• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 #include <linux/static_call.h>
40 
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45 
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 
49 
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
58 
59 /* NOTE: change this value only with kprobe_mutex held */
60 static bool kprobes_all_disarmed;
61 
62 /* This protects kprobe_table and optimizing_list */
63 static DEFINE_MUTEX(kprobe_mutex);
64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
65 static struct {
66 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
67 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
68 
kprobe_lookup_name(const char * name,unsigned int __unused)69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
70 					unsigned int __unused)
71 {
72 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
73 }
74 
kretprobe_table_lock_ptr(unsigned long hash)75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
76 {
77 	return &(kretprobe_table_locks[hash].lock);
78 }
79 
80 /* Blacklist -- list of struct kprobe_blacklist_entry */
81 static LIST_HEAD(kprobe_blacklist);
82 
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85  * kprobe->ainsn.insn points to the copy of the instruction to be
86  * single-stepped. x86_64, POWER4 and above have no-exec support and
87  * stepping on the instruction on a vmalloced/kmalloced/data page
88  * is a recipe for disaster
89  */
90 struct kprobe_insn_page {
91 	struct list_head list;
92 	kprobe_opcode_t *insns;		/* Page of instruction slots */
93 	struct kprobe_insn_cache *cache;
94 	int nused;
95 	int ngarbage;
96 	char slot_used[];
97 };
98 
99 #define KPROBE_INSN_PAGE_SIZE(slots)			\
100 	(offsetof(struct kprobe_insn_page, slot_used) +	\
101 	 (sizeof(char) * (slots)))
102 
slots_per_page(struct kprobe_insn_cache * c)103 static int slots_per_page(struct kprobe_insn_cache *c)
104 {
105 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
106 }
107 
108 enum kprobe_slot_state {
109 	SLOT_CLEAN = 0,
110 	SLOT_DIRTY = 1,
111 	SLOT_USED = 2,
112 };
113 
alloc_insn_page(void)114 void __weak *alloc_insn_page(void)
115 {
116 	return module_alloc(PAGE_SIZE);
117 }
118 
free_insn_page(void * page)119 void __weak free_insn_page(void *page)
120 {
121 	module_memfree(page);
122 }
123 
124 struct kprobe_insn_cache kprobe_insn_slots = {
125 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
126 	.alloc = alloc_insn_page,
127 	.free = free_insn_page,
128 	.sym = KPROBE_INSN_PAGE_SYM,
129 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
130 	.insn_size = MAX_INSN_SIZE,
131 	.nr_garbage = 0,
132 };
133 static int collect_garbage_slots(struct kprobe_insn_cache *c);
134 
135 /**
136  * __get_insn_slot() - Find a slot on an executable page for an instruction.
137  * We allocate an executable page if there's no room on existing ones.
138  */
__get_insn_slot(struct kprobe_insn_cache * c)139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
140 {
141 	struct kprobe_insn_page *kip;
142 	kprobe_opcode_t *slot = NULL;
143 
144 	/* Since the slot array is not protected by rcu, we need a mutex */
145 	mutex_lock(&c->mutex);
146  retry:
147 	rcu_read_lock();
148 	list_for_each_entry_rcu(kip, &c->pages, list) {
149 		if (kip->nused < slots_per_page(c)) {
150 			int i;
151 			for (i = 0; i < slots_per_page(c); i++) {
152 				if (kip->slot_used[i] == SLOT_CLEAN) {
153 					kip->slot_used[i] = SLOT_USED;
154 					kip->nused++;
155 					slot = kip->insns + (i * c->insn_size);
156 					rcu_read_unlock();
157 					goto out;
158 				}
159 			}
160 			/* kip->nused is broken. Fix it. */
161 			kip->nused = slots_per_page(c);
162 			WARN_ON(1);
163 		}
164 	}
165 	rcu_read_unlock();
166 
167 	/* If there are any garbage slots, collect it and try again. */
168 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
169 		goto retry;
170 
171 	/* All out of space.  Need to allocate a new page. */
172 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
173 	if (!kip)
174 		goto out;
175 
176 	/*
177 	 * Use module_alloc so this page is within +/- 2GB of where the
178 	 * kernel image and loaded module images reside. This is required
179 	 * so x86_64 can correctly handle the %rip-relative fixups.
180 	 */
181 	kip->insns = c->alloc();
182 	if (!kip->insns) {
183 		kfree(kip);
184 		goto out;
185 	}
186 	INIT_LIST_HEAD(&kip->list);
187 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
188 	kip->slot_used[0] = SLOT_USED;
189 	kip->nused = 1;
190 	kip->ngarbage = 0;
191 	kip->cache = c;
192 	list_add_rcu(&kip->list, &c->pages);
193 	slot = kip->insns;
194 
195 	/* Record the perf ksymbol register event after adding the page */
196 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
197 			   PAGE_SIZE, false, c->sym);
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			/*
217 			 * Record perf ksymbol unregister event before removing
218 			 * the page.
219 			 */
220 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
221 					   (unsigned long)kip->insns, PAGE_SIZE, true,
222 					   kip->cache->sym);
223 			list_del_rcu(&kip->list);
224 			synchronize_rcu();
225 			kip->cache->free(kip->insns);
226 			kfree(kip);
227 		}
228 		return 1;
229 	}
230 	return 0;
231 }
232 
collect_garbage_slots(struct kprobe_insn_cache * c)233 static int collect_garbage_slots(struct kprobe_insn_cache *c)
234 {
235 	struct kprobe_insn_page *kip, *next;
236 
237 	/* Ensure no-one is interrupted on the garbages */
238 	synchronize_rcu();
239 
240 	list_for_each_entry_safe(kip, next, &c->pages, list) {
241 		int i;
242 		if (kip->ngarbage == 0)
243 			continue;
244 		kip->ngarbage = 0;	/* we will collect all garbages */
245 		for (i = 0; i < slots_per_page(c); i++) {
246 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
247 				break;
248 		}
249 	}
250 	c->nr_garbage = 0;
251 	return 0;
252 }
253 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)254 void __free_insn_slot(struct kprobe_insn_cache *c,
255 		      kprobe_opcode_t *slot, int dirty)
256 {
257 	struct kprobe_insn_page *kip;
258 	long idx;
259 
260 	mutex_lock(&c->mutex);
261 	rcu_read_lock();
262 	list_for_each_entry_rcu(kip, &c->pages, list) {
263 		idx = ((long)slot - (long)kip->insns) /
264 			(c->insn_size * sizeof(kprobe_opcode_t));
265 		if (idx >= 0 && idx < slots_per_page(c))
266 			goto out;
267 	}
268 	/* Could not find this slot. */
269 	WARN_ON(1);
270 	kip = NULL;
271 out:
272 	rcu_read_unlock();
273 	/* Mark and sweep: this may sleep */
274 	if (kip) {
275 		/* Check double free */
276 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
277 		if (dirty) {
278 			kip->slot_used[idx] = SLOT_DIRTY;
279 			kip->ngarbage++;
280 			if (++c->nr_garbage > slots_per_page(c))
281 				collect_garbage_slots(c);
282 		} else {
283 			collect_one_slot(kip, idx);
284 		}
285 	}
286 	mutex_unlock(&c->mutex);
287 }
288 
289 /*
290  * Check given address is on the page of kprobe instruction slots.
291  * This will be used for checking whether the address on a stack
292  * is on a text area or not.
293  */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296 	struct kprobe_insn_page *kip;
297 	bool ret = false;
298 
299 	rcu_read_lock();
300 	list_for_each_entry_rcu(kip, &c->pages, list) {
301 		if (addr >= (unsigned long)kip->insns &&
302 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
303 			ret = true;
304 			break;
305 		}
306 	}
307 	rcu_read_unlock();
308 
309 	return ret;
310 }
311 
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313 			     unsigned long *value, char *type, char *sym)
314 {
315 	struct kprobe_insn_page *kip;
316 	int ret = -ERANGE;
317 
318 	rcu_read_lock();
319 	list_for_each_entry_rcu(kip, &c->pages, list) {
320 		if ((*symnum)--)
321 			continue;
322 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
323 		*type = 't';
324 		*value = (unsigned long)kip->insns;
325 		ret = 0;
326 		break;
327 	}
328 	rcu_read_unlock();
329 
330 	return ret;
331 }
332 
333 #ifdef CONFIG_OPTPROBES
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337 	.alloc = alloc_insn_page,
338 	.free = free_insn_page,
339 	.sym = KPROBE_OPTINSN_PAGE_SYM,
340 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341 	/* .insn_size is initialized later */
342 	.nr_garbage = 0,
343 };
344 #endif
345 #endif
346 
347 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350 	__this_cpu_write(kprobe_instance, kp);
351 }
352 
reset_kprobe_instance(void)353 static inline void reset_kprobe_instance(void)
354 {
355 	__this_cpu_write(kprobe_instance, NULL);
356 }
357 
358 /*
359  * This routine is called either:
360  * 	- under the kprobe_mutex - during kprobe_[un]register()
361  * 				OR
362  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
363  */
get_kprobe(void * addr)364 struct kprobe *get_kprobe(void *addr)
365 {
366 	struct hlist_head *head;
367 	struct kprobe *p;
368 
369 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370 	hlist_for_each_entry_rcu(p, head, hlist,
371 				 lockdep_is_held(&kprobe_mutex)) {
372 		if (p->addr == addr)
373 			return p;
374 	}
375 
376 	return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379 
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381 
382 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385 	return p->pre_handler == aggr_pre_handler;
386 }
387 
388 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)389 static inline int kprobe_unused(struct kprobe *p)
390 {
391 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392 	       list_empty(&p->list);
393 }
394 
395 /*
396  * Keep all fields in the kprobe consistent
397  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403 
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407 
408 /*
409  * Call all pre_handler on the list, but ignores its return value.
410  * This must be called from arch-dep optimized caller.
411  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414 	struct kprobe *kp;
415 
416 	list_for_each_entry_rcu(kp, &p->list, list) {
417 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418 			set_kprobe_instance(kp);
419 			kp->pre_handler(kp, regs);
420 		}
421 		reset_kprobe_instance();
422 	}
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425 
426 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429 	struct optimized_kprobe *op;
430 
431 	op = container_of(p, struct optimized_kprobe, kp);
432 	arch_remove_optimized_kprobe(op);
433 	arch_remove_kprobe(p);
434 	kfree(op);
435 }
436 
437 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)438 static inline int kprobe_optready(struct kprobe *p)
439 {
440 	struct optimized_kprobe *op;
441 
442 	if (kprobe_aggrprobe(p)) {
443 		op = container_of(p, struct optimized_kprobe, kp);
444 		return arch_prepared_optinsn(&op->optinsn);
445 	}
446 
447 	return 0;
448 }
449 
450 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)451 bool kprobe_disarmed(struct kprobe *p)
452 {
453 	struct optimized_kprobe *op;
454 
455 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456 	if (!kprobe_aggrprobe(p))
457 		return kprobe_disabled(p);
458 
459 	op = container_of(p, struct optimized_kprobe, kp);
460 
461 	return kprobe_disabled(p) && list_empty(&op->list);
462 }
463 
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)465 static int kprobe_queued(struct kprobe *p)
466 {
467 	struct optimized_kprobe *op;
468 
469 	if (kprobe_aggrprobe(p)) {
470 		op = container_of(p, struct optimized_kprobe, kp);
471 		if (!list_empty(&op->list))
472 			return 1;
473 	}
474 	return 0;
475 }
476 
477 /*
478  * Return an optimized kprobe whose optimizing code replaces
479  * instructions including addr (exclude breakpoint).
480  */
get_optimized_kprobe(unsigned long addr)481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483 	int i;
484 	struct kprobe *p = NULL;
485 	struct optimized_kprobe *op;
486 
487 	/* Don't check i == 0, since that is a breakpoint case. */
488 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489 		p = get_kprobe((void *)(addr - i));
490 
491 	if (p && kprobe_optready(p)) {
492 		op = container_of(p, struct optimized_kprobe, kp);
493 		if (arch_within_optimized_kprobe(op, addr))
494 			return p;
495 	}
496 
497 	return NULL;
498 }
499 
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504 
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508 
509 /*
510  * Optimize (replace a breakpoint with a jump) kprobes listed on
511  * optimizing_list.
512  */
do_optimize_kprobes(void)513 static void do_optimize_kprobes(void)
514 {
515 	lockdep_assert_held(&text_mutex);
516 	/*
517 	 * The optimization/unoptimization refers online_cpus via
518 	 * stop_machine() and cpu-hotplug modifies online_cpus.
519 	 * And same time, text_mutex will be held in cpu-hotplug and here.
520 	 * This combination can cause a deadlock (cpu-hotplug try to lock
521 	 * text_mutex but stop_machine can not be done because online_cpus
522 	 * has been changed)
523 	 * To avoid this deadlock, caller must have locked cpu hotplug
524 	 * for preventing cpu-hotplug outside of text_mutex locking.
525 	 */
526 	lockdep_assert_cpus_held();
527 
528 	/* Optimization never be done when disarmed */
529 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530 	    list_empty(&optimizing_list))
531 		return;
532 
533 	arch_optimize_kprobes(&optimizing_list);
534 }
535 
536 /*
537  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538  * if need) kprobes listed on unoptimizing_list.
539  */
do_unoptimize_kprobes(void)540 static void do_unoptimize_kprobes(void)
541 {
542 	struct optimized_kprobe *op, *tmp;
543 
544 	lockdep_assert_held(&text_mutex);
545 	/* See comment in do_optimize_kprobes() */
546 	lockdep_assert_cpus_held();
547 
548 	if (!list_empty(&unoptimizing_list))
549 		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
550 
551 	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
552 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
553 		/* Switching from detour code to origin */
554 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
555 		/* Disarm probes if marked disabled and not gone */
556 		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
557 			arch_disarm_kprobe(&op->kp);
558 		if (kprobe_unused(&op->kp)) {
559 			/*
560 			 * Remove unused probes from hash list. After waiting
561 			 * for synchronization, these probes are reclaimed.
562 			 * (reclaiming is done by do_free_cleaned_kprobes.)
563 			 */
564 			hlist_del_rcu(&op->kp.hlist);
565 		} else
566 			list_del_init(&op->list);
567 	}
568 }
569 
570 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)571 static void do_free_cleaned_kprobes(void)
572 {
573 	struct optimized_kprobe *op, *tmp;
574 
575 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
576 		list_del_init(&op->list);
577 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
578 			/*
579 			 * This must not happen, but if there is a kprobe
580 			 * still in use, keep it on kprobes hash list.
581 			 */
582 			continue;
583 		}
584 		free_aggr_kprobe(&op->kp);
585 	}
586 }
587 
588 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)589 static void kick_kprobe_optimizer(void)
590 {
591 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
592 }
593 
594 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)595 static void kprobe_optimizer(struct work_struct *work)
596 {
597 	mutex_lock(&kprobe_mutex);
598 	cpus_read_lock();
599 	mutex_lock(&text_mutex);
600 
601 	/*
602 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
603 	 * kprobes before waiting for quiesence period.
604 	 */
605 	do_unoptimize_kprobes();
606 
607 	/*
608 	 * Step 2: Wait for quiesence period to ensure all potentially
609 	 * preempted tasks to have normally scheduled. Because optprobe
610 	 * may modify multiple instructions, there is a chance that Nth
611 	 * instruction is preempted. In that case, such tasks can return
612 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
613 	 * Note that on non-preemptive kernel, this is transparently converted
614 	 * to synchronoze_sched() to wait for all interrupts to have completed.
615 	 */
616 	synchronize_rcu_tasks();
617 
618 	/* Step 3: Optimize kprobes after quiesence period */
619 	do_optimize_kprobes();
620 
621 	/* Step 4: Free cleaned kprobes after quiesence period */
622 	do_free_cleaned_kprobes();
623 
624 	mutex_unlock(&text_mutex);
625 	cpus_read_unlock();
626 
627 	/* Step 5: Kick optimizer again if needed */
628 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
629 		kick_kprobe_optimizer();
630 
631 	mutex_unlock(&kprobe_mutex);
632 }
633 
634 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)635 void wait_for_kprobe_optimizer(void)
636 {
637 	mutex_lock(&kprobe_mutex);
638 
639 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
640 		mutex_unlock(&kprobe_mutex);
641 
642 		/* this will also make optimizing_work execute immmediately */
643 		flush_delayed_work(&optimizing_work);
644 		/* @optimizing_work might not have been queued yet, relax */
645 		cpu_relax();
646 
647 		mutex_lock(&kprobe_mutex);
648 	}
649 
650 	mutex_unlock(&kprobe_mutex);
651 }
652 
optprobe_queued_unopt(struct optimized_kprobe * op)653 bool optprobe_queued_unopt(struct optimized_kprobe *op)
654 {
655 	struct optimized_kprobe *_op;
656 
657 	list_for_each_entry(_op, &unoptimizing_list, list) {
658 		if (op == _op)
659 			return true;
660 	}
661 
662 	return false;
663 }
664 
665 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)666 static void optimize_kprobe(struct kprobe *p)
667 {
668 	struct optimized_kprobe *op;
669 
670 	/* Check if the kprobe is disabled or not ready for optimization. */
671 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
672 	    (kprobe_disabled(p) || kprobes_all_disarmed))
673 		return;
674 
675 	/* kprobes with post_handler can not be optimized */
676 	if (p->post_handler)
677 		return;
678 
679 	op = container_of(p, struct optimized_kprobe, kp);
680 
681 	/* Check there is no other kprobes at the optimized instructions */
682 	if (arch_check_optimized_kprobe(op) < 0)
683 		return;
684 
685 	/* Check if it is already optimized. */
686 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
687 		if (optprobe_queued_unopt(op)) {
688 			/* This is under unoptimizing. Just dequeue the probe */
689 			list_del_init(&op->list);
690 		}
691 		return;
692 	}
693 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
694 
695 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
696 	if (WARN_ON_ONCE(!list_empty(&op->list)))
697 		return;
698 
699 	list_add(&op->list, &optimizing_list);
700 	kick_kprobe_optimizer();
701 }
702 
703 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)704 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
705 {
706 	lockdep_assert_cpus_held();
707 	arch_unoptimize_kprobe(op);
708 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
709 }
710 
711 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)712 static void unoptimize_kprobe(struct kprobe *p, bool force)
713 {
714 	struct optimized_kprobe *op;
715 
716 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
717 		return; /* This is not an optprobe nor optimized */
718 
719 	op = container_of(p, struct optimized_kprobe, kp);
720 	if (!kprobe_optimized(p))
721 		return;
722 
723 	if (!list_empty(&op->list)) {
724 		if (optprobe_queued_unopt(op)) {
725 			/* Queued in unoptimizing queue */
726 			if (force) {
727 				/*
728 				 * Forcibly unoptimize the kprobe here, and queue it
729 				 * in the freeing list for release afterwards.
730 				 */
731 				force_unoptimize_kprobe(op);
732 				list_move(&op->list, &freeing_list);
733 			}
734 		} else {
735 			/* Dequeue from the optimizing queue */
736 			list_del_init(&op->list);
737 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
738 		}
739 		return;
740 	}
741 
742 	/* Optimized kprobe case */
743 	if (force) {
744 		/* Forcibly update the code: this is a special case */
745 		force_unoptimize_kprobe(op);
746 	} else {
747 		list_add(&op->list, &unoptimizing_list);
748 		kick_kprobe_optimizer();
749 	}
750 }
751 
752 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)753 static int reuse_unused_kprobe(struct kprobe *ap)
754 {
755 	struct optimized_kprobe *op;
756 
757 	/*
758 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
759 	 * there is still a relative jump) and disabled.
760 	 */
761 	op = container_of(ap, struct optimized_kprobe, kp);
762 	WARN_ON_ONCE(list_empty(&op->list));
763 	/* Enable the probe again */
764 	ap->flags &= ~KPROBE_FLAG_DISABLED;
765 	/* Optimize it again (remove from op->list) */
766 	if (!kprobe_optready(ap))
767 		return -EINVAL;
768 
769 	optimize_kprobe(ap);
770 	return 0;
771 }
772 
773 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)774 static void kill_optimized_kprobe(struct kprobe *p)
775 {
776 	struct optimized_kprobe *op;
777 
778 	op = container_of(p, struct optimized_kprobe, kp);
779 	if (!list_empty(&op->list))
780 		/* Dequeue from the (un)optimization queue */
781 		list_del_init(&op->list);
782 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
783 
784 	if (kprobe_unused(p)) {
785 		/*
786 		 * Unused kprobe is on unoptimizing or freeing list. We move it
787 		 * to freeing_list and let the kprobe_optimizer() remove it from
788 		 * the kprobe hash list and free it.
789 		 */
790 		if (optprobe_queued_unopt(op))
791 			list_move(&op->list, &freeing_list);
792 	}
793 
794 	/* Don't touch the code, because it is already freed. */
795 	arch_remove_optimized_kprobe(op);
796 }
797 
798 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)799 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
800 {
801 	if (!kprobe_ftrace(p))
802 		arch_prepare_optimized_kprobe(op, p);
803 }
804 
805 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)806 static void prepare_optimized_kprobe(struct kprobe *p)
807 {
808 	struct optimized_kprobe *op;
809 
810 	op = container_of(p, struct optimized_kprobe, kp);
811 	__prepare_optimized_kprobe(op, p);
812 }
813 
814 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)815 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
816 {
817 	struct optimized_kprobe *op;
818 
819 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
820 	if (!op)
821 		return NULL;
822 
823 	INIT_LIST_HEAD(&op->list);
824 	op->kp.addr = p->addr;
825 	__prepare_optimized_kprobe(op, p);
826 
827 	return &op->kp;
828 }
829 
830 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
831 
832 /*
833  * Prepare an optimized_kprobe and optimize it
834  * NOTE: p must be a normal registered kprobe
835  */
try_to_optimize_kprobe(struct kprobe * p)836 static void try_to_optimize_kprobe(struct kprobe *p)
837 {
838 	struct kprobe *ap;
839 	struct optimized_kprobe *op;
840 
841 	/* Impossible to optimize ftrace-based kprobe */
842 	if (kprobe_ftrace(p))
843 		return;
844 
845 	/* For preparing optimization, jump_label_text_reserved() is called */
846 	cpus_read_lock();
847 	jump_label_lock();
848 	mutex_lock(&text_mutex);
849 
850 	ap = alloc_aggr_kprobe(p);
851 	if (!ap)
852 		goto out;
853 
854 	op = container_of(ap, struct optimized_kprobe, kp);
855 	if (!arch_prepared_optinsn(&op->optinsn)) {
856 		/* If failed to setup optimizing, fallback to kprobe */
857 		arch_remove_optimized_kprobe(op);
858 		kfree(op);
859 		goto out;
860 	}
861 
862 	init_aggr_kprobe(ap, p);
863 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
864 
865 out:
866 	mutex_unlock(&text_mutex);
867 	jump_label_unlock();
868 	cpus_read_unlock();
869 }
870 
optimize_all_kprobes(void)871 static void optimize_all_kprobes(void)
872 {
873 	struct hlist_head *head;
874 	struct kprobe *p;
875 	unsigned int i;
876 
877 	mutex_lock(&kprobe_mutex);
878 	/* If optimization is already allowed, just return */
879 	if (kprobes_allow_optimization)
880 		goto out;
881 
882 	cpus_read_lock();
883 	kprobes_allow_optimization = true;
884 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
885 		head = &kprobe_table[i];
886 		hlist_for_each_entry(p, head, hlist)
887 			if (!kprobe_disabled(p))
888 				optimize_kprobe(p);
889 	}
890 	cpus_read_unlock();
891 	printk(KERN_INFO "Kprobes globally optimized\n");
892 out:
893 	mutex_unlock(&kprobe_mutex);
894 }
895 
896 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)897 static void unoptimize_all_kprobes(void)
898 {
899 	struct hlist_head *head;
900 	struct kprobe *p;
901 	unsigned int i;
902 
903 	mutex_lock(&kprobe_mutex);
904 	/* If optimization is already prohibited, just return */
905 	if (!kprobes_allow_optimization) {
906 		mutex_unlock(&kprobe_mutex);
907 		return;
908 	}
909 
910 	cpus_read_lock();
911 	kprobes_allow_optimization = false;
912 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
913 		head = &kprobe_table[i];
914 		hlist_for_each_entry(p, head, hlist) {
915 			if (!kprobe_disabled(p))
916 				unoptimize_kprobe(p, false);
917 		}
918 	}
919 	cpus_read_unlock();
920 	mutex_unlock(&kprobe_mutex);
921 
922 	/* Wait for unoptimizing completion */
923 	wait_for_kprobe_optimizer();
924 	printk(KERN_INFO "Kprobes globally unoptimized\n");
925 }
926 
927 static DEFINE_MUTEX(kprobe_sysctl_mutex);
928 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)929 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
930 				      void *buffer, size_t *length,
931 				      loff_t *ppos)
932 {
933 	int ret;
934 
935 	mutex_lock(&kprobe_sysctl_mutex);
936 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
937 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
938 
939 	if (sysctl_kprobes_optimization)
940 		optimize_all_kprobes();
941 	else
942 		unoptimize_all_kprobes();
943 	mutex_unlock(&kprobe_sysctl_mutex);
944 
945 	return ret;
946 }
947 #endif /* CONFIG_SYSCTL */
948 
949 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)950 static void __arm_kprobe(struct kprobe *p)
951 {
952 	struct kprobe *_p;
953 
954 	/* Check collision with other optimized kprobes */
955 	_p = get_optimized_kprobe((unsigned long)p->addr);
956 	if (unlikely(_p))
957 		/* Fallback to unoptimized kprobe */
958 		unoptimize_kprobe(_p, true);
959 
960 	arch_arm_kprobe(p);
961 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
962 }
963 
964 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)965 static void __disarm_kprobe(struct kprobe *p, bool reopt)
966 {
967 	struct kprobe *_p;
968 
969 	/* Try to unoptimize */
970 	unoptimize_kprobe(p, kprobes_all_disarmed);
971 
972 	if (!kprobe_queued(p)) {
973 		arch_disarm_kprobe(p);
974 		/* If another kprobe was blocked, optimize it. */
975 		_p = get_optimized_kprobe((unsigned long)p->addr);
976 		if (unlikely(_p) && reopt)
977 			optimize_kprobe(_p);
978 	}
979 	/* TODO: reoptimize others after unoptimized this probe */
980 }
981 
982 #else /* !CONFIG_OPTPROBES */
983 
984 #define optimize_kprobe(p)			do {} while (0)
985 #define unoptimize_kprobe(p, f)			do {} while (0)
986 #define kill_optimized_kprobe(p)		do {} while (0)
987 #define prepare_optimized_kprobe(p)		do {} while (0)
988 #define try_to_optimize_kprobe(p)		do {} while (0)
989 #define __arm_kprobe(p)				arch_arm_kprobe(p)
990 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
991 #define kprobe_disarmed(p)			kprobe_disabled(p)
992 #define wait_for_kprobe_optimizer()		do {} while (0)
993 
reuse_unused_kprobe(struct kprobe * ap)994 static int reuse_unused_kprobe(struct kprobe *ap)
995 {
996 	/*
997 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
998 	 * released at the same time that the last aggregated kprobe is
999 	 * unregistered.
1000 	 * Thus there should be no chance to reuse unused kprobe.
1001 	 */
1002 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1003 	return -EINVAL;
1004 }
1005 
free_aggr_kprobe(struct kprobe * p)1006 static void free_aggr_kprobe(struct kprobe *p)
1007 {
1008 	arch_remove_kprobe(p);
1009 	kfree(p);
1010 }
1011 
alloc_aggr_kprobe(struct kprobe * p)1012 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1013 {
1014 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1015 }
1016 #endif /* CONFIG_OPTPROBES */
1017 
1018 #ifdef CONFIG_KPROBES_ON_FTRACE
1019 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1020 	.func = kprobe_ftrace_handler,
1021 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1022 };
1023 
1024 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1025 	.func = kprobe_ftrace_handler,
1026 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1027 };
1028 
1029 static int kprobe_ipmodify_enabled;
1030 static int kprobe_ftrace_enabled;
1031 
1032 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1033 static int prepare_kprobe(struct kprobe *p)
1034 {
1035 	if (!kprobe_ftrace(p))
1036 		return arch_prepare_kprobe(p);
1037 
1038 	return arch_prepare_kprobe_ftrace(p);
1039 }
1040 
1041 /* Caller must lock kprobe_mutex */
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1042 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1043 			       int *cnt)
1044 {
1045 	int ret = 0;
1046 
1047 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1048 	if (ret) {
1049 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1050 			 p->addr, ret);
1051 		return ret;
1052 	}
1053 
1054 	if (*cnt == 0) {
1055 		ret = register_ftrace_function(ops);
1056 		if (ret) {
1057 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1058 			goto err_ftrace;
1059 		}
1060 	}
1061 
1062 	(*cnt)++;
1063 	return ret;
1064 
1065 err_ftrace:
1066 	/*
1067 	 * At this point, sinec ops is not registered, we should be sefe from
1068 	 * registering empty filter.
1069 	 */
1070 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1071 	return ret;
1072 }
1073 
arm_kprobe_ftrace(struct kprobe * p)1074 static int arm_kprobe_ftrace(struct kprobe *p)
1075 {
1076 	bool ipmodify = (p->post_handler != NULL);
1077 
1078 	return __arm_kprobe_ftrace(p,
1079 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1080 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1081 }
1082 
1083 /* Caller must lock kprobe_mutex */
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1084 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1085 				  int *cnt)
1086 {
1087 	int ret = 0;
1088 
1089 	if (*cnt == 1) {
1090 		ret = unregister_ftrace_function(ops);
1091 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1092 			return ret;
1093 	}
1094 
1095 	(*cnt)--;
1096 
1097 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1099 		  p->addr, ret);
1100 	return ret;
1101 }
1102 
disarm_kprobe_ftrace(struct kprobe * p)1103 static int disarm_kprobe_ftrace(struct kprobe *p)
1104 {
1105 	bool ipmodify = (p->post_handler != NULL);
1106 
1107 	return __disarm_kprobe_ftrace(p,
1108 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1109 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1110 }
1111 #else	/* !CONFIG_KPROBES_ON_FTRACE */
prepare_kprobe(struct kprobe * p)1112 static inline int prepare_kprobe(struct kprobe *p)
1113 {
1114 	return arch_prepare_kprobe(p);
1115 }
1116 
arm_kprobe_ftrace(struct kprobe * p)1117 static inline int arm_kprobe_ftrace(struct kprobe *p)
1118 {
1119 	return -ENODEV;
1120 }
1121 
disarm_kprobe_ftrace(struct kprobe * p)1122 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1123 {
1124 	return -ENODEV;
1125 }
1126 #endif
1127 
1128 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1129 static int arm_kprobe(struct kprobe *kp)
1130 {
1131 	if (unlikely(kprobe_ftrace(kp)))
1132 		return arm_kprobe_ftrace(kp);
1133 
1134 	cpus_read_lock();
1135 	mutex_lock(&text_mutex);
1136 	__arm_kprobe(kp);
1137 	mutex_unlock(&text_mutex);
1138 	cpus_read_unlock();
1139 
1140 	return 0;
1141 }
1142 
1143 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1144 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1145 {
1146 	if (unlikely(kprobe_ftrace(kp)))
1147 		return disarm_kprobe_ftrace(kp);
1148 
1149 	cpus_read_lock();
1150 	mutex_lock(&text_mutex);
1151 	__disarm_kprobe(kp, reopt);
1152 	mutex_unlock(&text_mutex);
1153 	cpus_read_unlock();
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Aggregate handlers for multiple kprobes support - these handlers
1160  * take care of invoking the individual kprobe handlers on p->list
1161  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1162 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1163 {
1164 	struct kprobe *kp;
1165 
1166 	list_for_each_entry_rcu(kp, &p->list, list) {
1167 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1168 			set_kprobe_instance(kp);
1169 			if (kp->pre_handler(kp, regs))
1170 				return 1;
1171 		}
1172 		reset_kprobe_instance();
1173 	}
1174 	return 0;
1175 }
1176 NOKPROBE_SYMBOL(aggr_pre_handler);
1177 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1178 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1179 			      unsigned long flags)
1180 {
1181 	struct kprobe *kp;
1182 
1183 	list_for_each_entry_rcu(kp, &p->list, list) {
1184 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1185 			set_kprobe_instance(kp);
1186 			kp->post_handler(kp, regs, flags);
1187 			reset_kprobe_instance();
1188 		}
1189 	}
1190 }
1191 NOKPROBE_SYMBOL(aggr_post_handler);
1192 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1193 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1194 			      int trapnr)
1195 {
1196 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1197 
1198 	/*
1199 	 * if we faulted "during" the execution of a user specified
1200 	 * probe handler, invoke just that probe's fault handler
1201 	 */
1202 	if (cur && cur->fault_handler) {
1203 		if (cur->fault_handler(cur, regs, trapnr))
1204 			return 1;
1205 	}
1206 	return 0;
1207 }
1208 NOKPROBE_SYMBOL(aggr_fault_handler);
1209 
1210 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1211 void kprobes_inc_nmissed_count(struct kprobe *p)
1212 {
1213 	struct kprobe *kp;
1214 	if (!kprobe_aggrprobe(p)) {
1215 		p->nmissed++;
1216 	} else {
1217 		list_for_each_entry_rcu(kp, &p->list, list)
1218 			kp->nmissed++;
1219 	}
1220 	return;
1221 }
1222 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1223 
recycle_rp_inst(struct kretprobe_instance * ri)1224 static void recycle_rp_inst(struct kretprobe_instance *ri)
1225 {
1226 	struct kretprobe *rp = ri->rp;
1227 
1228 	/* remove rp inst off the rprobe_inst_table */
1229 	hlist_del(&ri->hlist);
1230 	INIT_HLIST_NODE(&ri->hlist);
1231 	if (likely(rp)) {
1232 		raw_spin_lock(&rp->lock);
1233 		hlist_add_head(&ri->hlist, &rp->free_instances);
1234 		raw_spin_unlock(&rp->lock);
1235 	} else
1236 		kfree_rcu(ri, rcu);
1237 }
1238 NOKPROBE_SYMBOL(recycle_rp_inst);
1239 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1240 static void kretprobe_hash_lock(struct task_struct *tsk,
1241 			 struct hlist_head **head, unsigned long *flags)
1242 __acquires(hlist_lock)
1243 {
1244 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1245 	raw_spinlock_t *hlist_lock;
1246 
1247 	*head = &kretprobe_inst_table[hash];
1248 	hlist_lock = kretprobe_table_lock_ptr(hash);
1249 	/*
1250 	 * Nested is a workaround that will soon not be needed.
1251 	 * There's other protections that make sure the same lock
1252 	 * is not taken on the same CPU that lockdep is unaware of.
1253 	 * Differentiate when it is taken in NMI context.
1254 	 */
1255 	raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1256 }
1257 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1258 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1259 static void kretprobe_table_lock(unsigned long hash,
1260 				 unsigned long *flags)
1261 __acquires(hlist_lock)
1262 {
1263 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1264 	/*
1265 	 * Nested is a workaround that will soon not be needed.
1266 	 * There's other protections that make sure the same lock
1267 	 * is not taken on the same CPU that lockdep is unaware of.
1268 	 * Differentiate when it is taken in NMI context.
1269 	 */
1270 	raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi());
1271 }
1272 NOKPROBE_SYMBOL(kretprobe_table_lock);
1273 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1274 static void kretprobe_hash_unlock(struct task_struct *tsk,
1275 			   unsigned long *flags)
1276 __releases(hlist_lock)
1277 {
1278 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1279 	raw_spinlock_t *hlist_lock;
1280 
1281 	hlist_lock = kretprobe_table_lock_ptr(hash);
1282 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1283 }
1284 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1285 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1286 static void kretprobe_table_unlock(unsigned long hash,
1287 				   unsigned long *flags)
1288 __releases(hlist_lock)
1289 {
1290 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1291 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1292 }
1293 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1294 
1295 static struct kprobe kprobe_busy = {
1296 	.addr = (void *) get_kprobe,
1297 };
1298 
kprobe_busy_begin(void)1299 void kprobe_busy_begin(void)
1300 {
1301 	struct kprobe_ctlblk *kcb;
1302 
1303 	preempt_disable();
1304 	__this_cpu_write(current_kprobe, &kprobe_busy);
1305 	kcb = get_kprobe_ctlblk();
1306 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1307 }
1308 
kprobe_busy_end(void)1309 void kprobe_busy_end(void)
1310 {
1311 	__this_cpu_write(current_kprobe, NULL);
1312 	preempt_enable();
1313 }
1314 
1315 /*
1316  * This function is called from finish_task_switch when task tk becomes dead,
1317  * so that we can recycle any function-return probe instances associated
1318  * with this task. These left over instances represent probed functions
1319  * that have been called but will never return.
1320  */
kprobe_flush_task(struct task_struct * tk)1321 void kprobe_flush_task(struct task_struct *tk)
1322 {
1323 	struct kretprobe_instance *ri;
1324 	struct hlist_head *head;
1325 	struct hlist_node *tmp;
1326 	unsigned long hash, flags = 0;
1327 
1328 	if (unlikely(!kprobes_initialized))
1329 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1330 		return;
1331 
1332 	kprobe_busy_begin();
1333 
1334 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1335 	head = &kretprobe_inst_table[hash];
1336 	kretprobe_table_lock(hash, &flags);
1337 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1338 		if (ri->task == tk)
1339 			recycle_rp_inst(ri);
1340 	}
1341 	kretprobe_table_unlock(hash, &flags);
1342 
1343 	kprobe_busy_end();
1344 }
1345 NOKPROBE_SYMBOL(kprobe_flush_task);
1346 
free_rp_inst(struct kretprobe * rp)1347 static inline void free_rp_inst(struct kretprobe *rp)
1348 {
1349 	struct kretprobe_instance *ri;
1350 	struct hlist_node *next;
1351 
1352 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1353 		hlist_del(&ri->hlist);
1354 		kfree(ri);
1355 	}
1356 }
1357 
cleanup_rp_inst(struct kretprobe * rp)1358 static void cleanup_rp_inst(struct kretprobe *rp)
1359 {
1360 	unsigned long flags, hash;
1361 	struct kretprobe_instance *ri;
1362 	struct hlist_node *next;
1363 	struct hlist_head *head;
1364 
1365 	/* To avoid recursive kretprobe by NMI, set kprobe busy here */
1366 	kprobe_busy_begin();
1367 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1368 		kretprobe_table_lock(hash, &flags);
1369 		head = &kretprobe_inst_table[hash];
1370 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1371 			if (ri->rp == rp)
1372 				ri->rp = NULL;
1373 		}
1374 		kretprobe_table_unlock(hash, &flags);
1375 	}
1376 	kprobe_busy_end();
1377 
1378 	free_rp_inst(rp);
1379 }
1380 NOKPROBE_SYMBOL(cleanup_rp_inst);
1381 
1382 /* Add the new probe to ap->list */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1383 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1384 {
1385 	if (p->post_handler)
1386 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1387 
1388 	list_add_rcu(&p->list, &ap->list);
1389 	if (p->post_handler && !ap->post_handler)
1390 		ap->post_handler = aggr_post_handler;
1391 
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Fill in the required fields of the "manager kprobe". Replace the
1397  * earlier kprobe in the hlist with the manager kprobe
1398  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1399 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1400 {
1401 	/* Copy p's insn slot to ap */
1402 	copy_kprobe(p, ap);
1403 	flush_insn_slot(ap);
1404 	ap->addr = p->addr;
1405 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1406 	ap->pre_handler = aggr_pre_handler;
1407 	ap->fault_handler = aggr_fault_handler;
1408 	/* We don't care the kprobe which has gone. */
1409 	if (p->post_handler && !kprobe_gone(p))
1410 		ap->post_handler = aggr_post_handler;
1411 
1412 	INIT_LIST_HEAD(&ap->list);
1413 	INIT_HLIST_NODE(&ap->hlist);
1414 
1415 	list_add_rcu(&p->list, &ap->list);
1416 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1417 }
1418 
1419 /*
1420  * This is the second or subsequent kprobe at the address - handle
1421  * the intricacies
1422  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1423 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1424 {
1425 	int ret = 0;
1426 	struct kprobe *ap = orig_p;
1427 
1428 	cpus_read_lock();
1429 
1430 	/* For preparing optimization, jump_label_text_reserved() is called */
1431 	jump_label_lock();
1432 	mutex_lock(&text_mutex);
1433 
1434 	if (!kprobe_aggrprobe(orig_p)) {
1435 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1436 		ap = alloc_aggr_kprobe(orig_p);
1437 		if (!ap) {
1438 			ret = -ENOMEM;
1439 			goto out;
1440 		}
1441 		init_aggr_kprobe(ap, orig_p);
1442 	} else if (kprobe_unused(ap)) {
1443 		/* This probe is going to die. Rescue it */
1444 		ret = reuse_unused_kprobe(ap);
1445 		if (ret)
1446 			goto out;
1447 	}
1448 
1449 	if (kprobe_gone(ap)) {
1450 		/*
1451 		 * Attempting to insert new probe at the same location that
1452 		 * had a probe in the module vaddr area which already
1453 		 * freed. So, the instruction slot has already been
1454 		 * released. We need a new slot for the new probe.
1455 		 */
1456 		ret = arch_prepare_kprobe(ap);
1457 		if (ret)
1458 			/*
1459 			 * Even if fail to allocate new slot, don't need to
1460 			 * free aggr_probe. It will be used next time, or
1461 			 * freed by unregister_kprobe.
1462 			 */
1463 			goto out;
1464 
1465 		/* Prepare optimized instructions if possible. */
1466 		prepare_optimized_kprobe(ap);
1467 
1468 		/*
1469 		 * Clear gone flag to prevent allocating new slot again, and
1470 		 * set disabled flag because it is not armed yet.
1471 		 */
1472 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1473 			    | KPROBE_FLAG_DISABLED;
1474 	}
1475 
1476 	/* Copy ap's insn slot to p */
1477 	copy_kprobe(ap, p);
1478 	ret = add_new_kprobe(ap, p);
1479 
1480 out:
1481 	mutex_unlock(&text_mutex);
1482 	jump_label_unlock();
1483 	cpus_read_unlock();
1484 
1485 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1486 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1487 		if (!kprobes_all_disarmed) {
1488 			/* Arm the breakpoint again. */
1489 			ret = arm_kprobe(ap);
1490 			if (ret) {
1491 				ap->flags |= KPROBE_FLAG_DISABLED;
1492 				list_del_rcu(&p->list);
1493 				synchronize_rcu();
1494 			}
1495 		}
1496 	}
1497 	return ret;
1498 }
1499 
arch_within_kprobe_blacklist(unsigned long addr)1500 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1501 {
1502 	/* The __kprobes marked functions and entry code must not be probed */
1503 	return addr >= (unsigned long)__kprobes_text_start &&
1504 	       addr < (unsigned long)__kprobes_text_end;
1505 }
1506 
__within_kprobe_blacklist(unsigned long addr)1507 static bool __within_kprobe_blacklist(unsigned long addr)
1508 {
1509 	struct kprobe_blacklist_entry *ent;
1510 
1511 	if (arch_within_kprobe_blacklist(addr))
1512 		return true;
1513 	/*
1514 	 * If there exists a kprobe_blacklist, verify and
1515 	 * fail any probe registration in the prohibited area
1516 	 */
1517 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1518 		if (addr >= ent->start_addr && addr < ent->end_addr)
1519 			return true;
1520 	}
1521 	return false;
1522 }
1523 
within_kprobe_blacklist(unsigned long addr)1524 bool within_kprobe_blacklist(unsigned long addr)
1525 {
1526 	char symname[KSYM_NAME_LEN], *p;
1527 
1528 	if (__within_kprobe_blacklist(addr))
1529 		return true;
1530 
1531 	/* Check if the address is on a suffixed-symbol */
1532 	if (!lookup_symbol_name(addr, symname)) {
1533 		p = strchr(symname, '.');
1534 		if (!p)
1535 			return false;
1536 		*p = '\0';
1537 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1538 		if (addr)
1539 			return __within_kprobe_blacklist(addr);
1540 	}
1541 	return false;
1542 }
1543 
1544 /*
1545  * If we have a symbol_name argument, look it up and add the offset field
1546  * to it. This way, we can specify a relative address to a symbol.
1547  * This returns encoded errors if it fails to look up symbol or invalid
1548  * combination of parameters.
1549  */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1550 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1551 			const char *symbol_name, unsigned int offset)
1552 {
1553 	if ((symbol_name && addr) || (!symbol_name && !addr))
1554 		goto invalid;
1555 
1556 	if (symbol_name) {
1557 		addr = kprobe_lookup_name(symbol_name, offset);
1558 		if (!addr)
1559 			return ERR_PTR(-ENOENT);
1560 	}
1561 
1562 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1563 	if (addr)
1564 		return addr;
1565 
1566 invalid:
1567 	return ERR_PTR(-EINVAL);
1568 }
1569 
kprobe_addr(struct kprobe * p)1570 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1571 {
1572 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1573 }
1574 
1575 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1576 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1577 {
1578 	struct kprobe *ap, *list_p;
1579 
1580 	lockdep_assert_held(&kprobe_mutex);
1581 
1582 	ap = get_kprobe(p->addr);
1583 	if (unlikely(!ap))
1584 		return NULL;
1585 
1586 	if (p != ap) {
1587 		list_for_each_entry(list_p, &ap->list, list)
1588 			if (list_p == p)
1589 			/* kprobe p is a valid probe */
1590 				goto valid;
1591 		return NULL;
1592 	}
1593 valid:
1594 	return ap;
1595 }
1596 
1597 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1598 static inline int check_kprobe_rereg(struct kprobe *p)
1599 {
1600 	int ret = 0;
1601 
1602 	mutex_lock(&kprobe_mutex);
1603 	if (__get_valid_kprobe(p))
1604 		ret = -EINVAL;
1605 	mutex_unlock(&kprobe_mutex);
1606 
1607 	return ret;
1608 }
1609 
arch_check_ftrace_location(struct kprobe * p)1610 int __weak arch_check_ftrace_location(struct kprobe *p)
1611 {
1612 	unsigned long ftrace_addr;
1613 
1614 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1615 	if (ftrace_addr) {
1616 #ifdef CONFIG_KPROBES_ON_FTRACE
1617 		/* Given address is not on the instruction boundary */
1618 		if ((unsigned long)p->addr != ftrace_addr)
1619 			return -EILSEQ;
1620 		p->flags |= KPROBE_FLAG_FTRACE;
1621 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1622 		return -EINVAL;
1623 #endif
1624 	}
1625 	return 0;
1626 }
1627 
is_cfi_preamble_symbol(unsigned long addr)1628 static bool is_cfi_preamble_symbol(unsigned long addr)
1629 {
1630 	char symbuf[KSYM_NAME_LEN];
1631 
1632 	if (lookup_symbol_name(addr, symbuf))
1633 		return false;
1634 
1635 	return str_has_prefix("__cfi_", symbuf) ||
1636 		str_has_prefix("__pfx_", symbuf);
1637 }
1638 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1639 static int check_kprobe_address_safe(struct kprobe *p,
1640 				     struct module **probed_mod)
1641 {
1642 	int ret;
1643 
1644 	ret = arch_check_ftrace_location(p);
1645 	if (ret)
1646 		return ret;
1647 	jump_label_lock();
1648 	preempt_disable();
1649 
1650 	/* Ensure it is not in reserved area nor out of text */
1651 	if (!(core_kernel_text((unsigned long) p->addr) ||
1652 	    is_module_text_address((unsigned long) p->addr)) ||
1653 	    in_gate_area_no_mm((unsigned long) p->addr) ||
1654 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1655 	    jump_label_text_reserved(p->addr, p->addr) ||
1656 	    static_call_text_reserved(p->addr, p->addr) ||
1657 	    find_bug((unsigned long)p->addr) ||
1658 	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1659 		ret = -EINVAL;
1660 		goto out;
1661 	}
1662 
1663 	/* Check if are we probing a module */
1664 	*probed_mod = __module_text_address((unsigned long) p->addr);
1665 	if (*probed_mod) {
1666 		/*
1667 		 * We must hold a refcount of the probed module while updating
1668 		 * its code to prohibit unexpected unloading.
1669 		 */
1670 		if (unlikely(!try_module_get(*probed_mod))) {
1671 			ret = -ENOENT;
1672 			goto out;
1673 		}
1674 
1675 		/*
1676 		 * If the module freed .init.text, we couldn't insert
1677 		 * kprobes in there.
1678 		 */
1679 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1680 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1681 			module_put(*probed_mod);
1682 			*probed_mod = NULL;
1683 			ret = -ENOENT;
1684 		}
1685 	}
1686 out:
1687 	preempt_enable();
1688 	jump_label_unlock();
1689 
1690 	return ret;
1691 }
1692 
register_kprobe(struct kprobe * p)1693 int register_kprobe(struct kprobe *p)
1694 {
1695 	int ret;
1696 	struct kprobe *old_p;
1697 	struct module *probed_mod;
1698 	kprobe_opcode_t *addr;
1699 
1700 	/* Adjust probe address from symbol */
1701 	addr = kprobe_addr(p);
1702 	if (IS_ERR(addr))
1703 		return PTR_ERR(addr);
1704 	p->addr = addr;
1705 
1706 	ret = check_kprobe_rereg(p);
1707 	if (ret)
1708 		return ret;
1709 
1710 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1711 	p->flags &= KPROBE_FLAG_DISABLED;
1712 	p->nmissed = 0;
1713 	INIT_LIST_HEAD(&p->list);
1714 
1715 	ret = check_kprobe_address_safe(p, &probed_mod);
1716 	if (ret)
1717 		return ret;
1718 
1719 	mutex_lock(&kprobe_mutex);
1720 
1721 	old_p = get_kprobe(p->addr);
1722 	if (old_p) {
1723 		/* Since this may unoptimize old_p, locking text_mutex. */
1724 		ret = register_aggr_kprobe(old_p, p);
1725 		goto out;
1726 	}
1727 
1728 	cpus_read_lock();
1729 	/* Prevent text modification */
1730 	mutex_lock(&text_mutex);
1731 	ret = prepare_kprobe(p);
1732 	mutex_unlock(&text_mutex);
1733 	cpus_read_unlock();
1734 	if (ret)
1735 		goto out;
1736 
1737 	INIT_HLIST_NODE(&p->hlist);
1738 	hlist_add_head_rcu(&p->hlist,
1739 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1740 
1741 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1742 		ret = arm_kprobe(p);
1743 		if (ret) {
1744 			hlist_del_rcu(&p->hlist);
1745 			synchronize_rcu();
1746 			goto out;
1747 		}
1748 	}
1749 
1750 	/* Try to optimize kprobe */
1751 	try_to_optimize_kprobe(p);
1752 out:
1753 	mutex_unlock(&kprobe_mutex);
1754 
1755 	if (probed_mod)
1756 		module_put(probed_mod);
1757 
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL_GPL(register_kprobe);
1761 
1762 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1763 static int aggr_kprobe_disabled(struct kprobe *ap)
1764 {
1765 	struct kprobe *kp;
1766 
1767 	lockdep_assert_held(&kprobe_mutex);
1768 
1769 	list_for_each_entry(kp, &ap->list, list)
1770 		if (!kprobe_disabled(kp))
1771 			/*
1772 			 * There is an active probe on the list.
1773 			 * We can't disable this ap.
1774 			 */
1775 			return 0;
1776 
1777 	return 1;
1778 }
1779 
1780 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1781 static struct kprobe *__disable_kprobe(struct kprobe *p)
1782 {
1783 	struct kprobe *orig_p;
1784 	int ret;
1785 
1786 	/* Get an original kprobe for return */
1787 	orig_p = __get_valid_kprobe(p);
1788 	if (unlikely(orig_p == NULL))
1789 		return ERR_PTR(-EINVAL);
1790 
1791 	if (!kprobe_disabled(p)) {
1792 		/* Disable probe if it is a child probe */
1793 		if (p != orig_p)
1794 			p->flags |= KPROBE_FLAG_DISABLED;
1795 
1796 		/* Try to disarm and disable this/parent probe */
1797 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1798 			/*
1799 			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1800 			 * is false, 'orig_p' might not have been armed yet.
1801 			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1802 			 * on the best effort basis.
1803 			 */
1804 			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1805 				ret = disarm_kprobe(orig_p, true);
1806 				if (ret) {
1807 					p->flags &= ~KPROBE_FLAG_DISABLED;
1808 					return ERR_PTR(ret);
1809 				}
1810 			}
1811 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1812 		}
1813 	}
1814 
1815 	return orig_p;
1816 }
1817 
1818 /*
1819  * Unregister a kprobe without a scheduler synchronization.
1820  */
__unregister_kprobe_top(struct kprobe * p)1821 static int __unregister_kprobe_top(struct kprobe *p)
1822 {
1823 	struct kprobe *ap, *list_p;
1824 
1825 	/* Disable kprobe. This will disarm it if needed. */
1826 	ap = __disable_kprobe(p);
1827 	if (IS_ERR(ap))
1828 		return PTR_ERR(ap);
1829 
1830 	if (ap == p)
1831 		/*
1832 		 * This probe is an independent(and non-optimized) kprobe
1833 		 * (not an aggrprobe). Remove from the hash list.
1834 		 */
1835 		goto disarmed;
1836 
1837 	/* Following process expects this probe is an aggrprobe */
1838 	WARN_ON(!kprobe_aggrprobe(ap));
1839 
1840 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1841 		/*
1842 		 * !disarmed could be happen if the probe is under delayed
1843 		 * unoptimizing.
1844 		 */
1845 		goto disarmed;
1846 	else {
1847 		/* If disabling probe has special handlers, update aggrprobe */
1848 		if (p->post_handler && !kprobe_gone(p)) {
1849 			list_for_each_entry(list_p, &ap->list, list) {
1850 				if ((list_p != p) && (list_p->post_handler))
1851 					goto noclean;
1852 			}
1853 			/*
1854 			 * For the kprobe-on-ftrace case, we keep the
1855 			 * post_handler setting to identify this aggrprobe
1856 			 * armed with kprobe_ipmodify_ops.
1857 			 */
1858 			if (!kprobe_ftrace(ap))
1859 				ap->post_handler = NULL;
1860 		}
1861 noclean:
1862 		/*
1863 		 * Remove from the aggrprobe: this path will do nothing in
1864 		 * __unregister_kprobe_bottom().
1865 		 */
1866 		list_del_rcu(&p->list);
1867 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1868 			/*
1869 			 * Try to optimize this probe again, because post
1870 			 * handler may have been changed.
1871 			 */
1872 			optimize_kprobe(ap);
1873 	}
1874 	return 0;
1875 
1876 disarmed:
1877 	hlist_del_rcu(&ap->hlist);
1878 	return 0;
1879 }
1880 
__unregister_kprobe_bottom(struct kprobe * p)1881 static void __unregister_kprobe_bottom(struct kprobe *p)
1882 {
1883 	struct kprobe *ap;
1884 
1885 	if (list_empty(&p->list))
1886 		/* This is an independent kprobe */
1887 		arch_remove_kprobe(p);
1888 	else if (list_is_singular(&p->list)) {
1889 		/* This is the last child of an aggrprobe */
1890 		ap = list_entry(p->list.next, struct kprobe, list);
1891 		list_del(&p->list);
1892 		free_aggr_kprobe(ap);
1893 	}
1894 	/* Otherwise, do nothing. */
1895 }
1896 
register_kprobes(struct kprobe ** kps,int num)1897 int register_kprobes(struct kprobe **kps, int num)
1898 {
1899 	int i, ret = 0;
1900 
1901 	if (num <= 0)
1902 		return -EINVAL;
1903 	for (i = 0; i < num; i++) {
1904 		ret = register_kprobe(kps[i]);
1905 		if (ret < 0) {
1906 			if (i > 0)
1907 				unregister_kprobes(kps, i);
1908 			break;
1909 		}
1910 	}
1911 	return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(register_kprobes);
1914 
unregister_kprobe(struct kprobe * p)1915 void unregister_kprobe(struct kprobe *p)
1916 {
1917 	unregister_kprobes(&p, 1);
1918 }
1919 EXPORT_SYMBOL_GPL(unregister_kprobe);
1920 
unregister_kprobes(struct kprobe ** kps,int num)1921 void unregister_kprobes(struct kprobe **kps, int num)
1922 {
1923 	int i;
1924 
1925 	if (num <= 0)
1926 		return;
1927 	mutex_lock(&kprobe_mutex);
1928 	for (i = 0; i < num; i++)
1929 		if (__unregister_kprobe_top(kps[i]) < 0)
1930 			kps[i]->addr = NULL;
1931 	mutex_unlock(&kprobe_mutex);
1932 
1933 	synchronize_rcu();
1934 	for (i = 0; i < num; i++)
1935 		if (kps[i]->addr)
1936 			__unregister_kprobe_bottom(kps[i]);
1937 }
1938 EXPORT_SYMBOL_GPL(unregister_kprobes);
1939 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1940 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1941 					unsigned long val, void *data)
1942 {
1943 	return NOTIFY_DONE;
1944 }
1945 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1946 
1947 static struct notifier_block kprobe_exceptions_nb = {
1948 	.notifier_call = kprobe_exceptions_notify,
1949 	.priority = 0x7fffffff /* we need to be notified first */
1950 };
1951 
arch_deref_entry_point(void * entry)1952 unsigned long __weak arch_deref_entry_point(void *entry)
1953 {
1954 	return (unsigned long)entry;
1955 }
1956 
1957 #ifdef CONFIG_KRETPROBES
1958 
__kretprobe_trampoline_handler(struct pt_regs * regs,void * trampoline_address,void * frame_pointer)1959 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1960 					     void *trampoline_address,
1961 					     void *frame_pointer)
1962 {
1963 	struct kretprobe_instance *ri = NULL, *last = NULL;
1964 	struct hlist_head *head;
1965 	struct hlist_node *tmp;
1966 	unsigned long flags;
1967 	kprobe_opcode_t *correct_ret_addr = NULL;
1968 	bool skipped = false;
1969 
1970 	kretprobe_hash_lock(current, &head, &flags);
1971 
1972 	/*
1973 	 * It is possible to have multiple instances associated with a given
1974 	 * task either because multiple functions in the call path have
1975 	 * return probes installed on them, and/or more than one
1976 	 * return probe was registered for a target function.
1977 	 *
1978 	 * We can handle this because:
1979 	 *     - instances are always pushed into the head of the list
1980 	 *     - when multiple return probes are registered for the same
1981 	 *	 function, the (chronologically) first instance's ret_addr
1982 	 *	 will be the real return address, and all the rest will
1983 	 *	 point to kretprobe_trampoline.
1984 	 */
1985 	hlist_for_each_entry(ri, head, hlist) {
1986 		if (ri->task != current)
1987 			/* another task is sharing our hash bucket */
1988 			continue;
1989 		/*
1990 		 * Return probes must be pushed on this hash list correct
1991 		 * order (same as return order) so that it can be popped
1992 		 * correctly. However, if we find it is pushed it incorrect
1993 		 * order, this means we find a function which should not be
1994 		 * probed, because the wrong order entry is pushed on the
1995 		 * path of processing other kretprobe itself.
1996 		 */
1997 		if (ri->fp != frame_pointer) {
1998 			if (!skipped)
1999 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
2000 			skipped = true;
2001 			continue;
2002 		}
2003 
2004 		correct_ret_addr = ri->ret_addr;
2005 		if (skipped)
2006 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
2007 				ri->rp->kp.addr);
2008 
2009 		if (correct_ret_addr != trampoline_address)
2010 			/*
2011 			 * This is the real return address. Any other
2012 			 * instances associated with this task are for
2013 			 * other calls deeper on the call stack
2014 			 */
2015 			break;
2016 	}
2017 
2018 	BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address));
2019 	last = ri;
2020 
2021 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
2022 		if (ri->task != current)
2023 			/* another task is sharing our hash bucket */
2024 			continue;
2025 		if (ri->fp != frame_pointer)
2026 			continue;
2027 
2028 		if (ri->rp && ri->rp->handler) {
2029 			struct kprobe *prev = kprobe_running();
2030 
2031 			__this_cpu_write(current_kprobe, &ri->rp->kp);
2032 			ri->ret_addr = correct_ret_addr;
2033 			ri->rp->handler(ri, regs);
2034 			__this_cpu_write(current_kprobe, prev);
2035 		}
2036 
2037 		recycle_rp_inst(ri);
2038 
2039 		if (ri == last)
2040 			break;
2041 	}
2042 
2043 	kretprobe_hash_unlock(current, &flags);
2044 
2045 	return (unsigned long)correct_ret_addr;
2046 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2047 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2048 
2049 /*
2050  * This kprobe pre_handler is registered with every kretprobe. When probe
2051  * hits it will set up the return probe.
2052  */
2053 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2054 {
2055 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2056 	unsigned long hash, flags = 0;
2057 	struct kretprobe_instance *ri;
2058 
2059 	/* TODO: consider to only swap the RA after the last pre_handler fired */
2060 	hash = hash_ptr(current, KPROBE_HASH_BITS);
2061 	/*
2062 	 * Nested is a workaround that will soon not be needed.
2063 	 * There's other protections that make sure the same lock
2064 	 * is not taken on the same CPU that lockdep is unaware of.
2065 	 */
2066 	raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2067 	if (!hlist_empty(&rp->free_instances)) {
2068 		ri = hlist_entry(rp->free_instances.first,
2069 				struct kretprobe_instance, hlist);
2070 		hlist_del(&ri->hlist);
2071 		raw_spin_unlock_irqrestore(&rp->lock, flags);
2072 
2073 		ri->rp = rp;
2074 		ri->task = current;
2075 
2076 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2077 			raw_spin_lock_irqsave_nested(&rp->lock, flags, 1);
2078 			hlist_add_head(&ri->hlist, &rp->free_instances);
2079 			raw_spin_unlock_irqrestore(&rp->lock, flags);
2080 			return 0;
2081 		}
2082 
2083 		arch_prepare_kretprobe(ri, regs);
2084 
2085 		/* XXX(hch): why is there no hlist_move_head? */
2086 		INIT_HLIST_NODE(&ri->hlist);
2087 		kretprobe_table_lock(hash, &flags);
2088 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
2089 		kretprobe_table_unlock(hash, &flags);
2090 	} else {
2091 		rp->nmissed++;
2092 		raw_spin_unlock_irqrestore(&rp->lock, flags);
2093 	}
2094 	return 0;
2095 }
2096 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2097 
arch_kprobe_on_func_entry(unsigned long offset)2098 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
2099 {
2100 	return !offset;
2101 }
2102 
2103 /**
2104  * kprobe_on_func_entry() -- check whether given address is function entry
2105  * @addr: Target address
2106  * @sym:  Target symbol name
2107  * @offset: The offset from the symbol or the address
2108  *
2109  * This checks whether the given @addr+@offset or @sym+@offset is on the
2110  * function entry address or not.
2111  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2112  * And also it returns -ENOENT if it fails the symbol or address lookup.
2113  * Caller must pass @addr or @sym (either one must be NULL), or this
2114  * returns -EINVAL.
2115  */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2116 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2117 {
2118 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
2119 
2120 	if (IS_ERR(kp_addr))
2121 		return PTR_ERR(kp_addr);
2122 
2123 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
2124 		return -ENOENT;
2125 
2126 	if (!arch_kprobe_on_func_entry(offset))
2127 		return -EINVAL;
2128 
2129 	return 0;
2130 }
2131 
register_kretprobe(struct kretprobe * rp)2132 int register_kretprobe(struct kretprobe *rp)
2133 {
2134 	int ret;
2135 	struct kretprobe_instance *inst;
2136 	int i;
2137 	void *addr;
2138 
2139 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2140 	if (ret)
2141 		return ret;
2142 
2143 	/* If only rp->kp.addr is specified, check reregistering kprobes */
2144 	if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2145 		return -EINVAL;
2146 
2147 	if (kretprobe_blacklist_size) {
2148 		addr = kprobe_addr(&rp->kp);
2149 		if (IS_ERR(addr))
2150 			return PTR_ERR(addr);
2151 
2152 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2153 			if (kretprobe_blacklist[i].addr == addr)
2154 				return -EINVAL;
2155 		}
2156 	}
2157 
2158 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2159 		return -E2BIG;
2160 
2161 	rp->kp.pre_handler = pre_handler_kretprobe;
2162 	rp->kp.post_handler = NULL;
2163 	rp->kp.fault_handler = NULL;
2164 
2165 	/* Pre-allocate memory for max kretprobe instances */
2166 	if (rp->maxactive <= 0) {
2167 #ifdef CONFIG_PREEMPTION
2168 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2169 #else
2170 		rp->maxactive = num_possible_cpus();
2171 #endif
2172 	}
2173 	raw_spin_lock_init(&rp->lock);
2174 	INIT_HLIST_HEAD(&rp->free_instances);
2175 	for (i = 0; i < rp->maxactive; i++) {
2176 		inst = kmalloc(sizeof(struct kretprobe_instance) +
2177 			       rp->data_size, GFP_KERNEL);
2178 		if (inst == NULL) {
2179 			free_rp_inst(rp);
2180 			return -ENOMEM;
2181 		}
2182 		INIT_HLIST_NODE(&inst->hlist);
2183 		hlist_add_head(&inst->hlist, &rp->free_instances);
2184 	}
2185 
2186 	rp->nmissed = 0;
2187 	/* Establish function entry probe point */
2188 	ret = register_kprobe(&rp->kp);
2189 	if (ret != 0)
2190 		free_rp_inst(rp);
2191 	return ret;
2192 }
2193 EXPORT_SYMBOL_GPL(register_kretprobe);
2194 
register_kretprobes(struct kretprobe ** rps,int num)2195 int register_kretprobes(struct kretprobe **rps, int num)
2196 {
2197 	int ret = 0, i;
2198 
2199 	if (num <= 0)
2200 		return -EINVAL;
2201 	for (i = 0; i < num; i++) {
2202 		ret = register_kretprobe(rps[i]);
2203 		if (ret < 0) {
2204 			if (i > 0)
2205 				unregister_kretprobes(rps, i);
2206 			break;
2207 		}
2208 	}
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(register_kretprobes);
2212 
unregister_kretprobe(struct kretprobe * rp)2213 void unregister_kretprobe(struct kretprobe *rp)
2214 {
2215 	unregister_kretprobes(&rp, 1);
2216 }
2217 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2218 
unregister_kretprobes(struct kretprobe ** rps,int num)2219 void unregister_kretprobes(struct kretprobe **rps, int num)
2220 {
2221 	int i;
2222 
2223 	if (num <= 0)
2224 		return;
2225 	mutex_lock(&kprobe_mutex);
2226 	for (i = 0; i < num; i++)
2227 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2228 			rps[i]->kp.addr = NULL;
2229 	mutex_unlock(&kprobe_mutex);
2230 
2231 	synchronize_rcu();
2232 	for (i = 0; i < num; i++) {
2233 		if (rps[i]->kp.addr) {
2234 			__unregister_kprobe_bottom(&rps[i]->kp);
2235 			cleanup_rp_inst(rps[i]);
2236 		}
2237 	}
2238 }
2239 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2240 
2241 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2242 int register_kretprobe(struct kretprobe *rp)
2243 {
2244 	return -ENOSYS;
2245 }
2246 EXPORT_SYMBOL_GPL(register_kretprobe);
2247 
register_kretprobes(struct kretprobe ** rps,int num)2248 int register_kretprobes(struct kretprobe **rps, int num)
2249 {
2250 	return -ENOSYS;
2251 }
2252 EXPORT_SYMBOL_GPL(register_kretprobes);
2253 
unregister_kretprobe(struct kretprobe * rp)2254 void unregister_kretprobe(struct kretprobe *rp)
2255 {
2256 }
2257 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2258 
unregister_kretprobes(struct kretprobe ** rps,int num)2259 void unregister_kretprobes(struct kretprobe **rps, int num)
2260 {
2261 }
2262 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2263 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2264 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2265 {
2266 	return 0;
2267 }
2268 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2269 
2270 #endif /* CONFIG_KRETPROBES */
2271 
2272 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2273 static void kill_kprobe(struct kprobe *p)
2274 {
2275 	struct kprobe *kp;
2276 
2277 	lockdep_assert_held(&kprobe_mutex);
2278 
2279 	if (WARN_ON_ONCE(kprobe_gone(p)))
2280 		return;
2281 
2282 	p->flags |= KPROBE_FLAG_GONE;
2283 	if (kprobe_aggrprobe(p)) {
2284 		/*
2285 		 * If this is an aggr_kprobe, we have to list all the
2286 		 * chained probes and mark them GONE.
2287 		 */
2288 		list_for_each_entry(kp, &p->list, list)
2289 			kp->flags |= KPROBE_FLAG_GONE;
2290 		p->post_handler = NULL;
2291 		kill_optimized_kprobe(p);
2292 	}
2293 	/*
2294 	 * Here, we can remove insn_slot safely, because no thread calls
2295 	 * the original probed function (which will be freed soon) any more.
2296 	 */
2297 	arch_remove_kprobe(p);
2298 
2299 	/*
2300 	 * The module is going away. We should disarm the kprobe which
2301 	 * is using ftrace, because ftrace framework is still available at
2302 	 * MODULE_STATE_GOING notification.
2303 	 */
2304 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2305 		disarm_kprobe_ftrace(p);
2306 }
2307 
2308 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2309 int disable_kprobe(struct kprobe *kp)
2310 {
2311 	int ret = 0;
2312 	struct kprobe *p;
2313 
2314 	mutex_lock(&kprobe_mutex);
2315 
2316 	/* Disable this kprobe */
2317 	p = __disable_kprobe(kp);
2318 	if (IS_ERR(p))
2319 		ret = PTR_ERR(p);
2320 
2321 	mutex_unlock(&kprobe_mutex);
2322 	return ret;
2323 }
2324 EXPORT_SYMBOL_GPL(disable_kprobe);
2325 
2326 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2327 int enable_kprobe(struct kprobe *kp)
2328 {
2329 	int ret = 0;
2330 	struct kprobe *p;
2331 
2332 	mutex_lock(&kprobe_mutex);
2333 
2334 	/* Check whether specified probe is valid. */
2335 	p = __get_valid_kprobe(kp);
2336 	if (unlikely(p == NULL)) {
2337 		ret = -EINVAL;
2338 		goto out;
2339 	}
2340 
2341 	if (kprobe_gone(kp)) {
2342 		/* This kprobe has gone, we couldn't enable it. */
2343 		ret = -EINVAL;
2344 		goto out;
2345 	}
2346 
2347 	if (p != kp)
2348 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2349 
2350 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2351 		p->flags &= ~KPROBE_FLAG_DISABLED;
2352 		ret = arm_kprobe(p);
2353 		if (ret) {
2354 			p->flags |= KPROBE_FLAG_DISABLED;
2355 			if (p != kp)
2356 				kp->flags |= KPROBE_FLAG_DISABLED;
2357 		}
2358 	}
2359 out:
2360 	mutex_unlock(&kprobe_mutex);
2361 	return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(enable_kprobe);
2364 
2365 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2366 void dump_kprobe(struct kprobe *kp)
2367 {
2368 	pr_err("Dumping kprobe:\n");
2369 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2370 	       kp->symbol_name, kp->offset, kp->addr);
2371 }
2372 NOKPROBE_SYMBOL(dump_kprobe);
2373 
kprobe_add_ksym_blacklist(unsigned long entry)2374 int kprobe_add_ksym_blacklist(unsigned long entry)
2375 {
2376 	struct kprobe_blacklist_entry *ent;
2377 	unsigned long offset = 0, size = 0;
2378 
2379 	if (!kernel_text_address(entry) ||
2380 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2381 		return -EINVAL;
2382 
2383 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2384 	if (!ent)
2385 		return -ENOMEM;
2386 	ent->start_addr = entry;
2387 	ent->end_addr = entry + size;
2388 	INIT_LIST_HEAD(&ent->list);
2389 	list_add_tail(&ent->list, &kprobe_blacklist);
2390 
2391 	return (int)size;
2392 }
2393 
2394 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2395 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2396 {
2397 	unsigned long entry;
2398 	int ret = 0;
2399 
2400 	for (entry = start; entry < end; entry += ret) {
2401 		ret = kprobe_add_ksym_blacklist(entry);
2402 		if (ret < 0)
2403 			return ret;
2404 		if (ret == 0)	/* In case of alias symbol */
2405 			ret = 1;
2406 	}
2407 	return 0;
2408 }
2409 
2410 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2411 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2412 {
2413 	struct kprobe_blacklist_entry *ent, *n;
2414 
2415 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2416 		if (ent->start_addr < start || ent->start_addr >= end)
2417 			continue;
2418 		list_del(&ent->list);
2419 		kfree(ent);
2420 	}
2421 }
2422 
kprobe_remove_ksym_blacklist(unsigned long entry)2423 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2424 {
2425 	kprobe_remove_area_blacklist(entry, entry + 1);
2426 }
2427 
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2428 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2429 				   char *type, char *sym)
2430 {
2431 	return -ERANGE;
2432 }
2433 
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2434 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2435 		       char *sym)
2436 {
2437 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2438 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2439 		return 0;
2440 #ifdef CONFIG_OPTPROBES
2441 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2442 		return 0;
2443 #endif
2444 #endif
2445 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2446 		return 0;
2447 	return -ERANGE;
2448 }
2449 
arch_populate_kprobe_blacklist(void)2450 int __init __weak arch_populate_kprobe_blacklist(void)
2451 {
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Lookup and populate the kprobe_blacklist.
2457  *
2458  * Unlike the kretprobe blacklist, we'll need to determine
2459  * the range of addresses that belong to the said functions,
2460  * since a kprobe need not necessarily be at the beginning
2461  * of a function.
2462  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2463 static int __init populate_kprobe_blacklist(unsigned long *start,
2464 					     unsigned long *end)
2465 {
2466 	unsigned long entry;
2467 	unsigned long *iter;
2468 	int ret;
2469 
2470 	for (iter = start; iter < end; iter++) {
2471 		entry = arch_deref_entry_point((void *)*iter);
2472 		ret = kprobe_add_ksym_blacklist(entry);
2473 		if (ret == -EINVAL)
2474 			continue;
2475 		if (ret < 0)
2476 			return ret;
2477 	}
2478 
2479 	/* Symbols in __kprobes_text are blacklisted */
2480 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2481 					(unsigned long)__kprobes_text_end);
2482 	if (ret)
2483 		return ret;
2484 
2485 	/* Symbols in noinstr section are blacklisted */
2486 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2487 					(unsigned long)__noinstr_text_end);
2488 
2489 	return ret ? : arch_populate_kprobe_blacklist();
2490 }
2491 
add_module_kprobe_blacklist(struct module * mod)2492 static void add_module_kprobe_blacklist(struct module *mod)
2493 {
2494 	unsigned long start, end;
2495 	int i;
2496 
2497 	if (mod->kprobe_blacklist) {
2498 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2499 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2500 	}
2501 
2502 	start = (unsigned long)mod->kprobes_text_start;
2503 	if (start) {
2504 		end = start + mod->kprobes_text_size;
2505 		kprobe_add_area_blacklist(start, end);
2506 	}
2507 
2508 	start = (unsigned long)mod->noinstr_text_start;
2509 	if (start) {
2510 		end = start + mod->noinstr_text_size;
2511 		kprobe_add_area_blacklist(start, end);
2512 	}
2513 }
2514 
remove_module_kprobe_blacklist(struct module * mod)2515 static void remove_module_kprobe_blacklist(struct module *mod)
2516 {
2517 	unsigned long start, end;
2518 	int i;
2519 
2520 	if (mod->kprobe_blacklist) {
2521 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2522 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2523 	}
2524 
2525 	start = (unsigned long)mod->kprobes_text_start;
2526 	if (start) {
2527 		end = start + mod->kprobes_text_size;
2528 		kprobe_remove_area_blacklist(start, end);
2529 	}
2530 
2531 	start = (unsigned long)mod->noinstr_text_start;
2532 	if (start) {
2533 		end = start + mod->noinstr_text_size;
2534 		kprobe_remove_area_blacklist(start, end);
2535 	}
2536 }
2537 
2538 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2539 static int kprobes_module_callback(struct notifier_block *nb,
2540 				   unsigned long val, void *data)
2541 {
2542 	struct module *mod = data;
2543 	struct hlist_head *head;
2544 	struct kprobe *p;
2545 	unsigned int i;
2546 	int checkcore = (val == MODULE_STATE_GOING);
2547 
2548 	if (val == MODULE_STATE_COMING) {
2549 		mutex_lock(&kprobe_mutex);
2550 		add_module_kprobe_blacklist(mod);
2551 		mutex_unlock(&kprobe_mutex);
2552 	}
2553 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2554 		return NOTIFY_DONE;
2555 
2556 	/*
2557 	 * When MODULE_STATE_GOING was notified, both of module .text and
2558 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2559 	 * notified, only .init.text section would be freed. We need to
2560 	 * disable kprobes which have been inserted in the sections.
2561 	 */
2562 	mutex_lock(&kprobe_mutex);
2563 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2564 		head = &kprobe_table[i];
2565 		hlist_for_each_entry(p, head, hlist) {
2566 			if (kprobe_gone(p))
2567 				continue;
2568 
2569 			if (within_module_init((unsigned long)p->addr, mod) ||
2570 			    (checkcore &&
2571 			     within_module_core((unsigned long)p->addr, mod))) {
2572 				/*
2573 				 * The vaddr this probe is installed will soon
2574 				 * be vfreed buy not synced to disk. Hence,
2575 				 * disarming the breakpoint isn't needed.
2576 				 *
2577 				 * Note, this will also move any optimized probes
2578 				 * that are pending to be removed from their
2579 				 * corresponding lists to the freeing_list and
2580 				 * will not be touched by the delayed
2581 				 * kprobe_optimizer work handler.
2582 				 */
2583 				kill_kprobe(p);
2584 			}
2585 		}
2586 	}
2587 	if (val == MODULE_STATE_GOING)
2588 		remove_module_kprobe_blacklist(mod);
2589 	mutex_unlock(&kprobe_mutex);
2590 	return NOTIFY_DONE;
2591 }
2592 
2593 static struct notifier_block kprobe_module_nb = {
2594 	.notifier_call = kprobes_module_callback,
2595 	.priority = 0
2596 };
2597 
2598 /* Markers of _kprobe_blacklist section */
2599 extern unsigned long __start_kprobe_blacklist[];
2600 extern unsigned long __stop_kprobe_blacklist[];
2601 
kprobe_free_init_mem(void)2602 void kprobe_free_init_mem(void)
2603 {
2604 	void *start = (void *)(&__init_begin);
2605 	void *end = (void *)(&__init_end);
2606 	struct hlist_head *head;
2607 	struct kprobe *p;
2608 	int i;
2609 
2610 	mutex_lock(&kprobe_mutex);
2611 
2612 	/* Kill all kprobes on initmem */
2613 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2614 		head = &kprobe_table[i];
2615 		hlist_for_each_entry(p, head, hlist) {
2616 			if (start <= (void *)p->addr && (void *)p->addr < end)
2617 				kill_kprobe(p);
2618 		}
2619 	}
2620 
2621 	mutex_unlock(&kprobe_mutex);
2622 }
2623 
init_kprobes(void)2624 static int __init init_kprobes(void)
2625 {
2626 	int i, err = 0;
2627 
2628 	/* FIXME allocate the probe table, currently defined statically */
2629 	/* initialize all list heads */
2630 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2631 		INIT_HLIST_HEAD(&kprobe_table[i]);
2632 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2633 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2634 	}
2635 
2636 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2637 					__stop_kprobe_blacklist);
2638 	if (err) {
2639 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2640 		pr_err("Please take care of using kprobes.\n");
2641 	}
2642 
2643 	if (kretprobe_blacklist_size) {
2644 		/* lookup the function address from its name */
2645 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2646 			kretprobe_blacklist[i].addr =
2647 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2648 			if (!kretprobe_blacklist[i].addr)
2649 				printk("kretprobe: lookup failed: %s\n",
2650 				       kretprobe_blacklist[i].name);
2651 		}
2652 	}
2653 
2654 	/* By default, kprobes are armed */
2655 	kprobes_all_disarmed = false;
2656 
2657 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2658 	/* Init kprobe_optinsn_slots for allocation */
2659 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2660 #endif
2661 
2662 	err = arch_init_kprobes();
2663 	if (!err)
2664 		err = register_die_notifier(&kprobe_exceptions_nb);
2665 	if (!err)
2666 		err = register_module_notifier(&kprobe_module_nb);
2667 
2668 	kprobes_initialized = (err == 0);
2669 
2670 	if (!err)
2671 		init_test_probes();
2672 	return err;
2673 }
2674 early_initcall(init_kprobes);
2675 
2676 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2677 static int __init init_optprobes(void)
2678 {
2679 	/*
2680 	 * Enable kprobe optimization - this kicks the optimizer which
2681 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2682 	 * not spawned in early initcall. So delay the optimization.
2683 	 */
2684 	optimize_all_kprobes();
2685 
2686 	return 0;
2687 }
2688 subsys_initcall(init_optprobes);
2689 #endif
2690 
2691 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2692 static void report_probe(struct seq_file *pi, struct kprobe *p,
2693 		const char *sym, int offset, char *modname, struct kprobe *pp)
2694 {
2695 	char *kprobe_type;
2696 	void *addr = p->addr;
2697 
2698 	if (p->pre_handler == pre_handler_kretprobe)
2699 		kprobe_type = "r";
2700 	else
2701 		kprobe_type = "k";
2702 
2703 	if (!kallsyms_show_value(pi->file->f_cred))
2704 		addr = NULL;
2705 
2706 	if (sym)
2707 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2708 			addr, kprobe_type, sym, offset,
2709 			(modname ? modname : " "));
2710 	else	/* try to use %pS */
2711 		seq_printf(pi, "%px  %s  %pS ",
2712 			addr, kprobe_type, p->addr);
2713 
2714 	if (!pp)
2715 		pp = p;
2716 	seq_printf(pi, "%s%s%s%s\n",
2717 		(kprobe_gone(p) ? "[GONE]" : ""),
2718 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2719 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2720 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2721 }
2722 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2723 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2724 {
2725 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2726 }
2727 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2728 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2729 {
2730 	(*pos)++;
2731 	if (*pos >= KPROBE_TABLE_SIZE)
2732 		return NULL;
2733 	return pos;
2734 }
2735 
kprobe_seq_stop(struct seq_file * f,void * v)2736 static void kprobe_seq_stop(struct seq_file *f, void *v)
2737 {
2738 	/* Nothing to do */
2739 }
2740 
show_kprobe_addr(struct seq_file * pi,void * v)2741 static int show_kprobe_addr(struct seq_file *pi, void *v)
2742 {
2743 	struct hlist_head *head;
2744 	struct kprobe *p, *kp;
2745 	const char *sym = NULL;
2746 	unsigned int i = *(loff_t *) v;
2747 	unsigned long offset = 0;
2748 	char *modname, namebuf[KSYM_NAME_LEN];
2749 
2750 	head = &kprobe_table[i];
2751 	preempt_disable();
2752 	hlist_for_each_entry_rcu(p, head, hlist) {
2753 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2754 					&offset, &modname, namebuf);
2755 		if (kprobe_aggrprobe(p)) {
2756 			list_for_each_entry_rcu(kp, &p->list, list)
2757 				report_probe(pi, kp, sym, offset, modname, p);
2758 		} else
2759 			report_probe(pi, p, sym, offset, modname, NULL);
2760 	}
2761 	preempt_enable();
2762 	return 0;
2763 }
2764 
2765 static const struct seq_operations kprobes_sops = {
2766 	.start = kprobe_seq_start,
2767 	.next  = kprobe_seq_next,
2768 	.stop  = kprobe_seq_stop,
2769 	.show  = show_kprobe_addr
2770 };
2771 
2772 DEFINE_SEQ_ATTRIBUTE(kprobes);
2773 
2774 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2775 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2776 {
2777 	mutex_lock(&kprobe_mutex);
2778 	return seq_list_start(&kprobe_blacklist, *pos);
2779 }
2780 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2781 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2782 {
2783 	return seq_list_next(v, &kprobe_blacklist, pos);
2784 }
2785 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2786 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2787 {
2788 	struct kprobe_blacklist_entry *ent =
2789 		list_entry(v, struct kprobe_blacklist_entry, list);
2790 
2791 	/*
2792 	 * If /proc/kallsyms is not showing kernel address, we won't
2793 	 * show them here either.
2794 	 */
2795 	if (!kallsyms_show_value(m->file->f_cred))
2796 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2797 			   (void *)ent->start_addr);
2798 	else
2799 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2800 			   (void *)ent->end_addr, (void *)ent->start_addr);
2801 	return 0;
2802 }
2803 
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2804 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2805 {
2806 	mutex_unlock(&kprobe_mutex);
2807 }
2808 
2809 static const struct seq_operations kprobe_blacklist_sops = {
2810 	.start = kprobe_blacklist_seq_start,
2811 	.next  = kprobe_blacklist_seq_next,
2812 	.stop  = kprobe_blacklist_seq_stop,
2813 	.show  = kprobe_blacklist_seq_show,
2814 };
2815 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2816 
arm_all_kprobes(void)2817 static int arm_all_kprobes(void)
2818 {
2819 	struct hlist_head *head;
2820 	struct kprobe *p;
2821 	unsigned int i, total = 0, errors = 0;
2822 	int err, ret = 0;
2823 
2824 	mutex_lock(&kprobe_mutex);
2825 
2826 	/* If kprobes are armed, just return */
2827 	if (!kprobes_all_disarmed)
2828 		goto already_enabled;
2829 
2830 	/*
2831 	 * optimize_kprobe() called by arm_kprobe() checks
2832 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2833 	 * arm_kprobe.
2834 	 */
2835 	kprobes_all_disarmed = false;
2836 	/* Arming kprobes doesn't optimize kprobe itself */
2837 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2838 		head = &kprobe_table[i];
2839 		/* Arm all kprobes on a best-effort basis */
2840 		hlist_for_each_entry(p, head, hlist) {
2841 			if (!kprobe_disabled(p)) {
2842 				err = arm_kprobe(p);
2843 				if (err)  {
2844 					errors++;
2845 					ret = err;
2846 				}
2847 				total++;
2848 			}
2849 		}
2850 	}
2851 
2852 	if (errors)
2853 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2854 			errors, total);
2855 	else
2856 		pr_info("Kprobes globally enabled\n");
2857 
2858 already_enabled:
2859 	mutex_unlock(&kprobe_mutex);
2860 	return ret;
2861 }
2862 
disarm_all_kprobes(void)2863 static int disarm_all_kprobes(void)
2864 {
2865 	struct hlist_head *head;
2866 	struct kprobe *p;
2867 	unsigned int i, total = 0, errors = 0;
2868 	int err, ret = 0;
2869 
2870 	mutex_lock(&kprobe_mutex);
2871 
2872 	/* If kprobes are already disarmed, just return */
2873 	if (kprobes_all_disarmed) {
2874 		mutex_unlock(&kprobe_mutex);
2875 		return 0;
2876 	}
2877 
2878 	kprobes_all_disarmed = true;
2879 
2880 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2881 		head = &kprobe_table[i];
2882 		/* Disarm all kprobes on a best-effort basis */
2883 		hlist_for_each_entry(p, head, hlist) {
2884 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2885 				err = disarm_kprobe(p, false);
2886 				if (err) {
2887 					errors++;
2888 					ret = err;
2889 				}
2890 				total++;
2891 			}
2892 		}
2893 	}
2894 
2895 	if (errors)
2896 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2897 			errors, total);
2898 	else
2899 		pr_info("Kprobes globally disabled\n");
2900 
2901 	mutex_unlock(&kprobe_mutex);
2902 
2903 	/* Wait for disarming all kprobes by optimizer */
2904 	wait_for_kprobe_optimizer();
2905 
2906 	return ret;
2907 }
2908 
2909 /*
2910  * XXX: The debugfs bool file interface doesn't allow for callbacks
2911  * when the bool state is switched. We can reuse that facility when
2912  * available
2913  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2914 static ssize_t read_enabled_file_bool(struct file *file,
2915 	       char __user *user_buf, size_t count, loff_t *ppos)
2916 {
2917 	char buf[3];
2918 
2919 	if (!kprobes_all_disarmed)
2920 		buf[0] = '1';
2921 	else
2922 		buf[0] = '0';
2923 	buf[1] = '\n';
2924 	buf[2] = 0x00;
2925 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2926 }
2927 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2928 static ssize_t write_enabled_file_bool(struct file *file,
2929 	       const char __user *user_buf, size_t count, loff_t *ppos)
2930 {
2931 	char buf[32];
2932 	size_t buf_size;
2933 	int ret = 0;
2934 
2935 	buf_size = min(count, (sizeof(buf)-1));
2936 	if (copy_from_user(buf, user_buf, buf_size))
2937 		return -EFAULT;
2938 
2939 	buf[buf_size] = '\0';
2940 	switch (buf[0]) {
2941 	case 'y':
2942 	case 'Y':
2943 	case '1':
2944 		ret = arm_all_kprobes();
2945 		break;
2946 	case 'n':
2947 	case 'N':
2948 	case '0':
2949 		ret = disarm_all_kprobes();
2950 		break;
2951 	default:
2952 		return -EINVAL;
2953 	}
2954 
2955 	if (ret)
2956 		return ret;
2957 
2958 	return count;
2959 }
2960 
2961 static const struct file_operations fops_kp = {
2962 	.read =         read_enabled_file_bool,
2963 	.write =        write_enabled_file_bool,
2964 	.llseek =	default_llseek,
2965 };
2966 
debugfs_kprobe_init(void)2967 static int __init debugfs_kprobe_init(void)
2968 {
2969 	struct dentry *dir;
2970 
2971 	dir = debugfs_create_dir("kprobes", NULL);
2972 
2973 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2974 
2975 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2976 
2977 	debugfs_create_file("blacklist", 0400, dir, NULL,
2978 			    &kprobe_blacklist_fops);
2979 
2980 	return 0;
2981 }
2982 
2983 late_initcall(debugfs_kprobe_init);
2984 #endif /* CONFIG_DEBUG_FS */
2985