_puts(m, "}\n");
1967
1968 rcu_read_unlock();
1969 }
1970
1971 static int htab_percpu_map_btf_id;
1972 const struct bpf_map_ops htab_percpu_map_ops = {
1973 .map_meta_equal = bpf_map_meta_equal,
1974 .map_alloc_check = htab_map_alloc_check,
1975 .map_alloc = htab_map_alloc,
1976 .map_free = htab_map_free,
1977 .map_get_next_key = htab_map_get_next_key,
1978 .map_lookup_elem = htab_percpu_map_lookup_elem,
1979 .map_update_elem = htab_percpu_map_update_elem,
1980 .map_delete_elem = htab_map_delete_elem,
1981 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1982 BATCH_OPS(htab_percpu),
1983 .map_btf_name = "bpf_htab",
1984 .map_btf_id = &htab_percpu_map_btf_id,
1985 .iter_seq_info = &iter_seq_info,
1986 };
1987
1988 static int htab_lru_percpu_map_btf_id;
1989 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1990 .map_meta_equal = bpf_map_meta_equal,
1991 .map_alloc_check = htab_map_alloc_check,
1992 .map_alloc = htab_map_alloc,
1993 .map_free = htab_map_free,
1994 .map_get_next_key = htab_map_get_next_key,
1995 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1996 .map_update_elem = htab_lru_percpu_map_update_elem,
1997 .map_delete_elem = htab_lru_map_delete_elem,
1998 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
1999 BATCH_OPS(htab_lru_percpu),
2000 .map_btf_name = "bpf_htab",
2001 .map_btf_id = &htab_lru_percpu_map_btf_id,
2002 .iter_seq_info = &iter_seq_info,
2003 };
2004
fd_htab_map_alloc_check(union bpf_attr * attr)2005 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2006 {
2007 if (attr->value_size != sizeof(u32))
2008 return -EINVAL;
2009 return htab_map_alloc_check(attr);
2010 }
2011
fd_htab_map_free(struct bpf_map * map)2012 static void fd_htab_map_free(struct bpf_map *map)
2013 {
2014 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2015 struct hlist_nulls_node *n;
2016 struct hlist_nulls_head *head;
2017 struct htab_elem *l;
2018 int i;
2019
2020 for (i = 0; i < htab->n_buckets; i++) {
2021 head = select_bucket(htab, i);
2022
2023 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2024 void *ptr = fd_htab_map_get_ptr(map, l);
2025
2026 map->ops->map_fd_put_ptr(ptr);
2027 }
2028 }
2029
2030 htab_map_free(map);
2031 }
2032
2033 /* only called from syscall */
bpf_fd_htab_map_lookup_elem(struct bpf_map * map,void * key,u32 * value)2034 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2035 {
2036 void **ptr;
2037 int ret = 0;
2038
2039 if (!map->ops->map_fd_sys_lookup_elem)
2040 return -ENOTSUPP;
2041
2042 rcu_read_lock();
2043 ptr = htab_map_lookup_elem(map, key);
2044 if (ptr)
2045 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2046 else
2047 ret = -ENOENT;
2048 rcu_read_unlock();
2049
2050 return ret;
2051 }
2052
2053 /* only called from syscall */
bpf_fd_htab_map_update_elem(struct bpf_map * map,struct file * map_file,void * key,void * value,u64 map_flags)2054 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2055 void *key, void *value, u64 map_flags)
2056 {
2057 void *ptr;
2058 int ret;
2059 u32 ufd = *(u32 *)value;
2060
2061 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2062 if (IS_ERR(ptr))
2063 return PTR_ERR(ptr);
2064
2065 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2066 if (ret)
2067 map->ops->map_fd_put_ptr(ptr);
2068
2069 return ret;
2070 }
2071
htab_of_map_alloc(union bpf_attr * attr)2072 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2073 {
2074 struct bpf_map *map, *inner_map_meta;
2075
2076 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2077 if (IS_ERR(inner_map_meta))
2078 return inner_map_meta;
2079
2080 map = htab_map_alloc(attr);
2081 if (IS_ERR(map)) {
2082 bpf_map_meta_free(inner_map_meta);
2083 return map;
2084 }
2085
2086 map->inner_map_meta = inner_map_meta;
2087
2088 return map;
2089 }
2090
htab_of_map_lookup_elem(struct bpf_map * map,void * key)2091 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2092 {
2093 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2094
2095 if (!inner_map)
2096 return NULL;
2097
2098 return READ_ONCE(*inner_map);
2099 }
2100
htab_of_map_gen_lookup(struct bpf_map * map,struct bpf_insn * insn_buf)2101 static int htab_of_map_gen_lookup(struct bpf_map *map,
2102 struct bpf_insn *insn_buf)
2103 {
2104 struct bpf_insn *insn = insn_buf;
2105 const int ret = BPF_REG_0;
2106
2107 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2108 (void *(*)(struct bpf_map *map, void *key))NULL));
2109 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2110 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2111 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2112 offsetof(struct htab_elem, key) +
2113 round_up(map->key_size, 8));
2114 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2115
2116 return insn - insn_buf;
2117 }
2118
htab_of_map_free(struct bpf_map * map)2119 static void htab_of_map_free(struct bpf_map *map)
2120 {
2121 bpf_map_meta_free(map->inner_map_meta);
2122 fd_htab_map_free(map);
2123 }
2124
2125 static int htab_of_maps_map_btf_id;
2126 const struct bpf_map_ops htab_of_maps_map_ops = {
2127 .map_alloc_check = fd_htab_map_alloc_check,
2128 .map_alloc = htab_of_map_alloc,
2129 .map_free = htab_of_map_free,
2130 .map_get_next_key = htab_map_get_next_key,
2131 .map_lookup_elem = htab_of_map_lookup_elem,
2132 .map_delete_elem = htab_map_delete_elem,
2133 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2134 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2135 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2136 .map_gen_lookup = htab_of_map_gen_lookup,
2137 .map_check_btf = map_check_no_btf,
2138 .map_btf_name = "bpf_htab",
2139 .map_btf_id = &htab_of_maps_map_btf_id,
2140 };
2141