1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
64 void *info;
65 int ret;
66 };
67
remote_function(void * data)68 static void remote_function(void *data)
69 {
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
101 *
102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
103 */
104 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107 struct remote_function_call data = {
108 .p = p,
109 .func = func,
110 .info = info,
111 .ret = -EAGAIN,
112 };
113 int ret;
114
115 for (;;) {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
117 &data, 1);
118 if (!ret)
119 ret = data.ret;
120
121 if (ret != -EAGAIN)
122 break;
123
124 cond_resched();
125 }
126
127 return ret;
128 }
129
130 /**
131 * cpu_function_call - call a function on the cpu
132 * @func: the function to be called
133 * @info: the function call argument
134 *
135 * Calls the function @func on the remote cpu.
136 *
137 * returns: @func return value or -ENXIO when the cpu is offline
138 */
cpu_function_call(int cpu,remote_function_f func,void * info)139 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 {
141 struct remote_function_call data = {
142 .p = NULL,
143 .func = func,
144 .info = info,
145 .ret = -ENXIO, /* No such CPU */
146 };
147
148 smp_call_function_single(cpu, remote_function, &data, 1);
149
150 return data.ret;
151 }
152
153 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)154 __get_cpu_context(struct perf_event_context *ctx)
155 {
156 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
157 }
158
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)159 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 raw_spin_lock(&cpuctx->ctx.lock);
163 if (ctx)
164 raw_spin_lock(&ctx->lock);
165 }
166
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)167 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
168 struct perf_event_context *ctx)
169 {
170 if (ctx)
171 raw_spin_unlock(&ctx->lock);
172 raw_spin_unlock(&cpuctx->ctx.lock);
173 }
174
175 #define TASK_TOMBSTONE ((void *)-1L)
176
is_kernel_event(struct perf_event * event)177 static bool is_kernel_event(struct perf_event *event)
178 {
179 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
180 }
181
182 /*
183 * On task ctx scheduling...
184 *
185 * When !ctx->nr_events a task context will not be scheduled. This means
186 * we can disable the scheduler hooks (for performance) without leaving
187 * pending task ctx state.
188 *
189 * This however results in two special cases:
190 *
191 * - removing the last event from a task ctx; this is relatively straight
192 * forward and is done in __perf_remove_from_context.
193 *
194 * - adding the first event to a task ctx; this is tricky because we cannot
195 * rely on ctx->is_active and therefore cannot use event_function_call().
196 * See perf_install_in_context().
197 *
198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
199 */
200
201 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
202 struct perf_event_context *, void *);
203
204 struct event_function_struct {
205 struct perf_event *event;
206 event_f func;
207 void *data;
208 };
209
event_function(void * info)210 static int event_function(void *info)
211 {
212 struct event_function_struct *efs = info;
213 struct perf_event *event = efs->event;
214 struct perf_event_context *ctx = event->ctx;
215 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
216 struct perf_event_context *task_ctx = cpuctx->task_ctx;
217 int ret = 0;
218
219 lockdep_assert_irqs_disabled();
220
221 perf_ctx_lock(cpuctx, task_ctx);
222 /*
223 * Since we do the IPI call without holding ctx->lock things can have
224 * changed, double check we hit the task we set out to hit.
225 */
226 if (ctx->task) {
227 if (ctx->task != current) {
228 ret = -ESRCH;
229 goto unlock;
230 }
231
232 /*
233 * We only use event_function_call() on established contexts,
234 * and event_function() is only ever called when active (or
235 * rather, we'll have bailed in task_function_call() or the
236 * above ctx->task != current test), therefore we must have
237 * ctx->is_active here.
238 */
239 WARN_ON_ONCE(!ctx->is_active);
240 /*
241 * And since we have ctx->is_active, cpuctx->task_ctx must
242 * match.
243 */
244 WARN_ON_ONCE(task_ctx != ctx);
245 } else {
246 WARN_ON_ONCE(&cpuctx->ctx != ctx);
247 }
248
249 efs->func(event, cpuctx, ctx, efs->data);
250 unlock:
251 perf_ctx_unlock(cpuctx, task_ctx);
252
253 return ret;
254 }
255
event_function_call(struct perf_event * event,event_f func,void * data)256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 struct perf_event_context *ctx = event->ctx;
259 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
260 struct event_function_struct efs = {
261 .event = event,
262 .func = func,
263 .data = data,
264 };
265
266 if (!event->parent) {
267 /*
268 * If this is a !child event, we must hold ctx::mutex to
269 * stabilize the event->ctx relation. See
270 * perf_event_ctx_lock().
271 */
272 lockdep_assert_held(&ctx->mutex);
273 }
274
275 if (!task) {
276 cpu_function_call(event->cpu, event_function, &efs);
277 return;
278 }
279
280 if (task == TASK_TOMBSTONE)
281 return;
282
283 again:
284 if (!task_function_call(task, event_function, &efs))
285 return;
286
287 raw_spin_lock_irq(&ctx->lock);
288 /*
289 * Reload the task pointer, it might have been changed by
290 * a concurrent perf_event_context_sched_out().
291 */
292 task = ctx->task;
293 if (task == TASK_TOMBSTONE) {
294 raw_spin_unlock_irq(&ctx->lock);
295 return;
296 }
297 if (ctx->is_active) {
298 raw_spin_unlock_irq(&ctx->lock);
299 goto again;
300 }
301 func(event, NULL, ctx, data);
302 raw_spin_unlock_irq(&ctx->lock);
303 }
304
305 /*
306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
307 * are already disabled and we're on the right CPU.
308 */
event_function_local(struct perf_event * event,event_f func,void * data)309 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 {
311 struct perf_event_context *ctx = event->ctx;
312 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
313 struct task_struct *task = READ_ONCE(ctx->task);
314 struct perf_event_context *task_ctx = NULL;
315
316 lockdep_assert_irqs_disabled();
317
318 if (task) {
319 if (task == TASK_TOMBSTONE)
320 return;
321
322 task_ctx = ctx;
323 }
324
325 perf_ctx_lock(cpuctx, task_ctx);
326
327 task = ctx->task;
328 if (task == TASK_TOMBSTONE)
329 goto unlock;
330
331 if (task) {
332 /*
333 * We must be either inactive or active and the right task,
334 * otherwise we're screwed, since we cannot IPI to somewhere
335 * else.
336 */
337 if (ctx->is_active) {
338 if (WARN_ON_ONCE(task != current))
339 goto unlock;
340
341 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
342 goto unlock;
343 }
344 } else {
345 WARN_ON_ONCE(&cpuctx->ctx != ctx);
346 }
347
348 func(event, cpuctx, ctx, data);
349 unlock:
350 perf_ctx_unlock(cpuctx, task_ctx);
351 }
352
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 PERF_FLAG_FD_OUTPUT |\
355 PERF_FLAG_PID_CGROUP |\
356 PERF_FLAG_FD_CLOEXEC)
357
358 /*
359 * branch priv levels that need permission checks
360 */
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 (PERF_SAMPLE_BRANCH_KERNEL |\
363 PERF_SAMPLE_BRANCH_HV)
364
365 enum event_type_t {
366 EVENT_FLEXIBLE = 0x1,
367 EVENT_PINNED = 0x2,
368 EVENT_TIME = 0x4,
369 /* see ctx_resched() for details */
370 EVENT_CPU = 0x8,
371 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
372 };
373
374 /*
375 * perf_sched_events : >0 events exist
376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
377 */
378
379 static void perf_sched_delayed(struct work_struct *work);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
381 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
382 static DEFINE_MUTEX(perf_sched_mutex);
383 static atomic_t perf_sched_count;
384
385 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
386 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
387 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
388
389 static atomic_t nr_mmap_events __read_mostly;
390 static atomic_t nr_comm_events __read_mostly;
391 static atomic_t nr_namespaces_events __read_mostly;
392 static atomic_t nr_task_events __read_mostly;
393 static atomic_t nr_freq_events __read_mostly;
394 static atomic_t nr_switch_events __read_mostly;
395 static atomic_t nr_ksymbol_events __read_mostly;
396 static atomic_t nr_bpf_events __read_mostly;
397 static atomic_t nr_cgroup_events __read_mostly;
398 static atomic_t nr_text_poke_events __read_mostly;
399
400 static LIST_HEAD(pmus);
401 static DEFINE_MUTEX(pmus_lock);
402 static struct srcu_struct pmus_srcu;
403 static cpumask_var_t perf_online_mask;
404
405 /*
406 * perf event paranoia level:
407 * -1 - not paranoid at all
408 * 0 - disallow raw tracepoint access for unpriv
409 * 1 - disallow cpu events for unpriv
410 * 2 - disallow kernel profiling for unpriv
411 */
412 int sysctl_perf_event_paranoid __read_mostly = 2;
413
414 /* Minimum for 512 kiB + 1 user control page */
415 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
416
417 /*
418 * max perf event sample rate
419 */
420 #define DEFAULT_MAX_SAMPLE_RATE 100000
421 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
422 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
423
424 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
425
426 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
427 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
428
429 static int perf_sample_allowed_ns __read_mostly =
430 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
431
update_perf_cpu_limits(void)432 static void update_perf_cpu_limits(void)
433 {
434 u64 tmp = perf_sample_period_ns;
435
436 tmp *= sysctl_perf_cpu_time_max_percent;
437 tmp = div_u64(tmp, 100);
438 if (!tmp)
439 tmp = 1;
440
441 WRITE_ONCE(perf_sample_allowed_ns, tmp);
442 }
443
444 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
445
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)446 int perf_proc_update_handler(struct ctl_table *table, int write,
447 void *buffer, size_t *lenp, loff_t *ppos)
448 {
449 int ret;
450 int perf_cpu = sysctl_perf_cpu_time_max_percent;
451 /*
452 * If throttling is disabled don't allow the write:
453 */
454 if (write && (perf_cpu == 100 || perf_cpu == 0))
455 return -EINVAL;
456
457 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
458 if (ret || !write)
459 return ret;
460
461 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
462 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
463 update_perf_cpu_limits();
464
465 return 0;
466 }
467
468 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
469
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)470 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
471 void *buffer, size_t *lenp, loff_t *ppos)
472 {
473 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
474
475 if (ret || !write)
476 return ret;
477
478 if (sysctl_perf_cpu_time_max_percent == 100 ||
479 sysctl_perf_cpu_time_max_percent == 0) {
480 printk(KERN_WARNING
481 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 WRITE_ONCE(perf_sample_allowed_ns, 0);
483 } else {
484 update_perf_cpu_limits();
485 }
486
487 return 0;
488 }
489
490 /*
491 * perf samples are done in some very critical code paths (NMIs).
492 * If they take too much CPU time, the system can lock up and not
493 * get any real work done. This will drop the sample rate when
494 * we detect that events are taking too long.
495 */
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64, running_sample_length);
498
499 static u64 __report_avg;
500 static u64 __report_allowed;
501
perf_duration_warn(struct irq_work * w)502 static void perf_duration_warn(struct irq_work *w)
503 {
504 printk_ratelimited(KERN_INFO
505 "perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg, __report_allowed,
508 sysctl_perf_event_sample_rate);
509 }
510
511 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
512
perf_sample_event_took(u64 sample_len_ns)513 void perf_sample_event_took(u64 sample_len_ns)
514 {
515 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
516 u64 running_len;
517 u64 avg_len;
518 u32 max;
519
520 if (max_len == 0)
521 return;
522
523 /* Decay the counter by 1 average sample. */
524 running_len = __this_cpu_read(running_sample_length);
525 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
526 running_len += sample_len_ns;
527 __this_cpu_write(running_sample_length, running_len);
528
529 /*
530 * Note: this will be biased artifically low until we have
531 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 * from having to maintain a count.
533 */
534 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
535 if (avg_len <= max_len)
536 return;
537
538 __report_avg = avg_len;
539 __report_allowed = max_len;
540
541 /*
542 * Compute a throttle threshold 25% below the current duration.
543 */
544 avg_len += avg_len / 4;
545 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
546 if (avg_len < max)
547 max /= (u32)avg_len;
548 else
549 max = 1;
550
551 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
552 WRITE_ONCE(max_samples_per_tick, max);
553
554 sysctl_perf_event_sample_rate = max * HZ;
555 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
556
557 if (!irq_work_queue(&perf_duration_work)) {
558 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 "kernel.perf_event_max_sample_rate to %d\n",
560 __report_avg, __report_allowed,
561 sysctl_perf_event_sample_rate);
562 }
563 }
564
565 static atomic64_t perf_event_id;
566
567 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
568 enum event_type_t event_type);
569
570 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
571 enum event_type_t event_type,
572 struct task_struct *task);
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
perf_event_print_debug(void)577 void __weak perf_event_print_debug(void) { }
578
perf_pmu_name(void)579 extern __weak const char *perf_pmu_name(void)
580 {
581 return "pmu";
582 }
583
perf_clock(void)584 static inline u64 perf_clock(void)
585 {
586 return local_clock();
587 }
588
perf_event_clock(struct perf_event * event)589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 return event->clock();
592 }
593
594 /*
595 * State based event timekeeping...
596 *
597 * The basic idea is to use event->state to determine which (if any) time
598 * fields to increment with the current delta. This means we only need to
599 * update timestamps when we change state or when they are explicitly requested
600 * (read).
601 *
602 * Event groups make things a little more complicated, but not terribly so. The
603 * rules for a group are that if the group leader is OFF the entire group is
604 * OFF, irrespecive of what the group member states are. This results in
605 * __perf_effective_state().
606 *
607 * A futher ramification is that when a group leader flips between OFF and
608 * !OFF, we need to update all group member times.
609 *
610 *
611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612 * need to make sure the relevant context time is updated before we try and
613 * update our timestamps.
614 */
615
616 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)617 __perf_effective_state(struct perf_event *event)
618 {
619 struct perf_event *leader = event->group_leader;
620
621 if (leader->state <= PERF_EVENT_STATE_OFF)
622 return leader->state;
623
624 return event->state;
625 }
626
627 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 enum perf_event_state state = __perf_effective_state(event);
631 u64 delta = now - event->tstamp;
632
633 *enabled = event->total_time_enabled;
634 if (state >= PERF_EVENT_STATE_INACTIVE)
635 *enabled += delta;
636
637 *running = event->total_time_running;
638 if (state >= PERF_EVENT_STATE_ACTIVE)
639 *running += delta;
640 }
641
perf_event_update_time(struct perf_event * event)642 static void perf_event_update_time(struct perf_event *event)
643 {
644 u64 now = perf_event_time(event);
645
646 __perf_update_times(event, now, &event->total_time_enabled,
647 &event->total_time_running);
648 event->tstamp = now;
649 }
650
perf_event_update_sibling_time(struct perf_event * leader)651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 struct perf_event *sibling;
654
655 for_each_sibling_event(sibling, leader)
656 perf_event_update_time(sibling);
657 }
658
659 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 if (event->state == state)
663 return;
664
665 perf_event_update_time(event);
666 /*
667 * If a group leader gets enabled/disabled all its siblings
668 * are affected too.
669 */
670 if ((event->state < 0) ^ (state < 0))
671 perf_event_update_sibling_time(event);
672
673 WRITE_ONCE(event->state, state);
674 }
675
676 #ifdef CONFIG_CGROUP_PERF
677
678 static inline bool
perf_cgroup_match(struct perf_event * event)679 perf_cgroup_match(struct perf_event *event)
680 {
681 struct perf_event_context *ctx = event->ctx;
682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683
684 /* @event doesn't care about cgroup */
685 if (!event->cgrp)
686 return true;
687
688 /* wants specific cgroup scope but @cpuctx isn't associated with any */
689 if (!cpuctx->cgrp)
690 return false;
691
692 /*
693 * Cgroup scoping is recursive. An event enabled for a cgroup is
694 * also enabled for all its descendant cgroups. If @cpuctx's
695 * cgroup is a descendant of @event's (the test covers identity
696 * case), it's a match.
697 */
698 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699 event->cgrp->css.cgroup);
700 }
701
perf_detach_cgroup(struct perf_event * event)702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704 css_put(&event->cgrp->css);
705 event->cgrp = NULL;
706 }
707
is_cgroup_event(struct perf_event * event)708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710 return event->cgrp != NULL;
711 }
712
perf_cgroup_event_time(struct perf_event * event)713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715 struct perf_cgroup_info *t;
716
717 t = per_cpu_ptr(event->cgrp->info, event->cpu);
718 return t->time;
719 }
720
__update_cgrp_time(struct perf_cgroup * cgrp)721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723 struct perf_cgroup_info *info;
724 u64 now;
725
726 now = perf_clock();
727
728 info = this_cpu_ptr(cgrp->info);
729
730 info->time += now - info->timestamp;
731 info->timestamp = now;
732 }
733
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736 struct perf_cgroup *cgrp = cpuctx->cgrp;
737 struct cgroup_subsys_state *css;
738
739 if (cgrp) {
740 for (css = &cgrp->css; css; css = css->parent) {
741 cgrp = container_of(css, struct perf_cgroup, css);
742 __update_cgrp_time(cgrp);
743 }
744 }
745 }
746
update_cgrp_time_from_event(struct perf_event * event)747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749 struct perf_cgroup *cgrp;
750
751 /*
752 * ensure we access cgroup data only when needed and
753 * when we know the cgroup is pinned (css_get)
754 */
755 if (!is_cgroup_event(event))
756 return;
757
758 cgrp = perf_cgroup_from_task(current, event->ctx);
759 /*
760 * Do not update time when cgroup is not active
761 */
762 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763 __update_cgrp_time(event->cgrp);
764 }
765
766 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)767 perf_cgroup_set_timestamp(struct task_struct *task,
768 struct perf_event_context *ctx)
769 {
770 struct perf_cgroup *cgrp;
771 struct perf_cgroup_info *info;
772 struct cgroup_subsys_state *css;
773
774 /*
775 * ctx->lock held by caller
776 * ensure we do not access cgroup data
777 * unless we have the cgroup pinned (css_get)
778 */
779 if (!task || !ctx->nr_cgroups)
780 return;
781
782 cgrp = perf_cgroup_from_task(task, ctx);
783
784 for (css = &cgrp->css; css; css = css->parent) {
785 cgrp = container_of(css, struct perf_cgroup, css);
786 info = this_cpu_ptr(cgrp->info);
787 info->timestamp = ctx->timestamp;
788 }
789 }
790
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792
793 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
795
796 /*
797 * reschedule events based on the cgroup constraint of task.
798 *
799 * mode SWOUT : schedule out everything
800 * mode SWIN : schedule in based on cgroup for next
801 */
perf_cgroup_switch(struct task_struct * task,int mode)802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804 struct perf_cpu_context *cpuctx, *tmp;
805 struct list_head *list;
806 unsigned long flags;
807
808 /*
809 * Disable interrupts and preemption to avoid this CPU's
810 * cgrp_cpuctx_entry to change under us.
811 */
812 local_irq_save(flags);
813
814 list = this_cpu_ptr(&cgrp_cpuctx_list);
815 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
816 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817
818 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819 perf_pmu_disable(cpuctx->ctx.pmu);
820
821 if (mode & PERF_CGROUP_SWOUT) {
822 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823 /*
824 * must not be done before ctxswout due
825 * to event_filter_match() in event_sched_out()
826 */
827 cpuctx->cgrp = NULL;
828 }
829
830 if (mode & PERF_CGROUP_SWIN) {
831 WARN_ON_ONCE(cpuctx->cgrp);
832 /*
833 * set cgrp before ctxsw in to allow
834 * event_filter_match() to not have to pass
835 * task around
836 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 * because cgorup events are only per-cpu
838 */
839 cpuctx->cgrp = perf_cgroup_from_task(task,
840 &cpuctx->ctx);
841 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842 }
843 perf_pmu_enable(cpuctx->ctx.pmu);
844 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 }
846
847 local_irq_restore(flags);
848 }
849
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851 struct task_struct *next)
852 {
853 struct perf_cgroup *cgrp1;
854 struct perf_cgroup *cgrp2 = NULL;
855
856 rcu_read_lock();
857 /*
858 * we come here when we know perf_cgroup_events > 0
859 * we do not need to pass the ctx here because we know
860 * we are holding the rcu lock
861 */
862 cgrp1 = perf_cgroup_from_task(task, NULL);
863 cgrp2 = perf_cgroup_from_task(next, NULL);
864
865 /*
866 * only schedule out current cgroup events if we know
867 * that we are switching to a different cgroup. Otherwise,
868 * do no touch the cgroup events.
869 */
870 if (cgrp1 != cgrp2)
871 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872
873 rcu_read_unlock();
874 }
875
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877 struct task_struct *task)
878 {
879 struct perf_cgroup *cgrp1;
880 struct perf_cgroup *cgrp2 = NULL;
881
882 rcu_read_lock();
883 /*
884 * we come here when we know perf_cgroup_events > 0
885 * we do not need to pass the ctx here because we know
886 * we are holding the rcu lock
887 */
888 cgrp1 = perf_cgroup_from_task(task, NULL);
889 cgrp2 = perf_cgroup_from_task(prev, NULL);
890
891 /*
892 * only need to schedule in cgroup events if we are changing
893 * cgroup during ctxsw. Cgroup events were not scheduled
894 * out of ctxsw out if that was not the case.
895 */
896 if (cgrp1 != cgrp2)
897 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898
899 rcu_read_unlock();
900 }
901
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903 struct cgroup_subsys_state *css)
904 {
905 struct perf_cpu_context *cpuctx;
906 struct perf_event **storage;
907 int cpu, heap_size, ret = 0;
908
909 /*
910 * Allow storage to have sufficent space for an iterator for each
911 * possibly nested cgroup plus an iterator for events with no cgroup.
912 */
913 for (heap_size = 1; css; css = css->parent)
914 heap_size++;
915
916 for_each_possible_cpu(cpu) {
917 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918 if (heap_size <= cpuctx->heap_size)
919 continue;
920
921 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922 GFP_KERNEL, cpu_to_node(cpu));
923 if (!storage) {
924 ret = -ENOMEM;
925 break;
926 }
927
928 raw_spin_lock_irq(&cpuctx->ctx.lock);
929 if (cpuctx->heap_size < heap_size) {
930 swap(cpuctx->heap, storage);
931 if (storage == cpuctx->heap_default)
932 storage = NULL;
933 cpuctx->heap_size = heap_size;
934 }
935 raw_spin_unlock_irq(&cpuctx->ctx.lock);
936
937 kfree(storage);
938 }
939
940 return ret;
941 }
942
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944 struct perf_event_attr *attr,
945 struct perf_event *group_leader)
946 {
947 struct perf_cgroup *cgrp;
948 struct cgroup_subsys_state *css;
949 struct fd f = fdget(fd);
950 int ret = 0;
951
952 if (!f.file)
953 return -EBADF;
954
955 css = css_tryget_online_from_dir(f.file->f_path.dentry,
956 &perf_event_cgrp_subsys);
957 if (IS_ERR(css)) {
958 ret = PTR_ERR(css);
959 goto out;
960 }
961
962 ret = perf_cgroup_ensure_storage(event, css);
963 if (ret)
964 goto out;
965
966 cgrp = container_of(css, struct perf_cgroup, css);
967 event->cgrp = cgrp;
968
969 /*
970 * all events in a group must monitor
971 * the same cgroup because a task belongs
972 * to only one perf cgroup at a time
973 */
974 if (group_leader && group_leader->cgrp != cgrp) {
975 perf_detach_cgroup(event);
976 ret = -EINVAL;
977 }
978 out:
979 fdput(f);
980 return ret;
981 }
982
983 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986 struct perf_cgroup_info *t;
987 t = per_cpu_ptr(event->cgrp->info, event->cpu);
988 event->shadow_ctx_time = now - t->timestamp;
989 }
990
991 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994 struct perf_cpu_context *cpuctx;
995
996 if (!is_cgroup_event(event))
997 return;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 /*
1006 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 * matching the event's cgroup, we must do this for every new event,
1008 * because if the first would mismatch, the second would not try again
1009 * and we would leave cpuctx->cgrp unset.
1010 */
1011 if (ctx->is_active && !cpuctx->cgrp) {
1012 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013
1014 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015 cpuctx->cgrp = cgrp;
1016 }
1017
1018 if (ctx->nr_cgroups++)
1019 return;
1020
1021 list_add(&cpuctx->cgrp_cpuctx_entry,
1022 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024
1025 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028 struct perf_cpu_context *cpuctx;
1029
1030 if (!is_cgroup_event(event))
1031 return;
1032
1033 /*
1034 * Because cgroup events are always per-cpu events,
1035 * @ctx == &cpuctx->ctx.
1036 */
1037 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038
1039 if (--ctx->nr_cgroups)
1040 return;
1041
1042 if (ctx->is_active && cpuctx->cgrp)
1043 cpuctx->cgrp = NULL;
1044
1045 list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047
1048 #else /* !CONFIG_CGROUP_PERF */
1049
1050 static inline bool
perf_cgroup_match(struct perf_event * event)1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053 return true;
1054 }
1055
perf_detach_cgroup(struct perf_event * event)1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058
is_cgroup_event(struct perf_event * event)1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061 return 0;
1062 }
1063
update_cgrp_time_from_event(struct perf_event * event)1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073 struct task_struct *next)
1074 {
1075 }
1076
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078 struct task_struct *task)
1079 {
1080 }
1081
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083 struct perf_event_attr *attr,
1084 struct perf_event *group_leader)
1085 {
1086 return -EINVAL;
1087 }
1088
1089 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091 struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099
1100 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104
perf_cgroup_event_time(struct perf_event * event)1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107 return 0;
1108 }
1109
1110 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114
1115 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120
1121 /*
1122 * set default to be dependent on timer tick just
1123 * like original code
1124 */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127 * function must be called with interrupts disabled
1128 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131 struct perf_cpu_context *cpuctx;
1132 bool rotations;
1133
1134 lockdep_assert_irqs_disabled();
1135
1136 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137 rotations = perf_rotate_context(cpuctx);
1138
1139 raw_spin_lock(&cpuctx->hrtimer_lock);
1140 if (rotations)
1141 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142 else
1143 cpuctx->hrtimer_active = 0;
1144 raw_spin_unlock(&cpuctx->hrtimer_lock);
1145
1146 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151 struct hrtimer *timer = &cpuctx->hrtimer;
1152 struct pmu *pmu = cpuctx->ctx.pmu;
1153 u64 interval;
1154
1155 /* no multiplexing needed for SW PMU */
1156 if (pmu->task_ctx_nr == perf_sw_context)
1157 return;
1158
1159 /*
1160 * check default is sane, if not set then force to
1161 * default interval (1/tick)
1162 */
1163 interval = pmu->hrtimer_interval_ms;
1164 if (interval < 1)
1165 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166
1167 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168
1169 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171 timer->function = perf_mux_hrtimer_handler;
1172 }
1173
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176 struct hrtimer *timer = &cpuctx->hrtimer;
1177 struct pmu *pmu = cpuctx->ctx.pmu;
1178 unsigned long flags;
1179
1180 /* not for SW PMU */
1181 if (pmu->task_ctx_nr == perf_sw_context)
1182 return 0;
1183
1184 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185 if (!cpuctx->hrtimer_active) {
1186 cpuctx->hrtimer_active = 1;
1187 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189 }
1190 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191
1192 return 0;
1193 }
1194
perf_mux_hrtimer_restart_ipi(void * arg)1195 static int perf_mux_hrtimer_restart_ipi(void *arg)
1196 {
1197 return perf_mux_hrtimer_restart(arg);
1198 }
1199
perf_pmu_disable(struct pmu * pmu)1200 void perf_pmu_disable(struct pmu *pmu)
1201 {
1202 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1203 if (!(*count)++)
1204 pmu->pmu_disable(pmu);
1205 }
1206
perf_pmu_enable(struct pmu * pmu)1207 void perf_pmu_enable(struct pmu *pmu)
1208 {
1209 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1210 if (!--(*count))
1211 pmu->pmu_enable(pmu);
1212 }
1213
1214 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1215
1216 /*
1217 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1218 * perf_event_task_tick() are fully serialized because they're strictly cpu
1219 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1220 * disabled, while perf_event_task_tick is called from IRQ context.
1221 */
perf_event_ctx_activate(struct perf_event_context * ctx)1222 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1223 {
1224 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1225
1226 lockdep_assert_irqs_disabled();
1227
1228 WARN_ON(!list_empty(&ctx->active_ctx_list));
1229
1230 list_add(&ctx->active_ctx_list, head);
1231 }
1232
perf_event_ctx_deactivate(struct perf_event_context * ctx)1233 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1234 {
1235 lockdep_assert_irqs_disabled();
1236
1237 WARN_ON(list_empty(&ctx->active_ctx_list));
1238
1239 list_del_init(&ctx->active_ctx_list);
1240 }
1241
get_ctx(struct perf_event_context * ctx)1242 static void get_ctx(struct perf_event_context *ctx)
1243 {
1244 refcount_inc(&ctx->refcount);
1245 }
1246
alloc_task_ctx_data(struct pmu * pmu)1247 static void *alloc_task_ctx_data(struct pmu *pmu)
1248 {
1249 if (pmu->task_ctx_cache)
1250 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1251
1252 return NULL;
1253 }
1254
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1255 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1256 {
1257 if (pmu->task_ctx_cache && task_ctx_data)
1258 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1259 }
1260
free_ctx(struct rcu_head * head)1261 static void free_ctx(struct rcu_head *head)
1262 {
1263 struct perf_event_context *ctx;
1264
1265 ctx = container_of(head, struct perf_event_context, rcu_head);
1266 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1267 kfree(ctx);
1268 }
1269
put_ctx(struct perf_event_context * ctx)1270 static void put_ctx(struct perf_event_context *ctx)
1271 {
1272 if (refcount_dec_and_test(&ctx->refcount)) {
1273 if (ctx->parent_ctx)
1274 put_ctx(ctx->parent_ctx);
1275 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1276 put_task_struct(ctx->task);
1277 call_rcu(&ctx->rcu_head, free_ctx);
1278 }
1279 }
1280
1281 /*
1282 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1283 * perf_pmu_migrate_context() we need some magic.
1284 *
1285 * Those places that change perf_event::ctx will hold both
1286 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1287 *
1288 * Lock ordering is by mutex address. There are two other sites where
1289 * perf_event_context::mutex nests and those are:
1290 *
1291 * - perf_event_exit_task_context() [ child , 0 ]
1292 * perf_event_exit_event()
1293 * put_event() [ parent, 1 ]
1294 *
1295 * - perf_event_init_context() [ parent, 0 ]
1296 * inherit_task_group()
1297 * inherit_group()
1298 * inherit_event()
1299 * perf_event_alloc()
1300 * perf_init_event()
1301 * perf_try_init_event() [ child , 1 ]
1302 *
1303 * While it appears there is an obvious deadlock here -- the parent and child
1304 * nesting levels are inverted between the two. This is in fact safe because
1305 * life-time rules separate them. That is an exiting task cannot fork, and a
1306 * spawning task cannot (yet) exit.
1307 *
1308 * But remember that these are parent<->child context relations, and
1309 * migration does not affect children, therefore these two orderings should not
1310 * interact.
1311 *
1312 * The change in perf_event::ctx does not affect children (as claimed above)
1313 * because the sys_perf_event_open() case will install a new event and break
1314 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1315 * concerned with cpuctx and that doesn't have children.
1316 *
1317 * The places that change perf_event::ctx will issue:
1318 *
1319 * perf_remove_from_context();
1320 * synchronize_rcu();
1321 * perf_install_in_context();
1322 *
1323 * to affect the change. The remove_from_context() + synchronize_rcu() should
1324 * quiesce the event, after which we can install it in the new location. This
1325 * means that only external vectors (perf_fops, prctl) can perturb the event
1326 * while in transit. Therefore all such accessors should also acquire
1327 * perf_event_context::mutex to serialize against this.
1328 *
1329 * However; because event->ctx can change while we're waiting to acquire
1330 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1331 * function.
1332 *
1333 * Lock order:
1334 * exec_update_lock
1335 * task_struct::perf_event_mutex
1336 * perf_event_context::mutex
1337 * perf_event::child_mutex;
1338 * perf_event_context::lock
1339 * perf_event::mmap_mutex
1340 * mmap_lock
1341 * perf_addr_filters_head::lock
1342 *
1343 * cpu_hotplug_lock
1344 * pmus_lock
1345 * cpuctx->mutex / perf_event_context::mutex
1346 */
1347 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1349 {
1350 struct perf_event_context *ctx;
1351
1352 again:
1353 rcu_read_lock();
1354 ctx = READ_ONCE(event->ctx);
1355 if (!refcount_inc_not_zero(&ctx->refcount)) {
1356 rcu_read_unlock();
1357 goto again;
1358 }
1359 rcu_read_unlock();
1360
1361 mutex_lock_nested(&ctx->mutex, nesting);
1362 if (event->ctx != ctx) {
1363 mutex_unlock(&ctx->mutex);
1364 put_ctx(ctx);
1365 goto again;
1366 }
1367
1368 return ctx;
1369 }
1370
1371 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1372 perf_event_ctx_lock(struct perf_event *event)
1373 {
1374 return perf_event_ctx_lock_nested(event, 0);
1375 }
1376
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1377 static void perf_event_ctx_unlock(struct perf_event *event,
1378 struct perf_event_context *ctx)
1379 {
1380 mutex_unlock(&ctx->mutex);
1381 put_ctx(ctx);
1382 }
1383
1384 /*
1385 * This must be done under the ctx->lock, such as to serialize against
1386 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387 * calling scheduler related locks and ctx->lock nests inside those.
1388 */
1389 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1390 unclone_ctx(struct perf_event_context *ctx)
1391 {
1392 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1393
1394 lockdep_assert_held(&ctx->lock);
1395
1396 if (parent_ctx)
1397 ctx->parent_ctx = NULL;
1398 ctx->generation++;
1399
1400 return parent_ctx;
1401 }
1402
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1404 enum pid_type type)
1405 {
1406 u32 nr;
1407 /*
1408 * only top level events have the pid namespace they were created in
1409 */
1410 if (event->parent)
1411 event = event->parent;
1412
1413 nr = __task_pid_nr_ns(p, type, event->ns);
1414 /* avoid -1 if it is idle thread or runs in another ns */
1415 if (!nr && !pid_alive(p))
1416 nr = -1;
1417 return nr;
1418 }
1419
perf_event_pid(struct perf_event * event,struct task_struct * p)1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1421 {
1422 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1423 }
1424
perf_event_tid(struct perf_event * event,struct task_struct * p)1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1426 {
1427 return perf_event_pid_type(event, p, PIDTYPE_PID);
1428 }
1429
1430 /*
1431 * If we inherit events we want to return the parent event id
1432 * to userspace.
1433 */
primary_event_id(struct perf_event * event)1434 static u64 primary_event_id(struct perf_event *event)
1435 {
1436 u64 id = event->id;
1437
1438 if (event->parent)
1439 id = event->parent->id;
1440
1441 return id;
1442 }
1443
1444 /*
1445 * Get the perf_event_context for a task and lock it.
1446 *
1447 * This has to cope with the fact that until it is locked,
1448 * the context could get moved to another task.
1449 */
1450 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1451 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1452 {
1453 struct perf_event_context *ctx;
1454
1455 retry:
1456 /*
1457 * One of the few rules of preemptible RCU is that one cannot do
1458 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1459 * part of the read side critical section was irqs-enabled -- see
1460 * rcu_read_unlock_special().
1461 *
1462 * Since ctx->lock nests under rq->lock we must ensure the entire read
1463 * side critical section has interrupts disabled.
1464 */
1465 local_irq_save(*flags);
1466 rcu_read_lock();
1467 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1468 if (ctx) {
1469 /*
1470 * If this context is a clone of another, it might
1471 * get swapped for another underneath us by
1472 * perf_event_task_sched_out, though the
1473 * rcu_read_lock() protects us from any context
1474 * getting freed. Lock the context and check if it
1475 * got swapped before we could get the lock, and retry
1476 * if so. If we locked the right context, then it
1477 * can't get swapped on us any more.
1478 */
1479 raw_spin_lock(&ctx->lock);
1480 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1481 raw_spin_unlock(&ctx->lock);
1482 rcu_read_unlock();
1483 local_irq_restore(*flags);
1484 goto retry;
1485 }
1486
1487 if (ctx->task == TASK_TOMBSTONE ||
1488 !refcount_inc_not_zero(&ctx->refcount)) {
1489 raw_spin_unlock(&ctx->lock);
1490 ctx = NULL;
1491 } else {
1492 WARN_ON_ONCE(ctx->task != task);
1493 }
1494 }
1495 rcu_read_unlock();
1496 if (!ctx)
1497 local_irq_restore(*flags);
1498 return ctx;
1499 }
1500
1501 /*
1502 * Get the context for a task and increment its pin_count so it
1503 * can't get swapped to another task. This also increments its
1504 * reference count so that the context can't get freed.
1505 */
1506 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1507 perf_pin_task_context(struct task_struct *task, int ctxn)
1508 {
1509 struct perf_event_context *ctx;
1510 unsigned long flags;
1511
1512 ctx = perf_lock_task_context(task, ctxn, &flags);
1513 if (ctx) {
1514 ++ctx->pin_count;
1515 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1516 }
1517 return ctx;
1518 }
1519
perf_unpin_context(struct perf_event_context * ctx)1520 static void perf_unpin_context(struct perf_event_context *ctx)
1521 {
1522 unsigned long flags;
1523
1524 raw_spin_lock_irqsave(&ctx->lock, flags);
1525 --ctx->pin_count;
1526 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1527 }
1528
1529 /*
1530 * Update the record of the current time in a context.
1531 */
update_context_time(struct perf_event_context * ctx)1532 static void update_context_time(struct perf_event_context *ctx)
1533 {
1534 u64 now = perf_clock();
1535
1536 ctx->time += now - ctx->timestamp;
1537 ctx->timestamp = now;
1538 }
1539
perf_event_time(struct perf_event * event)1540 static u64 perf_event_time(struct perf_event *event)
1541 {
1542 struct perf_event_context *ctx = event->ctx;
1543
1544 if (is_cgroup_event(event))
1545 return perf_cgroup_event_time(event);
1546
1547 return ctx ? ctx->time : 0;
1548 }
1549
get_event_type(struct perf_event * event)1550 static enum event_type_t get_event_type(struct perf_event *event)
1551 {
1552 struct perf_event_context *ctx = event->ctx;
1553 enum event_type_t event_type;
1554
1555 lockdep_assert_held(&ctx->lock);
1556
1557 /*
1558 * It's 'group type', really, because if our group leader is
1559 * pinned, so are we.
1560 */
1561 if (event->group_leader != event)
1562 event = event->group_leader;
1563
1564 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1565 if (!ctx->task)
1566 event_type |= EVENT_CPU;
1567
1568 return event_type;
1569 }
1570
1571 /*
1572 * Helper function to initialize event group nodes.
1573 */
init_event_group(struct perf_event * event)1574 static void init_event_group(struct perf_event *event)
1575 {
1576 RB_CLEAR_NODE(&event->group_node);
1577 event->group_index = 0;
1578 }
1579
1580 /*
1581 * Extract pinned or flexible groups from the context
1582 * based on event attrs bits.
1583 */
1584 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1585 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1586 {
1587 if (event->attr.pinned)
1588 return &ctx->pinned_groups;
1589 else
1590 return &ctx->flexible_groups;
1591 }
1592
1593 /*
1594 * Helper function to initializes perf_event_group trees.
1595 */
perf_event_groups_init(struct perf_event_groups * groups)1596 static void perf_event_groups_init(struct perf_event_groups *groups)
1597 {
1598 groups->tree = RB_ROOT;
1599 groups->index = 0;
1600 }
1601
1602 /*
1603 * Compare function for event groups;
1604 *
1605 * Implements complex key that first sorts by CPU and then by virtual index
1606 * which provides ordering when rotating groups for the same CPU.
1607 */
1608 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1609 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1610 {
1611 if (left->cpu < right->cpu)
1612 return true;
1613 if (left->cpu > right->cpu)
1614 return false;
1615
1616 #ifdef CONFIG_CGROUP_PERF
1617 if (left->cgrp != right->cgrp) {
1618 if (!left->cgrp || !left->cgrp->css.cgroup) {
1619 /*
1620 * Left has no cgroup but right does, no cgroups come
1621 * first.
1622 */
1623 return true;
1624 }
1625 if (!right->cgrp || !right->cgrp->css.cgroup) {
1626 /*
1627 * Right has no cgroup but left does, no cgroups come
1628 * first.
1629 */
1630 return false;
1631 }
1632 /* Two dissimilar cgroups, order by id. */
1633 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1634 return true;
1635
1636 return false;
1637 }
1638 #endif
1639
1640 if (left->group_index < right->group_index)
1641 return true;
1642 if (left->group_index > right->group_index)
1643 return false;
1644
1645 return false;
1646 }
1647
1648 /*
1649 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1650 * key (see perf_event_groups_less). This places it last inside the CPU
1651 * subtree.
1652 */
1653 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1654 perf_event_groups_insert(struct perf_event_groups *groups,
1655 struct perf_event *event)
1656 {
1657 struct perf_event *node_event;
1658 struct rb_node *parent;
1659 struct rb_node **node;
1660
1661 event->group_index = ++groups->index;
1662
1663 node = &groups->tree.rb_node;
1664 parent = *node;
1665
1666 while (*node) {
1667 parent = *node;
1668 node_event = container_of(*node, struct perf_event, group_node);
1669
1670 if (perf_event_groups_less(event, node_event))
1671 node = &parent->rb_left;
1672 else
1673 node = &parent->rb_right;
1674 }
1675
1676 rb_link_node(&event->group_node, parent, node);
1677 rb_insert_color(&event->group_node, &groups->tree);
1678 }
1679
1680 /*
1681 * Helper function to insert event into the pinned or flexible groups.
1682 */
1683 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1684 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1685 {
1686 struct perf_event_groups *groups;
1687
1688 groups = get_event_groups(event, ctx);
1689 perf_event_groups_insert(groups, event);
1690 }
1691
1692 /*
1693 * Delete a group from a tree.
1694 */
1695 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1696 perf_event_groups_delete(struct perf_event_groups *groups,
1697 struct perf_event *event)
1698 {
1699 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1700 RB_EMPTY_ROOT(&groups->tree));
1701
1702 rb_erase(&event->group_node, &groups->tree);
1703 init_event_group(event);
1704 }
1705
1706 /*
1707 * Helper function to delete event from its groups.
1708 */
1709 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1710 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1711 {
1712 struct perf_event_groups *groups;
1713
1714 groups = get_event_groups(event, ctx);
1715 perf_event_groups_delete(groups, event);
1716 }
1717
1718 /*
1719 * Get the leftmost event in the cpu/cgroup subtree.
1720 */
1721 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1722 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1723 struct cgroup *cgrp)
1724 {
1725 struct perf_event *node_event = NULL, *match = NULL;
1726 struct rb_node *node = groups->tree.rb_node;
1727 #ifdef CONFIG_CGROUP_PERF
1728 u64 node_cgrp_id, cgrp_id = 0;
1729
1730 if (cgrp)
1731 cgrp_id = cgrp->kn->id;
1732 #endif
1733
1734 while (node) {
1735 node_event = container_of(node, struct perf_event, group_node);
1736
1737 if (cpu < node_event->cpu) {
1738 node = node->rb_left;
1739 continue;
1740 }
1741 if (cpu > node_event->cpu) {
1742 node = node->rb_right;
1743 continue;
1744 }
1745 #ifdef CONFIG_CGROUP_PERF
1746 node_cgrp_id = 0;
1747 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1748 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1749
1750 if (cgrp_id < node_cgrp_id) {
1751 node = node->rb_left;
1752 continue;
1753 }
1754 if (cgrp_id > node_cgrp_id) {
1755 node = node->rb_right;
1756 continue;
1757 }
1758 #endif
1759 match = node_event;
1760 node = node->rb_left;
1761 }
1762
1763 return match;
1764 }
1765
1766 /*
1767 * Like rb_entry_next_safe() for the @cpu subtree.
1768 */
1769 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1770 perf_event_groups_next(struct perf_event *event)
1771 {
1772 struct perf_event *next;
1773 #ifdef CONFIG_CGROUP_PERF
1774 u64 curr_cgrp_id = 0;
1775 u64 next_cgrp_id = 0;
1776 #endif
1777
1778 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1779 if (next == NULL || next->cpu != event->cpu)
1780 return NULL;
1781
1782 #ifdef CONFIG_CGROUP_PERF
1783 if (event->cgrp && event->cgrp->css.cgroup)
1784 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1785
1786 if (next->cgrp && next->cgrp->css.cgroup)
1787 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1788
1789 if (curr_cgrp_id != next_cgrp_id)
1790 return NULL;
1791 #endif
1792 return next;
1793 }
1794
1795 /*
1796 * Iterate through the whole groups tree.
1797 */
1798 #define perf_event_groups_for_each(event, groups) \
1799 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1800 typeof(*event), group_node); event; \
1801 event = rb_entry_safe(rb_next(&event->group_node), \
1802 typeof(*event), group_node))
1803
1804 /*
1805 * Add an event from the lists for its context.
1806 * Must be called with ctx->mutex and ctx->lock held.
1807 */
1808 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1809 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1810 {
1811 lockdep_assert_held(&ctx->lock);
1812
1813 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1814 event->attach_state |= PERF_ATTACH_CONTEXT;
1815
1816 event->tstamp = perf_event_time(event);
1817
1818 /*
1819 * If we're a stand alone event or group leader, we go to the context
1820 * list, group events are kept attached to the group so that
1821 * perf_group_detach can, at all times, locate all siblings.
1822 */
1823 if (event->group_leader == event) {
1824 event->group_caps = event->event_caps;
1825 add_event_to_groups(event, ctx);
1826 }
1827
1828 list_add_rcu(&event->event_entry, &ctx->event_list);
1829 ctx->nr_events++;
1830 if (event->attr.inherit_stat)
1831 ctx->nr_stat++;
1832
1833 if (event->state > PERF_EVENT_STATE_OFF)
1834 perf_cgroup_event_enable(event, ctx);
1835
1836 ctx->generation++;
1837 }
1838
1839 /*
1840 * Initialize event state based on the perf_event_attr::disabled.
1841 */
perf_event__state_init(struct perf_event * event)1842 static inline void perf_event__state_init(struct perf_event *event)
1843 {
1844 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1845 PERF_EVENT_STATE_INACTIVE;
1846 }
1847
__perf_event_read_size(u64 read_format,int nr_siblings)1848 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1849 {
1850 int entry = sizeof(u64); /* value */
1851 int size = 0;
1852 int nr = 1;
1853
1854 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1855 size += sizeof(u64);
1856
1857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1858 size += sizeof(u64);
1859
1860 if (read_format & PERF_FORMAT_ID)
1861 entry += sizeof(u64);
1862
1863 if (read_format & PERF_FORMAT_GROUP) {
1864 nr += nr_siblings;
1865 size += sizeof(u64);
1866 }
1867
1868 /*
1869 * Since perf_event_validate_size() limits this to 16k and inhibits
1870 * adding more siblings, this will never overflow.
1871 */
1872 return size + nr * entry;
1873 }
1874
__perf_event_header_size(struct perf_event * event,u64 sample_type)1875 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1876 {
1877 struct perf_sample_data *data;
1878 u16 size = 0;
1879
1880 if (sample_type & PERF_SAMPLE_IP)
1881 size += sizeof(data->ip);
1882
1883 if (sample_type & PERF_SAMPLE_ADDR)
1884 size += sizeof(data->addr);
1885
1886 if (sample_type & PERF_SAMPLE_PERIOD)
1887 size += sizeof(data->period);
1888
1889 if (sample_type & PERF_SAMPLE_WEIGHT)
1890 size += sizeof(data->weight);
1891
1892 if (sample_type & PERF_SAMPLE_READ)
1893 size += event->read_size;
1894
1895 if (sample_type & PERF_SAMPLE_DATA_SRC)
1896 size += sizeof(data->data_src.val);
1897
1898 if (sample_type & PERF_SAMPLE_TRANSACTION)
1899 size += sizeof(data->txn);
1900
1901 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1902 size += sizeof(data->phys_addr);
1903
1904 if (sample_type & PERF_SAMPLE_CGROUP)
1905 size += sizeof(data->cgroup);
1906
1907 event->header_size = size;
1908 }
1909
1910 /*
1911 * Called at perf_event creation and when events are attached/detached from a
1912 * group.
1913 */
perf_event__header_size(struct perf_event * event)1914 static void perf_event__header_size(struct perf_event *event)
1915 {
1916 event->read_size =
1917 __perf_event_read_size(event->attr.read_format,
1918 event->group_leader->nr_siblings);
1919 __perf_event_header_size(event, event->attr.sample_type);
1920 }
1921
perf_event__id_header_size(struct perf_event * event)1922 static void perf_event__id_header_size(struct perf_event *event)
1923 {
1924 struct perf_sample_data *data;
1925 u64 sample_type = event->attr.sample_type;
1926 u16 size = 0;
1927
1928 if (sample_type & PERF_SAMPLE_TID)
1929 size += sizeof(data->tid_entry);
1930
1931 if (sample_type & PERF_SAMPLE_TIME)
1932 size += sizeof(data->time);
1933
1934 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1935 size += sizeof(data->id);
1936
1937 if (sample_type & PERF_SAMPLE_ID)
1938 size += sizeof(data->id);
1939
1940 if (sample_type & PERF_SAMPLE_STREAM_ID)
1941 size += sizeof(data->stream_id);
1942
1943 if (sample_type & PERF_SAMPLE_CPU)
1944 size += sizeof(data->cpu_entry);
1945
1946 event->id_header_size = size;
1947 }
1948
1949 /*
1950 * Check that adding an event to the group does not result in anybody
1951 * overflowing the 64k event limit imposed by the output buffer.
1952 *
1953 * Specifically, check that the read_size for the event does not exceed 16k,
1954 * read_size being the one term that grows with groups size. Since read_size
1955 * depends on per-event read_format, also (re)check the existing events.
1956 *
1957 * This leaves 48k for the constant size fields and things like callchains,
1958 * branch stacks and register sets.
1959 */
perf_event_validate_size(struct perf_event * event)1960 static bool perf_event_validate_size(struct perf_event *event)
1961 {
1962 struct perf_event *sibling, *group_leader = event->group_leader;
1963
1964 if (__perf_event_read_size(event->attr.read_format,
1965 group_leader->nr_siblings + 1) > 16*1024)
1966 return false;
1967
1968 if (__perf_event_read_size(group_leader->attr.read_format,
1969 group_leader->nr_siblings + 1) > 16*1024)
1970 return false;
1971
1972 for_each_sibling_event(sibling, group_leader) {
1973 if (__perf_event_read_size(sibling->attr.read_format,
1974 group_leader->nr_siblings + 1) > 16*1024)
1975 return false;
1976 }
1977
1978 return true;
1979 }
1980
perf_group_attach(struct perf_event * event)1981 static void perf_group_attach(struct perf_event *event)
1982 {
1983 struct perf_event *group_leader = event->group_leader, *pos;
1984
1985 lockdep_assert_held(&event->ctx->lock);
1986
1987 /*
1988 * We can have double attach due to group movement in perf_event_open.
1989 */
1990 if (event->attach_state & PERF_ATTACH_GROUP)
1991 return;
1992
1993 event->attach_state |= PERF_ATTACH_GROUP;
1994
1995 if (group_leader == event)
1996 return;
1997
1998 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1999
2000 group_leader->group_caps &= event->event_caps;
2001
2002 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2003 group_leader->nr_siblings++;
2004 group_leader->group_generation++;
2005
2006 perf_event__header_size(group_leader);
2007
2008 for_each_sibling_event(pos, group_leader)
2009 perf_event__header_size(pos);
2010 }
2011
2012 /*
2013 * Remove an event from the lists for its context.
2014 * Must be called with ctx->mutex and ctx->lock held.
2015 */
2016 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2017 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2018 {
2019 WARN_ON_ONCE(event->ctx != ctx);
2020 lockdep_assert_held(&ctx->lock);
2021
2022 /*
2023 * We can have double detach due to exit/hot-unplug + close.
2024 */
2025 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2026 return;
2027
2028 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2029
2030 ctx->nr_events--;
2031 if (event->attr.inherit_stat)
2032 ctx->nr_stat--;
2033
2034 list_del_rcu(&event->event_entry);
2035
2036 if (event->group_leader == event)
2037 del_event_from_groups(event, ctx);
2038
2039 /*
2040 * If event was in error state, then keep it
2041 * that way, otherwise bogus counts will be
2042 * returned on read(). The only way to get out
2043 * of error state is by explicit re-enabling
2044 * of the event
2045 */
2046 if (event->state > PERF_EVENT_STATE_OFF) {
2047 perf_cgroup_event_disable(event, ctx);
2048 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2049 }
2050
2051 ctx->generation++;
2052 }
2053
2054 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2055 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2056 {
2057 if (!has_aux(aux_event))
2058 return 0;
2059
2060 if (!event->pmu->aux_output_match)
2061 return 0;
2062
2063 return event->pmu->aux_output_match(aux_event);
2064 }
2065
2066 static void put_event(struct perf_event *event);
2067 static void event_sched_out(struct perf_event *event,
2068 struct perf_cpu_context *cpuctx,
2069 struct perf_event_context *ctx);
2070
perf_put_aux_event(struct perf_event * event)2071 static void perf_put_aux_event(struct perf_event *event)
2072 {
2073 struct perf_event_context *ctx = event->ctx;
2074 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2075 struct perf_event *iter;
2076
2077 /*
2078 * If event uses aux_event tear down the link
2079 */
2080 if (event->aux_event) {
2081 iter = event->aux_event;
2082 event->aux_event = NULL;
2083 put_event(iter);
2084 return;
2085 }
2086
2087 /*
2088 * If the event is an aux_event, tear down all links to
2089 * it from other events.
2090 */
2091 for_each_sibling_event(iter, event->group_leader) {
2092 if (iter->aux_event != event)
2093 continue;
2094
2095 iter->aux_event = NULL;
2096 put_event(event);
2097
2098 /*
2099 * If it's ACTIVE, schedule it out and put it into ERROR
2100 * state so that we don't try to schedule it again. Note
2101 * that perf_event_enable() will clear the ERROR status.
2102 */
2103 event_sched_out(iter, cpuctx, ctx);
2104 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2105 }
2106 }
2107
perf_need_aux_event(struct perf_event * event)2108 static bool perf_need_aux_event(struct perf_event *event)
2109 {
2110 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2111 }
2112
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2113 static int perf_get_aux_event(struct perf_event *event,
2114 struct perf_event *group_leader)
2115 {
2116 /*
2117 * Our group leader must be an aux event if we want to be
2118 * an aux_output. This way, the aux event will precede its
2119 * aux_output events in the group, and therefore will always
2120 * schedule first.
2121 */
2122 if (!group_leader)
2123 return 0;
2124
2125 /*
2126 * aux_output and aux_sample_size are mutually exclusive.
2127 */
2128 if (event->attr.aux_output && event->attr.aux_sample_size)
2129 return 0;
2130
2131 if (event->attr.aux_output &&
2132 !perf_aux_output_match(event, group_leader))
2133 return 0;
2134
2135 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2136 return 0;
2137
2138 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2139 return 0;
2140
2141 /*
2142 * Link aux_outputs to their aux event; this is undone in
2143 * perf_group_detach() by perf_put_aux_event(). When the
2144 * group in torn down, the aux_output events loose their
2145 * link to the aux_event and can't schedule any more.
2146 */
2147 event->aux_event = group_leader;
2148
2149 return 1;
2150 }
2151
get_event_list(struct perf_event * event)2152 static inline struct list_head *get_event_list(struct perf_event *event)
2153 {
2154 struct perf_event_context *ctx = event->ctx;
2155 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2156 }
2157
2158 /*
2159 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2160 * cannot exist on their own, schedule them out and move them into the ERROR
2161 * state. Also see _perf_event_enable(), it will not be able to recover
2162 * this ERROR state.
2163 */
perf_remove_sibling_event(struct perf_event * event)2164 static inline void perf_remove_sibling_event(struct perf_event *event)
2165 {
2166 struct perf_event_context *ctx = event->ctx;
2167 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2168
2169 event_sched_out(event, cpuctx, ctx);
2170 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2171 }
2172
perf_group_detach(struct perf_event * event)2173 static void perf_group_detach(struct perf_event *event)
2174 {
2175 struct perf_event *leader = event->group_leader;
2176 struct perf_event *sibling, *tmp;
2177 struct perf_event_context *ctx = event->ctx;
2178
2179 lockdep_assert_held(&ctx->lock);
2180
2181 /*
2182 * We can have double detach due to exit/hot-unplug + close.
2183 */
2184 if (!(event->attach_state & PERF_ATTACH_GROUP))
2185 return;
2186
2187 event->attach_state &= ~PERF_ATTACH_GROUP;
2188
2189 perf_put_aux_event(event);
2190
2191 /*
2192 * If this is a sibling, remove it from its group.
2193 */
2194 if (leader != event) {
2195 list_del_init(&event->sibling_list);
2196 event->group_leader->nr_siblings--;
2197 event->group_leader->group_generation++;
2198 goto out;
2199 }
2200
2201 /*
2202 * If this was a group event with sibling events then
2203 * upgrade the siblings to singleton events by adding them
2204 * to whatever list we are on.
2205 */
2206 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2207
2208 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2209 perf_remove_sibling_event(sibling);
2210
2211 sibling->group_leader = sibling;
2212 list_del_init(&sibling->sibling_list);
2213
2214 /* Inherit group flags from the previous leader */
2215 sibling->group_caps = event->group_caps;
2216
2217 if (!RB_EMPTY_NODE(&event->group_node)) {
2218 add_event_to_groups(sibling, event->ctx);
2219
2220 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2221 list_add_tail(&sibling->active_list, get_event_list(sibling));
2222 }
2223
2224 WARN_ON_ONCE(sibling->ctx != event->ctx);
2225 }
2226
2227 out:
2228 for_each_sibling_event(tmp, leader)
2229 perf_event__header_size(tmp);
2230
2231 perf_event__header_size(leader);
2232 }
2233
is_orphaned_event(struct perf_event * event)2234 static bool is_orphaned_event(struct perf_event *event)
2235 {
2236 return event->state == PERF_EVENT_STATE_DEAD;
2237 }
2238
__pmu_filter_match(struct perf_event * event)2239 static inline int __pmu_filter_match(struct perf_event *event)
2240 {
2241 struct pmu *pmu = event->pmu;
2242 return pmu->filter_match ? pmu->filter_match(event) : 1;
2243 }
2244
2245 /*
2246 * Check whether we should attempt to schedule an event group based on
2247 * PMU-specific filtering. An event group can consist of HW and SW events,
2248 * potentially with a SW leader, so we must check all the filters, to
2249 * determine whether a group is schedulable:
2250 */
pmu_filter_match(struct perf_event * event)2251 static inline int pmu_filter_match(struct perf_event *event)
2252 {
2253 struct perf_event *sibling;
2254
2255 if (!__pmu_filter_match(event))
2256 return 0;
2257
2258 for_each_sibling_event(sibling, event) {
2259 if (!__pmu_filter_match(sibling))
2260 return 0;
2261 }
2262
2263 return 1;
2264 }
2265
2266 static inline int
event_filter_match(struct perf_event * event)2267 event_filter_match(struct perf_event *event)
2268 {
2269 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2270 perf_cgroup_match(event) && pmu_filter_match(event);
2271 }
2272
2273 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2274 event_sched_out(struct perf_event *event,
2275 struct perf_cpu_context *cpuctx,
2276 struct perf_event_context *ctx)
2277 {
2278 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2279
2280 WARN_ON_ONCE(event->ctx != ctx);
2281 lockdep_assert_held(&ctx->lock);
2282
2283 if (event->state != PERF_EVENT_STATE_ACTIVE)
2284 return;
2285
2286 /*
2287 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2288 * we can schedule events _OUT_ individually through things like
2289 * __perf_remove_from_context().
2290 */
2291 list_del_init(&event->active_list);
2292
2293 perf_pmu_disable(event->pmu);
2294
2295 event->pmu->del(event, 0);
2296 event->oncpu = -1;
2297
2298 if (READ_ONCE(event->pending_disable) >= 0) {
2299 WRITE_ONCE(event->pending_disable, -1);
2300 perf_cgroup_event_disable(event, ctx);
2301 state = PERF_EVENT_STATE_OFF;
2302 }
2303 perf_event_set_state(event, state);
2304
2305 if (!is_software_event(event))
2306 cpuctx->active_oncpu--;
2307 if (!--ctx->nr_active)
2308 perf_event_ctx_deactivate(ctx);
2309 if (event->attr.freq && event->attr.sample_freq)
2310 ctx->nr_freq--;
2311 if (event->attr.exclusive || !cpuctx->active_oncpu)
2312 cpuctx->exclusive = 0;
2313
2314 perf_pmu_enable(event->pmu);
2315 }
2316
2317 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2318 group_sched_out(struct perf_event *group_event,
2319 struct perf_cpu_context *cpuctx,
2320 struct perf_event_context *ctx)
2321 {
2322 struct perf_event *event;
2323
2324 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2325 return;
2326
2327 perf_pmu_disable(ctx->pmu);
2328
2329 event_sched_out(group_event, cpuctx, ctx);
2330
2331 /*
2332 * Schedule out siblings (if any):
2333 */
2334 for_each_sibling_event(event, group_event)
2335 event_sched_out(event, cpuctx, ctx);
2336
2337 perf_pmu_enable(ctx->pmu);
2338 }
2339
2340 #define DETACH_GROUP 0x01UL
2341
2342 /*
2343 * Cross CPU call to remove a performance event
2344 *
2345 * We disable the event on the hardware level first. After that we
2346 * remove it from the context list.
2347 */
2348 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2349 __perf_remove_from_context(struct perf_event *event,
2350 struct perf_cpu_context *cpuctx,
2351 struct perf_event_context *ctx,
2352 void *info)
2353 {
2354 unsigned long flags = (unsigned long)info;
2355
2356 if (ctx->is_active & EVENT_TIME) {
2357 update_context_time(ctx);
2358 update_cgrp_time_from_cpuctx(cpuctx);
2359 }
2360
2361 event_sched_out(event, cpuctx, ctx);
2362 if (flags & DETACH_GROUP)
2363 perf_group_detach(event);
2364 list_del_event(event, ctx);
2365
2366 if (!ctx->nr_events && ctx->is_active) {
2367 ctx->is_active = 0;
2368 ctx->rotate_necessary = 0;
2369 if (ctx->task) {
2370 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2371 cpuctx->task_ctx = NULL;
2372 }
2373 }
2374 }
2375
2376 /*
2377 * Remove the event from a task's (or a CPU's) list of events.
2378 *
2379 * If event->ctx is a cloned context, callers must make sure that
2380 * every task struct that event->ctx->task could possibly point to
2381 * remains valid. This is OK when called from perf_release since
2382 * that only calls us on the top-level context, which can't be a clone.
2383 * When called from perf_event_exit_task, it's OK because the
2384 * context has been detached from its task.
2385 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2386 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2387 {
2388 struct perf_event_context *ctx = event->ctx;
2389
2390 lockdep_assert_held(&ctx->mutex);
2391
2392 event_function_call(event, __perf_remove_from_context, (void *)flags);
2393
2394 /*
2395 * The above event_function_call() can NO-OP when it hits
2396 * TASK_TOMBSTONE. In that case we must already have been detached
2397 * from the context (by perf_event_exit_event()) but the grouping
2398 * might still be in-tact.
2399 */
2400 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2401 if ((flags & DETACH_GROUP) &&
2402 (event->attach_state & PERF_ATTACH_GROUP)) {
2403 /*
2404 * Since in that case we cannot possibly be scheduled, simply
2405 * detach now.
2406 */
2407 raw_spin_lock_irq(&ctx->lock);
2408 perf_group_detach(event);
2409 raw_spin_unlock_irq(&ctx->lock);
2410 }
2411 }
2412
2413 /*
2414 * Cross CPU call to disable a performance event
2415 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2416 static void __perf_event_disable(struct perf_event *event,
2417 struct perf_cpu_context *cpuctx,
2418 struct perf_event_context *ctx,
2419 void *info)
2420 {
2421 if (event->state < PERF_EVENT_STATE_INACTIVE)
2422 return;
2423
2424 if (ctx->is_active & EVENT_TIME) {
2425 update_context_time(ctx);
2426 update_cgrp_time_from_event(event);
2427 }
2428
2429 if (event == event->group_leader)
2430 group_sched_out(event, cpuctx, ctx);
2431 else
2432 event_sched_out(event, cpuctx, ctx);
2433
2434 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2435 perf_cgroup_event_disable(event, ctx);
2436 }
2437
2438 /*
2439 * Disable an event.
2440 *
2441 * If event->ctx is a cloned context, callers must make sure that
2442 * every task struct that event->ctx->task could possibly point to
2443 * remains valid. This condition is satisfied when called through
2444 * perf_event_for_each_child or perf_event_for_each because they
2445 * hold the top-level event's child_mutex, so any descendant that
2446 * goes to exit will block in perf_event_exit_event().
2447 *
2448 * When called from perf_pending_event it's OK because event->ctx
2449 * is the current context on this CPU and preemption is disabled,
2450 * hence we can't get into perf_event_task_sched_out for this context.
2451 */
_perf_event_disable(struct perf_event * event)2452 static void _perf_event_disable(struct perf_event *event)
2453 {
2454 struct perf_event_context *ctx = event->ctx;
2455
2456 raw_spin_lock_irq(&ctx->lock);
2457 if (event->state <= PERF_EVENT_STATE_OFF) {
2458 raw_spin_unlock_irq(&ctx->lock);
2459 return;
2460 }
2461 raw_spin_unlock_irq(&ctx->lock);
2462
2463 event_function_call(event, __perf_event_disable, NULL);
2464 }
2465
perf_event_disable_local(struct perf_event * event)2466 void perf_event_disable_local(struct perf_event *event)
2467 {
2468 event_function_local(event, __perf_event_disable, NULL);
2469 }
2470
2471 /*
2472 * Strictly speaking kernel users cannot create groups and therefore this
2473 * interface does not need the perf_event_ctx_lock() magic.
2474 */
perf_event_disable(struct perf_event * event)2475 void perf_event_disable(struct perf_event *event)
2476 {
2477 struct perf_event_context *ctx;
2478
2479 ctx = perf_event_ctx_lock(event);
2480 _perf_event_disable(event);
2481 perf_event_ctx_unlock(event, ctx);
2482 }
2483 EXPORT_SYMBOL_GPL(perf_event_disable);
2484
perf_event_disable_inatomic(struct perf_event * event)2485 void perf_event_disable_inatomic(struct perf_event *event)
2486 {
2487 WRITE_ONCE(event->pending_disable, smp_processor_id());
2488 /* can fail, see perf_pending_event_disable() */
2489 irq_work_queue(&event->pending);
2490 }
2491
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2492 static void perf_set_shadow_time(struct perf_event *event,
2493 struct perf_event_context *ctx)
2494 {
2495 /*
2496 * use the correct time source for the time snapshot
2497 *
2498 * We could get by without this by leveraging the
2499 * fact that to get to this function, the caller
2500 * has most likely already called update_context_time()
2501 * and update_cgrp_time_xx() and thus both timestamp
2502 * are identical (or very close). Given that tstamp is,
2503 * already adjusted for cgroup, we could say that:
2504 * tstamp - ctx->timestamp
2505 * is equivalent to
2506 * tstamp - cgrp->timestamp.
2507 *
2508 * Then, in perf_output_read(), the calculation would
2509 * work with no changes because:
2510 * - event is guaranteed scheduled in
2511 * - no scheduled out in between
2512 * - thus the timestamp would be the same
2513 *
2514 * But this is a bit hairy.
2515 *
2516 * So instead, we have an explicit cgroup call to remain
2517 * within the time source all along. We believe it
2518 * is cleaner and simpler to understand.
2519 */
2520 if (is_cgroup_event(event))
2521 perf_cgroup_set_shadow_time(event, event->tstamp);
2522 else
2523 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2524 }
2525
2526 #define MAX_INTERRUPTS (~0ULL)
2527
2528 static void perf_log_throttle(struct perf_event *event, int enable);
2529 static void perf_log_itrace_start(struct perf_event *event);
2530
2531 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2532 event_sched_in(struct perf_event *event,
2533 struct perf_cpu_context *cpuctx,
2534 struct perf_event_context *ctx)
2535 {
2536 int ret = 0;
2537
2538 WARN_ON_ONCE(event->ctx != ctx);
2539
2540 lockdep_assert_held(&ctx->lock);
2541
2542 if (event->state <= PERF_EVENT_STATE_OFF)
2543 return 0;
2544
2545 WRITE_ONCE(event->oncpu, smp_processor_id());
2546 /*
2547 * Order event::oncpu write to happen before the ACTIVE state is
2548 * visible. This allows perf_event_{stop,read}() to observe the correct
2549 * ->oncpu if it sees ACTIVE.
2550 */
2551 smp_wmb();
2552 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2553
2554 /*
2555 * Unthrottle events, since we scheduled we might have missed several
2556 * ticks already, also for a heavily scheduling task there is little
2557 * guarantee it'll get a tick in a timely manner.
2558 */
2559 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2560 perf_log_throttle(event, 1);
2561 event->hw.interrupts = 0;
2562 }
2563
2564 perf_pmu_disable(event->pmu);
2565
2566 perf_set_shadow_time(event, ctx);
2567
2568 perf_log_itrace_start(event);
2569
2570 if (event->pmu->add(event, PERF_EF_START)) {
2571 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2572 event->oncpu = -1;
2573 ret = -EAGAIN;
2574 goto out;
2575 }
2576
2577 if (!is_software_event(event))
2578 cpuctx->active_oncpu++;
2579 if (!ctx->nr_active++)
2580 perf_event_ctx_activate(ctx);
2581 if (event->attr.freq && event->attr.sample_freq)
2582 ctx->nr_freq++;
2583
2584 if (event->attr.exclusive)
2585 cpuctx->exclusive = 1;
2586
2587 out:
2588 perf_pmu_enable(event->pmu);
2589
2590 return ret;
2591 }
2592
2593 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2594 group_sched_in(struct perf_event *group_event,
2595 struct perf_cpu_context *cpuctx,
2596 struct perf_event_context *ctx)
2597 {
2598 struct perf_event *event, *partial_group = NULL;
2599 struct pmu *pmu = ctx->pmu;
2600
2601 if (group_event->state == PERF_EVENT_STATE_OFF)
2602 return 0;
2603
2604 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2605
2606 if (event_sched_in(group_event, cpuctx, ctx))
2607 goto error;
2608
2609 /*
2610 * Schedule in siblings as one group (if any):
2611 */
2612 for_each_sibling_event(event, group_event) {
2613 if (event_sched_in(event, cpuctx, ctx)) {
2614 partial_group = event;
2615 goto group_error;
2616 }
2617 }
2618
2619 if (!pmu->commit_txn(pmu))
2620 return 0;
2621
2622 group_error:
2623 /*
2624 * Groups can be scheduled in as one unit only, so undo any
2625 * partial group before returning:
2626 * The events up to the failed event are scheduled out normally.
2627 */
2628 for_each_sibling_event(event, group_event) {
2629 if (event == partial_group)
2630 break;
2631
2632 event_sched_out(event, cpuctx, ctx);
2633 }
2634 event_sched_out(group_event, cpuctx, ctx);
2635
2636 error:
2637 pmu->cancel_txn(pmu);
2638 return -EAGAIN;
2639 }
2640
2641 /*
2642 * Work out whether we can put this event group on the CPU now.
2643 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2644 static int group_can_go_on(struct perf_event *event,
2645 struct perf_cpu_context *cpuctx,
2646 int can_add_hw)
2647 {
2648 /*
2649 * Groups consisting entirely of software events can always go on.
2650 */
2651 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2652 return 1;
2653 /*
2654 * If an exclusive group is already on, no other hardware
2655 * events can go on.
2656 */
2657 if (cpuctx->exclusive)
2658 return 0;
2659 /*
2660 * If this group is exclusive and there are already
2661 * events on the CPU, it can't go on.
2662 */
2663 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2664 return 0;
2665 /*
2666 * Otherwise, try to add it if all previous groups were able
2667 * to go on.
2668 */
2669 return can_add_hw;
2670 }
2671
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2672 static void add_event_to_ctx(struct perf_event *event,
2673 struct perf_event_context *ctx)
2674 {
2675 list_add_event(event, ctx);
2676 perf_group_attach(event);
2677 }
2678
2679 static void ctx_sched_out(struct perf_event_context *ctx,
2680 struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type);
2682 static void
2683 ctx_sched_in(struct perf_event_context *ctx,
2684 struct perf_cpu_context *cpuctx,
2685 enum event_type_t event_type,
2686 struct task_struct *task);
2687
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2688 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2689 struct perf_event_context *ctx,
2690 enum event_type_t event_type)
2691 {
2692 if (!cpuctx->task_ctx)
2693 return;
2694
2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 return;
2697
2698 ctx_sched_out(ctx, cpuctx, event_type);
2699 }
2700
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2701 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2702 struct perf_event_context *ctx,
2703 struct task_struct *task)
2704 {
2705 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2706 if (ctx)
2707 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2708 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2709 if (ctx)
2710 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2711 }
2712
2713 /*
2714 * We want to maintain the following priority of scheduling:
2715 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2716 * - task pinned (EVENT_PINNED)
2717 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2718 * - task flexible (EVENT_FLEXIBLE).
2719 *
2720 * In order to avoid unscheduling and scheduling back in everything every
2721 * time an event is added, only do it for the groups of equal priority and
2722 * below.
2723 *
2724 * This can be called after a batch operation on task events, in which case
2725 * event_type is a bit mask of the types of events involved. For CPU events,
2726 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2727 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2728 static void ctx_resched(struct perf_cpu_context *cpuctx,
2729 struct perf_event_context *task_ctx,
2730 enum event_type_t event_type)
2731 {
2732 enum event_type_t ctx_event_type;
2733 bool cpu_event = !!(event_type & EVENT_CPU);
2734
2735 /*
2736 * If pinned groups are involved, flexible groups also need to be
2737 * scheduled out.
2738 */
2739 if (event_type & EVENT_PINNED)
2740 event_type |= EVENT_FLEXIBLE;
2741
2742 ctx_event_type = event_type & EVENT_ALL;
2743
2744 perf_pmu_disable(cpuctx->ctx.pmu);
2745 if (task_ctx)
2746 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2747
2748 /*
2749 * Decide which cpu ctx groups to schedule out based on the types
2750 * of events that caused rescheduling:
2751 * - EVENT_CPU: schedule out corresponding groups;
2752 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2753 * - otherwise, do nothing more.
2754 */
2755 if (cpu_event)
2756 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2757 else if (ctx_event_type & EVENT_PINNED)
2758 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2759
2760 perf_event_sched_in(cpuctx, task_ctx, current);
2761 perf_pmu_enable(cpuctx->ctx.pmu);
2762 }
2763
perf_pmu_resched(struct pmu * pmu)2764 void perf_pmu_resched(struct pmu *pmu)
2765 {
2766 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2767 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2768
2769 perf_ctx_lock(cpuctx, task_ctx);
2770 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2771 perf_ctx_unlock(cpuctx, task_ctx);
2772 }
2773
2774 /*
2775 * Cross CPU call to install and enable a performance event
2776 *
2777 * Very similar to remote_function() + event_function() but cannot assume that
2778 * things like ctx->is_active and cpuctx->task_ctx are set.
2779 */
__perf_install_in_context(void * info)2780 static int __perf_install_in_context(void *info)
2781 {
2782 struct perf_event *event = info;
2783 struct perf_event_context *ctx = event->ctx;
2784 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2785 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2786 bool reprogram = true;
2787 int ret = 0;
2788
2789 raw_spin_lock(&cpuctx->ctx.lock);
2790 if (ctx->task) {
2791 raw_spin_lock(&ctx->lock);
2792 task_ctx = ctx;
2793
2794 reprogram = (ctx->task == current);
2795
2796 /*
2797 * If the task is running, it must be running on this CPU,
2798 * otherwise we cannot reprogram things.
2799 *
2800 * If its not running, we don't care, ctx->lock will
2801 * serialize against it becoming runnable.
2802 */
2803 if (task_curr(ctx->task) && !reprogram) {
2804 ret = -ESRCH;
2805 goto unlock;
2806 }
2807
2808 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2809 } else if (task_ctx) {
2810 raw_spin_lock(&task_ctx->lock);
2811 }
2812
2813 #ifdef CONFIG_CGROUP_PERF
2814 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2815 /*
2816 * If the current cgroup doesn't match the event's
2817 * cgroup, we should not try to schedule it.
2818 */
2819 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2820 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2821 event->cgrp->css.cgroup);
2822 }
2823 #endif
2824
2825 if (reprogram) {
2826 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2827 add_event_to_ctx(event, ctx);
2828 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2829 } else {
2830 add_event_to_ctx(event, ctx);
2831 }
2832
2833 unlock:
2834 perf_ctx_unlock(cpuctx, task_ctx);
2835
2836 return ret;
2837 }
2838
2839 static bool exclusive_event_installable(struct perf_event *event,
2840 struct perf_event_context *ctx);
2841
2842 /*
2843 * Attach a performance event to a context.
2844 *
2845 * Very similar to event_function_call, see comment there.
2846 */
2847 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2848 perf_install_in_context(struct perf_event_context *ctx,
2849 struct perf_event *event,
2850 int cpu)
2851 {
2852 struct task_struct *task = READ_ONCE(ctx->task);
2853
2854 lockdep_assert_held(&ctx->mutex);
2855
2856 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2857
2858 if (event->cpu != -1)
2859 event->cpu = cpu;
2860
2861 /*
2862 * Ensures that if we can observe event->ctx, both the event and ctx
2863 * will be 'complete'. See perf_iterate_sb_cpu().
2864 */
2865 smp_store_release(&event->ctx, ctx);
2866
2867 /*
2868 * perf_event_attr::disabled events will not run and can be initialized
2869 * without IPI. Except when this is the first event for the context, in
2870 * that case we need the magic of the IPI to set ctx->is_active.
2871 *
2872 * The IOC_ENABLE that is sure to follow the creation of a disabled
2873 * event will issue the IPI and reprogram the hardware.
2874 */
2875 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2876 raw_spin_lock_irq(&ctx->lock);
2877 if (ctx->task == TASK_TOMBSTONE) {
2878 raw_spin_unlock_irq(&ctx->lock);
2879 return;
2880 }
2881 add_event_to_ctx(event, ctx);
2882 raw_spin_unlock_irq(&ctx->lock);
2883 return;
2884 }
2885
2886 if (!task) {
2887 cpu_function_call(cpu, __perf_install_in_context, event);
2888 return;
2889 }
2890
2891 /*
2892 * Should not happen, we validate the ctx is still alive before calling.
2893 */
2894 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2895 return;
2896
2897 /*
2898 * Installing events is tricky because we cannot rely on ctx->is_active
2899 * to be set in case this is the nr_events 0 -> 1 transition.
2900 *
2901 * Instead we use task_curr(), which tells us if the task is running.
2902 * However, since we use task_curr() outside of rq::lock, we can race
2903 * against the actual state. This means the result can be wrong.
2904 *
2905 * If we get a false positive, we retry, this is harmless.
2906 *
2907 * If we get a false negative, things are complicated. If we are after
2908 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2909 * value must be correct. If we're before, it doesn't matter since
2910 * perf_event_context_sched_in() will program the counter.
2911 *
2912 * However, this hinges on the remote context switch having observed
2913 * our task->perf_event_ctxp[] store, such that it will in fact take
2914 * ctx::lock in perf_event_context_sched_in().
2915 *
2916 * We do this by task_function_call(), if the IPI fails to hit the task
2917 * we know any future context switch of task must see the
2918 * perf_event_ctpx[] store.
2919 */
2920
2921 /*
2922 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2923 * task_cpu() load, such that if the IPI then does not find the task
2924 * running, a future context switch of that task must observe the
2925 * store.
2926 */
2927 smp_mb();
2928 again:
2929 if (!task_function_call(task, __perf_install_in_context, event))
2930 return;
2931
2932 raw_spin_lock_irq(&ctx->lock);
2933 task = ctx->task;
2934 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2935 /*
2936 * Cannot happen because we already checked above (which also
2937 * cannot happen), and we hold ctx->mutex, which serializes us
2938 * against perf_event_exit_task_context().
2939 */
2940 raw_spin_unlock_irq(&ctx->lock);
2941 return;
2942 }
2943 /*
2944 * If the task is not running, ctx->lock will avoid it becoming so,
2945 * thus we can safely install the event.
2946 */
2947 if (task_curr(task)) {
2948 raw_spin_unlock_irq(&ctx->lock);
2949 goto again;
2950 }
2951 add_event_to_ctx(event, ctx);
2952 raw_spin_unlock_irq(&ctx->lock);
2953 }
2954
2955 /*
2956 * Cross CPU call to enable a performance event
2957 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2958 static void __perf_event_enable(struct perf_event *event,
2959 struct perf_cpu_context *cpuctx,
2960 struct perf_event_context *ctx,
2961 void *info)
2962 {
2963 struct perf_event *leader = event->group_leader;
2964 struct perf_event_context *task_ctx;
2965
2966 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2967 event->state <= PERF_EVENT_STATE_ERROR)
2968 return;
2969
2970 if (ctx->is_active)
2971 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2972
2973 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2974 perf_cgroup_event_enable(event, ctx);
2975
2976 if (!ctx->is_active)
2977 return;
2978
2979 if (!event_filter_match(event)) {
2980 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2981 return;
2982 }
2983
2984 /*
2985 * If the event is in a group and isn't the group leader,
2986 * then don't put it on unless the group is on.
2987 */
2988 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2989 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2990 return;
2991 }
2992
2993 task_ctx = cpuctx->task_ctx;
2994 if (ctx->task)
2995 WARN_ON_ONCE(task_ctx != ctx);
2996
2997 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2998 }
2999
3000 /*
3001 * Enable an event.
3002 *
3003 * If event->ctx is a cloned context, callers must make sure that
3004 * every task struct that event->ctx->task could possibly point to
3005 * remains valid. This condition is satisfied when called through
3006 * perf_event_for_each_child or perf_event_for_each as described
3007 * for perf_event_disable.
3008 */
_perf_event_enable(struct perf_event * event)3009 static void _perf_event_enable(struct perf_event *event)
3010 {
3011 struct perf_event_context *ctx = event->ctx;
3012
3013 raw_spin_lock_irq(&ctx->lock);
3014 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3015 event->state < PERF_EVENT_STATE_ERROR) {
3016 out:
3017 raw_spin_unlock_irq(&ctx->lock);
3018 return;
3019 }
3020
3021 /*
3022 * If the event is in error state, clear that first.
3023 *
3024 * That way, if we see the event in error state below, we know that it
3025 * has gone back into error state, as distinct from the task having
3026 * been scheduled away before the cross-call arrived.
3027 */
3028 if (event->state == PERF_EVENT_STATE_ERROR) {
3029 /*
3030 * Detached SIBLING events cannot leave ERROR state.
3031 */
3032 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3033 event->group_leader == event)
3034 goto out;
3035
3036 event->state = PERF_EVENT_STATE_OFF;
3037 }
3038 raw_spin_unlock_irq(&ctx->lock);
3039
3040 event_function_call(event, __perf_event_enable, NULL);
3041 }
3042
3043 /*
3044 * See perf_event_disable();
3045 */
perf_event_enable(struct perf_event * event)3046 void perf_event_enable(struct perf_event *event)
3047 {
3048 struct perf_event_context *ctx;
3049
3050 ctx = perf_event_ctx_lock(event);
3051 _perf_event_enable(event);
3052 perf_event_ctx_unlock(event, ctx);
3053 }
3054 EXPORT_SYMBOL_GPL(perf_event_enable);
3055
3056 struct stop_event_data {
3057 struct perf_event *event;
3058 unsigned int restart;
3059 };
3060
__perf_event_stop(void * info)3061 static int __perf_event_stop(void *info)
3062 {
3063 struct stop_event_data *sd = info;
3064 struct perf_event *event = sd->event;
3065
3066 /* if it's already INACTIVE, do nothing */
3067 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3068 return 0;
3069
3070 /* matches smp_wmb() in event_sched_in() */
3071 smp_rmb();
3072
3073 /*
3074 * There is a window with interrupts enabled before we get here,
3075 * so we need to check again lest we try to stop another CPU's event.
3076 */
3077 if (READ_ONCE(event->oncpu) != smp_processor_id())
3078 return -EAGAIN;
3079
3080 event->pmu->stop(event, PERF_EF_UPDATE);
3081
3082 /*
3083 * May race with the actual stop (through perf_pmu_output_stop()),
3084 * but it is only used for events with AUX ring buffer, and such
3085 * events will refuse to restart because of rb::aux_mmap_count==0,
3086 * see comments in perf_aux_output_begin().
3087 *
3088 * Since this is happening on an event-local CPU, no trace is lost
3089 * while restarting.
3090 */
3091 if (sd->restart)
3092 event->pmu->start(event, 0);
3093
3094 return 0;
3095 }
3096
perf_event_stop(struct perf_event * event,int restart)3097 static int perf_event_stop(struct perf_event *event, int restart)
3098 {
3099 struct stop_event_data sd = {
3100 .event = event,
3101 .restart = restart,
3102 };
3103 int ret = 0;
3104
3105 do {
3106 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3107 return 0;
3108
3109 /* matches smp_wmb() in event_sched_in() */
3110 smp_rmb();
3111
3112 /*
3113 * We only want to restart ACTIVE events, so if the event goes
3114 * inactive here (event->oncpu==-1), there's nothing more to do;
3115 * fall through with ret==-ENXIO.
3116 */
3117 ret = cpu_function_call(READ_ONCE(event->oncpu),
3118 __perf_event_stop, &sd);
3119 } while (ret == -EAGAIN);
3120
3121 return ret;
3122 }
3123
3124 /*
3125 * In order to contain the amount of racy and tricky in the address filter
3126 * configuration management, it is a two part process:
3127 *
3128 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3129 * we update the addresses of corresponding vmas in
3130 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3131 * (p2) when an event is scheduled in (pmu::add), it calls
3132 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3133 * if the generation has changed since the previous call.
3134 *
3135 * If (p1) happens while the event is active, we restart it to force (p2).
3136 *
3137 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3138 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3139 * ioctl;
3140 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3141 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3142 * for reading;
3143 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3144 * of exec.
3145 */
perf_event_addr_filters_sync(struct perf_event * event)3146 void perf_event_addr_filters_sync(struct perf_event *event)
3147 {
3148 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3149
3150 if (!has_addr_filter(event))
3151 return;
3152
3153 raw_spin_lock(&ifh->lock);
3154 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3155 event->pmu->addr_filters_sync(event);
3156 event->hw.addr_filters_gen = event->addr_filters_gen;
3157 }
3158 raw_spin_unlock(&ifh->lock);
3159 }
3160 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3161
_perf_event_refresh(struct perf_event * event,int refresh)3162 static int _perf_event_refresh(struct perf_event *event, int refresh)
3163 {
3164 /*
3165 * not supported on inherited events
3166 */
3167 if (event->attr.inherit || !is_sampling_event(event))
3168 return -EINVAL;
3169
3170 atomic_add(refresh, &event->event_limit);
3171 _perf_event_enable(event);
3172
3173 return 0;
3174 }
3175
3176 /*
3177 * See perf_event_disable()
3178 */
perf_event_refresh(struct perf_event * event,int refresh)3179 int perf_event_refresh(struct perf_event *event, int refresh)
3180 {
3181 struct perf_event_context *ctx;
3182 int ret;
3183
3184 ctx = perf_event_ctx_lock(event);
3185 ret = _perf_event_refresh(event, refresh);
3186 perf_event_ctx_unlock(event, ctx);
3187
3188 return ret;
3189 }
3190 EXPORT_SYMBOL_GPL(perf_event_refresh);
3191
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3192 static int perf_event_modify_breakpoint(struct perf_event *bp,
3193 struct perf_event_attr *attr)
3194 {
3195 int err;
3196
3197 _perf_event_disable(bp);
3198
3199 err = modify_user_hw_breakpoint_check(bp, attr, true);
3200
3201 if (!bp->attr.disabled)
3202 _perf_event_enable(bp);
3203
3204 return err;
3205 }
3206
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3207 static int perf_event_modify_attr(struct perf_event *event,
3208 struct perf_event_attr *attr)
3209 {
3210 if (event->attr.type != attr->type)
3211 return -EINVAL;
3212
3213 switch (event->attr.type) {
3214 case PERF_TYPE_BREAKPOINT:
3215 return perf_event_modify_breakpoint(event, attr);
3216 default:
3217 /* Place holder for future additions. */
3218 return -EOPNOTSUPP;
3219 }
3220 }
3221
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3222 static void ctx_sched_out(struct perf_event_context *ctx,
3223 struct perf_cpu_context *cpuctx,
3224 enum event_type_t event_type)
3225 {
3226 struct perf_event *event, *tmp;
3227 int is_active = ctx->is_active;
3228
3229 lockdep_assert_held(&ctx->lock);
3230
3231 if (likely(!ctx->nr_events)) {
3232 /*
3233 * See __perf_remove_from_context().
3234 */
3235 WARN_ON_ONCE(ctx->is_active);
3236 if (ctx->task)
3237 WARN_ON_ONCE(cpuctx->task_ctx);
3238 return;
3239 }
3240
3241 ctx->is_active &= ~event_type;
3242 if (!(ctx->is_active & EVENT_ALL))
3243 ctx->is_active = 0;
3244
3245 if (ctx->task) {
3246 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3247 if (!ctx->is_active)
3248 cpuctx->task_ctx = NULL;
3249 }
3250
3251 /*
3252 * Always update time if it was set; not only when it changes.
3253 * Otherwise we can 'forget' to update time for any but the last
3254 * context we sched out. For example:
3255 *
3256 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3257 * ctx_sched_out(.event_type = EVENT_PINNED)
3258 *
3259 * would only update time for the pinned events.
3260 */
3261 if (is_active & EVENT_TIME) {
3262 /* update (and stop) ctx time */
3263 update_context_time(ctx);
3264 update_cgrp_time_from_cpuctx(cpuctx);
3265 }
3266
3267 is_active ^= ctx->is_active; /* changed bits */
3268
3269 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3270 return;
3271
3272 perf_pmu_disable(ctx->pmu);
3273 if (is_active & EVENT_PINNED) {
3274 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3275 group_sched_out(event, cpuctx, ctx);
3276 }
3277
3278 if (is_active & EVENT_FLEXIBLE) {
3279 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3280 group_sched_out(event, cpuctx, ctx);
3281
3282 /*
3283 * Since we cleared EVENT_FLEXIBLE, also clear
3284 * rotate_necessary, is will be reset by
3285 * ctx_flexible_sched_in() when needed.
3286 */
3287 ctx->rotate_necessary = 0;
3288 }
3289 perf_pmu_enable(ctx->pmu);
3290 }
3291
3292 /*
3293 * Test whether two contexts are equivalent, i.e. whether they have both been
3294 * cloned from the same version of the same context.
3295 *
3296 * Equivalence is measured using a generation number in the context that is
3297 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3298 * and list_del_event().
3299 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3300 static int context_equiv(struct perf_event_context *ctx1,
3301 struct perf_event_context *ctx2)
3302 {
3303 lockdep_assert_held(&ctx1->lock);
3304 lockdep_assert_held(&ctx2->lock);
3305
3306 /* Pinning disables the swap optimization */
3307 if (ctx1->pin_count || ctx2->pin_count)
3308 return 0;
3309
3310 /* If ctx1 is the parent of ctx2 */
3311 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3312 return 1;
3313
3314 /* If ctx2 is the parent of ctx1 */
3315 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3316 return 1;
3317
3318 /*
3319 * If ctx1 and ctx2 have the same parent; we flatten the parent
3320 * hierarchy, see perf_event_init_context().
3321 */
3322 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3323 ctx1->parent_gen == ctx2->parent_gen)
3324 return 1;
3325
3326 /* Unmatched */
3327 return 0;
3328 }
3329
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3330 static void __perf_event_sync_stat(struct perf_event *event,
3331 struct perf_event *next_event)
3332 {
3333 u64 value;
3334
3335 if (!event->attr.inherit_stat)
3336 return;
3337
3338 /*
3339 * Update the event value, we cannot use perf_event_read()
3340 * because we're in the middle of a context switch and have IRQs
3341 * disabled, which upsets smp_call_function_single(), however
3342 * we know the event must be on the current CPU, therefore we
3343 * don't need to use it.
3344 */
3345 if (event->state == PERF_EVENT_STATE_ACTIVE)
3346 event->pmu->read(event);
3347
3348 perf_event_update_time(event);
3349
3350 /*
3351 * In order to keep per-task stats reliable we need to flip the event
3352 * values when we flip the contexts.
3353 */
3354 value = local64_read(&next_event->count);
3355 value = local64_xchg(&event->count, value);
3356 local64_set(&next_event->count, value);
3357
3358 swap(event->total_time_enabled, next_event->total_time_enabled);
3359 swap(event->total_time_running, next_event->total_time_running);
3360
3361 /*
3362 * Since we swizzled the values, update the user visible data too.
3363 */
3364 perf_event_update_userpage(event);
3365 perf_event_update_userpage(next_event);
3366 }
3367
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3368 static void perf_event_sync_stat(struct perf_event_context *ctx,
3369 struct perf_event_context *next_ctx)
3370 {
3371 struct perf_event *event, *next_event;
3372
3373 if (!ctx->nr_stat)
3374 return;
3375
3376 update_context_time(ctx);
3377
3378 event = list_first_entry(&ctx->event_list,
3379 struct perf_event, event_entry);
3380
3381 next_event = list_first_entry(&next_ctx->event_list,
3382 struct perf_event, event_entry);
3383
3384 while (&event->event_entry != &ctx->event_list &&
3385 &next_event->event_entry != &next_ctx->event_list) {
3386
3387 __perf_event_sync_stat(event, next_event);
3388
3389 event = list_next_entry(event, event_entry);
3390 next_event = list_next_entry(next_event, event_entry);
3391 }
3392 }
3393
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3394 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3395 struct task_struct *next)
3396 {
3397 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3398 struct perf_event_context *next_ctx;
3399 struct perf_event_context *parent, *next_parent;
3400 struct perf_cpu_context *cpuctx;
3401 int do_switch = 1;
3402 struct pmu *pmu;
3403
3404 if (likely(!ctx))
3405 return;
3406
3407 pmu = ctx->pmu;
3408 cpuctx = __get_cpu_context(ctx);
3409 if (!cpuctx->task_ctx)
3410 return;
3411
3412 rcu_read_lock();
3413 next_ctx = next->perf_event_ctxp[ctxn];
3414 if (!next_ctx)
3415 goto unlock;
3416
3417 parent = rcu_dereference(ctx->parent_ctx);
3418 next_parent = rcu_dereference(next_ctx->parent_ctx);
3419
3420 /* If neither context have a parent context; they cannot be clones. */
3421 if (!parent && !next_parent)
3422 goto unlock;
3423
3424 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3425 /*
3426 * Looks like the two contexts are clones, so we might be
3427 * able to optimize the context switch. We lock both
3428 * contexts and check that they are clones under the
3429 * lock (including re-checking that neither has been
3430 * uncloned in the meantime). It doesn't matter which
3431 * order we take the locks because no other cpu could
3432 * be trying to lock both of these tasks.
3433 */
3434 raw_spin_lock(&ctx->lock);
3435 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3436 if (context_equiv(ctx, next_ctx)) {
3437
3438 WRITE_ONCE(ctx->task, next);
3439 WRITE_ONCE(next_ctx->task, task);
3440
3441 perf_pmu_disable(pmu);
3442
3443 if (cpuctx->sched_cb_usage && pmu->sched_task)
3444 pmu->sched_task(ctx, false);
3445
3446 /*
3447 * PMU specific parts of task perf context can require
3448 * additional synchronization. As an example of such
3449 * synchronization see implementation details of Intel
3450 * LBR call stack data profiling;
3451 */
3452 if (pmu->swap_task_ctx)
3453 pmu->swap_task_ctx(ctx, next_ctx);
3454 else
3455 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3456
3457 perf_pmu_enable(pmu);
3458
3459 /*
3460 * RCU_INIT_POINTER here is safe because we've not
3461 * modified the ctx and the above modification of
3462 * ctx->task and ctx->task_ctx_data are immaterial
3463 * since those values are always verified under
3464 * ctx->lock which we're now holding.
3465 */
3466 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3467 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3468
3469 do_switch = 0;
3470
3471 perf_event_sync_stat(ctx, next_ctx);
3472 }
3473 raw_spin_unlock(&next_ctx->lock);
3474 raw_spin_unlock(&ctx->lock);
3475 }
3476 unlock:
3477 rcu_read_unlock();
3478
3479 if (do_switch) {
3480 raw_spin_lock(&ctx->lock);
3481 perf_pmu_disable(pmu);
3482
3483 if (cpuctx->sched_cb_usage && pmu->sched_task)
3484 pmu->sched_task(ctx, false);
3485 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3486
3487 perf_pmu_enable(pmu);
3488 raw_spin_unlock(&ctx->lock);
3489 }
3490 }
3491
3492 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3493
perf_sched_cb_dec(struct pmu * pmu)3494 void perf_sched_cb_dec(struct pmu *pmu)
3495 {
3496 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3497
3498 this_cpu_dec(perf_sched_cb_usages);
3499
3500 if (!--cpuctx->sched_cb_usage)
3501 list_del(&cpuctx->sched_cb_entry);
3502 }
3503
3504
perf_sched_cb_inc(struct pmu * pmu)3505 void perf_sched_cb_inc(struct pmu *pmu)
3506 {
3507 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3508
3509 if (!cpuctx->sched_cb_usage++)
3510 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3511
3512 this_cpu_inc(perf_sched_cb_usages);
3513 }
3514
3515 /*
3516 * This function provides the context switch callback to the lower code
3517 * layer. It is invoked ONLY when the context switch callback is enabled.
3518 *
3519 * This callback is relevant even to per-cpu events; for example multi event
3520 * PEBS requires this to provide PID/TID information. This requires we flush
3521 * all queued PEBS records before we context switch to a new task.
3522 */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3523 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3524 {
3525 struct pmu *pmu;
3526
3527 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3528
3529 if (WARN_ON_ONCE(!pmu->sched_task))
3530 return;
3531
3532 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3533 perf_pmu_disable(pmu);
3534
3535 pmu->sched_task(cpuctx->task_ctx, sched_in);
3536
3537 perf_pmu_enable(pmu);
3538 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3539 }
3540
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3541 static void perf_pmu_sched_task(struct task_struct *prev,
3542 struct task_struct *next,
3543 bool sched_in)
3544 {
3545 struct perf_cpu_context *cpuctx;
3546
3547 if (prev == next)
3548 return;
3549
3550 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3551 /* will be handled in perf_event_context_sched_in/out */
3552 if (cpuctx->task_ctx)
3553 continue;
3554
3555 __perf_pmu_sched_task(cpuctx, sched_in);
3556 }
3557 }
3558
3559 static void perf_event_switch(struct task_struct *task,
3560 struct task_struct *next_prev, bool sched_in);
3561
3562 #define for_each_task_context_nr(ctxn) \
3563 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3564
3565 /*
3566 * Called from scheduler to remove the events of the current task,
3567 * with interrupts disabled.
3568 *
3569 * We stop each event and update the event value in event->count.
3570 *
3571 * This does not protect us against NMI, but disable()
3572 * sets the disabled bit in the control field of event _before_
3573 * accessing the event control register. If a NMI hits, then it will
3574 * not restart the event.
3575 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3576 void __perf_event_task_sched_out(struct task_struct *task,
3577 struct task_struct *next)
3578 {
3579 int ctxn;
3580
3581 if (__this_cpu_read(perf_sched_cb_usages))
3582 perf_pmu_sched_task(task, next, false);
3583
3584 if (atomic_read(&nr_switch_events))
3585 perf_event_switch(task, next, false);
3586
3587 for_each_task_context_nr(ctxn)
3588 perf_event_context_sched_out(task, ctxn, next);
3589
3590 /*
3591 * if cgroup events exist on this CPU, then we need
3592 * to check if we have to switch out PMU state.
3593 * cgroup event are system-wide mode only
3594 */
3595 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3596 perf_cgroup_sched_out(task, next);
3597 }
3598
3599 /*
3600 * Called with IRQs disabled
3601 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3602 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3603 enum event_type_t event_type)
3604 {
3605 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3606 }
3607
perf_less_group_idx(const void * l,const void * r)3608 static bool perf_less_group_idx(const void *l, const void *r)
3609 {
3610 const struct perf_event *le = *(const struct perf_event **)l;
3611 const struct perf_event *re = *(const struct perf_event **)r;
3612
3613 return le->group_index < re->group_index;
3614 }
3615
swap_ptr(void * l,void * r)3616 static void swap_ptr(void *l, void *r)
3617 {
3618 void **lp = l, **rp = r;
3619
3620 swap(*lp, *rp);
3621 }
3622
3623 static const struct min_heap_callbacks perf_min_heap = {
3624 .elem_size = sizeof(struct perf_event *),
3625 .less = perf_less_group_idx,
3626 .swp = swap_ptr,
3627 };
3628
__heap_add(struct min_heap * heap,struct perf_event * event)3629 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3630 {
3631 struct perf_event **itrs = heap->data;
3632
3633 if (event) {
3634 itrs[heap->nr] = event;
3635 heap->nr++;
3636 }
3637 }
3638
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3639 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3640 struct perf_event_groups *groups, int cpu,
3641 int (*func)(struct perf_event *, void *),
3642 void *data)
3643 {
3644 #ifdef CONFIG_CGROUP_PERF
3645 struct cgroup_subsys_state *css = NULL;
3646 #endif
3647 /* Space for per CPU and/or any CPU event iterators. */
3648 struct perf_event *itrs[2];
3649 struct min_heap event_heap;
3650 struct perf_event **evt;
3651 int ret;
3652
3653 if (cpuctx) {
3654 event_heap = (struct min_heap){
3655 .data = cpuctx->heap,
3656 .nr = 0,
3657 .size = cpuctx->heap_size,
3658 };
3659
3660 lockdep_assert_held(&cpuctx->ctx.lock);
3661
3662 #ifdef CONFIG_CGROUP_PERF
3663 if (cpuctx->cgrp)
3664 css = &cpuctx->cgrp->css;
3665 #endif
3666 } else {
3667 event_heap = (struct min_heap){
3668 .data = itrs,
3669 .nr = 0,
3670 .size = ARRAY_SIZE(itrs),
3671 };
3672 /* Events not within a CPU context may be on any CPU. */
3673 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3674 }
3675 evt = event_heap.data;
3676
3677 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3678
3679 #ifdef CONFIG_CGROUP_PERF
3680 for (; css; css = css->parent)
3681 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3682 #endif
3683
3684 min_heapify_all(&event_heap, &perf_min_heap);
3685
3686 while (event_heap.nr) {
3687 ret = func(*evt, data);
3688 if (ret)
3689 return ret;
3690
3691 *evt = perf_event_groups_next(*evt);
3692 if (*evt)
3693 min_heapify(&event_heap, 0, &perf_min_heap);
3694 else
3695 min_heap_pop(&event_heap, &perf_min_heap);
3696 }
3697
3698 return 0;
3699 }
3700
event_update_userpage(struct perf_event * event)3701 static inline bool event_update_userpage(struct perf_event *event)
3702 {
3703 if (likely(!atomic_read(&event->mmap_count)))
3704 return false;
3705
3706 perf_event_update_time(event);
3707 perf_set_shadow_time(event, event->ctx);
3708 perf_event_update_userpage(event);
3709
3710 return true;
3711 }
3712
group_update_userpage(struct perf_event * group_event)3713 static inline void group_update_userpage(struct perf_event *group_event)
3714 {
3715 struct perf_event *event;
3716
3717 if (!event_update_userpage(group_event))
3718 return;
3719
3720 for_each_sibling_event(event, group_event)
3721 event_update_userpage(event);
3722 }
3723
merge_sched_in(struct perf_event * event,void * data)3724 static int merge_sched_in(struct perf_event *event, void *data)
3725 {
3726 struct perf_event_context *ctx = event->ctx;
3727 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3728 int *can_add_hw = data;
3729
3730 if (event->state <= PERF_EVENT_STATE_OFF)
3731 return 0;
3732
3733 if (!event_filter_match(event))
3734 return 0;
3735
3736 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3737 if (!group_sched_in(event, cpuctx, ctx))
3738 list_add_tail(&event->active_list, get_event_list(event));
3739 }
3740
3741 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3742 *can_add_hw = 0;
3743 if (event->attr.pinned) {
3744 perf_cgroup_event_disable(event, ctx);
3745 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3746 } else {
3747 ctx->rotate_necessary = 1;
3748 perf_mux_hrtimer_restart(cpuctx);
3749 group_update_userpage(event);
3750 }
3751 }
3752
3753 return 0;
3754 }
3755
3756 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3757 ctx_pinned_sched_in(struct perf_event_context *ctx,
3758 struct perf_cpu_context *cpuctx)
3759 {
3760 int can_add_hw = 1;
3761
3762 if (ctx != &cpuctx->ctx)
3763 cpuctx = NULL;
3764
3765 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3766 smp_processor_id(),
3767 merge_sched_in, &can_add_hw);
3768 }
3769
3770 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3771 ctx_flexible_sched_in(struct perf_event_context *ctx,
3772 struct perf_cpu_context *cpuctx)
3773 {
3774 int can_add_hw = 1;
3775
3776 if (ctx != &cpuctx->ctx)
3777 cpuctx = NULL;
3778
3779 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3780 smp_processor_id(),
3781 merge_sched_in, &can_add_hw);
3782 }
3783
3784 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3785 ctx_sched_in(struct perf_event_context *ctx,
3786 struct perf_cpu_context *cpuctx,
3787 enum event_type_t event_type,
3788 struct task_struct *task)
3789 {
3790 int is_active = ctx->is_active;
3791 u64 now;
3792
3793 lockdep_assert_held(&ctx->lock);
3794
3795 if (likely(!ctx->nr_events))
3796 return;
3797
3798 ctx->is_active |= (event_type | EVENT_TIME);
3799 if (ctx->task) {
3800 if (!is_active)
3801 cpuctx->task_ctx = ctx;
3802 else
3803 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3804 }
3805
3806 is_active ^= ctx->is_active; /* changed bits */
3807
3808 if (is_active & EVENT_TIME) {
3809 /* start ctx time */
3810 now = perf_clock();
3811 ctx->timestamp = now;
3812 perf_cgroup_set_timestamp(task, ctx);
3813 }
3814
3815 /*
3816 * First go through the list and put on any pinned groups
3817 * in order to give them the best chance of going on.
3818 */
3819 if (is_active & EVENT_PINNED)
3820 ctx_pinned_sched_in(ctx, cpuctx);
3821
3822 /* Then walk through the lower prio flexible groups */
3823 if (is_active & EVENT_FLEXIBLE)
3824 ctx_flexible_sched_in(ctx, cpuctx);
3825 }
3826
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3827 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3828 enum event_type_t event_type,
3829 struct task_struct *task)
3830 {
3831 struct perf_event_context *ctx = &cpuctx->ctx;
3832
3833 ctx_sched_in(ctx, cpuctx, event_type, task);
3834 }
3835
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3836 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3837 struct task_struct *task)
3838 {
3839 struct perf_cpu_context *cpuctx;
3840 struct pmu *pmu = ctx->pmu;
3841
3842 cpuctx = __get_cpu_context(ctx);
3843 if (cpuctx->task_ctx == ctx) {
3844 if (cpuctx->sched_cb_usage)
3845 __perf_pmu_sched_task(cpuctx, true);
3846 return;
3847 }
3848
3849 perf_ctx_lock(cpuctx, ctx);
3850 /*
3851 * We must check ctx->nr_events while holding ctx->lock, such
3852 * that we serialize against perf_install_in_context().
3853 */
3854 if (!ctx->nr_events)
3855 goto unlock;
3856
3857 perf_pmu_disable(pmu);
3858 /*
3859 * We want to keep the following priority order:
3860 * cpu pinned (that don't need to move), task pinned,
3861 * cpu flexible, task flexible.
3862 *
3863 * However, if task's ctx is not carrying any pinned
3864 * events, no need to flip the cpuctx's events around.
3865 */
3866 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3867 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3868 perf_event_sched_in(cpuctx, ctx, task);
3869
3870 if (cpuctx->sched_cb_usage && pmu->sched_task)
3871 pmu->sched_task(cpuctx->task_ctx, true);
3872
3873 perf_pmu_enable(pmu);
3874
3875 unlock:
3876 perf_ctx_unlock(cpuctx, ctx);
3877 }
3878
3879 /*
3880 * Called from scheduler to add the events of the current task
3881 * with interrupts disabled.
3882 *
3883 * We restore the event value and then enable it.
3884 *
3885 * This does not protect us against NMI, but enable()
3886 * sets the enabled bit in the control field of event _before_
3887 * accessing the event control register. If a NMI hits, then it will
3888 * keep the event running.
3889 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3890 void __perf_event_task_sched_in(struct task_struct *prev,
3891 struct task_struct *task)
3892 {
3893 struct perf_event_context *ctx;
3894 int ctxn;
3895
3896 /*
3897 * If cgroup events exist on this CPU, then we need to check if we have
3898 * to switch in PMU state; cgroup event are system-wide mode only.
3899 *
3900 * Since cgroup events are CPU events, we must schedule these in before
3901 * we schedule in the task events.
3902 */
3903 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3904 perf_cgroup_sched_in(prev, task);
3905
3906 for_each_task_context_nr(ctxn) {
3907 ctx = task->perf_event_ctxp[ctxn];
3908 if (likely(!ctx))
3909 continue;
3910
3911 perf_event_context_sched_in(ctx, task);
3912 }
3913
3914 if (atomic_read(&nr_switch_events))
3915 perf_event_switch(task, prev, true);
3916
3917 if (__this_cpu_read(perf_sched_cb_usages))
3918 perf_pmu_sched_task(prev, task, true);
3919 }
3920
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3921 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3922 {
3923 u64 frequency = event->attr.sample_freq;
3924 u64 sec = NSEC_PER_SEC;
3925 u64 divisor, dividend;
3926
3927 int count_fls, nsec_fls, frequency_fls, sec_fls;
3928
3929 count_fls = fls64(count);
3930 nsec_fls = fls64(nsec);
3931 frequency_fls = fls64(frequency);
3932 sec_fls = 30;
3933
3934 /*
3935 * We got @count in @nsec, with a target of sample_freq HZ
3936 * the target period becomes:
3937 *
3938 * @count * 10^9
3939 * period = -------------------
3940 * @nsec * sample_freq
3941 *
3942 */
3943
3944 /*
3945 * Reduce accuracy by one bit such that @a and @b converge
3946 * to a similar magnitude.
3947 */
3948 #define REDUCE_FLS(a, b) \
3949 do { \
3950 if (a##_fls > b##_fls) { \
3951 a >>= 1; \
3952 a##_fls--; \
3953 } else { \
3954 b >>= 1; \
3955 b##_fls--; \
3956 } \
3957 } while (0)
3958
3959 /*
3960 * Reduce accuracy until either term fits in a u64, then proceed with
3961 * the other, so that finally we can do a u64/u64 division.
3962 */
3963 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3964 REDUCE_FLS(nsec, frequency);
3965 REDUCE_FLS(sec, count);
3966 }
3967
3968 if (count_fls + sec_fls > 64) {
3969 divisor = nsec * frequency;
3970
3971 while (count_fls + sec_fls > 64) {
3972 REDUCE_FLS(count, sec);
3973 divisor >>= 1;
3974 }
3975
3976 dividend = count * sec;
3977 } else {
3978 dividend = count * sec;
3979
3980 while (nsec_fls + frequency_fls > 64) {
3981 REDUCE_FLS(nsec, frequency);
3982 dividend >>= 1;
3983 }
3984
3985 divisor = nsec * frequency;
3986 }
3987
3988 if (!divisor)
3989 return dividend;
3990
3991 return div64_u64(dividend, divisor);
3992 }
3993
3994 static DEFINE_PER_CPU(int, perf_throttled_count);
3995 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3996
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3997 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3998 {
3999 struct hw_perf_event *hwc = &event->hw;
4000 s64 period, sample_period;
4001 s64 delta;
4002
4003 period = perf_calculate_period(event, nsec, count);
4004
4005 delta = (s64)(period - hwc->sample_period);
4006 delta = (delta + 7) / 8; /* low pass filter */
4007
4008 sample_period = hwc->sample_period + delta;
4009
4010 if (!sample_period)
4011 sample_period = 1;
4012
4013 hwc->sample_period = sample_period;
4014
4015 if (local64_read(&hwc->period_left) > 8*sample_period) {
4016 if (disable)
4017 event->pmu->stop(event, PERF_EF_UPDATE);
4018
4019 local64_set(&hwc->period_left, 0);
4020
4021 if (disable)
4022 event->pmu->start(event, PERF_EF_RELOAD);
4023 }
4024 }
4025
4026 /*
4027 * combine freq adjustment with unthrottling to avoid two passes over the
4028 * events. At the same time, make sure, having freq events does not change
4029 * the rate of unthrottling as that would introduce bias.
4030 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4031 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4032 int needs_unthr)
4033 {
4034 struct perf_event *event;
4035 struct hw_perf_event *hwc;
4036 u64 now, period = TICK_NSEC;
4037 s64 delta;
4038
4039 /*
4040 * only need to iterate over all events iff:
4041 * - context have events in frequency mode (needs freq adjust)
4042 * - there are events to unthrottle on this cpu
4043 */
4044 if (!(ctx->nr_freq || needs_unthr))
4045 return;
4046
4047 raw_spin_lock(&ctx->lock);
4048 perf_pmu_disable(ctx->pmu);
4049
4050 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4051 if (event->state != PERF_EVENT_STATE_ACTIVE)
4052 continue;
4053
4054 if (!event_filter_match(event))
4055 continue;
4056
4057 perf_pmu_disable(event->pmu);
4058
4059 hwc = &event->hw;
4060
4061 if (hwc->interrupts == MAX_INTERRUPTS) {
4062 hwc->interrupts = 0;
4063 perf_log_throttle(event, 1);
4064 event->pmu->start(event, 0);
4065 }
4066
4067 if (!event->attr.freq || !event->attr.sample_freq)
4068 goto next;
4069
4070 /*
4071 * stop the event and update event->count
4072 */
4073 event->pmu->stop(event, PERF_EF_UPDATE);
4074
4075 now = local64_read(&event->count);
4076 delta = now - hwc->freq_count_stamp;
4077 hwc->freq_count_stamp = now;
4078
4079 /*
4080 * restart the event
4081 * reload only if value has changed
4082 * we have stopped the event so tell that
4083 * to perf_adjust_period() to avoid stopping it
4084 * twice.
4085 */
4086 if (delta > 0)
4087 perf_adjust_period(event, period, delta, false);
4088
4089 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4090 next:
4091 perf_pmu_enable(event->pmu);
4092 }
4093
4094 perf_pmu_enable(ctx->pmu);
4095 raw_spin_unlock(&ctx->lock);
4096 }
4097
4098 /*
4099 * Move @event to the tail of the @ctx's elegible events.
4100 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4101 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4102 {
4103 /*
4104 * Rotate the first entry last of non-pinned groups. Rotation might be
4105 * disabled by the inheritance code.
4106 */
4107 if (ctx->rotate_disable)
4108 return;
4109
4110 perf_event_groups_delete(&ctx->flexible_groups, event);
4111 perf_event_groups_insert(&ctx->flexible_groups, event);
4112 }
4113
4114 /* pick an event from the flexible_groups to rotate */
4115 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4116 ctx_event_to_rotate(struct perf_event_context *ctx)
4117 {
4118 struct perf_event *event;
4119
4120 /* pick the first active flexible event */
4121 event = list_first_entry_or_null(&ctx->flexible_active,
4122 struct perf_event, active_list);
4123
4124 /* if no active flexible event, pick the first event */
4125 if (!event) {
4126 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4127 typeof(*event), group_node);
4128 }
4129
4130 /*
4131 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4132 * finds there are unschedulable events, it will set it again.
4133 */
4134 ctx->rotate_necessary = 0;
4135
4136 return event;
4137 }
4138
perf_rotate_context(struct perf_cpu_context * cpuctx)4139 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4140 {
4141 struct perf_event *cpu_event = NULL, *task_event = NULL;
4142 struct perf_event_context *task_ctx = NULL;
4143 int cpu_rotate, task_rotate;
4144
4145 /*
4146 * Since we run this from IRQ context, nobody can install new
4147 * events, thus the event count values are stable.
4148 */
4149
4150 cpu_rotate = cpuctx->ctx.rotate_necessary;
4151 task_ctx = cpuctx->task_ctx;
4152 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4153
4154 if (!(cpu_rotate || task_rotate))
4155 return false;
4156
4157 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4158 perf_pmu_disable(cpuctx->ctx.pmu);
4159
4160 if (task_rotate)
4161 task_event = ctx_event_to_rotate(task_ctx);
4162 if (cpu_rotate)
4163 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4164
4165 /*
4166 * As per the order given at ctx_resched() first 'pop' task flexible
4167 * and then, if needed CPU flexible.
4168 */
4169 if (task_event || (task_ctx && cpu_event))
4170 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4171 if (cpu_event)
4172 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4173
4174 if (task_event)
4175 rotate_ctx(task_ctx, task_event);
4176 if (cpu_event)
4177 rotate_ctx(&cpuctx->ctx, cpu_event);
4178
4179 perf_event_sched_in(cpuctx, task_ctx, current);
4180
4181 perf_pmu_enable(cpuctx->ctx.pmu);
4182 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4183
4184 return true;
4185 }
4186
perf_event_task_tick(void)4187 void perf_event_task_tick(void)
4188 {
4189 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4190 struct perf_event_context *ctx, *tmp;
4191 int throttled;
4192
4193 lockdep_assert_irqs_disabled();
4194
4195 __this_cpu_inc(perf_throttled_seq);
4196 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4197 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4198
4199 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4200 perf_adjust_freq_unthr_context(ctx, throttled);
4201 }
4202
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4203 static int event_enable_on_exec(struct perf_event *event,
4204 struct perf_event_context *ctx)
4205 {
4206 if (!event->attr.enable_on_exec)
4207 return 0;
4208
4209 event->attr.enable_on_exec = 0;
4210 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4211 return 0;
4212
4213 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4214
4215 return 1;
4216 }
4217
4218 /*
4219 * Enable all of a task's events that have been marked enable-on-exec.
4220 * This expects task == current.
4221 */
perf_event_enable_on_exec(int ctxn)4222 static void perf_event_enable_on_exec(int ctxn)
4223 {
4224 struct perf_event_context *ctx, *clone_ctx = NULL;
4225 enum event_type_t event_type = 0;
4226 struct perf_cpu_context *cpuctx;
4227 struct perf_event *event;
4228 unsigned long flags;
4229 int enabled = 0;
4230
4231 local_irq_save(flags);
4232 ctx = current->perf_event_ctxp[ctxn];
4233 if (!ctx || !ctx->nr_events)
4234 goto out;
4235
4236 cpuctx = __get_cpu_context(ctx);
4237 perf_ctx_lock(cpuctx, ctx);
4238 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4239 list_for_each_entry(event, &ctx->event_list, event_entry) {
4240 enabled |= event_enable_on_exec(event, ctx);
4241 event_type |= get_event_type(event);
4242 }
4243
4244 /*
4245 * Unclone and reschedule this context if we enabled any event.
4246 */
4247 if (enabled) {
4248 clone_ctx = unclone_ctx(ctx);
4249 ctx_resched(cpuctx, ctx, event_type);
4250 } else {
4251 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4252 }
4253 perf_ctx_unlock(cpuctx, ctx);
4254
4255 out:
4256 local_irq_restore(flags);
4257
4258 if (clone_ctx)
4259 put_ctx(clone_ctx);
4260 }
4261
4262 struct perf_read_data {
4263 struct perf_event *event;
4264 bool group;
4265 int ret;
4266 };
4267
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4268 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4269 {
4270 u16 local_pkg, event_pkg;
4271
4272 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4273 int local_cpu = smp_processor_id();
4274
4275 event_pkg = topology_physical_package_id(event_cpu);
4276 local_pkg = topology_physical_package_id(local_cpu);
4277
4278 if (event_pkg == local_pkg)
4279 return local_cpu;
4280 }
4281
4282 return event_cpu;
4283 }
4284
4285 /*
4286 * Cross CPU call to read the hardware event
4287 */
__perf_event_read(void * info)4288 static void __perf_event_read(void *info)
4289 {
4290 struct perf_read_data *data = info;
4291 struct perf_event *sub, *event = data->event;
4292 struct perf_event_context *ctx = event->ctx;
4293 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4294 struct pmu *pmu = event->pmu;
4295
4296 /*
4297 * If this is a task context, we need to check whether it is
4298 * the current task context of this cpu. If not it has been
4299 * scheduled out before the smp call arrived. In that case
4300 * event->count would have been updated to a recent sample
4301 * when the event was scheduled out.
4302 */
4303 if (ctx->task && cpuctx->task_ctx != ctx)
4304 return;
4305
4306 raw_spin_lock(&ctx->lock);
4307 if (ctx->is_active & EVENT_TIME) {
4308 update_context_time(ctx);
4309 update_cgrp_time_from_event(event);
4310 }
4311
4312 perf_event_update_time(event);
4313 if (data->group)
4314 perf_event_update_sibling_time(event);
4315
4316 if (event->state != PERF_EVENT_STATE_ACTIVE)
4317 goto unlock;
4318
4319 if (!data->group) {
4320 pmu->read(event);
4321 data->ret = 0;
4322 goto unlock;
4323 }
4324
4325 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4326
4327 pmu->read(event);
4328
4329 for_each_sibling_event(sub, event) {
4330 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4331 /*
4332 * Use sibling's PMU rather than @event's since
4333 * sibling could be on different (eg: software) PMU.
4334 */
4335 sub->pmu->read(sub);
4336 }
4337 }
4338
4339 data->ret = pmu->commit_txn(pmu);
4340
4341 unlock:
4342 raw_spin_unlock(&ctx->lock);
4343 }
4344
perf_event_count(struct perf_event * event)4345 static inline u64 perf_event_count(struct perf_event *event)
4346 {
4347 return local64_read(&event->count) + atomic64_read(&event->child_count);
4348 }
4349
4350 /*
4351 * NMI-safe method to read a local event, that is an event that
4352 * is:
4353 * - either for the current task, or for this CPU
4354 * - does not have inherit set, for inherited task events
4355 * will not be local and we cannot read them atomically
4356 * - must not have a pmu::count method
4357 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4358 int perf_event_read_local(struct perf_event *event, u64 *value,
4359 u64 *enabled, u64 *running)
4360 {
4361 unsigned long flags;
4362 int ret = 0;
4363
4364 /*
4365 * Disabling interrupts avoids all counter scheduling (context
4366 * switches, timer based rotation and IPIs).
4367 */
4368 local_irq_save(flags);
4369
4370 /*
4371 * It must not be an event with inherit set, we cannot read
4372 * all child counters from atomic context.
4373 */
4374 if (event->attr.inherit) {
4375 ret = -EOPNOTSUPP;
4376 goto out;
4377 }
4378
4379 /* If this is a per-task event, it must be for current */
4380 if ((event->attach_state & PERF_ATTACH_TASK) &&
4381 event->hw.target != current) {
4382 ret = -EINVAL;
4383 goto out;
4384 }
4385
4386 /* If this is a per-CPU event, it must be for this CPU */
4387 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4388 event->cpu != smp_processor_id()) {
4389 ret = -EINVAL;
4390 goto out;
4391 }
4392
4393 /* If this is a pinned event it must be running on this CPU */
4394 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4395 ret = -EBUSY;
4396 goto out;
4397 }
4398
4399 /*
4400 * If the event is currently on this CPU, its either a per-task event,
4401 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4402 * oncpu == -1).
4403 */
4404 if (event->oncpu == smp_processor_id())
4405 event->pmu->read(event);
4406
4407 *value = local64_read(&event->count);
4408 if (enabled || running) {
4409 u64 now = event->shadow_ctx_time + perf_clock();
4410 u64 __enabled, __running;
4411
4412 __perf_update_times(event, now, &__enabled, &__running);
4413 if (enabled)
4414 *enabled = __enabled;
4415 if (running)
4416 *running = __running;
4417 }
4418 out:
4419 local_irq_restore(flags);
4420
4421 return ret;
4422 }
4423 EXPORT_SYMBOL_GPL(perf_event_read_local);
4424
perf_event_read(struct perf_event * event,bool group)4425 static int perf_event_read(struct perf_event *event, bool group)
4426 {
4427 enum perf_event_state state = READ_ONCE(event->state);
4428 int event_cpu, ret = 0;
4429
4430 /*
4431 * If event is enabled and currently active on a CPU, update the
4432 * value in the event structure:
4433 */
4434 again:
4435 if (state == PERF_EVENT_STATE_ACTIVE) {
4436 struct perf_read_data data;
4437
4438 /*
4439 * Orders the ->state and ->oncpu loads such that if we see
4440 * ACTIVE we must also see the right ->oncpu.
4441 *
4442 * Matches the smp_wmb() from event_sched_in().
4443 */
4444 smp_rmb();
4445
4446 event_cpu = READ_ONCE(event->oncpu);
4447 if ((unsigned)event_cpu >= nr_cpu_ids)
4448 return 0;
4449
4450 data = (struct perf_read_data){
4451 .event = event,
4452 .group = group,
4453 .ret = 0,
4454 };
4455
4456 preempt_disable();
4457 event_cpu = __perf_event_read_cpu(event, event_cpu);
4458
4459 /*
4460 * Purposely ignore the smp_call_function_single() return
4461 * value.
4462 *
4463 * If event_cpu isn't a valid CPU it means the event got
4464 * scheduled out and that will have updated the event count.
4465 *
4466 * Therefore, either way, we'll have an up-to-date event count
4467 * after this.
4468 */
4469 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4470 preempt_enable();
4471 ret = data.ret;
4472
4473 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4474 struct perf_event_context *ctx = event->ctx;
4475 unsigned long flags;
4476
4477 raw_spin_lock_irqsave(&ctx->lock, flags);
4478 state = event->state;
4479 if (state != PERF_EVENT_STATE_INACTIVE) {
4480 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4481 goto again;
4482 }
4483
4484 /*
4485 * May read while context is not active (e.g., thread is
4486 * blocked), in that case we cannot update context time
4487 */
4488 if (ctx->is_active & EVENT_TIME) {
4489 update_context_time(ctx);
4490 update_cgrp_time_from_event(event);
4491 }
4492
4493 perf_event_update_time(event);
4494 if (group)
4495 perf_event_update_sibling_time(event);
4496 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4497 }
4498
4499 return ret;
4500 }
4501
4502 /*
4503 * Initialize the perf_event context in a task_struct:
4504 */
__perf_event_init_context(struct perf_event_context * ctx)4505 static void __perf_event_init_context(struct perf_event_context *ctx)
4506 {
4507 raw_spin_lock_init(&ctx->lock);
4508 mutex_init(&ctx->mutex);
4509 INIT_LIST_HEAD(&ctx->active_ctx_list);
4510 perf_event_groups_init(&ctx->pinned_groups);
4511 perf_event_groups_init(&ctx->flexible_groups);
4512 INIT_LIST_HEAD(&ctx->event_list);
4513 INIT_LIST_HEAD(&ctx->pinned_active);
4514 INIT_LIST_HEAD(&ctx->flexible_active);
4515 refcount_set(&ctx->refcount, 1);
4516 }
4517
4518 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4519 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4520 {
4521 struct perf_event_context *ctx;
4522
4523 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4524 if (!ctx)
4525 return NULL;
4526
4527 __perf_event_init_context(ctx);
4528 if (task)
4529 ctx->task = get_task_struct(task);
4530 ctx->pmu = pmu;
4531
4532 return ctx;
4533 }
4534
4535 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4536 find_lively_task_by_vpid(pid_t vpid)
4537 {
4538 struct task_struct *task;
4539
4540 rcu_read_lock();
4541 if (!vpid)
4542 task = current;
4543 else
4544 task = find_task_by_vpid(vpid);
4545 if (task)
4546 get_task_struct(task);
4547 rcu_read_unlock();
4548
4549 if (!task)
4550 return ERR_PTR(-ESRCH);
4551
4552 return task;
4553 }
4554
4555 /*
4556 * Returns a matching context with refcount and pincount.
4557 */
4558 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4559 find_get_context(struct pmu *pmu, struct task_struct *task,
4560 struct perf_event *event)
4561 {
4562 struct perf_event_context *ctx, *clone_ctx = NULL;
4563 struct perf_cpu_context *cpuctx;
4564 void *task_ctx_data = NULL;
4565 unsigned long flags;
4566 int ctxn, err;
4567 int cpu = event->cpu;
4568
4569 if (!task) {
4570 /* Must be root to operate on a CPU event: */
4571 err = perf_allow_cpu(&event->attr);
4572 if (err)
4573 return ERR_PTR(err);
4574
4575 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4576 ctx = &cpuctx->ctx;
4577 get_ctx(ctx);
4578 raw_spin_lock_irqsave(&ctx->lock, flags);
4579 ++ctx->pin_count;
4580 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4581
4582 return ctx;
4583 }
4584
4585 err = -EINVAL;
4586 ctxn = pmu->task_ctx_nr;
4587 if (ctxn < 0)
4588 goto errout;
4589
4590 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4591 task_ctx_data = alloc_task_ctx_data(pmu);
4592 if (!task_ctx_data) {
4593 err = -ENOMEM;
4594 goto errout;
4595 }
4596 }
4597
4598 retry:
4599 ctx = perf_lock_task_context(task, ctxn, &flags);
4600 if (ctx) {
4601 clone_ctx = unclone_ctx(ctx);
4602 ++ctx->pin_count;
4603
4604 if (task_ctx_data && !ctx->task_ctx_data) {
4605 ctx->task_ctx_data = task_ctx_data;
4606 task_ctx_data = NULL;
4607 }
4608 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4609
4610 if (clone_ctx)
4611 put_ctx(clone_ctx);
4612 } else {
4613 ctx = alloc_perf_context(pmu, task);
4614 err = -ENOMEM;
4615 if (!ctx)
4616 goto errout;
4617
4618 if (task_ctx_data) {
4619 ctx->task_ctx_data = task_ctx_data;
4620 task_ctx_data = NULL;
4621 }
4622
4623 err = 0;
4624 mutex_lock(&task->perf_event_mutex);
4625 /*
4626 * If it has already passed perf_event_exit_task().
4627 * we must see PF_EXITING, it takes this mutex too.
4628 */
4629 if (task->flags & PF_EXITING)
4630 err = -ESRCH;
4631 else if (task->perf_event_ctxp[ctxn])
4632 err = -EAGAIN;
4633 else {
4634 get_ctx(ctx);
4635 ++ctx->pin_count;
4636 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4637 }
4638 mutex_unlock(&task->perf_event_mutex);
4639
4640 if (unlikely(err)) {
4641 put_ctx(ctx);
4642
4643 if (err == -EAGAIN)
4644 goto retry;
4645 goto errout;
4646 }
4647 }
4648
4649 free_task_ctx_data(pmu, task_ctx_data);
4650 return ctx;
4651
4652 errout:
4653 free_task_ctx_data(pmu, task_ctx_data);
4654 return ERR_PTR(err);
4655 }
4656
4657 static void perf_event_free_filter(struct perf_event *event);
4658 static void perf_event_free_bpf_prog(struct perf_event *event);
4659
free_event_rcu(struct rcu_head * head)4660 static void free_event_rcu(struct rcu_head *head)
4661 {
4662 struct perf_event *event;
4663
4664 event = container_of(head, struct perf_event, rcu_head);
4665 if (event->ns)
4666 put_pid_ns(event->ns);
4667 perf_event_free_filter(event);
4668 kfree(event);
4669 }
4670
4671 static void ring_buffer_attach(struct perf_event *event,
4672 struct perf_buffer *rb);
4673
detach_sb_event(struct perf_event * event)4674 static void detach_sb_event(struct perf_event *event)
4675 {
4676 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4677
4678 raw_spin_lock(&pel->lock);
4679 list_del_rcu(&event->sb_list);
4680 raw_spin_unlock(&pel->lock);
4681 }
4682
is_sb_event(struct perf_event * event)4683 static bool is_sb_event(struct perf_event *event)
4684 {
4685 struct perf_event_attr *attr = &event->attr;
4686
4687 if (event->parent)
4688 return false;
4689
4690 if (event->attach_state & PERF_ATTACH_TASK)
4691 return false;
4692
4693 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4694 attr->comm || attr->comm_exec ||
4695 attr->task || attr->ksymbol ||
4696 attr->context_switch || attr->text_poke ||
4697 attr->bpf_event)
4698 return true;
4699 return false;
4700 }
4701
unaccount_pmu_sb_event(struct perf_event * event)4702 static void unaccount_pmu_sb_event(struct perf_event *event)
4703 {
4704 if (is_sb_event(event))
4705 detach_sb_event(event);
4706 }
4707
unaccount_event_cpu(struct perf_event * event,int cpu)4708 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4709 {
4710 if (event->parent)
4711 return;
4712
4713 if (is_cgroup_event(event))
4714 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4715 }
4716
4717 #ifdef CONFIG_NO_HZ_FULL
4718 static DEFINE_SPINLOCK(nr_freq_lock);
4719 #endif
4720
unaccount_freq_event_nohz(void)4721 static void unaccount_freq_event_nohz(void)
4722 {
4723 #ifdef CONFIG_NO_HZ_FULL
4724 spin_lock(&nr_freq_lock);
4725 if (atomic_dec_and_test(&nr_freq_events))
4726 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4727 spin_unlock(&nr_freq_lock);
4728 #endif
4729 }
4730
unaccount_freq_event(void)4731 static void unaccount_freq_event(void)
4732 {
4733 if (tick_nohz_full_enabled())
4734 unaccount_freq_event_nohz();
4735 else
4736 atomic_dec(&nr_freq_events);
4737 }
4738
unaccount_event(struct perf_event * event)4739 static void unaccount_event(struct perf_event *event)
4740 {
4741 bool dec = false;
4742
4743 if (event->parent)
4744 return;
4745
4746 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4747 dec = true;
4748 if (event->attr.mmap || event->attr.mmap_data)
4749 atomic_dec(&nr_mmap_events);
4750 if (event->attr.comm)
4751 atomic_dec(&nr_comm_events);
4752 if (event->attr.namespaces)
4753 atomic_dec(&nr_namespaces_events);
4754 if (event->attr.cgroup)
4755 atomic_dec(&nr_cgroup_events);
4756 if (event->attr.task)
4757 atomic_dec(&nr_task_events);
4758 if (event->attr.freq)
4759 unaccount_freq_event();
4760 if (event->attr.context_switch) {
4761 dec = true;
4762 atomic_dec(&nr_switch_events);
4763 }
4764 if (is_cgroup_event(event))
4765 dec = true;
4766 if (has_branch_stack(event))
4767 dec = true;
4768 if (event->attr.ksymbol)
4769 atomic_dec(&nr_ksymbol_events);
4770 if (event->attr.bpf_event)
4771 atomic_dec(&nr_bpf_events);
4772 if (event->attr.text_poke)
4773 atomic_dec(&nr_text_poke_events);
4774
4775 if (dec) {
4776 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4777 schedule_delayed_work(&perf_sched_work, HZ);
4778 }
4779
4780 unaccount_event_cpu(event, event->cpu);
4781
4782 unaccount_pmu_sb_event(event);
4783 }
4784
perf_sched_delayed(struct work_struct * work)4785 static void perf_sched_delayed(struct work_struct *work)
4786 {
4787 mutex_lock(&perf_sched_mutex);
4788 if (atomic_dec_and_test(&perf_sched_count))
4789 static_branch_disable(&perf_sched_events);
4790 mutex_unlock(&perf_sched_mutex);
4791 }
4792
4793 /*
4794 * The following implement mutual exclusion of events on "exclusive" pmus
4795 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4796 * at a time, so we disallow creating events that might conflict, namely:
4797 *
4798 * 1) cpu-wide events in the presence of per-task events,
4799 * 2) per-task events in the presence of cpu-wide events,
4800 * 3) two matching events on the same context.
4801 *
4802 * The former two cases are handled in the allocation path (perf_event_alloc(),
4803 * _free_event()), the latter -- before the first perf_install_in_context().
4804 */
exclusive_event_init(struct perf_event * event)4805 static int exclusive_event_init(struct perf_event *event)
4806 {
4807 struct pmu *pmu = event->pmu;
4808
4809 if (!is_exclusive_pmu(pmu))
4810 return 0;
4811
4812 /*
4813 * Prevent co-existence of per-task and cpu-wide events on the
4814 * same exclusive pmu.
4815 *
4816 * Negative pmu::exclusive_cnt means there are cpu-wide
4817 * events on this "exclusive" pmu, positive means there are
4818 * per-task events.
4819 *
4820 * Since this is called in perf_event_alloc() path, event::ctx
4821 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4822 * to mean "per-task event", because unlike other attach states it
4823 * never gets cleared.
4824 */
4825 if (event->attach_state & PERF_ATTACH_TASK) {
4826 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4827 return -EBUSY;
4828 } else {
4829 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4830 return -EBUSY;
4831 }
4832
4833 return 0;
4834 }
4835
exclusive_event_destroy(struct perf_event * event)4836 static void exclusive_event_destroy(struct perf_event *event)
4837 {
4838 struct pmu *pmu = event->pmu;
4839
4840 if (!is_exclusive_pmu(pmu))
4841 return;
4842
4843 /* see comment in exclusive_event_init() */
4844 if (event->attach_state & PERF_ATTACH_TASK)
4845 atomic_dec(&pmu->exclusive_cnt);
4846 else
4847 atomic_inc(&pmu->exclusive_cnt);
4848 }
4849
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4850 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4851 {
4852 if ((e1->pmu == e2->pmu) &&
4853 (e1->cpu == e2->cpu ||
4854 e1->cpu == -1 ||
4855 e2->cpu == -1))
4856 return true;
4857 return false;
4858 }
4859
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4860 static bool exclusive_event_installable(struct perf_event *event,
4861 struct perf_event_context *ctx)
4862 {
4863 struct perf_event *iter_event;
4864 struct pmu *pmu = event->pmu;
4865
4866 lockdep_assert_held(&ctx->mutex);
4867
4868 if (!is_exclusive_pmu(pmu))
4869 return true;
4870
4871 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4872 if (exclusive_event_match(iter_event, event))
4873 return false;
4874 }
4875
4876 return true;
4877 }
4878
4879 static void perf_addr_filters_splice(struct perf_event *event,
4880 struct list_head *head);
4881
_free_event(struct perf_event * event)4882 static void _free_event(struct perf_event *event)
4883 {
4884 irq_work_sync(&event->pending);
4885
4886 unaccount_event(event);
4887
4888 security_perf_event_free(event);
4889
4890 if (event->rb) {
4891 /*
4892 * Can happen when we close an event with re-directed output.
4893 *
4894 * Since we have a 0 refcount, perf_mmap_close() will skip
4895 * over us; possibly making our ring_buffer_put() the last.
4896 */
4897 mutex_lock(&event->mmap_mutex);
4898 ring_buffer_attach(event, NULL);
4899 mutex_unlock(&event->mmap_mutex);
4900 }
4901
4902 if (is_cgroup_event(event))
4903 perf_detach_cgroup(event);
4904
4905 if (!event->parent) {
4906 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4907 put_callchain_buffers();
4908 }
4909
4910 perf_event_free_bpf_prog(event);
4911 perf_addr_filters_splice(event, NULL);
4912 kfree(event->addr_filter_ranges);
4913
4914 if (event->destroy)
4915 event->destroy(event);
4916
4917 /*
4918 * Must be after ->destroy(), due to uprobe_perf_close() using
4919 * hw.target.
4920 */
4921 if (event->hw.target)
4922 put_task_struct(event->hw.target);
4923
4924 /*
4925 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4926 * all task references must be cleaned up.
4927 */
4928 if (event->ctx)
4929 put_ctx(event->ctx);
4930
4931 exclusive_event_destroy(event);
4932 module_put(event->pmu->module);
4933
4934 call_rcu(&event->rcu_head, free_event_rcu);
4935 }
4936
4937 /*
4938 * Used to free events which have a known refcount of 1, such as in error paths
4939 * where the event isn't exposed yet and inherited events.
4940 */
free_event(struct perf_event * event)4941 static void free_event(struct perf_event *event)
4942 {
4943 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4944 "unexpected event refcount: %ld; ptr=%p\n",
4945 atomic_long_read(&event->refcount), event)) {
4946 /* leak to avoid use-after-free */
4947 return;
4948 }
4949
4950 _free_event(event);
4951 }
4952
4953 /*
4954 * Remove user event from the owner task.
4955 */
perf_remove_from_owner(struct perf_event * event)4956 static void perf_remove_from_owner(struct perf_event *event)
4957 {
4958 struct task_struct *owner;
4959
4960 rcu_read_lock();
4961 /*
4962 * Matches the smp_store_release() in perf_event_exit_task(). If we
4963 * observe !owner it means the list deletion is complete and we can
4964 * indeed free this event, otherwise we need to serialize on
4965 * owner->perf_event_mutex.
4966 */
4967 owner = READ_ONCE(event->owner);
4968 if (owner) {
4969 /*
4970 * Since delayed_put_task_struct() also drops the last
4971 * task reference we can safely take a new reference
4972 * while holding the rcu_read_lock().
4973 */
4974 get_task_struct(owner);
4975 }
4976 rcu_read_unlock();
4977
4978 if (owner) {
4979 /*
4980 * If we're here through perf_event_exit_task() we're already
4981 * holding ctx->mutex which would be an inversion wrt. the
4982 * normal lock order.
4983 *
4984 * However we can safely take this lock because its the child
4985 * ctx->mutex.
4986 */
4987 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4988
4989 /*
4990 * We have to re-check the event->owner field, if it is cleared
4991 * we raced with perf_event_exit_task(), acquiring the mutex
4992 * ensured they're done, and we can proceed with freeing the
4993 * event.
4994 */
4995 if (event->owner) {
4996 list_del_init(&event->owner_entry);
4997 smp_store_release(&event->owner, NULL);
4998 }
4999 mutex_unlock(&owner->perf_event_mutex);
5000 put_task_struct(owner);
5001 }
5002 }
5003
put_event(struct perf_event * event)5004 static void put_event(struct perf_event *event)
5005 {
5006 if (!atomic_long_dec_and_test(&event->refcount))
5007 return;
5008
5009 _free_event(event);
5010 }
5011
5012 /*
5013 * Kill an event dead; while event:refcount will preserve the event
5014 * object, it will not preserve its functionality. Once the last 'user'
5015 * gives up the object, we'll destroy the thing.
5016 */
perf_event_release_kernel(struct perf_event * event)5017 int perf_event_release_kernel(struct perf_event *event)
5018 {
5019 struct perf_event_context *ctx = event->ctx;
5020 struct perf_event *child, *tmp;
5021 LIST_HEAD(free_list);
5022
5023 /*
5024 * If we got here through err_file: fput(event_file); we will not have
5025 * attached to a context yet.
5026 */
5027 if (!ctx) {
5028 WARN_ON_ONCE(event->attach_state &
5029 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5030 goto no_ctx;
5031 }
5032
5033 if (!is_kernel_event(event))
5034 perf_remove_from_owner(event);
5035
5036 ctx = perf_event_ctx_lock(event);
5037 WARN_ON_ONCE(ctx->parent_ctx);
5038 perf_remove_from_context(event, DETACH_GROUP);
5039
5040 raw_spin_lock_irq(&ctx->lock);
5041 /*
5042 * Mark this event as STATE_DEAD, there is no external reference to it
5043 * anymore.
5044 *
5045 * Anybody acquiring event->child_mutex after the below loop _must_
5046 * also see this, most importantly inherit_event() which will avoid
5047 * placing more children on the list.
5048 *
5049 * Thus this guarantees that we will in fact observe and kill _ALL_
5050 * child events.
5051 */
5052 event->state = PERF_EVENT_STATE_DEAD;
5053 raw_spin_unlock_irq(&ctx->lock);
5054
5055 perf_event_ctx_unlock(event, ctx);
5056
5057 again:
5058 mutex_lock(&event->child_mutex);
5059 list_for_each_entry(child, &event->child_list, child_list) {
5060
5061 /*
5062 * Cannot change, child events are not migrated, see the
5063 * comment with perf_event_ctx_lock_nested().
5064 */
5065 ctx = READ_ONCE(child->ctx);
5066 /*
5067 * Since child_mutex nests inside ctx::mutex, we must jump
5068 * through hoops. We start by grabbing a reference on the ctx.
5069 *
5070 * Since the event cannot get freed while we hold the
5071 * child_mutex, the context must also exist and have a !0
5072 * reference count.
5073 */
5074 get_ctx(ctx);
5075
5076 /*
5077 * Now that we have a ctx ref, we can drop child_mutex, and
5078 * acquire ctx::mutex without fear of it going away. Then we
5079 * can re-acquire child_mutex.
5080 */
5081 mutex_unlock(&event->child_mutex);
5082 mutex_lock(&ctx->mutex);
5083 mutex_lock(&event->child_mutex);
5084
5085 /*
5086 * Now that we hold ctx::mutex and child_mutex, revalidate our
5087 * state, if child is still the first entry, it didn't get freed
5088 * and we can continue doing so.
5089 */
5090 tmp = list_first_entry_or_null(&event->child_list,
5091 struct perf_event, child_list);
5092 if (tmp == child) {
5093 perf_remove_from_context(child, DETACH_GROUP);
5094 list_move(&child->child_list, &free_list);
5095 /*
5096 * This matches the refcount bump in inherit_event();
5097 * this can't be the last reference.
5098 */
5099 put_event(event);
5100 }
5101
5102 mutex_unlock(&event->child_mutex);
5103 mutex_unlock(&ctx->mutex);
5104 put_ctx(ctx);
5105 goto again;
5106 }
5107 mutex_unlock(&event->child_mutex);
5108
5109 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5110 void *var = &child->ctx->refcount;
5111
5112 list_del(&child->child_list);
5113 free_event(child);
5114
5115 /*
5116 * Wake any perf_event_free_task() waiting for this event to be
5117 * freed.
5118 */
5119 smp_mb(); /* pairs with wait_var_event() */
5120 wake_up_var(var);
5121 }
5122
5123 no_ctx:
5124 put_event(event); /* Must be the 'last' reference */
5125 return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5128
5129 /*
5130 * Called when the last reference to the file is gone.
5131 */
perf_release(struct inode * inode,struct file * file)5132 static int perf_release(struct inode *inode, struct file *file)
5133 {
5134 perf_event_release_kernel(file->private_data);
5135 return 0;
5136 }
5137
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5138 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5139 {
5140 struct perf_event *child;
5141 u64 total = 0;
5142
5143 *enabled = 0;
5144 *running = 0;
5145
5146 mutex_lock(&event->child_mutex);
5147
5148 (void)perf_event_read(event, false);
5149 total += perf_event_count(event);
5150
5151 *enabled += event->total_time_enabled +
5152 atomic64_read(&event->child_total_time_enabled);
5153 *running += event->total_time_running +
5154 atomic64_read(&event->child_total_time_running);
5155
5156 list_for_each_entry(child, &event->child_list, child_list) {
5157 (void)perf_event_read(child, false);
5158 total += perf_event_count(child);
5159 *enabled += child->total_time_enabled;
5160 *running += child->total_time_running;
5161 }
5162 mutex_unlock(&event->child_mutex);
5163
5164 return total;
5165 }
5166
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5167 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5168 {
5169 struct perf_event_context *ctx;
5170 u64 count;
5171
5172 ctx = perf_event_ctx_lock(event);
5173 count = __perf_event_read_value(event, enabled, running);
5174 perf_event_ctx_unlock(event, ctx);
5175
5176 return count;
5177 }
5178 EXPORT_SYMBOL_GPL(perf_event_read_value);
5179
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5180 static int __perf_read_group_add(struct perf_event *leader,
5181 u64 read_format, u64 *values)
5182 {
5183 struct perf_event_context *ctx = leader->ctx;
5184 struct perf_event *sub, *parent;
5185 unsigned long flags;
5186 int n = 1; /* skip @nr */
5187 int ret;
5188
5189 ret = perf_event_read(leader, true);
5190 if (ret)
5191 return ret;
5192
5193 raw_spin_lock_irqsave(&ctx->lock, flags);
5194 /*
5195 * Verify the grouping between the parent and child (inherited)
5196 * events is still in tact.
5197 *
5198 * Specifically:
5199 * - leader->ctx->lock pins leader->sibling_list
5200 * - parent->child_mutex pins parent->child_list
5201 * - parent->ctx->mutex pins parent->sibling_list
5202 *
5203 * Because parent->ctx != leader->ctx (and child_list nests inside
5204 * ctx->mutex), group destruction is not atomic between children, also
5205 * see perf_event_release_kernel(). Additionally, parent can grow the
5206 * group.
5207 *
5208 * Therefore it is possible to have parent and child groups in a
5209 * different configuration and summing over such a beast makes no sense
5210 * what so ever.
5211 *
5212 * Reject this.
5213 */
5214 parent = leader->parent;
5215 if (parent &&
5216 (parent->group_generation != leader->group_generation ||
5217 parent->nr_siblings != leader->nr_siblings)) {
5218 ret = -ECHILD;
5219 goto unlock;
5220 }
5221
5222 /*
5223 * Since we co-schedule groups, {enabled,running} times of siblings
5224 * will be identical to those of the leader, so we only publish one
5225 * set.
5226 */
5227 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5228 values[n++] += leader->total_time_enabled +
5229 atomic64_read(&leader->child_total_time_enabled);
5230 }
5231
5232 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5233 values[n++] += leader->total_time_running +
5234 atomic64_read(&leader->child_total_time_running);
5235 }
5236
5237 /*
5238 * Write {count,id} tuples for every sibling.
5239 */
5240 values[n++] += perf_event_count(leader);
5241 if (read_format & PERF_FORMAT_ID)
5242 values[n++] = primary_event_id(leader);
5243
5244 for_each_sibling_event(sub, leader) {
5245 values[n++] += perf_event_count(sub);
5246 if (read_format & PERF_FORMAT_ID)
5247 values[n++] = primary_event_id(sub);
5248 }
5249
5250 unlock:
5251 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5252 return ret;
5253 }
5254
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5255 static int perf_read_group(struct perf_event *event,
5256 u64 read_format, char __user *buf)
5257 {
5258 struct perf_event *leader = event->group_leader, *child;
5259 struct perf_event_context *ctx = leader->ctx;
5260 int ret;
5261 u64 *values;
5262
5263 lockdep_assert_held(&ctx->mutex);
5264
5265 values = kzalloc(event->read_size, GFP_KERNEL);
5266 if (!values)
5267 return -ENOMEM;
5268
5269 values[0] = 1 + leader->nr_siblings;
5270
5271 mutex_lock(&leader->child_mutex);
5272
5273 ret = __perf_read_group_add(leader, read_format, values);
5274 if (ret)
5275 goto unlock;
5276
5277 list_for_each_entry(child, &leader->child_list, child_list) {
5278 ret = __perf_read_group_add(child, read_format, values);
5279 if (ret)
5280 goto unlock;
5281 }
5282
5283 mutex_unlock(&leader->child_mutex);
5284
5285 ret = event->read_size;
5286 if (copy_to_user(buf, values, event->read_size))
5287 ret = -EFAULT;
5288 goto out;
5289
5290 unlock:
5291 mutex_unlock(&leader->child_mutex);
5292 out:
5293 kfree(values);
5294 return ret;
5295 }
5296
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5297 static int perf_read_one(struct perf_event *event,
5298 u64 read_format, char __user *buf)
5299 {
5300 u64 enabled, running;
5301 u64 values[4];
5302 int n = 0;
5303
5304 values[n++] = __perf_event_read_value(event, &enabled, &running);
5305 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5306 values[n++] = enabled;
5307 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5308 values[n++] = running;
5309 if (read_format & PERF_FORMAT_ID)
5310 values[n++] = primary_event_id(event);
5311
5312 if (copy_to_user(buf, values, n * sizeof(u64)))
5313 return -EFAULT;
5314
5315 return n * sizeof(u64);
5316 }
5317
is_event_hup(struct perf_event * event)5318 static bool is_event_hup(struct perf_event *event)
5319 {
5320 bool no_children;
5321
5322 if (event->state > PERF_EVENT_STATE_EXIT)
5323 return false;
5324
5325 mutex_lock(&event->child_mutex);
5326 no_children = list_empty(&event->child_list);
5327 mutex_unlock(&event->child_mutex);
5328 return no_children;
5329 }
5330
5331 /*
5332 * Read the performance event - simple non blocking version for now
5333 */
5334 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5335 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5336 {
5337 u64 read_format = event->attr.read_format;
5338 int ret;
5339
5340 /*
5341 * Return end-of-file for a read on an event that is in
5342 * error state (i.e. because it was pinned but it couldn't be
5343 * scheduled on to the CPU at some point).
5344 */
5345 if (event->state == PERF_EVENT_STATE_ERROR)
5346 return 0;
5347
5348 if (count < event->read_size)
5349 return -ENOSPC;
5350
5351 WARN_ON_ONCE(event->ctx->parent_ctx);
5352 if (read_format & PERF_FORMAT_GROUP)
5353 ret = perf_read_group(event, read_format, buf);
5354 else
5355 ret = perf_read_one(event, read_format, buf);
5356
5357 return ret;
5358 }
5359
5360 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5361 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5362 {
5363 struct perf_event *event = file->private_data;
5364 struct perf_event_context *ctx;
5365 int ret;
5366
5367 ret = security_perf_event_read(event);
5368 if (ret)
5369 return ret;
5370
5371 ctx = perf_event_ctx_lock(event);
5372 ret = __perf_read(event, buf, count);
5373 perf_event_ctx_unlock(event, ctx);
5374
5375 return ret;
5376 }
5377
perf_poll(struct file * file,poll_table * wait)5378 static __poll_t perf_poll(struct file *file, poll_table *wait)
5379 {
5380 struct perf_event *event = file->private_data;
5381 struct perf_buffer *rb;
5382 __poll_t events = EPOLLHUP;
5383
5384 poll_wait(file, &event->waitq, wait);
5385
5386 if (is_event_hup(event))
5387 return events;
5388
5389 /*
5390 * Pin the event->rb by taking event->mmap_mutex; otherwise
5391 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5392 */
5393 mutex_lock(&event->mmap_mutex);
5394 rb = event->rb;
5395 if (rb)
5396 events = atomic_xchg(&rb->poll, 0);
5397 mutex_unlock(&event->mmap_mutex);
5398 return events;
5399 }
5400
_perf_event_reset(struct perf_event * event)5401 static void _perf_event_reset(struct perf_event *event)
5402 {
5403 (void)perf_event_read(event, false);
5404 local64_set(&event->count, 0);
5405 perf_event_update_userpage(event);
5406 }
5407
5408 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5409 u64 perf_event_pause(struct perf_event *event, bool reset)
5410 {
5411 struct perf_event_context *ctx;
5412 u64 count;
5413
5414 ctx = perf_event_ctx_lock(event);
5415 WARN_ON_ONCE(event->attr.inherit);
5416 _perf_event_disable(event);
5417 count = local64_read(&event->count);
5418 if (reset)
5419 local64_set(&event->count, 0);
5420 perf_event_ctx_unlock(event, ctx);
5421
5422 return count;
5423 }
5424 EXPORT_SYMBOL_GPL(perf_event_pause);
5425
5426 /*
5427 * Holding the top-level event's child_mutex means that any
5428 * descendant process that has inherited this event will block
5429 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5430 * task existence requirements of perf_event_enable/disable.
5431 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5432 static void perf_event_for_each_child(struct perf_event *event,
5433 void (*func)(struct perf_event *))
5434 {
5435 struct perf_event *child;
5436
5437 WARN_ON_ONCE(event->ctx->parent_ctx);
5438
5439 mutex_lock(&event->child_mutex);
5440 func(event);
5441 list_for_each_entry(child, &event->child_list, child_list)
5442 func(child);
5443 mutex_unlock(&event->child_mutex);
5444 }
5445
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5446 static void perf_event_for_each(struct perf_event *event,
5447 void (*func)(struct perf_event *))
5448 {
5449 struct perf_event_context *ctx = event->ctx;
5450 struct perf_event *sibling;
5451
5452 lockdep_assert_held(&ctx->mutex);
5453
5454 event = event->group_leader;
5455
5456 perf_event_for_each_child(event, func);
5457 for_each_sibling_event(sibling, event)
5458 perf_event_for_each_child(sibling, func);
5459 }
5460
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5461 static void __perf_event_period(struct perf_event *event,
5462 struct perf_cpu_context *cpuctx,
5463 struct perf_event_context *ctx,
5464 void *info)
5465 {
5466 u64 value = *((u64 *)info);
5467 bool active;
5468
5469 if (event->attr.freq) {
5470 event->attr.sample_freq = value;
5471 } else {
5472 event->attr.sample_period = value;
5473 event->hw.sample_period = value;
5474 }
5475
5476 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5477 if (active) {
5478 perf_pmu_disable(ctx->pmu);
5479 /*
5480 * We could be throttled; unthrottle now to avoid the tick
5481 * trying to unthrottle while we already re-started the event.
5482 */
5483 if (event->hw.interrupts == MAX_INTERRUPTS) {
5484 event->hw.interrupts = 0;
5485 perf_log_throttle(event, 1);
5486 }
5487 event->pmu->stop(event, PERF_EF_UPDATE);
5488 }
5489
5490 local64_set(&event->hw.period_left, 0);
5491
5492 if (active) {
5493 event->pmu->start(event, PERF_EF_RELOAD);
5494 perf_pmu_enable(ctx->pmu);
5495 }
5496 }
5497
perf_event_check_period(struct perf_event * event,u64 value)5498 static int perf_event_check_period(struct perf_event *event, u64 value)
5499 {
5500 return event->pmu->check_period(event, value);
5501 }
5502
_perf_event_period(struct perf_event * event,u64 value)5503 static int _perf_event_period(struct perf_event *event, u64 value)
5504 {
5505 if (!is_sampling_event(event))
5506 return -EINVAL;
5507
5508 if (!value)
5509 return -EINVAL;
5510
5511 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5512 return -EINVAL;
5513
5514 if (perf_event_check_period(event, value))
5515 return -EINVAL;
5516
5517 if (!event->attr.freq && (value & (1ULL << 63)))
5518 return -EINVAL;
5519
5520 event_function_call(event, __perf_event_period, &value);
5521
5522 return 0;
5523 }
5524
perf_event_period(struct perf_event * event,u64 value)5525 int perf_event_period(struct perf_event *event, u64 value)
5526 {
5527 struct perf_event_context *ctx;
5528 int ret;
5529
5530 ctx = perf_event_ctx_lock(event);
5531 ret = _perf_event_period(event, value);
5532 perf_event_ctx_unlock(event, ctx);
5533
5534 return ret;
5535 }
5536 EXPORT_SYMBOL_GPL(perf_event_period);
5537
5538 static const struct file_operations perf_fops;
5539
perf_fget_light(int fd,struct fd * p)5540 static inline int perf_fget_light(int fd, struct fd *p)
5541 {
5542 struct fd f = fdget(fd);
5543 if (!f.file)
5544 return -EBADF;
5545
5546 if (f.file->f_op != &perf_fops) {
5547 fdput(f);
5548 return -EBADF;
5549 }
5550 *p = f;
5551 return 0;
5552 }
5553
5554 static int perf_event_set_output(struct perf_event *event,
5555 struct perf_event *output_event);
5556 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5557 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5558 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5559 struct perf_event_attr *attr);
5560
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5561 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5562 {
5563 void (*func)(struct perf_event *);
5564 u32 flags = arg;
5565
5566 switch (cmd) {
5567 case PERF_EVENT_IOC_ENABLE:
5568 func = _perf_event_enable;
5569 break;
5570 case PERF_EVENT_IOC_DISABLE:
5571 func = _perf_event_disable;
5572 break;
5573 case PERF_EVENT_IOC_RESET:
5574 func = _perf_event_reset;
5575 break;
5576
5577 case PERF_EVENT_IOC_REFRESH:
5578 return _perf_event_refresh(event, arg);
5579
5580 case PERF_EVENT_IOC_PERIOD:
5581 {
5582 u64 value;
5583
5584 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5585 return -EFAULT;
5586
5587 return _perf_event_period(event, value);
5588 }
5589 case PERF_EVENT_IOC_ID:
5590 {
5591 u64 id = primary_event_id(event);
5592
5593 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5594 return -EFAULT;
5595 return 0;
5596 }
5597
5598 case PERF_EVENT_IOC_SET_OUTPUT:
5599 {
5600 int ret;
5601 if (arg != -1) {
5602 struct perf_event *output_event;
5603 struct fd output;
5604 ret = perf_fget_light(arg, &output);
5605 if (ret)
5606 return ret;
5607 output_event = output.file->private_data;
5608 ret = perf_event_set_output(event, output_event);
5609 fdput(output);
5610 } else {
5611 ret = perf_event_set_output(event, NULL);
5612 }
5613 return ret;
5614 }
5615
5616 case PERF_EVENT_IOC_SET_FILTER:
5617 return perf_event_set_filter(event, (void __user *)arg);
5618
5619 case PERF_EVENT_IOC_SET_BPF:
5620 return perf_event_set_bpf_prog(event, arg);
5621
5622 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5623 struct perf_buffer *rb;
5624
5625 rcu_read_lock();
5626 rb = rcu_dereference(event->rb);
5627 if (!rb || !rb->nr_pages) {
5628 rcu_read_unlock();
5629 return -EINVAL;
5630 }
5631 rb_toggle_paused(rb, !!arg);
5632 rcu_read_unlock();
5633 return 0;
5634 }
5635
5636 case PERF_EVENT_IOC_QUERY_BPF:
5637 return perf_event_query_prog_array(event, (void __user *)arg);
5638
5639 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5640 struct perf_event_attr new_attr;
5641 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5642 &new_attr);
5643
5644 if (err)
5645 return err;
5646
5647 return perf_event_modify_attr(event, &new_attr);
5648 }
5649 default:
5650 return -ENOTTY;
5651 }
5652
5653 if (flags & PERF_IOC_FLAG_GROUP)
5654 perf_event_for_each(event, func);
5655 else
5656 perf_event_for_each_child(event, func);
5657
5658 return 0;
5659 }
5660
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5661 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5662 {
5663 struct perf_event *event = file->private_data;
5664 struct perf_event_context *ctx;
5665 long ret;
5666
5667 /* Treat ioctl like writes as it is likely a mutating operation. */
5668 ret = security_perf_event_write(event);
5669 if (ret)
5670 return ret;
5671
5672 ctx = perf_event_ctx_lock(event);
5673 ret = _perf_ioctl(event, cmd, arg);
5674 perf_event_ctx_unlock(event, ctx);
5675
5676 return ret;
5677 }
5678
5679 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5680 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5681 unsigned long arg)
5682 {
5683 switch (_IOC_NR(cmd)) {
5684 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5685 case _IOC_NR(PERF_EVENT_IOC_ID):
5686 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5687 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5688 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5689 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5690 cmd &= ~IOCSIZE_MASK;
5691 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5692 }
5693 break;
5694 }
5695 return perf_ioctl(file, cmd, arg);
5696 }
5697 #else
5698 # define perf_compat_ioctl NULL
5699 #endif
5700
perf_event_task_enable(void)5701 int perf_event_task_enable(void)
5702 {
5703 struct perf_event_context *ctx;
5704 struct perf_event *event;
5705
5706 mutex_lock(¤t->perf_event_mutex);
5707 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5708 ctx = perf_event_ctx_lock(event);
5709 perf_event_for_each_child(event, _perf_event_enable);
5710 perf_event_ctx_unlock(event, ctx);
5711 }
5712 mutex_unlock(¤t->perf_event_mutex);
5713
5714 return 0;
5715 }
5716
perf_event_task_disable(void)5717 int perf_event_task_disable(void)
5718 {
5719 struct perf_event_context *ctx;
5720 struct perf_event *event;
5721
5722 mutex_lock(¤t->perf_event_mutex);
5723 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5724 ctx = perf_event_ctx_lock(event);
5725 perf_event_for_each_child(event, _perf_event_disable);
5726 perf_event_ctx_unlock(event, ctx);
5727 }
5728 mutex_unlock(¤t->perf_event_mutex);
5729
5730 return 0;
5731 }
5732
perf_event_index(struct perf_event * event)5733 static int perf_event_index(struct perf_event *event)
5734 {
5735 if (event->hw.state & PERF_HES_STOPPED)
5736 return 0;
5737
5738 if (event->state != PERF_EVENT_STATE_ACTIVE)
5739 return 0;
5740
5741 return event->pmu->event_idx(event);
5742 }
5743
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5744 static void calc_timer_values(struct perf_event *event,
5745 u64 *now,
5746 u64 *enabled,
5747 u64 *running)
5748 {
5749 u64 ctx_time;
5750
5751 *now = perf_clock();
5752 ctx_time = event->shadow_ctx_time + *now;
5753 __perf_update_times(event, ctx_time, enabled, running);
5754 }
5755
perf_event_init_userpage(struct perf_event * event)5756 static void perf_event_init_userpage(struct perf_event *event)
5757 {
5758 struct perf_event_mmap_page *userpg;
5759 struct perf_buffer *rb;
5760
5761 rcu_read_lock();
5762 rb = rcu_dereference(event->rb);
5763 if (!rb)
5764 goto unlock;
5765
5766 userpg = rb->user_page;
5767
5768 /* Allow new userspace to detect that bit 0 is deprecated */
5769 userpg->cap_bit0_is_deprecated = 1;
5770 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5771 userpg->data_offset = PAGE_SIZE;
5772 userpg->data_size = perf_data_size(rb);
5773
5774 unlock:
5775 rcu_read_unlock();
5776 }
5777
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5778 void __weak arch_perf_update_userpage(
5779 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5780 {
5781 }
5782
5783 /*
5784 * Callers need to ensure there can be no nesting of this function, otherwise
5785 * the seqlock logic goes bad. We can not serialize this because the arch
5786 * code calls this from NMI context.
5787 */
perf_event_update_userpage(struct perf_event * event)5788 void perf_event_update_userpage(struct perf_event *event)
5789 {
5790 struct perf_event_mmap_page *userpg;
5791 struct perf_buffer *rb;
5792 u64 enabled, running, now;
5793
5794 rcu_read_lock();
5795 rb = rcu_dereference(event->rb);
5796 if (!rb)
5797 goto unlock;
5798
5799 /*
5800 * compute total_time_enabled, total_time_running
5801 * based on snapshot values taken when the event
5802 * was last scheduled in.
5803 *
5804 * we cannot simply called update_context_time()
5805 * because of locking issue as we can be called in
5806 * NMI context
5807 */
5808 calc_timer_values(event, &now, &enabled, &running);
5809
5810 userpg = rb->user_page;
5811 /*
5812 * Disable preemption to guarantee consistent time stamps are stored to
5813 * the user page.
5814 */
5815 preempt_disable();
5816 ++userpg->lock;
5817 barrier();
5818 userpg->index = perf_event_index(event);
5819 userpg->offset = perf_event_count(event);
5820 if (userpg->index)
5821 userpg->offset -= local64_read(&event->hw.prev_count);
5822
5823 userpg->time_enabled = enabled +
5824 atomic64_read(&event->child_total_time_enabled);
5825
5826 userpg->time_running = running +
5827 atomic64_read(&event->child_total_time_running);
5828
5829 arch_perf_update_userpage(event, userpg, now);
5830
5831 barrier();
5832 ++userpg->lock;
5833 preempt_enable();
5834 unlock:
5835 rcu_read_unlock();
5836 }
5837 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5838
perf_mmap_fault(struct vm_fault * vmf)5839 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5840 {
5841 struct perf_event *event = vmf->vma->vm_file->private_data;
5842 struct perf_buffer *rb;
5843 vm_fault_t ret = VM_FAULT_SIGBUS;
5844
5845 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5846 if (vmf->pgoff == 0)
5847 ret = 0;
5848 return ret;
5849 }
5850
5851 rcu_read_lock();
5852 rb = rcu_dereference(event->rb);
5853 if (!rb)
5854 goto unlock;
5855
5856 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5857 goto unlock;
5858
5859 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5860 if (!vmf->page)
5861 goto unlock;
5862
5863 get_page(vmf->page);
5864 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5865 vmf->page->index = vmf->pgoff;
5866
5867 ret = 0;
5868 unlock:
5869 rcu_read_unlock();
5870
5871 return ret;
5872 }
5873
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)5874 static void ring_buffer_attach(struct perf_event *event,
5875 struct perf_buffer *rb)
5876 {
5877 struct perf_buffer *old_rb = NULL;
5878 unsigned long flags;
5879
5880 WARN_ON_ONCE(event->parent);
5881
5882 if (event->rb) {
5883 /*
5884 * Should be impossible, we set this when removing
5885 * event->rb_entry and wait/clear when adding event->rb_entry.
5886 */
5887 WARN_ON_ONCE(event->rcu_pending);
5888
5889 old_rb = event->rb;
5890 spin_lock_irqsave(&old_rb->event_lock, flags);
5891 list_del_rcu(&event->rb_entry);
5892 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5893
5894 event->rcu_batches = get_state_synchronize_rcu();
5895 event->rcu_pending = 1;
5896 }
5897
5898 if (rb) {
5899 if (event->rcu_pending) {
5900 cond_synchronize_rcu(event->rcu_batches);
5901 event->rcu_pending = 0;
5902 }
5903
5904 spin_lock_irqsave(&rb->event_lock, flags);
5905 list_add_rcu(&event->rb_entry, &rb->event_list);
5906 spin_unlock_irqrestore(&rb->event_lock, flags);
5907 }
5908
5909 /*
5910 * Avoid racing with perf_mmap_close(AUX): stop the event
5911 * before swizzling the event::rb pointer; if it's getting
5912 * unmapped, its aux_mmap_count will be 0 and it won't
5913 * restart. See the comment in __perf_pmu_output_stop().
5914 *
5915 * Data will inevitably be lost when set_output is done in
5916 * mid-air, but then again, whoever does it like this is
5917 * not in for the data anyway.
5918 */
5919 if (has_aux(event))
5920 perf_event_stop(event, 0);
5921
5922 rcu_assign_pointer(event->rb, rb);
5923
5924 if (old_rb) {
5925 ring_buffer_put(old_rb);
5926 /*
5927 * Since we detached before setting the new rb, so that we
5928 * could attach the new rb, we could have missed a wakeup.
5929 * Provide it now.
5930 */
5931 wake_up_all(&event->waitq);
5932 }
5933 }
5934
ring_buffer_wakeup(struct perf_event * event)5935 static void ring_buffer_wakeup(struct perf_event *event)
5936 {
5937 struct perf_buffer *rb;
5938
5939 if (event->parent)
5940 event = event->parent;
5941
5942 rcu_read_lock();
5943 rb = rcu_dereference(event->rb);
5944 if (rb) {
5945 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5946 wake_up_all(&event->waitq);
5947 }
5948 rcu_read_unlock();
5949 }
5950
ring_buffer_get(struct perf_event * event)5951 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5952 {
5953 struct perf_buffer *rb;
5954
5955 if (event->parent)
5956 event = event->parent;
5957
5958 rcu_read_lock();
5959 rb = rcu_dereference(event->rb);
5960 if (rb) {
5961 if (!refcount_inc_not_zero(&rb->refcount))
5962 rb = NULL;
5963 }
5964 rcu_read_unlock();
5965
5966 return rb;
5967 }
5968
ring_buffer_put(struct perf_buffer * rb)5969 void ring_buffer_put(struct perf_buffer *rb)
5970 {
5971 if (!refcount_dec_and_test(&rb->refcount))
5972 return;
5973
5974 WARN_ON_ONCE(!list_empty(&rb->event_list));
5975
5976 call_rcu(&rb->rcu_head, rb_free_rcu);
5977 }
5978
perf_mmap_open(struct vm_area_struct * vma)5979 static void perf_mmap_open(struct vm_area_struct *vma)
5980 {
5981 struct perf_event *event = vma->vm_file->private_data;
5982
5983 atomic_inc(&event->mmap_count);
5984 atomic_inc(&event->rb->mmap_count);
5985
5986 if (vma->vm_pgoff)
5987 atomic_inc(&event->rb->aux_mmap_count);
5988
5989 if (event->pmu->event_mapped)
5990 event->pmu->event_mapped(event, vma->vm_mm);
5991 }
5992
5993 static void perf_pmu_output_stop(struct perf_event *event);
5994
5995 /*
5996 * A buffer can be mmap()ed multiple times; either directly through the same
5997 * event, or through other events by use of perf_event_set_output().
5998 *
5999 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6000 * the buffer here, where we still have a VM context. This means we need
6001 * to detach all events redirecting to us.
6002 */
perf_mmap_close(struct vm_area_struct * vma)6003 static void perf_mmap_close(struct vm_area_struct *vma)
6004 {
6005 struct perf_event *event = vma->vm_file->private_data;
6006 struct perf_buffer *rb = ring_buffer_get(event);
6007 struct user_struct *mmap_user = rb->mmap_user;
6008 int mmap_locked = rb->mmap_locked;
6009 unsigned long size = perf_data_size(rb);
6010 bool detach_rest = false;
6011
6012 if (event->pmu->event_unmapped)
6013 event->pmu->event_unmapped(event, vma->vm_mm);
6014
6015 /*
6016 * rb->aux_mmap_count will always drop before rb->mmap_count and
6017 * event->mmap_count, so it is ok to use event->mmap_mutex to
6018 * serialize with perf_mmap here.
6019 */
6020 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6021 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6022 /*
6023 * Stop all AUX events that are writing to this buffer,
6024 * so that we can free its AUX pages and corresponding PMU
6025 * data. Note that after rb::aux_mmap_count dropped to zero,
6026 * they won't start any more (see perf_aux_output_begin()).
6027 */
6028 perf_pmu_output_stop(event);
6029
6030 /* now it's safe to free the pages */
6031 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6032 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6033
6034 /* this has to be the last one */
6035 rb_free_aux(rb);
6036 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6037
6038 mutex_unlock(&event->mmap_mutex);
6039 }
6040
6041 if (atomic_dec_and_test(&rb->mmap_count))
6042 detach_rest = true;
6043
6044 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6045 goto out_put;
6046
6047 ring_buffer_attach(event, NULL);
6048 mutex_unlock(&event->mmap_mutex);
6049
6050 /* If there's still other mmap()s of this buffer, we're done. */
6051 if (!detach_rest)
6052 goto out_put;
6053
6054 /*
6055 * No other mmap()s, detach from all other events that might redirect
6056 * into the now unreachable buffer. Somewhat complicated by the
6057 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6058 */
6059 again:
6060 rcu_read_lock();
6061 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6062 if (!atomic_long_inc_not_zero(&event->refcount)) {
6063 /*
6064 * This event is en-route to free_event() which will
6065 * detach it and remove it from the list.
6066 */
6067 continue;
6068 }
6069 rcu_read_unlock();
6070
6071 mutex_lock(&event->mmap_mutex);
6072 /*
6073 * Check we didn't race with perf_event_set_output() which can
6074 * swizzle the rb from under us while we were waiting to
6075 * acquire mmap_mutex.
6076 *
6077 * If we find a different rb; ignore this event, a next
6078 * iteration will no longer find it on the list. We have to
6079 * still restart the iteration to make sure we're not now
6080 * iterating the wrong list.
6081 */
6082 if (event->rb == rb)
6083 ring_buffer_attach(event, NULL);
6084
6085 mutex_unlock(&event->mmap_mutex);
6086 put_event(event);
6087
6088 /*
6089 * Restart the iteration; either we're on the wrong list or
6090 * destroyed its integrity by doing a deletion.
6091 */
6092 goto again;
6093 }
6094 rcu_read_unlock();
6095
6096 /*
6097 * It could be there's still a few 0-ref events on the list; they'll
6098 * get cleaned up by free_event() -- they'll also still have their
6099 * ref on the rb and will free it whenever they are done with it.
6100 *
6101 * Aside from that, this buffer is 'fully' detached and unmapped,
6102 * undo the VM accounting.
6103 */
6104
6105 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6106 &mmap_user->locked_vm);
6107 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6108 free_uid(mmap_user);
6109
6110 out_put:
6111 ring_buffer_put(rb); /* could be last */
6112 }
6113
6114 static const struct vm_operations_struct perf_mmap_vmops = {
6115 .open = perf_mmap_open,
6116 .close = perf_mmap_close, /* non mergeable */
6117 .fault = perf_mmap_fault,
6118 .page_mkwrite = perf_mmap_fault,
6119 };
6120
perf_mmap(struct file * file,struct vm_area_struct * vma)6121 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6122 {
6123 struct perf_event *event = file->private_data;
6124 unsigned long user_locked, user_lock_limit;
6125 struct user_struct *user = current_user();
6126 struct perf_buffer *rb = NULL;
6127 unsigned long locked, lock_limit;
6128 unsigned long vma_size;
6129 unsigned long nr_pages;
6130 long user_extra = 0, extra = 0;
6131 int ret = 0, flags = 0;
6132
6133 /*
6134 * Don't allow mmap() of inherited per-task counters. This would
6135 * create a performance issue due to all children writing to the
6136 * same rb.
6137 */
6138 if (event->cpu == -1 && event->attr.inherit)
6139 return -EINVAL;
6140
6141 if (!(vma->vm_flags & VM_SHARED))
6142 return -EINVAL;
6143
6144 ret = security_perf_event_read(event);
6145 if (ret)
6146 return ret;
6147
6148 vma_size = vma->vm_end - vma->vm_start;
6149
6150 if (vma->vm_pgoff == 0) {
6151 nr_pages = (vma_size / PAGE_SIZE) - 1;
6152 } else {
6153 /*
6154 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6155 * mapped, all subsequent mappings should have the same size
6156 * and offset. Must be above the normal perf buffer.
6157 */
6158 u64 aux_offset, aux_size;
6159
6160 if (!event->rb)
6161 return -EINVAL;
6162
6163 nr_pages = vma_size / PAGE_SIZE;
6164
6165 mutex_lock(&event->mmap_mutex);
6166 ret = -EINVAL;
6167
6168 rb = event->rb;
6169 if (!rb)
6170 goto aux_unlock;
6171
6172 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6173 aux_size = READ_ONCE(rb->user_page->aux_size);
6174
6175 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6176 goto aux_unlock;
6177
6178 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6179 goto aux_unlock;
6180
6181 /* already mapped with a different offset */
6182 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6183 goto aux_unlock;
6184
6185 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6186 goto aux_unlock;
6187
6188 /* already mapped with a different size */
6189 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6190 goto aux_unlock;
6191
6192 if (!is_power_of_2(nr_pages))
6193 goto aux_unlock;
6194
6195 if (!atomic_inc_not_zero(&rb->mmap_count))
6196 goto aux_unlock;
6197
6198 if (rb_has_aux(rb)) {
6199 atomic_inc(&rb->aux_mmap_count);
6200 ret = 0;
6201 goto unlock;
6202 }
6203
6204 atomic_set(&rb->aux_mmap_count, 1);
6205 user_extra = nr_pages;
6206
6207 goto accounting;
6208 }
6209
6210 /*
6211 * If we have rb pages ensure they're a power-of-two number, so we
6212 * can do bitmasks instead of modulo.
6213 */
6214 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6215 return -EINVAL;
6216
6217 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6218 return -EINVAL;
6219
6220 WARN_ON_ONCE(event->ctx->parent_ctx);
6221 again:
6222 mutex_lock(&event->mmap_mutex);
6223 if (event->rb) {
6224 if (data_page_nr(event->rb) != nr_pages) {
6225 ret = -EINVAL;
6226 goto unlock;
6227 }
6228
6229 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6230 /*
6231 * Raced against perf_mmap_close(); remove the
6232 * event and try again.
6233 */
6234 ring_buffer_attach(event, NULL);
6235 mutex_unlock(&event->mmap_mutex);
6236 goto again;
6237 }
6238
6239 goto unlock;
6240 }
6241
6242 user_extra = nr_pages + 1;
6243
6244 accounting:
6245 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6246
6247 /*
6248 * Increase the limit linearly with more CPUs:
6249 */
6250 user_lock_limit *= num_online_cpus();
6251
6252 user_locked = atomic_long_read(&user->locked_vm);
6253
6254 /*
6255 * sysctl_perf_event_mlock may have changed, so that
6256 * user->locked_vm > user_lock_limit
6257 */
6258 if (user_locked > user_lock_limit)
6259 user_locked = user_lock_limit;
6260 user_locked += user_extra;
6261
6262 if (user_locked > user_lock_limit) {
6263 /*
6264 * charge locked_vm until it hits user_lock_limit;
6265 * charge the rest from pinned_vm
6266 */
6267 extra = user_locked - user_lock_limit;
6268 user_extra -= extra;
6269 }
6270
6271 lock_limit = rlimit(RLIMIT_MEMLOCK);
6272 lock_limit >>= PAGE_SHIFT;
6273 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6274
6275 if ((locked > lock_limit) && perf_is_paranoid() &&
6276 !capable(CAP_IPC_LOCK)) {
6277 ret = -EPERM;
6278 goto unlock;
6279 }
6280
6281 WARN_ON(!rb && event->rb);
6282
6283 if (vma->vm_flags & VM_WRITE)
6284 flags |= RING_BUFFER_WRITABLE;
6285
6286 if (!rb) {
6287 rb = rb_alloc(nr_pages,
6288 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6289 event->cpu, flags);
6290
6291 if (!rb) {
6292 ret = -ENOMEM;
6293 goto unlock;
6294 }
6295
6296 atomic_set(&rb->mmap_count, 1);
6297 rb->mmap_user = get_current_user();
6298 rb->mmap_locked = extra;
6299
6300 ring_buffer_attach(event, rb);
6301
6302 perf_event_update_time(event);
6303 perf_set_shadow_time(event, event->ctx);
6304 perf_event_init_userpage(event);
6305 perf_event_update_userpage(event);
6306 } else {
6307 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6308 event->attr.aux_watermark, flags);
6309 if (!ret)
6310 rb->aux_mmap_locked = extra;
6311 }
6312
6313 unlock:
6314 if (!ret) {
6315 atomic_long_add(user_extra, &user->locked_vm);
6316 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6317
6318 atomic_inc(&event->mmap_count);
6319 } else if (rb) {
6320 atomic_dec(&rb->mmap_count);
6321 }
6322 aux_unlock:
6323 mutex_unlock(&event->mmap_mutex);
6324
6325 /*
6326 * Since pinned accounting is per vm we cannot allow fork() to copy our
6327 * vma.
6328 */
6329 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6330 vma->vm_ops = &perf_mmap_vmops;
6331
6332 if (event->pmu->event_mapped)
6333 event->pmu->event_mapped(event, vma->vm_mm);
6334
6335 return ret;
6336 }
6337
perf_fasync(int fd,struct file * filp,int on)6338 static int perf_fasync(int fd, struct file *filp, int on)
6339 {
6340 struct inode *inode = file_inode(filp);
6341 struct perf_event *event = filp->private_data;
6342 int retval;
6343
6344 inode_lock(inode);
6345 retval = fasync_helper(fd, filp, on, &event->fasync);
6346 inode_unlock(inode);
6347
6348 if (retval < 0)
6349 return retval;
6350
6351 return 0;
6352 }
6353
6354 static const struct file_operations perf_fops = {
6355 .llseek = no_llseek,
6356 .release = perf_release,
6357 .read = perf_read,
6358 .poll = perf_poll,
6359 .unlocked_ioctl = perf_ioctl,
6360 .compat_ioctl = perf_compat_ioctl,
6361 .mmap = perf_mmap,
6362 .fasync = perf_fasync,
6363 };
6364
6365 /*
6366 * Perf event wakeup
6367 *
6368 * If there's data, ensure we set the poll() state and publish everything
6369 * to user-space before waking everybody up.
6370 */
6371
perf_event_fasync(struct perf_event * event)6372 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6373 {
6374 /* only the parent has fasync state */
6375 if (event->parent)
6376 event = event->parent;
6377 return &event->fasync;
6378 }
6379
perf_event_wakeup(struct perf_event * event)6380 void perf_event_wakeup(struct perf_event *event)
6381 {
6382 ring_buffer_wakeup(event);
6383
6384 if (event->pending_kill) {
6385 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6386 event->pending_kill = 0;
6387 }
6388 }
6389
perf_pending_event_disable(struct perf_event * event)6390 static void perf_pending_event_disable(struct perf_event *event)
6391 {
6392 int cpu = READ_ONCE(event->pending_disable);
6393
6394 if (cpu < 0)
6395 return;
6396
6397 if (cpu == smp_processor_id()) {
6398 WRITE_ONCE(event->pending_disable, -1);
6399 perf_event_disable_local(event);
6400 return;
6401 }
6402
6403 /*
6404 * CPU-A CPU-B
6405 *
6406 * perf_event_disable_inatomic()
6407 * @pending_disable = CPU-A;
6408 * irq_work_queue();
6409 *
6410 * sched-out
6411 * @pending_disable = -1;
6412 *
6413 * sched-in
6414 * perf_event_disable_inatomic()
6415 * @pending_disable = CPU-B;
6416 * irq_work_queue(); // FAILS
6417 *
6418 * irq_work_run()
6419 * perf_pending_event()
6420 *
6421 * But the event runs on CPU-B and wants disabling there.
6422 */
6423 irq_work_queue_on(&event->pending, cpu);
6424 }
6425
perf_pending_event(struct irq_work * entry)6426 static void perf_pending_event(struct irq_work *entry)
6427 {
6428 struct perf_event *event = container_of(entry, struct perf_event, pending);
6429 int rctx;
6430
6431 rctx = perf_swevent_get_recursion_context();
6432 /*
6433 * If we 'fail' here, that's OK, it means recursion is already disabled
6434 * and we won't recurse 'further'.
6435 */
6436
6437 perf_pending_event_disable(event);
6438
6439 if (event->pending_wakeup) {
6440 event->pending_wakeup = 0;
6441 perf_event_wakeup(event);
6442 }
6443
6444 if (rctx >= 0)
6445 perf_swevent_put_recursion_context(rctx);
6446 }
6447
6448 /*
6449 * We assume there is only KVM supporting the callbacks.
6450 * Later on, we might change it to a list if there is
6451 * another virtualization implementation supporting the callbacks.
6452 */
6453 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6454
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6455 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6456 {
6457 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6458 return -EBUSY;
6459
6460 rcu_assign_pointer(perf_guest_cbs, cbs);
6461 return 0;
6462 }
6463 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6464
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6465 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6466 {
6467 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6468 return -EINVAL;
6469
6470 rcu_assign_pointer(perf_guest_cbs, NULL);
6471 synchronize_rcu();
6472 return 0;
6473 }
6474 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6475
6476 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6477 perf_output_sample_regs(struct perf_output_handle *handle,
6478 struct pt_regs *regs, u64 mask)
6479 {
6480 int bit;
6481 DECLARE_BITMAP(_mask, 64);
6482
6483 bitmap_from_u64(_mask, mask);
6484 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6485 u64 val;
6486
6487 val = perf_reg_value(regs, bit);
6488 perf_output_put(handle, val);
6489 }
6490 }
6491
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6492 static void perf_sample_regs_user(struct perf_regs *regs_user,
6493 struct pt_regs *regs)
6494 {
6495 if (user_mode(regs)) {
6496 regs_user->abi = perf_reg_abi(current);
6497 regs_user->regs = regs;
6498 } else if (!(current->flags & PF_KTHREAD)) {
6499 perf_get_regs_user(regs_user, regs);
6500 } else {
6501 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6502 regs_user->regs = NULL;
6503 }
6504 }
6505
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6506 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6507 struct pt_regs *regs)
6508 {
6509 regs_intr->regs = regs;
6510 regs_intr->abi = perf_reg_abi(current);
6511 }
6512
6513
6514 /*
6515 * Get remaining task size from user stack pointer.
6516 *
6517 * It'd be better to take stack vma map and limit this more
6518 * precisely, but there's no way to get it safely under interrupt,
6519 * so using TASK_SIZE as limit.
6520 */
perf_ustack_task_size(struct pt_regs * regs)6521 static u64 perf_ustack_task_size(struct pt_regs *regs)
6522 {
6523 unsigned long addr = perf_user_stack_pointer(regs);
6524
6525 if (!addr || addr >= TASK_SIZE)
6526 return 0;
6527
6528 return TASK_SIZE - addr;
6529 }
6530
6531 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6532 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6533 struct pt_regs *regs)
6534 {
6535 u64 task_size;
6536
6537 /* No regs, no stack pointer, no dump. */
6538 if (!regs)
6539 return 0;
6540
6541 /*
6542 * Check if we fit in with the requested stack size into the:
6543 * - TASK_SIZE
6544 * If we don't, we limit the size to the TASK_SIZE.
6545 *
6546 * - remaining sample size
6547 * If we don't, we customize the stack size to
6548 * fit in to the remaining sample size.
6549 */
6550
6551 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6552 stack_size = min(stack_size, (u16) task_size);
6553
6554 /* Current header size plus static size and dynamic size. */
6555 header_size += 2 * sizeof(u64);
6556
6557 /* Do we fit in with the current stack dump size? */
6558 if ((u16) (header_size + stack_size) < header_size) {
6559 /*
6560 * If we overflow the maximum size for the sample,
6561 * we customize the stack dump size to fit in.
6562 */
6563 stack_size = USHRT_MAX - header_size - sizeof(u64);
6564 stack_size = round_up(stack_size, sizeof(u64));
6565 }
6566
6567 return stack_size;
6568 }
6569
6570 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6571 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6572 struct pt_regs *regs)
6573 {
6574 /* Case of a kernel thread, nothing to dump */
6575 if (!regs) {
6576 u64 size = 0;
6577 perf_output_put(handle, size);
6578 } else {
6579 unsigned long sp;
6580 unsigned int rem;
6581 u64 dyn_size;
6582 mm_segment_t fs;
6583
6584 /*
6585 * We dump:
6586 * static size
6587 * - the size requested by user or the best one we can fit
6588 * in to the sample max size
6589 * data
6590 * - user stack dump data
6591 * dynamic size
6592 * - the actual dumped size
6593 */
6594
6595 /* Static size. */
6596 perf_output_put(handle, dump_size);
6597
6598 /* Data. */
6599 sp = perf_user_stack_pointer(regs);
6600 fs = force_uaccess_begin();
6601 rem = __output_copy_user(handle, (void *) sp, dump_size);
6602 force_uaccess_end(fs);
6603 dyn_size = dump_size - rem;
6604
6605 perf_output_skip(handle, rem);
6606
6607 /* Dynamic size. */
6608 perf_output_put(handle, dyn_size);
6609 }
6610 }
6611
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6612 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6613 struct perf_sample_data *data,
6614 size_t size)
6615 {
6616 struct perf_event *sampler = event->aux_event;
6617 struct perf_buffer *rb;
6618
6619 data->aux_size = 0;
6620
6621 if (!sampler)
6622 goto out;
6623
6624 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6625 goto out;
6626
6627 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6628 goto out;
6629
6630 rb = ring_buffer_get(sampler);
6631 if (!rb)
6632 goto out;
6633
6634 /*
6635 * If this is an NMI hit inside sampling code, don't take
6636 * the sample. See also perf_aux_sample_output().
6637 */
6638 if (READ_ONCE(rb->aux_in_sampling)) {
6639 data->aux_size = 0;
6640 } else {
6641 size = min_t(size_t, size, perf_aux_size(rb));
6642 data->aux_size = ALIGN(size, sizeof(u64));
6643 }
6644 ring_buffer_put(rb);
6645
6646 out:
6647 return data->aux_size;
6648 }
6649
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6650 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6651 struct perf_event *event,
6652 struct perf_output_handle *handle,
6653 unsigned long size)
6654 {
6655 unsigned long flags;
6656 long ret;
6657
6658 /*
6659 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6660 * paths. If we start calling them in NMI context, they may race with
6661 * the IRQ ones, that is, for example, re-starting an event that's just
6662 * been stopped, which is why we're using a separate callback that
6663 * doesn't change the event state.
6664 *
6665 * IRQs need to be disabled to prevent IPIs from racing with us.
6666 */
6667 local_irq_save(flags);
6668 /*
6669 * Guard against NMI hits inside the critical section;
6670 * see also perf_prepare_sample_aux().
6671 */
6672 WRITE_ONCE(rb->aux_in_sampling, 1);
6673 barrier();
6674
6675 ret = event->pmu->snapshot_aux(event, handle, size);
6676
6677 barrier();
6678 WRITE_ONCE(rb->aux_in_sampling, 0);
6679 local_irq_restore(flags);
6680
6681 return ret;
6682 }
6683
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6684 static void perf_aux_sample_output(struct perf_event *event,
6685 struct perf_output_handle *handle,
6686 struct perf_sample_data *data)
6687 {
6688 struct perf_event *sampler = event->aux_event;
6689 struct perf_buffer *rb;
6690 unsigned long pad;
6691 long size;
6692
6693 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6694 return;
6695
6696 rb = ring_buffer_get(sampler);
6697 if (!rb)
6698 return;
6699
6700 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6701
6702 /*
6703 * An error here means that perf_output_copy() failed (returned a
6704 * non-zero surplus that it didn't copy), which in its current
6705 * enlightened implementation is not possible. If that changes, we'd
6706 * like to know.
6707 */
6708 if (WARN_ON_ONCE(size < 0))
6709 goto out_put;
6710
6711 /*
6712 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6713 * perf_prepare_sample_aux(), so should not be more than that.
6714 */
6715 pad = data->aux_size - size;
6716 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6717 pad = 8;
6718
6719 if (pad) {
6720 u64 zero = 0;
6721 perf_output_copy(handle, &zero, pad);
6722 }
6723
6724 out_put:
6725 ring_buffer_put(rb);
6726 }
6727
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6728 static void __perf_event_header__init_id(struct perf_event_header *header,
6729 struct perf_sample_data *data,
6730 struct perf_event *event)
6731 {
6732 u64 sample_type = event->attr.sample_type;
6733
6734 data->type = sample_type;
6735 header->size += event->id_header_size;
6736
6737 if (sample_type & PERF_SAMPLE_TID) {
6738 /* namespace issues */
6739 data->tid_entry.pid = perf_event_pid(event, current);
6740 data->tid_entry.tid = perf_event_tid(event, current);
6741 }
6742
6743 if (sample_type & PERF_SAMPLE_TIME)
6744 data->time = perf_event_clock(event);
6745
6746 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6747 data->id = primary_event_id(event);
6748
6749 if (sample_type & PERF_SAMPLE_STREAM_ID)
6750 data->stream_id = event->id;
6751
6752 if (sample_type & PERF_SAMPLE_CPU) {
6753 data->cpu_entry.cpu = raw_smp_processor_id();
6754 data->cpu_entry.reserved = 0;
6755 }
6756 }
6757
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6758 void perf_event_header__init_id(struct perf_event_header *header,
6759 struct perf_sample_data *data,
6760 struct perf_event *event)
6761 {
6762 if (event->attr.sample_id_all)
6763 __perf_event_header__init_id(header, data, event);
6764 }
6765
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6766 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6767 struct perf_sample_data *data)
6768 {
6769 u64 sample_type = data->type;
6770
6771 if (sample_type & PERF_SAMPLE_TID)
6772 perf_output_put(handle, data->tid_entry);
6773
6774 if (sample_type & PERF_SAMPLE_TIME)
6775 perf_output_put(handle, data->time);
6776
6777 if (sample_type & PERF_SAMPLE_ID)
6778 perf_output_put(handle, data->id);
6779
6780 if (sample_type & PERF_SAMPLE_STREAM_ID)
6781 perf_output_put(handle, data->stream_id);
6782
6783 if (sample_type & PERF_SAMPLE_CPU)
6784 perf_output_put(handle, data->cpu_entry);
6785
6786 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6787 perf_output_put(handle, data->id);
6788 }
6789
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6790 void perf_event__output_id_sample(struct perf_event *event,
6791 struct perf_output_handle *handle,
6792 struct perf_sample_data *sample)
6793 {
6794 if (event->attr.sample_id_all)
6795 __perf_event__output_id_sample(handle, sample);
6796 }
6797
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6798 static void perf_output_read_one(struct perf_output_handle *handle,
6799 struct perf_event *event,
6800 u64 enabled, u64 running)
6801 {
6802 u64 read_format = event->attr.read_format;
6803 u64 values[4];
6804 int n = 0;
6805
6806 values[n++] = perf_event_count(event);
6807 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6808 values[n++] = enabled +
6809 atomic64_read(&event->child_total_time_enabled);
6810 }
6811 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6812 values[n++] = running +
6813 atomic64_read(&event->child_total_time_running);
6814 }
6815 if (read_format & PERF_FORMAT_ID)
6816 values[n++] = primary_event_id(event);
6817
6818 __output_copy(handle, values, n * sizeof(u64));
6819 }
6820
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6821 static void perf_output_read_group(struct perf_output_handle *handle,
6822 struct perf_event *event,
6823 u64 enabled, u64 running)
6824 {
6825 struct perf_event *leader = event->group_leader, *sub;
6826 u64 read_format = event->attr.read_format;
6827 u64 values[5];
6828 int n = 0;
6829
6830 values[n++] = 1 + leader->nr_siblings;
6831
6832 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6833 values[n++] = enabled;
6834
6835 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6836 values[n++] = running;
6837
6838 if ((leader != event) &&
6839 (leader->state == PERF_EVENT_STATE_ACTIVE))
6840 leader->pmu->read(leader);
6841
6842 values[n++] = perf_event_count(leader);
6843 if (read_format & PERF_FORMAT_ID)
6844 values[n++] = primary_event_id(leader);
6845
6846 __output_copy(handle, values, n * sizeof(u64));
6847
6848 for_each_sibling_event(sub, leader) {
6849 n = 0;
6850
6851 if ((sub != event) &&
6852 (sub->state == PERF_EVENT_STATE_ACTIVE))
6853 sub->pmu->read(sub);
6854
6855 values[n++] = perf_event_count(sub);
6856 if (read_format & PERF_FORMAT_ID)
6857 values[n++] = primary_event_id(sub);
6858
6859 __output_copy(handle, values, n * sizeof(u64));
6860 }
6861 }
6862
6863 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6864 PERF_FORMAT_TOTAL_TIME_RUNNING)
6865
6866 /*
6867 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6868 *
6869 * The problem is that its both hard and excessively expensive to iterate the
6870 * child list, not to mention that its impossible to IPI the children running
6871 * on another CPU, from interrupt/NMI context.
6872 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6873 static void perf_output_read(struct perf_output_handle *handle,
6874 struct perf_event *event)
6875 {
6876 u64 enabled = 0, running = 0, now;
6877 u64 read_format = event->attr.read_format;
6878
6879 /*
6880 * compute total_time_enabled, total_time_running
6881 * based on snapshot values taken when the event
6882 * was last scheduled in.
6883 *
6884 * we cannot simply called update_context_time()
6885 * because of locking issue as we are called in
6886 * NMI context
6887 */
6888 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6889 calc_timer_values(event, &now, &enabled, &running);
6890
6891 if (event->attr.read_format & PERF_FORMAT_GROUP)
6892 perf_output_read_group(handle, event, enabled, running);
6893 else
6894 perf_output_read_one(handle, event, enabled, running);
6895 }
6896
perf_sample_save_hw_index(struct perf_event * event)6897 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6898 {
6899 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6900 }
6901
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6902 void perf_output_sample(struct perf_output_handle *handle,
6903 struct perf_event_header *header,
6904 struct perf_sample_data *data,
6905 struct perf_event *event)
6906 {
6907 u64 sample_type = data->type;
6908
6909 perf_output_put(handle, *header);
6910
6911 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6912 perf_output_put(handle, data->id);
6913
6914 if (sample_type & PERF_SAMPLE_IP)
6915 perf_output_put(handle, data->ip);
6916
6917 if (sample_type & PERF_SAMPLE_TID)
6918 perf_output_put(handle, data->tid_entry);
6919
6920 if (sample_type & PERF_SAMPLE_TIME)
6921 perf_output_put(handle, data->time);
6922
6923 if (sample_type & PERF_SAMPLE_ADDR)
6924 perf_output_put(handle, data->addr);
6925
6926 if (sample_type & PERF_SAMPLE_ID)
6927 perf_output_put(handle, data->id);
6928
6929 if (sample_type & PERF_SAMPLE_STREAM_ID)
6930 perf_output_put(handle, data->stream_id);
6931
6932 if (sample_type & PERF_SAMPLE_CPU)
6933 perf_output_put(handle, data->cpu_entry);
6934
6935 if (sample_type & PERF_SAMPLE_PERIOD)
6936 perf_output_put(handle, data->period);
6937
6938 if (sample_type & PERF_SAMPLE_READ)
6939 perf_output_read(handle, event);
6940
6941 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6942 int size = 1;
6943
6944 size += data->callchain->nr;
6945 size *= sizeof(u64);
6946 __output_copy(handle, data->callchain, size);
6947 }
6948
6949 if (sample_type & PERF_SAMPLE_RAW) {
6950 struct perf_raw_record *raw = data->raw;
6951
6952 if (raw) {
6953 struct perf_raw_frag *frag = &raw->frag;
6954
6955 perf_output_put(handle, raw->size);
6956 do {
6957 if (frag->copy) {
6958 __output_custom(handle, frag->copy,
6959 frag->data, frag->size);
6960 } else {
6961 __output_copy(handle, frag->data,
6962 frag->size);
6963 }
6964 if (perf_raw_frag_last(frag))
6965 break;
6966 frag = frag->next;
6967 } while (1);
6968 if (frag->pad)
6969 __output_skip(handle, NULL, frag->pad);
6970 } else {
6971 struct {
6972 u32 size;
6973 u32 data;
6974 } raw = {
6975 .size = sizeof(u32),
6976 .data = 0,
6977 };
6978 perf_output_put(handle, raw);
6979 }
6980 }
6981
6982 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6983 if (data->br_stack) {
6984 size_t size;
6985
6986 size = data->br_stack->nr
6987 * sizeof(struct perf_branch_entry);
6988
6989 perf_output_put(handle, data->br_stack->nr);
6990 if (perf_sample_save_hw_index(event))
6991 perf_output_put(handle, data->br_stack->hw_idx);
6992 perf_output_copy(handle, data->br_stack->entries, size);
6993 } else {
6994 /*
6995 * we always store at least the value of nr
6996 */
6997 u64 nr = 0;
6998 perf_output_put(handle, nr);
6999 }
7000 }
7001
7002 if (sample_type & PERF_SAMPLE_REGS_USER) {
7003 u64 abi = data->regs_user.abi;
7004
7005 /*
7006 * If there are no regs to dump, notice it through
7007 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7008 */
7009 perf_output_put(handle, abi);
7010
7011 if (abi) {
7012 u64 mask = event->attr.sample_regs_user;
7013 perf_output_sample_regs(handle,
7014 data->regs_user.regs,
7015 mask);
7016 }
7017 }
7018
7019 if (sample_type & PERF_SAMPLE_STACK_USER) {
7020 perf_output_sample_ustack(handle,
7021 data->stack_user_size,
7022 data->regs_user.regs);
7023 }
7024
7025 if (sample_type & PERF_SAMPLE_WEIGHT)
7026 perf_output_put(handle, data->weight);
7027
7028 if (sample_type & PERF_SAMPLE_DATA_SRC)
7029 perf_output_put(handle, data->data_src.val);
7030
7031 if (sample_type & PERF_SAMPLE_TRANSACTION)
7032 perf_output_put(handle, data->txn);
7033
7034 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7035 u64 abi = data->regs_intr.abi;
7036 /*
7037 * If there are no regs to dump, notice it through
7038 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7039 */
7040 perf_output_put(handle, abi);
7041
7042 if (abi) {
7043 u64 mask = event->attr.sample_regs_intr;
7044
7045 perf_output_sample_regs(handle,
7046 data->regs_intr.regs,
7047 mask);
7048 }
7049 }
7050
7051 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7052 perf_output_put(handle, data->phys_addr);
7053
7054 if (sample_type & PERF_SAMPLE_CGROUP)
7055 perf_output_put(handle, data->cgroup);
7056
7057 if (sample_type & PERF_SAMPLE_AUX) {
7058 perf_output_put(handle, data->aux_size);
7059
7060 if (data->aux_size)
7061 perf_aux_sample_output(event, handle, data);
7062 }
7063
7064 if (!event->attr.watermark) {
7065 int wakeup_events = event->attr.wakeup_events;
7066
7067 if (wakeup_events) {
7068 struct perf_buffer *rb = handle->rb;
7069 int events = local_inc_return(&rb->events);
7070
7071 if (events >= wakeup_events) {
7072 local_sub(wakeup_events, &rb->events);
7073 local_inc(&rb->wakeup);
7074 }
7075 }
7076 }
7077 }
7078
perf_virt_to_phys(u64 virt)7079 static u64 perf_virt_to_phys(u64 virt)
7080 {
7081 u64 phys_addr = 0;
7082
7083 if (!virt)
7084 return 0;
7085
7086 if (virt >= TASK_SIZE) {
7087 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7088 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7089 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7090 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7091 } else {
7092 /*
7093 * Walking the pages tables for user address.
7094 * Interrupts are disabled, so it prevents any tear down
7095 * of the page tables.
7096 * Try IRQ-safe get_user_page_fast_only first.
7097 * If failed, leave phys_addr as 0.
7098 */
7099 if (current->mm != NULL) {
7100 struct page *p;
7101
7102 pagefault_disable();
7103 if (get_user_page_fast_only(virt, 0, &p)) {
7104 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7105 put_page(p);
7106 }
7107 pagefault_enable();
7108 }
7109 }
7110
7111 return phys_addr;
7112 }
7113
7114 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7115
7116 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7117 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7118 {
7119 bool kernel = !event->attr.exclude_callchain_kernel;
7120 bool user = !event->attr.exclude_callchain_user;
7121 /* Disallow cross-task user callchains. */
7122 bool crosstask = event->ctx->task && event->ctx->task != current;
7123 const u32 max_stack = event->attr.sample_max_stack;
7124 struct perf_callchain_entry *callchain;
7125
7126 if (!kernel && !user)
7127 return &__empty_callchain;
7128
7129 callchain = get_perf_callchain(regs, 0, kernel, user,
7130 max_stack, crosstask, true);
7131 return callchain ?: &__empty_callchain;
7132 }
7133
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7134 void perf_prepare_sample(struct perf_event_header *header,
7135 struct perf_sample_data *data,
7136 struct perf_event *event,
7137 struct pt_regs *regs)
7138 {
7139 u64 sample_type = event->attr.sample_type;
7140
7141 header->type = PERF_RECORD_SAMPLE;
7142 header->size = sizeof(*header) + event->header_size;
7143
7144 header->misc = 0;
7145 header->misc |= perf_misc_flags(regs);
7146
7147 __perf_event_header__init_id(header, data, event);
7148
7149 if (sample_type & PERF_SAMPLE_IP)
7150 data->ip = perf_instruction_pointer(regs);
7151
7152 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7153 int size = 1;
7154
7155 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7156 data->callchain = perf_callchain(event, regs);
7157
7158 size += data->callchain->nr;
7159
7160 header->size += size * sizeof(u64);
7161 }
7162
7163 if (sample_type & PERF_SAMPLE_RAW) {
7164 struct perf_raw_record *raw = data->raw;
7165 int size;
7166
7167 if (raw) {
7168 struct perf_raw_frag *frag = &raw->frag;
7169 u32 sum = 0;
7170
7171 do {
7172 sum += frag->size;
7173 if (perf_raw_frag_last(frag))
7174 break;
7175 frag = frag->next;
7176 } while (1);
7177
7178 size = round_up(sum + sizeof(u32), sizeof(u64));
7179 raw->size = size - sizeof(u32);
7180 frag->pad = raw->size - sum;
7181 } else {
7182 size = sizeof(u64);
7183 }
7184
7185 header->size += size;
7186 }
7187
7188 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7189 int size = sizeof(u64); /* nr */
7190 if (data->br_stack) {
7191 if (perf_sample_save_hw_index(event))
7192 size += sizeof(u64);
7193
7194 size += data->br_stack->nr
7195 * sizeof(struct perf_branch_entry);
7196 }
7197 header->size += size;
7198 }
7199
7200 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7201 perf_sample_regs_user(&data->regs_user, regs);
7202
7203 if (sample_type & PERF_SAMPLE_REGS_USER) {
7204 /* regs dump ABI info */
7205 int size = sizeof(u64);
7206
7207 if (data->regs_user.regs) {
7208 u64 mask = event->attr.sample_regs_user;
7209 size += hweight64(mask) * sizeof(u64);
7210 }
7211
7212 header->size += size;
7213 }
7214
7215 if (sample_type & PERF_SAMPLE_STACK_USER) {
7216 /*
7217 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7218 * processed as the last one or have additional check added
7219 * in case new sample type is added, because we could eat
7220 * up the rest of the sample size.
7221 */
7222 u16 stack_size = event->attr.sample_stack_user;
7223 u16 size = sizeof(u64);
7224
7225 stack_size = perf_sample_ustack_size(stack_size, header->size,
7226 data->regs_user.regs);
7227
7228 /*
7229 * If there is something to dump, add space for the dump
7230 * itself and for the field that tells the dynamic size,
7231 * which is how many have been actually dumped.
7232 */
7233 if (stack_size)
7234 size += sizeof(u64) + stack_size;
7235
7236 data->stack_user_size = stack_size;
7237 header->size += size;
7238 }
7239
7240 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7241 /* regs dump ABI info */
7242 int size = sizeof(u64);
7243
7244 perf_sample_regs_intr(&data->regs_intr, regs);
7245
7246 if (data->regs_intr.regs) {
7247 u64 mask = event->attr.sample_regs_intr;
7248
7249 size += hweight64(mask) * sizeof(u64);
7250 }
7251
7252 header->size += size;
7253 }
7254
7255 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7256 data->phys_addr = perf_virt_to_phys(data->addr);
7257
7258 #ifdef CONFIG_CGROUP_PERF
7259 if (sample_type & PERF_SAMPLE_CGROUP) {
7260 struct cgroup *cgrp;
7261
7262 /* protected by RCU */
7263 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7264 data->cgroup = cgroup_id(cgrp);
7265 }
7266 #endif
7267
7268 if (sample_type & PERF_SAMPLE_AUX) {
7269 u64 size;
7270
7271 header->size += sizeof(u64); /* size */
7272
7273 /*
7274 * Given the 16bit nature of header::size, an AUX sample can
7275 * easily overflow it, what with all the preceding sample bits.
7276 * Make sure this doesn't happen by using up to U16_MAX bytes
7277 * per sample in total (rounded down to 8 byte boundary).
7278 */
7279 size = min_t(size_t, U16_MAX - header->size,
7280 event->attr.aux_sample_size);
7281 size = rounddown(size, 8);
7282 size = perf_prepare_sample_aux(event, data, size);
7283
7284 WARN_ON_ONCE(size + header->size > U16_MAX);
7285 header->size += size;
7286 }
7287 /*
7288 * If you're adding more sample types here, you likely need to do
7289 * something about the overflowing header::size, like repurpose the
7290 * lowest 3 bits of size, which should be always zero at the moment.
7291 * This raises a more important question, do we really need 512k sized
7292 * samples and why, so good argumentation is in order for whatever you
7293 * do here next.
7294 */
7295 WARN_ON_ONCE(header->size & 7);
7296 }
7297
7298 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7299 __perf_event_output(struct perf_event *event,
7300 struct perf_sample_data *data,
7301 struct pt_regs *regs,
7302 int (*output_begin)(struct perf_output_handle *,
7303 struct perf_sample_data *,
7304 struct perf_event *,
7305 unsigned int))
7306 {
7307 struct perf_output_handle handle;
7308 struct perf_event_header header;
7309 int err;
7310
7311 /* protect the callchain buffers */
7312 rcu_read_lock();
7313
7314 perf_prepare_sample(&header, data, event, regs);
7315
7316 err = output_begin(&handle, data, event, header.size);
7317 if (err)
7318 goto exit;
7319
7320 perf_output_sample(&handle, &header, data, event);
7321
7322 perf_output_end(&handle);
7323
7324 exit:
7325 rcu_read_unlock();
7326 return err;
7327 }
7328
7329 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7330 perf_event_output_forward(struct perf_event *event,
7331 struct perf_sample_data *data,
7332 struct pt_regs *regs)
7333 {
7334 __perf_event_output(event, data, regs, perf_output_begin_forward);
7335 }
7336
7337 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7338 perf_event_output_backward(struct perf_event *event,
7339 struct perf_sample_data *data,
7340 struct pt_regs *regs)
7341 {
7342 __perf_event_output(event, data, regs, perf_output_begin_backward);
7343 }
7344
7345 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7346 perf_event_output(struct perf_event *event,
7347 struct perf_sample_data *data,
7348 struct pt_regs *regs)
7349 {
7350 return __perf_event_output(event, data, regs, perf_output_begin);
7351 }
7352
7353 /*
7354 * read event_id
7355 */
7356
7357 struct perf_read_event {
7358 struct perf_event_header header;
7359
7360 u32 pid;
7361 u32 tid;
7362 };
7363
7364 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7365 perf_event_read_event(struct perf_event *event,
7366 struct task_struct *task)
7367 {
7368 struct perf_output_handle handle;
7369 struct perf_sample_data sample;
7370 struct perf_read_event read_event = {
7371 .header = {
7372 .type = PERF_RECORD_READ,
7373 .misc = 0,
7374 .size = sizeof(read_event) + event->read_size,
7375 },
7376 .pid = perf_event_pid(event, task),
7377 .tid = perf_event_tid(event, task),
7378 };
7379 int ret;
7380
7381 perf_event_header__init_id(&read_event.header, &sample, event);
7382 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7383 if (ret)
7384 return;
7385
7386 perf_output_put(&handle, read_event);
7387 perf_output_read(&handle, event);
7388 perf_event__output_id_sample(event, &handle, &sample);
7389
7390 perf_output_end(&handle);
7391 }
7392
7393 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7394
7395 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7396 perf_iterate_ctx(struct perf_event_context *ctx,
7397 perf_iterate_f output,
7398 void *data, bool all)
7399 {
7400 struct perf_event *event;
7401
7402 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7403 if (!all) {
7404 if (event->state < PERF_EVENT_STATE_INACTIVE)
7405 continue;
7406 if (!event_filter_match(event))
7407 continue;
7408 }
7409
7410 output(event, data);
7411 }
7412 }
7413
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7414 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7415 {
7416 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7417 struct perf_event *event;
7418
7419 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7420 /*
7421 * Skip events that are not fully formed yet; ensure that
7422 * if we observe event->ctx, both event and ctx will be
7423 * complete enough. See perf_install_in_context().
7424 */
7425 if (!smp_load_acquire(&event->ctx))
7426 continue;
7427
7428 if (event->state < PERF_EVENT_STATE_INACTIVE)
7429 continue;
7430 if (!event_filter_match(event))
7431 continue;
7432 output(event, data);
7433 }
7434 }
7435
7436 /*
7437 * Iterate all events that need to receive side-band events.
7438 *
7439 * For new callers; ensure that account_pmu_sb_event() includes
7440 * your event, otherwise it might not get delivered.
7441 */
7442 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7443 perf_iterate_sb(perf_iterate_f output, void *data,
7444 struct perf_event_context *task_ctx)
7445 {
7446 struct perf_event_context *ctx;
7447 int ctxn;
7448
7449 rcu_read_lock();
7450 preempt_disable();
7451
7452 /*
7453 * If we have task_ctx != NULL we only notify the task context itself.
7454 * The task_ctx is set only for EXIT events before releasing task
7455 * context.
7456 */
7457 if (task_ctx) {
7458 perf_iterate_ctx(task_ctx, output, data, false);
7459 goto done;
7460 }
7461
7462 perf_iterate_sb_cpu(output, data);
7463
7464 for_each_task_context_nr(ctxn) {
7465 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7466 if (ctx)
7467 perf_iterate_ctx(ctx, output, data, false);
7468 }
7469 done:
7470 preempt_enable();
7471 rcu_read_unlock();
7472 }
7473
7474 /*
7475 * Clear all file-based filters at exec, they'll have to be
7476 * re-instated when/if these objects are mmapped again.
7477 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7478 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7479 {
7480 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7481 struct perf_addr_filter *filter;
7482 unsigned int restart = 0, count = 0;
7483 unsigned long flags;
7484
7485 if (!has_addr_filter(event))
7486 return;
7487
7488 raw_spin_lock_irqsave(&ifh->lock, flags);
7489 list_for_each_entry(filter, &ifh->list, entry) {
7490 if (filter->path.dentry) {
7491 event->addr_filter_ranges[count].start = 0;
7492 event->addr_filter_ranges[count].size = 0;
7493 restart++;
7494 }
7495
7496 count++;
7497 }
7498
7499 if (restart)
7500 event->addr_filters_gen++;
7501 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7502
7503 if (restart)
7504 perf_event_stop(event, 1);
7505 }
7506
perf_event_exec(void)7507 void perf_event_exec(void)
7508 {
7509 struct perf_event_context *ctx;
7510 int ctxn;
7511
7512 rcu_read_lock();
7513 for_each_task_context_nr(ctxn) {
7514 ctx = current->perf_event_ctxp[ctxn];
7515 if (!ctx)
7516 continue;
7517
7518 perf_event_enable_on_exec(ctxn);
7519
7520 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7521 true);
7522 }
7523 rcu_read_unlock();
7524 }
7525
7526 struct remote_output {
7527 struct perf_buffer *rb;
7528 int err;
7529 };
7530
__perf_event_output_stop(struct perf_event * event,void * data)7531 static void __perf_event_output_stop(struct perf_event *event, void *data)
7532 {
7533 struct perf_event *parent = event->parent;
7534 struct remote_output *ro = data;
7535 struct perf_buffer *rb = ro->rb;
7536 struct stop_event_data sd = {
7537 .event = event,
7538 };
7539
7540 if (!has_aux(event))
7541 return;
7542
7543 if (!parent)
7544 parent = event;
7545
7546 /*
7547 * In case of inheritance, it will be the parent that links to the
7548 * ring-buffer, but it will be the child that's actually using it.
7549 *
7550 * We are using event::rb to determine if the event should be stopped,
7551 * however this may race with ring_buffer_attach() (through set_output),
7552 * which will make us skip the event that actually needs to be stopped.
7553 * So ring_buffer_attach() has to stop an aux event before re-assigning
7554 * its rb pointer.
7555 */
7556 if (rcu_dereference(parent->rb) == rb)
7557 ro->err = __perf_event_stop(&sd);
7558 }
7559
__perf_pmu_output_stop(void * info)7560 static int __perf_pmu_output_stop(void *info)
7561 {
7562 struct perf_event *event = info;
7563 struct pmu *pmu = event->ctx->pmu;
7564 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7565 struct remote_output ro = {
7566 .rb = event->rb,
7567 };
7568
7569 rcu_read_lock();
7570 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7571 if (cpuctx->task_ctx)
7572 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7573 &ro, false);
7574 rcu_read_unlock();
7575
7576 return ro.err;
7577 }
7578
perf_pmu_output_stop(struct perf_event * event)7579 static void perf_pmu_output_stop(struct perf_event *event)
7580 {
7581 struct perf_event *iter;
7582 int err, cpu;
7583
7584 restart:
7585 rcu_read_lock();
7586 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7587 /*
7588 * For per-CPU events, we need to make sure that neither they
7589 * nor their children are running; for cpu==-1 events it's
7590 * sufficient to stop the event itself if it's active, since
7591 * it can't have children.
7592 */
7593 cpu = iter->cpu;
7594 if (cpu == -1)
7595 cpu = READ_ONCE(iter->oncpu);
7596
7597 if (cpu == -1)
7598 continue;
7599
7600 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7601 if (err == -EAGAIN) {
7602 rcu_read_unlock();
7603 goto restart;
7604 }
7605 }
7606 rcu_read_unlock();
7607 }
7608
7609 /*
7610 * task tracking -- fork/exit
7611 *
7612 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7613 */
7614
7615 struct perf_task_event {
7616 struct task_struct *task;
7617 struct perf_event_context *task_ctx;
7618
7619 struct {
7620 struct perf_event_header header;
7621
7622 u32 pid;
7623 u32 ppid;
7624 u32 tid;
7625 u32 ptid;
7626 u64 time;
7627 } event_id;
7628 };
7629
perf_event_task_match(struct perf_event * event)7630 static int perf_event_task_match(struct perf_event *event)
7631 {
7632 return event->attr.comm || event->attr.mmap ||
7633 event->attr.mmap2 || event->attr.mmap_data ||
7634 event->attr.task;
7635 }
7636
perf_event_task_output(struct perf_event * event,void * data)7637 static void perf_event_task_output(struct perf_event *event,
7638 void *data)
7639 {
7640 struct perf_task_event *task_event = data;
7641 struct perf_output_handle handle;
7642 struct perf_sample_data sample;
7643 struct task_struct *task = task_event->task;
7644 int ret, size = task_event->event_id.header.size;
7645
7646 if (!perf_event_task_match(event))
7647 return;
7648
7649 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7650
7651 ret = perf_output_begin(&handle, &sample, event,
7652 task_event->event_id.header.size);
7653 if (ret)
7654 goto out;
7655
7656 task_event->event_id.pid = perf_event_pid(event, task);
7657 task_event->event_id.tid = perf_event_tid(event, task);
7658
7659 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7660 task_event->event_id.ppid = perf_event_pid(event,
7661 task->real_parent);
7662 task_event->event_id.ptid = perf_event_pid(event,
7663 task->real_parent);
7664 } else { /* PERF_RECORD_FORK */
7665 task_event->event_id.ppid = perf_event_pid(event, current);
7666 task_event->event_id.ptid = perf_event_tid(event, current);
7667 }
7668
7669 task_event->event_id.time = perf_event_clock(event);
7670
7671 perf_output_put(&handle, task_event->event_id);
7672
7673 perf_event__output_id_sample(event, &handle, &sample);
7674
7675 perf_output_end(&handle);
7676 out:
7677 task_event->event_id.header.size = size;
7678 }
7679
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7680 static void perf_event_task(struct task_struct *task,
7681 struct perf_event_context *task_ctx,
7682 int new)
7683 {
7684 struct perf_task_event task_event;
7685
7686 if (!atomic_read(&nr_comm_events) &&
7687 !atomic_read(&nr_mmap_events) &&
7688 !atomic_read(&nr_task_events))
7689 return;
7690
7691 task_event = (struct perf_task_event){
7692 .task = task,
7693 .task_ctx = task_ctx,
7694 .event_id = {
7695 .header = {
7696 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7697 .misc = 0,
7698 .size = sizeof(task_event.event_id),
7699 },
7700 /* .pid */
7701 /* .ppid */
7702 /* .tid */
7703 /* .ptid */
7704 /* .time */
7705 },
7706 };
7707
7708 perf_iterate_sb(perf_event_task_output,
7709 &task_event,
7710 task_ctx);
7711 }
7712
perf_event_fork(struct task_struct * task)7713 void perf_event_fork(struct task_struct *task)
7714 {
7715 perf_event_task(task, NULL, 1);
7716 perf_event_namespaces(task);
7717 }
7718
7719 /*
7720 * comm tracking
7721 */
7722
7723 struct perf_comm_event {
7724 struct task_struct *task;
7725 char *comm;
7726 int comm_size;
7727
7728 struct {
7729 struct perf_event_header header;
7730
7731 u32 pid;
7732 u32 tid;
7733 } event_id;
7734 };
7735
perf_event_comm_match(struct perf_event * event)7736 static int perf_event_comm_match(struct perf_event *event)
7737 {
7738 return event->attr.comm;
7739 }
7740
perf_event_comm_output(struct perf_event * event,void * data)7741 static void perf_event_comm_output(struct perf_event *event,
7742 void *data)
7743 {
7744 struct perf_comm_event *comm_event = data;
7745 struct perf_output_handle handle;
7746 struct perf_sample_data sample;
7747 int size = comm_event->event_id.header.size;
7748 int ret;
7749
7750 if (!perf_event_comm_match(event))
7751 return;
7752
7753 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7754 ret = perf_output_begin(&handle, &sample, event,
7755 comm_event->event_id.header.size);
7756
7757 if (ret)
7758 goto out;
7759
7760 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7761 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7762
7763 perf_output_put(&handle, comm_event->event_id);
7764 __output_copy(&handle, comm_event->comm,
7765 comm_event->comm_size);
7766
7767 perf_event__output_id_sample(event, &handle, &sample);
7768
7769 perf_output_end(&handle);
7770 out:
7771 comm_event->event_id.header.size = size;
7772 }
7773
perf_event_comm_event(struct perf_comm_event * comm_event)7774 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7775 {
7776 char comm[TASK_COMM_LEN];
7777 unsigned int size;
7778
7779 memset(comm, 0, sizeof(comm));
7780 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7781 size = ALIGN(strlen(comm)+1, sizeof(u64));
7782
7783 comm_event->comm = comm;
7784 comm_event->comm_size = size;
7785
7786 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7787
7788 perf_iterate_sb(perf_event_comm_output,
7789 comm_event,
7790 NULL);
7791 }
7792
perf_event_comm(struct task_struct * task,bool exec)7793 void perf_event_comm(struct task_struct *task, bool exec)
7794 {
7795 struct perf_comm_event comm_event;
7796
7797 if (!atomic_read(&nr_comm_events))
7798 return;
7799
7800 comm_event = (struct perf_comm_event){
7801 .task = task,
7802 /* .comm */
7803 /* .comm_size */
7804 .event_id = {
7805 .header = {
7806 .type = PERF_RECORD_COMM,
7807 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7808 /* .size */
7809 },
7810 /* .pid */
7811 /* .tid */
7812 },
7813 };
7814
7815 perf_event_comm_event(&comm_event);
7816 }
7817
7818 /*
7819 * namespaces tracking
7820 */
7821
7822 struct perf_namespaces_event {
7823 struct task_struct *task;
7824
7825 struct {
7826 struct perf_event_header header;
7827
7828 u32 pid;
7829 u32 tid;
7830 u64 nr_namespaces;
7831 struct perf_ns_link_info link_info[NR_NAMESPACES];
7832 } event_id;
7833 };
7834
perf_event_namespaces_match(struct perf_event * event)7835 static int perf_event_namespaces_match(struct perf_event *event)
7836 {
7837 return event->attr.namespaces;
7838 }
7839
perf_event_namespaces_output(struct perf_event * event,void * data)7840 static void perf_event_namespaces_output(struct perf_event *event,
7841 void *data)
7842 {
7843 struct perf_namespaces_event *namespaces_event = data;
7844 struct perf_output_handle handle;
7845 struct perf_sample_data sample;
7846 u16 header_size = namespaces_event->event_id.header.size;
7847 int ret;
7848
7849 if (!perf_event_namespaces_match(event))
7850 return;
7851
7852 perf_event_header__init_id(&namespaces_event->event_id.header,
7853 &sample, event);
7854 ret = perf_output_begin(&handle, &sample, event,
7855 namespaces_event->event_id.header.size);
7856 if (ret)
7857 goto out;
7858
7859 namespaces_event->event_id.pid = perf_event_pid(event,
7860 namespaces_event->task);
7861 namespaces_event->event_id.tid = perf_event_tid(event,
7862 namespaces_event->task);
7863
7864 perf_output_put(&handle, namespaces_event->event_id);
7865
7866 perf_event__output_id_sample(event, &handle, &sample);
7867
7868 perf_output_end(&handle);
7869 out:
7870 namespaces_event->event_id.header.size = header_size;
7871 }
7872
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7873 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7874 struct task_struct *task,
7875 const struct proc_ns_operations *ns_ops)
7876 {
7877 struct path ns_path;
7878 struct inode *ns_inode;
7879 int error;
7880
7881 error = ns_get_path(&ns_path, task, ns_ops);
7882 if (!error) {
7883 ns_inode = ns_path.dentry->d_inode;
7884 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7885 ns_link_info->ino = ns_inode->i_ino;
7886 path_put(&ns_path);
7887 }
7888 }
7889
perf_event_namespaces(struct task_struct * task)7890 void perf_event_namespaces(struct task_struct *task)
7891 {
7892 struct perf_namespaces_event namespaces_event;
7893 struct perf_ns_link_info *ns_link_info;
7894
7895 if (!atomic_read(&nr_namespaces_events))
7896 return;
7897
7898 namespaces_event = (struct perf_namespaces_event){
7899 .task = task,
7900 .event_id = {
7901 .header = {
7902 .type = PERF_RECORD_NAMESPACES,
7903 .misc = 0,
7904 .size = sizeof(namespaces_event.event_id),
7905 },
7906 /* .pid */
7907 /* .tid */
7908 .nr_namespaces = NR_NAMESPACES,
7909 /* .link_info[NR_NAMESPACES] */
7910 },
7911 };
7912
7913 ns_link_info = namespaces_event.event_id.link_info;
7914
7915 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7916 task, &mntns_operations);
7917
7918 #ifdef CONFIG_USER_NS
7919 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7920 task, &userns_operations);
7921 #endif
7922 #ifdef CONFIG_NET_NS
7923 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7924 task, &netns_operations);
7925 #endif
7926 #ifdef CONFIG_UTS_NS
7927 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7928 task, &utsns_operations);
7929 #endif
7930 #ifdef CONFIG_IPC_NS
7931 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7932 task, &ipcns_operations);
7933 #endif
7934 #ifdef CONFIG_PID_NS
7935 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7936 task, &pidns_operations);
7937 #endif
7938 #ifdef CONFIG_CGROUPS
7939 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7940 task, &cgroupns_operations);
7941 #endif
7942
7943 perf_iterate_sb(perf_event_namespaces_output,
7944 &namespaces_event,
7945 NULL);
7946 }
7947
7948 /*
7949 * cgroup tracking
7950 */
7951 #ifdef CONFIG_CGROUP_PERF
7952
7953 struct perf_cgroup_event {
7954 char *path;
7955 int path_size;
7956 struct {
7957 struct perf_event_header header;
7958 u64 id;
7959 char path[];
7960 } event_id;
7961 };
7962
perf_event_cgroup_match(struct perf_event * event)7963 static int perf_event_cgroup_match(struct perf_event *event)
7964 {
7965 return event->attr.cgroup;
7966 }
7967
perf_event_cgroup_output(struct perf_event * event,void * data)7968 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7969 {
7970 struct perf_cgroup_event *cgroup_event = data;
7971 struct perf_output_handle handle;
7972 struct perf_sample_data sample;
7973 u16 header_size = cgroup_event->event_id.header.size;
7974 int ret;
7975
7976 if (!perf_event_cgroup_match(event))
7977 return;
7978
7979 perf_event_header__init_id(&cgroup_event->event_id.header,
7980 &sample, event);
7981 ret = perf_output_begin(&handle, &sample, event,
7982 cgroup_event->event_id.header.size);
7983 if (ret)
7984 goto out;
7985
7986 perf_output_put(&handle, cgroup_event->event_id);
7987 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7988
7989 perf_event__output_id_sample(event, &handle, &sample);
7990
7991 perf_output_end(&handle);
7992 out:
7993 cgroup_event->event_id.header.size = header_size;
7994 }
7995
perf_event_cgroup(struct cgroup * cgrp)7996 static void perf_event_cgroup(struct cgroup *cgrp)
7997 {
7998 struct perf_cgroup_event cgroup_event;
7999 char path_enomem[16] = "//enomem";
8000 char *pathname;
8001 size_t size;
8002
8003 if (!atomic_read(&nr_cgroup_events))
8004 return;
8005
8006 cgroup_event = (struct perf_cgroup_event){
8007 .event_id = {
8008 .header = {
8009 .type = PERF_RECORD_CGROUP,
8010 .misc = 0,
8011 .size = sizeof(cgroup_event.event_id),
8012 },
8013 .id = cgroup_id(cgrp),
8014 },
8015 };
8016
8017 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8018 if (pathname == NULL) {
8019 cgroup_event.path = path_enomem;
8020 } else {
8021 /* just to be sure to have enough space for alignment */
8022 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8023 cgroup_event.path = pathname;
8024 }
8025
8026 /*
8027 * Since our buffer works in 8 byte units we need to align our string
8028 * size to a multiple of 8. However, we must guarantee the tail end is
8029 * zero'd out to avoid leaking random bits to userspace.
8030 */
8031 size = strlen(cgroup_event.path) + 1;
8032 while (!IS_ALIGNED(size, sizeof(u64)))
8033 cgroup_event.path[size++] = '\0';
8034
8035 cgroup_event.event_id.header.size += size;
8036 cgroup_event.path_size = size;
8037
8038 perf_iterate_sb(perf_event_cgroup_output,
8039 &cgroup_event,
8040 NULL);
8041
8042 kfree(pathname);
8043 }
8044
8045 #endif
8046
8047 /*
8048 * mmap tracking
8049 */
8050
8051 struct perf_mmap_event {
8052 struct vm_area_struct *vma;
8053
8054 const char *file_name;
8055 int file_size;
8056 int maj, min;
8057 u64 ino;
8058 u64 ino_generation;
8059 u32 prot, flags;
8060
8061 struct {
8062 struct perf_event_header header;
8063
8064 u32 pid;
8065 u32 tid;
8066 u64 start;
8067 u64 len;
8068 u64 pgoff;
8069 } event_id;
8070 };
8071
perf_event_mmap_match(struct perf_event * event,void * data)8072 static int perf_event_mmap_match(struct perf_event *event,
8073 void *data)
8074 {
8075 struct perf_mmap_event *mmap_event = data;
8076 struct vm_area_struct *vma = mmap_event->vma;
8077 int executable = vma->vm_flags & VM_EXEC;
8078
8079 return (!executable && event->attr.mmap_data) ||
8080 (executable && (event->attr.mmap || event->attr.mmap2));
8081 }
8082
perf_event_mmap_output(struct perf_event * event,void * data)8083 static void perf_event_mmap_output(struct perf_event *event,
8084 void *data)
8085 {
8086 struct perf_mmap_event *mmap_event = data;
8087 struct perf_output_handle handle;
8088 struct perf_sample_data sample;
8089 int size = mmap_event->event_id.header.size;
8090 u32 type = mmap_event->event_id.header.type;
8091 int ret;
8092
8093 if (!perf_event_mmap_match(event, data))
8094 return;
8095
8096 if (event->attr.mmap2) {
8097 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8098 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8099 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8100 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8101 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8102 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8103 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8104 }
8105
8106 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8107 ret = perf_output_begin(&handle, &sample, event,
8108 mmap_event->event_id.header.size);
8109 if (ret)
8110 goto out;
8111
8112 mmap_event->event_id.pid = perf_event_pid(event, current);
8113 mmap_event->event_id.tid = perf_event_tid(event, current);
8114
8115 perf_output_put(&handle, mmap_event->event_id);
8116
8117 if (event->attr.mmap2) {
8118 perf_output_put(&handle, mmap_event->maj);
8119 perf_output_put(&handle, mmap_event->min);
8120 perf_output_put(&handle, mmap_event->ino);
8121 perf_output_put(&handle, mmap_event->ino_generation);
8122 perf_output_put(&handle, mmap_event->prot);
8123 perf_output_put(&handle, mmap_event->flags);
8124 }
8125
8126 __output_copy(&handle, mmap_event->file_name,
8127 mmap_event->file_size);
8128
8129 perf_event__output_id_sample(event, &handle, &sample);
8130
8131 perf_output_end(&handle);
8132 out:
8133 mmap_event->event_id.header.size = size;
8134 mmap_event->event_id.header.type = type;
8135 }
8136
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8137 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8138 {
8139 struct vm_area_struct *vma = mmap_event->vma;
8140 struct file *file = vma->vm_file;
8141 int maj = 0, min = 0;
8142 u64 ino = 0, gen = 0;
8143 u32 prot = 0, flags = 0;
8144 unsigned int size;
8145 char tmp[16];
8146 char *buf = NULL;
8147 char *name;
8148
8149 if (vma->vm_flags & VM_READ)
8150 prot |= PROT_READ;
8151 if (vma->vm_flags & VM_WRITE)
8152 prot |= PROT_WRITE;
8153 if (vma->vm_flags & VM_EXEC)
8154 prot |= PROT_EXEC;
8155
8156 if (vma->vm_flags & VM_MAYSHARE)
8157 flags = MAP_SHARED;
8158 else
8159 flags = MAP_PRIVATE;
8160
8161 if (vma->vm_flags & VM_DENYWRITE)
8162 flags |= MAP_DENYWRITE;
8163 if (vma->vm_flags & VM_MAYEXEC)
8164 flags |= MAP_EXECUTABLE;
8165 if (vma->vm_flags & VM_LOCKED)
8166 flags |= MAP_LOCKED;
8167 if (is_vm_hugetlb_page(vma))
8168 flags |= MAP_HUGETLB;
8169
8170 if (file) {
8171 struct inode *inode;
8172 dev_t dev;
8173
8174 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8175 if (!buf) {
8176 name = "//enomem";
8177 goto cpy_name;
8178 }
8179 /*
8180 * d_path() works from the end of the rb backwards, so we
8181 * need to add enough zero bytes after the string to handle
8182 * the 64bit alignment we do later.
8183 */
8184 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8185 if (IS_ERR(name)) {
8186 name = "//toolong";
8187 goto cpy_name;
8188 }
8189 inode = file_inode(vma->vm_file);
8190 dev = inode->i_sb->s_dev;
8191 ino = inode->i_ino;
8192 gen = inode->i_generation;
8193 maj = MAJOR(dev);
8194 min = MINOR(dev);
8195
8196 goto got_name;
8197 } else {
8198 if (vma->vm_ops && vma->vm_ops->name) {
8199 name = (char *) vma->vm_ops->name(vma);
8200 if (name)
8201 goto cpy_name;
8202 }
8203
8204 name = (char *)arch_vma_name(vma);
8205 if (name)
8206 goto cpy_name;
8207
8208 if (vma->vm_start <= vma->vm_mm->start_brk &&
8209 vma->vm_end >= vma->vm_mm->brk) {
8210 name = "[heap]";
8211 goto cpy_name;
8212 }
8213 if (vma->vm_start <= vma->vm_mm->start_stack &&
8214 vma->vm_end >= vma->vm_mm->start_stack) {
8215 name = "[stack]";
8216 goto cpy_name;
8217 }
8218
8219 name = "//anon";
8220 goto cpy_name;
8221 }
8222
8223 cpy_name:
8224 strlcpy(tmp, name, sizeof(tmp));
8225 name = tmp;
8226 got_name:
8227 /*
8228 * Since our buffer works in 8 byte units we need to align our string
8229 * size to a multiple of 8. However, we must guarantee the tail end is
8230 * zero'd out to avoid leaking random bits to userspace.
8231 */
8232 size = strlen(name)+1;
8233 while (!IS_ALIGNED(size, sizeof(u64)))
8234 name[size++] = '\0';
8235
8236 mmap_event->file_name = name;
8237 mmap_event->file_size = size;
8238 mmap_event->maj = maj;
8239 mmap_event->min = min;
8240 mmap_event->ino = ino;
8241 mmap_event->ino_generation = gen;
8242 mmap_event->prot = prot;
8243 mmap_event->flags = flags;
8244
8245 if (!(vma->vm_flags & VM_EXEC))
8246 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8247
8248 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8249
8250 perf_iterate_sb(perf_event_mmap_output,
8251 mmap_event,
8252 NULL);
8253
8254 kfree(buf);
8255 }
8256
8257 /*
8258 * Check whether inode and address range match filter criteria.
8259 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8260 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8261 struct file *file, unsigned long offset,
8262 unsigned long size)
8263 {
8264 /* d_inode(NULL) won't be equal to any mapped user-space file */
8265 if (!filter->path.dentry)
8266 return false;
8267
8268 if (d_inode(filter->path.dentry) != file_inode(file))
8269 return false;
8270
8271 if (filter->offset > offset + size)
8272 return false;
8273
8274 if (filter->offset + filter->size < offset)
8275 return false;
8276
8277 return true;
8278 }
8279
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8280 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8281 struct vm_area_struct *vma,
8282 struct perf_addr_filter_range *fr)
8283 {
8284 unsigned long vma_size = vma->vm_end - vma->vm_start;
8285 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8286 struct file *file = vma->vm_file;
8287
8288 if (!perf_addr_filter_match(filter, file, off, vma_size))
8289 return false;
8290
8291 if (filter->offset < off) {
8292 fr->start = vma->vm_start;
8293 fr->size = min(vma_size, filter->size - (off - filter->offset));
8294 } else {
8295 fr->start = vma->vm_start + filter->offset - off;
8296 fr->size = min(vma->vm_end - fr->start, filter->size);
8297 }
8298
8299 return true;
8300 }
8301
__perf_addr_filters_adjust(struct perf_event * event,void * data)8302 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8303 {
8304 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8305 struct vm_area_struct *vma = data;
8306 struct perf_addr_filter *filter;
8307 unsigned int restart = 0, count = 0;
8308 unsigned long flags;
8309
8310 if (!has_addr_filter(event))
8311 return;
8312
8313 if (!vma->vm_file)
8314 return;
8315
8316 raw_spin_lock_irqsave(&ifh->lock, flags);
8317 list_for_each_entry(filter, &ifh->list, entry) {
8318 if (perf_addr_filter_vma_adjust(filter, vma,
8319 &event->addr_filter_ranges[count]))
8320 restart++;
8321
8322 count++;
8323 }
8324
8325 if (restart)
8326 event->addr_filters_gen++;
8327 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8328
8329 if (restart)
8330 perf_event_stop(event, 1);
8331 }
8332
8333 /*
8334 * Adjust all task's events' filters to the new vma
8335 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8336 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8337 {
8338 struct perf_event_context *ctx;
8339 int ctxn;
8340
8341 /*
8342 * Data tracing isn't supported yet and as such there is no need
8343 * to keep track of anything that isn't related to executable code:
8344 */
8345 if (!(vma->vm_flags & VM_EXEC))
8346 return;
8347
8348 rcu_read_lock();
8349 for_each_task_context_nr(ctxn) {
8350 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8351 if (!ctx)
8352 continue;
8353
8354 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8355 }
8356 rcu_read_unlock();
8357 }
8358
perf_event_mmap(struct vm_area_struct * vma)8359 void perf_event_mmap(struct vm_area_struct *vma)
8360 {
8361 struct perf_mmap_event mmap_event;
8362
8363 if (!atomic_read(&nr_mmap_events))
8364 return;
8365
8366 mmap_event = (struct perf_mmap_event){
8367 .vma = vma,
8368 /* .file_name */
8369 /* .file_size */
8370 .event_id = {
8371 .header = {
8372 .type = PERF_RECORD_MMAP,
8373 .misc = PERF_RECORD_MISC_USER,
8374 /* .size */
8375 },
8376 /* .pid */
8377 /* .tid */
8378 .start = vma->vm_start,
8379 .len = vma->vm_end - vma->vm_start,
8380 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8381 },
8382 /* .maj (attr_mmap2 only) */
8383 /* .min (attr_mmap2 only) */
8384 /* .ino (attr_mmap2 only) */
8385 /* .ino_generation (attr_mmap2 only) */
8386 /* .prot (attr_mmap2 only) */
8387 /* .flags (attr_mmap2 only) */
8388 };
8389
8390 perf_addr_filters_adjust(vma);
8391 perf_event_mmap_event(&mmap_event);
8392 }
8393
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8394 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8395 unsigned long size, u64 flags)
8396 {
8397 struct perf_output_handle handle;
8398 struct perf_sample_data sample;
8399 struct perf_aux_event {
8400 struct perf_event_header header;
8401 u64 offset;
8402 u64 size;
8403 u64 flags;
8404 } rec = {
8405 .header = {
8406 .type = PERF_RECORD_AUX,
8407 .misc = 0,
8408 .size = sizeof(rec),
8409 },
8410 .offset = head,
8411 .size = size,
8412 .flags = flags,
8413 };
8414 int ret;
8415
8416 perf_event_header__init_id(&rec.header, &sample, event);
8417 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8418
8419 if (ret)
8420 return;
8421
8422 perf_output_put(&handle, rec);
8423 perf_event__output_id_sample(event, &handle, &sample);
8424
8425 perf_output_end(&handle);
8426 }
8427
8428 /*
8429 * Lost/dropped samples logging
8430 */
perf_log_lost_samples(struct perf_event * event,u64 lost)8431 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8432 {
8433 struct perf_output_handle handle;
8434 struct perf_sample_data sample;
8435 int ret;
8436
8437 struct {
8438 struct perf_event_header header;
8439 u64 lost;
8440 } lost_samples_event = {
8441 .header = {
8442 .type = PERF_RECORD_LOST_SAMPLES,
8443 .misc = 0,
8444 .size = sizeof(lost_samples_event),
8445 },
8446 .lost = lost,
8447 };
8448
8449 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8450
8451 ret = perf_output_begin(&handle, &sample, event,
8452 lost_samples_event.header.size);
8453 if (ret)
8454 return;
8455
8456 perf_output_put(&handle, lost_samples_event);
8457 perf_event__output_id_sample(event, &handle, &sample);
8458 perf_output_end(&handle);
8459 }
8460
8461 /*
8462 * context_switch tracking
8463 */
8464
8465 struct perf_switch_event {
8466 struct task_struct *task;
8467 struct task_struct *next_prev;
8468
8469 struct {
8470 struct perf_event_header header;
8471 u32 next_prev_pid;
8472 u32 next_prev_tid;
8473 } event_id;
8474 };
8475
perf_event_switch_match(struct perf_event * event)8476 static int perf_event_switch_match(struct perf_event *event)
8477 {
8478 return event->attr.context_switch;
8479 }
8480
perf_event_switch_output(struct perf_event * event,void * data)8481 static void perf_event_switch_output(struct perf_event *event, void *data)
8482 {
8483 struct perf_switch_event *se = data;
8484 struct perf_output_handle handle;
8485 struct perf_sample_data sample;
8486 int ret;
8487
8488 if (!perf_event_switch_match(event))
8489 return;
8490
8491 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8492 if (event->ctx->task) {
8493 se->event_id.header.type = PERF_RECORD_SWITCH;
8494 se->event_id.header.size = sizeof(se->event_id.header);
8495 } else {
8496 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8497 se->event_id.header.size = sizeof(se->event_id);
8498 se->event_id.next_prev_pid =
8499 perf_event_pid(event, se->next_prev);
8500 se->event_id.next_prev_tid =
8501 perf_event_tid(event, se->next_prev);
8502 }
8503
8504 perf_event_header__init_id(&se->event_id.header, &sample, event);
8505
8506 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8507 if (ret)
8508 return;
8509
8510 if (event->ctx->task)
8511 perf_output_put(&handle, se->event_id.header);
8512 else
8513 perf_output_put(&handle, se->event_id);
8514
8515 perf_event__output_id_sample(event, &handle, &sample);
8516
8517 perf_output_end(&handle);
8518 }
8519
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8520 static void perf_event_switch(struct task_struct *task,
8521 struct task_struct *next_prev, bool sched_in)
8522 {
8523 struct perf_switch_event switch_event;
8524
8525 /* N.B. caller checks nr_switch_events != 0 */
8526
8527 switch_event = (struct perf_switch_event){
8528 .task = task,
8529 .next_prev = next_prev,
8530 .event_id = {
8531 .header = {
8532 /* .type */
8533 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8534 /* .size */
8535 },
8536 /* .next_prev_pid */
8537 /* .next_prev_tid */
8538 },
8539 };
8540
8541 if (!sched_in && task->state == TASK_RUNNING)
8542 switch_event.event_id.header.misc |=
8543 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8544
8545 perf_iterate_sb(perf_event_switch_output,
8546 &switch_event,
8547 NULL);
8548 }
8549
8550 /*
8551 * IRQ throttle logging
8552 */
8553
perf_log_throttle(struct perf_event * event,int enable)8554 static void perf_log_throttle(struct perf_event *event, int enable)
8555 {
8556 struct perf_output_handle handle;
8557 struct perf_sample_data sample;
8558 int ret;
8559
8560 struct {
8561 struct perf_event_header header;
8562 u64 time;
8563 u64 id;
8564 u64 stream_id;
8565 } throttle_event = {
8566 .header = {
8567 .type = PERF_RECORD_THROTTLE,
8568 .misc = 0,
8569 .size = sizeof(throttle_event),
8570 },
8571 .time = perf_event_clock(event),
8572 .id = primary_event_id(event),
8573 .stream_id = event->id,
8574 };
8575
8576 if (enable)
8577 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8578
8579 perf_event_header__init_id(&throttle_event.header, &sample, event);
8580
8581 ret = perf_output_begin(&handle, &sample, event,
8582 throttle_event.header.size);
8583 if (ret)
8584 return;
8585
8586 perf_output_put(&handle, throttle_event);
8587 perf_event__output_id_sample(event, &handle, &sample);
8588 perf_output_end(&handle);
8589 }
8590
8591 /*
8592 * ksymbol register/unregister tracking
8593 */
8594
8595 struct perf_ksymbol_event {
8596 const char *name;
8597 int name_len;
8598 struct {
8599 struct perf_event_header header;
8600 u64 addr;
8601 u32 len;
8602 u16 ksym_type;
8603 u16 flags;
8604 } event_id;
8605 };
8606
perf_event_ksymbol_match(struct perf_event * event)8607 static int perf_event_ksymbol_match(struct perf_event *event)
8608 {
8609 return event->attr.ksymbol;
8610 }
8611
perf_event_ksymbol_output(struct perf_event * event,void * data)8612 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8613 {
8614 struct perf_ksymbol_event *ksymbol_event = data;
8615 struct perf_output_handle handle;
8616 struct perf_sample_data sample;
8617 int ret;
8618
8619 if (!perf_event_ksymbol_match(event))
8620 return;
8621
8622 perf_event_header__init_id(&ksymbol_event->event_id.header,
8623 &sample, event);
8624 ret = perf_output_begin(&handle, &sample, event,
8625 ksymbol_event->event_id.header.size);
8626 if (ret)
8627 return;
8628
8629 perf_output_put(&handle, ksymbol_event->event_id);
8630 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8631 perf_event__output_id_sample(event, &handle, &sample);
8632
8633 perf_output_end(&handle);
8634 }
8635
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8636 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8637 const char *sym)
8638 {
8639 struct perf_ksymbol_event ksymbol_event;
8640 char name[KSYM_NAME_LEN];
8641 u16 flags = 0;
8642 int name_len;
8643
8644 if (!atomic_read(&nr_ksymbol_events))
8645 return;
8646
8647 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8648 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8649 goto err;
8650
8651 strlcpy(name, sym, KSYM_NAME_LEN);
8652 name_len = strlen(name) + 1;
8653 while (!IS_ALIGNED(name_len, sizeof(u64)))
8654 name[name_len++] = '\0';
8655 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8656
8657 if (unregister)
8658 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8659
8660 ksymbol_event = (struct perf_ksymbol_event){
8661 .name = name,
8662 .name_len = name_len,
8663 .event_id = {
8664 .header = {
8665 .type = PERF_RECORD_KSYMBOL,
8666 .size = sizeof(ksymbol_event.event_id) +
8667 name_len,
8668 },
8669 .addr = addr,
8670 .len = len,
8671 .ksym_type = ksym_type,
8672 .flags = flags,
8673 },
8674 };
8675
8676 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8677 return;
8678 err:
8679 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8680 }
8681
8682 /*
8683 * bpf program load/unload tracking
8684 */
8685
8686 struct perf_bpf_event {
8687 struct bpf_prog *prog;
8688 struct {
8689 struct perf_event_header header;
8690 u16 type;
8691 u16 flags;
8692 u32 id;
8693 u8 tag[BPF_TAG_SIZE];
8694 } event_id;
8695 };
8696
perf_event_bpf_match(struct perf_event * event)8697 static int perf_event_bpf_match(struct perf_event *event)
8698 {
8699 return event->attr.bpf_event;
8700 }
8701
perf_event_bpf_output(struct perf_event * event,void * data)8702 static void perf_event_bpf_output(struct perf_event *event, void *data)
8703 {
8704 struct perf_bpf_event *bpf_event = data;
8705 struct perf_output_handle handle;
8706 struct perf_sample_data sample;
8707 int ret;
8708
8709 if (!perf_event_bpf_match(event))
8710 return;
8711
8712 perf_event_header__init_id(&bpf_event->event_id.header,
8713 &sample, event);
8714 ret = perf_output_begin(&handle, &sample, event,
8715 bpf_event->event_id.header.size);
8716 if (ret)
8717 return;
8718
8719 perf_output_put(&handle, bpf_event->event_id);
8720 perf_event__output_id_sample(event, &handle, &sample);
8721
8722 perf_output_end(&handle);
8723 }
8724
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8725 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8726 enum perf_bpf_event_type type)
8727 {
8728 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8729 int i;
8730
8731 if (prog->aux->func_cnt == 0) {
8732 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8733 (u64)(unsigned long)prog->bpf_func,
8734 prog->jited_len, unregister,
8735 prog->aux->ksym.name);
8736 } else {
8737 for (i = 0; i < prog->aux->func_cnt; i++) {
8738 struct bpf_prog *subprog = prog->aux->func[i];
8739
8740 perf_event_ksymbol(
8741 PERF_RECORD_KSYMBOL_TYPE_BPF,
8742 (u64)(unsigned long)subprog->bpf_func,
8743 subprog->jited_len, unregister,
8744 subprog->aux->ksym.name);
8745 }
8746 }
8747 }
8748
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8749 void perf_event_bpf_event(struct bpf_prog *prog,
8750 enum perf_bpf_event_type type,
8751 u16 flags)
8752 {
8753 struct perf_bpf_event bpf_event;
8754
8755 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8756 type >= PERF_BPF_EVENT_MAX)
8757 return;
8758
8759 switch (type) {
8760 case PERF_BPF_EVENT_PROG_LOAD:
8761 case PERF_BPF_EVENT_PROG_UNLOAD:
8762 if (atomic_read(&nr_ksymbol_events))
8763 perf_event_bpf_emit_ksymbols(prog, type);
8764 break;
8765 default:
8766 break;
8767 }
8768
8769 if (!atomic_read(&nr_bpf_events))
8770 return;
8771
8772 bpf_event = (struct perf_bpf_event){
8773 .prog = prog,
8774 .event_id = {
8775 .header = {
8776 .type = PERF_RECORD_BPF_EVENT,
8777 .size = sizeof(bpf_event.event_id),
8778 },
8779 .type = type,
8780 .flags = flags,
8781 .id = prog->aux->id,
8782 },
8783 };
8784
8785 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8786
8787 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8788 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8789 }
8790
8791 struct perf_text_poke_event {
8792 const void *old_bytes;
8793 const void *new_bytes;
8794 size_t pad;
8795 u16 old_len;
8796 u16 new_len;
8797
8798 struct {
8799 struct perf_event_header header;
8800
8801 u64 addr;
8802 } event_id;
8803 };
8804
perf_event_text_poke_match(struct perf_event * event)8805 static int perf_event_text_poke_match(struct perf_event *event)
8806 {
8807 return event->attr.text_poke;
8808 }
8809
perf_event_text_poke_output(struct perf_event * event,void * data)8810 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8811 {
8812 struct perf_text_poke_event *text_poke_event = data;
8813 struct perf_output_handle handle;
8814 struct perf_sample_data sample;
8815 u64 padding = 0;
8816 int ret;
8817
8818 if (!perf_event_text_poke_match(event))
8819 return;
8820
8821 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8822
8823 ret = perf_output_begin(&handle, &sample, event,
8824 text_poke_event->event_id.header.size);
8825 if (ret)
8826 return;
8827
8828 perf_output_put(&handle, text_poke_event->event_id);
8829 perf_output_put(&handle, text_poke_event->old_len);
8830 perf_output_put(&handle, text_poke_event->new_len);
8831
8832 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8833 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8834
8835 if (text_poke_event->pad)
8836 __output_copy(&handle, &padding, text_poke_event->pad);
8837
8838 perf_event__output_id_sample(event, &handle, &sample);
8839
8840 perf_output_end(&handle);
8841 }
8842
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)8843 void perf_event_text_poke(const void *addr, const void *old_bytes,
8844 size_t old_len, const void *new_bytes, size_t new_len)
8845 {
8846 struct perf_text_poke_event text_poke_event;
8847 size_t tot, pad;
8848
8849 if (!atomic_read(&nr_text_poke_events))
8850 return;
8851
8852 tot = sizeof(text_poke_event.old_len) + old_len;
8853 tot += sizeof(text_poke_event.new_len) + new_len;
8854 pad = ALIGN(tot, sizeof(u64)) - tot;
8855
8856 text_poke_event = (struct perf_text_poke_event){
8857 .old_bytes = old_bytes,
8858 .new_bytes = new_bytes,
8859 .pad = pad,
8860 .old_len = old_len,
8861 .new_len = new_len,
8862 .event_id = {
8863 .header = {
8864 .type = PERF_RECORD_TEXT_POKE,
8865 .misc = PERF_RECORD_MISC_KERNEL,
8866 .size = sizeof(text_poke_event.event_id) + tot + pad,
8867 },
8868 .addr = (unsigned long)addr,
8869 },
8870 };
8871
8872 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8873 }
8874
perf_event_itrace_started(struct perf_event * event)8875 void perf_event_itrace_started(struct perf_event *event)
8876 {
8877 event->attach_state |= PERF_ATTACH_ITRACE;
8878 }
8879
perf_log_itrace_start(struct perf_event * event)8880 static void perf_log_itrace_start(struct perf_event *event)
8881 {
8882 struct perf_output_handle handle;
8883 struct perf_sample_data sample;
8884 struct perf_aux_event {
8885 struct perf_event_header header;
8886 u32 pid;
8887 u32 tid;
8888 } rec;
8889 int ret;
8890
8891 if (event->parent)
8892 event = event->parent;
8893
8894 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8895 event->attach_state & PERF_ATTACH_ITRACE)
8896 return;
8897
8898 rec.header.type = PERF_RECORD_ITRACE_START;
8899 rec.header.misc = 0;
8900 rec.header.size = sizeof(rec);
8901 rec.pid = perf_event_pid(event, current);
8902 rec.tid = perf_event_tid(event, current);
8903
8904 perf_event_header__init_id(&rec.header, &sample, event);
8905 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8906
8907 if (ret)
8908 return;
8909
8910 perf_output_put(&handle, rec);
8911 perf_event__output_id_sample(event, &handle, &sample);
8912
8913 perf_output_end(&handle);
8914 }
8915
8916 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8917 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8918 {
8919 struct hw_perf_event *hwc = &event->hw;
8920 int ret = 0;
8921 u64 seq;
8922
8923 seq = __this_cpu_read(perf_throttled_seq);
8924 if (seq != hwc->interrupts_seq) {
8925 hwc->interrupts_seq = seq;
8926 hwc->interrupts = 1;
8927 } else {
8928 hwc->interrupts++;
8929 if (unlikely(throttle &&
8930 hwc->interrupts > max_samples_per_tick)) {
8931 __this_cpu_inc(perf_throttled_count);
8932 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8933 hwc->interrupts = MAX_INTERRUPTS;
8934 perf_log_throttle(event, 0);
8935 ret = 1;
8936 }
8937 }
8938
8939 if (event->attr.freq) {
8940 u64 now = perf_clock();
8941 s64 delta = now - hwc->freq_time_stamp;
8942
8943 hwc->freq_time_stamp = now;
8944
8945 if (delta > 0 && delta < 2*TICK_NSEC)
8946 perf_adjust_period(event, delta, hwc->last_period, true);
8947 }
8948
8949 return ret;
8950 }
8951
perf_event_account_interrupt(struct perf_event * event)8952 int perf_event_account_interrupt(struct perf_event *event)
8953 {
8954 return __perf_event_account_interrupt(event, 1);
8955 }
8956
8957 /*
8958 * Generic event overflow handling, sampling.
8959 */
8960
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8961 static int __perf_event_overflow(struct perf_event *event,
8962 int throttle, struct perf_sample_data *data,
8963 struct pt_regs *regs)
8964 {
8965 int events = atomic_read(&event->event_limit);
8966 int ret = 0;
8967
8968 /*
8969 * Non-sampling counters might still use the PMI to fold short
8970 * hardware counters, ignore those.
8971 */
8972 if (unlikely(!is_sampling_event(event)))
8973 return 0;
8974
8975 ret = __perf_event_account_interrupt(event, throttle);
8976
8977 /*
8978 * XXX event_limit might not quite work as expected on inherited
8979 * events
8980 */
8981
8982 event->pending_kill = POLL_IN;
8983 if (events && atomic_dec_and_test(&event->event_limit)) {
8984 ret = 1;
8985 event->pending_kill = POLL_HUP;
8986
8987 perf_event_disable_inatomic(event);
8988 }
8989
8990 READ_ONCE(event->overflow_handler)(event, data, regs);
8991
8992 if (*perf_event_fasync(event) && event->pending_kill) {
8993 event->pending_wakeup = 1;
8994 irq_work_queue(&event->pending);
8995 }
8996
8997 return ret;
8998 }
8999
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9000 int perf_event_overflow(struct perf_event *event,
9001 struct perf_sample_data *data,
9002 struct pt_regs *regs)
9003 {
9004 return __perf_event_overflow(event, 1, data, regs);
9005 }
9006
9007 /*
9008 * Generic software event infrastructure
9009 */
9010
9011 struct swevent_htable {
9012 struct swevent_hlist *swevent_hlist;
9013 struct mutex hlist_mutex;
9014 int hlist_refcount;
9015
9016 /* Recursion avoidance in each contexts */
9017 int recursion[PERF_NR_CONTEXTS];
9018 };
9019
9020 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9021
9022 /*
9023 * We directly increment event->count and keep a second value in
9024 * event->hw.period_left to count intervals. This period event
9025 * is kept in the range [-sample_period, 0] so that we can use the
9026 * sign as trigger.
9027 */
9028
perf_swevent_set_period(struct perf_event * event)9029 u64 perf_swevent_set_period(struct perf_event *event)
9030 {
9031 struct hw_perf_event *hwc = &event->hw;
9032 u64 period = hwc->last_period;
9033 u64 nr, offset;
9034 s64 old, val;
9035
9036 hwc->last_period = hwc->sample_period;
9037
9038 again:
9039 old = val = local64_read(&hwc->period_left);
9040 if (val < 0)
9041 return 0;
9042
9043 nr = div64_u64(period + val, period);
9044 offset = nr * period;
9045 val -= offset;
9046 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9047 goto again;
9048
9049 return nr;
9050 }
9051
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9052 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9053 struct perf_sample_data *data,
9054 struct pt_regs *regs)
9055 {
9056 struct hw_perf_event *hwc = &event->hw;
9057 int throttle = 0;
9058
9059 if (!overflow)
9060 overflow = perf_swevent_set_period(event);
9061
9062 if (hwc->interrupts == MAX_INTERRUPTS)
9063 return;
9064
9065 for (; overflow; overflow--) {
9066 if (__perf_event_overflow(event, throttle,
9067 data, regs)) {
9068 /*
9069 * We inhibit the overflow from happening when
9070 * hwc->interrupts == MAX_INTERRUPTS.
9071 */
9072 break;
9073 }
9074 throttle = 1;
9075 }
9076 }
9077
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9078 static void perf_swevent_event(struct perf_event *event, u64 nr,
9079 struct perf_sample_data *data,
9080 struct pt_regs *regs)
9081 {
9082 struct hw_perf_event *hwc = &event->hw;
9083
9084 local64_add(nr, &event->count);
9085
9086 if (!regs)
9087 return;
9088
9089 if (!is_sampling_event(event))
9090 return;
9091
9092 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9093 data->period = nr;
9094 return perf_swevent_overflow(event, 1, data, regs);
9095 } else
9096 data->period = event->hw.last_period;
9097
9098 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9099 return perf_swevent_overflow(event, 1, data, regs);
9100
9101 if (local64_add_negative(nr, &hwc->period_left))
9102 return;
9103
9104 perf_swevent_overflow(event, 0, data, regs);
9105 }
9106
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9107 static int perf_exclude_event(struct perf_event *event,
9108 struct pt_regs *regs)
9109 {
9110 if (event->hw.state & PERF_HES_STOPPED)
9111 return 1;
9112
9113 if (regs) {
9114 if (event->attr.exclude_user && user_mode(regs))
9115 return 1;
9116
9117 if (event->attr.exclude_kernel && !user_mode(regs))
9118 return 1;
9119 }
9120
9121 return 0;
9122 }
9123
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9124 static int perf_swevent_match(struct perf_event *event,
9125 enum perf_type_id type,
9126 u32 event_id,
9127 struct perf_sample_data *data,
9128 struct pt_regs *regs)
9129 {
9130 if (event->attr.type != type)
9131 return 0;
9132
9133 if (event->attr.config != event_id)
9134 return 0;
9135
9136 if (perf_exclude_event(event, regs))
9137 return 0;
9138
9139 return 1;
9140 }
9141
swevent_hash(u64 type,u32 event_id)9142 static inline u64 swevent_hash(u64 type, u32 event_id)
9143 {
9144 u64 val = event_id | (type << 32);
9145
9146 return hash_64(val, SWEVENT_HLIST_BITS);
9147 }
9148
9149 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9150 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9151 {
9152 u64 hash = swevent_hash(type, event_id);
9153
9154 return &hlist->heads[hash];
9155 }
9156
9157 /* For the read side: events when they trigger */
9158 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9159 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9160 {
9161 struct swevent_hlist *hlist;
9162
9163 hlist = rcu_dereference(swhash->swevent_hlist);
9164 if (!hlist)
9165 return NULL;
9166
9167 return __find_swevent_head(hlist, type, event_id);
9168 }
9169
9170 /* For the event head insertion and removal in the hlist */
9171 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9172 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9173 {
9174 struct swevent_hlist *hlist;
9175 u32 event_id = event->attr.config;
9176 u64 type = event->attr.type;
9177
9178 /*
9179 * Event scheduling is always serialized against hlist allocation
9180 * and release. Which makes the protected version suitable here.
9181 * The context lock guarantees that.
9182 */
9183 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9184 lockdep_is_held(&event->ctx->lock));
9185 if (!hlist)
9186 return NULL;
9187
9188 return __find_swevent_head(hlist, type, event_id);
9189 }
9190
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9191 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9192 u64 nr,
9193 struct perf_sample_data *data,
9194 struct pt_regs *regs)
9195 {
9196 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9197 struct perf_event *event;
9198 struct hlist_head *head;
9199
9200 rcu_read_lock();
9201 head = find_swevent_head_rcu(swhash, type, event_id);
9202 if (!head)
9203 goto end;
9204
9205 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9206 if (perf_swevent_match(event, type, event_id, data, regs))
9207 perf_swevent_event(event, nr, data, regs);
9208 }
9209 end:
9210 rcu_read_unlock();
9211 }
9212
9213 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9214
perf_swevent_get_recursion_context(void)9215 int perf_swevent_get_recursion_context(void)
9216 {
9217 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9218
9219 return get_recursion_context(swhash->recursion);
9220 }
9221 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9222
perf_swevent_put_recursion_context(int rctx)9223 void perf_swevent_put_recursion_context(int rctx)
9224 {
9225 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9226
9227 put_recursion_context(swhash->recursion, rctx);
9228 }
9229
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9230 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9231 {
9232 struct perf_sample_data data;
9233
9234 if (WARN_ON_ONCE(!regs))
9235 return;
9236
9237 perf_sample_data_init(&data, addr, 0);
9238 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9239 }
9240
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9241 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9242 {
9243 int rctx;
9244
9245 preempt_disable_notrace();
9246 rctx = perf_swevent_get_recursion_context();
9247 if (unlikely(rctx < 0))
9248 goto fail;
9249
9250 ___perf_sw_event(event_id, nr, regs, addr);
9251
9252 perf_swevent_put_recursion_context(rctx);
9253 fail:
9254 preempt_enable_notrace();
9255 }
9256
perf_swevent_read(struct perf_event * event)9257 static void perf_swevent_read(struct perf_event *event)
9258 {
9259 }
9260
perf_swevent_add(struct perf_event * event,int flags)9261 static int perf_swevent_add(struct perf_event *event, int flags)
9262 {
9263 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9264 struct hw_perf_event *hwc = &event->hw;
9265 struct hlist_head *head;
9266
9267 if (is_sampling_event(event)) {
9268 hwc->last_period = hwc->sample_period;
9269 perf_swevent_set_period(event);
9270 }
9271
9272 hwc->state = !(flags & PERF_EF_START);
9273
9274 head = find_swevent_head(swhash, event);
9275 if (WARN_ON_ONCE(!head))
9276 return -EINVAL;
9277
9278 hlist_add_head_rcu(&event->hlist_entry, head);
9279 perf_event_update_userpage(event);
9280
9281 return 0;
9282 }
9283
perf_swevent_del(struct perf_event * event,int flags)9284 static void perf_swevent_del(struct perf_event *event, int flags)
9285 {
9286 hlist_del_rcu(&event->hlist_entry);
9287 }
9288
perf_swevent_start(struct perf_event * event,int flags)9289 static void perf_swevent_start(struct perf_event *event, int flags)
9290 {
9291 event->hw.state = 0;
9292 }
9293
perf_swevent_stop(struct perf_event * event,int flags)9294 static void perf_swevent_stop(struct perf_event *event, int flags)
9295 {
9296 event->hw.state = PERF_HES_STOPPED;
9297 }
9298
9299 /* Deref the hlist from the update side */
9300 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9301 swevent_hlist_deref(struct swevent_htable *swhash)
9302 {
9303 return rcu_dereference_protected(swhash->swevent_hlist,
9304 lockdep_is_held(&swhash->hlist_mutex));
9305 }
9306
swevent_hlist_release(struct swevent_htable * swhash)9307 static void swevent_hlist_release(struct swevent_htable *swhash)
9308 {
9309 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9310
9311 if (!hlist)
9312 return;
9313
9314 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9315 kfree_rcu(hlist, rcu_head);
9316 }
9317
swevent_hlist_put_cpu(int cpu)9318 static void swevent_hlist_put_cpu(int cpu)
9319 {
9320 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9321
9322 mutex_lock(&swhash->hlist_mutex);
9323
9324 if (!--swhash->hlist_refcount)
9325 swevent_hlist_release(swhash);
9326
9327 mutex_unlock(&swhash->hlist_mutex);
9328 }
9329
swevent_hlist_put(void)9330 static void swevent_hlist_put(void)
9331 {
9332 int cpu;
9333
9334 for_each_possible_cpu(cpu)
9335 swevent_hlist_put_cpu(cpu);
9336 }
9337
swevent_hlist_get_cpu(int cpu)9338 static int swevent_hlist_get_cpu(int cpu)
9339 {
9340 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9341 int err = 0;
9342
9343 mutex_lock(&swhash->hlist_mutex);
9344 if (!swevent_hlist_deref(swhash) &&
9345 cpumask_test_cpu(cpu, perf_online_mask)) {
9346 struct swevent_hlist *hlist;
9347
9348 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9349 if (!hlist) {
9350 err = -ENOMEM;
9351 goto exit;
9352 }
9353 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9354 }
9355 swhash->hlist_refcount++;
9356 exit:
9357 mutex_unlock(&swhash->hlist_mutex);
9358
9359 return err;
9360 }
9361
swevent_hlist_get(void)9362 static int swevent_hlist_get(void)
9363 {
9364 int err, cpu, failed_cpu;
9365
9366 mutex_lock(&pmus_lock);
9367 for_each_possible_cpu(cpu) {
9368 err = swevent_hlist_get_cpu(cpu);
9369 if (err) {
9370 failed_cpu = cpu;
9371 goto fail;
9372 }
9373 }
9374 mutex_unlock(&pmus_lock);
9375 return 0;
9376 fail:
9377 for_each_possible_cpu(cpu) {
9378 if (cpu == failed_cpu)
9379 break;
9380 swevent_hlist_put_cpu(cpu);
9381 }
9382 mutex_unlock(&pmus_lock);
9383 return err;
9384 }
9385
9386 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9387
sw_perf_event_destroy(struct perf_event * event)9388 static void sw_perf_event_destroy(struct perf_event *event)
9389 {
9390 u64 event_id = event->attr.config;
9391
9392 WARN_ON(event->parent);
9393
9394 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9395 swevent_hlist_put();
9396 }
9397
perf_swevent_init(struct perf_event * event)9398 static int perf_swevent_init(struct perf_event *event)
9399 {
9400 u64 event_id = event->attr.config;
9401
9402 if (event->attr.type != PERF_TYPE_SOFTWARE)
9403 return -ENOENT;
9404
9405 /*
9406 * no branch sampling for software events
9407 */
9408 if (has_branch_stack(event))
9409 return -EOPNOTSUPP;
9410
9411 switch (event_id) {
9412 case PERF_COUNT_SW_CPU_CLOCK:
9413 case PERF_COUNT_SW_TASK_CLOCK:
9414 return -ENOENT;
9415
9416 default:
9417 break;
9418 }
9419
9420 if (event_id >= PERF_COUNT_SW_MAX)
9421 return -ENOENT;
9422
9423 if (!event->parent) {
9424 int err;
9425
9426 err = swevent_hlist_get();
9427 if (err)
9428 return err;
9429
9430 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9431 event->destroy = sw_perf_event_destroy;
9432 }
9433
9434 return 0;
9435 }
9436
9437 static struct pmu perf_swevent = {
9438 .task_ctx_nr = perf_sw_context,
9439
9440 .capabilities = PERF_PMU_CAP_NO_NMI,
9441
9442 .event_init = perf_swevent_init,
9443 .add = perf_swevent_add,
9444 .del = perf_swevent_del,
9445 .start = perf_swevent_start,
9446 .stop = perf_swevent_stop,
9447 .read = perf_swevent_read,
9448 };
9449
9450 #ifdef CONFIG_EVENT_TRACING
9451
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9452 static int perf_tp_filter_match(struct perf_event *event,
9453 struct perf_sample_data *data)
9454 {
9455 void *record = data->raw->frag.data;
9456
9457 /* only top level events have filters set */
9458 if (event->parent)
9459 event = event->parent;
9460
9461 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9462 return 1;
9463 return 0;
9464 }
9465
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9466 static int perf_tp_event_match(struct perf_event *event,
9467 struct perf_sample_data *data,
9468 struct pt_regs *regs)
9469 {
9470 if (event->hw.state & PERF_HES_STOPPED)
9471 return 0;
9472 /*
9473 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9474 */
9475 if (event->attr.exclude_kernel && !user_mode(regs))
9476 return 0;
9477
9478 if (!perf_tp_filter_match(event, data))
9479 return 0;
9480
9481 return 1;
9482 }
9483
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9484 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9485 struct trace_event_call *call, u64 count,
9486 struct pt_regs *regs, struct hlist_head *head,
9487 struct task_struct *task)
9488 {
9489 if (bpf_prog_array_valid(call)) {
9490 *(struct pt_regs **)raw_data = regs;
9491 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9492 perf_swevent_put_recursion_context(rctx);
9493 return;
9494 }
9495 }
9496 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9497 rctx, task);
9498 }
9499 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9500
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9501 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9502 struct pt_regs *regs, struct hlist_head *head, int rctx,
9503 struct task_struct *task)
9504 {
9505 struct perf_sample_data data;
9506 struct perf_event *event;
9507
9508 struct perf_raw_record raw = {
9509 .frag = {
9510 .size = entry_size,
9511 .data = record,
9512 },
9513 };
9514
9515 perf_sample_data_init(&data, 0, 0);
9516 data.raw = &raw;
9517
9518 perf_trace_buf_update(record, event_type);
9519
9520 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9521 if (perf_tp_event_match(event, &data, regs))
9522 perf_swevent_event(event, count, &data, regs);
9523 }
9524
9525 /*
9526 * If we got specified a target task, also iterate its context and
9527 * deliver this event there too.
9528 */
9529 if (task && task != current) {
9530 struct perf_event_context *ctx;
9531 struct trace_entry *entry = record;
9532
9533 rcu_read_lock();
9534 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9535 if (!ctx)
9536 goto unlock;
9537
9538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9539 if (event->cpu != smp_processor_id())
9540 continue;
9541 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9542 continue;
9543 if (event->attr.config != entry->type)
9544 continue;
9545 if (perf_tp_event_match(event, &data, regs))
9546 perf_swevent_event(event, count, &data, regs);
9547 }
9548 unlock:
9549 rcu_read_unlock();
9550 }
9551
9552 perf_swevent_put_recursion_context(rctx);
9553 }
9554 EXPORT_SYMBOL_GPL(perf_tp_event);
9555
tp_perf_event_destroy(struct perf_event * event)9556 static void tp_perf_event_destroy(struct perf_event *event)
9557 {
9558 perf_trace_destroy(event);
9559 }
9560
perf_tp_event_init(struct perf_event * event)9561 static int perf_tp_event_init(struct perf_event *event)
9562 {
9563 int err;
9564
9565 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9566 return -ENOENT;
9567
9568 /*
9569 * no branch sampling for tracepoint events
9570 */
9571 if (has_branch_stack(event))
9572 return -EOPNOTSUPP;
9573
9574 err = perf_trace_init(event);
9575 if (err)
9576 return err;
9577
9578 event->destroy = tp_perf_event_destroy;
9579
9580 return 0;
9581 }
9582
9583 static struct pmu perf_tracepoint = {
9584 .task_ctx_nr = perf_sw_context,
9585
9586 .event_init = perf_tp_event_init,
9587 .add = perf_trace_add,
9588 .del = perf_trace_del,
9589 .start = perf_swevent_start,
9590 .stop = perf_swevent_stop,
9591 .read = perf_swevent_read,
9592 };
9593
9594 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9595 /*
9596 * Flags in config, used by dynamic PMU kprobe and uprobe
9597 * The flags should match following PMU_FORMAT_ATTR().
9598 *
9599 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9600 * if not set, create kprobe/uprobe
9601 *
9602 * The following values specify a reference counter (or semaphore in the
9603 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9604 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9605 *
9606 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9607 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9608 */
9609 enum perf_probe_config {
9610 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9611 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9612 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9613 };
9614
9615 PMU_FORMAT_ATTR(retprobe, "config:0");
9616 #endif
9617
9618 #ifdef CONFIG_KPROBE_EVENTS
9619 static struct attribute *kprobe_attrs[] = {
9620 &format_attr_retprobe.attr,
9621 NULL,
9622 };
9623
9624 static struct attribute_group kprobe_format_group = {
9625 .name = "format",
9626 .attrs = kprobe_attrs,
9627 };
9628
9629 static const struct attribute_group *kprobe_attr_groups[] = {
9630 &kprobe_format_group,
9631 NULL,
9632 };
9633
9634 static int perf_kprobe_event_init(struct perf_event *event);
9635 static struct pmu perf_kprobe = {
9636 .task_ctx_nr = perf_sw_context,
9637 .event_init = perf_kprobe_event_init,
9638 .add = perf_trace_add,
9639 .del = perf_trace_del,
9640 .start = perf_swevent_start,
9641 .stop = perf_swevent_stop,
9642 .read = perf_swevent_read,
9643 .attr_groups = kprobe_attr_groups,
9644 };
9645
perf_kprobe_event_init(struct perf_event * event)9646 static int perf_kprobe_event_init(struct perf_event *event)
9647 {
9648 int err;
9649 bool is_retprobe;
9650
9651 if (event->attr.type != perf_kprobe.type)
9652 return -ENOENT;
9653
9654 if (!perfmon_capable())
9655 return -EACCES;
9656
9657 /*
9658 * no branch sampling for probe events
9659 */
9660 if (has_branch_stack(event))
9661 return -EOPNOTSUPP;
9662
9663 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9664 err = perf_kprobe_init(event, is_retprobe);
9665 if (err)
9666 return err;
9667
9668 event->destroy = perf_kprobe_destroy;
9669
9670 return 0;
9671 }
9672 #endif /* CONFIG_KPROBE_EVENTS */
9673
9674 #ifdef CONFIG_UPROBE_EVENTS
9675 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9676
9677 static struct attribute *uprobe_attrs[] = {
9678 &format_attr_retprobe.attr,
9679 &format_attr_ref_ctr_offset.attr,
9680 NULL,
9681 };
9682
9683 static struct attribute_group uprobe_format_group = {
9684 .name = "format",
9685 .attrs = uprobe_attrs,
9686 };
9687
9688 static const struct attribute_group *uprobe_attr_groups[] = {
9689 &uprobe_format_group,
9690 NULL,
9691 };
9692
9693 static int perf_uprobe_event_init(struct perf_event *event);
9694 static struct pmu perf_uprobe = {
9695 .task_ctx_nr = perf_sw_context,
9696 .event_init = perf_uprobe_event_init,
9697 .add = perf_trace_add,
9698 .del = perf_trace_del,
9699 .start = perf_swevent_start,
9700 .stop = perf_swevent_stop,
9701 .read = perf_swevent_read,
9702 .attr_groups = uprobe_attr_groups,
9703 };
9704
perf_uprobe_event_init(struct perf_event * event)9705 static int perf_uprobe_event_init(struct perf_event *event)
9706 {
9707 int err;
9708 unsigned long ref_ctr_offset;
9709 bool is_retprobe;
9710
9711 if (event->attr.type != perf_uprobe.type)
9712 return -ENOENT;
9713
9714 if (!perfmon_capable())
9715 return -EACCES;
9716
9717 /*
9718 * no branch sampling for probe events
9719 */
9720 if (has_branch_stack(event))
9721 return -EOPNOTSUPP;
9722
9723 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9724 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9725 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9726 if (err)
9727 return err;
9728
9729 event->destroy = perf_uprobe_destroy;
9730
9731 return 0;
9732 }
9733 #endif /* CONFIG_UPROBE_EVENTS */
9734
perf_tp_register(void)9735 static inline void perf_tp_register(void)
9736 {
9737 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9738 #ifdef CONFIG_KPROBE_EVENTS
9739 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9740 #endif
9741 #ifdef CONFIG_UPROBE_EVENTS
9742 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9743 #endif
9744 }
9745
perf_event_free_filter(struct perf_event * event)9746 static void perf_event_free_filter(struct perf_event *event)
9747 {
9748 ftrace_profile_free_filter(event);
9749 }
9750
9751 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9752 static void bpf_overflow_handler(struct perf_event *event,
9753 struct perf_sample_data *data,
9754 struct pt_regs *regs)
9755 {
9756 struct bpf_perf_event_data_kern ctx = {
9757 .data = data,
9758 .event = event,
9759 };
9760 int ret = 0;
9761
9762 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9763 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9764 goto out;
9765 rcu_read_lock();
9766 ret = BPF_PROG_RUN(event->prog, &ctx);
9767 rcu_read_unlock();
9768 out:
9769 __this_cpu_dec(bpf_prog_active);
9770 if (!ret)
9771 return;
9772
9773 event->orig_overflow_handler(event, data, regs);
9774 }
9775
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9776 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9777 {
9778 struct bpf_prog *prog;
9779
9780 if (event->overflow_handler_context)
9781 /* hw breakpoint or kernel counter */
9782 return -EINVAL;
9783
9784 if (event->prog)
9785 return -EEXIST;
9786
9787 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9788 if (IS_ERR(prog))
9789 return PTR_ERR(prog);
9790
9791 if (event->attr.precise_ip &&
9792 prog->call_get_stack &&
9793 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9794 event->attr.exclude_callchain_kernel ||
9795 event->attr.exclude_callchain_user)) {
9796 /*
9797 * On perf_event with precise_ip, calling bpf_get_stack()
9798 * may trigger unwinder warnings and occasional crashes.
9799 * bpf_get_[stack|stackid] works around this issue by using
9800 * callchain attached to perf_sample_data. If the
9801 * perf_event does not full (kernel and user) callchain
9802 * attached to perf_sample_data, do not allow attaching BPF
9803 * program that calls bpf_get_[stack|stackid].
9804 */
9805 bpf_prog_put(prog);
9806 return -EPROTO;
9807 }
9808
9809 event->prog = prog;
9810 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9811 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9812 return 0;
9813 }
9814
perf_event_free_bpf_handler(struct perf_event * event)9815 static void perf_event_free_bpf_handler(struct perf_event *event)
9816 {
9817 struct bpf_prog *prog = event->prog;
9818
9819 if (!prog)
9820 return;
9821
9822 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9823 event->prog = NULL;
9824 bpf_prog_put(prog);
9825 }
9826 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9827 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9828 {
9829 return -EOPNOTSUPP;
9830 }
perf_event_free_bpf_handler(struct perf_event * event)9831 static void perf_event_free_bpf_handler(struct perf_event *event)
9832 {
9833 }
9834 #endif
9835
9836 /*
9837 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9838 * with perf_event_open()
9839 */
perf_event_is_tracing(struct perf_event * event)9840 static inline bool perf_event_is_tracing(struct perf_event *event)
9841 {
9842 if (event->pmu == &perf_tracepoint)
9843 return true;
9844 #ifdef CONFIG_KPROBE_EVENTS
9845 if (event->pmu == &perf_kprobe)
9846 return true;
9847 #endif
9848 #ifdef CONFIG_UPROBE_EVENTS
9849 if (event->pmu == &perf_uprobe)
9850 return true;
9851 #endif
9852 return false;
9853 }
9854
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9855 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9856 {
9857 bool is_kprobe, is_tracepoint, is_syscall_tp;
9858 struct bpf_prog *prog;
9859 int ret;
9860
9861 if (!perf_event_is_tracing(event))
9862 return perf_event_set_bpf_handler(event, prog_fd);
9863
9864 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9865 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9866 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9867 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9868 /* bpf programs can only be attached to u/kprobe or tracepoint */
9869 return -EINVAL;
9870
9871 prog = bpf_prog_get(prog_fd);
9872 if (IS_ERR(prog))
9873 return PTR_ERR(prog);
9874
9875 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9876 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9877 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9878 /* valid fd, but invalid bpf program type */
9879 bpf_prog_put(prog);
9880 return -EINVAL;
9881 }
9882
9883 /* Kprobe override only works for kprobes, not uprobes. */
9884 if (prog->kprobe_override &&
9885 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9886 bpf_prog_put(prog);
9887 return -EINVAL;
9888 }
9889
9890 if (is_tracepoint || is_syscall_tp) {
9891 int off = trace_event_get_offsets(event->tp_event);
9892
9893 if (prog->aux->max_ctx_offset > off) {
9894 bpf_prog_put(prog);
9895 return -EACCES;
9896 }
9897 }
9898
9899 ret = perf_event_attach_bpf_prog(event, prog);
9900 if (ret)
9901 bpf_prog_put(prog);
9902 return ret;
9903 }
9904
perf_event_free_bpf_prog(struct perf_event * event)9905 static void perf_event_free_bpf_prog(struct perf_event *event)
9906 {
9907 if (!perf_event_is_tracing(event)) {
9908 perf_event_free_bpf_handler(event);
9909 return;
9910 }
9911 perf_event_detach_bpf_prog(event);
9912 }
9913
9914 #else
9915
perf_tp_register(void)9916 static inline void perf_tp_register(void)
9917 {
9918 }
9919
perf_event_free_filter(struct perf_event * event)9920 static void perf_event_free_filter(struct perf_event *event)
9921 {
9922 }
9923
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9924 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9925 {
9926 return -ENOENT;
9927 }
9928
perf_event_free_bpf_prog(struct perf_event * event)9929 static void perf_event_free_bpf_prog(struct perf_event *event)
9930 {
9931 }
9932 #endif /* CONFIG_EVENT_TRACING */
9933
9934 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9935 void perf_bp_event(struct perf_event *bp, void *data)
9936 {
9937 struct perf_sample_data sample;
9938 struct pt_regs *regs = data;
9939
9940 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9941
9942 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9943 perf_swevent_event(bp, 1, &sample, regs);
9944 }
9945 #endif
9946
9947 /*
9948 * Allocate a new address filter
9949 */
9950 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9951 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9952 {
9953 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9954 struct perf_addr_filter *filter;
9955
9956 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9957 if (!filter)
9958 return NULL;
9959
9960 INIT_LIST_HEAD(&filter->entry);
9961 list_add_tail(&filter->entry, filters);
9962
9963 return filter;
9964 }
9965
free_filters_list(struct list_head * filters)9966 static void free_filters_list(struct list_head *filters)
9967 {
9968 struct perf_addr_filter *filter, *iter;
9969
9970 list_for_each_entry_safe(filter, iter, filters, entry) {
9971 path_put(&filter->path);
9972 list_del(&filter->entry);
9973 kfree(filter);
9974 }
9975 }
9976
9977 /*
9978 * Free existing address filters and optionally install new ones
9979 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9980 static void perf_addr_filters_splice(struct perf_event *event,
9981 struct list_head *head)
9982 {
9983 unsigned long flags;
9984 LIST_HEAD(list);
9985
9986 if (!has_addr_filter(event))
9987 return;
9988
9989 /* don't bother with children, they don't have their own filters */
9990 if (event->parent)
9991 return;
9992
9993 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9994
9995 list_splice_init(&event->addr_filters.list, &list);
9996 if (head)
9997 list_splice(head, &event->addr_filters.list);
9998
9999 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10000
10001 free_filters_list(&list);
10002 }
10003
10004 /*
10005 * Scan through mm's vmas and see if one of them matches the
10006 * @filter; if so, adjust filter's address range.
10007 * Called with mm::mmap_lock down for reading.
10008 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10009 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10010 struct mm_struct *mm,
10011 struct perf_addr_filter_range *fr)
10012 {
10013 struct vm_area_struct *vma;
10014
10015 for (vma = mm->mmap; vma; vma = vma->vm_next) {
10016 if (!vma->vm_file)
10017 continue;
10018
10019 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10020 return;
10021 }
10022 }
10023
10024 /*
10025 * Update event's address range filters based on the
10026 * task's existing mappings, if any.
10027 */
perf_event_addr_filters_apply(struct perf_event * event)10028 static void perf_event_addr_filters_apply(struct perf_event *event)
10029 {
10030 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10031 struct task_struct *task = READ_ONCE(event->ctx->task);
10032 struct perf_addr_filter *filter;
10033 struct mm_struct *mm = NULL;
10034 unsigned int count = 0;
10035 unsigned long flags;
10036
10037 /*
10038 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10039 * will stop on the parent's child_mutex that our caller is also holding
10040 */
10041 if (task == TASK_TOMBSTONE)
10042 return;
10043
10044 if (ifh->nr_file_filters) {
10045 mm = get_task_mm(task);
10046 if (!mm)
10047 goto restart;
10048
10049 mmap_read_lock(mm);
10050 }
10051
10052 raw_spin_lock_irqsave(&ifh->lock, flags);
10053 list_for_each_entry(filter, &ifh->list, entry) {
10054 if (filter->path.dentry) {
10055 /*
10056 * Adjust base offset if the filter is associated to a
10057 * binary that needs to be mapped:
10058 */
10059 event->addr_filter_ranges[count].start = 0;
10060 event->addr_filter_ranges[count].size = 0;
10061
10062 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10063 } else {
10064 event->addr_filter_ranges[count].start = filter->offset;
10065 event->addr_filter_ranges[count].size = filter->size;
10066 }
10067
10068 count++;
10069 }
10070
10071 event->addr_filters_gen++;
10072 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10073
10074 if (ifh->nr_file_filters) {
10075 mmap_read_unlock(mm);
10076
10077 mmput(mm);
10078 }
10079
10080 restart:
10081 perf_event_stop(event, 1);
10082 }
10083
10084 /*
10085 * Address range filtering: limiting the data to certain
10086 * instruction address ranges. Filters are ioctl()ed to us from
10087 * userspace as ascii strings.
10088 *
10089 * Filter string format:
10090 *
10091 * ACTION RANGE_SPEC
10092 * where ACTION is one of the
10093 * * "filter": limit the trace to this region
10094 * * "start": start tracing from this address
10095 * * "stop": stop tracing at this address/region;
10096 * RANGE_SPEC is
10097 * * for kernel addresses: <start address>[/<size>]
10098 * * for object files: <start address>[/<size>]@</path/to/object/file>
10099 *
10100 * if <size> is not specified or is zero, the range is treated as a single
10101 * address; not valid for ACTION=="filter".
10102 */
10103 enum {
10104 IF_ACT_NONE = -1,
10105 IF_ACT_FILTER,
10106 IF_ACT_START,
10107 IF_ACT_STOP,
10108 IF_SRC_FILE,
10109 IF_SRC_KERNEL,
10110 IF_SRC_FILEADDR,
10111 IF_SRC_KERNELADDR,
10112 };
10113
10114 enum {
10115 IF_STATE_ACTION = 0,
10116 IF_STATE_SOURCE,
10117 IF_STATE_END,
10118 };
10119
10120 static const match_table_t if_tokens = {
10121 { IF_ACT_FILTER, "filter" },
10122 { IF_ACT_START, "start" },
10123 { IF_ACT_STOP, "stop" },
10124 { IF_SRC_FILE, "%u/%u@%s" },
10125 { IF_SRC_KERNEL, "%u/%u" },
10126 { IF_SRC_FILEADDR, "%u@%s" },
10127 { IF_SRC_KERNELADDR, "%u" },
10128 { IF_ACT_NONE, NULL },
10129 };
10130
10131 /*
10132 * Address filter string parser
10133 */
10134 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10135 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10136 struct list_head *filters)
10137 {
10138 struct perf_addr_filter *filter = NULL;
10139 char *start, *orig, *filename = NULL;
10140 substring_t args[MAX_OPT_ARGS];
10141 int state = IF_STATE_ACTION, token;
10142 unsigned int kernel = 0;
10143 int ret = -EINVAL;
10144
10145 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10146 if (!fstr)
10147 return -ENOMEM;
10148
10149 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10150 static const enum perf_addr_filter_action_t actions[] = {
10151 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10152 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10153 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10154 };
10155 ret = -EINVAL;
10156
10157 if (!*start)
10158 continue;
10159
10160 /* filter definition begins */
10161 if (state == IF_STATE_ACTION) {
10162 filter = perf_addr_filter_new(event, filters);
10163 if (!filter)
10164 goto fail;
10165 }
10166
10167 token = match_token(start, if_tokens, args);
10168 switch (token) {
10169 case IF_ACT_FILTER:
10170 case IF_ACT_START:
10171 case IF_ACT_STOP:
10172 if (state != IF_STATE_ACTION)
10173 goto fail;
10174
10175 filter->action = actions[token];
10176 state = IF_STATE_SOURCE;
10177 break;
10178
10179 case IF_SRC_KERNELADDR:
10180 case IF_SRC_KERNEL:
10181 kernel = 1;
10182 fallthrough;
10183
10184 case IF_SRC_FILEADDR:
10185 case IF_SRC_FILE:
10186 if (state != IF_STATE_SOURCE)
10187 goto fail;
10188
10189 *args[0].to = 0;
10190 ret = kstrtoul(args[0].from, 0, &filter->offset);
10191 if (ret)
10192 goto fail;
10193
10194 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10195 *args[1].to = 0;
10196 ret = kstrtoul(args[1].from, 0, &filter->size);
10197 if (ret)
10198 goto fail;
10199 }
10200
10201 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10202 int fpos = token == IF_SRC_FILE ? 2 : 1;
10203
10204 kfree(filename);
10205 filename = match_strdup(&args[fpos]);
10206 if (!filename) {
10207 ret = -ENOMEM;
10208 goto fail;
10209 }
10210 }
10211
10212 state = IF_STATE_END;
10213 break;
10214
10215 default:
10216 goto fail;
10217 }
10218
10219 /*
10220 * Filter definition is fully parsed, validate and install it.
10221 * Make sure that it doesn't contradict itself or the event's
10222 * attribute.
10223 */
10224 if (state == IF_STATE_END) {
10225 ret = -EINVAL;
10226 if (kernel && event->attr.exclude_kernel)
10227 goto fail;
10228
10229 /*
10230 * ACTION "filter" must have a non-zero length region
10231 * specified.
10232 */
10233 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10234 !filter->size)
10235 goto fail;
10236
10237 if (!kernel) {
10238 if (!filename)
10239 goto fail;
10240
10241 /*
10242 * For now, we only support file-based filters
10243 * in per-task events; doing so for CPU-wide
10244 * events requires additional context switching
10245 * trickery, since same object code will be
10246 * mapped at different virtual addresses in
10247 * different processes.
10248 */
10249 ret = -EOPNOTSUPP;
10250 if (!event->ctx->task)
10251 goto fail;
10252
10253 /* look up the path and grab its inode */
10254 ret = kern_path(filename, LOOKUP_FOLLOW,
10255 &filter->path);
10256 if (ret)
10257 goto fail;
10258
10259 ret = -EINVAL;
10260 if (!filter->path.dentry ||
10261 !S_ISREG(d_inode(filter->path.dentry)
10262 ->i_mode))
10263 goto fail;
10264
10265 event->addr_filters.nr_file_filters++;
10266 }
10267
10268 /* ready to consume more filters */
10269 kfree(filename);
10270 filename = NULL;
10271 state = IF_STATE_ACTION;
10272 filter = NULL;
10273 kernel = 0;
10274 }
10275 }
10276
10277 if (state != IF_STATE_ACTION)
10278 goto fail;
10279
10280 kfree(filename);
10281 kfree(orig);
10282
10283 return 0;
10284
10285 fail:
10286 kfree(filename);
10287 free_filters_list(filters);
10288 kfree(orig);
10289
10290 return ret;
10291 }
10292
10293 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10294 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10295 {
10296 LIST_HEAD(filters);
10297 int ret;
10298
10299 /*
10300 * Since this is called in perf_ioctl() path, we're already holding
10301 * ctx::mutex.
10302 */
10303 lockdep_assert_held(&event->ctx->mutex);
10304
10305 if (WARN_ON_ONCE(event->parent))
10306 return -EINVAL;
10307
10308 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10309 if (ret)
10310 goto fail_clear_files;
10311
10312 ret = event->pmu->addr_filters_validate(&filters);
10313 if (ret)
10314 goto fail_free_filters;
10315
10316 /* remove existing filters, if any */
10317 perf_addr_filters_splice(event, &filters);
10318
10319 /* install new filters */
10320 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10321
10322 return ret;
10323
10324 fail_free_filters:
10325 free_filters_list(&filters);
10326
10327 fail_clear_files:
10328 event->addr_filters.nr_file_filters = 0;
10329
10330 return ret;
10331 }
10332
perf_event_set_filter(struct perf_event * event,void __user * arg)10333 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10334 {
10335 int ret = -EINVAL;
10336 char *filter_str;
10337
10338 filter_str = strndup_user(arg, PAGE_SIZE);
10339 if (IS_ERR(filter_str))
10340 return PTR_ERR(filter_str);
10341
10342 #ifdef CONFIG_EVENT_TRACING
10343 if (perf_event_is_tracing(event)) {
10344 struct perf_event_context *ctx = event->ctx;
10345
10346 /*
10347 * Beware, here be dragons!!
10348 *
10349 * the tracepoint muck will deadlock against ctx->mutex, but
10350 * the tracepoint stuff does not actually need it. So
10351 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10352 * already have a reference on ctx.
10353 *
10354 * This can result in event getting moved to a different ctx,
10355 * but that does not affect the tracepoint state.
10356 */
10357 mutex_unlock(&ctx->mutex);
10358 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10359 mutex_lock(&ctx->mutex);
10360 } else
10361 #endif
10362 if (has_addr_filter(event))
10363 ret = perf_event_set_addr_filter(event, filter_str);
10364
10365 kfree(filter_str);
10366 return ret;
10367 }
10368
10369 /*
10370 * hrtimer based swevent callback
10371 */
10372
perf_swevent_hrtimer(struct hrtimer * hrtimer)10373 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10374 {
10375 enum hrtimer_restart ret = HRTIMER_RESTART;
10376 struct perf_sample_data data;
10377 struct pt_regs *regs;
10378 struct perf_event *event;
10379 u64 period;
10380
10381 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10382
10383 if (event->state != PERF_EVENT_STATE_ACTIVE)
10384 return HRTIMER_NORESTART;
10385
10386 event->pmu->read(event);
10387
10388 perf_sample_data_init(&data, 0, event->hw.last_period);
10389 regs = get_irq_regs();
10390
10391 if (regs && !perf_exclude_event(event, regs)) {
10392 if (!(event->attr.exclude_idle && is_idle_task(current)))
10393 if (__perf_event_overflow(event, 1, &data, regs))
10394 ret = HRTIMER_NORESTART;
10395 }
10396
10397 period = max_t(u64, 10000, event->hw.sample_period);
10398 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10399
10400 return ret;
10401 }
10402
perf_swevent_start_hrtimer(struct perf_event * event)10403 static void perf_swevent_start_hrtimer(struct perf_event *event)
10404 {
10405 struct hw_perf_event *hwc = &event->hw;
10406 s64 period;
10407
10408 if (!is_sampling_event(event))
10409 return;
10410
10411 period = local64_read(&hwc->period_left);
10412 if (period) {
10413 if (period < 0)
10414 period = 10000;
10415
10416 local64_set(&hwc->period_left, 0);
10417 } else {
10418 period = max_t(u64, 10000, hwc->sample_period);
10419 }
10420 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10421 HRTIMER_MODE_REL_PINNED_HARD);
10422 }
10423
perf_swevent_cancel_hrtimer(struct perf_event * event)10424 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10425 {
10426 struct hw_perf_event *hwc = &event->hw;
10427
10428 if (is_sampling_event(event)) {
10429 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10430 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10431
10432 hrtimer_cancel(&hwc->hrtimer);
10433 }
10434 }
10435
perf_swevent_init_hrtimer(struct perf_event * event)10436 static void perf_swevent_init_hrtimer(struct perf_event *event)
10437 {
10438 struct hw_perf_event *hwc = &event->hw;
10439
10440 if (!is_sampling_event(event))
10441 return;
10442
10443 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10444 hwc->hrtimer.function = perf_swevent_hrtimer;
10445
10446 /*
10447 * Since hrtimers have a fixed rate, we can do a static freq->period
10448 * mapping and avoid the whole period adjust feedback stuff.
10449 */
10450 if (event->attr.freq) {
10451 long freq = event->attr.sample_freq;
10452
10453 event->attr.sample_period = NSEC_PER_SEC / freq;
10454 hwc->sample_period = event->attr.sample_period;
10455 local64_set(&hwc->period_left, hwc->sample_period);
10456 hwc->last_period = hwc->sample_period;
10457 event->attr.freq = 0;
10458 }
10459 }
10460
10461 /*
10462 * Software event: cpu wall time clock
10463 */
10464
cpu_clock_event_update(struct perf_event * event)10465 static void cpu_clock_event_update(struct perf_event *event)
10466 {
10467 s64 prev;
10468 u64 now;
10469
10470 now = local_clock();
10471 prev = local64_xchg(&event->hw.prev_count, now);
10472 local64_add(now - prev, &event->count);
10473 }
10474
cpu_clock_event_start(struct perf_event * event,int flags)10475 static void cpu_clock_event_start(struct perf_event *event, int flags)
10476 {
10477 local64_set(&event->hw.prev_count, local_clock());
10478 perf_swevent_start_hrtimer(event);
10479 }
10480
cpu_clock_event_stop(struct perf_event * event,int flags)10481 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10482 {
10483 perf_swevent_cancel_hrtimer(event);
10484 cpu_clock_event_update(event);
10485 }
10486
cpu_clock_event_add(struct perf_event * event,int flags)10487 static int cpu_clock_event_add(struct perf_event *event, int flags)
10488 {
10489 if (flags & PERF_EF_START)
10490 cpu_clock_event_start(event, flags);
10491 perf_event_update_userpage(event);
10492
10493 return 0;
10494 }
10495
cpu_clock_event_del(struct perf_event * event,int flags)10496 static void cpu_clock_event_del(struct perf_event *event, int flags)
10497 {
10498 cpu_clock_event_stop(event, flags);
10499 }
10500
cpu_clock_event_read(struct perf_event * event)10501 static void cpu_clock_event_read(struct perf_event *event)
10502 {
10503 cpu_clock_event_update(event);
10504 }
10505
cpu_clock_event_init(struct perf_event * event)10506 static int cpu_clock_event_init(struct perf_event *event)
10507 {
10508 if (event->attr.type != PERF_TYPE_SOFTWARE)
10509 return -ENOENT;
10510
10511 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10512 return -ENOENT;
10513
10514 /*
10515 * no branch sampling for software events
10516 */
10517 if (has_branch_stack(event))
10518 return -EOPNOTSUPP;
10519
10520 perf_swevent_init_hrtimer(event);
10521
10522 return 0;
10523 }
10524
10525 static struct pmu perf_cpu_clock = {
10526 .task_ctx_nr = perf_sw_context,
10527
10528 .capabilities = PERF_PMU_CAP_NO_NMI,
10529
10530 .event_init = cpu_clock_event_init,
10531 .add = cpu_clock_event_add,
10532 .del = cpu_clock_event_del,
10533 .start = cpu_clock_event_start,
10534 .stop = cpu_clock_event_stop,
10535 .read = cpu_clock_event_read,
10536 };
10537
10538 /*
10539 * Software event: task time clock
10540 */
10541
task_clock_event_update(struct perf_event * event,u64 now)10542 static void task_clock_event_update(struct perf_event *event, u64 now)
10543 {
10544 u64 prev;
10545 s64 delta;
10546
10547 prev = local64_xchg(&event->hw.prev_count, now);
10548 delta = now - prev;
10549 local64_add(delta, &event->count);
10550 }
10551
task_clock_event_start(struct perf_event * event,int flags)10552 static void task_clock_event_start(struct perf_event *event, int flags)
10553 {
10554 local64_set(&event->hw.prev_count, event->ctx->time);
10555 perf_swevent_start_hrtimer(event);
10556 }
10557
task_clock_event_stop(struct perf_event * event,int flags)10558 static void task_clock_event_stop(struct perf_event *event, int flags)
10559 {
10560 perf_swevent_cancel_hrtimer(event);
10561 task_clock_event_update(event, event->ctx->time);
10562 }
10563
task_clock_event_add(struct perf_event * event,int flags)10564 static int task_clock_event_add(struct perf_event *event, int flags)
10565 {
10566 if (flags & PERF_EF_START)
10567 task_clock_event_start(event, flags);
10568 perf_event_update_userpage(event);
10569
10570 return 0;
10571 }
10572
task_clock_event_del(struct perf_event * event,int flags)10573 static void task_clock_event_del(struct perf_event *event, int flags)
10574 {
10575 task_clock_event_stop(event, PERF_EF_UPDATE);
10576 }
10577
task_clock_event_read(struct perf_event * event)10578 static void task_clock_event_read(struct perf_event *event)
10579 {
10580 u64 now = perf_clock();
10581 u64 delta = now - event->ctx->timestamp;
10582 u64 time = event->ctx->time + delta;
10583
10584 task_clock_event_update(event, time);
10585 }
10586
task_clock_event_init(struct perf_event * event)10587 static int task_clock_event_init(struct perf_event *event)
10588 {
10589 if (event->attr.type != PERF_TYPE_SOFTWARE)
10590 return -ENOENT;
10591
10592 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10593 return -ENOENT;
10594
10595 /*
10596 * no branch sampling for software events
10597 */
10598 if (has_branch_stack(event))
10599 return -EOPNOTSUPP;
10600
10601 perf_swevent_init_hrtimer(event);
10602
10603 return 0;
10604 }
10605
10606 static struct pmu perf_task_clock = {
10607 .task_ctx_nr = perf_sw_context,
10608
10609 .capabilities = PERF_PMU_CAP_NO_NMI,
10610
10611 .event_init = task_clock_event_init,
10612 .add = task_clock_event_add,
10613 .del = task_clock_event_del,
10614 .start = task_clock_event_start,
10615 .stop = task_clock_event_stop,
10616 .read = task_clock_event_read,
10617 };
10618
perf_pmu_nop_void(struct pmu * pmu)10619 static void perf_pmu_nop_void(struct pmu *pmu)
10620 {
10621 }
10622
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)10623 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10624 {
10625 }
10626
perf_pmu_nop_int(struct pmu * pmu)10627 static int perf_pmu_nop_int(struct pmu *pmu)
10628 {
10629 return 0;
10630 }
10631
perf_event_nop_int(struct perf_event * event,u64 value)10632 static int perf_event_nop_int(struct perf_event *event, u64 value)
10633 {
10634 return 0;
10635 }
10636
10637 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10638
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)10639 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10640 {
10641 __this_cpu_write(nop_txn_flags, flags);
10642
10643 if (flags & ~PERF_PMU_TXN_ADD)
10644 return;
10645
10646 perf_pmu_disable(pmu);
10647 }
10648
perf_pmu_commit_txn(struct pmu * pmu)10649 static int perf_pmu_commit_txn(struct pmu *pmu)
10650 {
10651 unsigned int flags = __this_cpu_read(nop_txn_flags);
10652
10653 __this_cpu_write(nop_txn_flags, 0);
10654
10655 if (flags & ~PERF_PMU_TXN_ADD)
10656 return 0;
10657
10658 perf_pmu_enable(pmu);
10659 return 0;
10660 }
10661
perf_pmu_cancel_txn(struct pmu * pmu)10662 static void perf_pmu_cancel_txn(struct pmu *pmu)
10663 {
10664 unsigned int flags = __this_cpu_read(nop_txn_flags);
10665
10666 __this_cpu_write(nop_txn_flags, 0);
10667
10668 if (flags & ~PERF_PMU_TXN_ADD)
10669 return;
10670
10671 perf_pmu_enable(pmu);
10672 }
10673
perf_event_idx_default(struct perf_event * event)10674 static int perf_event_idx_default(struct perf_event *event)
10675 {
10676 return 0;
10677 }
10678
10679 /*
10680 * Ensures all contexts with the same task_ctx_nr have the same
10681 * pmu_cpu_context too.
10682 */
find_pmu_context(int ctxn)10683 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10684 {
10685 struct pmu *pmu;
10686
10687 if (ctxn < 0)
10688 return NULL;
10689
10690 list_for_each_entry(pmu, &pmus, entry) {
10691 if (pmu->task_ctx_nr == ctxn)
10692 return pmu->pmu_cpu_context;
10693 }
10694
10695 return NULL;
10696 }
10697
free_pmu_context(struct pmu * pmu)10698 static void free_pmu_context(struct pmu *pmu)
10699 {
10700 /*
10701 * Static contexts such as perf_sw_context have a global lifetime
10702 * and may be shared between different PMUs. Avoid freeing them
10703 * when a single PMU is going away.
10704 */
10705 if (pmu->task_ctx_nr > perf_invalid_context)
10706 return;
10707
10708 free_percpu(pmu->pmu_cpu_context);
10709 }
10710
10711 /*
10712 * Let userspace know that this PMU supports address range filtering:
10713 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10714 static ssize_t nr_addr_filters_show(struct device *dev,
10715 struct device_attribute *attr,
10716 char *page)
10717 {
10718 struct pmu *pmu = dev_get_drvdata(dev);
10719
10720 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10721 }
10722 DEVICE_ATTR_RO(nr_addr_filters);
10723
10724 static struct idr pmu_idr;
10725
10726 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10727 type_show(struct device *dev, struct device_attribute *attr, char *page)
10728 {
10729 struct pmu *pmu = dev_get_drvdata(dev);
10730
10731 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10732 }
10733 static DEVICE_ATTR_RO(type);
10734
10735 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10736 perf_event_mux_interval_ms_show(struct device *dev,
10737 struct device_attribute *attr,
10738 char *page)
10739 {
10740 struct pmu *pmu = dev_get_drvdata(dev);
10741
10742 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10743 }
10744
10745 static DEFINE_MUTEX(mux_interval_mutex);
10746
10747 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10748 perf_event_mux_interval_ms_store(struct device *dev,
10749 struct device_attribute *attr,
10750 const char *buf, size_t count)
10751 {
10752 struct pmu *pmu = dev_get_drvdata(dev);
10753 int timer, cpu, ret;
10754
10755 ret = kstrtoint(buf, 0, &timer);
10756 if (ret)
10757 return ret;
10758
10759 if (timer < 1)
10760 return -EINVAL;
10761
10762 /* same value, noting to do */
10763 if (timer == pmu->hrtimer_interval_ms)
10764 return count;
10765
10766 mutex_lock(&mux_interval_mutex);
10767 pmu->hrtimer_interval_ms = timer;
10768
10769 /* update all cpuctx for this PMU */
10770 cpus_read_lock();
10771 for_each_online_cpu(cpu) {
10772 struct perf_cpu_context *cpuctx;
10773 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10774 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10775
10776 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
10777 }
10778 cpus_read_unlock();
10779 mutex_unlock(&mux_interval_mutex);
10780
10781 return count;
10782 }
10783 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10784
10785 static struct attribute *pmu_dev_attrs[] = {
10786 &dev_attr_type.attr,
10787 &dev_attr_perf_event_mux_interval_ms.attr,
10788 &dev_attr_nr_addr_filters.attr,
10789 NULL,
10790 };
10791
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)10792 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
10793 {
10794 struct device *dev = kobj_to_dev(kobj);
10795 struct pmu *pmu = dev_get_drvdata(dev);
10796
10797 if (n == 2 && !pmu->nr_addr_filters)
10798 return 0;
10799
10800 return a->mode;
10801 }
10802
10803 static struct attribute_group pmu_dev_attr_group = {
10804 .is_visible = pmu_dev_is_visible,
10805 .attrs = pmu_dev_attrs,
10806 };
10807
10808 static const struct attribute_group *pmu_dev_groups[] = {
10809 &pmu_dev_attr_group,
10810 NULL,
10811 };
10812
10813 static int pmu_bus_running;
10814 static struct bus_type pmu_bus = {
10815 .name = "event_source",
10816 .dev_groups = pmu_dev_groups,
10817 };
10818
pmu_dev_release(struct device * dev)10819 static void pmu_dev_release(struct device *dev)
10820 {
10821 kfree(dev);
10822 }
10823
pmu_dev_alloc(struct pmu * pmu)10824 static int pmu_dev_alloc(struct pmu *pmu)
10825 {
10826 int ret = -ENOMEM;
10827
10828 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10829 if (!pmu->dev)
10830 goto out;
10831
10832 pmu->dev->groups = pmu->attr_groups;
10833 device_initialize(pmu->dev);
10834
10835 dev_set_drvdata(pmu->dev, pmu);
10836 pmu->dev->bus = &pmu_bus;
10837 pmu->dev->release = pmu_dev_release;
10838
10839 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10840 if (ret)
10841 goto free_dev;
10842
10843 ret = device_add(pmu->dev);
10844 if (ret)
10845 goto free_dev;
10846
10847 if (pmu->attr_update) {
10848 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10849 if (ret)
10850 goto del_dev;
10851 }
10852
10853 out:
10854 return ret;
10855
10856 del_dev:
10857 device_del(pmu->dev);
10858
10859 free_dev:
10860 put_device(pmu->dev);
10861 goto out;
10862 }
10863
10864 static struct lock_class_key cpuctx_mutex;
10865 static struct lock_class_key cpuctx_lock;
10866
perf_pmu_register(struct pmu * pmu,const char * name,int type)10867 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10868 {
10869 int cpu, ret, max = PERF_TYPE_MAX;
10870
10871 mutex_lock(&pmus_lock);
10872 ret = -ENOMEM;
10873 pmu->pmu_disable_count = alloc_percpu(int);
10874 if (!pmu->pmu_disable_count)
10875 goto unlock;
10876
10877 pmu->type = -1;
10878 if (!name)
10879 goto skip_type;
10880 pmu->name = name;
10881
10882 if (type != PERF_TYPE_SOFTWARE) {
10883 if (type >= 0)
10884 max = type;
10885
10886 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10887 if (ret < 0)
10888 goto free_pdc;
10889
10890 WARN_ON(type >= 0 && ret != type);
10891
10892 type = ret;
10893 }
10894 pmu->type = type;
10895
10896 if (pmu_bus_running) {
10897 ret = pmu_dev_alloc(pmu);
10898 if (ret)
10899 goto free_idr;
10900 }
10901
10902 skip_type:
10903 if (pmu->task_ctx_nr == perf_hw_context) {
10904 static int hw_context_taken = 0;
10905
10906 /*
10907 * Other than systems with heterogeneous CPUs, it never makes
10908 * sense for two PMUs to share perf_hw_context. PMUs which are
10909 * uncore must use perf_invalid_context.
10910 */
10911 if (WARN_ON_ONCE(hw_context_taken &&
10912 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10913 pmu->task_ctx_nr = perf_invalid_context;
10914
10915 hw_context_taken = 1;
10916 }
10917
10918 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10919 if (pmu->pmu_cpu_context)
10920 goto got_cpu_context;
10921
10922 ret = -ENOMEM;
10923 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10924 if (!pmu->pmu_cpu_context)
10925 goto free_dev;
10926
10927 for_each_possible_cpu(cpu) {
10928 struct perf_cpu_context *cpuctx;
10929
10930 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10931 __perf_event_init_context(&cpuctx->ctx);
10932 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10933 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10934 cpuctx->ctx.pmu = pmu;
10935 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10936
10937 __perf_mux_hrtimer_init(cpuctx, cpu);
10938
10939 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10940 cpuctx->heap = cpuctx->heap_default;
10941 }
10942
10943 got_cpu_context:
10944 if (!pmu->start_txn) {
10945 if (pmu->pmu_enable) {
10946 /*
10947 * If we have pmu_enable/pmu_disable calls, install
10948 * transaction stubs that use that to try and batch
10949 * hardware accesses.
10950 */
10951 pmu->start_txn = perf_pmu_start_txn;
10952 pmu->commit_txn = perf_pmu_commit_txn;
10953 pmu->cancel_txn = perf_pmu_cancel_txn;
10954 } else {
10955 pmu->start_txn = perf_pmu_nop_txn;
10956 pmu->commit_txn = perf_pmu_nop_int;
10957 pmu->cancel_txn = perf_pmu_nop_void;
10958 }
10959 }
10960
10961 if (!pmu->pmu_enable) {
10962 pmu->pmu_enable = perf_pmu_nop_void;
10963 pmu->pmu_disable = perf_pmu_nop_void;
10964 }
10965
10966 if (!pmu->check_period)
10967 pmu->check_period = perf_event_nop_int;
10968
10969 if (!pmu->event_idx)
10970 pmu->event_idx = perf_event_idx_default;
10971
10972 /*
10973 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10974 * since these cannot be in the IDR. This way the linear search
10975 * is fast, provided a valid software event is provided.
10976 */
10977 if (type == PERF_TYPE_SOFTWARE || !name)
10978 list_add_rcu(&pmu->entry, &pmus);
10979 else
10980 list_add_tail_rcu(&pmu->entry, &pmus);
10981
10982 atomic_set(&pmu->exclusive_cnt, 0);
10983 ret = 0;
10984 unlock:
10985 mutex_unlock(&pmus_lock);
10986
10987 return ret;
10988
10989 free_dev:
10990 device_del(pmu->dev);
10991 put_device(pmu->dev);
10992
10993 free_idr:
10994 if (pmu->type != PERF_TYPE_SOFTWARE)
10995 idr_remove(&pmu_idr, pmu->type);
10996
10997 free_pdc:
10998 free_percpu(pmu->pmu_disable_count);
10999 goto unlock;
11000 }
11001 EXPORT_SYMBOL_GPL(perf_pmu_register);
11002
perf_pmu_unregister(struct pmu * pmu)11003 void perf_pmu_unregister(struct pmu *pmu)
11004 {
11005 mutex_lock(&pmus_lock);
11006 list_del_rcu(&pmu->entry);
11007
11008 /*
11009 * We dereference the pmu list under both SRCU and regular RCU, so
11010 * synchronize against both of those.
11011 */
11012 synchronize_srcu(&pmus_srcu);
11013 synchronize_rcu();
11014
11015 free_percpu(pmu->pmu_disable_count);
11016 if (pmu->type != PERF_TYPE_SOFTWARE)
11017 idr_remove(&pmu_idr, pmu->type);
11018 if (pmu_bus_running) {
11019 if (pmu->nr_addr_filters)
11020 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11021 device_del(pmu->dev);
11022 put_device(pmu->dev);
11023 }
11024 free_pmu_context(pmu);
11025 mutex_unlock(&pmus_lock);
11026 }
11027 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11028
has_extended_regs(struct perf_event * event)11029 static inline bool has_extended_regs(struct perf_event *event)
11030 {
11031 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11032 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11033 }
11034
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11035 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11036 {
11037 struct perf_event_context *ctx = NULL;
11038 int ret;
11039
11040 if (!try_module_get(pmu->module))
11041 return -ENODEV;
11042
11043 /*
11044 * A number of pmu->event_init() methods iterate the sibling_list to,
11045 * for example, validate if the group fits on the PMU. Therefore,
11046 * if this is a sibling event, acquire the ctx->mutex to protect
11047 * the sibling_list.
11048 */
11049 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11050 /*
11051 * This ctx->mutex can nest when we're called through
11052 * inheritance. See the perf_event_ctx_lock_nested() comment.
11053 */
11054 ctx = perf_event_ctx_lock_nested(event->group_leader,
11055 SINGLE_DEPTH_NESTING);
11056 BUG_ON(!ctx);
11057 }
11058
11059 event->pmu = pmu;
11060 ret = pmu->event_init(event);
11061
11062 if (ctx)
11063 perf_event_ctx_unlock(event->group_leader, ctx);
11064
11065 if (!ret) {
11066 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11067 has_extended_regs(event))
11068 ret = -EOPNOTSUPP;
11069
11070 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11071 event_has_any_exclude_flag(event))
11072 ret = -EINVAL;
11073
11074 if (ret && event->destroy)
11075 event->destroy(event);
11076 }
11077
11078 if (ret)
11079 module_put(pmu->module);
11080
11081 return ret;
11082 }
11083
perf_init_event(struct perf_event * event)11084 static struct pmu *perf_init_event(struct perf_event *event)
11085 {
11086 int idx, type, ret;
11087 struct pmu *pmu;
11088
11089 idx = srcu_read_lock(&pmus_srcu);
11090
11091 /* Try parent's PMU first: */
11092 if (event->parent && event->parent->pmu) {
11093 pmu = event->parent->pmu;
11094 ret = perf_try_init_event(pmu, event);
11095 if (!ret)
11096 goto unlock;
11097 }
11098
11099 /*
11100 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11101 * are often aliases for PERF_TYPE_RAW.
11102 */
11103 type = event->attr.type;
11104 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11105 type = PERF_TYPE_RAW;
11106
11107 again:
11108 rcu_read_lock();
11109 pmu = idr_find(&pmu_idr, type);
11110 rcu_read_unlock();
11111 if (pmu) {
11112 ret = perf_try_init_event(pmu, event);
11113 if (ret == -ENOENT && event->attr.type != type) {
11114 type = event->attr.type;
11115 goto again;
11116 }
11117
11118 if (ret)
11119 pmu = ERR_PTR(ret);
11120
11121 goto unlock;
11122 }
11123
11124 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11125 ret = perf_try_init_event(pmu, event);
11126 if (!ret)
11127 goto unlock;
11128
11129 if (ret != -ENOENT) {
11130 pmu = ERR_PTR(ret);
11131 goto unlock;
11132 }
11133 }
11134 pmu = ERR_PTR(-ENOENT);
11135 unlock:
11136 srcu_read_unlock(&pmus_srcu, idx);
11137
11138 return pmu;
11139 }
11140
attach_sb_event(struct perf_event * event)11141 static void attach_sb_event(struct perf_event *event)
11142 {
11143 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11144
11145 raw_spin_lock(&pel->lock);
11146 list_add_rcu(&event->sb_list, &pel->list);
11147 raw_spin_unlock(&pel->lock);
11148 }
11149
11150 /*
11151 * We keep a list of all !task (and therefore per-cpu) events
11152 * that need to receive side-band records.
11153 *
11154 * This avoids having to scan all the various PMU per-cpu contexts
11155 * looking for them.
11156 */
account_pmu_sb_event(struct perf_event * event)11157 static void account_pmu_sb_event(struct perf_event *event)
11158 {
11159 if (is_sb_event(event))
11160 attach_sb_event(event);
11161 }
11162
account_event_cpu(struct perf_event * event,int cpu)11163 static void account_event_cpu(struct perf_event *event, int cpu)
11164 {
11165 if (event->parent)
11166 return;
11167
11168 if (is_cgroup_event(event))
11169 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11170 }
11171
11172 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11173 static void account_freq_event_nohz(void)
11174 {
11175 #ifdef CONFIG_NO_HZ_FULL
11176 /* Lock so we don't race with concurrent unaccount */
11177 spin_lock(&nr_freq_lock);
11178 if (atomic_inc_return(&nr_freq_events) == 1)
11179 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11180 spin_unlock(&nr_freq_lock);
11181 #endif
11182 }
11183
account_freq_event(void)11184 static void account_freq_event(void)
11185 {
11186 if (tick_nohz_full_enabled())
11187 account_freq_event_nohz();
11188 else
11189 atomic_inc(&nr_freq_events);
11190 }
11191
11192
account_event(struct perf_event * event)11193 static void account_event(struct perf_event *event)
11194 {
11195 bool inc = false;
11196
11197 if (event->parent)
11198 return;
11199
11200 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11201 inc = true;
11202 if (event->attr.mmap || event->attr.mmap_data)
11203 atomic_inc(&nr_mmap_events);
11204 if (event->attr.comm)
11205 atomic_inc(&nr_comm_events);
11206 if (event->attr.namespaces)
11207 atomic_inc(&nr_namespaces_events);
11208 if (event->attr.cgroup)
11209 atomic_inc(&nr_cgroup_events);
11210 if (event->attr.task)
11211 atomic_inc(&nr_task_events);
11212 if (event->attr.freq)
11213 account_freq_event();
11214 if (event->attr.context_switch) {
11215 atomic_inc(&nr_switch_events);
11216 inc = true;
11217 }
11218 if (has_branch_stack(event))
11219 inc = true;
11220 if (is_cgroup_event(event))
11221 inc = true;
11222 if (event->attr.ksymbol)
11223 atomic_inc(&nr_ksymbol_events);
11224 if (event->attr.bpf_event)
11225 atomic_inc(&nr_bpf_events);
11226 if (event->attr.text_poke)
11227 atomic_inc(&nr_text_poke_events);
11228
11229 if (inc) {
11230 /*
11231 * We need the mutex here because static_branch_enable()
11232 * must complete *before* the perf_sched_count increment
11233 * becomes visible.
11234 */
11235 if (atomic_inc_not_zero(&perf_sched_count))
11236 goto enabled;
11237
11238 mutex_lock(&perf_sched_mutex);
11239 if (!atomic_read(&perf_sched_count)) {
11240 static_branch_enable(&perf_sched_events);
11241 /*
11242 * Guarantee that all CPUs observe they key change and
11243 * call the perf scheduling hooks before proceeding to
11244 * install events that need them.
11245 */
11246 synchronize_rcu();
11247 }
11248 /*
11249 * Now that we have waited for the sync_sched(), allow further
11250 * increments to by-pass the mutex.
11251 */
11252 atomic_inc(&perf_sched_count);
11253 mutex_unlock(&perf_sched_mutex);
11254 }
11255 enabled:
11256
11257 account_event_cpu(event, event->cpu);
11258
11259 account_pmu_sb_event(event);
11260 }
11261
11262 /*
11263 * Allocate and initialize an event structure
11264 */
11265 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11266 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11267 struct task_struct *task,
11268 struct perf_event *group_leader,
11269 struct perf_event *parent_event,
11270 perf_overflow_handler_t overflow_handler,
11271 void *context, int cgroup_fd)
11272 {
11273 struct pmu *pmu;
11274 struct perf_event *event;
11275 struct hw_perf_event *hwc;
11276 long err = -EINVAL;
11277
11278 if ((unsigned)cpu >= nr_cpu_ids) {
11279 if (!task || cpu != -1)
11280 return ERR_PTR(-EINVAL);
11281 }
11282
11283 event = kzalloc(sizeof(*event), GFP_KERNEL);
11284 if (!event)
11285 return ERR_PTR(-ENOMEM);
11286
11287 /*
11288 * Single events are their own group leaders, with an
11289 * empty sibling list:
11290 */
11291 if (!group_leader)
11292 group_leader = event;
11293
11294 mutex_init(&event->child_mutex);
11295 INIT_LIST_HEAD(&event->child_list);
11296
11297 INIT_LIST_HEAD(&event->event_entry);
11298 INIT_LIST_HEAD(&event->sibling_list);
11299 INIT_LIST_HEAD(&event->active_list);
11300 init_event_group(event);
11301 INIT_LIST_HEAD(&event->rb_entry);
11302 INIT_LIST_HEAD(&event->active_entry);
11303 INIT_LIST_HEAD(&event->addr_filters.list);
11304 INIT_HLIST_NODE(&event->hlist_entry);
11305
11306
11307 init_waitqueue_head(&event->waitq);
11308 event->pending_disable = -1;
11309 init_irq_work(&event->pending, perf_pending_event);
11310
11311 mutex_init(&event->mmap_mutex);
11312 raw_spin_lock_init(&event->addr_filters.lock);
11313
11314 atomic_long_set(&event->refcount, 1);
11315 event->cpu = cpu;
11316 event->attr = *attr;
11317 event->group_leader = group_leader;
11318 event->pmu = NULL;
11319 event->oncpu = -1;
11320
11321 event->parent = parent_event;
11322
11323 event->ns = get_pid_ns(task_active_pid_ns(current));
11324 event->id = atomic64_inc_return(&perf_event_id);
11325
11326 event->state = PERF_EVENT_STATE_INACTIVE;
11327
11328 if (task) {
11329 event->attach_state = PERF_ATTACH_TASK;
11330 /*
11331 * XXX pmu::event_init needs to know what task to account to
11332 * and we cannot use the ctx information because we need the
11333 * pmu before we get a ctx.
11334 */
11335 event->hw.target = get_task_struct(task);
11336 }
11337
11338 event->clock = &local_clock;
11339 if (parent_event)
11340 event->clock = parent_event->clock;
11341
11342 if (!overflow_handler && parent_event) {
11343 overflow_handler = parent_event->overflow_handler;
11344 context = parent_event->overflow_handler_context;
11345 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11346 if (overflow_handler == bpf_overflow_handler) {
11347 struct bpf_prog *prog = parent_event->prog;
11348
11349 bpf_prog_inc(prog);
11350 event->prog = prog;
11351 event->orig_overflow_handler =
11352 parent_event->orig_overflow_handler;
11353 }
11354 #endif
11355 }
11356
11357 if (overflow_handler) {
11358 event->overflow_handler = overflow_handler;
11359 event->overflow_handler_context = context;
11360 } else if (is_write_backward(event)){
11361 event->overflow_handler = perf_event_output_backward;
11362 event->overflow_handler_context = NULL;
11363 } else {
11364 event->overflow_handler = perf_event_output_forward;
11365 event->overflow_handler_context = NULL;
11366 }
11367
11368 perf_event__state_init(event);
11369
11370 pmu = NULL;
11371
11372 hwc = &event->hw;
11373 hwc->sample_period = attr->sample_period;
11374 if (attr->freq && attr->sample_freq)
11375 hwc->sample_period = 1;
11376 hwc->last_period = hwc->sample_period;
11377
11378 local64_set(&hwc->period_left, hwc->sample_period);
11379
11380 /*
11381 * We currently do not support PERF_SAMPLE_READ on inherited events.
11382 * See perf_output_read().
11383 */
11384 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11385 goto err_ns;
11386
11387 if (!has_branch_stack(event))
11388 event->attr.branch_sample_type = 0;
11389
11390 pmu = perf_init_event(event);
11391 if (IS_ERR(pmu)) {
11392 err = PTR_ERR(pmu);
11393 goto err_ns;
11394 }
11395
11396 /*
11397 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11398 * be different on other CPUs in the uncore mask.
11399 */
11400 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11401 err = -EINVAL;
11402 goto err_pmu;
11403 }
11404
11405 if (event->attr.aux_output &&
11406 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11407 err = -EOPNOTSUPP;
11408 goto err_pmu;
11409 }
11410
11411 if (cgroup_fd != -1) {
11412 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11413 if (err)
11414 goto err_pmu;
11415 }
11416
11417 err = exclusive_event_init(event);
11418 if (err)
11419 goto err_pmu;
11420
11421 if (has_addr_filter(event)) {
11422 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11423 sizeof(struct perf_addr_filter_range),
11424 GFP_KERNEL);
11425 if (!event->addr_filter_ranges) {
11426 err = -ENOMEM;
11427 goto err_per_task;
11428 }
11429
11430 /*
11431 * Clone the parent's vma offsets: they are valid until exec()
11432 * even if the mm is not shared with the parent.
11433 */
11434 if (event->parent) {
11435 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11436
11437 raw_spin_lock_irq(&ifh->lock);
11438 memcpy(event->addr_filter_ranges,
11439 event->parent->addr_filter_ranges,
11440 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11441 raw_spin_unlock_irq(&ifh->lock);
11442 }
11443
11444 /* force hw sync on the address filters */
11445 event->addr_filters_gen = 1;
11446 }
11447
11448 if (!event->parent) {
11449 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11450 err = get_callchain_buffers(attr->sample_max_stack);
11451 if (err)
11452 goto err_addr_filters;
11453 }
11454 }
11455
11456 err = security_perf_event_alloc(event);
11457 if (err)
11458 goto err_callchain_buffer;
11459
11460 /* symmetric to unaccount_event() in _free_event() */
11461 account_event(event);
11462
11463 return event;
11464
11465 err_callchain_buffer:
11466 if (!event->parent) {
11467 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11468 put_callchain_buffers();
11469 }
11470 err_addr_filters:
11471 kfree(event->addr_filter_ranges);
11472
11473 err_per_task:
11474 exclusive_event_destroy(event);
11475
11476 err_pmu:
11477 if (is_cgroup_event(event))
11478 perf_detach_cgroup(event);
11479 if (event->destroy)
11480 event->destroy(event);
11481 module_put(pmu->module);
11482 err_ns:
11483 if (event->ns)
11484 put_pid_ns(event->ns);
11485 if (event->hw.target)
11486 put_task_struct(event->hw.target);
11487 kfree(event);
11488
11489 return ERR_PTR(err);
11490 }
11491
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11492 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11493 struct perf_event_attr *attr)
11494 {
11495 u32 size;
11496 int ret;
11497
11498 /* Zero the full structure, so that a short copy will be nice. */
11499 memset(attr, 0, sizeof(*attr));
11500
11501 ret = get_user(size, &uattr->size);
11502 if (ret)
11503 return ret;
11504
11505 /* ABI compatibility quirk: */
11506 if (!size)
11507 size = PERF_ATTR_SIZE_VER0;
11508 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11509 goto err_size;
11510
11511 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11512 if (ret) {
11513 if (ret == -E2BIG)
11514 goto err_size;
11515 return ret;
11516 }
11517
11518 attr->size = size;
11519
11520 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11521 return -EINVAL;
11522
11523 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11524 return -EINVAL;
11525
11526 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11527 return -EINVAL;
11528
11529 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11530 u64 mask = attr->branch_sample_type;
11531
11532 /* only using defined bits */
11533 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11534 return -EINVAL;
11535
11536 /* at least one branch bit must be set */
11537 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11538 return -EINVAL;
11539
11540 /* propagate priv level, when not set for branch */
11541 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11542
11543 /* exclude_kernel checked on syscall entry */
11544 if (!attr->exclude_kernel)
11545 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11546
11547 if (!attr->exclude_user)
11548 mask |= PERF_SAMPLE_BRANCH_USER;
11549
11550 if (!attr->exclude_hv)
11551 mask |= PERF_SAMPLE_BRANCH_HV;
11552 /*
11553 * adjust user setting (for HW filter setup)
11554 */
11555 attr->branch_sample_type = mask;
11556 }
11557 /* privileged levels capture (kernel, hv): check permissions */
11558 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11559 ret = perf_allow_kernel(attr);
11560 if (ret)
11561 return ret;
11562 }
11563 }
11564
11565 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11566 ret = perf_reg_validate(attr->sample_regs_user);
11567 if (ret)
11568 return ret;
11569 }
11570
11571 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11572 if (!arch_perf_have_user_stack_dump())
11573 return -ENOSYS;
11574
11575 /*
11576 * We have __u32 type for the size, but so far
11577 * we can only use __u16 as maximum due to the
11578 * __u16 sample size limit.
11579 */
11580 if (attr->sample_stack_user >= USHRT_MAX)
11581 return -EINVAL;
11582 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11583 return -EINVAL;
11584 }
11585
11586 if (!attr->sample_max_stack)
11587 attr->sample_max_stack = sysctl_perf_event_max_stack;
11588
11589 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11590 ret = perf_reg_validate(attr->sample_regs_intr);
11591
11592 #ifndef CONFIG_CGROUP_PERF
11593 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11594 return -EINVAL;
11595 #endif
11596
11597 out:
11598 return ret;
11599
11600 err_size:
11601 put_user(sizeof(*attr), &uattr->size);
11602 ret = -E2BIG;
11603 goto out;
11604 }
11605
mutex_lock_double(struct mutex * a,struct mutex * b)11606 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11607 {
11608 if (b < a)
11609 swap(a, b);
11610
11611 mutex_lock(a);
11612 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11613 }
11614
11615 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)11616 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11617 {
11618 struct perf_buffer *rb = NULL;
11619 int ret = -EINVAL;
11620
11621 if (!output_event) {
11622 mutex_lock(&event->mmap_mutex);
11623 goto set;
11624 }
11625
11626 /* don't allow circular references */
11627 if (event == output_event)
11628 goto out;
11629
11630 /*
11631 * Don't allow cross-cpu buffers
11632 */
11633 if (output_event->cpu != event->cpu)
11634 goto out;
11635
11636 /*
11637 * If its not a per-cpu rb, it must be the same task.
11638 */
11639 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
11640 goto out;
11641
11642 /*
11643 * Mixing clocks in the same buffer is trouble you don't need.
11644 */
11645 if (output_event->clock != event->clock)
11646 goto out;
11647
11648 /*
11649 * Either writing ring buffer from beginning or from end.
11650 * Mixing is not allowed.
11651 */
11652 if (is_write_backward(output_event) != is_write_backward(event))
11653 goto out;
11654
11655 /*
11656 * If both events generate aux data, they must be on the same PMU
11657 */
11658 if (has_aux(event) && has_aux(output_event) &&
11659 event->pmu != output_event->pmu)
11660 goto out;
11661
11662 /*
11663 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
11664 * output_event is already on rb->event_list, and the list iteration
11665 * restarts after every removal, it is guaranteed this new event is
11666 * observed *OR* if output_event is already removed, it's guaranteed we
11667 * observe !rb->mmap_count.
11668 */
11669 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11670 set:
11671 /* Can't redirect output if we've got an active mmap() */
11672 if (atomic_read(&event->mmap_count))
11673 goto unlock;
11674
11675 if (output_event) {
11676 /* get the rb we want to redirect to */
11677 rb = ring_buffer_get(output_event);
11678 if (!rb)
11679 goto unlock;
11680
11681 /* did we race against perf_mmap_close() */
11682 if (!atomic_read(&rb->mmap_count)) {
11683 ring_buffer_put(rb);
11684 goto unlock;
11685 }
11686 }
11687
11688 ring_buffer_attach(event, rb);
11689
11690 ret = 0;
11691 unlock:
11692 mutex_unlock(&event->mmap_mutex);
11693 if (output_event)
11694 mutex_unlock(&output_event->mmap_mutex);
11695
11696 out:
11697 return ret;
11698 }
11699
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)11700 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11701 {
11702 bool nmi_safe = false;
11703
11704 switch (clk_id) {
11705 case CLOCK_MONOTONIC:
11706 event->clock = &ktime_get_mono_fast_ns;
11707 nmi_safe = true;
11708 break;
11709
11710 case CLOCK_MONOTONIC_RAW:
11711 event->clock = &ktime_get_raw_fast_ns;
11712 nmi_safe = true;
11713 break;
11714
11715 case CLOCK_REALTIME:
11716 event->clock = &ktime_get_real_ns;
11717 break;
11718
11719 case CLOCK_BOOTTIME:
11720 event->clock = &ktime_get_boottime_ns;
11721 break;
11722
11723 case CLOCK_TAI:
11724 event->clock = &ktime_get_clocktai_ns;
11725 break;
11726
11727 default:
11728 return -EINVAL;
11729 }
11730
11731 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11732 return -EINVAL;
11733
11734 return 0;
11735 }
11736
11737 /*
11738 * Variation on perf_event_ctx_lock_nested(), except we take two context
11739 * mutexes.
11740 */
11741 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)11742 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11743 struct perf_event_context *ctx)
11744 {
11745 struct perf_event_context *gctx;
11746
11747 again:
11748 rcu_read_lock();
11749 gctx = READ_ONCE(group_leader->ctx);
11750 if (!refcount_inc_not_zero(&gctx->refcount)) {
11751 rcu_read_unlock();
11752 goto again;
11753 }
11754 rcu_read_unlock();
11755
11756 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11757
11758 if (group_leader->ctx != gctx) {
11759 mutex_unlock(&ctx->mutex);
11760 mutex_unlock(&gctx->mutex);
11761 put_ctx(gctx);
11762 goto again;
11763 }
11764
11765 return gctx;
11766 }
11767
11768 /**
11769 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11770 *
11771 * @attr_uptr: event_id type attributes for monitoring/sampling
11772 * @pid: target pid
11773 * @cpu: target cpu
11774 * @group_fd: group leader event fd
11775 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11776 SYSCALL_DEFINE5(perf_event_open,
11777 struct perf_event_attr __user *, attr_uptr,
11778 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11779 {
11780 struct perf_event *group_leader = NULL, *output_event = NULL;
11781 struct perf_event *event, *sibling;
11782 struct perf_event_attr attr;
11783 struct perf_event_context *ctx, *gctx;
11784 struct file *event_file = NULL;
11785 struct fd group = {NULL, 0};
11786 struct task_struct *task = NULL;
11787 struct pmu *pmu;
11788 int event_fd;
11789 int move_group = 0;
11790 int err;
11791 int f_flags = O_RDWR;
11792 int cgroup_fd = -1;
11793
11794 /* for future expandability... */
11795 if (flags & ~PERF_FLAG_ALL)
11796 return -EINVAL;
11797
11798 err = perf_copy_attr(attr_uptr, &attr);
11799 if (err)
11800 return err;
11801
11802 /* Do we allow access to perf_event_open(2) ? */
11803 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11804 if (err)
11805 return err;
11806
11807 if (!attr.exclude_kernel) {
11808 err = perf_allow_kernel(&attr);
11809 if (err)
11810 return err;
11811 }
11812
11813 if (attr.namespaces) {
11814 if (!perfmon_capable())
11815 return -EACCES;
11816 }
11817
11818 if (attr.freq) {
11819 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11820 return -EINVAL;
11821 } else {
11822 if (attr.sample_period & (1ULL << 63))
11823 return -EINVAL;
11824 }
11825
11826 /* Only privileged users can get physical addresses */
11827 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11828 err = perf_allow_kernel(&attr);
11829 if (err)
11830 return err;
11831 }
11832
11833 /* REGS_INTR can leak data, lockdown must prevent this */
11834 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11835 err = security_locked_down(LOCKDOWN_PERF);
11836 if (err)
11837 return err;
11838 }
11839
11840 /*
11841 * In cgroup mode, the pid argument is used to pass the fd
11842 * opened to the cgroup directory in cgroupfs. The cpu argument
11843 * designates the cpu on which to monitor threads from that
11844 * cgroup.
11845 */
11846 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11847 return -EINVAL;
11848
11849 if (flags & PERF_FLAG_FD_CLOEXEC)
11850 f_flags |= O_CLOEXEC;
11851
11852 event_fd = get_unused_fd_flags(f_flags);
11853 if (event_fd < 0)
11854 return event_fd;
11855
11856 if (group_fd != -1) {
11857 err = perf_fget_light(group_fd, &group);
11858 if (err)
11859 goto err_fd;
11860 group_leader = group.file->private_data;
11861 if (flags & PERF_FLAG_FD_OUTPUT)
11862 output_event = group_leader;
11863 if (flags & PERF_FLAG_FD_NO_GROUP)
11864 group_leader = NULL;
11865 }
11866
11867 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11868 task = find_lively_task_by_vpid(pid);
11869 if (IS_ERR(task)) {
11870 err = PTR_ERR(task);
11871 goto err_group_fd;
11872 }
11873 }
11874
11875 if (task && group_leader &&
11876 group_leader->attr.inherit != attr.inherit) {
11877 err = -EINVAL;
11878 goto err_task;
11879 }
11880
11881 if (flags & PERF_FLAG_PID_CGROUP)
11882 cgroup_fd = pid;
11883
11884 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11885 NULL, NULL, cgroup_fd);
11886 if (IS_ERR(event)) {
11887 err = PTR_ERR(event);
11888 goto err_task;
11889 }
11890
11891 if (is_sampling_event(event)) {
11892 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11893 err = -EOPNOTSUPP;
11894 goto err_alloc;
11895 }
11896 }
11897
11898 /*
11899 * Special case software events and allow them to be part of
11900 * any hardware group.
11901 */
11902 pmu = event->pmu;
11903
11904 if (attr.use_clockid) {
11905 err = perf_event_set_clock(event, attr.clockid);
11906 if (err)
11907 goto err_alloc;
11908 }
11909
11910 if (pmu->task_ctx_nr == perf_sw_context)
11911 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11912
11913 if (group_leader) {
11914 if (is_software_event(event) &&
11915 !in_software_context(group_leader)) {
11916 /*
11917 * If the event is a sw event, but the group_leader
11918 * is on hw context.
11919 *
11920 * Allow the addition of software events to hw
11921 * groups, this is safe because software events
11922 * never fail to schedule.
11923 */
11924 pmu = group_leader->ctx->pmu;
11925 } else if (!is_software_event(event) &&
11926 is_software_event(group_leader) &&
11927 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11928 /*
11929 * In case the group is a pure software group, and we
11930 * try to add a hardware event, move the whole group to
11931 * the hardware context.
11932 */
11933 move_group = 1;
11934 }
11935 }
11936
11937 /*
11938 * Get the target context (task or percpu):
11939 */
11940 ctx = find_get_context(pmu, task, event);
11941 if (IS_ERR(ctx)) {
11942 err = PTR_ERR(ctx);
11943 goto err_alloc;
11944 }
11945
11946 /*
11947 * Look up the group leader (we will attach this event to it):
11948 */
11949 if (group_leader) {
11950 err = -EINVAL;
11951
11952 /*
11953 * Do not allow a recursive hierarchy (this new sibling
11954 * becoming part of another group-sibling):
11955 */
11956 if (group_leader->group_leader != group_leader)
11957 goto err_context;
11958
11959 /* All events in a group should have the same clock */
11960 if (group_leader->clock != event->clock)
11961 goto err_context;
11962
11963 /*
11964 * Make sure we're both events for the same CPU;
11965 * grouping events for different CPUs is broken; since
11966 * you can never concurrently schedule them anyhow.
11967 */
11968 if (group_leader->cpu != event->cpu)
11969 goto err_context;
11970
11971 /*
11972 * Make sure we're both on the same task, or both
11973 * per-CPU events.
11974 */
11975 if (group_leader->ctx->task != ctx->task)
11976 goto err_context;
11977
11978 /*
11979 * Do not allow to attach to a group in a different task
11980 * or CPU context. If we're moving SW events, we'll fix
11981 * this up later, so allow that.
11982 *
11983 * Racy, not holding group_leader->ctx->mutex, see comment with
11984 * perf_event_ctx_lock().
11985 */
11986 if (!move_group && group_leader->ctx != ctx)
11987 goto err_context;
11988
11989 /*
11990 * Only a group leader can be exclusive or pinned
11991 */
11992 if (attr.exclusive || attr.pinned)
11993 goto err_context;
11994 }
11995
11996 if (output_event) {
11997 err = perf_event_set_output(event, output_event);
11998 if (err)
11999 goto err_context;
12000 }
12001
12002 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12003 f_flags);
12004 if (IS_ERR(event_file)) {
12005 err = PTR_ERR(event_file);
12006 event_file = NULL;
12007 goto err_context;
12008 }
12009
12010 if (task) {
12011 err = down_read_interruptible(&task->signal->exec_update_lock);
12012 if (err)
12013 goto err_file;
12014
12015 /*
12016 * Preserve ptrace permission check for backwards compatibility.
12017 *
12018 * We must hold exec_update_lock across this and any potential
12019 * perf_install_in_context() call for this new event to
12020 * serialize against exec() altering our credentials (and the
12021 * perf_event_exit_task() that could imply).
12022 */
12023 err = -EACCES;
12024 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12025 goto err_cred;
12026 }
12027
12028 if (move_group) {
12029 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12030
12031 if (gctx->task == TASK_TOMBSTONE) {
12032 err = -ESRCH;
12033 goto err_locked;
12034 }
12035
12036 /*
12037 * Check if we raced against another sys_perf_event_open() call
12038 * moving the software group underneath us.
12039 */
12040 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12041 /*
12042 * If someone moved the group out from under us, check
12043 * if this new event wound up on the same ctx, if so
12044 * its the regular !move_group case, otherwise fail.
12045 */
12046 if (gctx != ctx) {
12047 err = -EINVAL;
12048 goto err_locked;
12049 } else {
12050 perf_event_ctx_unlock(group_leader, gctx);
12051 move_group = 0;
12052 goto not_move_group;
12053 }
12054 }
12055
12056 /*
12057 * Failure to create exclusive events returns -EBUSY.
12058 */
12059 err = -EBUSY;
12060 if (!exclusive_event_installable(group_leader, ctx))
12061 goto err_locked;
12062
12063 for_each_sibling_event(sibling, group_leader) {
12064 if (!exclusive_event_installable(sibling, ctx))
12065 goto err_locked;
12066 }
12067 } else {
12068 mutex_lock(&ctx->mutex);
12069
12070 /*
12071 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12072 * see the group_leader && !move_group test earlier.
12073 */
12074 if (group_leader && group_leader->ctx != ctx) {
12075 err = -EINVAL;
12076 goto err_locked;
12077 }
12078 }
12079 not_move_group:
12080
12081 if (ctx->task == TASK_TOMBSTONE) {
12082 err = -ESRCH;
12083 goto err_locked;
12084 }
12085
12086 if (!perf_event_validate_size(event)) {
12087 err = -E2BIG;
12088 goto err_locked;
12089 }
12090
12091 if (!task) {
12092 /*
12093 * Check if the @cpu we're creating an event for is online.
12094 *
12095 * We use the perf_cpu_context::ctx::mutex to serialize against
12096 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12097 */
12098 struct perf_cpu_context *cpuctx =
12099 container_of(ctx, struct perf_cpu_context, ctx);
12100
12101 if (!cpuctx->online) {
12102 err = -ENODEV;
12103 goto err_locked;
12104 }
12105 }
12106
12107 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12108 err = -EINVAL;
12109 goto err_locked;
12110 }
12111
12112 /*
12113 * Must be under the same ctx::mutex as perf_install_in_context(),
12114 * because we need to serialize with concurrent event creation.
12115 */
12116 if (!exclusive_event_installable(event, ctx)) {
12117 err = -EBUSY;
12118 goto err_locked;
12119 }
12120
12121 WARN_ON_ONCE(ctx->parent_ctx);
12122
12123 /*
12124 * This is the point on no return; we cannot fail hereafter. This is
12125 * where we start modifying current state.
12126 */
12127
12128 if (move_group) {
12129 /*
12130 * See perf_event_ctx_lock() for comments on the details
12131 * of swizzling perf_event::ctx.
12132 */
12133 perf_remove_from_context(group_leader, 0);
12134 put_ctx(gctx);
12135
12136 for_each_sibling_event(sibling, group_leader) {
12137 perf_remove_from_context(sibling, 0);
12138 put_ctx(gctx);
12139 }
12140
12141 /*
12142 * Wait for everybody to stop referencing the events through
12143 * the old lists, before installing it on new lists.
12144 */
12145 synchronize_rcu();
12146
12147 /*
12148 * Install the group siblings before the group leader.
12149 *
12150 * Because a group leader will try and install the entire group
12151 * (through the sibling list, which is still in-tact), we can
12152 * end up with siblings installed in the wrong context.
12153 *
12154 * By installing siblings first we NO-OP because they're not
12155 * reachable through the group lists.
12156 */
12157 for_each_sibling_event(sibling, group_leader) {
12158 perf_event__state_init(sibling);
12159 perf_install_in_context(ctx, sibling, sibling->cpu);
12160 get_ctx(ctx);
12161 }
12162
12163 /*
12164 * Removing from the context ends up with disabled
12165 * event. What we want here is event in the initial
12166 * startup state, ready to be add into new context.
12167 */
12168 perf_event__state_init(group_leader);
12169 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12170 get_ctx(ctx);
12171 }
12172
12173 /*
12174 * Precalculate sample_data sizes; do while holding ctx::mutex such
12175 * that we're serialized against further additions and before
12176 * perf_install_in_context() which is the point the event is active and
12177 * can use these values.
12178 */
12179 perf_event__header_size(event);
12180 perf_event__id_header_size(event);
12181
12182 event->owner = current;
12183
12184 perf_install_in_context(ctx, event, event->cpu);
12185 perf_unpin_context(ctx);
12186
12187 if (move_group)
12188 perf_event_ctx_unlock(group_leader, gctx);
12189 mutex_unlock(&ctx->mutex);
12190
12191 if (task) {
12192 up_read(&task->signal->exec_update_lock);
12193 put_task_struct(task);
12194 }
12195
12196 mutex_lock(¤t->perf_event_mutex);
12197 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12198 mutex_unlock(¤t->perf_event_mutex);
12199
12200 /*
12201 * Drop the reference on the group_event after placing the
12202 * new event on the sibling_list. This ensures destruction
12203 * of the group leader will find the pointer to itself in
12204 * perf_group_detach().
12205 */
12206 fdput(group);
12207 fd_install(event_fd, event_file);
12208 return event_fd;
12209
12210 err_locked:
12211 if (move_group)
12212 perf_event_ctx_unlock(group_leader, gctx);
12213 mutex_unlock(&ctx->mutex);
12214 err_cred:
12215 if (task)
12216 up_read(&task->signal->exec_update_lock);
12217 err_file:
12218 fput(event_file);
12219 err_context:
12220 perf_unpin_context(ctx);
12221 put_ctx(ctx);
12222 err_alloc:
12223 /*
12224 * If event_file is set, the fput() above will have called ->release()
12225 * and that will take care of freeing the event.
12226 */
12227 if (!event_file)
12228 free_event(event);
12229 err_task:
12230 if (task)
12231 put_task_struct(task);
12232 err_group_fd:
12233 fdput(group);
12234 err_fd:
12235 put_unused_fd(event_fd);
12236 return err;
12237 }
12238
12239 /**
12240 * perf_event_create_kernel_counter
12241 *
12242 * @attr: attributes of the counter to create
12243 * @cpu: cpu in which the counter is bound
12244 * @task: task to profile (NULL for percpu)
12245 */
12246 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12247 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12248 struct task_struct *task,
12249 perf_overflow_handler_t overflow_handler,
12250 void *context)
12251 {
12252 struct perf_event_context *ctx;
12253 struct perf_event *event;
12254 int err;
12255
12256 /*
12257 * Grouping is not supported for kernel events, neither is 'AUX',
12258 * make sure the caller's intentions are adjusted.
12259 */
12260 if (attr->aux_output)
12261 return ERR_PTR(-EINVAL);
12262
12263 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12264 overflow_handler, context, -1);
12265 if (IS_ERR(event)) {
12266 err = PTR_ERR(event);
12267 goto err;
12268 }
12269
12270 /* Mark owner so we could distinguish it from user events. */
12271 event->owner = TASK_TOMBSTONE;
12272
12273 /*
12274 * Get the target context (task or percpu):
12275 */
12276 ctx = find_get_context(event->pmu, task, event);
12277 if (IS_ERR(ctx)) {
12278 err = PTR_ERR(ctx);
12279 goto err_free;
12280 }
12281
12282 WARN_ON_ONCE(ctx->parent_ctx);
12283 mutex_lock(&ctx->mutex);
12284 if (ctx->task == TASK_TOMBSTONE) {
12285 err = -ESRCH;
12286 goto err_unlock;
12287 }
12288
12289 if (!task) {
12290 /*
12291 * Check if the @cpu we're creating an event for is online.
12292 *
12293 * We use the perf_cpu_context::ctx::mutex to serialize against
12294 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12295 */
12296 struct perf_cpu_context *cpuctx =
12297 container_of(ctx, struct perf_cpu_context, ctx);
12298 if (!cpuctx->online) {
12299 err = -ENODEV;
12300 goto err_unlock;
12301 }
12302 }
12303
12304 if (!exclusive_event_installable(event, ctx)) {
12305 err = -EBUSY;
12306 goto err_unlock;
12307 }
12308
12309 perf_install_in_context(ctx, event, event->cpu);
12310 perf_unpin_context(ctx);
12311 mutex_unlock(&ctx->mutex);
12312
12313 return event;
12314
12315 err_unlock:
12316 mutex_unlock(&ctx->mutex);
12317 perf_unpin_context(ctx);
12318 put_ctx(ctx);
12319 err_free:
12320 free_event(event);
12321 err:
12322 return ERR_PTR(err);
12323 }
12324 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12325
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12326 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12327 {
12328 struct perf_event_context *src_ctx;
12329 struct perf_event_context *dst_ctx;
12330 struct perf_event *event, *tmp;
12331 LIST_HEAD(events);
12332
12333 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12334 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12335
12336 /*
12337 * See perf_event_ctx_lock() for comments on the details
12338 * of swizzling perf_event::ctx.
12339 */
12340 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12341 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12342 event_entry) {
12343 perf_remove_from_context(event, 0);
12344 unaccount_event_cpu(event, src_cpu);
12345 put_ctx(src_ctx);
12346 list_add(&event->migrate_entry, &events);
12347 }
12348
12349 /*
12350 * Wait for the events to quiesce before re-instating them.
12351 */
12352 synchronize_rcu();
12353
12354 /*
12355 * Re-instate events in 2 passes.
12356 *
12357 * Skip over group leaders and only install siblings on this first
12358 * pass, siblings will not get enabled without a leader, however a
12359 * leader will enable its siblings, even if those are still on the old
12360 * context.
12361 */
12362 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12363 if (event->group_leader == event)
12364 continue;
12365
12366 list_del(&event->migrate_entry);
12367 if (event->state >= PERF_EVENT_STATE_OFF)
12368 event->state = PERF_EVENT_STATE_INACTIVE;
12369 account_event_cpu(event, dst_cpu);
12370 perf_install_in_context(dst_ctx, event, dst_cpu);
12371 get_ctx(dst_ctx);
12372 }
12373
12374 /*
12375 * Once all the siblings are setup properly, install the group leaders
12376 * to make it go.
12377 */
12378 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12379 list_del(&event->migrate_entry);
12380 if (event->state >= PERF_EVENT_STATE_OFF)
12381 event->state = PERF_EVENT_STATE_INACTIVE;
12382 account_event_cpu(event, dst_cpu);
12383 perf_install_in_context(dst_ctx, event, dst_cpu);
12384 get_ctx(dst_ctx);
12385 }
12386 mutex_unlock(&dst_ctx->mutex);
12387 mutex_unlock(&src_ctx->mutex);
12388 }
12389 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12390
sync_child_event(struct perf_event * child_event,struct task_struct * child)12391 static void sync_child_event(struct perf_event *child_event,
12392 struct task_struct *child)
12393 {
12394 struct perf_event *parent_event = child_event->parent;
12395 u64 child_val;
12396
12397 if (child_event->attr.inherit_stat)
12398 perf_event_read_event(child_event, child);
12399
12400 child_val = perf_event_count(child_event);
12401
12402 /*
12403 * Add back the child's count to the parent's count:
12404 */
12405 atomic64_add(child_val, &parent_event->child_count);
12406 atomic64_add(child_event->total_time_enabled,
12407 &parent_event->child_total_time_enabled);
12408 atomic64_add(child_event->total_time_running,
12409 &parent_event->child_total_time_running);
12410 }
12411
12412 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)12413 perf_event_exit_event(struct perf_event *child_event,
12414 struct perf_event_context *child_ctx,
12415 struct task_struct *child)
12416 {
12417 struct perf_event *parent_event = child_event->parent;
12418
12419 /*
12420 * Do not destroy the 'original' grouping; because of the context
12421 * switch optimization the original events could've ended up in a
12422 * random child task.
12423 *
12424 * If we were to destroy the original group, all group related
12425 * operations would cease to function properly after this random
12426 * child dies.
12427 *
12428 * Do destroy all inherited groups, we don't care about those
12429 * and being thorough is better.
12430 */
12431 raw_spin_lock_irq(&child_ctx->lock);
12432 WARN_ON_ONCE(child_ctx->is_active);
12433
12434 if (parent_event)
12435 perf_group_detach(child_event);
12436 list_del_event(child_event, child_ctx);
12437 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12438 raw_spin_unlock_irq(&child_ctx->lock);
12439
12440 /*
12441 * Parent events are governed by their filedesc, retain them.
12442 */
12443 if (!parent_event) {
12444 perf_event_wakeup(child_event);
12445 return;
12446 }
12447 /*
12448 * Child events can be cleaned up.
12449 */
12450
12451 sync_child_event(child_event, child);
12452
12453 /*
12454 * Remove this event from the parent's list
12455 */
12456 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12457 mutex_lock(&parent_event->child_mutex);
12458 list_del_init(&child_event->child_list);
12459 mutex_unlock(&parent_event->child_mutex);
12460
12461 /*
12462 * Kick perf_poll() for is_event_hup().
12463 */
12464 perf_event_wakeup(parent_event);
12465 free_event(child_event);
12466 put_event(parent_event);
12467 }
12468
perf_event_exit_task_context(struct task_struct * child,int ctxn)12469 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12470 {
12471 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12472 struct perf_event *child_event, *next;
12473
12474 WARN_ON_ONCE(child != current);
12475
12476 child_ctx = perf_pin_task_context(child, ctxn);
12477 if (!child_ctx)
12478 return;
12479
12480 /*
12481 * In order to reduce the amount of tricky in ctx tear-down, we hold
12482 * ctx::mutex over the entire thing. This serializes against almost
12483 * everything that wants to access the ctx.
12484 *
12485 * The exception is sys_perf_event_open() /
12486 * perf_event_create_kernel_count() which does find_get_context()
12487 * without ctx::mutex (it cannot because of the move_group double mutex
12488 * lock thing). See the comments in perf_install_in_context().
12489 */
12490 mutex_lock(&child_ctx->mutex);
12491
12492 /*
12493 * In a single ctx::lock section, de-schedule the events and detach the
12494 * context from the task such that we cannot ever get it scheduled back
12495 * in.
12496 */
12497 raw_spin_lock_irq(&child_ctx->lock);
12498 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12499
12500 /*
12501 * Now that the context is inactive, destroy the task <-> ctx relation
12502 * and mark the context dead.
12503 */
12504 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12505 put_ctx(child_ctx); /* cannot be last */
12506 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12507 put_task_struct(current); /* cannot be last */
12508
12509 clone_ctx = unclone_ctx(child_ctx);
12510 raw_spin_unlock_irq(&child_ctx->lock);
12511
12512 if (clone_ctx)
12513 put_ctx(clone_ctx);
12514
12515 /*
12516 * Report the task dead after unscheduling the events so that we
12517 * won't get any samples after PERF_RECORD_EXIT. We can however still
12518 * get a few PERF_RECORD_READ events.
12519 */
12520 perf_event_task(child, child_ctx, 0);
12521
12522 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12523 perf_event_exit_event(child_event, child_ctx, child);
12524
12525 mutex_unlock(&child_ctx->mutex);
12526
12527 put_ctx(child_ctx);
12528 }
12529
12530 /*
12531 * When a child task exits, feed back event values to parent events.
12532 *
12533 * Can be called with exec_update_lock held when called from
12534 * setup_new_exec().
12535 */
perf_event_exit_task(struct task_struct * child)12536 void perf_event_exit_task(struct task_struct *child)
12537 {
12538 struct perf_event *event, *tmp;
12539 int ctxn;
12540
12541 mutex_lock(&child->perf_event_mutex);
12542 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12543 owner_entry) {
12544 list_del_init(&event->owner_entry);
12545
12546 /*
12547 * Ensure the list deletion is visible before we clear
12548 * the owner, closes a race against perf_release() where
12549 * we need to serialize on the owner->perf_event_mutex.
12550 */
12551 smp_store_release(&event->owner, NULL);
12552 }
12553 mutex_unlock(&child->perf_event_mutex);
12554
12555 for_each_task_context_nr(ctxn)
12556 perf_event_exit_task_context(child, ctxn);
12557
12558 /*
12559 * The perf_event_exit_task_context calls perf_event_task
12560 * with child's task_ctx, which generates EXIT events for
12561 * child contexts and sets child->perf_event_ctxp[] to NULL.
12562 * At this point we need to send EXIT events to cpu contexts.
12563 */
12564 perf_event_task(child, NULL, 0);
12565 }
12566
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)12567 static void perf_free_event(struct perf_event *event,
12568 struct perf_event_context *ctx)
12569 {
12570 struct perf_event *parent = event->parent;
12571
12572 if (WARN_ON_ONCE(!parent))
12573 return;
12574
12575 mutex_lock(&parent->child_mutex);
12576 list_del_init(&event->child_list);
12577 mutex_unlock(&parent->child_mutex);
12578
12579 put_event(parent);
12580
12581 raw_spin_lock_irq(&ctx->lock);
12582 perf_group_detach(event);
12583 list_del_event(event, ctx);
12584 raw_spin_unlock_irq(&ctx->lock);
12585 free_event(event);
12586 }
12587
12588 /*
12589 * Free a context as created by inheritance by perf_event_init_task() below,
12590 * used by fork() in case of fail.
12591 *
12592 * Even though the task has never lived, the context and events have been
12593 * exposed through the child_list, so we must take care tearing it all down.
12594 */
perf_event_free_task(struct task_struct * task)12595 void perf_event_free_task(struct task_struct *task)
12596 {
12597 struct perf_event_context *ctx;
12598 struct perf_event *event, *tmp;
12599 int ctxn;
12600
12601 for_each_task_context_nr(ctxn) {
12602 ctx = task->perf_event_ctxp[ctxn];
12603 if (!ctx)
12604 continue;
12605
12606 mutex_lock(&ctx->mutex);
12607 raw_spin_lock_irq(&ctx->lock);
12608 /*
12609 * Destroy the task <-> ctx relation and mark the context dead.
12610 *
12611 * This is important because even though the task hasn't been
12612 * exposed yet the context has been (through child_list).
12613 */
12614 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12615 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12616 put_task_struct(task); /* cannot be last */
12617 raw_spin_unlock_irq(&ctx->lock);
12618
12619 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12620 perf_free_event(event, ctx);
12621
12622 mutex_unlock(&ctx->mutex);
12623
12624 /*
12625 * perf_event_release_kernel() could've stolen some of our
12626 * child events and still have them on its free_list. In that
12627 * case we must wait for these events to have been freed (in
12628 * particular all their references to this task must've been
12629 * dropped).
12630 *
12631 * Without this copy_process() will unconditionally free this
12632 * task (irrespective of its reference count) and
12633 * _free_event()'s put_task_struct(event->hw.target) will be a
12634 * use-after-free.
12635 *
12636 * Wait for all events to drop their context reference.
12637 */
12638 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12639 put_ctx(ctx); /* must be last */
12640 }
12641 }
12642
perf_event_delayed_put(struct task_struct * task)12643 void perf_event_delayed_put(struct task_struct *task)
12644 {
12645 int ctxn;
12646
12647 for_each_task_context_nr(ctxn)
12648 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12649 }
12650
perf_event_get(unsigned int fd)12651 struct file *perf_event_get(unsigned int fd)
12652 {
12653 struct file *file = fget(fd);
12654 if (!file)
12655 return ERR_PTR(-EBADF);
12656
12657 if (file->f_op != &perf_fops) {
12658 fput(file);
12659 return ERR_PTR(-EBADF);
12660 }
12661
12662 return file;
12663 }
12664
perf_get_event(struct file * file)12665 const struct perf_event *perf_get_event(struct file *file)
12666 {
12667 if (file->f_op != &perf_fops)
12668 return ERR_PTR(-EINVAL);
12669
12670 return file->private_data;
12671 }
12672
perf_event_attrs(struct perf_event * event)12673 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12674 {
12675 if (!event)
12676 return ERR_PTR(-EINVAL);
12677
12678 return &event->attr;
12679 }
12680
12681 /*
12682 * Inherit an event from parent task to child task.
12683 *
12684 * Returns:
12685 * - valid pointer on success
12686 * - NULL for orphaned events
12687 * - IS_ERR() on error
12688 */
12689 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)12690 inherit_event(struct perf_event *parent_event,
12691 struct task_struct *parent,
12692 struct perf_event_context *parent_ctx,
12693 struct task_struct *child,
12694 struct perf_event *group_leader,
12695 struct perf_event_context *child_ctx)
12696 {
12697 enum perf_event_state parent_state = parent_event->state;
12698 struct perf_event *child_event;
12699 unsigned long flags;
12700
12701 /*
12702 * Instead of creating recursive hierarchies of events,
12703 * we link inherited events back to the original parent,
12704 * which has a filp for sure, which we use as the reference
12705 * count:
12706 */
12707 if (parent_event->parent)
12708 parent_event = parent_event->parent;
12709
12710 child_event = perf_event_alloc(&parent_event->attr,
12711 parent_event->cpu,
12712 child,
12713 group_leader, parent_event,
12714 NULL, NULL, -1);
12715 if (IS_ERR(child_event))
12716 return child_event;
12717
12718
12719 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12720 !child_ctx->task_ctx_data) {
12721 struct pmu *pmu = child_event->pmu;
12722
12723 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12724 if (!child_ctx->task_ctx_data) {
12725 free_event(child_event);
12726 return ERR_PTR(-ENOMEM);
12727 }
12728 }
12729
12730 /*
12731 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12732 * must be under the same lock in order to serialize against
12733 * perf_event_release_kernel(), such that either we must observe
12734 * is_orphaned_event() or they will observe us on the child_list.
12735 */
12736 mutex_lock(&parent_event->child_mutex);
12737 if (is_orphaned_event(parent_event) ||
12738 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12739 mutex_unlock(&parent_event->child_mutex);
12740 /* task_ctx_data is freed with child_ctx */
12741 free_event(child_event);
12742 return NULL;
12743 }
12744
12745 get_ctx(child_ctx);
12746
12747 /*
12748 * Make the child state follow the state of the parent event,
12749 * not its attr.disabled bit. We hold the parent's mutex,
12750 * so we won't race with perf_event_{en, dis}able_family.
12751 */
12752 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12753 child_event->state = PERF_EVENT_STATE_INACTIVE;
12754 else
12755 child_event->state = PERF_EVENT_STATE_OFF;
12756
12757 if (parent_event->attr.freq) {
12758 u64 sample_period = parent_event->hw.sample_period;
12759 struct hw_perf_event *hwc = &child_event->hw;
12760
12761 hwc->sample_period = sample_period;
12762 hwc->last_period = sample_period;
12763
12764 local64_set(&hwc->period_left, sample_period);
12765 }
12766
12767 child_event->ctx = child_ctx;
12768 child_event->overflow_handler = parent_event->overflow_handler;
12769 child_event->overflow_handler_context
12770 = parent_event->overflow_handler_context;
12771
12772 /*
12773 * Precalculate sample_data sizes
12774 */
12775 perf_event__header_size(child_event);
12776 perf_event__id_header_size(child_event);
12777
12778 /*
12779 * Link it up in the child's context:
12780 */
12781 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12782 add_event_to_ctx(child_event, child_ctx);
12783 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12784
12785 /*
12786 * Link this into the parent event's child list
12787 */
12788 list_add_tail(&child_event->child_list, &parent_event->child_list);
12789 mutex_unlock(&parent_event->child_mutex);
12790
12791 return child_event;
12792 }
12793
12794 /*
12795 * Inherits an event group.
12796 *
12797 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12798 * This matches with perf_event_release_kernel() removing all child events.
12799 *
12800 * Returns:
12801 * - 0 on success
12802 * - <0 on error
12803 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12804 static int inherit_group(struct perf_event *parent_event,
12805 struct task_struct *parent,
12806 struct perf_event_context *parent_ctx,
12807 struct task_struct *child,
12808 struct perf_event_context *child_ctx)
12809 {
12810 struct perf_event *leader;
12811 struct perf_event *sub;
12812 struct perf_event *child_ctr;
12813
12814 leader = inherit_event(parent_event, parent, parent_ctx,
12815 child, NULL, child_ctx);
12816 if (IS_ERR(leader))
12817 return PTR_ERR(leader);
12818 /*
12819 * @leader can be NULL here because of is_orphaned_event(). In this
12820 * case inherit_event() will create individual events, similar to what
12821 * perf_group_detach() would do anyway.
12822 */
12823 for_each_sibling_event(sub, parent_event) {
12824 child_ctr = inherit_event(sub, parent, parent_ctx,
12825 child, leader, child_ctx);
12826 if (IS_ERR(child_ctr))
12827 return PTR_ERR(child_ctr);
12828
12829 if (sub->aux_event == parent_event && child_ctr &&
12830 !perf_get_aux_event(child_ctr, leader))
12831 return -EINVAL;
12832 }
12833 leader->group_generation = parent_event->group_generation;
12834 return 0;
12835 }
12836
12837 /*
12838 * Creates the child task context and tries to inherit the event-group.
12839 *
12840 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12841 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12842 * consistent with perf_event_release_kernel() removing all child events.
12843 *
12844 * Returns:
12845 * - 0 on success
12846 * - <0 on error
12847 */
12848 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12849 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12850 struct perf_event_context *parent_ctx,
12851 struct task_struct *child, int ctxn,
12852 int *inherited_all)
12853 {
12854 int ret;
12855 struct perf_event_context *child_ctx;
12856
12857 if (!event->attr.inherit) {
12858 *inherited_all = 0;
12859 return 0;
12860 }
12861
12862 child_ctx = child->perf_event_ctxp[ctxn];
12863 if (!child_ctx) {
12864 /*
12865 * This is executed from the parent task context, so
12866 * inherit events that have been marked for cloning.
12867 * First allocate and initialize a context for the
12868 * child.
12869 */
12870 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12871 if (!child_ctx)
12872 return -ENOMEM;
12873
12874 child->perf_event_ctxp[ctxn] = child_ctx;
12875 }
12876
12877 ret = inherit_group(event, parent, parent_ctx,
12878 child, child_ctx);
12879
12880 if (ret)
12881 *inherited_all = 0;
12882
12883 return ret;
12884 }
12885
12886 /*
12887 * Initialize the perf_event context in task_struct
12888 */
perf_event_init_context(struct task_struct * child,int ctxn)12889 static int perf_event_init_context(struct task_struct *child, int ctxn)
12890 {
12891 struct perf_event_context *child_ctx, *parent_ctx;
12892 struct perf_event_context *cloned_ctx;
12893 struct perf_event *event;
12894 struct task_struct *parent = current;
12895 int inherited_all = 1;
12896 unsigned long flags;
12897 int ret = 0;
12898
12899 if (likely(!parent->perf_event_ctxp[ctxn]))
12900 return 0;
12901
12902 /*
12903 * If the parent's context is a clone, pin it so it won't get
12904 * swapped under us.
12905 */
12906 parent_ctx = perf_pin_task_context(parent, ctxn);
12907 if (!parent_ctx)
12908 return 0;
12909
12910 /*
12911 * No need to check if parent_ctx != NULL here; since we saw
12912 * it non-NULL earlier, the only reason for it to become NULL
12913 * is if we exit, and since we're currently in the middle of
12914 * a fork we can't be exiting at the same time.
12915 */
12916
12917 /*
12918 * Lock the parent list. No need to lock the child - not PID
12919 * hashed yet and not running, so nobody can access it.
12920 */
12921 mutex_lock(&parent_ctx->mutex);
12922
12923 /*
12924 * We dont have to disable NMIs - we are only looking at
12925 * the list, not manipulating it:
12926 */
12927 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12928 ret = inherit_task_group(event, parent, parent_ctx,
12929 child, ctxn, &inherited_all);
12930 if (ret)
12931 goto out_unlock;
12932 }
12933
12934 /*
12935 * We can't hold ctx->lock when iterating the ->flexible_group list due
12936 * to allocations, but we need to prevent rotation because
12937 * rotate_ctx() will change the list from interrupt context.
12938 */
12939 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12940 parent_ctx->rotate_disable = 1;
12941 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12942
12943 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12944 ret = inherit_task_group(event, parent, parent_ctx,
12945 child, ctxn, &inherited_all);
12946 if (ret)
12947 goto out_unlock;
12948 }
12949
12950 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12951 parent_ctx->rotate_disable = 0;
12952
12953 child_ctx = child->perf_event_ctxp[ctxn];
12954
12955 if (child_ctx && inherited_all) {
12956 /*
12957 * Mark the child context as a clone of the parent
12958 * context, or of whatever the parent is a clone of.
12959 *
12960 * Note that if the parent is a clone, the holding of
12961 * parent_ctx->lock avoids it from being uncloned.
12962 */
12963 cloned_ctx = parent_ctx->parent_ctx;
12964 if (cloned_ctx) {
12965 child_ctx->parent_ctx = cloned_ctx;
12966 child_ctx->parent_gen = parent_ctx->parent_gen;
12967 } else {
12968 child_ctx->parent_ctx = parent_ctx;
12969 child_ctx->parent_gen = parent_ctx->generation;
12970 }
12971 get_ctx(child_ctx->parent_ctx);
12972 }
12973
12974 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12975 out_unlock:
12976 mutex_unlock(&parent_ctx->mutex);
12977
12978 perf_unpin_context(parent_ctx);
12979 put_ctx(parent_ctx);
12980
12981 return ret;
12982 }
12983
12984 /*
12985 * Initialize the perf_event context in task_struct
12986 */
perf_event_init_task(struct task_struct * child)12987 int perf_event_init_task(struct task_struct *child)
12988 {
12989 int ctxn, ret;
12990
12991 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12992 mutex_init(&child->perf_event_mutex);
12993 INIT_LIST_HEAD(&child->perf_event_list);
12994
12995 for_each_task_context_nr(ctxn) {
12996 ret = perf_event_init_context(child, ctxn);
12997 if (ret) {
12998 perf_event_free_task(child);
12999 return ret;
13000 }
13001 }
13002
13003 return 0;
13004 }
13005
perf_event_init_all_cpus(void)13006 static void __init perf_event_init_all_cpus(void)
13007 {
13008 struct swevent_htable *swhash;
13009 int cpu;
13010
13011 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13012
13013 for_each_possible_cpu(cpu) {
13014 swhash = &per_cpu(swevent_htable, cpu);
13015 mutex_init(&swhash->hlist_mutex);
13016 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13017
13018 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13019 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13020
13021 #ifdef CONFIG_CGROUP_PERF
13022 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13023 #endif
13024 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13025 }
13026 }
13027
perf_swevent_init_cpu(unsigned int cpu)13028 static void perf_swevent_init_cpu(unsigned int cpu)
13029 {
13030 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13031
13032 mutex_lock(&swhash->hlist_mutex);
13033 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13034 struct swevent_hlist *hlist;
13035
13036 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13037 WARN_ON(!hlist);
13038 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13039 }
13040 mutex_unlock(&swhash->hlist_mutex);
13041 }
13042
13043 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13044 static void __perf_event_exit_context(void *__info)
13045 {
13046 struct perf_event_context *ctx = __info;
13047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13048 struct perf_event *event;
13049
13050 raw_spin_lock(&ctx->lock);
13051 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13052 list_for_each_entry(event, &ctx->event_list, event_entry)
13053 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13054 raw_spin_unlock(&ctx->lock);
13055 }
13056
perf_event_exit_cpu_context(int cpu)13057 static void perf_event_exit_cpu_context(int cpu)
13058 {
13059 struct perf_cpu_context *cpuctx;
13060 struct perf_event_context *ctx;
13061 struct pmu *pmu;
13062
13063 mutex_lock(&pmus_lock);
13064 list_for_each_entry(pmu, &pmus, entry) {
13065 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13066 ctx = &cpuctx->ctx;
13067
13068 mutex_lock(&ctx->mutex);
13069 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13070 cpuctx->online = 0;
13071 mutex_unlock(&ctx->mutex);
13072 }
13073 cpumask_clear_cpu(cpu, perf_online_mask);
13074 mutex_unlock(&pmus_lock);
13075 }
13076 #else
13077
perf_event_exit_cpu_context(int cpu)13078 static void perf_event_exit_cpu_context(int cpu) { }
13079
13080 #endif
13081
perf_event_init_cpu(unsigned int cpu)13082 int perf_event_init_cpu(unsigned int cpu)
13083 {
13084 struct perf_cpu_context *cpuctx;
13085 struct perf_event_context *ctx;
13086 struct pmu *pmu;
13087
13088 perf_swevent_init_cpu(cpu);
13089
13090 mutex_lock(&pmus_lock);
13091 cpumask_set_cpu(cpu, perf_online_mask);
13092 list_for_each_entry(pmu, &pmus, entry) {
13093 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13094 ctx = &cpuctx->ctx;
13095
13096 mutex_lock(&ctx->mutex);
13097 cpuctx->online = 1;
13098 mutex_unlock(&ctx->mutex);
13099 }
13100 mutex_unlock(&pmus_lock);
13101
13102 return 0;
13103 }
13104
perf_event_exit_cpu(unsigned int cpu)13105 int perf_event_exit_cpu(unsigned int cpu)
13106 {
13107 perf_event_exit_cpu_context(cpu);
13108 return 0;
13109 }
13110
13111 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13112 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13113 {
13114 int cpu;
13115
13116 for_each_online_cpu(cpu)
13117 perf_event_exit_cpu(cpu);
13118
13119 return NOTIFY_OK;
13120 }
13121
13122 /*
13123 * Run the perf reboot notifier at the very last possible moment so that
13124 * the generic watchdog code runs as long as possible.
13125 */
13126 static struct notifier_block perf_reboot_notifier = {
13127 .notifier_call = perf_reboot,
13128 .priority = INT_MIN,
13129 };
13130
perf_event_init(void)13131 void __init perf_event_init(void)
13132 {
13133 int ret;
13134
13135 idr_init(&pmu_idr);
13136
13137 perf_event_init_all_cpus();
13138 init_srcu_struct(&pmus_srcu);
13139 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13140 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13141 perf_pmu_register(&perf_task_clock, NULL, -1);
13142 perf_tp_register();
13143 perf_event_init_cpu(smp_processor_id());
13144 register_reboot_notifier(&perf_reboot_notifier);
13145
13146 ret = init_hw_breakpoint();
13147 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13148
13149 /*
13150 * Build time assertion that we keep the data_head at the intended
13151 * location. IOW, validation we got the __reserved[] size right.
13152 */
13153 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13154 != 1024);
13155 }
13156
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13157 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13158 char *page)
13159 {
13160 struct perf_pmu_events_attr *pmu_attr =
13161 container_of(attr, struct perf_pmu_events_attr, attr);
13162
13163 if (pmu_attr->event_str)
13164 return sprintf(page, "%s\n", pmu_attr->event_str);
13165
13166 return 0;
13167 }
13168 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13169
perf_event_sysfs_init(void)13170 static int __init perf_event_sysfs_init(void)
13171 {
13172 struct pmu *pmu;
13173 int ret;
13174
13175 mutex_lock(&pmus_lock);
13176
13177 ret = bus_register(&pmu_bus);
13178 if (ret)
13179 goto unlock;
13180
13181 list_for_each_entry(pmu, &pmus, entry) {
13182 if (!pmu->name || pmu->type < 0)
13183 continue;
13184
13185 ret = pmu_dev_alloc(pmu);
13186 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13187 }
13188 pmu_bus_running = 1;
13189 ret = 0;
13190
13191 unlock:
13192 mutex_unlock(&pmus_lock);
13193
13194 return ret;
13195 }
13196 device_initcall(perf_event_sysfs_init);
13197
13198 #ifdef CONFIG_CGROUP_PERF
13199 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13200 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13201 {
13202 struct perf_cgroup *jc;
13203
13204 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13205 if (!jc)
13206 return ERR_PTR(-ENOMEM);
13207
13208 jc->info = alloc_percpu(struct perf_cgroup_info);
13209 if (!jc->info) {
13210 kfree(jc);
13211 return ERR_PTR(-ENOMEM);
13212 }
13213
13214 return &jc->css;
13215 }
13216
perf_cgroup_css_free(struct cgroup_subsys_state * css)13217 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13218 {
13219 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13220
13221 free_percpu(jc->info);
13222 kfree(jc);
13223 }
13224
perf_cgroup_css_online(struct cgroup_subsys_state * css)13225 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13226 {
13227 perf_event_cgroup(css->cgroup);
13228 return 0;
13229 }
13230
__perf_cgroup_move(void * info)13231 static int __perf_cgroup_move(void *info)
13232 {
13233 struct task_struct *task = info;
13234 rcu_read_lock();
13235 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13236 rcu_read_unlock();
13237 return 0;
13238 }
13239
perf_cgroup_attach(struct cgroup_taskset * tset)13240 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13241 {
13242 struct task_struct *task;
13243 struct cgroup_subsys_state *css;
13244
13245 cgroup_taskset_for_each(task, css, tset)
13246 task_function_call(task, __perf_cgroup_move, task);
13247 }
13248
13249 struct cgroup_subsys perf_event_cgrp_subsys = {
13250 .css_alloc = perf_cgroup_css_alloc,
13251 .css_free = perf_cgroup_css_free,
13252 .css_online = perf_cgroup_css_online,
13253 .attach = perf_cgroup_attach,
13254 /*
13255 * Implicitly enable on dfl hierarchy so that perf events can
13256 * always be filtered by cgroup2 path as long as perf_event
13257 * controller is not mounted on a legacy hierarchy.
13258 */
13259 .implicit_on_dfl = true,
13260 .threaded = true,
13261 };
13262 #endif /* CONFIG_CGROUP_PERF */
13263