• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../io_uring/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 #include <trace/hooks/sched.h>
31 #include <trace/hooks/dtask.h>
32 
33 /*
34  * Export tracepoints that act as a bare tracehook (ie: have no trace event
35  * associated with them) to allow external modules to probe them.
36  */
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
50 #ifdef CONFIG_SCHEDSTATS
51 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
55 #endif
56 
57 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
58 EXPORT_SYMBOL_GPL(runqueues);
59 
60 #ifdef CONFIG_SCHED_DEBUG
61 /*
62  * Debugging: various feature bits
63  *
64  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
65  * sysctl_sched_features, defined in sched.h, to allow constants propagation
66  * at compile time and compiler optimization based on features default.
67  */
68 #define SCHED_FEAT(name, enabled)	\
69 	(1UL << __SCHED_FEAT_##name) * enabled |
70 const_debug unsigned int sysctl_sched_features =
71 #include "features.h"
72 	0;
73 EXPORT_SYMBOL_GPL(sysctl_sched_features);
74 #undef SCHED_FEAT
75 #endif
76 
77 /*
78  * Number of tasks to iterate in a single balance run.
79  * Limited because this is done with IRQs disabled.
80  */
81 const_debug unsigned int sysctl_sched_nr_migrate = 32;
82 
83 /*
84  * period over which we measure -rt task CPU usage in us.
85  * default: 1s
86  */
87 unsigned int sysctl_sched_rt_period = 1000000;
88 
89 __read_mostly int scheduler_running;
90 
91 /*
92  * part of the period that we allow rt tasks to run in us.
93  * default: 0.95s
94  */
95 int sysctl_sched_rt_runtime = 950000;
96 
97 
98 /*
99  * Serialization rules:
100  *
101  * Lock order:
102  *
103  *   p->pi_lock
104  *     rq->lock
105  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
106  *
107  *  rq1->lock
108  *    rq2->lock  where: rq1 < rq2
109  *
110  * Regular state:
111  *
112  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
113  * local CPU's rq->lock, it optionally removes the task from the runqueue and
114  * always looks at the local rq data structures to find the most elegible task
115  * to run next.
116  *
117  * Task enqueue is also under rq->lock, possibly taken from another CPU.
118  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
119  * the local CPU to avoid bouncing the runqueue state around [ see
120  * ttwu_queue_wakelist() ]
121  *
122  * Task wakeup, specifically wakeups that involve migration, are horribly
123  * complicated to avoid having to take two rq->locks.
124  *
125  * Special state:
126  *
127  * System-calls and anything external will use task_rq_lock() which acquires
128  * both p->pi_lock and rq->lock. As a consequence the state they change is
129  * stable while holding either lock:
130  *
131  *  - sched_setaffinity()/
132  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
133  *  - set_user_nice():		p->se.load, p->*prio
134  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
135  *				p->se.load, p->rt_priority,
136  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
137  *  - sched_setnuma():		p->numa_preferred_nid
138  *  - sched_move_task()/
139  *    cpu_cgroup_fork():	p->sched_task_group
140  *  - uclamp_update_active()	p->uclamp*
141  *
142  * p->state <- TASK_*:
143  *
144  *   is changed locklessly using set_current_state(), __set_current_state() or
145  *   set_special_state(), see their respective comments, or by
146  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
147  *   concurrent self.
148  *
149  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
150  *
151  *   is set by activate_task() and cleared by deactivate_task(), under
152  *   rq->lock. Non-zero indicates the task is runnable, the special
153  *   ON_RQ_MIGRATING state is used for migration without holding both
154  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
155  *
156  * p->on_cpu <- { 0, 1 }:
157  *
158  *   is set by prepare_task() and cleared by finish_task() such that it will be
159  *   set before p is scheduled-in and cleared after p is scheduled-out, both
160  *   under rq->lock. Non-zero indicates the task is running on its CPU.
161  *
162  *   [ The astute reader will observe that it is possible for two tasks on one
163  *     CPU to have ->on_cpu = 1 at the same time. ]
164  *
165  * task_cpu(p): is changed by set_task_cpu(), the rules are:
166  *
167  *  - Don't call set_task_cpu() on a blocked task:
168  *
169  *    We don't care what CPU we're not running on, this simplifies hotplug,
170  *    the CPU assignment of blocked tasks isn't required to be valid.
171  *
172  *  - for try_to_wake_up(), called under p->pi_lock:
173  *
174  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
175  *
176  *  - for migration called under rq->lock:
177  *    [ see task_on_rq_migrating() in task_rq_lock() ]
178  *
179  *    o move_queued_task()
180  *    o detach_task()
181  *
182  *  - for migration called under double_rq_lock():
183  *
184  *    o __migrate_swap_task()
185  *    o push_rt_task() / pull_rt_task()
186  *    o push_dl_task() / pull_dl_task()
187  *    o dl_task_offline_migration()
188  *
189  */
190 
191 /*
192  * __task_rq_lock - lock the rq @p resides on.
193  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)194 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
195 	__acquires(rq->lock)
196 {
197 	struct rq *rq;
198 
199 	lockdep_assert_held(&p->pi_lock);
200 
201 	for (;;) {
202 		rq = task_rq(p);
203 		raw_spin_lock(&rq->lock);
204 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
205 			rq_pin_lock(rq, rf);
206 			return rq;
207 		}
208 		raw_spin_unlock(&rq->lock);
209 
210 		while (unlikely(task_on_rq_migrating(p)))
211 			cpu_relax();
212 	}
213 }
214 EXPORT_SYMBOL_GPL(__task_rq_lock);
215 
216 /*
217  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
218  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)219 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
220 	__acquires(p->pi_lock)
221 	__acquires(rq->lock)
222 {
223 	struct rq *rq;
224 
225 	for (;;) {
226 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
227 		rq = task_rq(p);
228 		raw_spin_lock(&rq->lock);
229 		/*
230 		 *	move_queued_task()		task_rq_lock()
231 		 *
232 		 *	ACQUIRE (rq->lock)
233 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
234 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
235 		 *	[S] ->cpu = new_cpu		[L] task_rq()
236 		 *					[L] ->on_rq
237 		 *	RELEASE (rq->lock)
238 		 *
239 		 * If we observe the old CPU in task_rq_lock(), the acquire of
240 		 * the old rq->lock will fully serialize against the stores.
241 		 *
242 		 * If we observe the new CPU in task_rq_lock(), the address
243 		 * dependency headed by '[L] rq = task_rq()' and the acquire
244 		 * will pair with the WMB to ensure we then also see migrating.
245 		 */
246 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
247 			rq_pin_lock(rq, rf);
248 			return rq;
249 		}
250 		raw_spin_unlock(&rq->lock);
251 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
252 
253 		while (unlikely(task_on_rq_migrating(p)))
254 			cpu_relax();
255 	}
256 }
257 EXPORT_SYMBOL_GPL(task_rq_lock);
258 
259 /*
260  * RQ-clock updating methods:
261  */
262 
update_rq_clock_task(struct rq * rq,s64 delta)263 static void update_rq_clock_task(struct rq *rq, s64 delta)
264 {
265 /*
266  * In theory, the compile should just see 0 here, and optimize out the call
267  * to sched_rt_avg_update. But I don't trust it...
268  */
269 	s64 __maybe_unused steal = 0, irq_delta = 0;
270 
271 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
272 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
273 
274 	/*
275 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
276 	 * this case when a previous update_rq_clock() happened inside a
277 	 * {soft,}irq region.
278 	 *
279 	 * When this happens, we stop ->clock_task and only update the
280 	 * prev_irq_time stamp to account for the part that fit, so that a next
281 	 * update will consume the rest. This ensures ->clock_task is
282 	 * monotonic.
283 	 *
284 	 * It does however cause some slight miss-attribution of {soft,}irq
285 	 * time, a more accurate solution would be to update the irq_time using
286 	 * the current rq->clock timestamp, except that would require using
287 	 * atomic ops.
288 	 */
289 	if (irq_delta > delta)
290 		irq_delta = delta;
291 
292 	rq->prev_irq_time += irq_delta;
293 	delta -= irq_delta;
294 #endif
295 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
296 	if (static_key_false((&paravirt_steal_rq_enabled))) {
297 		steal = paravirt_steal_clock(cpu_of(rq));
298 		steal -= rq->prev_steal_time_rq;
299 
300 		if (unlikely(steal > delta))
301 			steal = delta;
302 
303 		rq->prev_steal_time_rq += steal;
304 		delta -= steal;
305 	}
306 #endif
307 
308 	rq->clock_task += delta;
309 
310 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
311 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
312 		update_irq_load_avg(rq, irq_delta + steal);
313 #endif
314 	update_rq_clock_pelt(rq, delta);
315 }
316 
update_rq_clock(struct rq * rq)317 void update_rq_clock(struct rq *rq)
318 {
319 	s64 delta;
320 
321 	lockdep_assert_held(&rq->lock);
322 
323 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
324 		return;
325 
326 #ifdef CONFIG_SCHED_DEBUG
327 	if (sched_feat(WARN_DOUBLE_CLOCK))
328 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
329 	rq->clock_update_flags |= RQCF_UPDATED;
330 #endif
331 
332 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
333 	if (delta < 0)
334 		return;
335 	rq->clock += delta;
336 	update_rq_clock_task(rq, delta);
337 }
338 EXPORT_SYMBOL_GPL(update_rq_clock);
339 
340 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)341 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
342 {
343 	csd->flags = 0;
344 	csd->func = func;
345 	csd->info = rq;
346 }
347 
348 #ifdef CONFIG_SCHED_HRTICK
349 /*
350  * Use HR-timers to deliver accurate preemption points.
351  */
352 
hrtick_clear(struct rq * rq)353 static void hrtick_clear(struct rq *rq)
354 {
355 	if (hrtimer_active(&rq->hrtick_timer))
356 		hrtimer_cancel(&rq->hrtick_timer);
357 }
358 
359 /*
360  * High-resolution timer tick.
361  * Runs from hardirq context with interrupts disabled.
362  */
hrtick(struct hrtimer * timer)363 static enum hrtimer_restart hrtick(struct hrtimer *timer)
364 {
365 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
366 	struct rq_flags rf;
367 
368 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
369 
370 	rq_lock(rq, &rf);
371 	update_rq_clock(rq);
372 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
373 	rq_unlock(rq, &rf);
374 
375 	return HRTIMER_NORESTART;
376 }
377 
378 #ifdef CONFIG_SMP
379 
__hrtick_restart(struct rq * rq)380 static void __hrtick_restart(struct rq *rq)
381 {
382 	struct hrtimer *timer = &rq->hrtick_timer;
383 	ktime_t time = rq->hrtick_time;
384 
385 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
386 }
387 
388 /*
389  * called from hardirq (IPI) context
390  */
__hrtick_start(void * arg)391 static void __hrtick_start(void *arg)
392 {
393 	struct rq *rq = arg;
394 	struct rq_flags rf;
395 
396 	rq_lock(rq, &rf);
397 	__hrtick_restart(rq);
398 	rq_unlock(rq, &rf);
399 }
400 
401 /*
402  * Called to set the hrtick timer state.
403  *
404  * called with rq->lock held and irqs disabled
405  */
hrtick_start(struct rq * rq,u64 delay)406 void hrtick_start(struct rq *rq, u64 delay)
407 {
408 	struct hrtimer *timer = &rq->hrtick_timer;
409 	s64 delta;
410 
411 	/*
412 	 * Don't schedule slices shorter than 10000ns, that just
413 	 * doesn't make sense and can cause timer DoS.
414 	 */
415 	delta = max_t(s64, delay, 10000LL);
416 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
417 
418 	if (rq == this_rq())
419 		__hrtick_restart(rq);
420 	else
421 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
422 }
423 
424 #else
425 /*
426  * Called to set the hrtick timer state.
427  *
428  * called with rq->lock held and irqs disabled
429  */
hrtick_start(struct rq * rq,u64 delay)430 void hrtick_start(struct rq *rq, u64 delay)
431 {
432 	/*
433 	 * Don't schedule slices shorter than 10000ns, that just
434 	 * doesn't make sense. Rely on vruntime for fairness.
435 	 */
436 	delay = max_t(u64, delay, 10000LL);
437 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
438 		      HRTIMER_MODE_REL_PINNED_HARD);
439 }
440 
441 #endif /* CONFIG_SMP */
442 
hrtick_rq_init(struct rq * rq)443 static void hrtick_rq_init(struct rq *rq)
444 {
445 #ifdef CONFIG_SMP
446 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
447 #endif
448 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
449 	rq->hrtick_timer.function = hrtick;
450 }
451 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)452 static inline void hrtick_clear(struct rq *rq)
453 {
454 }
455 
hrtick_rq_init(struct rq * rq)456 static inline void hrtick_rq_init(struct rq *rq)
457 {
458 }
459 #endif	/* CONFIG_SCHED_HRTICK */
460 
461 /*
462  * cmpxchg based fetch_or, macro so it works for different integer types
463  */
464 #define fetch_or(ptr, mask)						\
465 	({								\
466 		typeof(ptr) _ptr = (ptr);				\
467 		typeof(mask) _mask = (mask);				\
468 		typeof(*_ptr) _old, _val = *_ptr;			\
469 									\
470 		for (;;) {						\
471 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
472 			if (_old == _val)				\
473 				break;					\
474 			_val = _old;					\
475 		}							\
476 	_old;								\
477 })
478 
479 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
480 /*
481  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
482  * this avoids any races wrt polling state changes and thereby avoids
483  * spurious IPIs.
484  */
set_nr_and_not_polling(struct task_struct * p)485 static bool set_nr_and_not_polling(struct task_struct *p)
486 {
487 	struct thread_info *ti = task_thread_info(p);
488 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
489 }
490 
491 /*
492  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
493  *
494  * If this returns true, then the idle task promises to call
495  * sched_ttwu_pending() and reschedule soon.
496  */
set_nr_if_polling(struct task_struct * p)497 static bool set_nr_if_polling(struct task_struct *p)
498 {
499 	struct thread_info *ti = task_thread_info(p);
500 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
501 
502 	for (;;) {
503 		if (!(val & _TIF_POLLING_NRFLAG))
504 			return false;
505 		if (val & _TIF_NEED_RESCHED)
506 			return true;
507 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
508 		if (old == val)
509 			break;
510 		val = old;
511 	}
512 	return true;
513 }
514 
515 #else
set_nr_and_not_polling(struct task_struct * p)516 static bool set_nr_and_not_polling(struct task_struct *p)
517 {
518 	set_tsk_need_resched(p);
519 	return true;
520 }
521 
522 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)523 static bool set_nr_if_polling(struct task_struct *p)
524 {
525 	return false;
526 }
527 #endif
528 #endif
529 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)530 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
531 {
532 	struct wake_q_node *node = &task->wake_q;
533 
534 	/*
535 	 * Atomically grab the task, if ->wake_q is !nil already it means
536 	 * its already queued (either by us or someone else) and will get the
537 	 * wakeup due to that.
538 	 *
539 	 * In order to ensure that a pending wakeup will observe our pending
540 	 * state, even in the failed case, an explicit smp_mb() must be used.
541 	 */
542 	smp_mb__before_atomic();
543 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
544 		return false;
545 
546 	/*
547 	 * The head is context local, there can be no concurrency.
548 	 */
549 	*head->lastp = node;
550 	head->lastp = &node->next;
551 	head->count++;
552 	return true;
553 }
554 
555 /**
556  * wake_q_add() - queue a wakeup for 'later' waking.
557  * @head: the wake_q_head to add @task to
558  * @task: the task to queue for 'later' wakeup
559  *
560  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
561  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
562  * instantly.
563  *
564  * This function must be used as-if it were wake_up_process(); IOW the task
565  * must be ready to be woken at this location.
566  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)567 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
568 {
569 	if (__wake_q_add(head, task))
570 		get_task_struct(task);
571 }
572 
573 /**
574  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
575  * @head: the wake_q_head to add @task to
576  * @task: the task to queue for 'later' wakeup
577  *
578  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
579  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
580  * instantly.
581  *
582  * This function must be used as-if it were wake_up_process(); IOW the task
583  * must be ready to be woken at this location.
584  *
585  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
586  * that already hold reference to @task can call the 'safe' version and trust
587  * wake_q to do the right thing depending whether or not the @task is already
588  * queued for wakeup.
589  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)590 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
591 {
592 	if (!__wake_q_add(head, task))
593 		put_task_struct(task);
594 }
595 
wake_up_q(struct wake_q_head * head)596 void wake_up_q(struct wake_q_head *head)
597 {
598 	struct wake_q_node *node = head->first;
599 
600 	while (node != WAKE_Q_TAIL) {
601 		struct task_struct *task;
602 
603 		task = container_of(node, struct task_struct, wake_q);
604 		BUG_ON(!task);
605 		/* Task can safely be re-inserted now: */
606 		node = node->next;
607 		task->wake_q.next = NULL;
608 		task->wake_q_count = head->count;
609 
610 		/*
611 		 * wake_up_process() executes a full barrier, which pairs with
612 		 * the queueing in wake_q_add() so as not to miss wakeups.
613 		 */
614 		wake_up_process(task);
615 		task->wake_q_count = 0;
616 		put_task_struct(task);
617 	}
618 }
619 
620 /*
621  * resched_curr - mark rq's current task 'to be rescheduled now'.
622  *
623  * On UP this means the setting of the need_resched flag, on SMP it
624  * might also involve a cross-CPU call to trigger the scheduler on
625  * the target CPU.
626  */
resched_curr(struct rq * rq)627 void resched_curr(struct rq *rq)
628 {
629 	struct task_struct *curr = rq->curr;
630 	int cpu;
631 
632 	lockdep_assert_held(&rq->lock);
633 
634 	if (test_tsk_need_resched(curr))
635 		return;
636 
637 	cpu = cpu_of(rq);
638 
639 	if (cpu == smp_processor_id()) {
640 		set_tsk_need_resched(curr);
641 		set_preempt_need_resched();
642 		return;
643 	}
644 
645 	if (set_nr_and_not_polling(curr))
646 		smp_send_reschedule(cpu);
647 	else
648 		trace_sched_wake_idle_without_ipi(cpu);
649 }
650 EXPORT_SYMBOL_GPL(resched_curr);
651 
resched_cpu(int cpu)652 void resched_cpu(int cpu)
653 {
654 	struct rq *rq = cpu_rq(cpu);
655 	unsigned long flags;
656 
657 	raw_spin_lock_irqsave(&rq->lock, flags);
658 	if (cpu_online(cpu) || cpu == smp_processor_id())
659 		resched_curr(rq);
660 	raw_spin_unlock_irqrestore(&rq->lock, flags);
661 }
662 
663 #ifdef CONFIG_SMP
664 #ifdef CONFIG_NO_HZ_COMMON
665 /*
666  * In the semi idle case, use the nearest busy CPU for migrating timers
667  * from an idle CPU.  This is good for power-savings.
668  *
669  * We don't do similar optimization for completely idle system, as
670  * selecting an idle CPU will add more delays to the timers than intended
671  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
672  */
get_nohz_timer_target(void)673 int get_nohz_timer_target(void)
674 {
675 	int i, cpu = smp_processor_id(), default_cpu = -1;
676 	struct sched_domain *sd;
677 
678 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER) && cpu_active(cpu)) {
679 		if (!idle_cpu(cpu))
680 			return cpu;
681 		default_cpu = cpu;
682 	}
683 
684 	rcu_read_lock();
685 	for_each_domain(cpu, sd) {
686 		for_each_cpu_and(i, sched_domain_span(sd),
687 			housekeeping_cpumask(HK_FLAG_TIMER)) {
688 			if (cpu == i)
689 				continue;
690 
691 			if (!idle_cpu(i)) {
692 				cpu = i;
693 				goto unlock;
694 			}
695 		}
696 	}
697 
698 	if (default_cpu == -1) {
699 		for_each_cpu_and(i, cpu_active_mask,
700 				 housekeeping_cpumask(HK_FLAG_TIMER)) {
701 			if (cpu == i)
702 				continue;
703 
704 			if (!idle_cpu(i)) {
705 				cpu = i;
706 				goto unlock;
707 			}
708 		}
709 
710 		/* no active, not-idle, housekpeeing CPU found. */
711 		default_cpu = cpumask_any(cpu_active_mask);
712 
713 		if (unlikely(default_cpu >= nr_cpu_ids))
714 			goto unlock;
715 	}
716 
717 	cpu = default_cpu;
718 unlock:
719 	rcu_read_unlock();
720 	return cpu;
721 }
722 
723 /*
724  * When add_timer_on() enqueues a timer into the timer wheel of an
725  * idle CPU then this timer might expire before the next timer event
726  * which is scheduled to wake up that CPU. In case of a completely
727  * idle system the next event might even be infinite time into the
728  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
729  * leaves the inner idle loop so the newly added timer is taken into
730  * account when the CPU goes back to idle and evaluates the timer
731  * wheel for the next timer event.
732  */
wake_up_idle_cpu(int cpu)733 static void wake_up_idle_cpu(int cpu)
734 {
735 	struct rq *rq = cpu_rq(cpu);
736 
737 	if (cpu == smp_processor_id())
738 		return;
739 
740 	if (set_nr_and_not_polling(rq->idle))
741 		smp_send_reschedule(cpu);
742 	else
743 		trace_sched_wake_idle_without_ipi(cpu);
744 }
745 
wake_up_full_nohz_cpu(int cpu)746 static bool wake_up_full_nohz_cpu(int cpu)
747 {
748 	/*
749 	 * We just need the target to call irq_exit() and re-evaluate
750 	 * the next tick. The nohz full kick at least implies that.
751 	 * If needed we can still optimize that later with an
752 	 * empty IRQ.
753 	 */
754 	if (cpu_is_offline(cpu))
755 		return true;  /* Don't try to wake offline CPUs. */
756 	if (tick_nohz_full_cpu(cpu)) {
757 		if (cpu != smp_processor_id() ||
758 		    tick_nohz_tick_stopped())
759 			tick_nohz_full_kick_cpu(cpu);
760 		return true;
761 	}
762 
763 	return false;
764 }
765 
766 /*
767  * Wake up the specified CPU.  If the CPU is going offline, it is the
768  * caller's responsibility to deal with the lost wakeup, for example,
769  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
770  */
wake_up_nohz_cpu(int cpu)771 void wake_up_nohz_cpu(int cpu)
772 {
773 	if (!wake_up_full_nohz_cpu(cpu))
774 		wake_up_idle_cpu(cpu);
775 }
776 
nohz_csd_func(void * info)777 static void nohz_csd_func(void *info)
778 {
779 	struct rq *rq = info;
780 	int cpu = cpu_of(rq);
781 	unsigned int flags;
782 
783 	/*
784 	 * Release the rq::nohz_csd.
785 	 */
786 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
787 	WARN_ON(!(flags & NOHZ_KICK_MASK));
788 
789 	rq->idle_balance = idle_cpu(cpu);
790 	if (rq->idle_balance && !need_resched()) {
791 		rq->nohz_idle_balance = flags;
792 		raise_softirq_irqoff(SCHED_SOFTIRQ);
793 	}
794 }
795 
796 #endif /* CONFIG_NO_HZ_COMMON */
797 
798 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)799 bool sched_can_stop_tick(struct rq *rq)
800 {
801 	int fifo_nr_running;
802 
803 	/* Deadline tasks, even if single, need the tick */
804 	if (rq->dl.dl_nr_running)
805 		return false;
806 
807 	/*
808 	 * If there are more than one RR tasks, we need the tick to effect the
809 	 * actual RR behaviour.
810 	 */
811 	if (rq->rt.rr_nr_running) {
812 		if (rq->rt.rr_nr_running == 1)
813 			return true;
814 		else
815 			return false;
816 	}
817 
818 	/*
819 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
820 	 * forced preemption between FIFO tasks.
821 	 */
822 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
823 	if (fifo_nr_running)
824 		return true;
825 
826 	/*
827 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
828 	 * if there's more than one we need the tick for involuntary
829 	 * preemption.
830 	 */
831 	if (rq->nr_running > 1)
832 		return false;
833 
834 	return true;
835 }
836 #endif /* CONFIG_NO_HZ_FULL */
837 #endif /* CONFIG_SMP */
838 
839 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
840 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
841 /*
842  * Iterate task_group tree rooted at *from, calling @down when first entering a
843  * node and @up when leaving it for the final time.
844  *
845  * Caller must hold rcu_lock or sufficient equivalent.
846  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)847 int walk_tg_tree_from(struct task_group *from,
848 			     tg_visitor down, tg_visitor up, void *data)
849 {
850 	struct task_group *parent, *child;
851 	int ret;
852 
853 	parent = from;
854 
855 down:
856 	ret = (*down)(parent, data);
857 	if (ret)
858 		goto out;
859 	list_for_each_entry_rcu(child, &parent->children, siblings) {
860 		parent = child;
861 		goto down;
862 
863 up:
864 		continue;
865 	}
866 	ret = (*up)(parent, data);
867 	if (ret || parent == from)
868 		goto out;
869 
870 	child = parent;
871 	parent = parent->parent;
872 	if (parent)
873 		goto up;
874 out:
875 	return ret;
876 }
877 
tg_nop(struct task_group * tg,void * data)878 int tg_nop(struct task_group *tg, void *data)
879 {
880 	return 0;
881 }
882 #endif
883 
set_load_weight(struct task_struct * p)884 static void set_load_weight(struct task_struct *p)
885 {
886 	bool update_load = !(READ_ONCE(p->state) & TASK_NEW);
887 	int prio = p->static_prio - MAX_RT_PRIO;
888 	struct load_weight *load = &p->se.load;
889 
890 	/*
891 	 * SCHED_IDLE tasks get minimal weight:
892 	 */
893 	if (task_has_idle_policy(p)) {
894 		load->weight = scale_load(WEIGHT_IDLEPRIO);
895 		load->inv_weight = WMULT_IDLEPRIO;
896 		return;
897 	}
898 
899 	/*
900 	 * SCHED_OTHER tasks have to update their load when changing their
901 	 * weight
902 	 */
903 	if (update_load && p->sched_class == &fair_sched_class) {
904 		reweight_task(p, prio);
905 	} else {
906 		load->weight = scale_load(sched_prio_to_weight[prio]);
907 		load->inv_weight = sched_prio_to_wmult[prio];
908 	}
909 }
910 
911 #ifdef CONFIG_UCLAMP_TASK
912 /*
913  * Serializes updates of utilization clamp values
914  *
915  * The (slow-path) user-space triggers utilization clamp value updates which
916  * can require updates on (fast-path) scheduler's data structures used to
917  * support enqueue/dequeue operations.
918  * While the per-CPU rq lock protects fast-path update operations, user-space
919  * requests are serialized using a mutex to reduce the risk of conflicting
920  * updates or API abuses.
921  */
922 static DEFINE_MUTEX(uclamp_mutex);
923 
924 /* Max allowed minimum utilization */
925 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
926 
927 /* Max allowed maximum utilization */
928 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
929 
930 /*
931  * By default RT tasks run at the maximum performance point/capacity of the
932  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
933  * SCHED_CAPACITY_SCALE.
934  *
935  * This knob allows admins to change the default behavior when uclamp is being
936  * used. In battery powered devices, particularly, running at the maximum
937  * capacity and frequency will increase energy consumption and shorten the
938  * battery life.
939  *
940  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
941  *
942  * This knob will not override the system default sched_util_clamp_min defined
943  * above.
944  */
945 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
946 
947 /* All clamps are required to be less or equal than these values */
948 static struct uclamp_se uclamp_default[UCLAMP_CNT];
949 
950 /*
951  * This static key is used to reduce the uclamp overhead in the fast path. It
952  * primarily disables the call to uclamp_rq_{inc, dec}() in
953  * enqueue/dequeue_task().
954  *
955  * This allows users to continue to enable uclamp in their kernel config with
956  * minimum uclamp overhead in the fast path.
957  *
958  * As soon as userspace modifies any of the uclamp knobs, the static key is
959  * enabled, since we have an actual users that make use of uclamp
960  * functionality.
961  *
962  * The knobs that would enable this static key are:
963  *
964  *   * A task modifying its uclamp value with sched_setattr().
965  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
966  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
967  */
968 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
969 EXPORT_SYMBOL_GPL(sched_uclamp_used);
970 
971 /* Integer rounded range for each bucket */
972 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
973 
974 #define for_each_clamp_id(clamp_id) \
975 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
976 
uclamp_bucket_id(unsigned int clamp_value)977 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
978 {
979 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
980 }
981 
uclamp_none(enum uclamp_id clamp_id)982 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
983 {
984 	if (clamp_id == UCLAMP_MIN)
985 		return 0;
986 	return SCHED_CAPACITY_SCALE;
987 }
988 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)989 static inline void uclamp_se_set(struct uclamp_se *uc_se,
990 				 unsigned int value, bool user_defined)
991 {
992 	uc_se->value = value;
993 	uc_se->bucket_id = uclamp_bucket_id(value);
994 	uc_se->user_defined = user_defined;
995 }
996 
997 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)998 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
999 		  unsigned int clamp_value)
1000 {
1001 	/*
1002 	 * Avoid blocked utilization pushing up the frequency when we go
1003 	 * idle (which drops the max-clamp) by retaining the last known
1004 	 * max-clamp.
1005 	 */
1006 	if (clamp_id == UCLAMP_MAX) {
1007 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1008 		return clamp_value;
1009 	}
1010 
1011 	return uclamp_none(UCLAMP_MIN);
1012 }
1013 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1014 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1015 				     unsigned int clamp_value)
1016 {
1017 	/* Reset max-clamp retention only on idle exit */
1018 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1019 		return;
1020 
1021 	uclamp_rq_set(rq, clamp_id, clamp_value);
1022 }
1023 
1024 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1025 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1026 				   unsigned int clamp_value)
1027 {
1028 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1029 	int bucket_id = UCLAMP_BUCKETS - 1;
1030 
1031 	/*
1032 	 * Since both min and max clamps are max aggregated, find the
1033 	 * top most bucket with tasks in.
1034 	 */
1035 	for ( ; bucket_id >= 0; bucket_id--) {
1036 		if (!bucket[bucket_id].tasks)
1037 			continue;
1038 		return bucket[bucket_id].value;
1039 	}
1040 
1041 	/* No tasks -- default clamp values */
1042 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1043 }
1044 
__uclamp_update_util_min_rt_default(struct task_struct * p)1045 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1046 {
1047 	unsigned int default_util_min;
1048 	struct uclamp_se *uc_se;
1049 
1050 	lockdep_assert_held(&p->pi_lock);
1051 
1052 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1053 
1054 	/* Only sync if user didn't override the default */
1055 	if (uc_se->user_defined)
1056 		return;
1057 
1058 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1059 	uclamp_se_set(uc_se, default_util_min, false);
1060 }
1061 
uclamp_update_util_min_rt_default(struct task_struct * p)1062 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1063 {
1064 	struct rq_flags rf;
1065 	struct rq *rq;
1066 
1067 	if (!rt_task(p))
1068 		return;
1069 
1070 	/* Protect updates to p->uclamp_* */
1071 	rq = task_rq_lock(p, &rf);
1072 	__uclamp_update_util_min_rt_default(p);
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
uclamp_sync_util_min_rt_default(void)1076 static void uclamp_sync_util_min_rt_default(void)
1077 {
1078 	struct task_struct *g, *p;
1079 
1080 	/*
1081 	 * copy_process()			sysctl_uclamp
1082 	 *					  uclamp_min_rt = X;
1083 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1084 	 *   // link thread			  smp_mb__after_spinlock()
1085 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1086 	 *   sched_post_fork()			  for_each_process_thread()
1087 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1088 	 *
1089 	 * Ensures that either sched_post_fork() will observe the new
1090 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1091 	 * task.
1092 	 */
1093 	read_lock(&tasklist_lock);
1094 	smp_mb__after_spinlock();
1095 	read_unlock(&tasklist_lock);
1096 
1097 	rcu_read_lock();
1098 	for_each_process_thread(g, p)
1099 		uclamp_update_util_min_rt_default(p);
1100 	rcu_read_unlock();
1101 }
1102 
1103 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1104 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1105 {
1106 	/* Copy by value as we could modify it */
1107 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1108 #ifdef CONFIG_UCLAMP_TASK_GROUP
1109 	unsigned int tg_min, tg_max, value;
1110 
1111 	/*
1112 	 * Tasks in autogroups or root task group will be
1113 	 * restricted by system defaults.
1114 	 */
1115 	if (task_group_is_autogroup(task_group(p)))
1116 		return uc_req;
1117 	if (task_group(p) == &root_task_group)
1118 		return uc_req;
1119 
1120 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1121 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1122 	value = uc_req.value;
1123 	value = clamp(value, tg_min, tg_max);
1124 	uclamp_se_set(&uc_req, value, false);
1125 #endif
1126 
1127 	return uc_req;
1128 }
1129 
1130 /*
1131  * The effective clamp bucket index of a task depends on, by increasing
1132  * priority:
1133  * - the task specific clamp value, when explicitly requested from userspace
1134  * - the task group effective clamp value, for tasks not either in the root
1135  *   group or in an autogroup
1136  * - the system default clamp value, defined by the sysadmin
1137  */
1138 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1139 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1140 {
1141 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1142 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1143 	struct uclamp_se uc_eff;
1144 	int ret = 0;
1145 
1146 	trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1147 	if (ret)
1148 		return uc_eff;
1149 
1150 	/* System default restrictions always apply */
1151 	if (unlikely(uc_req.value > uc_max.value))
1152 		return uc_max;
1153 
1154 	return uc_req;
1155 }
1156 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1157 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1158 {
1159 	struct uclamp_se uc_eff;
1160 
1161 	/* Task currently refcounted: use back-annotated (effective) value */
1162 	if (p->uclamp[clamp_id].active)
1163 		return (unsigned long)p->uclamp[clamp_id].value;
1164 
1165 	uc_eff = uclamp_eff_get(p, clamp_id);
1166 
1167 	return (unsigned long)uc_eff.value;
1168 }
1169 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1170 
1171 /*
1172  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1173  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1174  * updates the rq's clamp value if required.
1175  *
1176  * Tasks can have a task-specific value requested from user-space, track
1177  * within each bucket the maximum value for tasks refcounted in it.
1178  * This "local max aggregation" allows to track the exact "requested" value
1179  * for each bucket when all its RUNNABLE tasks require the same clamp.
1180  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1181 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1182 				    enum uclamp_id clamp_id)
1183 {
1184 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1185 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1186 	struct uclamp_bucket *bucket;
1187 
1188 	lockdep_assert_held(&rq->lock);
1189 
1190 	/* Update task effective clamp */
1191 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1192 
1193 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1194 	bucket->tasks++;
1195 	uc_se->active = true;
1196 
1197 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1198 
1199 	/*
1200 	 * Local max aggregation: rq buckets always track the max
1201 	 * "requested" clamp value of its RUNNABLE tasks.
1202 	 */
1203 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1204 		bucket->value = uc_se->value;
1205 
1206 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1207 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1208 }
1209 
1210 /*
1211  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1212  * is released. If this is the last task reference counting the rq's max
1213  * active clamp value, then the rq's clamp value is updated.
1214  *
1215  * Both refcounted tasks and rq's cached clamp values are expected to be
1216  * always valid. If it's detected they are not, as defensive programming,
1217  * enforce the expected state and warn.
1218  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1219 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1220 				    enum uclamp_id clamp_id)
1221 {
1222 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1223 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1224 	struct uclamp_bucket *bucket;
1225 	unsigned int bkt_clamp;
1226 	unsigned int rq_clamp;
1227 
1228 	lockdep_assert_held(&rq->lock);
1229 
1230 	/*
1231 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1232 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1233 	 *
1234 	 * In this case the uc_se->active flag should be false since no uclamp
1235 	 * accounting was performed at enqueue time and we can just return
1236 	 * here.
1237 	 *
1238 	 * Need to be careful of the following enqeueue/dequeue ordering
1239 	 * problem too
1240 	 *
1241 	 *	enqueue(taskA)
1242 	 *	// sched_uclamp_used gets enabled
1243 	 *	enqueue(taskB)
1244 	 *	dequeue(taskA)
1245 	 *	// Must not decrement bukcet->tasks here
1246 	 *	dequeue(taskB)
1247 	 *
1248 	 * where we could end up with stale data in uc_se and
1249 	 * bucket[uc_se->bucket_id].
1250 	 *
1251 	 * The following check here eliminates the possibility of such race.
1252 	 */
1253 	if (unlikely(!uc_se->active))
1254 		return;
1255 
1256 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1257 
1258 	SCHED_WARN_ON(!bucket->tasks);
1259 	if (likely(bucket->tasks))
1260 		bucket->tasks--;
1261 
1262 	uc_se->active = false;
1263 
1264 	/*
1265 	 * Keep "local max aggregation" simple and accept to (possibly)
1266 	 * overboost some RUNNABLE tasks in the same bucket.
1267 	 * The rq clamp bucket value is reset to its base value whenever
1268 	 * there are no more RUNNABLE tasks refcounting it.
1269 	 */
1270 	if (likely(bucket->tasks))
1271 		return;
1272 
1273 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1274 	/*
1275 	 * Defensive programming: this should never happen. If it happens,
1276 	 * e.g. due to future modification, warn and fixup the expected value.
1277 	 */
1278 	SCHED_WARN_ON(bucket->value > rq_clamp);
1279 	if (bucket->value >= rq_clamp) {
1280 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1281 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1282 	}
1283 }
1284 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1285 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1286 {
1287 	enum uclamp_id clamp_id;
1288 
1289 	/*
1290 	 * Avoid any overhead until uclamp is actually used by the userspace.
1291 	 *
1292 	 * The condition is constructed such that a NOP is generated when
1293 	 * sched_uclamp_used is disabled.
1294 	 */
1295 	if (!static_branch_unlikely(&sched_uclamp_used))
1296 		return;
1297 
1298 	if (unlikely(!p->sched_class->uclamp_enabled))
1299 		return;
1300 
1301 	for_each_clamp_id(clamp_id)
1302 		uclamp_rq_inc_id(rq, p, clamp_id);
1303 
1304 	/* Reset clamp idle holding when there is one RUNNABLE task */
1305 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1306 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1307 }
1308 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1309 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1310 {
1311 	enum uclamp_id clamp_id;
1312 
1313 	/*
1314 	 * Avoid any overhead until uclamp is actually used by the userspace.
1315 	 *
1316 	 * The condition is constructed such that a NOP is generated when
1317 	 * sched_uclamp_used is disabled.
1318 	 */
1319 	if (!static_branch_unlikely(&sched_uclamp_used))
1320 		return;
1321 
1322 	if (unlikely(!p->sched_class->uclamp_enabled))
1323 		return;
1324 
1325 	for_each_clamp_id(clamp_id)
1326 		uclamp_rq_dec_id(rq, p, clamp_id);
1327 }
1328 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1329 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1330 				      enum uclamp_id clamp_id)
1331 {
1332 	if (!p->uclamp[clamp_id].active)
1333 		return;
1334 
1335 	uclamp_rq_dec_id(rq, p, clamp_id);
1336 	uclamp_rq_inc_id(rq, p, clamp_id);
1337 
1338 	/*
1339 	 * Make sure to clear the idle flag if we've transiently reached 0
1340 	 * active tasks on rq.
1341 	 */
1342 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1343 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1344 }
1345 
1346 static inline void
uclamp_update_active(struct task_struct * p)1347 uclamp_update_active(struct task_struct *p)
1348 {
1349 	enum uclamp_id clamp_id;
1350 	struct rq_flags rf;
1351 	struct rq *rq;
1352 
1353 	/*
1354 	 * Lock the task and the rq where the task is (or was) queued.
1355 	 *
1356 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1357 	 * price to pay to safely serialize util_{min,max} updates with
1358 	 * enqueues, dequeues and migration operations.
1359 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1360 	 */
1361 	rq = task_rq_lock(p, &rf);
1362 
1363 	/*
1364 	 * Setting the clamp bucket is serialized by task_rq_lock().
1365 	 * If the task is not yet RUNNABLE and its task_struct is not
1366 	 * affecting a valid clamp bucket, the next time it's enqueued,
1367 	 * it will already see the updated clamp bucket value.
1368 	 */
1369 	for_each_clamp_id(clamp_id)
1370 		uclamp_rq_reinc_id(rq, p, clamp_id);
1371 
1372 	task_rq_unlock(rq, p, &rf);
1373 }
1374 
1375 #ifdef CONFIG_UCLAMP_TASK_GROUP
1376 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1377 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1378 {
1379 	struct css_task_iter it;
1380 	struct task_struct *p;
1381 
1382 	css_task_iter_start(css, 0, &it);
1383 	while ((p = css_task_iter_next(&it)))
1384 		uclamp_update_active(p);
1385 	css_task_iter_end(&it);
1386 }
1387 
1388 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1389 static void uclamp_update_root_tg(void)
1390 {
1391 	struct task_group *tg = &root_task_group;
1392 
1393 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1394 		      sysctl_sched_uclamp_util_min, false);
1395 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1396 		      sysctl_sched_uclamp_util_max, false);
1397 
1398 	rcu_read_lock();
1399 	cpu_util_update_eff(&root_task_group.css);
1400 	rcu_read_unlock();
1401 }
1402 #else
uclamp_update_root_tg(void)1403 static void uclamp_update_root_tg(void) { }
1404 #endif
1405 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1406 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1407 				void *buffer, size_t *lenp, loff_t *ppos)
1408 {
1409 	bool update_root_tg = false;
1410 	int old_min, old_max, old_min_rt;
1411 	int result;
1412 
1413 	mutex_lock(&uclamp_mutex);
1414 	old_min = sysctl_sched_uclamp_util_min;
1415 	old_max = sysctl_sched_uclamp_util_max;
1416 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1417 
1418 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1419 	if (result)
1420 		goto undo;
1421 	if (!write)
1422 		goto done;
1423 
1424 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1425 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1426 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1427 
1428 		result = -EINVAL;
1429 		goto undo;
1430 	}
1431 
1432 	if (old_min != sysctl_sched_uclamp_util_min) {
1433 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1434 			      sysctl_sched_uclamp_util_min, false);
1435 		update_root_tg = true;
1436 	}
1437 	if (old_max != sysctl_sched_uclamp_util_max) {
1438 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1439 			      sysctl_sched_uclamp_util_max, false);
1440 		update_root_tg = true;
1441 	}
1442 
1443 	if (update_root_tg) {
1444 		static_branch_enable(&sched_uclamp_used);
1445 		uclamp_update_root_tg();
1446 	}
1447 
1448 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1449 		static_branch_enable(&sched_uclamp_used);
1450 		uclamp_sync_util_min_rt_default();
1451 	}
1452 
1453 	/*
1454 	 * We update all RUNNABLE tasks only when task groups are in use.
1455 	 * Otherwise, keep it simple and do just a lazy update at each next
1456 	 * task enqueue time.
1457 	 */
1458 
1459 	goto done;
1460 
1461 undo:
1462 	sysctl_sched_uclamp_util_min = old_min;
1463 	sysctl_sched_uclamp_util_max = old_max;
1464 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1465 done:
1466 	mutex_unlock(&uclamp_mutex);
1467 
1468 	return result;
1469 }
1470 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1471 static int uclamp_validate(struct task_struct *p,
1472 			   const struct sched_attr *attr)
1473 {
1474 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1475 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1476 
1477 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1478 		util_min = attr->sched_util_min;
1479 
1480 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1481 			return -EINVAL;
1482 	}
1483 
1484 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1485 		util_max = attr->sched_util_max;
1486 
1487 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1488 			return -EINVAL;
1489 	}
1490 
1491 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1492 		return -EINVAL;
1493 
1494 	/*
1495 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1496 	 *
1497 	 * We need to do that here, because enabling static branches is a
1498 	 * blocking operation which obviously cannot be done while holding
1499 	 * scheduler locks.
1500 	 */
1501 	static_branch_enable(&sched_uclamp_used);
1502 
1503 	return 0;
1504 }
1505 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1506 static bool uclamp_reset(const struct sched_attr *attr,
1507 			 enum uclamp_id clamp_id,
1508 			 struct uclamp_se *uc_se)
1509 {
1510 	/* Reset on sched class change for a non user-defined clamp value. */
1511 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1512 	    !uc_se->user_defined)
1513 		return true;
1514 
1515 	/* Reset on sched_util_{min,max} == -1. */
1516 	if (clamp_id == UCLAMP_MIN &&
1517 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1518 	    attr->sched_util_min == -1) {
1519 		return true;
1520 	}
1521 
1522 	if (clamp_id == UCLAMP_MAX &&
1523 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1524 	    attr->sched_util_max == -1) {
1525 		return true;
1526 	}
1527 
1528 	return false;
1529 }
1530 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1531 static void __setscheduler_uclamp(struct task_struct *p,
1532 				  const struct sched_attr *attr)
1533 {
1534 	enum uclamp_id clamp_id;
1535 
1536 	for_each_clamp_id(clamp_id) {
1537 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1538 		unsigned int value;
1539 
1540 		if (!uclamp_reset(attr, clamp_id, uc_se))
1541 			continue;
1542 
1543 		/*
1544 		 * RT by default have a 100% boost value that could be modified
1545 		 * at runtime.
1546 		 */
1547 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1548 			value = sysctl_sched_uclamp_util_min_rt_default;
1549 		else
1550 			value = uclamp_none(clamp_id);
1551 
1552 		uclamp_se_set(uc_se, value, false);
1553 
1554 	}
1555 
1556 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1557 		return;
1558 
1559 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1560 	    attr->sched_util_min != -1) {
1561 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1562 			      attr->sched_util_min, true);
1563 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MIN, attr->sched_util_min);
1564 	}
1565 
1566 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1567 	    attr->sched_util_max != -1) {
1568 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1569 			      attr->sched_util_max, true);
1570 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MAX, attr->sched_util_max);
1571 	}
1572 }
1573 
uclamp_fork(struct task_struct * p)1574 static void uclamp_fork(struct task_struct *p)
1575 {
1576 	enum uclamp_id clamp_id;
1577 
1578 	/*
1579 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1580 	 * as the task is still at its early fork stages.
1581 	 */
1582 	for_each_clamp_id(clamp_id)
1583 		p->uclamp[clamp_id].active = false;
1584 
1585 	if (likely(!p->sched_reset_on_fork))
1586 		return;
1587 
1588 	for_each_clamp_id(clamp_id) {
1589 		uclamp_se_set(&p->uclamp_req[clamp_id],
1590 			      uclamp_none(clamp_id), false);
1591 	}
1592 }
1593 
uclamp_post_fork(struct task_struct * p)1594 static void uclamp_post_fork(struct task_struct *p)
1595 {
1596 	uclamp_update_util_min_rt_default(p);
1597 }
1598 
init_uclamp_rq(struct rq * rq)1599 static void __init init_uclamp_rq(struct rq *rq)
1600 {
1601 	enum uclamp_id clamp_id;
1602 	struct uclamp_rq *uc_rq = rq->uclamp;
1603 
1604 	for_each_clamp_id(clamp_id) {
1605 		uc_rq[clamp_id] = (struct uclamp_rq) {
1606 			.value = uclamp_none(clamp_id)
1607 		};
1608 	}
1609 
1610 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1611 }
1612 
init_uclamp(void)1613 static void __init init_uclamp(void)
1614 {
1615 	struct uclamp_se uc_max = {};
1616 	enum uclamp_id clamp_id;
1617 	int cpu;
1618 
1619 	for_each_possible_cpu(cpu)
1620 		init_uclamp_rq(cpu_rq(cpu));
1621 
1622 	for_each_clamp_id(clamp_id) {
1623 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1624 			      uclamp_none(clamp_id), false);
1625 	}
1626 
1627 	/* System defaults allow max clamp values for both indexes */
1628 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1629 	for_each_clamp_id(clamp_id) {
1630 		uclamp_default[clamp_id] = uc_max;
1631 #ifdef CONFIG_UCLAMP_TASK_GROUP
1632 		root_task_group.uclamp_req[clamp_id] = uc_max;
1633 		root_task_group.uclamp[clamp_id] = uc_max;
1634 #endif
1635 	}
1636 }
1637 
1638 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1639 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1640 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1641 static inline int uclamp_validate(struct task_struct *p,
1642 				  const struct sched_attr *attr)
1643 {
1644 	return -EOPNOTSUPP;
1645 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1646 static void __setscheduler_uclamp(struct task_struct *p,
1647 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1648 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1649 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1650 static inline void init_uclamp(void) { }
1651 #endif /* CONFIG_UCLAMP_TASK */
1652 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1653 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1654 {
1655 	if (!(flags & ENQUEUE_NOCLOCK))
1656 		update_rq_clock(rq);
1657 
1658 	if (!(flags & ENQUEUE_RESTORE)) {
1659 		sched_info_queued(rq, p);
1660 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1661 	}
1662 
1663 	uclamp_rq_inc(rq, p);
1664 	trace_android_rvh_enqueue_task(rq, p, flags);
1665 	p->sched_class->enqueue_task(rq, p, flags);
1666 	trace_android_rvh_after_enqueue_task(rq, p);
1667 }
1668 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1669 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1670 {
1671 	if (!(flags & DEQUEUE_NOCLOCK))
1672 		update_rq_clock(rq);
1673 
1674 	if (!(flags & DEQUEUE_SAVE)) {
1675 		sched_info_dequeued(rq, p);
1676 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1677 	}
1678 
1679 	uclamp_rq_dec(rq, p);
1680 	trace_android_rvh_dequeue_task(rq, p, flags);
1681 	p->sched_class->dequeue_task(rq, p, flags);
1682 	trace_android_rvh_after_dequeue_task(rq, p);
1683 }
1684 
activate_task(struct rq * rq,struct task_struct * p,int flags)1685 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1686 {
1687 	if (task_on_rq_migrating(p))
1688 		flags |= ENQUEUE_MIGRATED;
1689 
1690 	enqueue_task(rq, p, flags);
1691 
1692 	p->on_rq = TASK_ON_RQ_QUEUED;
1693 }
1694 EXPORT_SYMBOL_GPL(activate_task);
1695 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1696 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1697 {
1698 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1699 
1700 	dequeue_task(rq, p, flags);
1701 }
1702 EXPORT_SYMBOL_GPL(deactivate_task);
1703 
__normal_prio(int policy,int rt_prio,int nice)1704 static inline int __normal_prio(int policy, int rt_prio, int nice)
1705 {
1706 	int prio;
1707 
1708 	if (dl_policy(policy))
1709 		prio = MAX_DL_PRIO - 1;
1710 	else if (rt_policy(policy))
1711 		prio = MAX_RT_PRIO - 1 - rt_prio;
1712 	else
1713 		prio = NICE_TO_PRIO(nice);
1714 
1715 	return prio;
1716 }
1717 
1718 /*
1719  * Calculate the expected normal priority: i.e. priority
1720  * without taking RT-inheritance into account. Might be
1721  * boosted by interactivity modifiers. Changes upon fork,
1722  * setprio syscalls, and whenever the interactivity
1723  * estimator recalculates.
1724  */
normal_prio(struct task_struct * p)1725 static inline int normal_prio(struct task_struct *p)
1726 {
1727 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1728 }
1729 
1730 /*
1731  * Calculate the current priority, i.e. the priority
1732  * taken into account by the scheduler. This value might
1733  * be boosted by RT tasks, or might be boosted by
1734  * interactivity modifiers. Will be RT if the task got
1735  * RT-boosted. If not then it returns p->normal_prio.
1736  */
effective_prio(struct task_struct * p)1737 static int effective_prio(struct task_struct *p)
1738 {
1739 	p->normal_prio = normal_prio(p);
1740 	/*
1741 	 * If we are RT tasks or we were boosted to RT priority,
1742 	 * keep the priority unchanged. Otherwise, update priority
1743 	 * to the normal priority:
1744 	 */
1745 	if (!rt_prio(p->prio))
1746 		return p->normal_prio;
1747 	return p->prio;
1748 }
1749 
1750 /**
1751  * task_curr - is this task currently executing on a CPU?
1752  * @p: the task in question.
1753  *
1754  * Return: 1 if the task is currently executing. 0 otherwise.
1755  */
task_curr(const struct task_struct * p)1756 inline int task_curr(const struct task_struct *p)
1757 {
1758 	return cpu_curr(task_cpu(p)) == p;
1759 }
1760 
1761 /*
1762  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1763  * use the balance_callback list if you want balancing.
1764  *
1765  * this means any call to check_class_changed() must be followed by a call to
1766  * balance_callback().
1767  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1768 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1769 				       const struct sched_class *prev_class,
1770 				       int oldprio)
1771 {
1772 	if (prev_class != p->sched_class) {
1773 		if (prev_class->switched_from)
1774 			prev_class->switched_from(rq, p);
1775 
1776 		p->sched_class->switched_to(rq, p);
1777 	} else if (oldprio != p->prio || dl_task(p))
1778 		p->sched_class->prio_changed(rq, p, oldprio);
1779 }
1780 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1781 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1782 {
1783 	if (p->sched_class == rq->curr->sched_class)
1784 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1785 	else if (p->sched_class > rq->curr->sched_class)
1786 		resched_curr(rq);
1787 
1788 	/*
1789 	 * A queue event has occurred, and we're going to schedule.  In
1790 	 * this case, we can save a useless back to back clock update.
1791 	 */
1792 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1793 		rq_clock_skip_update(rq);
1794 }
1795 EXPORT_SYMBOL_GPL(check_preempt_curr);
1796 
1797 #ifdef CONFIG_SMP
1798 
1799 /*
1800  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1801  * __set_cpus_allowed_ptr() and select_fallback_rq().
1802  */
is_cpu_allowed(struct task_struct * p,int cpu)1803 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1804 {
1805 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1806 		return false;
1807 
1808 	if (is_per_cpu_kthread(p))
1809 		return cpu_online(cpu);
1810 
1811 	if (!cpu_active(cpu))
1812 		return false;
1813 
1814 	return cpumask_test_cpu(cpu, task_cpu_possible_mask(p));
1815 }
1816 
1817 /*
1818  * This is how migration works:
1819  *
1820  * 1) we invoke migration_cpu_stop() on the target CPU using
1821  *    stop_one_cpu().
1822  * 2) stopper starts to run (implicitly forcing the migrated thread
1823  *    off the CPU)
1824  * 3) it checks whether the migrated task is still in the wrong runqueue.
1825  * 4) if it's in the wrong runqueue then the migration thread removes
1826  *    it and puts it into the right queue.
1827  * 5) stopper completes and stop_one_cpu() returns and the migration
1828  *    is done.
1829  */
1830 
1831 /*
1832  * move_queued_task - move a queued task to new rq.
1833  *
1834  * Returns (locked) new rq. Old rq's lock is released.
1835  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1836 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1837 				   struct task_struct *p, int new_cpu)
1838 {
1839 	int detached = 0;
1840 
1841 	lockdep_assert_held(&rq->lock);
1842 
1843 	/*
1844 	 * The vendor hook may drop the lock temporarily, so
1845 	 * pass the rq flags to unpin lock. We expect the
1846 	 * rq lock to be held after return.
1847 	 */
1848 	trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
1849 	if (detached)
1850 		goto attach;
1851 
1852 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1853 	set_task_cpu(p, new_cpu);
1854 
1855 attach:
1856 	rq_unlock(rq, rf);
1857 	rq = cpu_rq(new_cpu);
1858 
1859 	rq_lock(rq, rf);
1860 	BUG_ON(task_cpu(p) != new_cpu);
1861 	activate_task(rq, p, 0);
1862 	check_preempt_curr(rq, p, 0);
1863 
1864 	return rq;
1865 }
1866 
1867 struct migration_arg {
1868 	struct task_struct *task;
1869 	int dest_cpu;
1870 };
1871 
1872 /*
1873  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1874  * this because either it can't run here any more (set_cpus_allowed()
1875  * away from this CPU, or CPU going down), or because we're
1876  * attempting to rebalance this task on exec (sched_exec).
1877  *
1878  * So we race with normal scheduler movements, but that's OK, as long
1879  * as the task is no longer on this CPU.
1880  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1881 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1882 				 struct task_struct *p, int dest_cpu)
1883 {
1884 	/* Affinity changed (again). */
1885 	if (!is_cpu_allowed(p, dest_cpu))
1886 		return rq;
1887 
1888 	update_rq_clock(rq);
1889 	rq = move_queued_task(rq, rf, p, dest_cpu);
1890 
1891 	return rq;
1892 }
1893 
1894 /*
1895  * migration_cpu_stop - this will be executed by a highprio stopper thread
1896  * and performs thread migration by bumping thread off CPU then
1897  * 'pushing' onto another runqueue.
1898  */
migration_cpu_stop(void * data)1899 static int migration_cpu_stop(void *data)
1900 {
1901 	struct migration_arg *arg = data;
1902 	struct task_struct *p = arg->task;
1903 	struct rq *rq = this_rq();
1904 	struct rq_flags rf;
1905 
1906 	/*
1907 	 * The original target CPU might have gone down and we might
1908 	 * be on another CPU but it doesn't matter.
1909 	 */
1910 	local_irq_disable();
1911 	/*
1912 	 * We need to explicitly wake pending tasks before running
1913 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1914 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1915 	 */
1916 	flush_smp_call_function_from_idle();
1917 
1918 	raw_spin_lock(&p->pi_lock);
1919 	rq_lock(rq, &rf);
1920 	/*
1921 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1922 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1923 	 * we're holding p->pi_lock.
1924 	 */
1925 	if (task_rq(p) == rq) {
1926 		if (task_on_rq_queued(p))
1927 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1928 		else
1929 			p->wake_cpu = arg->dest_cpu;
1930 	}
1931 	rq_unlock(rq, &rf);
1932 	raw_spin_unlock(&p->pi_lock);
1933 
1934 	local_irq_enable();
1935 	return 0;
1936 }
1937 
1938 /*
1939  * sched_class::set_cpus_allowed must do the below, but is not required to
1940  * actually call this function.
1941  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1942 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1943 {
1944 	cpumask_copy(&p->cpus_mask, new_mask);
1945 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1946 	trace_android_rvh_set_cpus_allowed_comm(p, new_mask);
1947 }
1948 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1949 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1950 {
1951 	struct rq *rq = task_rq(p);
1952 	bool queued, running;
1953 
1954 	lockdep_assert_held(&p->pi_lock);
1955 
1956 	queued = task_on_rq_queued(p);
1957 	running = task_current(rq, p);
1958 
1959 	if (queued) {
1960 		/*
1961 		 * Because __kthread_bind() calls this on blocked tasks without
1962 		 * holding rq->lock.
1963 		 */
1964 		lockdep_assert_held(&rq->lock);
1965 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1966 	}
1967 	if (running)
1968 		put_prev_task(rq, p);
1969 
1970 	p->sched_class->set_cpus_allowed(p, new_mask);
1971 
1972 	if (queued)
1973 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1974 	if (running)
1975 		set_next_task(rq, p);
1976 }
1977 
1978 /*
1979  * Called with both p->pi_lock and rq->lock held; drops both before returning.
1980  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,bool check,struct rq * rq,struct rq_flags * rf)1981 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
1982 					 const struct cpumask *new_mask,
1983 					 bool check,
1984 					 struct rq *rq,
1985 					 struct rq_flags *rf)
1986 {
1987 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1988 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
1989 	unsigned int dest_cpu;
1990 	int ret = 0;
1991 
1992 	update_rq_clock(rq);
1993 
1994 	if (p->flags & PF_KTHREAD) {
1995 		/*
1996 		 * Kernel threads are allowed on online && !active CPUs
1997 		 */
1998 		cpu_valid_mask = cpu_online_mask;
1999 	} else if (!cpumask_subset(new_mask, cpu_allowed_mask)) {
2000 		ret = -EINVAL;
2001 		goto out;
2002 	}
2003 
2004 	/*
2005 	 * Must re-check here, to close a race against __kthread_bind(),
2006 	 * sched_setaffinity() is not guaranteed to observe the flag.
2007 	 */
2008 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
2009 		ret = -EINVAL;
2010 		goto out;
2011 	}
2012 
2013 	if (cpumask_equal(&p->cpus_mask, new_mask))
2014 		goto out;
2015 
2016 	/*
2017 	 * Picking a ~random cpu helps in cases where we are changing affinity
2018 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2019 	 * immediately required to distribute the tasks within their new mask.
2020 	 */
2021 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2022 	if (dest_cpu >= nr_cpu_ids) {
2023 		ret = -EINVAL;
2024 		goto out;
2025 	}
2026 
2027 	do_set_cpus_allowed(p, new_mask);
2028 
2029 	if (p->flags & PF_KTHREAD) {
2030 		/*
2031 		 * For kernel threads that do indeed end up on online &&
2032 		 * !active we want to ensure they are strict per-CPU threads.
2033 		 */
2034 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2035 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2036 			p->nr_cpus_allowed != 1);
2037 	}
2038 
2039 	/* Can the task run on the task's current CPU? If so, we're done */
2040 	if (cpumask_test_cpu(task_cpu(p), new_mask))
2041 		goto out;
2042 
2043 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2044 		struct migration_arg arg = { p, dest_cpu };
2045 		/* Need help from migration thread: drop lock and wait. */
2046 		task_rq_unlock(rq, p, rf);
2047 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2048 		return 0;
2049 	} else if (task_on_rq_queued(p)) {
2050 		/*
2051 		 * OK, since we're going to drop the lock immediately
2052 		 * afterwards anyway.
2053 		 */
2054 		rq = move_queued_task(rq, rf, p, dest_cpu);
2055 	}
2056 out:
2057 	task_rq_unlock(rq, p, rf);
2058 
2059 	return ret;
2060 }
2061 
2062 /*
2063  * Change a given task's CPU affinity. Migrate the thread to a
2064  * proper CPU and schedule it away if the CPU it's executing on
2065  * is removed from the allowed bitmask.
2066  *
2067  * NOTE: the caller must have a valid reference to the task, the
2068  * task must not exit() & deallocate itself prematurely. The
2069  * call is not atomic; no spinlocks may be held.
2070  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2071 static int __set_cpus_allowed_ptr(struct task_struct *p,
2072 				  const struct cpumask *new_mask, bool check)
2073 {
2074 	struct rq_flags rf;
2075 	struct rq *rq;
2076 
2077 	rq = task_rq_lock(p, &rf);
2078 	return __set_cpus_allowed_ptr_locked(p, new_mask, check, rq, &rf);
2079 }
2080 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2081 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2082 {
2083 	return __set_cpus_allowed_ptr(p, new_mask, false);
2084 }
2085 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2086 
2087 /*
2088  * Change a given task's CPU affinity to the intersection of its current
2089  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2090  * If the resulting mask is empty, leave the affinity unchanged and return
2091  * -EINVAL.
2092  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2093 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2094 				     struct cpumask *new_mask,
2095 				     const struct cpumask *subset_mask)
2096 {
2097 	struct rq_flags rf;
2098 	struct rq *rq;
2099 
2100 	rq = task_rq_lock(p, &rf);
2101 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2102 		task_rq_unlock(rq, p, &rf);
2103 		return -EINVAL;
2104 	}
2105 
2106 	return __set_cpus_allowed_ptr_locked(p, new_mask, false, rq, &rf);
2107 }
2108 
2109 /*
2110  * Restrict a given task's CPU affinity so that it is a subset of
2111  * task_cpu_possible_mask(). If the resulting mask is empty, we warn and
2112  * walk up the cpuset hierarchy until we find a suitable mask.
2113  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)2114 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2115 {
2116 	cpumask_var_t new_mask;
2117 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
2118 
2119 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
2120 
2121 	/*
2122 	 * __migrate_task() can fail silently in the face of concurrent
2123 	 * offlining of the chosen destination CPU, so take the hotplug
2124 	 * lock to ensure that the migration succeeds.
2125 	 */
2126 	trace_android_rvh_force_compatible_pre(NULL);
2127 	cpus_read_lock();
2128 	if (!cpumask_available(new_mask))
2129 		goto out_set_mask;
2130 
2131 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2132 		goto out_free_mask;
2133 
2134 	/*
2135 	 * We failed to find a valid subset of the affinity mask for the
2136 	 * task, so override it based on its cpuset hierarchy.
2137 	 */
2138 	cpuset_cpus_allowed(p, new_mask);
2139 	override_mask = new_mask;
2140 
2141 out_set_mask:
2142 	if (printk_ratelimit()) {
2143 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2144 				task_pid_nr(p), p->comm,
2145 				cpumask_pr_args(override_mask));
2146 	}
2147 
2148 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2149 out_free_mask:
2150 	cpus_read_unlock();
2151 	trace_android_rvh_force_compatible_post(NULL);
2152 	free_cpumask_var(new_mask);
2153 }
2154 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2155 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2156 {
2157 #ifdef CONFIG_SCHED_DEBUG
2158 	/*
2159 	 * We should never call set_task_cpu() on a blocked task,
2160 	 * ttwu() will sort out the placement.
2161 	 */
2162 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2163 			!p->on_rq);
2164 
2165 	/*
2166 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2167 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2168 	 * time relying on p->on_rq.
2169 	 */
2170 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2171 		     p->sched_class == &fair_sched_class &&
2172 		     (p->on_rq && !task_on_rq_migrating(p)));
2173 
2174 #ifdef CONFIG_LOCKDEP
2175 	/*
2176 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2177 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2178 	 *
2179 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2180 	 * see task_group().
2181 	 *
2182 	 * Furthermore, all task_rq users should acquire both locks, see
2183 	 * task_rq_lock().
2184 	 */
2185 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2186 				      lockdep_is_held(&task_rq(p)->lock)));
2187 #endif
2188 	/*
2189 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2190 	 */
2191 	WARN_ON_ONCE(!cpu_online(new_cpu));
2192 #endif
2193 
2194 	trace_sched_migrate_task(p, new_cpu);
2195 
2196 	if (task_cpu(p) != new_cpu) {
2197 		if (p->sched_class->migrate_task_rq)
2198 			p->sched_class->migrate_task_rq(p, new_cpu);
2199 		p->se.nr_migrations++;
2200 		rseq_migrate(p);
2201 		perf_event_task_migrate(p);
2202 		trace_android_rvh_set_task_cpu(p, new_cpu);
2203 	}
2204 
2205 	__set_task_cpu(p, new_cpu);
2206 }
2207 EXPORT_SYMBOL_GPL(set_task_cpu);
2208 
__migrate_swap_task(struct task_struct * p,int cpu)2209 static void __migrate_swap_task(struct task_struct *p, int cpu)
2210 {
2211 	if (task_on_rq_queued(p)) {
2212 		struct rq *src_rq, *dst_rq;
2213 		struct rq_flags srf, drf;
2214 
2215 		src_rq = task_rq(p);
2216 		dst_rq = cpu_rq(cpu);
2217 
2218 		rq_pin_lock(src_rq, &srf);
2219 		rq_pin_lock(dst_rq, &drf);
2220 
2221 		deactivate_task(src_rq, p, 0);
2222 		set_task_cpu(p, cpu);
2223 		activate_task(dst_rq, p, 0);
2224 		check_preempt_curr(dst_rq, p, 0);
2225 
2226 		rq_unpin_lock(dst_rq, &drf);
2227 		rq_unpin_lock(src_rq, &srf);
2228 
2229 	} else {
2230 		/*
2231 		 * Task isn't running anymore; make it appear like we migrated
2232 		 * it before it went to sleep. This means on wakeup we make the
2233 		 * previous CPU our target instead of where it really is.
2234 		 */
2235 		p->wake_cpu = cpu;
2236 	}
2237 }
2238 
2239 struct migration_swap_arg {
2240 	struct task_struct *src_task, *dst_task;
2241 	int src_cpu, dst_cpu;
2242 };
2243 
migrate_swap_stop(void * data)2244 static int migrate_swap_stop(void *data)
2245 {
2246 	struct migration_swap_arg *arg = data;
2247 	struct rq *src_rq, *dst_rq;
2248 	int ret = -EAGAIN;
2249 
2250 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2251 		return -EAGAIN;
2252 
2253 	src_rq = cpu_rq(arg->src_cpu);
2254 	dst_rq = cpu_rq(arg->dst_cpu);
2255 
2256 	double_raw_lock(&arg->src_task->pi_lock,
2257 			&arg->dst_task->pi_lock);
2258 	double_rq_lock(src_rq, dst_rq);
2259 
2260 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2261 		goto unlock;
2262 
2263 	if (task_cpu(arg->src_task) != arg->src_cpu)
2264 		goto unlock;
2265 
2266 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2267 		goto unlock;
2268 
2269 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2270 		goto unlock;
2271 
2272 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2273 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2274 
2275 	ret = 0;
2276 
2277 unlock:
2278 	double_rq_unlock(src_rq, dst_rq);
2279 	raw_spin_unlock(&arg->dst_task->pi_lock);
2280 	raw_spin_unlock(&arg->src_task->pi_lock);
2281 
2282 	return ret;
2283 }
2284 
2285 /*
2286  * Cross migrate two tasks
2287  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2288 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2289 		int target_cpu, int curr_cpu)
2290 {
2291 	struct migration_swap_arg arg;
2292 	int ret = -EINVAL;
2293 
2294 	arg = (struct migration_swap_arg){
2295 		.src_task = cur,
2296 		.src_cpu = curr_cpu,
2297 		.dst_task = p,
2298 		.dst_cpu = target_cpu,
2299 	};
2300 
2301 	if (arg.src_cpu == arg.dst_cpu)
2302 		goto out;
2303 
2304 	/*
2305 	 * These three tests are all lockless; this is OK since all of them
2306 	 * will be re-checked with proper locks held further down the line.
2307 	 */
2308 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2309 		goto out;
2310 
2311 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2312 		goto out;
2313 
2314 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2315 		goto out;
2316 
2317 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2318 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2319 
2320 out:
2321 	return ret;
2322 }
2323 EXPORT_SYMBOL_GPL(migrate_swap);
2324 
2325 /*
2326  * wait_task_inactive - wait for a thread to unschedule.
2327  *
2328  * If @match_state is nonzero, it's the @p->state value just checked and
2329  * not expected to change.  If it changes, i.e. @p might have woken up,
2330  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2331  * we return a positive number (its total switch count).  If a second call
2332  * a short while later returns the same number, the caller can be sure that
2333  * @p has remained unscheduled the whole time.
2334  *
2335  * The caller must ensure that the task *will* unschedule sometime soon,
2336  * else this function might spin for a *long* time. This function can't
2337  * be called with interrupts off, or it may introduce deadlock with
2338  * smp_call_function() if an IPI is sent by the same process we are
2339  * waiting to become inactive.
2340  */
wait_task_inactive(struct task_struct * p,long match_state)2341 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2342 {
2343 	int running, queued;
2344 	struct rq_flags rf;
2345 	unsigned long ncsw;
2346 	struct rq *rq;
2347 
2348 	for (;;) {
2349 		/*
2350 		 * We do the initial early heuristics without holding
2351 		 * any task-queue locks at all. We'll only try to get
2352 		 * the runqueue lock when things look like they will
2353 		 * work out!
2354 		 */
2355 		rq = task_rq(p);
2356 
2357 		/*
2358 		 * If the task is actively running on another CPU
2359 		 * still, just relax and busy-wait without holding
2360 		 * any locks.
2361 		 *
2362 		 * NOTE! Since we don't hold any locks, it's not
2363 		 * even sure that "rq" stays as the right runqueue!
2364 		 * But we don't care, since "task_running()" will
2365 		 * return false if the runqueue has changed and p
2366 		 * is actually now running somewhere else!
2367 		 */
2368 		while (task_running(rq, p)) {
2369 			if (match_state && unlikely(p->state != match_state))
2370 				return 0;
2371 			cpu_relax();
2372 		}
2373 
2374 		/*
2375 		 * Ok, time to look more closely! We need the rq
2376 		 * lock now, to be *sure*. If we're wrong, we'll
2377 		 * just go back and repeat.
2378 		 */
2379 		rq = task_rq_lock(p, &rf);
2380 		trace_sched_wait_task(p);
2381 		running = task_running(rq, p);
2382 		queued = task_on_rq_queued(p);
2383 		ncsw = 0;
2384 		if (!match_state || p->state == match_state)
2385 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2386 		task_rq_unlock(rq, p, &rf);
2387 
2388 		/*
2389 		 * If it changed from the expected state, bail out now.
2390 		 */
2391 		if (unlikely(!ncsw))
2392 			break;
2393 
2394 		/*
2395 		 * Was it really running after all now that we
2396 		 * checked with the proper locks actually held?
2397 		 *
2398 		 * Oops. Go back and try again..
2399 		 */
2400 		if (unlikely(running)) {
2401 			cpu_relax();
2402 			continue;
2403 		}
2404 
2405 		/*
2406 		 * It's not enough that it's not actively running,
2407 		 * it must be off the runqueue _entirely_, and not
2408 		 * preempted!
2409 		 *
2410 		 * So if it was still runnable (but just not actively
2411 		 * running right now), it's preempted, and we should
2412 		 * yield - it could be a while.
2413 		 */
2414 		if (unlikely(queued)) {
2415 			ktime_t to = NSEC_PER_SEC / HZ;
2416 
2417 			set_current_state(TASK_UNINTERRUPTIBLE);
2418 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2419 			continue;
2420 		}
2421 
2422 		/*
2423 		 * Ahh, all good. It wasn't running, and it wasn't
2424 		 * runnable, which means that it will never become
2425 		 * running in the future either. We're all done!
2426 		 */
2427 		break;
2428 	}
2429 
2430 	return ncsw;
2431 }
2432 
2433 /***
2434  * kick_process - kick a running thread to enter/exit the kernel
2435  * @p: the to-be-kicked thread
2436  *
2437  * Cause a process which is running on another CPU to enter
2438  * kernel-mode, without any delay. (to get signals handled.)
2439  *
2440  * NOTE: this function doesn't have to take the runqueue lock,
2441  * because all it wants to ensure is that the remote task enters
2442  * the kernel. If the IPI races and the task has been migrated
2443  * to another CPU then no harm is done and the purpose has been
2444  * achieved as well.
2445  */
kick_process(struct task_struct * p)2446 void kick_process(struct task_struct *p)
2447 {
2448 	int cpu;
2449 
2450 	preempt_disable();
2451 	cpu = task_cpu(p);
2452 	if ((cpu != smp_processor_id()) && task_curr(p))
2453 		smp_send_reschedule(cpu);
2454 	preempt_enable();
2455 }
2456 EXPORT_SYMBOL_GPL(kick_process);
2457 
2458 /*
2459  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2460  *
2461  * A few notes on cpu_active vs cpu_online:
2462  *
2463  *  - cpu_active must be a subset of cpu_online
2464  *
2465  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2466  *    see __set_cpus_allowed_ptr(). At this point the newly online
2467  *    CPU isn't yet part of the sched domains, and balancing will not
2468  *    see it.
2469  *
2470  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2471  *    avoid the load balancer to place new tasks on the to be removed
2472  *    CPU. Existing tasks will remain running there and will be taken
2473  *    off.
2474  *
2475  * This means that fallback selection must not select !active CPUs.
2476  * And can assume that any active CPU must be online. Conversely
2477  * select_task_rq() below may allow selection of !active CPUs in order
2478  * to satisfy the above rules.
2479  */
select_fallback_rq(int cpu,struct task_struct * p)2480 static int select_fallback_rq(int cpu, struct task_struct *p)
2481 {
2482 	int nid = cpu_to_node(cpu);
2483 	const struct cpumask *nodemask = NULL;
2484 	enum { cpuset, possible, fail } state = cpuset;
2485 	int dest_cpu = -1;
2486 
2487 	trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
2488 	if (dest_cpu >= 0)
2489 		return dest_cpu;
2490 
2491 	/*
2492 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2493 	 * will return -1. There is no CPU on the node, and we should
2494 	 * select the CPU on the other node.
2495 	 */
2496 	if (nid != -1) {
2497 		nodemask = cpumask_of_node(nid);
2498 
2499 		/* Look for allowed, online CPU in same node. */
2500 		for_each_cpu(dest_cpu, nodemask) {
2501 			if (is_cpu_allowed(p, dest_cpu))
2502 				return dest_cpu;
2503 		}
2504 	}
2505 
2506 	for (;;) {
2507 		/* Any allowed, online CPU? */
2508 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2509 			if (!is_cpu_allowed(p, dest_cpu))
2510 				continue;
2511 
2512 			goto out;
2513 		}
2514 
2515 		/* No more Mr. Nice Guy. */
2516 		switch (state) {
2517 		case cpuset:
2518 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2519 				cpuset_cpus_allowed_fallback(p);
2520 				state = possible;
2521 				break;
2522 			}
2523 			fallthrough;
2524 		case possible:
2525 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2526 			state = fail;
2527 			break;
2528 		case fail:
2529 			BUG();
2530 			break;
2531 		}
2532 	}
2533 
2534 out:
2535 	if (state != cpuset) {
2536 		/*
2537 		 * Don't tell them about moving exiting tasks or
2538 		 * kernel threads (both mm NULL), since they never
2539 		 * leave kernel.
2540 		 */
2541 		if (p->mm && printk_ratelimit()) {
2542 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2543 					task_pid_nr(p), p->comm, cpu);
2544 		}
2545 	}
2546 
2547 	return dest_cpu;
2548 }
2549 
2550 /*
2551  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2552  */
2553 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2554 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2555 {
2556 	lockdep_assert_held(&p->pi_lock);
2557 
2558 	if (p->nr_cpus_allowed > 1)
2559 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2560 	else
2561 		cpu = cpumask_any(p->cpus_ptr);
2562 
2563 	/*
2564 	 * In order not to call set_task_cpu() on a blocking task we need
2565 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2566 	 * CPU.
2567 	 *
2568 	 * Since this is common to all placement strategies, this lives here.
2569 	 *
2570 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2571 	 *   not worry about this generic constraint ]
2572 	 */
2573 	if (unlikely(!is_cpu_allowed(p, cpu)))
2574 		cpu = select_fallback_rq(task_cpu(p), p);
2575 
2576 	return cpu;
2577 }
2578 
sched_set_stop_task(int cpu,struct task_struct * stop)2579 void sched_set_stop_task(int cpu, struct task_struct *stop)
2580 {
2581 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2582 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2583 
2584 	if (stop) {
2585 		/*
2586 		 * Make it appear like a SCHED_FIFO task, its something
2587 		 * userspace knows about and won't get confused about.
2588 		 *
2589 		 * Also, it will make PI more or less work without too
2590 		 * much confusion -- but then, stop work should not
2591 		 * rely on PI working anyway.
2592 		 */
2593 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2594 
2595 		stop->sched_class = &stop_sched_class;
2596 	}
2597 
2598 	cpu_rq(cpu)->stop = stop;
2599 
2600 	if (old_stop) {
2601 		/*
2602 		 * Reset it back to a normal scheduling class so that
2603 		 * it can die in pieces.
2604 		 */
2605 		old_stop->sched_class = &rt_sched_class;
2606 	}
2607 }
2608 
2609 #else
2610 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2611 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2612 					 const struct cpumask *new_mask, bool check)
2613 {
2614 	return set_cpus_allowed_ptr(p, new_mask);
2615 }
2616 
2617 #endif /* CONFIG_SMP */
2618 
2619 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2620 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2621 {
2622 	struct rq *rq;
2623 
2624 	if (!schedstat_enabled())
2625 		return;
2626 
2627 	rq = this_rq();
2628 
2629 #ifdef CONFIG_SMP
2630 	if (cpu == rq->cpu) {
2631 		__schedstat_inc(rq->ttwu_local);
2632 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2633 	} else {
2634 		struct sched_domain *sd;
2635 
2636 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2637 		rcu_read_lock();
2638 		for_each_domain(rq->cpu, sd) {
2639 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2640 				__schedstat_inc(sd->ttwu_wake_remote);
2641 				break;
2642 			}
2643 		}
2644 		rcu_read_unlock();
2645 	}
2646 
2647 	if (wake_flags & WF_MIGRATED)
2648 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2649 #endif /* CONFIG_SMP */
2650 
2651 	__schedstat_inc(rq->ttwu_count);
2652 	__schedstat_inc(p->se.statistics.nr_wakeups);
2653 
2654 	if (wake_flags & WF_SYNC)
2655 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2656 }
2657 
2658 /*
2659  * Mark the task runnable and perform wakeup-preemption.
2660  */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2661 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2662 			   struct rq_flags *rf)
2663 {
2664 	check_preempt_curr(rq, p, wake_flags);
2665 	p->state = TASK_RUNNING;
2666 	trace_sched_wakeup(p);
2667 
2668 #ifdef CONFIG_SMP
2669 	if (p->sched_class->task_woken) {
2670 		/*
2671 		 * Our task @p is fully woken up and running; so its safe to
2672 		 * drop the rq->lock, hereafter rq is only used for statistics.
2673 		 */
2674 		rq_unpin_lock(rq, rf);
2675 		p->sched_class->task_woken(rq, p);
2676 		rq_repin_lock(rq, rf);
2677 	}
2678 
2679 	if (rq->idle_stamp) {
2680 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2681 		u64 max = 2*rq->max_idle_balance_cost;
2682 
2683 		update_avg(&rq->avg_idle, delta);
2684 
2685 		if (rq->avg_idle > max)
2686 			rq->avg_idle = max;
2687 
2688 		rq->idle_stamp = 0;
2689 	}
2690 #endif
2691 }
2692 
2693 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2694 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2695 		 struct rq_flags *rf)
2696 {
2697 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2698 
2699 	if (wake_flags & WF_SYNC)
2700 		en_flags |= ENQUEUE_WAKEUP_SYNC;
2701 
2702 	lockdep_assert_held(&rq->lock);
2703 
2704 	if (p->sched_contributes_to_load)
2705 		rq->nr_uninterruptible--;
2706 
2707 #ifdef CONFIG_SMP
2708 	if (wake_flags & WF_MIGRATED)
2709 		en_flags |= ENQUEUE_MIGRATED;
2710 	else
2711 #endif
2712 	if (p->in_iowait) {
2713 		delayacct_blkio_end(p);
2714 		atomic_dec(&task_rq(p)->nr_iowait);
2715 	}
2716 
2717 	activate_task(rq, p, en_flags);
2718 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2719 }
2720 
2721 /*
2722  * Consider @p being inside a wait loop:
2723  *
2724  *   for (;;) {
2725  *      set_current_state(TASK_UNINTERRUPTIBLE);
2726  *
2727  *      if (CONDITION)
2728  *         break;
2729  *
2730  *      schedule();
2731  *   }
2732  *   __set_current_state(TASK_RUNNING);
2733  *
2734  * between set_current_state() and schedule(). In this case @p is still
2735  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2736  * an atomic manner.
2737  *
2738  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2739  * then schedule() must still happen and p->state can be changed to
2740  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2741  * need to do a full wakeup with enqueue.
2742  *
2743  * Returns: %true when the wakeup is done,
2744  *          %false otherwise.
2745  */
ttwu_runnable(struct task_struct * p,int wake_flags)2746 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2747 {
2748 	struct rq_flags rf;
2749 	struct rq *rq;
2750 	int ret = 0;
2751 
2752 	rq = __task_rq_lock(p, &rf);
2753 	if (task_on_rq_queued(p)) {
2754 		/* check_preempt_curr() may use rq clock */
2755 		update_rq_clock(rq);
2756 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2757 		ret = 1;
2758 	}
2759 	__task_rq_unlock(rq, &rf);
2760 
2761 	return ret;
2762 }
2763 
2764 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2765 void sched_ttwu_pending(void *arg)
2766 {
2767 	struct llist_node *llist = arg;
2768 	struct rq *rq = this_rq();
2769 	struct task_struct *p, *t;
2770 	struct rq_flags rf;
2771 
2772 	if (!llist)
2773 		return;
2774 
2775 	/*
2776 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2777 	 * Races such that false-negatives are possible, since they
2778 	 * are shorter lived that false-positives would be.
2779 	 */
2780 	WRITE_ONCE(rq->ttwu_pending, 0);
2781 
2782 	rq_lock_irqsave(rq, &rf);
2783 	update_rq_clock(rq);
2784 
2785 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2786 		if (WARN_ON_ONCE(p->on_cpu))
2787 			smp_cond_load_acquire(&p->on_cpu, !VAL);
2788 
2789 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2790 			set_task_cpu(p, cpu_of(rq));
2791 
2792 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2793 	}
2794 
2795 	rq_unlock_irqrestore(rq, &rf);
2796 }
2797 
send_call_function_single_ipi(int cpu)2798 void send_call_function_single_ipi(int cpu)
2799 {
2800 	struct rq *rq = cpu_rq(cpu);
2801 
2802 	if (!set_nr_if_polling(rq->idle))
2803 		arch_send_call_function_single_ipi(cpu);
2804 	else
2805 		trace_sched_wake_idle_without_ipi(cpu);
2806 }
2807 
2808 /*
2809  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2810  * necessary. The wakee CPU on receipt of the IPI will queue the task
2811  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2812  * of the wakeup instead of the waker.
2813  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2814 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2815 {
2816 	struct rq *rq = cpu_rq(cpu);
2817 
2818 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2819 
2820 	WRITE_ONCE(rq->ttwu_pending, 1);
2821 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2822 }
2823 
wake_up_if_idle(int cpu)2824 void wake_up_if_idle(int cpu)
2825 {
2826 	struct rq *rq = cpu_rq(cpu);
2827 	struct rq_flags rf;
2828 
2829 	rcu_read_lock();
2830 
2831 	if (!is_idle_task(rcu_dereference(rq->curr)))
2832 		goto out;
2833 
2834 	if (set_nr_if_polling(rq->idle)) {
2835 		trace_sched_wake_idle_without_ipi(cpu);
2836 	} else {
2837 		rq_lock_irqsave(rq, &rf);
2838 		if (is_idle_task(rq->curr))
2839 			smp_send_reschedule(cpu);
2840 		/* Else CPU is not idle, do nothing here: */
2841 		rq_unlock_irqrestore(rq, &rf);
2842 	}
2843 
2844 out:
2845 	rcu_read_unlock();
2846 }
2847 EXPORT_SYMBOL_GPL(wake_up_if_idle);
2848 
cpus_share_cache(int this_cpu,int that_cpu)2849 bool cpus_share_cache(int this_cpu, int that_cpu)
2850 {
2851 	if (this_cpu == that_cpu)
2852 		return true;
2853 
2854 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2855 }
2856 
ttwu_queue_cond(int cpu,int wake_flags)2857 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2858 {
2859 	/*
2860 	 * If the CPU does not share cache, then queue the task on the
2861 	 * remote rqs wakelist to avoid accessing remote data.
2862 	 */
2863 	if (!cpus_share_cache(smp_processor_id(), cpu))
2864 		return true;
2865 
2866 	/*
2867 	 * If the task is descheduling and the only running task on the
2868 	 * CPU then use the wakelist to offload the task activation to
2869 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2870 	 * nr_running is checked to avoid unnecessary task stacking.
2871 	 *
2872 	 * Note that we can only get here with (wakee) p->on_rq=0,
2873 	 * p->on_cpu can be whatever, we've done the dequeue, so
2874 	 * the wakee has been accounted out of ->nr_running.
2875 	 */
2876 	if ((wake_flags & WF_ON_CPU) && !cpu_rq(cpu)->nr_running)
2877 		return true;
2878 
2879 	return false;
2880 }
2881 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2882 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2883 {
2884 	bool cond = false;
2885 
2886 	trace_android_rvh_ttwu_cond(&cond);
2887 
2888 	if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) ||
2889 			cond) {
2890 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2891 			return false;
2892 
2893 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2894 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2895 		return true;
2896 	}
2897 
2898 	return false;
2899 }
2900 
2901 #else /* !CONFIG_SMP */
2902 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2903 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2904 {
2905 	return false;
2906 }
2907 
2908 #endif /* CONFIG_SMP */
2909 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2910 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2911 {
2912 	struct rq *rq = cpu_rq(cpu);
2913 	struct rq_flags rf;
2914 
2915 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2916 		return;
2917 
2918 	rq_lock(rq, &rf);
2919 	update_rq_clock(rq);
2920 	ttwu_do_activate(rq, p, wake_flags, &rf);
2921 	rq_unlock(rq, &rf);
2922 }
2923 
2924 /*
2925  * Notes on Program-Order guarantees on SMP systems.
2926  *
2927  *  MIGRATION
2928  *
2929  * The basic program-order guarantee on SMP systems is that when a task [t]
2930  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2931  * execution on its new CPU [c1].
2932  *
2933  * For migration (of runnable tasks) this is provided by the following means:
2934  *
2935  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2936  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2937  *     rq(c1)->lock (if not at the same time, then in that order).
2938  *  C) LOCK of the rq(c1)->lock scheduling in task
2939  *
2940  * Release/acquire chaining guarantees that B happens after A and C after B.
2941  * Note: the CPU doing B need not be c0 or c1
2942  *
2943  * Example:
2944  *
2945  *   CPU0            CPU1            CPU2
2946  *
2947  *   LOCK rq(0)->lock
2948  *   sched-out X
2949  *   sched-in Y
2950  *   UNLOCK rq(0)->lock
2951  *
2952  *                                   LOCK rq(0)->lock // orders against CPU0
2953  *                                   dequeue X
2954  *                                   UNLOCK rq(0)->lock
2955  *
2956  *                                   LOCK rq(1)->lock
2957  *                                   enqueue X
2958  *                                   UNLOCK rq(1)->lock
2959  *
2960  *                   LOCK rq(1)->lock // orders against CPU2
2961  *                   sched-out Z
2962  *                   sched-in X
2963  *                   UNLOCK rq(1)->lock
2964  *
2965  *
2966  *  BLOCKING -- aka. SLEEP + WAKEUP
2967  *
2968  * For blocking we (obviously) need to provide the same guarantee as for
2969  * migration. However the means are completely different as there is no lock
2970  * chain to provide order. Instead we do:
2971  *
2972  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2973  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2974  *
2975  * Example:
2976  *
2977  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2978  *
2979  *   LOCK rq(0)->lock LOCK X->pi_lock
2980  *   dequeue X
2981  *   sched-out X
2982  *   smp_store_release(X->on_cpu, 0);
2983  *
2984  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2985  *                    X->state = WAKING
2986  *                    set_task_cpu(X,2)
2987  *
2988  *                    LOCK rq(2)->lock
2989  *                    enqueue X
2990  *                    X->state = RUNNING
2991  *                    UNLOCK rq(2)->lock
2992  *
2993  *                                          LOCK rq(2)->lock // orders against CPU1
2994  *                                          sched-out Z
2995  *                                          sched-in X
2996  *                                          UNLOCK rq(2)->lock
2997  *
2998  *                    UNLOCK X->pi_lock
2999  *   UNLOCK rq(0)->lock
3000  *
3001  *
3002  * However, for wakeups there is a second guarantee we must provide, namely we
3003  * must ensure that CONDITION=1 done by the caller can not be reordered with
3004  * accesses to the task state; see try_to_wake_up() and set_current_state().
3005  */
3006 
3007 /**
3008  * try_to_wake_up - wake up a thread
3009  * @p: the thread to be awakened
3010  * @state: the mask of task states that can be woken
3011  * @wake_flags: wake modifier flags (WF_*)
3012  *
3013  * Conceptually does:
3014  *
3015  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3016  *
3017  * If the task was not queued/runnable, also place it back on a runqueue.
3018  *
3019  * This function is atomic against schedule() which would dequeue the task.
3020  *
3021  * It issues a full memory barrier before accessing @p->state, see the comment
3022  * with set_current_state().
3023  *
3024  * Uses p->pi_lock to serialize against concurrent wake-ups.
3025  *
3026  * Relies on p->pi_lock stabilizing:
3027  *  - p->sched_class
3028  *  - p->cpus_ptr
3029  *  - p->sched_task_group
3030  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3031  *
3032  * Tries really hard to only take one task_rq(p)->lock for performance.
3033  * Takes rq->lock in:
3034  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3035  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3036  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3037  *
3038  * As a consequence we race really badly with just about everything. See the
3039  * many memory barriers and their comments for details.
3040  *
3041  * Return: %true if @p->state changes (an actual wakeup was done),
3042  *	   %false otherwise.
3043  */
3044 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)3045 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3046 {
3047 	unsigned long flags;
3048 	int cpu, success = 0;
3049 
3050 	preempt_disable();
3051 	if (p == current) {
3052 		/*
3053 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3054 		 * == smp_processor_id()'. Together this means we can special
3055 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3056 		 * without taking any locks.
3057 		 *
3058 		 * In particular:
3059 		 *  - we rely on Program-Order guarantees for all the ordering,
3060 		 *  - we're serialized against set_special_state() by virtue of
3061 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3062 		 */
3063 		if (!(p->state & state))
3064 			goto out;
3065 
3066 		success = 1;
3067 		trace_sched_waking(p);
3068 		p->state = TASK_RUNNING;
3069 		trace_sched_wakeup(p);
3070 		goto out;
3071 	}
3072 
3073 	/*
3074 	 * If we are going to wake up a thread waiting for CONDITION we
3075 	 * need to ensure that CONDITION=1 done by the caller can not be
3076 	 * reordered with p->state check below. This pairs with smp_store_mb()
3077 	 * in set_current_state() that the waiting thread does.
3078 	 */
3079 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3080 	smp_mb__after_spinlock();
3081 	if (!(p->state & state))
3082 		goto unlock;
3083 
3084 #ifdef CONFIG_FREEZER
3085 	/*
3086 	 * If we're going to wake up a thread which may be frozen, then
3087 	 * we can only do so if we have an active CPU which is capable of
3088 	 * running it. This may not be the case when resuming from suspend,
3089 	 * as the secondary CPUs may not yet be back online. See __thaw_task()
3090 	 * for the actual wakeup.
3091 	 */
3092 	if (unlikely(frozen_or_skipped(p)) &&
3093 	    !cpumask_intersects(cpu_active_mask, task_cpu_possible_mask(p)))
3094 		goto unlock;
3095 #endif
3096 
3097 	trace_sched_waking(p);
3098 
3099 	/* We're going to change ->state: */
3100 	success = 1;
3101 
3102 	/*
3103 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3104 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3105 	 * in smp_cond_load_acquire() below.
3106 	 *
3107 	 * sched_ttwu_pending()			try_to_wake_up()
3108 	 *   STORE p->on_rq = 1			  LOAD p->state
3109 	 *   UNLOCK rq->lock
3110 	 *
3111 	 * __schedule() (switch to task 'p')
3112 	 *   LOCK rq->lock			  smp_rmb();
3113 	 *   smp_mb__after_spinlock();
3114 	 *   UNLOCK rq->lock
3115 	 *
3116 	 * [task p]
3117 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3118 	 *
3119 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3120 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3121 	 *
3122 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3123 	 */
3124 	smp_rmb();
3125 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3126 		goto unlock;
3127 
3128 	if (p->state & TASK_UNINTERRUPTIBLE)
3129 		trace_sched_blocked_reason(p);
3130 
3131 #ifdef CONFIG_SMP
3132 	/*
3133 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3134 	 * possible to, falsely, observe p->on_cpu == 0.
3135 	 *
3136 	 * One must be running (->on_cpu == 1) in order to remove oneself
3137 	 * from the runqueue.
3138 	 *
3139 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3140 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3141 	 *   UNLOCK rq->lock
3142 	 *
3143 	 * __schedule() (put 'p' to sleep)
3144 	 *   LOCK rq->lock			  smp_rmb();
3145 	 *   smp_mb__after_spinlock();
3146 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3147 	 *
3148 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3149 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3150 	 *
3151 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3152 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3153 	 * care about it's own p->state. See the comment in __schedule().
3154 	 */
3155 	smp_acquire__after_ctrl_dep();
3156 
3157 	/*
3158 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3159 	 * == 0), which means we need to do an enqueue, change p->state to
3160 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3161 	 * enqueue, such as ttwu_queue_wakelist().
3162 	 */
3163 	p->state = TASK_WAKING;
3164 
3165 	/*
3166 	 * If the owning (remote) CPU is still in the middle of schedule() with
3167 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3168 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3169 	 * let the waker make forward progress. This is safe because IRQs are
3170 	 * disabled and the IPI will deliver after on_cpu is cleared.
3171 	 *
3172 	 * Ensure we load task_cpu(p) after p->on_cpu:
3173 	 *
3174 	 * set_task_cpu(p, cpu);
3175 	 *   STORE p->cpu = @cpu
3176 	 * __schedule() (switch to task 'p')
3177 	 *   LOCK rq->lock
3178 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3179 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3180 	 *
3181 	 * to ensure we observe the correct CPU on which the task is currently
3182 	 * scheduling.
3183 	 */
3184 	if (smp_load_acquire(&p->on_cpu) &&
3185 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3186 		goto unlock;
3187 
3188 	/*
3189 	 * If the owning (remote) CPU is still in the middle of schedule() with
3190 	 * this task as prev, wait until its done referencing the task.
3191 	 *
3192 	 * Pairs with the smp_store_release() in finish_task().
3193 	 *
3194 	 * This ensures that tasks getting woken will be fully ordered against
3195 	 * their previous state and preserve Program Order.
3196 	 */
3197 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3198 
3199 	trace_android_rvh_try_to_wake_up(p);
3200 
3201 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3202 	if (task_cpu(p) != cpu) {
3203 		if (p->in_iowait) {
3204 			delayacct_blkio_end(p);
3205 			atomic_dec(&task_rq(p)->nr_iowait);
3206 		}
3207 
3208 		wake_flags |= WF_MIGRATED;
3209 		psi_ttwu_dequeue(p);
3210 		set_task_cpu(p, cpu);
3211 	}
3212 #else
3213 	cpu = task_cpu(p);
3214 #endif /* CONFIG_SMP */
3215 
3216 	ttwu_queue(p, cpu, wake_flags);
3217 unlock:
3218 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3219 out:
3220 	if (success) {
3221 		trace_android_rvh_try_to_wake_up_success(p);
3222 		ttwu_stat(p, task_cpu(p), wake_flags);
3223 	}
3224 	preempt_enable();
3225 
3226 	return success;
3227 }
3228 
3229 /**
3230  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3231  * @p: Process for which the function is to be invoked, can be @current.
3232  * @func: Function to invoke.
3233  * @arg: Argument to function.
3234  *
3235  * If the specified task can be quickly locked into a definite state
3236  * (either sleeping or on a given runqueue), arrange to keep it in that
3237  * state while invoking @func(@arg).  This function can use ->on_rq and
3238  * task_curr() to work out what the state is, if required.  Given that
3239  * @func can be invoked with a runqueue lock held, it had better be quite
3240  * lightweight.
3241  *
3242  * Returns:
3243  *	@false if the task slipped out from under the locks.
3244  *	@true if the task was locked onto a runqueue or is sleeping.
3245  *		However, @func can override this by returning @false.
3246  */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3247 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3248 {
3249 	struct rq_flags rf;
3250 	bool ret = false;
3251 	struct rq *rq;
3252 
3253 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3254 	if (p->on_rq) {
3255 		rq = __task_rq_lock(p, &rf);
3256 		if (task_rq(p) == rq)
3257 			ret = func(p, arg);
3258 		rq_unlock(rq, &rf);
3259 	} else {
3260 		switch (p->state) {
3261 		case TASK_RUNNING:
3262 		case TASK_WAKING:
3263 			break;
3264 		default:
3265 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3266 			if (!p->on_rq)
3267 				ret = func(p, arg);
3268 		}
3269 	}
3270 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3271 	return ret;
3272 }
3273 
3274 /**
3275  * wake_up_process - Wake up a specific process
3276  * @p: The process to be woken up.
3277  *
3278  * Attempt to wake up the nominated process and move it to the set of runnable
3279  * processes.
3280  *
3281  * Return: 1 if the process was woken up, 0 if it was already running.
3282  *
3283  * This function executes a full memory barrier before accessing the task state.
3284  */
wake_up_process(struct task_struct * p)3285 int wake_up_process(struct task_struct *p)
3286 {
3287 	return try_to_wake_up(p, TASK_NORMAL, 0);
3288 }
3289 EXPORT_SYMBOL(wake_up_process);
3290 
wake_up_state(struct task_struct * p,unsigned int state)3291 int wake_up_state(struct task_struct *p, unsigned int state)
3292 {
3293 	return try_to_wake_up(p, state, 0);
3294 }
3295 
3296 /*
3297  * Perform scheduler related setup for a newly forked process p.
3298  * p is forked by current.
3299  *
3300  * __sched_fork() is basic setup used by init_idle() too:
3301  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3302 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3303 {
3304 	p->on_rq			= 0;
3305 
3306 	p->se.on_rq			= 0;
3307 	p->se.exec_start		= 0;
3308 	p->se.sum_exec_runtime		= 0;
3309 	p->se.prev_sum_exec_runtime	= 0;
3310 	p->se.nr_migrations		= 0;
3311 	p->se.vruntime			= 0;
3312 	INIT_LIST_HEAD(&p->se.group_node);
3313 
3314 #ifdef CONFIG_FAIR_GROUP_SCHED
3315 	p->se.cfs_rq			= NULL;
3316 #endif
3317 
3318 	trace_android_rvh_sched_fork_init(p);
3319 
3320 #ifdef CONFIG_SCHEDSTATS
3321 	/* Even if schedstat is disabled, there should not be garbage */
3322 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3323 #endif
3324 
3325 	RB_CLEAR_NODE(&p->dl.rb_node);
3326 	init_dl_task_timer(&p->dl);
3327 	init_dl_inactive_task_timer(&p->dl);
3328 	__dl_clear_params(p);
3329 
3330 	INIT_LIST_HEAD(&p->rt.run_list);
3331 	p->rt.timeout		= 0;
3332 	p->rt.time_slice	= sched_rr_timeslice;
3333 	p->rt.on_rq		= 0;
3334 	p->rt.on_list		= 0;
3335 
3336 #ifdef CONFIG_PREEMPT_NOTIFIERS
3337 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3338 #endif
3339 
3340 #ifdef CONFIG_COMPACTION
3341 	p->capture_control = NULL;
3342 #endif
3343 	init_numa_balancing(clone_flags, p);
3344 #ifdef CONFIG_SMP
3345 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3346 #endif
3347 }
3348 
3349 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3350 
3351 #ifdef CONFIG_NUMA_BALANCING
3352 
set_numabalancing_state(bool enabled)3353 void set_numabalancing_state(bool enabled)
3354 {
3355 	if (enabled)
3356 		static_branch_enable(&sched_numa_balancing);
3357 	else
3358 		static_branch_disable(&sched_numa_balancing);
3359 }
3360 
3361 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3362 int sysctl_numa_balancing(struct ctl_table *table, int write,
3363 			  void *buffer, size_t *lenp, loff_t *ppos)
3364 {
3365 	struct ctl_table t;
3366 	int err;
3367 	int state = static_branch_likely(&sched_numa_balancing);
3368 
3369 	if (write && !capable(CAP_SYS_ADMIN))
3370 		return -EPERM;
3371 
3372 	t = *table;
3373 	t.data = &state;
3374 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3375 	if (err < 0)
3376 		return err;
3377 	if (write)
3378 		set_numabalancing_state(state);
3379 	return err;
3380 }
3381 #endif
3382 #endif
3383 
3384 #ifdef CONFIG_SCHEDSTATS
3385 
3386 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3387 static bool __initdata __sched_schedstats = false;
3388 
set_schedstats(bool enabled)3389 static void set_schedstats(bool enabled)
3390 {
3391 	if (enabled)
3392 		static_branch_enable(&sched_schedstats);
3393 	else
3394 		static_branch_disable(&sched_schedstats);
3395 }
3396 
force_schedstat_enabled(void)3397 void force_schedstat_enabled(void)
3398 {
3399 	if (!schedstat_enabled()) {
3400 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3401 		static_branch_enable(&sched_schedstats);
3402 	}
3403 }
3404 
setup_schedstats(char * str)3405 static int __init setup_schedstats(char *str)
3406 {
3407 	int ret = 0;
3408 	if (!str)
3409 		goto out;
3410 
3411 	/*
3412 	 * This code is called before jump labels have been set up, so we can't
3413 	 * change the static branch directly just yet.  Instead set a temporary
3414 	 * variable so init_schedstats() can do it later.
3415 	 */
3416 	if (!strcmp(str, "enable")) {
3417 		__sched_schedstats = true;
3418 		ret = 1;
3419 	} else if (!strcmp(str, "disable")) {
3420 		__sched_schedstats = false;
3421 		ret = 1;
3422 	}
3423 out:
3424 	if (!ret)
3425 		pr_warn("Unable to parse schedstats=\n");
3426 
3427 	return ret;
3428 }
3429 __setup("schedstats=", setup_schedstats);
3430 
init_schedstats(void)3431 static void __init init_schedstats(void)
3432 {
3433 	set_schedstats(__sched_schedstats);
3434 }
3435 
3436 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3437 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3438 		size_t *lenp, loff_t *ppos)
3439 {
3440 	struct ctl_table t;
3441 	int err;
3442 	int state = static_branch_likely(&sched_schedstats);
3443 
3444 	if (write && !capable(CAP_SYS_ADMIN))
3445 		return -EPERM;
3446 
3447 	t = *table;
3448 	t.data = &state;
3449 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3450 	if (err < 0)
3451 		return err;
3452 	if (write)
3453 		set_schedstats(state);
3454 	return err;
3455 }
3456 #endif /* CONFIG_PROC_SYSCTL */
3457 #else  /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3458 static inline void init_schedstats(void) {}
3459 #endif /* CONFIG_SCHEDSTATS */
3460 
3461 /*
3462  * fork()/clone()-time setup:
3463  */
sched_fork(unsigned long clone_flags,struct task_struct * p)3464 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3465 {
3466 	trace_android_rvh_sched_fork(p);
3467 
3468 	__sched_fork(clone_flags, p);
3469 	/*
3470 	 * We mark the process as NEW here. This guarantees that
3471 	 * nobody will actually run it, and a signal or other external
3472 	 * event cannot wake it up and insert it on the runqueue either.
3473 	 */
3474 	p->state = TASK_NEW;
3475 
3476 	/*
3477 	 * Make sure we do not leak PI boosting priority to the child.
3478 	 */
3479 	p->prio = current->normal_prio;
3480 	trace_android_rvh_prepare_prio_fork(p);
3481 
3482 	uclamp_fork(p);
3483 
3484 	/*
3485 	 * Revert to default priority/policy on fork if requested.
3486 	 */
3487 	if (unlikely(p->sched_reset_on_fork)) {
3488 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3489 			p->policy = SCHED_NORMAL;
3490 			p->static_prio = NICE_TO_PRIO(0);
3491 			p->rt_priority = 0;
3492 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3493 			p->static_prio = NICE_TO_PRIO(0);
3494 
3495 		p->prio = p->normal_prio = p->static_prio;
3496 		set_load_weight(p);
3497 
3498 		/*
3499 		 * We don't need the reset flag anymore after the fork. It has
3500 		 * fulfilled its duty:
3501 		 */
3502 		p->sched_reset_on_fork = 0;
3503 	}
3504 
3505 	if (dl_prio(p->prio))
3506 		return -EAGAIN;
3507 	else if (rt_prio(p->prio))
3508 		p->sched_class = &rt_sched_class;
3509 	else
3510 		p->sched_class = &fair_sched_class;
3511 
3512 	init_entity_runnable_average(&p->se);
3513 	trace_android_rvh_finish_prio_fork(p);
3514 
3515 
3516 #ifdef CONFIG_SCHED_INFO
3517 	if (likely(sched_info_on()))
3518 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3519 #endif
3520 #if defined(CONFIG_SMP)
3521 	p->on_cpu = 0;
3522 #endif
3523 	init_task_preempt_count(p);
3524 #ifdef CONFIG_SMP
3525 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3526 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3527 #endif
3528 	return 0;
3529 }
3530 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)3531 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
3532 {
3533 	unsigned long flags;
3534 
3535 	/*
3536 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
3537 	 * required yet, but lockdep gets upset if rules are violated.
3538 	 */
3539 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3540 #ifdef CONFIG_CGROUP_SCHED
3541 	if (1) {
3542 		struct task_group *tg;
3543 
3544 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
3545 				  struct task_group, css);
3546 		tg = autogroup_task_group(p, tg);
3547 		p->sched_task_group = tg;
3548 	}
3549 #endif
3550 	rseq_migrate(p);
3551 	/*
3552 	 * We're setting the CPU for the first time, we don't migrate,
3553 	 * so use __set_task_cpu().
3554 	 */
3555 	__set_task_cpu(p, smp_processor_id());
3556 	if (p->sched_class->task_fork)
3557 		p->sched_class->task_fork(p);
3558 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3559 }
3560 
sched_post_fork(struct task_struct * p)3561 void sched_post_fork(struct task_struct *p)
3562 {
3563 	uclamp_post_fork(p);
3564 }
3565 
to_ratio(u64 period,u64 runtime)3566 unsigned long to_ratio(u64 period, u64 runtime)
3567 {
3568 	if (runtime == RUNTIME_INF)
3569 		return BW_UNIT;
3570 
3571 	/*
3572 	 * Doing this here saves a lot of checks in all
3573 	 * the calling paths, and returning zero seems
3574 	 * safe for them anyway.
3575 	 */
3576 	if (period == 0)
3577 		return 0;
3578 
3579 	return div64_u64(runtime << BW_SHIFT, period);
3580 }
3581 
3582 /*
3583  * wake_up_new_task - wake up a newly created task for the first time.
3584  *
3585  * This function will do some initial scheduler statistics housekeeping
3586  * that must be done for every newly created context, then puts the task
3587  * on the runqueue and wakes it.
3588  */
wake_up_new_task(struct task_struct * p)3589 void wake_up_new_task(struct task_struct *p)
3590 {
3591 	struct rq_flags rf;
3592 	struct rq *rq;
3593 
3594 	trace_android_rvh_wake_up_new_task(p);
3595 
3596 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3597 	p->state = TASK_RUNNING;
3598 #ifdef CONFIG_SMP
3599 	/*
3600 	 * Fork balancing, do it here and not earlier because:
3601 	 *  - cpus_ptr can change in the fork path
3602 	 *  - any previously selected CPU might disappear through hotplug
3603 	 *
3604 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3605 	 * as we're not fully set-up yet.
3606 	 */
3607 	p->recent_used_cpu = task_cpu(p);
3608 	rseq_migrate(p);
3609 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3610 #endif
3611 	rq = __task_rq_lock(p, &rf);
3612 	update_rq_clock(rq);
3613 	post_init_entity_util_avg(p);
3614 	trace_android_rvh_new_task_stats(p);
3615 
3616 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3617 	trace_sched_wakeup_new(p);
3618 	check_preempt_curr(rq, p, WF_FORK);
3619 #ifdef CONFIG_SMP
3620 	if (p->sched_class->task_woken) {
3621 		/*
3622 		 * Nothing relies on rq->lock after this, so its fine to
3623 		 * drop it.
3624 		 */
3625 		rq_unpin_lock(rq, &rf);
3626 		p->sched_class->task_woken(rq, p);
3627 		rq_repin_lock(rq, &rf);
3628 	}
3629 #endif
3630 	task_rq_unlock(rq, p, &rf);
3631 }
3632 
3633 #ifdef CONFIG_PREEMPT_NOTIFIERS
3634 
3635 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3636 
preempt_notifier_inc(void)3637 void preempt_notifier_inc(void)
3638 {
3639 	static_branch_inc(&preempt_notifier_key);
3640 }
3641 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3642 
preempt_notifier_dec(void)3643 void preempt_notifier_dec(void)
3644 {
3645 	static_branch_dec(&preempt_notifier_key);
3646 }
3647 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3648 
3649 /**
3650  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3651  * @notifier: notifier struct to register
3652  */
preempt_notifier_register(struct preempt_notifier * notifier)3653 void preempt_notifier_register(struct preempt_notifier *notifier)
3654 {
3655 	if (!static_branch_unlikely(&preempt_notifier_key))
3656 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3657 
3658 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3659 }
3660 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3661 
3662 /**
3663  * preempt_notifier_unregister - no longer interested in preemption notifications
3664  * @notifier: notifier struct to unregister
3665  *
3666  * This is *not* safe to call from within a preemption notifier.
3667  */
preempt_notifier_unregister(struct preempt_notifier * notifier)3668 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3669 {
3670 	hlist_del(&notifier->link);
3671 }
3672 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3673 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3674 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3675 {
3676 	struct preempt_notifier *notifier;
3677 
3678 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3679 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3680 }
3681 
fire_sched_in_preempt_notifiers(struct task_struct * curr)3682 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3683 {
3684 	if (static_branch_unlikely(&preempt_notifier_key))
3685 		__fire_sched_in_preempt_notifiers(curr);
3686 }
3687 
3688 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3689 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3690 				   struct task_struct *next)
3691 {
3692 	struct preempt_notifier *notifier;
3693 
3694 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3695 		notifier->ops->sched_out(notifier, next);
3696 }
3697 
3698 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3699 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3700 				 struct task_struct *next)
3701 {
3702 	if (static_branch_unlikely(&preempt_notifier_key))
3703 		__fire_sched_out_preempt_notifiers(curr, next);
3704 }
3705 
3706 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3707 
fire_sched_in_preempt_notifiers(struct task_struct * curr)3708 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3709 {
3710 }
3711 
3712 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3713 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3714 				 struct task_struct *next)
3715 {
3716 }
3717 
3718 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3719 
prepare_task(struct task_struct * next)3720 static inline void prepare_task(struct task_struct *next)
3721 {
3722 #ifdef CONFIG_SMP
3723 	/*
3724 	 * Claim the task as running, we do this before switching to it
3725 	 * such that any running task will have this set.
3726 	 *
3727 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3728 	 */
3729 	WRITE_ONCE(next->on_cpu, 1);
3730 #endif
3731 }
3732 
finish_task(struct task_struct * prev)3733 static inline void finish_task(struct task_struct *prev)
3734 {
3735 #ifdef CONFIG_SMP
3736 	/*
3737 	 * This must be the very last reference to @prev from this CPU. After
3738 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3739 	 * must ensure this doesn't happen until the switch is completely
3740 	 * finished.
3741 	 *
3742 	 * In particular, the load of prev->state in finish_task_switch() must
3743 	 * happen before this.
3744 	 *
3745 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3746 	 */
3747 	smp_store_release(&prev->on_cpu, 0);
3748 #endif
3749 }
3750 
3751 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3752 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3753 {
3754 	/*
3755 	 * Since the runqueue lock will be released by the next
3756 	 * task (which is an invalid locking op but in the case
3757 	 * of the scheduler it's an obvious special-case), so we
3758 	 * do an early lockdep release here:
3759 	 */
3760 	rq_unpin_lock(rq, rf);
3761 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3762 #ifdef CONFIG_DEBUG_SPINLOCK
3763 	/* this is a valid case when another task releases the spinlock */
3764 	rq->lock.owner = next;
3765 #endif
3766 }
3767 
finish_lock_switch(struct rq * rq)3768 static inline void finish_lock_switch(struct rq *rq)
3769 {
3770 	/*
3771 	 * If we are tracking spinlock dependencies then we have to
3772 	 * fix up the runqueue lock - which gets 'carried over' from
3773 	 * prev into current:
3774 	 */
3775 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3776 	raw_spin_unlock_irq(&rq->lock);
3777 }
3778 
3779 /*
3780  * NOP if the arch has not defined these:
3781  */
3782 
3783 #ifndef prepare_arch_switch
3784 # define prepare_arch_switch(next)	do { } while (0)
3785 #endif
3786 
3787 #ifndef finish_arch_post_lock_switch
3788 # define finish_arch_post_lock_switch()	do { } while (0)
3789 #endif
3790 
3791 /**
3792  * prepare_task_switch - prepare to switch tasks
3793  * @rq: the runqueue preparing to switch
3794  * @prev: the current task that is being switched out
3795  * @next: the task we are going to switch to.
3796  *
3797  * This is called with the rq lock held and interrupts off. It must
3798  * be paired with a subsequent finish_task_switch after the context
3799  * switch.
3800  *
3801  * prepare_task_switch sets up locking and calls architecture specific
3802  * hooks.
3803  */
3804 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3805 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3806 		    struct task_struct *next)
3807 {
3808 	kcov_prepare_switch(prev);
3809 	sched_info_switch(rq, prev, next);
3810 	perf_event_task_sched_out(prev, next);
3811 	rseq_preempt(prev);
3812 	fire_sched_out_preempt_notifiers(prev, next);
3813 	prepare_task(next);
3814 	prepare_arch_switch(next);
3815 }
3816 
3817 /**
3818  * finish_task_switch - clean up after a task-switch
3819  * @prev: the thread we just switched away from.
3820  *
3821  * finish_task_switch must be called after the context switch, paired
3822  * with a prepare_task_switch call before the context switch.
3823  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3824  * and do any other architecture-specific cleanup actions.
3825  *
3826  * Note that we may have delayed dropping an mm in context_switch(). If
3827  * so, we finish that here outside of the runqueue lock. (Doing it
3828  * with the lock held can cause deadlocks; see schedule() for
3829  * details.)
3830  *
3831  * The context switch have flipped the stack from under us and restored the
3832  * local variables which were saved when this task called schedule() in the
3833  * past. prev == current is still correct but we need to recalculate this_rq
3834  * because prev may have moved to another CPU.
3835  */
finish_task_switch(struct task_struct * prev)3836 static struct rq *finish_task_switch(struct task_struct *prev)
3837 	__releases(rq->lock)
3838 {
3839 	struct rq *rq = this_rq();
3840 	struct mm_struct *mm = rq->prev_mm;
3841 	long prev_state;
3842 
3843 	/*
3844 	 * The previous task will have left us with a preempt_count of 2
3845 	 * because it left us after:
3846 	 *
3847 	 *	schedule()
3848 	 *	  preempt_disable();			// 1
3849 	 *	  __schedule()
3850 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3851 	 *
3852 	 * Also, see FORK_PREEMPT_COUNT.
3853 	 */
3854 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3855 		      "corrupted preempt_count: %s/%d/0x%x\n",
3856 		      current->comm, current->pid, preempt_count()))
3857 		preempt_count_set(FORK_PREEMPT_COUNT);
3858 
3859 	rq->prev_mm = NULL;
3860 
3861 	/*
3862 	 * A task struct has one reference for the use as "current".
3863 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3864 	 * schedule one last time. The schedule call will never return, and
3865 	 * the scheduled task must drop that reference.
3866 	 *
3867 	 * We must observe prev->state before clearing prev->on_cpu (in
3868 	 * finish_task), otherwise a concurrent wakeup can get prev
3869 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3870 	 * transition, resulting in a double drop.
3871 	 */
3872 	prev_state = prev->state;
3873 	vtime_task_switch(prev);
3874 	perf_event_task_sched_in(prev, current);
3875 	finish_task(prev);
3876 	finish_lock_switch(rq);
3877 	finish_arch_post_lock_switch();
3878 	kcov_finish_switch(current);
3879 
3880 	fire_sched_in_preempt_notifiers(current);
3881 	/*
3882 	 * When switching through a kernel thread, the loop in
3883 	 * membarrier_{private,global}_expedited() may have observed that
3884 	 * kernel thread and not issued an IPI. It is therefore possible to
3885 	 * schedule between user->kernel->user threads without passing though
3886 	 * switch_mm(). Membarrier requires a barrier after storing to
3887 	 * rq->curr, before returning to userspace, so provide them here:
3888 	 *
3889 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3890 	 *   provided by mmdrop(),
3891 	 * - a sync_core for SYNC_CORE.
3892 	 */
3893 	if (mm) {
3894 		membarrier_mm_sync_core_before_usermode(mm);
3895 		mmdrop(mm);
3896 	}
3897 	if (unlikely(prev_state == TASK_DEAD)) {
3898 		if (prev->sched_class->task_dead)
3899 			prev->sched_class->task_dead(prev);
3900 
3901 		/*
3902 		 * Remove function-return probe instances associated with this
3903 		 * task and put them back on the free list.
3904 		 */
3905 		kprobe_flush_task(prev);
3906 		trace_android_rvh_flush_task(prev);
3907 
3908 		/* Task is done with its stack. */
3909 		put_task_stack(prev);
3910 
3911 		put_task_struct_rcu_user(prev);
3912 	}
3913 
3914 	tick_nohz_task_switch();
3915 	return rq;
3916 }
3917 
3918 #ifdef CONFIG_SMP
3919 
3920 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3921 static void __balance_callback(struct rq *rq)
3922 {
3923 	struct callback_head *head, *next;
3924 	void (*func)(struct rq *rq);
3925 	unsigned long flags;
3926 
3927 	raw_spin_lock_irqsave(&rq->lock, flags);
3928 	head = rq->balance_callback;
3929 	rq->balance_callback = NULL;
3930 	while (head) {
3931 		func = (void (*)(struct rq *))head->func;
3932 		next = head->next;
3933 		head->next = NULL;
3934 		head = next;
3935 
3936 		func(rq);
3937 	}
3938 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3939 }
3940 
balance_callback(struct rq * rq)3941 static inline void balance_callback(struct rq *rq)
3942 {
3943 	if (unlikely(rq->balance_callback))
3944 		__balance_callback(rq);
3945 }
3946 
3947 #else
3948 
balance_callback(struct rq * rq)3949 static inline void balance_callback(struct rq *rq)
3950 {
3951 }
3952 
3953 #endif
3954 
3955 /**
3956  * schedule_tail - first thing a freshly forked thread must call.
3957  * @prev: the thread we just switched away from.
3958  */
schedule_tail(struct task_struct * prev)3959 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3960 	__releases(rq->lock)
3961 {
3962 	struct rq *rq;
3963 
3964 	/*
3965 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3966 	 * finish_task_switch() for details.
3967 	 *
3968 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3969 	 * and the preempt_enable() will end up enabling preemption (on
3970 	 * PREEMPT_COUNT kernels).
3971 	 */
3972 
3973 	rq = finish_task_switch(prev);
3974 	balance_callback(rq);
3975 	preempt_enable();
3976 
3977 	if (current->set_child_tid)
3978 		put_user(task_pid_vnr(current), current->set_child_tid);
3979 
3980 	calculate_sigpending();
3981 }
3982 
3983 /*
3984  * context_switch - switch to the new MM and the new thread's register state.
3985  */
3986 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3987 context_switch(struct rq *rq, struct task_struct *prev,
3988 	       struct task_struct *next, struct rq_flags *rf)
3989 {
3990 	prepare_task_switch(rq, prev, next);
3991 
3992 	/*
3993 	 * For paravirt, this is coupled with an exit in switch_to to
3994 	 * combine the page table reload and the switch backend into
3995 	 * one hypercall.
3996 	 */
3997 	arch_start_context_switch(prev);
3998 
3999 	/*
4000 	 * kernel -> kernel   lazy + transfer active
4001 	 *   user -> kernel   lazy + mmgrab() active
4002 	 *
4003 	 * kernel ->   user   switch + mmdrop() active
4004 	 *   user ->   user   switch
4005 	 */
4006 	if (!next->mm) {                                // to kernel
4007 		enter_lazy_tlb(prev->active_mm, next);
4008 
4009 		next->active_mm = prev->active_mm;
4010 		if (prev->mm)                           // from user
4011 			mmgrab(prev->active_mm);
4012 		else
4013 			prev->active_mm = NULL;
4014 	} else {                                        // to user
4015 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4016 		/*
4017 		 * sys_membarrier() requires an smp_mb() between setting
4018 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4019 		 *
4020 		 * The below provides this either through switch_mm(), or in
4021 		 * case 'prev->active_mm == next->mm' through
4022 		 * finish_task_switch()'s mmdrop().
4023 		 */
4024 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4025 
4026 		if (!prev->mm) {                        // from kernel
4027 			/* will mmdrop() in finish_task_switch(). */
4028 			rq->prev_mm = prev->active_mm;
4029 			prev->active_mm = NULL;
4030 		}
4031 	}
4032 
4033 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4034 
4035 	prepare_lock_switch(rq, next, rf);
4036 
4037 	/* Here we just switch the register state and the stack. */
4038 	switch_to(prev, next, prev);
4039 	barrier();
4040 
4041 	return finish_task_switch(prev);
4042 }
4043 
4044 /*
4045  * nr_running and nr_context_switches:
4046  *
4047  * externally visible scheduler statistics: current number of runnable
4048  * threads, total number of context switches performed since bootup.
4049  */
nr_running(void)4050 unsigned long nr_running(void)
4051 {
4052 	unsigned long i, sum = 0;
4053 
4054 	for_each_online_cpu(i)
4055 		sum += cpu_rq(i)->nr_running;
4056 
4057 	return sum;
4058 }
4059 
4060 /*
4061  * Check if only the current task is running on the CPU.
4062  *
4063  * Caution: this function does not check that the caller has disabled
4064  * preemption, thus the result might have a time-of-check-to-time-of-use
4065  * race.  The caller is responsible to use it correctly, for example:
4066  *
4067  * - from a non-preemptible section (of course)
4068  *
4069  * - from a thread that is bound to a single CPU
4070  *
4071  * - in a loop with very short iterations (e.g. a polling loop)
4072  */
single_task_running(void)4073 bool single_task_running(void)
4074 {
4075 	return raw_rq()->nr_running == 1;
4076 }
4077 EXPORT_SYMBOL(single_task_running);
4078 
nr_context_switches(void)4079 unsigned long long nr_context_switches(void)
4080 {
4081 	int i;
4082 	unsigned long long sum = 0;
4083 
4084 	for_each_possible_cpu(i)
4085 		sum += cpu_rq(i)->nr_switches;
4086 
4087 	return sum;
4088 }
4089 
4090 /*
4091  * Consumers of these two interfaces, like for example the cpuidle menu
4092  * governor, are using nonsensical data. Preferring shallow idle state selection
4093  * for a CPU that has IO-wait which might not even end up running the task when
4094  * it does become runnable.
4095  */
4096 
nr_iowait_cpu(int cpu)4097 unsigned long nr_iowait_cpu(int cpu)
4098 {
4099 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4100 }
4101 
4102 /*
4103  * IO-wait accounting, and how its mostly bollocks (on SMP).
4104  *
4105  * The idea behind IO-wait account is to account the idle time that we could
4106  * have spend running if it were not for IO. That is, if we were to improve the
4107  * storage performance, we'd have a proportional reduction in IO-wait time.
4108  *
4109  * This all works nicely on UP, where, when a task blocks on IO, we account
4110  * idle time as IO-wait, because if the storage were faster, it could've been
4111  * running and we'd not be idle.
4112  *
4113  * This has been extended to SMP, by doing the same for each CPU. This however
4114  * is broken.
4115  *
4116  * Imagine for instance the case where two tasks block on one CPU, only the one
4117  * CPU will have IO-wait accounted, while the other has regular idle. Even
4118  * though, if the storage were faster, both could've ran at the same time,
4119  * utilising both CPUs.
4120  *
4121  * This means, that when looking globally, the current IO-wait accounting on
4122  * SMP is a lower bound, by reason of under accounting.
4123  *
4124  * Worse, since the numbers are provided per CPU, they are sometimes
4125  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4126  * associated with any one particular CPU, it can wake to another CPU than it
4127  * blocked on. This means the per CPU IO-wait number is meaningless.
4128  *
4129  * Task CPU affinities can make all that even more 'interesting'.
4130  */
4131 
nr_iowait(void)4132 unsigned long nr_iowait(void)
4133 {
4134 	unsigned long i, sum = 0;
4135 
4136 	for_each_possible_cpu(i)
4137 		sum += nr_iowait_cpu(i);
4138 
4139 	return sum;
4140 }
4141 
4142 #ifdef CONFIG_SMP
4143 
4144 /*
4145  * sched_exec - execve() is a valuable balancing opportunity, because at
4146  * this point the task has the smallest effective memory and cache footprint.
4147  */
sched_exec(void)4148 void sched_exec(void)
4149 {
4150 	struct task_struct *p = current;
4151 	unsigned long flags;
4152 	int dest_cpu;
4153 	bool cond = false;
4154 
4155 	trace_android_rvh_sched_exec(&cond);
4156 	if (cond)
4157 		return;
4158 
4159 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4160 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4161 	if (dest_cpu == smp_processor_id())
4162 		goto unlock;
4163 
4164 	if (likely(cpu_active(dest_cpu))) {
4165 		struct migration_arg arg = { p, dest_cpu };
4166 
4167 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4168 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4169 		return;
4170 	}
4171 unlock:
4172 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4173 }
4174 
4175 #endif
4176 
4177 DEFINE_PER_CPU(struct kernel_stat, kstat);
4178 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4179 
4180 EXPORT_PER_CPU_SYMBOL(kstat);
4181 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4182 
4183 /*
4184  * The function fair_sched_class.update_curr accesses the struct curr
4185  * and its field curr->exec_start; when called from task_sched_runtime(),
4186  * we observe a high rate of cache misses in practice.
4187  * Prefetching this data results in improved performance.
4188  */
prefetch_curr_exec_start(struct task_struct * p)4189 static inline void prefetch_curr_exec_start(struct task_struct *p)
4190 {
4191 #ifdef CONFIG_FAIR_GROUP_SCHED
4192 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4193 #else
4194 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4195 #endif
4196 	prefetch(curr);
4197 	prefetch(&curr->exec_start);
4198 }
4199 
4200 /*
4201  * Return accounted runtime for the task.
4202  * In case the task is currently running, return the runtime plus current's
4203  * pending runtime that have not been accounted yet.
4204  */
task_sched_runtime(struct task_struct * p)4205 unsigned long long task_sched_runtime(struct task_struct *p)
4206 {
4207 	struct rq_flags rf;
4208 	struct rq *rq;
4209 	u64 ns;
4210 
4211 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4212 	/*
4213 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4214 	 * So we have a optimization chance when the task's delta_exec is 0.
4215 	 * Reading ->on_cpu is racy, but this is ok.
4216 	 *
4217 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4218 	 * If we race with it entering CPU, unaccounted time is 0. This is
4219 	 * indistinguishable from the read occurring a few cycles earlier.
4220 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4221 	 * been accounted, so we're correct here as well.
4222 	 */
4223 	if (!p->on_cpu || !task_on_rq_queued(p))
4224 		return p->se.sum_exec_runtime;
4225 #endif
4226 
4227 	rq = task_rq_lock(p, &rf);
4228 	/*
4229 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4230 	 * project cycles that may never be accounted to this
4231 	 * thread, breaking clock_gettime().
4232 	 */
4233 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4234 		prefetch_curr_exec_start(p);
4235 		update_rq_clock(rq);
4236 		p->sched_class->update_curr(rq);
4237 	}
4238 	ns = p->se.sum_exec_runtime;
4239 	task_rq_unlock(rq, p, &rf);
4240 
4241 	return ns;
4242 }
4243 EXPORT_SYMBOL_GPL(task_sched_runtime);
4244 
4245 /*
4246  * This function gets called by the timer code, with HZ frequency.
4247  * We call it with interrupts disabled.
4248  */
scheduler_tick(void)4249 void scheduler_tick(void)
4250 {
4251 	int cpu = smp_processor_id();
4252 	struct rq *rq = cpu_rq(cpu);
4253 	struct task_struct *curr = rq->curr;
4254 	struct rq_flags rf;
4255 	unsigned long thermal_pressure;
4256 
4257 	arch_scale_freq_tick();
4258 	sched_clock_tick();
4259 
4260 	rq_lock(rq, &rf);
4261 
4262 	trace_android_rvh_tick_entry(rq);
4263 	update_rq_clock(rq);
4264 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4265 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4266 	curr->sched_class->task_tick(rq, curr, 0);
4267 	calc_global_load_tick(rq);
4268 	psi_task_tick(rq);
4269 
4270 	rq_unlock(rq, &rf);
4271 
4272 	perf_event_task_tick();
4273 
4274 #ifdef CONFIG_SMP
4275 	rq->idle_balance = idle_cpu(cpu);
4276 	trigger_load_balance(rq);
4277 #endif
4278 
4279 	trace_android_vh_scheduler_tick(rq);
4280 }
4281 
4282 #ifdef CONFIG_NO_HZ_FULL
4283 
4284 struct tick_work {
4285 	int			cpu;
4286 	atomic_t		state;
4287 	struct delayed_work	work;
4288 };
4289 /* Values for ->state, see diagram below. */
4290 #define TICK_SCHED_REMOTE_OFFLINE	0
4291 #define TICK_SCHED_REMOTE_OFFLINING	1
4292 #define TICK_SCHED_REMOTE_RUNNING	2
4293 
4294 /*
4295  * State diagram for ->state:
4296  *
4297  *
4298  *          TICK_SCHED_REMOTE_OFFLINE
4299  *                    |   ^
4300  *                    |   |
4301  *                    |   | sched_tick_remote()
4302  *                    |   |
4303  *                    |   |
4304  *                    +--TICK_SCHED_REMOTE_OFFLINING
4305  *                    |   ^
4306  *                    |   |
4307  * sched_tick_start() |   | sched_tick_stop()
4308  *                    |   |
4309  *                    V   |
4310  *          TICK_SCHED_REMOTE_RUNNING
4311  *
4312  *
4313  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4314  * and sched_tick_start() are happy to leave the state in RUNNING.
4315  */
4316 
4317 static struct tick_work __percpu *tick_work_cpu;
4318 
sched_tick_remote(struct work_struct * work)4319 static void sched_tick_remote(struct work_struct *work)
4320 {
4321 	struct delayed_work *dwork = to_delayed_work(work);
4322 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4323 	int cpu = twork->cpu;
4324 	struct rq *rq = cpu_rq(cpu);
4325 	struct task_struct *curr;
4326 	struct rq_flags rf;
4327 	u64 delta;
4328 	int os;
4329 
4330 	/*
4331 	 * Handle the tick only if it appears the remote CPU is running in full
4332 	 * dynticks mode. The check is racy by nature, but missing a tick or
4333 	 * having one too much is no big deal because the scheduler tick updates
4334 	 * statistics and checks timeslices in a time-independent way, regardless
4335 	 * of when exactly it is running.
4336 	 */
4337 	if (!tick_nohz_tick_stopped_cpu(cpu))
4338 		goto out_requeue;
4339 
4340 	rq_lock_irq(rq, &rf);
4341 	curr = rq->curr;
4342 	if (cpu_is_offline(cpu))
4343 		goto out_unlock;
4344 
4345 	update_rq_clock(rq);
4346 
4347 	if (!is_idle_task(curr)) {
4348 		/*
4349 		 * Make sure the next tick runs within a reasonable
4350 		 * amount of time.
4351 		 */
4352 		delta = rq_clock_task(rq) - curr->se.exec_start;
4353 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4354 	}
4355 	curr->sched_class->task_tick(rq, curr, 0);
4356 
4357 	calc_load_nohz_remote(rq);
4358 out_unlock:
4359 	rq_unlock_irq(rq, &rf);
4360 out_requeue:
4361 
4362 	/*
4363 	 * Run the remote tick once per second (1Hz). This arbitrary
4364 	 * frequency is large enough to avoid overload but short enough
4365 	 * to keep scheduler internal stats reasonably up to date.  But
4366 	 * first update state to reflect hotplug activity if required.
4367 	 */
4368 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4369 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4370 	if (os == TICK_SCHED_REMOTE_RUNNING)
4371 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4372 }
4373 
sched_tick_start(int cpu)4374 static void sched_tick_start(int cpu)
4375 {
4376 	int os;
4377 	struct tick_work *twork;
4378 
4379 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4380 		return;
4381 
4382 	WARN_ON_ONCE(!tick_work_cpu);
4383 
4384 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4385 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4386 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4387 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4388 		twork->cpu = cpu;
4389 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4390 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4391 	}
4392 }
4393 
4394 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4395 static void sched_tick_stop(int cpu)
4396 {
4397 	struct tick_work *twork;
4398 	int os;
4399 
4400 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4401 		return;
4402 
4403 	WARN_ON_ONCE(!tick_work_cpu);
4404 
4405 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4406 	/* There cannot be competing actions, but don't rely on stop-machine. */
4407 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4408 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4409 	/* Don't cancel, as this would mess up the state machine. */
4410 }
4411 #endif /* CONFIG_HOTPLUG_CPU */
4412 
sched_tick_offload_init(void)4413 int __init sched_tick_offload_init(void)
4414 {
4415 	tick_work_cpu = alloc_percpu(struct tick_work);
4416 	BUG_ON(!tick_work_cpu);
4417 	return 0;
4418 }
4419 
4420 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4421 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4422 static inline void sched_tick_stop(int cpu) { }
4423 #endif
4424 
4425 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4426 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4427 /*
4428  * If the value passed in is equal to the current preempt count
4429  * then we just disabled preemption. Start timing the latency.
4430  */
preempt_latency_start(int val)4431 static inline void preempt_latency_start(int val)
4432 {
4433 	if (preempt_count() == val) {
4434 		unsigned long ip = get_lock_parent_ip();
4435 #ifdef CONFIG_DEBUG_PREEMPT
4436 		current->preempt_disable_ip = ip;
4437 #endif
4438 		trace_preempt_off(CALLER_ADDR0, ip);
4439 	}
4440 }
4441 
preempt_count_add(int val)4442 void preempt_count_add(int val)
4443 {
4444 #ifdef CONFIG_DEBUG_PREEMPT
4445 	/*
4446 	 * Underflow?
4447 	 */
4448 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4449 		return;
4450 #endif
4451 	__preempt_count_add(val);
4452 #ifdef CONFIG_DEBUG_PREEMPT
4453 	/*
4454 	 * Spinlock count overflowing soon?
4455 	 */
4456 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4457 				PREEMPT_MASK - 10);
4458 #endif
4459 	preempt_latency_start(val);
4460 }
4461 EXPORT_SYMBOL(preempt_count_add);
4462 NOKPROBE_SYMBOL(preempt_count_add);
4463 
4464 /*
4465  * If the value passed in equals to the current preempt count
4466  * then we just enabled preemption. Stop timing the latency.
4467  */
preempt_latency_stop(int val)4468 static inline void preempt_latency_stop(int val)
4469 {
4470 	if (preempt_count() == val)
4471 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4472 }
4473 
preempt_count_sub(int val)4474 void preempt_count_sub(int val)
4475 {
4476 #ifdef CONFIG_DEBUG_PREEMPT
4477 	/*
4478 	 * Underflow?
4479 	 */
4480 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4481 		return;
4482 	/*
4483 	 * Is the spinlock portion underflowing?
4484 	 */
4485 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4486 			!(preempt_count() & PREEMPT_MASK)))
4487 		return;
4488 #endif
4489 
4490 	preempt_latency_stop(val);
4491 	__preempt_count_sub(val);
4492 }
4493 EXPORT_SYMBOL(preempt_count_sub);
4494 NOKPROBE_SYMBOL(preempt_count_sub);
4495 
4496 #else
preempt_latency_start(int val)4497 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4498 static inline void preempt_latency_stop(int val) { }
4499 #endif
4500 
get_preempt_disable_ip(struct task_struct * p)4501 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4502 {
4503 #ifdef CONFIG_DEBUG_PREEMPT
4504 	return p->preempt_disable_ip;
4505 #else
4506 	return 0;
4507 #endif
4508 }
4509 
4510 /*
4511  * Print scheduling while atomic bug:
4512  */
__schedule_bug(struct task_struct * prev)4513 static noinline void __schedule_bug(struct task_struct *prev)
4514 {
4515 	/* Save this before calling printk(), since that will clobber it */
4516 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4517 
4518 	if (oops_in_progress)
4519 		return;
4520 
4521 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4522 		prev->comm, prev->pid, preempt_count());
4523 
4524 	debug_show_held_locks(prev);
4525 	print_modules();
4526 	if (irqs_disabled())
4527 		print_irqtrace_events(prev);
4528 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4529 	    && in_atomic_preempt_off()) {
4530 		pr_err("Preemption disabled at:");
4531 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4532 	}
4533 	check_panic_on_warn("scheduling while atomic");
4534 
4535 	trace_android_rvh_schedule_bug(prev);
4536 
4537 	dump_stack();
4538 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4539 }
4540 
4541 /*
4542  * Various schedule()-time debugging checks and statistics:
4543  */
schedule_debug(struct task_struct * prev,bool preempt)4544 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4545 {
4546 #ifdef CONFIG_SCHED_STACK_END_CHECK
4547 	if (task_stack_end_corrupted(prev))
4548 		panic("corrupted stack end detected inside scheduler\n");
4549 
4550 	if (task_scs_end_corrupted(prev))
4551 		panic("corrupted shadow stack detected inside scheduler\n");
4552 #endif
4553 
4554 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4555 	if (!preempt && prev->state && prev->non_block_count) {
4556 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4557 			prev->comm, prev->pid, prev->non_block_count);
4558 		dump_stack();
4559 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4560 	}
4561 #endif
4562 
4563 	if (unlikely(in_atomic_preempt_off())) {
4564 		__schedule_bug(prev);
4565 		preempt_count_set(PREEMPT_DISABLED);
4566 	}
4567 	rcu_sleep_check();
4568 
4569 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4570 
4571 	schedstat_inc(this_rq()->sched_count);
4572 }
4573 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4574 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4575 				  struct rq_flags *rf)
4576 {
4577 #ifdef CONFIG_SMP
4578 	const struct sched_class *class;
4579 	/*
4580 	 * We must do the balancing pass before put_prev_task(), such
4581 	 * that when we release the rq->lock the task is in the same
4582 	 * state as before we took rq->lock.
4583 	 *
4584 	 * We can terminate the balance pass as soon as we know there is
4585 	 * a runnable task of @class priority or higher.
4586 	 */
4587 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4588 		if (class->balance(rq, prev, rf))
4589 			break;
4590 	}
4591 #endif
4592 
4593 	put_prev_task(rq, prev);
4594 }
4595 
4596 /*
4597  * Pick up the highest-prio task:
4598  */
4599 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4600 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4601 {
4602 	const struct sched_class *class;
4603 	struct task_struct *p;
4604 
4605 	/*
4606 	 * Optimization: we know that if all tasks are in the fair class we can
4607 	 * call that function directly, but only if the @prev task wasn't of a
4608 	 * higher scheduling class, because otherwise those loose the
4609 	 * opportunity to pull in more work from other CPUs.
4610 	 */
4611 	if (likely(prev->sched_class <= &fair_sched_class &&
4612 		   rq->nr_running == rq->cfs.h_nr_running)) {
4613 
4614 		p = pick_next_task_fair(rq, prev, rf);
4615 		if (unlikely(p == RETRY_TASK))
4616 			goto restart;
4617 
4618 		/* Assumes fair_sched_class->next == idle_sched_class */
4619 		if (!p) {
4620 			put_prev_task(rq, prev);
4621 			p = pick_next_task_idle(rq);
4622 		}
4623 
4624 		return p;
4625 	}
4626 
4627 restart:
4628 	put_prev_task_balance(rq, prev, rf);
4629 
4630 	for_each_class(class) {
4631 		p = class->pick_next_task(rq);
4632 		if (p)
4633 			return p;
4634 	}
4635 
4636 	/* The idle class should always have a runnable task: */
4637 	BUG();
4638 }
4639 
4640 /*
4641  * __schedule() is the main scheduler function.
4642  *
4643  * The main means of driving the scheduler and thus entering this function are:
4644  *
4645  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4646  *
4647  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4648  *      paths. For example, see arch/x86/entry_64.S.
4649  *
4650  *      To drive preemption between tasks, the scheduler sets the flag in timer
4651  *      interrupt handler scheduler_tick().
4652  *
4653  *   3. Wakeups don't really cause entry into schedule(). They add a
4654  *      task to the run-queue and that's it.
4655  *
4656  *      Now, if the new task added to the run-queue preempts the current
4657  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4658  *      called on the nearest possible occasion:
4659  *
4660  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4661  *
4662  *         - in syscall or exception context, at the next outmost
4663  *           preempt_enable(). (this might be as soon as the wake_up()'s
4664  *           spin_unlock()!)
4665  *
4666  *         - in IRQ context, return from interrupt-handler to
4667  *           preemptible context
4668  *
4669  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4670  *         then at the next:
4671  *
4672  *          - cond_resched() call
4673  *          - explicit schedule() call
4674  *          - return from syscall or exception to user-space
4675  *          - return from interrupt-handler to user-space
4676  *
4677  * WARNING: must be called with preemption disabled!
4678  */
__schedule(bool preempt)4679 static void __sched notrace __schedule(bool preempt)
4680 {
4681 	struct task_struct *prev, *next;
4682 	unsigned long *switch_count;
4683 	unsigned long prev_state;
4684 	struct rq_flags rf;
4685 	struct rq *rq;
4686 	int cpu;
4687 
4688 	cpu = smp_processor_id();
4689 	rq = cpu_rq(cpu);
4690 	prev = rq->curr;
4691 
4692 	schedule_debug(prev, preempt);
4693 
4694 	if (sched_feat(HRTICK))
4695 		hrtick_clear(rq);
4696 
4697 	local_irq_disable();
4698 	rcu_note_context_switch(preempt);
4699 
4700 	/*
4701 	 * Make sure that signal_pending_state()->signal_pending() below
4702 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4703 	 * done by the caller to avoid the race with signal_wake_up():
4704 	 *
4705 	 * __set_current_state(@state)		signal_wake_up()
4706 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4707 	 *					  wake_up_state(p, state)
4708 	 *   LOCK rq->lock			    LOCK p->pi_state
4709 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4710 	 *     if (signal_pending_state())	    if (p->state & @state)
4711 	 *
4712 	 * Also, the membarrier system call requires a full memory barrier
4713 	 * after coming from user-space, before storing to rq->curr.
4714 	 */
4715 	rq_lock(rq, &rf);
4716 	smp_mb__after_spinlock();
4717 
4718 	/* Promote REQ to ACT */
4719 	rq->clock_update_flags <<= 1;
4720 	update_rq_clock(rq);
4721 
4722 	switch_count = &prev->nivcsw;
4723 
4724 	/*
4725 	 * We must load prev->state once (task_struct::state is volatile), such
4726 	 * that:
4727 	 *
4728 	 *  - we form a control dependency vs deactivate_task() below.
4729 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4730 	 */
4731 	prev_state = prev->state;
4732 	if (!preempt && prev_state) {
4733 		if (signal_pending_state(prev_state, prev)) {
4734 			prev->state = TASK_RUNNING;
4735 		} else {
4736 			prev->sched_contributes_to_load =
4737 				(prev_state & TASK_UNINTERRUPTIBLE) &&
4738 				!(prev_state & TASK_NOLOAD) &&
4739 				!(prev->flags & PF_FROZEN);
4740 
4741 			if (prev->sched_contributes_to_load)
4742 				rq->nr_uninterruptible++;
4743 
4744 			/*
4745 			 * __schedule()			ttwu()
4746 			 *   prev_state = prev->state;    if (p->on_rq && ...)
4747 			 *   if (prev_state)		    goto out;
4748 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4749 			 *				  p->state = TASK_WAKING
4750 			 *
4751 			 * Where __schedule() and ttwu() have matching control dependencies.
4752 			 *
4753 			 * After this, schedule() must not care about p->state any more.
4754 			 */
4755 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4756 
4757 			if (prev->in_iowait) {
4758 				atomic_inc(&rq->nr_iowait);
4759 				delayacct_blkio_start();
4760 			}
4761 		}
4762 		switch_count = &prev->nvcsw;
4763 	}
4764 
4765 	next = pick_next_task(rq, prev, &rf);
4766 	clear_tsk_need_resched(prev);
4767 	clear_preempt_need_resched();
4768 
4769 	trace_android_rvh_schedule(prev, next, rq);
4770 	if (likely(prev != next)) {
4771 		rq->nr_switches++;
4772 		/*
4773 		 * RCU users of rcu_dereference(rq->curr) may not see
4774 		 * changes to task_struct made by pick_next_task().
4775 		 */
4776 		RCU_INIT_POINTER(rq->curr, next);
4777 		/*
4778 		 * The membarrier system call requires each architecture
4779 		 * to have a full memory barrier after updating
4780 		 * rq->curr, before returning to user-space.
4781 		 *
4782 		 * Here are the schemes providing that barrier on the
4783 		 * various architectures:
4784 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4785 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4786 		 * - finish_lock_switch() for weakly-ordered
4787 		 *   architectures where spin_unlock is a full barrier,
4788 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4789 		 *   is a RELEASE barrier),
4790 		 */
4791 		++*switch_count;
4792 
4793 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4794 
4795 		trace_sched_switch(preempt, prev, next);
4796 
4797 		/* Also unlocks the rq: */
4798 		rq = context_switch(rq, prev, next, &rf);
4799 	} else {
4800 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4801 		rq_unlock_irq(rq, &rf);
4802 	}
4803 
4804 	balance_callback(rq);
4805 }
4806 
do_task_dead(void)4807 void __noreturn do_task_dead(void)
4808 {
4809 	/* Causes final put_task_struct in finish_task_switch(): */
4810 	set_special_state(TASK_DEAD);
4811 
4812 	/* Tell freezer to ignore us: */
4813 	current->flags |= PF_NOFREEZE;
4814 
4815 	__schedule(false);
4816 	BUG();
4817 
4818 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4819 	for (;;)
4820 		cpu_relax();
4821 }
4822 
sched_submit_work(struct task_struct * tsk)4823 static inline void sched_submit_work(struct task_struct *tsk)
4824 {
4825 	unsigned int task_flags;
4826 
4827 	if (!tsk->state)
4828 		return;
4829 
4830 	task_flags = tsk->flags;
4831 	/*
4832 	 * If a worker went to sleep, notify and ask workqueue whether
4833 	 * it wants to wake up a task to maintain concurrency.
4834 	 * As this function is called inside the schedule() context,
4835 	 * we disable preemption to avoid it calling schedule() again
4836 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4837 	 * requires it.
4838 	 */
4839 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4840 		preempt_disable();
4841 		if (task_flags & PF_WQ_WORKER)
4842 			wq_worker_sleeping(tsk);
4843 		else
4844 			io_wq_worker_sleeping(tsk);
4845 		preempt_enable_no_resched();
4846 	}
4847 
4848 	if (tsk_is_pi_blocked(tsk))
4849 		return;
4850 
4851 	/*
4852 	 * If we are going to sleep and we have plugged IO queued,
4853 	 * make sure to submit it to avoid deadlocks.
4854 	 */
4855 	if (blk_needs_flush_plug(tsk))
4856 		blk_schedule_flush_plug(tsk);
4857 }
4858 
sched_update_worker(struct task_struct * tsk)4859 static void sched_update_worker(struct task_struct *tsk)
4860 {
4861 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4862 		if (tsk->flags & PF_WQ_WORKER)
4863 			wq_worker_running(tsk);
4864 		else
4865 			io_wq_worker_running(tsk);
4866 	}
4867 }
4868 
schedule(void)4869 asmlinkage __visible void __sched schedule(void)
4870 {
4871 	struct task_struct *tsk = current;
4872 
4873 	sched_submit_work(tsk);
4874 	do {
4875 		preempt_disable();
4876 		__schedule(false);
4877 		sched_preempt_enable_no_resched();
4878 	} while (need_resched());
4879 	sched_update_worker(tsk);
4880 }
4881 EXPORT_SYMBOL(schedule);
4882 
4883 /*
4884  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4885  * state (have scheduled out non-voluntarily) by making sure that all
4886  * tasks have either left the run queue or have gone into user space.
4887  * As idle tasks do not do either, they must not ever be preempted
4888  * (schedule out non-voluntarily).
4889  *
4890  * schedule_idle() is similar to schedule_preempt_disable() except that it
4891  * never enables preemption because it does not call sched_submit_work().
4892  */
schedule_idle(void)4893 void __sched schedule_idle(void)
4894 {
4895 	/*
4896 	 * As this skips calling sched_submit_work(), which the idle task does
4897 	 * regardless because that function is a nop when the task is in a
4898 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4899 	 * current task can be in any other state. Note, idle is always in the
4900 	 * TASK_RUNNING state.
4901 	 */
4902 	WARN_ON_ONCE(current->state);
4903 	do {
4904 		__schedule(false);
4905 	} while (need_resched());
4906 }
4907 
4908 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4909 asmlinkage __visible void __sched schedule_user(void)
4910 {
4911 	/*
4912 	 * If we come here after a random call to set_need_resched(),
4913 	 * or we have been woken up remotely but the IPI has not yet arrived,
4914 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4915 	 * we find a better solution.
4916 	 *
4917 	 * NB: There are buggy callers of this function.  Ideally we
4918 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4919 	 * too frequently to make sense yet.
4920 	 */
4921 	enum ctx_state prev_state = exception_enter();
4922 	schedule();
4923 	exception_exit(prev_state);
4924 }
4925 #endif
4926 
4927 /**
4928  * schedule_preempt_disabled - called with preemption disabled
4929  *
4930  * Returns with preemption disabled. Note: preempt_count must be 1
4931  */
schedule_preempt_disabled(void)4932 void __sched schedule_preempt_disabled(void)
4933 {
4934 	sched_preempt_enable_no_resched();
4935 	schedule();
4936 	preempt_disable();
4937 }
4938 
preempt_schedule_common(void)4939 static void __sched notrace preempt_schedule_common(void)
4940 {
4941 	do {
4942 		/*
4943 		 * Because the function tracer can trace preempt_count_sub()
4944 		 * and it also uses preempt_enable/disable_notrace(), if
4945 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4946 		 * by the function tracer will call this function again and
4947 		 * cause infinite recursion.
4948 		 *
4949 		 * Preemption must be disabled here before the function
4950 		 * tracer can trace. Break up preempt_disable() into two
4951 		 * calls. One to disable preemption without fear of being
4952 		 * traced. The other to still record the preemption latency,
4953 		 * which can also be traced by the function tracer.
4954 		 */
4955 		preempt_disable_notrace();
4956 		preempt_latency_start(1);
4957 		__schedule(true);
4958 		preempt_latency_stop(1);
4959 		preempt_enable_no_resched_notrace();
4960 
4961 		/*
4962 		 * Check again in case we missed a preemption opportunity
4963 		 * between schedule and now.
4964 		 */
4965 	} while (need_resched());
4966 }
4967 
4968 #ifdef CONFIG_PREEMPTION
4969 /*
4970  * This is the entry point to schedule() from in-kernel preemption
4971  * off of preempt_enable.
4972  */
preempt_schedule(void)4973 asmlinkage __visible void __sched notrace preempt_schedule(void)
4974 {
4975 	/*
4976 	 * If there is a non-zero preempt_count or interrupts are disabled,
4977 	 * we do not want to preempt the current task. Just return..
4978 	 */
4979 	if (likely(!preemptible()))
4980 		return;
4981 
4982 	preempt_schedule_common();
4983 }
4984 NOKPROBE_SYMBOL(preempt_schedule);
4985 EXPORT_SYMBOL(preempt_schedule);
4986 
4987 /**
4988  * preempt_schedule_notrace - preempt_schedule called by tracing
4989  *
4990  * The tracing infrastructure uses preempt_enable_notrace to prevent
4991  * recursion and tracing preempt enabling caused by the tracing
4992  * infrastructure itself. But as tracing can happen in areas coming
4993  * from userspace or just about to enter userspace, a preempt enable
4994  * can occur before user_exit() is called. This will cause the scheduler
4995  * to be called when the system is still in usermode.
4996  *
4997  * To prevent this, the preempt_enable_notrace will use this function
4998  * instead of preempt_schedule() to exit user context if needed before
4999  * calling the scheduler.
5000  */
preempt_schedule_notrace(void)5001 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5002 {
5003 	enum ctx_state prev_ctx;
5004 
5005 	if (likely(!preemptible()))
5006 		return;
5007 
5008 	do {
5009 		/*
5010 		 * Because the function tracer can trace preempt_count_sub()
5011 		 * and it also uses preempt_enable/disable_notrace(), if
5012 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5013 		 * by the function tracer will call this function again and
5014 		 * cause infinite recursion.
5015 		 *
5016 		 * Preemption must be disabled here before the function
5017 		 * tracer can trace. Break up preempt_disable() into two
5018 		 * calls. One to disable preemption without fear of being
5019 		 * traced. The other to still record the preemption latency,
5020 		 * which can also be traced by the function tracer.
5021 		 */
5022 		preempt_disable_notrace();
5023 		preempt_latency_start(1);
5024 		/*
5025 		 * Needs preempt disabled in case user_exit() is traced
5026 		 * and the tracer calls preempt_enable_notrace() causing
5027 		 * an infinite recursion.
5028 		 */
5029 		prev_ctx = exception_enter();
5030 		__schedule(true);
5031 		exception_exit(prev_ctx);
5032 
5033 		preempt_latency_stop(1);
5034 		preempt_enable_no_resched_notrace();
5035 	} while (need_resched());
5036 }
5037 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5038 
5039 #endif /* CONFIG_PREEMPTION */
5040 
5041 /*
5042  * This is the entry point to schedule() from kernel preemption
5043  * off of irq context.
5044  * Note, that this is called and return with irqs disabled. This will
5045  * protect us against recursive calling from irq.
5046  */
preempt_schedule_irq(void)5047 asmlinkage __visible void __sched preempt_schedule_irq(void)
5048 {
5049 	enum ctx_state prev_state;
5050 
5051 	/* Catch callers which need to be fixed */
5052 	BUG_ON(preempt_count() || !irqs_disabled());
5053 
5054 	prev_state = exception_enter();
5055 
5056 	do {
5057 		preempt_disable();
5058 		local_irq_enable();
5059 		__schedule(true);
5060 		local_irq_disable();
5061 		sched_preempt_enable_no_resched();
5062 	} while (need_resched());
5063 
5064 	exception_exit(prev_state);
5065 }
5066 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)5067 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5068 			  void *key)
5069 {
5070 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC | WF_ANDROID_VENDOR));
5071 	return try_to_wake_up(curr->private, mode, wake_flags);
5072 }
5073 EXPORT_SYMBOL(default_wake_function);
5074 
__setscheduler_prio(struct task_struct * p,int prio)5075 static void __setscheduler_prio(struct task_struct *p, int prio)
5076 {
5077 	if (dl_prio(prio))
5078 		p->sched_class = &dl_sched_class;
5079 	else if (rt_prio(prio))
5080 		p->sched_class = &rt_sched_class;
5081 	else
5082 		p->sched_class = &fair_sched_class;
5083 
5084 	p->prio = prio;
5085 }
5086 
5087 #ifdef CONFIG_RT_MUTEXES
5088 
__rt_effective_prio(struct task_struct * pi_task,int prio)5089 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5090 {
5091 	if (pi_task)
5092 		prio = min(prio, pi_task->prio);
5093 
5094 	return prio;
5095 }
5096 
rt_effective_prio(struct task_struct * p,int prio)5097 static inline int rt_effective_prio(struct task_struct *p, int prio)
5098 {
5099 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5100 
5101 	return __rt_effective_prio(pi_task, prio);
5102 }
5103 
5104 /*
5105  * rt_mutex_setprio - set the current priority of a task
5106  * @p: task to boost
5107  * @pi_task: donor task
5108  *
5109  * This function changes the 'effective' priority of a task. It does
5110  * not touch ->normal_prio like __setscheduler().
5111  *
5112  * Used by the rt_mutex code to implement priority inheritance
5113  * logic. Call site only calls if the priority of the task changed.
5114  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)5115 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5116 {
5117 	int prio, oldprio, queued, running, queue_flag =
5118 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5119 	const struct sched_class *prev_class;
5120 	struct rq_flags rf;
5121 	struct rq *rq;
5122 
5123 	trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
5124 	/* XXX used to be waiter->prio, not waiter->task->prio */
5125 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5126 
5127 	/*
5128 	 * If nothing changed; bail early.
5129 	 */
5130 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5131 		return;
5132 
5133 	rq = __task_rq_lock(p, &rf);
5134 	update_rq_clock(rq);
5135 	/*
5136 	 * Set under pi_lock && rq->lock, such that the value can be used under
5137 	 * either lock.
5138 	 *
5139 	 * Note that there is loads of tricky to make this pointer cache work
5140 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5141 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5142 	 * task is allowed to run again (and can exit). This ensures the pointer
5143 	 * points to a blocked task -- which guaratees the task is present.
5144 	 */
5145 	p->pi_top_task = pi_task;
5146 
5147 	/*
5148 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5149 	 */
5150 	if (prio == p->prio && !dl_prio(prio))
5151 		goto out_unlock;
5152 
5153 	/*
5154 	 * Idle task boosting is a nono in general. There is one
5155 	 * exception, when PREEMPT_RT and NOHZ is active:
5156 	 *
5157 	 * The idle task calls get_next_timer_interrupt() and holds
5158 	 * the timer wheel base->lock on the CPU and another CPU wants
5159 	 * to access the timer (probably to cancel it). We can safely
5160 	 * ignore the boosting request, as the idle CPU runs this code
5161 	 * with interrupts disabled and will complete the lock
5162 	 * protected section without being interrupted. So there is no
5163 	 * real need to boost.
5164 	 */
5165 	if (unlikely(p == rq->idle)) {
5166 		WARN_ON(p != rq->curr);
5167 		WARN_ON(p->pi_blocked_on);
5168 		goto out_unlock;
5169 	}
5170 
5171 	trace_sched_pi_setprio(p, pi_task);
5172 	oldprio = p->prio;
5173 
5174 	if (oldprio == prio)
5175 		queue_flag &= ~DEQUEUE_MOVE;
5176 
5177 	prev_class = p->sched_class;
5178 	queued = task_on_rq_queued(p);
5179 	running = task_current(rq, p);
5180 	if (queued)
5181 		dequeue_task(rq, p, queue_flag);
5182 	if (running)
5183 		put_prev_task(rq, p);
5184 
5185 	/*
5186 	 * Boosting condition are:
5187 	 * 1. -rt task is running and holds mutex A
5188 	 *      --> -dl task blocks on mutex A
5189 	 *
5190 	 * 2. -dl task is running and holds mutex A
5191 	 *      --> -dl task blocks on mutex A and could preempt the
5192 	 *          running task
5193 	 */
5194 	if (dl_prio(prio)) {
5195 		if (!dl_prio(p->normal_prio) ||
5196 		    (pi_task && dl_prio(pi_task->prio) &&
5197 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5198 			p->dl.pi_se = pi_task->dl.pi_se;
5199 			queue_flag |= ENQUEUE_REPLENISH;
5200 		} else {
5201 			p->dl.pi_se = &p->dl;
5202 		}
5203 	} else if (rt_prio(prio)) {
5204 		if (dl_prio(oldprio))
5205 			p->dl.pi_se = &p->dl;
5206 		if (oldprio < prio)
5207 			queue_flag |= ENQUEUE_HEAD;
5208 	} else {
5209 		if (dl_prio(oldprio))
5210 			p->dl.pi_se = &p->dl;
5211 		if (rt_prio(oldprio))
5212 			p->rt.timeout = 0;
5213 	}
5214 
5215 	__setscheduler_prio(p, prio);
5216 
5217 	if (queued)
5218 		enqueue_task(rq, p, queue_flag);
5219 	if (running)
5220 		set_next_task(rq, p);
5221 
5222 	check_class_changed(rq, p, prev_class, oldprio);
5223 out_unlock:
5224 	/* Avoid rq from going away on us: */
5225 	preempt_disable();
5226 	__task_rq_unlock(rq, &rf);
5227 
5228 	balance_callback(rq);
5229 	preempt_enable();
5230 }
5231 #else
rt_effective_prio(struct task_struct * p,int prio)5232 static inline int rt_effective_prio(struct task_struct *p, int prio)
5233 {
5234 	return prio;
5235 }
5236 #endif
5237 
set_user_nice(struct task_struct * p,long nice)5238 void set_user_nice(struct task_struct *p, long nice)
5239 {
5240 	bool queued, running, allowed = false;
5241 	int old_prio;
5242 	struct rq_flags rf;
5243 	struct rq *rq;
5244 
5245 	trace_android_rvh_set_user_nice(p, &nice, &allowed);
5246 	if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
5247 		return;
5248 	/*
5249 	 * We have to be careful, if called from sys_setpriority(),
5250 	 * the task might be in the middle of scheduling on another CPU.
5251 	 */
5252 	rq = task_rq_lock(p, &rf);
5253 	update_rq_clock(rq);
5254 
5255 	/*
5256 	 * The RT priorities are set via sched_setscheduler(), but we still
5257 	 * allow the 'normal' nice value to be set - but as expected
5258 	 * it wont have any effect on scheduling until the task is
5259 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5260 	 */
5261 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5262 		p->static_prio = NICE_TO_PRIO(nice);
5263 		goto out_unlock;
5264 	}
5265 	queued = task_on_rq_queued(p);
5266 	running = task_current(rq, p);
5267 	if (queued)
5268 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5269 	if (running)
5270 		put_prev_task(rq, p);
5271 
5272 	p->static_prio = NICE_TO_PRIO(nice);
5273 	set_load_weight(p);
5274 	old_prio = p->prio;
5275 	p->prio = effective_prio(p);
5276 
5277 	if (queued)
5278 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5279 	if (running)
5280 		set_next_task(rq, p);
5281 
5282 	/*
5283 	 * If the task increased its priority or is running and
5284 	 * lowered its priority, then reschedule its CPU:
5285 	 */
5286 	p->sched_class->prio_changed(rq, p, old_prio);
5287 
5288 out_unlock:
5289 	task_rq_unlock(rq, p, &rf);
5290 }
5291 EXPORT_SYMBOL(set_user_nice);
5292 
5293 /*
5294  * can_nice - check if a task can reduce its nice value
5295  * @p: task
5296  * @nice: nice value
5297  */
can_nice(const struct task_struct * p,const int nice)5298 int can_nice(const struct task_struct *p, const int nice)
5299 {
5300 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5301 	int nice_rlim = nice_to_rlimit(nice);
5302 
5303 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5304 		capable(CAP_SYS_NICE));
5305 }
5306 
5307 #ifdef __ARCH_WANT_SYS_NICE
5308 
5309 /*
5310  * sys_nice - change the priority of the current process.
5311  * @increment: priority increment
5312  *
5313  * sys_setpriority is a more generic, but much slower function that
5314  * does similar things.
5315  */
SYSCALL_DEFINE1(nice,int,increment)5316 SYSCALL_DEFINE1(nice, int, increment)
5317 {
5318 	long nice, retval;
5319 
5320 	/*
5321 	 * Setpriority might change our priority at the same moment.
5322 	 * We don't have to worry. Conceptually one call occurs first
5323 	 * and we have a single winner.
5324 	 */
5325 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5326 	nice = task_nice(current) + increment;
5327 
5328 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5329 	if (increment < 0 && !can_nice(current, nice))
5330 		return -EPERM;
5331 
5332 	retval = security_task_setnice(current, nice);
5333 	if (retval)
5334 		return retval;
5335 
5336 	set_user_nice(current, nice);
5337 	return 0;
5338 }
5339 
5340 #endif
5341 
5342 /**
5343  * task_prio - return the priority value of a given task.
5344  * @p: the task in question.
5345  *
5346  * Return: The priority value as seen by users in /proc.
5347  * RT tasks are offset by -200. Normal tasks are centered
5348  * around 0, value goes from -16 to +15.
5349  */
task_prio(const struct task_struct * p)5350 int task_prio(const struct task_struct *p)
5351 {
5352 	return p->prio - MAX_RT_PRIO;
5353 }
5354 
5355 /**
5356  * idle_cpu - is a given CPU idle currently?
5357  * @cpu: the processor in question.
5358  *
5359  * Return: 1 if the CPU is currently idle. 0 otherwise.
5360  */
idle_cpu(int cpu)5361 int idle_cpu(int cpu)
5362 {
5363 	struct rq *rq = cpu_rq(cpu);
5364 
5365 	if (rq->curr != rq->idle)
5366 		return 0;
5367 
5368 	if (rq->nr_running)
5369 		return 0;
5370 
5371 #ifdef CONFIG_SMP
5372 	if (rq->ttwu_pending)
5373 		return 0;
5374 #endif
5375 
5376 	return 1;
5377 }
5378 
5379 /**
5380  * available_idle_cpu - is a given CPU idle for enqueuing work.
5381  * @cpu: the CPU in question.
5382  *
5383  * Return: 1 if the CPU is currently idle. 0 otherwise.
5384  */
available_idle_cpu(int cpu)5385 int available_idle_cpu(int cpu)
5386 {
5387 	if (!idle_cpu(cpu))
5388 		return 0;
5389 
5390 	if (vcpu_is_preempted(cpu))
5391 		return 0;
5392 
5393 	return 1;
5394 }
5395 EXPORT_SYMBOL_GPL(available_idle_cpu);
5396 
5397 /**
5398  * idle_task - return the idle task for a given CPU.
5399  * @cpu: the processor in question.
5400  *
5401  * Return: The idle task for the CPU @cpu.
5402  */
idle_task(int cpu)5403 struct task_struct *idle_task(int cpu)
5404 {
5405 	return cpu_rq(cpu)->idle;
5406 }
5407 
5408 /**
5409  * find_process_by_pid - find a process with a matching PID value.
5410  * @pid: the pid in question.
5411  *
5412  * The task of @pid, if found. %NULL otherwise.
5413  */
find_process_by_pid(pid_t pid)5414 static struct task_struct *find_process_by_pid(pid_t pid)
5415 {
5416 	return pid ? find_task_by_vpid(pid) : current;
5417 }
5418 
5419 /*
5420  * sched_setparam() passes in -1 for its policy, to let the functions
5421  * it calls know not to change it.
5422  */
5423 #define SETPARAM_POLICY	-1
5424 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5425 static void __setscheduler_params(struct task_struct *p,
5426 		const struct sched_attr *attr)
5427 {
5428 	int policy = attr->sched_policy;
5429 
5430 	if (policy == SETPARAM_POLICY)
5431 		policy = p->policy;
5432 
5433 	p->policy = policy;
5434 
5435 	if (dl_policy(policy))
5436 		__setparam_dl(p, attr);
5437 	else if (fair_policy(policy))
5438 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5439 
5440 	/*
5441 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5442 	 * !rt_policy. Always setting this ensures that things like
5443 	 * getparam()/getattr() don't report silly values for !rt tasks.
5444 	 */
5445 	p->rt_priority = attr->sched_priority;
5446 	p->normal_prio = normal_prio(p);
5447 	set_load_weight(p);
5448 }
5449 
5450 /*
5451  * Check the target process has a UID that matches the current process's:
5452  */
check_same_owner(struct task_struct * p)5453 static bool check_same_owner(struct task_struct *p)
5454 {
5455 	const struct cred *cred = current_cred(), *pcred;
5456 	bool match;
5457 
5458 	rcu_read_lock();
5459 	pcred = __task_cred(p);
5460 	match = (uid_eq(cred->euid, pcred->euid) ||
5461 		 uid_eq(cred->euid, pcred->uid));
5462 	rcu_read_unlock();
5463 	return match;
5464 }
5465 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5466 static int __sched_setscheduler(struct task_struct *p,
5467 				const struct sched_attr *attr,
5468 				bool user, bool pi)
5469 {
5470 	int oldpolicy = -1, policy = attr->sched_policy;
5471 	int retval, oldprio, newprio, queued, running;
5472 	const struct sched_class *prev_class;
5473 	struct rq_flags rf;
5474 	int reset_on_fork;
5475 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5476 	struct rq *rq;
5477 	bool cpuset_locked = false;
5478 
5479 	/* The pi code expects interrupts enabled */
5480 	BUG_ON(pi && in_interrupt());
5481 recheck:
5482 	/* Double check policy once rq lock held: */
5483 	if (policy < 0) {
5484 		reset_on_fork = p->sched_reset_on_fork;
5485 		policy = oldpolicy = p->policy;
5486 	} else {
5487 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5488 
5489 		if (!valid_policy(policy))
5490 			return -EINVAL;
5491 	}
5492 
5493 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5494 		return -EINVAL;
5495 
5496 	/*
5497 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5498 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5499 	 * SCHED_BATCH and SCHED_IDLE is 0.
5500 	 */
5501 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5502 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5503 		return -EINVAL;
5504 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5505 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5506 		return -EINVAL;
5507 
5508 	/*
5509 	 * Allow unprivileged RT tasks to decrease priority:
5510 	 */
5511 	if (user && !capable(CAP_SYS_NICE)) {
5512 		if (fair_policy(policy)) {
5513 			if (attr->sched_nice < task_nice(p) &&
5514 			    !can_nice(p, attr->sched_nice))
5515 				return -EPERM;
5516 		}
5517 
5518 		if (rt_policy(policy)) {
5519 			unsigned long rlim_rtprio =
5520 					task_rlimit(p, RLIMIT_RTPRIO);
5521 
5522 			/* Can't set/change the rt policy: */
5523 			if (policy != p->policy && !rlim_rtprio)
5524 				return -EPERM;
5525 
5526 			/* Can't increase priority: */
5527 			if (attr->sched_priority > p->rt_priority &&
5528 			    attr->sched_priority > rlim_rtprio)
5529 				return -EPERM;
5530 		}
5531 
5532 		 /*
5533 		  * Can't set/change SCHED_DEADLINE policy at all for now
5534 		  * (safest behavior); in the future we would like to allow
5535 		  * unprivileged DL tasks to increase their relative deadline
5536 		  * or reduce their runtime (both ways reducing utilization)
5537 		  */
5538 		if (dl_policy(policy))
5539 			return -EPERM;
5540 
5541 		/*
5542 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5543 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5544 		 */
5545 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5546 			if (!can_nice(p, task_nice(p)))
5547 				return -EPERM;
5548 		}
5549 
5550 		/* Can't change other user's priorities: */
5551 		if (!check_same_owner(p))
5552 			return -EPERM;
5553 
5554 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5555 		if (p->sched_reset_on_fork && !reset_on_fork)
5556 			return -EPERM;
5557 
5558 		/* Can't change util-clamps */
5559 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5560 			return -EPERM;
5561 	}
5562 
5563 	if (user) {
5564 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5565 			return -EINVAL;
5566 
5567 		retval = security_task_setscheduler(p);
5568 		if (retval)
5569 			return retval;
5570 	}
5571 
5572 	/* Update task specific "requested" clamps */
5573 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5574 		retval = uclamp_validate(p, attr);
5575 		if (retval)
5576 			return retval;
5577 	}
5578 
5579 	/*
5580 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
5581 	 * information.
5582 	 */
5583 	if (dl_policy(policy) || dl_policy(p->policy)) {
5584 		cpuset_locked = true;
5585 		cpuset_lock();
5586 	}
5587 
5588 	/*
5589 	 * Make sure no PI-waiters arrive (or leave) while we are
5590 	 * changing the priority of the task:
5591 	 *
5592 	 * To be able to change p->policy safely, the appropriate
5593 	 * runqueue lock must be held.
5594 	 */
5595 	rq = task_rq_lock(p, &rf);
5596 	update_rq_clock(rq);
5597 
5598 	/*
5599 	 * Changing the policy of the stop threads its a very bad idea:
5600 	 */
5601 	if (p == rq->stop) {
5602 		retval = -EINVAL;
5603 		goto unlock;
5604 	}
5605 
5606 	/*
5607 	 * If not changing anything there's no need to proceed further,
5608 	 * but store a possible modification of reset_on_fork.
5609 	 */
5610 	if (unlikely(policy == p->policy)) {
5611 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5612 			goto change;
5613 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5614 			goto change;
5615 		if (dl_policy(policy) && dl_param_changed(p, attr))
5616 			goto change;
5617 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5618 			goto change;
5619 
5620 		p->sched_reset_on_fork = reset_on_fork;
5621 		retval = 0;
5622 		goto unlock;
5623 	}
5624 change:
5625 
5626 	if (user) {
5627 #ifdef CONFIG_RT_GROUP_SCHED
5628 		/*
5629 		 * Do not allow realtime tasks into groups that have no runtime
5630 		 * assigned.
5631 		 */
5632 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5633 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5634 				!task_group_is_autogroup(task_group(p))) {
5635 			retval = -EPERM;
5636 			goto unlock;
5637 		}
5638 #endif
5639 #ifdef CONFIG_SMP
5640 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5641 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5642 			cpumask_t *span = rq->rd->span;
5643 
5644 			/*
5645 			 * Don't allow tasks with an affinity mask smaller than
5646 			 * the entire root_domain to become SCHED_DEADLINE. We
5647 			 * will also fail if there's no bandwidth available.
5648 			 */
5649 			if (!cpumask_subset(span, p->cpus_ptr) ||
5650 			    rq->rd->dl_bw.bw == 0) {
5651 				retval = -EPERM;
5652 				goto unlock;
5653 			}
5654 		}
5655 #endif
5656 	}
5657 
5658 	/* Re-check policy now with rq lock held: */
5659 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5660 		policy = oldpolicy = -1;
5661 		task_rq_unlock(rq, p, &rf);
5662 		if (cpuset_locked)
5663 			cpuset_unlock();
5664 		goto recheck;
5665 	}
5666 
5667 	/*
5668 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5669 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5670 	 * is available.
5671 	 */
5672 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5673 		retval = -EBUSY;
5674 		goto unlock;
5675 	}
5676 
5677 	p->sched_reset_on_fork = reset_on_fork;
5678 	oldprio = p->prio;
5679 
5680 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5681 	if (pi) {
5682 		/*
5683 		 * Take priority boosted tasks into account. If the new
5684 		 * effective priority is unchanged, we just store the new
5685 		 * normal parameters and do not touch the scheduler class and
5686 		 * the runqueue. This will be done when the task deboost
5687 		 * itself.
5688 		 */
5689 		newprio = rt_effective_prio(p, newprio);
5690 		if (newprio == oldprio)
5691 			queue_flags &= ~DEQUEUE_MOVE;
5692 	}
5693 
5694 	queued = task_on_rq_queued(p);
5695 	running = task_current(rq, p);
5696 	if (queued)
5697 		dequeue_task(rq, p, queue_flags);
5698 	if (running)
5699 		put_prev_task(rq, p);
5700 
5701 	prev_class = p->sched_class;
5702 
5703 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5704 		__setscheduler_params(p, attr);
5705 		__setscheduler_prio(p, newprio);
5706 		trace_android_rvh_setscheduler(p);
5707 	}
5708 	__setscheduler_uclamp(p, attr);
5709 
5710 	if (queued) {
5711 		/*
5712 		 * We enqueue to tail when the priority of a task is
5713 		 * increased (user space view).
5714 		 */
5715 		if (oldprio < p->prio)
5716 			queue_flags |= ENQUEUE_HEAD;
5717 
5718 		enqueue_task(rq, p, queue_flags);
5719 	}
5720 	if (running)
5721 		set_next_task(rq, p);
5722 
5723 	check_class_changed(rq, p, prev_class, oldprio);
5724 
5725 	/* Avoid rq from going away on us: */
5726 	preempt_disable();
5727 	task_rq_unlock(rq, p, &rf);
5728 
5729 	if (pi) {
5730 		if (cpuset_locked)
5731 			cpuset_unlock();
5732 		rt_mutex_adjust_pi(p);
5733 	}
5734 
5735 	/* Run balance callbacks after we've adjusted the PI chain: */
5736 	balance_callback(rq);
5737 	preempt_enable();
5738 
5739 	return 0;
5740 
5741 unlock:
5742 	task_rq_unlock(rq, p, &rf);
5743 	if (cpuset_locked)
5744 		cpuset_unlock();
5745 	return retval;
5746 }
5747 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5748 static int _sched_setscheduler(struct task_struct *p, int policy,
5749 			       const struct sched_param *param, bool check)
5750 {
5751 	struct sched_attr attr = {
5752 		.sched_policy   = policy,
5753 		.sched_priority = param->sched_priority,
5754 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5755 	};
5756 
5757 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5758 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5759 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5760 		policy &= ~SCHED_RESET_ON_FORK;
5761 		attr.sched_policy = policy;
5762 	}
5763 
5764 	return __sched_setscheduler(p, &attr, check, true);
5765 }
5766 /**
5767  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5768  * @p: the task in question.
5769  * @policy: new policy.
5770  * @param: structure containing the new RT priority.
5771  *
5772  * Use sched_set_fifo(), read its comment.
5773  *
5774  * Return: 0 on success. An error code otherwise.
5775  *
5776  * NOTE that the task may be already dead.
5777  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5778 int sched_setscheduler(struct task_struct *p, int policy,
5779 		       const struct sched_param *param)
5780 {
5781 	return _sched_setscheduler(p, policy, param, true);
5782 }
5783 EXPORT_SYMBOL_GPL(sched_setscheduler);
5784 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5785 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5786 {
5787 	return __sched_setscheduler(p, attr, true, true);
5788 }
5789 EXPORT_SYMBOL_GPL(sched_setattr);
5790 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5791 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5792 {
5793 	return __sched_setscheduler(p, attr, false, true);
5794 }
5795 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
5796 
5797 /**
5798  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5799  * @p: the task in question.
5800  * @policy: new policy.
5801  * @param: structure containing the new RT priority.
5802  *
5803  * Just like sched_setscheduler, only don't bother checking if the
5804  * current context has permission.  For example, this is needed in
5805  * stop_machine(): we create temporary high priority worker threads,
5806  * but our caller might not have that capability.
5807  *
5808  * Return: 0 on success. An error code otherwise.
5809  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5810 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5811 			       const struct sched_param *param)
5812 {
5813 	return _sched_setscheduler(p, policy, param, false);
5814 }
5815 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5816 
5817 /*
5818  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5819  * incapable of resource management, which is the one thing an OS really should
5820  * be doing.
5821  *
5822  * This is of course the reason it is limited to privileged users only.
5823  *
5824  * Worse still; it is fundamentally impossible to compose static priority
5825  * workloads. You cannot take two correctly working static prio workloads
5826  * and smash them together and still expect them to work.
5827  *
5828  * For this reason 'all' FIFO tasks the kernel creates are basically at:
5829  *
5830  *   MAX_RT_PRIO / 2
5831  *
5832  * The administrator _MUST_ configure the system, the kernel simply doesn't
5833  * know enough information to make a sensible choice.
5834  */
sched_set_fifo(struct task_struct * p)5835 void sched_set_fifo(struct task_struct *p)
5836 {
5837 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5838 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5839 }
5840 EXPORT_SYMBOL_GPL(sched_set_fifo);
5841 
5842 /*
5843  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5844  */
sched_set_fifo_low(struct task_struct * p)5845 void sched_set_fifo_low(struct task_struct *p)
5846 {
5847 	struct sched_param sp = { .sched_priority = 1 };
5848 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5849 }
5850 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5851 
sched_set_normal(struct task_struct * p,int nice)5852 void sched_set_normal(struct task_struct *p, int nice)
5853 {
5854 	struct sched_attr attr = {
5855 		.sched_policy = SCHED_NORMAL,
5856 		.sched_nice = nice,
5857 	};
5858 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5859 }
5860 EXPORT_SYMBOL_GPL(sched_set_normal);
5861 
5862 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5863 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5864 {
5865 	struct sched_param lparam;
5866 	struct task_struct *p;
5867 	int retval;
5868 
5869 	if (!param || pid < 0)
5870 		return -EINVAL;
5871 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5872 		return -EFAULT;
5873 
5874 	rcu_read_lock();
5875 	retval = -ESRCH;
5876 	p = find_process_by_pid(pid);
5877 	if (p != NULL)
5878 		retval = sched_setscheduler(p, policy, &lparam);
5879 	rcu_read_unlock();
5880 
5881 	return retval;
5882 }
5883 
5884 /*
5885  * Mimics kernel/events/core.c perf_copy_attr().
5886  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5887 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5888 {
5889 	u32 size;
5890 	int ret;
5891 
5892 	/* Zero the full structure, so that a short copy will be nice: */
5893 	memset(attr, 0, sizeof(*attr));
5894 
5895 	ret = get_user(size, &uattr->size);
5896 	if (ret)
5897 		return ret;
5898 
5899 	/* ABI compatibility quirk: */
5900 	if (!size)
5901 		size = SCHED_ATTR_SIZE_VER0;
5902 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5903 		goto err_size;
5904 
5905 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5906 	if (ret) {
5907 		if (ret == -E2BIG)
5908 			goto err_size;
5909 		return ret;
5910 	}
5911 
5912 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5913 	    size < SCHED_ATTR_SIZE_VER1)
5914 		return -EINVAL;
5915 
5916 	/*
5917 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5918 	 * to be strict and return an error on out-of-bounds values?
5919 	 */
5920 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5921 
5922 	return 0;
5923 
5924 err_size:
5925 	put_user(sizeof(*attr), &uattr->size);
5926 	return -E2BIG;
5927 }
5928 
get_params(struct task_struct * p,struct sched_attr * attr)5929 static void get_params(struct task_struct *p, struct sched_attr *attr)
5930 {
5931 	if (task_has_dl_policy(p))
5932 		__getparam_dl(p, attr);
5933 	else if (task_has_rt_policy(p))
5934 		attr->sched_priority = p->rt_priority;
5935 	else
5936 		attr->sched_nice = task_nice(p);
5937 }
5938 
5939 /**
5940  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5941  * @pid: the pid in question.
5942  * @policy: new policy.
5943  * @param: structure containing the new RT priority.
5944  *
5945  * Return: 0 on success. An error code otherwise.
5946  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5947 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5948 {
5949 	if (policy < 0)
5950 		return -EINVAL;
5951 
5952 	return do_sched_setscheduler(pid, policy, param);
5953 }
5954 
5955 /**
5956  * sys_sched_setparam - set/change the RT priority of a thread
5957  * @pid: the pid in question.
5958  * @param: structure containing the new RT priority.
5959  *
5960  * Return: 0 on success. An error code otherwise.
5961  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5962 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5963 {
5964 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5965 }
5966 
5967 /**
5968  * sys_sched_setattr - same as above, but with extended sched_attr
5969  * @pid: the pid in question.
5970  * @uattr: structure containing the extended parameters.
5971  * @flags: for future extension.
5972  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5973 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5974 			       unsigned int, flags)
5975 {
5976 	struct sched_attr attr;
5977 	struct task_struct *p;
5978 	int retval;
5979 
5980 	if (!uattr || pid < 0 || flags)
5981 		return -EINVAL;
5982 
5983 	retval = sched_copy_attr(uattr, &attr);
5984 	if (retval)
5985 		return retval;
5986 
5987 	if ((int)attr.sched_policy < 0)
5988 		return -EINVAL;
5989 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5990 		attr.sched_policy = SETPARAM_POLICY;
5991 
5992 	rcu_read_lock();
5993 	retval = -ESRCH;
5994 	p = find_process_by_pid(pid);
5995 	if (likely(p))
5996 		get_task_struct(p);
5997 	rcu_read_unlock();
5998 
5999 	if (likely(p)) {
6000 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
6001 			get_params(p, &attr);
6002 		retval = sched_setattr(p, &attr);
6003 		put_task_struct(p);
6004 	}
6005 
6006 	return retval;
6007 }
6008 
6009 /**
6010  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6011  * @pid: the pid in question.
6012  *
6013  * Return: On success, the policy of the thread. Otherwise, a negative error
6014  * code.
6015  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)6016 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6017 {
6018 	struct task_struct *p;
6019 	int retval;
6020 
6021 	if (pid < 0)
6022 		return -EINVAL;
6023 
6024 	retval = -ESRCH;
6025 	rcu_read_lock();
6026 	p = find_process_by_pid(pid);
6027 	if (p) {
6028 		retval = security_task_getscheduler(p);
6029 		if (!retval)
6030 			retval = p->policy
6031 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6032 	}
6033 	rcu_read_unlock();
6034 	return retval;
6035 }
6036 
6037 /**
6038  * sys_sched_getparam - get the RT priority of a thread
6039  * @pid: the pid in question.
6040  * @param: structure containing the RT priority.
6041  *
6042  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6043  * code.
6044  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)6045 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6046 {
6047 	struct sched_param lp = { .sched_priority = 0 };
6048 	struct task_struct *p;
6049 	int retval;
6050 
6051 	if (!param || pid < 0)
6052 		return -EINVAL;
6053 
6054 	rcu_read_lock();
6055 	p = find_process_by_pid(pid);
6056 	retval = -ESRCH;
6057 	if (!p)
6058 		goto out_unlock;
6059 
6060 	retval = security_task_getscheduler(p);
6061 	if (retval)
6062 		goto out_unlock;
6063 
6064 	if (task_has_rt_policy(p))
6065 		lp.sched_priority = p->rt_priority;
6066 	rcu_read_unlock();
6067 
6068 	/*
6069 	 * This one might sleep, we cannot do it with a spinlock held ...
6070 	 */
6071 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6072 
6073 	return retval;
6074 
6075 out_unlock:
6076 	rcu_read_unlock();
6077 	return retval;
6078 }
6079 
6080 /*
6081  * Copy the kernel size attribute structure (which might be larger
6082  * than what user-space knows about) to user-space.
6083  *
6084  * Note that all cases are valid: user-space buffer can be larger or
6085  * smaller than the kernel-space buffer. The usual case is that both
6086  * have the same size.
6087  */
6088 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)6089 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6090 			struct sched_attr *kattr,
6091 			unsigned int usize)
6092 {
6093 	unsigned int ksize = sizeof(*kattr);
6094 
6095 	if (!access_ok(uattr, usize))
6096 		return -EFAULT;
6097 
6098 	/*
6099 	 * sched_getattr() ABI forwards and backwards compatibility:
6100 	 *
6101 	 * If usize == ksize then we just copy everything to user-space and all is good.
6102 	 *
6103 	 * If usize < ksize then we only copy as much as user-space has space for,
6104 	 * this keeps ABI compatibility as well. We skip the rest.
6105 	 *
6106 	 * If usize > ksize then user-space is using a newer version of the ABI,
6107 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6108 	 * detect the kernel's knowledge of attributes from the attr->size value
6109 	 * which is set to ksize in this case.
6110 	 */
6111 	kattr->size = min(usize, ksize);
6112 
6113 	if (copy_to_user(uattr, kattr, kattr->size))
6114 		return -EFAULT;
6115 
6116 	return 0;
6117 }
6118 
6119 /**
6120  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6121  * @pid: the pid in question.
6122  * @uattr: structure containing the extended parameters.
6123  * @usize: sizeof(attr) for fwd/bwd comp.
6124  * @flags: for future extension.
6125  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)6126 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6127 		unsigned int, usize, unsigned int, flags)
6128 {
6129 	struct sched_attr kattr = { };
6130 	struct task_struct *p;
6131 	int retval;
6132 
6133 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6134 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6135 		return -EINVAL;
6136 
6137 	rcu_read_lock();
6138 	p = find_process_by_pid(pid);
6139 	retval = -ESRCH;
6140 	if (!p)
6141 		goto out_unlock;
6142 
6143 	retval = security_task_getscheduler(p);
6144 	if (retval)
6145 		goto out_unlock;
6146 
6147 	kattr.sched_policy = p->policy;
6148 	if (p->sched_reset_on_fork)
6149 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6150 	get_params(p, &kattr);
6151 	kattr.sched_flags &= SCHED_FLAG_ALL;
6152 
6153 #ifdef CONFIG_UCLAMP_TASK
6154 	/*
6155 	 * This could race with another potential updater, but this is fine
6156 	 * because it'll correctly read the old or the new value. We don't need
6157 	 * to guarantee who wins the race as long as it doesn't return garbage.
6158 	 */
6159 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6160 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6161 #endif
6162 
6163 	rcu_read_unlock();
6164 
6165 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6166 
6167 out_unlock:
6168 	rcu_read_unlock();
6169 	return retval;
6170 }
6171 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6172 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6173 {
6174 	cpumask_var_t cpus_allowed, new_mask;
6175 	struct task_struct *p;
6176 	int retval;
6177 	int skip = 0;
6178 
6179 	rcu_read_lock();
6180 
6181 	p = find_process_by_pid(pid);
6182 	if (!p) {
6183 		rcu_read_unlock();
6184 		return -ESRCH;
6185 	}
6186 
6187 	/* Prevent p going away */
6188 	get_task_struct(p);
6189 	rcu_read_unlock();
6190 
6191 	if (p->flags & PF_NO_SETAFFINITY) {
6192 		retval = -EINVAL;
6193 		goto out_put_task;
6194 	}
6195 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6196 		retval = -ENOMEM;
6197 		goto out_put_task;
6198 	}
6199 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6200 		retval = -ENOMEM;
6201 		goto out_free_cpus_allowed;
6202 	}
6203 	retval = -EPERM;
6204 	if (!check_same_owner(p)) {
6205 		rcu_read_lock();
6206 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6207 			rcu_read_unlock();
6208 			goto out_free_new_mask;
6209 		}
6210 		rcu_read_unlock();
6211 	}
6212 
6213 	trace_android_vh_sched_setaffinity_early(p, in_mask, &skip);
6214 	if (skip)
6215 		goto out_free_new_mask;
6216 	retval = security_task_setscheduler(p);
6217 	if (retval)
6218 		goto out_free_new_mask;
6219 
6220 
6221 	cpuset_cpus_allowed(p, cpus_allowed);
6222 	cpumask_and(new_mask, in_mask, cpus_allowed);
6223 
6224 	/*
6225 	 * Since bandwidth control happens on root_domain basis,
6226 	 * if admission test is enabled, we only admit -deadline
6227 	 * tasks allowed to run on all the CPUs in the task's
6228 	 * root_domain.
6229 	 */
6230 #ifdef CONFIG_SMP
6231 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6232 		rcu_read_lock();
6233 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6234 			retval = -EBUSY;
6235 			rcu_read_unlock();
6236 			goto out_free_new_mask;
6237 		}
6238 		rcu_read_unlock();
6239 	}
6240 #endif
6241 again:
6242 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
6243 
6244 	if (!retval) {
6245 		cpuset_cpus_allowed(p, cpus_allowed);
6246 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6247 			/*
6248 			 * We must have raced with a concurrent cpuset
6249 			 * update. Just reset the cpus_allowed to the
6250 			 * cpuset's cpus_allowed
6251 			 */
6252 			cpumask_copy(new_mask, cpus_allowed);
6253 			goto again;
6254 		}
6255 	}
6256 
6257 	trace_android_rvh_sched_setaffinity(p, in_mask, &retval);
6258 
6259 out_free_new_mask:
6260 	free_cpumask_var(new_mask);
6261 out_free_cpus_allowed:
6262 	free_cpumask_var(cpus_allowed);
6263 out_put_task:
6264 	put_task_struct(p);
6265 	return retval;
6266 }
6267 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6268 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6269 			     struct cpumask *new_mask)
6270 {
6271 	if (len < cpumask_size())
6272 		cpumask_clear(new_mask);
6273 	else if (len > cpumask_size())
6274 		len = cpumask_size();
6275 
6276 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6277 }
6278 
6279 /**
6280  * sys_sched_setaffinity - set the CPU affinity of a process
6281  * @pid: pid of the process
6282  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6283  * @user_mask_ptr: user-space pointer to the new CPU mask
6284  *
6285  * Return: 0 on success. An error code otherwise.
6286  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6287 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6288 		unsigned long __user *, user_mask_ptr)
6289 {
6290 	cpumask_var_t new_mask;
6291 	int retval;
6292 
6293 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6294 		return -ENOMEM;
6295 
6296 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6297 	if (retval == 0)
6298 		retval = sched_setaffinity(pid, new_mask);
6299 	free_cpumask_var(new_mask);
6300 	return retval;
6301 }
6302 
sched_getaffinity(pid_t pid,struct cpumask * mask)6303 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6304 {
6305 	struct task_struct *p;
6306 	unsigned long flags;
6307 	int retval;
6308 
6309 	rcu_read_lock();
6310 
6311 	retval = -ESRCH;
6312 	p = find_process_by_pid(pid);
6313 	if (!p)
6314 		goto out_unlock;
6315 
6316 	retval = security_task_getscheduler(p);
6317 	if (retval)
6318 		goto out_unlock;
6319 
6320 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6321 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6322 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6323 
6324 out_unlock:
6325 	rcu_read_unlock();
6326 
6327 	return retval;
6328 }
6329 
6330 /**
6331  * sys_sched_getaffinity - get the CPU affinity of a process
6332  * @pid: pid of the process
6333  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6334  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6335  *
6336  * Return: size of CPU mask copied to user_mask_ptr on success. An
6337  * error code otherwise.
6338  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6339 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6340 		unsigned long __user *, user_mask_ptr)
6341 {
6342 	int ret;
6343 	cpumask_var_t mask;
6344 
6345 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6346 		return -EINVAL;
6347 	if (len & (sizeof(unsigned long)-1))
6348 		return -EINVAL;
6349 
6350 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
6351 		return -ENOMEM;
6352 
6353 	ret = sched_getaffinity(pid, mask);
6354 	if (ret == 0) {
6355 		unsigned int retlen = min(len, cpumask_size());
6356 
6357 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
6358 			ret = -EFAULT;
6359 		else
6360 			ret = retlen;
6361 	}
6362 	free_cpumask_var(mask);
6363 
6364 	return ret;
6365 }
6366 
6367 /**
6368  * sys_sched_yield - yield the current processor to other threads.
6369  *
6370  * This function yields the current CPU to other tasks. If there are no
6371  * other threads running on this CPU then this function will return.
6372  *
6373  * Return: 0.
6374  */
do_sched_yield(void)6375 static void do_sched_yield(void)
6376 {
6377 	struct rq_flags rf;
6378 	struct rq *rq;
6379 
6380 	rq = this_rq_lock_irq(&rf);
6381 
6382 	schedstat_inc(rq->yld_count);
6383 	current->sched_class->yield_task(rq);
6384 
6385 	trace_android_rvh_do_sched_yield(rq);
6386 
6387 	preempt_disable();
6388 	rq_unlock_irq(rq, &rf);
6389 	sched_preempt_enable_no_resched();
6390 
6391 	schedule();
6392 }
6393 
SYSCALL_DEFINE0(sched_yield)6394 SYSCALL_DEFINE0(sched_yield)
6395 {
6396 	do_sched_yield();
6397 	return 0;
6398 }
6399 
6400 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6401 int __sched _cond_resched(void)
6402 {
6403 	if (should_resched(0)) {
6404 		preempt_schedule_common();
6405 		return 1;
6406 	}
6407 	rcu_all_qs();
6408 	return 0;
6409 }
6410 EXPORT_SYMBOL(_cond_resched);
6411 #endif
6412 
6413 /*
6414  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6415  * call schedule, and on return reacquire the lock.
6416  *
6417  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6418  * operations here to prevent schedule() from being called twice (once via
6419  * spin_unlock(), once by hand).
6420  */
__cond_resched_lock(spinlock_t * lock)6421 int __cond_resched_lock(spinlock_t *lock)
6422 {
6423 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6424 	int ret = 0;
6425 
6426 	lockdep_assert_held(lock);
6427 
6428 	if (spin_needbreak(lock) || resched) {
6429 		spin_unlock(lock);
6430 		if (resched)
6431 			preempt_schedule_common();
6432 		else
6433 			cpu_relax();
6434 		ret = 1;
6435 		spin_lock(lock);
6436 	}
6437 	return ret;
6438 }
6439 EXPORT_SYMBOL(__cond_resched_lock);
6440 
6441 /**
6442  * yield - yield the current processor to other threads.
6443  *
6444  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6445  *
6446  * The scheduler is at all times free to pick the calling task as the most
6447  * eligible task to run, if removing the yield() call from your code breaks
6448  * it, its already broken.
6449  *
6450  * Typical broken usage is:
6451  *
6452  * while (!event)
6453  *	yield();
6454  *
6455  * where one assumes that yield() will let 'the other' process run that will
6456  * make event true. If the current task is a SCHED_FIFO task that will never
6457  * happen. Never use yield() as a progress guarantee!!
6458  *
6459  * If you want to use yield() to wait for something, use wait_event().
6460  * If you want to use yield() to be 'nice' for others, use cond_resched().
6461  * If you still want to use yield(), do not!
6462  */
yield(void)6463 void __sched yield(void)
6464 {
6465 	set_current_state(TASK_RUNNING);
6466 	do_sched_yield();
6467 }
6468 EXPORT_SYMBOL(yield);
6469 
6470 /**
6471  * yield_to - yield the current processor to another thread in
6472  * your thread group, or accelerate that thread toward the
6473  * processor it's on.
6474  * @p: target task
6475  * @preempt: whether task preemption is allowed or not
6476  *
6477  * It's the caller's job to ensure that the target task struct
6478  * can't go away on us before we can do any checks.
6479  *
6480  * Return:
6481  *	true (>0) if we indeed boosted the target task.
6482  *	false (0) if we failed to boost the target.
6483  *	-ESRCH if there's no task to yield to.
6484  */
yield_to(struct task_struct * p,bool preempt)6485 int __sched yield_to(struct task_struct *p, bool preempt)
6486 {
6487 	struct task_struct *curr = current;
6488 	struct rq *rq, *p_rq;
6489 	unsigned long flags;
6490 	int yielded = 0;
6491 
6492 	local_irq_save(flags);
6493 	rq = this_rq();
6494 
6495 again:
6496 	p_rq = task_rq(p);
6497 	/*
6498 	 * If we're the only runnable task on the rq and target rq also
6499 	 * has only one task, there's absolutely no point in yielding.
6500 	 */
6501 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6502 		yielded = -ESRCH;
6503 		goto out_irq;
6504 	}
6505 
6506 	double_rq_lock(rq, p_rq);
6507 	if (task_rq(p) != p_rq) {
6508 		double_rq_unlock(rq, p_rq);
6509 		goto again;
6510 	}
6511 
6512 	if (!curr->sched_class->yield_to_task)
6513 		goto out_unlock;
6514 
6515 	if (curr->sched_class != p->sched_class)
6516 		goto out_unlock;
6517 
6518 	if (task_running(p_rq, p) || p->state)
6519 		goto out_unlock;
6520 
6521 	yielded = curr->sched_class->yield_to_task(rq, p);
6522 	if (yielded) {
6523 		schedstat_inc(rq->yld_count);
6524 		/*
6525 		 * Make p's CPU reschedule; pick_next_entity takes care of
6526 		 * fairness.
6527 		 */
6528 		if (preempt && rq != p_rq)
6529 			resched_curr(p_rq);
6530 	}
6531 
6532 out_unlock:
6533 	double_rq_unlock(rq, p_rq);
6534 out_irq:
6535 	local_irq_restore(flags);
6536 
6537 	if (yielded > 0)
6538 		schedule();
6539 
6540 	return yielded;
6541 }
6542 EXPORT_SYMBOL_GPL(yield_to);
6543 
io_schedule_prepare(void)6544 int io_schedule_prepare(void)
6545 {
6546 	int old_iowait = current->in_iowait;
6547 
6548 	current->in_iowait = 1;
6549 	blk_schedule_flush_plug(current);
6550 
6551 	return old_iowait;
6552 }
6553 
io_schedule_finish(int token)6554 void io_schedule_finish(int token)
6555 {
6556 	current->in_iowait = token;
6557 }
6558 
6559 /*
6560  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6561  * that process accounting knows that this is a task in IO wait state.
6562  */
io_schedule_timeout(long timeout)6563 long __sched io_schedule_timeout(long timeout)
6564 {
6565 	int token;
6566 	long ret;
6567 
6568 	token = io_schedule_prepare();
6569 	ret = schedule_timeout(timeout);
6570 	io_schedule_finish(token);
6571 
6572 	return ret;
6573 }
6574 EXPORT_SYMBOL(io_schedule_timeout);
6575 
io_schedule(void)6576 void __sched io_schedule(void)
6577 {
6578 	int token;
6579 
6580 	token = io_schedule_prepare();
6581 	schedule();
6582 	io_schedule_finish(token);
6583 }
6584 EXPORT_SYMBOL(io_schedule);
6585 
6586 /**
6587  * sys_sched_get_priority_max - return maximum RT priority.
6588  * @policy: scheduling class.
6589  *
6590  * Return: On success, this syscall returns the maximum
6591  * rt_priority that can be used by a given scheduling class.
6592  * On failure, a negative error code is returned.
6593  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6594 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6595 {
6596 	int ret = -EINVAL;
6597 
6598 	switch (policy) {
6599 	case SCHED_FIFO:
6600 	case SCHED_RR:
6601 		ret = MAX_USER_RT_PRIO-1;
6602 		break;
6603 	case SCHED_DEADLINE:
6604 	case SCHED_NORMAL:
6605 	case SCHED_BATCH:
6606 	case SCHED_IDLE:
6607 		ret = 0;
6608 		break;
6609 	}
6610 	return ret;
6611 }
6612 
6613 /**
6614  * sys_sched_get_priority_min - return minimum RT priority.
6615  * @policy: scheduling class.
6616  *
6617  * Return: On success, this syscall returns the minimum
6618  * rt_priority that can be used by a given scheduling class.
6619  * On failure, a negative error code is returned.
6620  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6621 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6622 {
6623 	int ret = -EINVAL;
6624 
6625 	switch (policy) {
6626 	case SCHED_FIFO:
6627 	case SCHED_RR:
6628 		ret = 1;
6629 		break;
6630 	case SCHED_DEADLINE:
6631 	case SCHED_NORMAL:
6632 	case SCHED_BATCH:
6633 	case SCHED_IDLE:
6634 		ret = 0;
6635 	}
6636 	return ret;
6637 }
6638 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6639 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6640 {
6641 	struct task_struct *p;
6642 	unsigned int time_slice;
6643 	struct rq_flags rf;
6644 	struct rq *rq;
6645 	int retval;
6646 
6647 	if (pid < 0)
6648 		return -EINVAL;
6649 
6650 	retval = -ESRCH;
6651 	rcu_read_lock();
6652 	p = find_process_by_pid(pid);
6653 	if (!p)
6654 		goto out_unlock;
6655 
6656 	retval = security_task_getscheduler(p);
6657 	if (retval)
6658 		goto out_unlock;
6659 
6660 	rq = task_rq_lock(p, &rf);
6661 	time_slice = 0;
6662 	if (p->sched_class->get_rr_interval)
6663 		time_slice = p->sched_class->get_rr_interval(rq, p);
6664 	task_rq_unlock(rq, p, &rf);
6665 
6666 	rcu_read_unlock();
6667 	jiffies_to_timespec64(time_slice, t);
6668 	return 0;
6669 
6670 out_unlock:
6671 	rcu_read_unlock();
6672 	return retval;
6673 }
6674 
6675 /**
6676  * sys_sched_rr_get_interval - return the default timeslice of a process.
6677  * @pid: pid of the process.
6678  * @interval: userspace pointer to the timeslice value.
6679  *
6680  * this syscall writes the default timeslice value of a given process
6681  * into the user-space timespec buffer. A value of '0' means infinity.
6682  *
6683  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6684  * an error code.
6685  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6686 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6687 		struct __kernel_timespec __user *, interval)
6688 {
6689 	struct timespec64 t;
6690 	int retval = sched_rr_get_interval(pid, &t);
6691 
6692 	if (retval == 0)
6693 		retval = put_timespec64(&t, interval);
6694 
6695 	return retval;
6696 }
6697 
6698 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6699 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6700 		struct old_timespec32 __user *, interval)
6701 {
6702 	struct timespec64 t;
6703 	int retval = sched_rr_get_interval(pid, &t);
6704 
6705 	if (retval == 0)
6706 		retval = put_old_timespec32(&t, interval);
6707 	return retval;
6708 }
6709 #endif
6710 
sched_show_task(struct task_struct * p)6711 void sched_show_task(struct task_struct *p)
6712 {
6713 	unsigned long free = 0;
6714 	int ppid;
6715 
6716 	if (!try_get_task_stack(p))
6717 		return;
6718 
6719 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6720 
6721 	if (p->state == TASK_RUNNING)
6722 		pr_cont("  running task    ");
6723 #ifdef CONFIG_DEBUG_STACK_USAGE
6724 	free = stack_not_used(p);
6725 #endif
6726 	ppid = 0;
6727 	rcu_read_lock();
6728 	if (pid_alive(p))
6729 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6730 	rcu_read_unlock();
6731 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6732 		free, task_pid_nr(p), ppid,
6733 		(unsigned long)task_thread_info(p)->flags);
6734 
6735 	print_worker_info(KERN_INFO, p);
6736 	trace_android_vh_sched_show_task(p);
6737 	show_stack(p, NULL, KERN_INFO);
6738 	put_task_stack(p);
6739 }
6740 EXPORT_SYMBOL_GPL(sched_show_task);
6741 
6742 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6743 state_filter_match(unsigned long state_filter, struct task_struct *p)
6744 {
6745 	/* no filter, everything matches */
6746 	if (!state_filter)
6747 		return true;
6748 
6749 	/* filter, but doesn't match */
6750 	if (!(p->state & state_filter))
6751 		return false;
6752 
6753 	/*
6754 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6755 	 * TASK_KILLABLE).
6756 	 */
6757 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6758 		return false;
6759 
6760 	return true;
6761 }
6762 
6763 
show_state_filter(unsigned long state_filter)6764 void show_state_filter(unsigned long state_filter)
6765 {
6766 	struct task_struct *g, *p;
6767 
6768 	rcu_read_lock();
6769 	for_each_process_thread(g, p) {
6770 		/*
6771 		 * reset the NMI-timeout, listing all files on a slow
6772 		 * console might take a lot of time:
6773 		 * Also, reset softlockup watchdogs on all CPUs, because
6774 		 * another CPU might be blocked waiting for us to process
6775 		 * an IPI.
6776 		 */
6777 		touch_nmi_watchdog();
6778 		touch_all_softlockup_watchdogs();
6779 		if (state_filter_match(state_filter, p))
6780 			sched_show_task(p);
6781 	}
6782 
6783 #ifdef CONFIG_SCHED_DEBUG
6784 	if (!state_filter)
6785 		sysrq_sched_debug_show();
6786 #endif
6787 	rcu_read_unlock();
6788 	/*
6789 	 * Only show locks if all tasks are dumped:
6790 	 */
6791 	if (!state_filter)
6792 		debug_show_all_locks();
6793 }
6794 
6795 /**
6796  * init_idle - set up an idle thread for a given CPU
6797  * @idle: task in question
6798  * @cpu: CPU the idle task belongs to
6799  *
6800  * NOTE: this function does not set the idle thread's NEED_RESCHED
6801  * flag, to make booting more robust.
6802  */
init_idle(struct task_struct * idle,int cpu)6803 void __init init_idle(struct task_struct *idle, int cpu)
6804 {
6805 	struct rq *rq = cpu_rq(cpu);
6806 	unsigned long flags;
6807 
6808 	__sched_fork(0, idle);
6809 
6810 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6811 	raw_spin_lock(&rq->lock);
6812 
6813 	idle->state = TASK_RUNNING;
6814 	idle->se.exec_start = sched_clock();
6815 	idle->flags |= PF_IDLE;
6816 
6817 #ifdef CONFIG_SMP
6818 	/*
6819 	 * Its possible that init_idle() gets called multiple times on a task,
6820 	 * in that case do_set_cpus_allowed() will not do the right thing.
6821 	 *
6822 	 * And since this is boot we can forgo the serialization.
6823 	 */
6824 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6825 #endif
6826 	/*
6827 	 * We're having a chicken and egg problem, even though we are
6828 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6829 	 * lockdep check in task_group() will fail.
6830 	 *
6831 	 * Similar case to sched_fork(). / Alternatively we could
6832 	 * use task_rq_lock() here and obtain the other rq->lock.
6833 	 *
6834 	 * Silence PROVE_RCU
6835 	 */
6836 	rcu_read_lock();
6837 	__set_task_cpu(idle, cpu);
6838 	rcu_read_unlock();
6839 
6840 	rq->idle = idle;
6841 	rcu_assign_pointer(rq->curr, idle);
6842 	idle->on_rq = TASK_ON_RQ_QUEUED;
6843 #ifdef CONFIG_SMP
6844 	idle->on_cpu = 1;
6845 #endif
6846 	raw_spin_unlock(&rq->lock);
6847 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6848 
6849 	/* Set the preempt count _outside_ the spinlocks! */
6850 	init_idle_preempt_count(idle, cpu);
6851 
6852 	/*
6853 	 * The idle tasks have their own, simple scheduling class:
6854 	 */
6855 	idle->sched_class = &idle_sched_class;
6856 	ftrace_graph_init_idle_task(idle, cpu);
6857 	vtime_init_idle(idle, cpu);
6858 #ifdef CONFIG_SMP
6859 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6860 #endif
6861 }
6862 
6863 #ifdef CONFIG_SMP
6864 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6865 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6866 			      const struct cpumask *trial)
6867 {
6868 	int ret = 1;
6869 
6870 	if (!cpumask_weight(cur))
6871 		return ret;
6872 
6873 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6874 
6875 	return ret;
6876 }
6877 
task_can_attach(struct task_struct * p)6878 int task_can_attach(struct task_struct *p)
6879 {
6880 	int ret = 0;
6881 
6882 	/*
6883 	 * Kthreads which disallow setaffinity shouldn't be moved
6884 	 * to a new cpuset; we don't want to change their CPU
6885 	 * affinity and isolating such threads by their set of
6886 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6887 	 * applicable for such threads.  This prevents checking for
6888 	 * success of set_cpus_allowed_ptr() on all attached tasks
6889 	 * before cpus_mask may be changed.
6890 	 */
6891 	if (p->flags & PF_NO_SETAFFINITY)
6892 		ret = -EINVAL;
6893 
6894 	return ret;
6895 }
6896 
6897 bool sched_smp_initialized __read_mostly;
6898 
6899 #ifdef CONFIG_NUMA_BALANCING
6900 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6901 int migrate_task_to(struct task_struct *p, int target_cpu)
6902 {
6903 	struct migration_arg arg = { p, target_cpu };
6904 	int curr_cpu = task_cpu(p);
6905 
6906 	if (curr_cpu == target_cpu)
6907 		return 0;
6908 
6909 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6910 		return -EINVAL;
6911 
6912 	/* TODO: This is not properly updating schedstats */
6913 
6914 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6915 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6916 }
6917 
6918 /*
6919  * Requeue a task on a given node and accurately track the number of NUMA
6920  * tasks on the runqueues
6921  */
sched_setnuma(struct task_struct * p,int nid)6922 void sched_setnuma(struct task_struct *p, int nid)
6923 {
6924 	bool queued, running;
6925 	struct rq_flags rf;
6926 	struct rq *rq;
6927 
6928 	rq = task_rq_lock(p, &rf);
6929 	queued = task_on_rq_queued(p);
6930 	running = task_current(rq, p);
6931 
6932 	if (queued)
6933 		dequeue_task(rq, p, DEQUEUE_SAVE);
6934 	if (running)
6935 		put_prev_task(rq, p);
6936 
6937 	p->numa_preferred_nid = nid;
6938 
6939 	if (queued)
6940 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6941 	if (running)
6942 		set_next_task(rq, p);
6943 	task_rq_unlock(rq, p, &rf);
6944 }
6945 #endif /* CONFIG_NUMA_BALANCING */
6946 
6947 #ifdef CONFIG_HOTPLUG_CPU
6948 /*
6949  * Ensure that the idle task is using init_mm right before its CPU goes
6950  * offline.
6951  */
idle_task_exit(void)6952 void idle_task_exit(void)
6953 {
6954 	struct mm_struct *mm = current->active_mm;
6955 
6956 	BUG_ON(cpu_online(smp_processor_id()));
6957 	BUG_ON(current != this_rq()->idle);
6958 
6959 	if (mm != &init_mm) {
6960 		switch_mm(mm, &init_mm, current);
6961 		finish_arch_post_lock_switch();
6962 	}
6963 
6964 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6965 }
6966 
6967 /*
6968  * Since this CPU is going 'away' for a while, fold any nr_active delta
6969  * we might have. Assumes we're called after migrate_tasks() so that the
6970  * nr_active count is stable. We need to take the teardown thread which
6971  * is calling this into account, so we hand in adjust = 1 to the load
6972  * calculation.
6973  *
6974  * Also see the comment "Global load-average calculations".
6975  */
calc_load_migrate(struct rq * rq)6976 static void calc_load_migrate(struct rq *rq)
6977 {
6978 	long delta = calc_load_fold_active(rq, 1);
6979 	if (delta)
6980 		atomic_long_add(delta, &calc_load_tasks);
6981 }
6982 
__pick_migrate_task(struct rq * rq)6983 static struct task_struct *__pick_migrate_task(struct rq *rq)
6984 {
6985 	const struct sched_class *class;
6986 	struct task_struct *next;
6987 
6988 	for_each_class(class) {
6989 		next = class->pick_next_task(rq);
6990 		if (next) {
6991 			next->sched_class->put_prev_task(rq, next);
6992 			return next;
6993 		}
6994 	}
6995 
6996 	/* The idle class should always have a runnable task */
6997 	BUG();
6998 }
6999 
7000 /*
7001  * Migrate all tasks from the rq, sleeping tasks will be migrated by
7002  * try_to_wake_up()->select_task_rq().
7003  *
7004  * Called with rq->lock held even though we'er in stop_machine() and
7005  * there's no concurrency possible, we hold the required locks anyway
7006  * because of lock validation efforts.
7007  *
7008  * force: if false, the function will skip CPU pinned kthreads.
7009  */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool force)7010 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf, bool force)
7011 {
7012 	struct rq *rq = dead_rq;
7013 	struct task_struct *next, *tmp, *stop = rq->stop;
7014 	LIST_HEAD(percpu_kthreads);
7015 	struct rq_flags orf = *rf;
7016 	int dest_cpu;
7017 
7018 	/*
7019 	 * Fudge the rq selection such that the below task selection loop
7020 	 * doesn't get stuck on the currently eligible stop task.
7021 	 *
7022 	 * We're currently inside stop_machine() and the rq is either stuck
7023 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
7024 	 * either way we should never end up calling schedule() until we're
7025 	 * done here.
7026 	 */
7027 	rq->stop = NULL;
7028 
7029 	/*
7030 	 * put_prev_task() and pick_next_task() sched
7031 	 * class method both need to have an up-to-date
7032 	 * value of rq->clock[_task]
7033 	 */
7034 	update_rq_clock(rq);
7035 
7036 #ifdef CONFIG_SCHED_DEBUG
7037 	/* note the clock update in orf */
7038 	orf.clock_update_flags |= RQCF_UPDATED;
7039 #endif
7040 
7041 	for (;;) {
7042 		/*
7043 		 * There's this thread running, bail when that's the only
7044 		 * remaining thread:
7045 		 */
7046 		if (rq->nr_running == 1)
7047 			break;
7048 
7049 		next = __pick_migrate_task(rq);
7050 
7051 		/*
7052 		 * Argh ... no iterator for tasks, we need to remove the
7053 		 * kthread from the run-queue to continue.
7054 		 */
7055 		if (!force && is_per_cpu_kthread(next)) {
7056 			INIT_LIST_HEAD(&next->percpu_kthread_node);
7057 			list_add(&next->percpu_kthread_node, &percpu_kthreads);
7058 
7059 			/* DEQUEUE_SAVE not used due to move_entity in rt */
7060 			deactivate_task(rq, next,
7061 					DEQUEUE_NOCLOCK);
7062 			continue;
7063 		}
7064 
7065 		/*
7066 		 * Rules for changing task_struct::cpus_mask are holding
7067 		 * both pi_lock and rq->lock, such that holding either
7068 		 * stabilizes the mask.
7069 		 *
7070 		 * Drop rq->lock is not quite as disastrous as it usually is
7071 		 * because !cpu_active at this point, which means load-balance
7072 		 * will not interfere. Also, stop-machine.
7073 		 */
7074 		rq_unlock(rq, rf);
7075 		raw_spin_lock(&next->pi_lock);
7076 		rq_relock(rq, rf);
7077 
7078 		/*
7079 		 * Since we're inside stop-machine, _nothing_ should have
7080 		 * changed the task, WARN if weird stuff happened, because in
7081 		 * that case the above rq->lock drop is a fail too.
7082 		 */
7083 		if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7084 			/*
7085 			 * In the !force case, there is a hole between
7086 			 * rq_unlock() and rq_relock(), where another CPU might
7087 			 * not observe an up to date cpu_active_mask and try to
7088 			 * move tasks around.
7089 			 */
7090 			WARN_ON(force);
7091 			raw_spin_unlock(&next->pi_lock);
7092 			continue;
7093 		}
7094 
7095 		/* Find suitable destination for @next, with force if needed. */
7096 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7097 		rq = __migrate_task(rq, rf, next, dest_cpu);
7098 		if (rq != dead_rq) {
7099 			rq_unlock(rq, rf);
7100 			rq = dead_rq;
7101 			*rf = orf;
7102 			rq_relock(rq, rf);
7103 		}
7104 		raw_spin_unlock(&next->pi_lock);
7105 	}
7106 
7107 	list_for_each_entry_safe(next, tmp, &percpu_kthreads,
7108 				 percpu_kthread_node) {
7109 
7110 		/* ENQUEUE_RESTORE not used due to move_entity in rt */
7111 		activate_task(rq, next, ENQUEUE_NOCLOCK);
7112 		list_del(&next->percpu_kthread_node);
7113 	}
7114 
7115 	rq->stop = stop;
7116 }
7117 
drain_rq_cpu_stop(void * data)7118 static int drain_rq_cpu_stop(void *data)
7119 {
7120 	struct rq *rq = this_rq();
7121 	struct rq_flags rf;
7122 
7123 	rq_lock_irqsave(rq, &rf);
7124 	migrate_tasks(rq, &rf, false);
7125 	rq_unlock_irqrestore(rq, &rf);
7126 
7127 	return 0;
7128 }
7129 
sched_cpu_drain_rq(unsigned int cpu)7130 int sched_cpu_drain_rq(unsigned int cpu)
7131 {
7132 	struct cpu_stop_work *rq_drain = &(cpu_rq(cpu)->drain);
7133 	struct cpu_stop_done *rq_drain_done = &(cpu_rq(cpu)->drain_done);
7134 
7135 	if (idle_cpu(cpu)) {
7136 		rq_drain->done = NULL;
7137 		return 0;
7138 	}
7139 
7140 	return stop_one_cpu_async(cpu, drain_rq_cpu_stop, NULL, rq_drain,
7141 				  rq_drain_done);
7142 }
7143 
sched_cpu_drain_rq_wait(unsigned int cpu)7144 void sched_cpu_drain_rq_wait(unsigned int cpu)
7145 {
7146 	struct cpu_stop_work *rq_drain = &(cpu_rq(cpu)->drain);
7147 
7148 	if (rq_drain->done)
7149 		cpu_stop_work_wait(rq_drain);
7150 }
7151 #endif /* CONFIG_HOTPLUG_CPU */
7152 
set_rq_online(struct rq * rq)7153 void set_rq_online(struct rq *rq)
7154 {
7155 	if (!rq->online) {
7156 		const struct sched_class *class;
7157 
7158 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7159 		rq->online = 1;
7160 
7161 		for_each_class(class) {
7162 			if (class->rq_online)
7163 				class->rq_online(rq);
7164 		}
7165 	}
7166 }
7167 
set_rq_offline(struct rq * rq)7168 void set_rq_offline(struct rq *rq)
7169 {
7170 	if (rq->online) {
7171 		const struct sched_class *class;
7172 
7173 		for_each_class(class) {
7174 			if (class->rq_offline)
7175 				class->rq_offline(rq);
7176 		}
7177 
7178 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7179 		rq->online = 0;
7180 	}
7181 }
7182 
7183 /*
7184  * used to mark begin/end of suspend/resume:
7185  */
7186 static int num_cpus_frozen;
7187 
7188 /*
7189  * Update cpusets according to cpu_active mask.  If cpusets are
7190  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7191  * around partition_sched_domains().
7192  *
7193  * If we come here as part of a suspend/resume, don't touch cpusets because we
7194  * want to restore it back to its original state upon resume anyway.
7195  */
cpuset_cpu_active(void)7196 static void cpuset_cpu_active(void)
7197 {
7198 	if (cpuhp_tasks_frozen) {
7199 		/*
7200 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7201 		 * resume sequence. As long as this is not the last online
7202 		 * operation in the resume sequence, just build a single sched
7203 		 * domain, ignoring cpusets.
7204 		 */
7205 		partition_sched_domains(1, NULL, NULL);
7206 		if (--num_cpus_frozen)
7207 			return;
7208 		/*
7209 		 * This is the last CPU online operation. So fall through and
7210 		 * restore the original sched domains by considering the
7211 		 * cpuset configurations.
7212 		 */
7213 		cpuset_force_rebuild();
7214 	}
7215 	cpuset_update_active_cpus();
7216 }
7217 
cpuset_cpu_inactive(unsigned int cpu)7218 static int cpuset_cpu_inactive(unsigned int cpu)
7219 {
7220 	if (!cpuhp_tasks_frozen) {
7221 		int ret = dl_bw_check_overflow(cpu);
7222 
7223 		if (ret)
7224 			return ret;
7225 		cpuset_update_active_cpus();
7226 	} else {
7227 		num_cpus_frozen++;
7228 		partition_sched_domains(1, NULL, NULL);
7229 	}
7230 	return 0;
7231 }
7232 
sched_cpu_activate(unsigned int cpu)7233 int sched_cpu_activate(unsigned int cpu)
7234 {
7235 	struct rq *rq = cpu_rq(cpu);
7236 	struct rq_flags rf;
7237 
7238 #ifdef CONFIG_SCHED_SMT
7239 	/*
7240 	 * When going up, increment the number of cores with SMT present.
7241 	 */
7242 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7243 		static_branch_inc_cpuslocked(&sched_smt_present);
7244 #endif
7245 	set_cpu_active(cpu, true);
7246 
7247 	if (sched_smp_initialized) {
7248 		sched_domains_numa_masks_set(cpu);
7249 		cpuset_cpu_active();
7250 	}
7251 
7252 	/*
7253 	 * Put the rq online, if not already. This happens:
7254 	 *
7255 	 * 1) In the early boot process, because we build the real domains
7256 	 *    after all CPUs have been brought up.
7257 	 *
7258 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7259 	 *    domains.
7260 	 */
7261 	rq_lock_irqsave(rq, &rf);
7262 	if (rq->rd) {
7263 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7264 		set_rq_online(rq);
7265 	}
7266 	rq_unlock_irqrestore(rq, &rf);
7267 
7268 	update_max_interval();
7269 
7270 	return 0;
7271 }
7272 
sched_cpus_activate(struct cpumask * cpus)7273 int sched_cpus_activate(struct cpumask *cpus)
7274 {
7275 	unsigned int cpu;
7276 
7277 	for_each_cpu(cpu, cpus) {
7278 		if (sched_cpu_activate(cpu)) {
7279 			for_each_cpu_and(cpu, cpus, cpu_active_mask)
7280 				sched_cpu_deactivate(cpu);
7281 
7282 			return -EBUSY;
7283 		}
7284 	}
7285 
7286 	return 0;
7287 }
7288 
_sched_cpu_deactivate(unsigned int cpu)7289 int _sched_cpu_deactivate(unsigned int cpu)
7290 {
7291 	int ret;
7292 
7293 	set_cpu_active(cpu, false);
7294 
7295 #ifdef CONFIG_SCHED_SMT
7296 	/*
7297 	 * When going down, decrement the number of cores with SMT present.
7298 	 */
7299 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7300 		static_branch_dec_cpuslocked(&sched_smt_present);
7301 #endif
7302 
7303 	if (!sched_smp_initialized)
7304 		return 0;
7305 
7306 	ret = cpuset_cpu_inactive(cpu);
7307 	if (ret) {
7308 		set_cpu_active(cpu, true);
7309 		return ret;
7310 	}
7311 	sched_domains_numa_masks_clear(cpu);
7312 
7313 	update_max_interval();
7314 
7315 	return 0;
7316 }
7317 
sched_cpu_deactivate(unsigned int cpu)7318 int sched_cpu_deactivate(unsigned int cpu)
7319 {
7320 	int ret = _sched_cpu_deactivate(cpu);
7321 
7322 	if (ret)
7323 		return ret;
7324 
7325 	/*
7326 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7327 	 * users of this state to go away such that all new such users will
7328 	 * observe it.
7329 	 *
7330 	 * Do sync before park smpboot threads to take care the rcu boost case.
7331 	 */
7332 	synchronize_rcu();
7333 
7334 	return 0;
7335 }
7336 
sched_cpus_deactivate_nosync(struct cpumask * cpus)7337 int sched_cpus_deactivate_nosync(struct cpumask *cpus)
7338 {
7339 	unsigned int cpu;
7340 
7341 	for_each_cpu(cpu, cpus) {
7342 		if (_sched_cpu_deactivate(cpu)) {
7343 			for_each_cpu(cpu, cpus) {
7344 				if (!cpu_active(cpu))
7345 					sched_cpu_activate(cpu);
7346 			}
7347 
7348 			return -EBUSY;
7349 		}
7350 	}
7351 
7352 	return 0;
7353 }
7354 
sched_rq_cpu_starting(unsigned int cpu)7355 static void sched_rq_cpu_starting(unsigned int cpu)
7356 {
7357 	struct rq *rq = cpu_rq(cpu);
7358 
7359 	rq->calc_load_update = calc_load_update;
7360 }
7361 
sched_cpu_starting(unsigned int cpu)7362 int sched_cpu_starting(unsigned int cpu)
7363 {
7364 	sched_rq_cpu_starting(cpu);
7365 	sched_tick_start(cpu);
7366 	trace_android_rvh_sched_cpu_starting(cpu);
7367 	return 0;
7368 }
7369 
7370 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7371 int sched_cpu_dying(unsigned int cpu)
7372 {
7373 	struct rq *rq = cpu_rq(cpu);
7374 	struct rq_flags rf;
7375 
7376 	/* Handle pending wakeups and then migrate everything off */
7377 	sched_tick_stop(cpu);
7378 
7379 	rq_lock_irqsave(rq, &rf);
7380 	if (rq->rd) {
7381 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7382 		set_rq_offline(rq);
7383 	}
7384 	migrate_tasks(rq, &rf, true);
7385 	BUG_ON(rq->nr_running != 1);
7386 	rq_unlock_irqrestore(rq, &rf);
7387 
7388 	trace_android_rvh_sched_cpu_dying(cpu);
7389 
7390 	calc_load_migrate(rq);
7391 	nohz_balance_exit_idle(rq);
7392 	hrtick_clear(rq);
7393 	return 0;
7394 }
7395 #endif
7396 
sched_init_smp(void)7397 void __init sched_init_smp(void)
7398 {
7399 	sched_init_numa();
7400 
7401 	/*
7402 	 * There's no userspace yet to cause hotplug operations; hence all the
7403 	 * CPU masks are stable and all blatant races in the below code cannot
7404 	 * happen.
7405 	 */
7406 	mutex_lock(&sched_domains_mutex);
7407 	sched_init_domains(cpu_active_mask);
7408 	mutex_unlock(&sched_domains_mutex);
7409 
7410 	/* Move init over to a non-isolated CPU */
7411 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7412 		BUG();
7413 
7414 	sched_init_granularity();
7415 
7416 	init_sched_rt_class();
7417 	init_sched_dl_class();
7418 
7419 	sched_smp_initialized = true;
7420 }
7421 
migration_init(void)7422 static int __init migration_init(void)
7423 {
7424 	sched_cpu_starting(smp_processor_id());
7425 	return 0;
7426 }
7427 early_initcall(migration_init);
7428 
7429 #else
sched_init_smp(void)7430 void __init sched_init_smp(void)
7431 {
7432 	sched_init_granularity();
7433 }
7434 #endif /* CONFIG_SMP */
7435 
in_sched_functions(unsigned long addr)7436 int in_sched_functions(unsigned long addr)
7437 {
7438 	return in_lock_functions(addr) ||
7439 		(addr >= (unsigned long)__sched_text_start
7440 		&& addr < (unsigned long)__sched_text_end);
7441 }
7442 
7443 #ifdef CONFIG_CGROUP_SCHED
7444 /*
7445  * Default task group.
7446  * Every task in system belongs to this group at bootup.
7447  */
7448 struct task_group root_task_group;
7449 EXPORT_SYMBOL_GPL(root_task_group);
7450 LIST_HEAD(task_groups);
7451 EXPORT_SYMBOL_GPL(task_groups);
7452 
7453 /* Cacheline aligned slab cache for task_group */
7454 static struct kmem_cache *task_group_cache __read_mostly;
7455 #endif
7456 
7457 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7458 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7459 
sched_init(void)7460 void __init sched_init(void)
7461 {
7462 	unsigned long ptr = 0;
7463 	int i;
7464 
7465 	/* Make sure the linker didn't screw up */
7466 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7467 	       &fair_sched_class + 1 != &rt_sched_class ||
7468 	       &rt_sched_class + 1   != &dl_sched_class);
7469 #ifdef CONFIG_SMP
7470 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7471 #endif
7472 
7473 	wait_bit_init();
7474 
7475 #ifdef CONFIG_FAIR_GROUP_SCHED
7476 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7477 #endif
7478 #ifdef CONFIG_RT_GROUP_SCHED
7479 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7480 #endif
7481 	if (ptr) {
7482 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7483 
7484 #ifdef CONFIG_FAIR_GROUP_SCHED
7485 		root_task_group.se = (struct sched_entity **)ptr;
7486 		ptr += nr_cpu_ids * sizeof(void **);
7487 
7488 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7489 		ptr += nr_cpu_ids * sizeof(void **);
7490 
7491 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7492 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7493 #endif /* CONFIG_FAIR_GROUP_SCHED */
7494 #ifdef CONFIG_RT_GROUP_SCHED
7495 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7496 		ptr += nr_cpu_ids * sizeof(void **);
7497 
7498 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7499 		ptr += nr_cpu_ids * sizeof(void **);
7500 
7501 #endif /* CONFIG_RT_GROUP_SCHED */
7502 	}
7503 #ifdef CONFIG_CPUMASK_OFFSTACK
7504 	for_each_possible_cpu(i) {
7505 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7506 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7507 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7508 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7509 	}
7510 #endif /* CONFIG_CPUMASK_OFFSTACK */
7511 
7512 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7513 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7514 
7515 #ifdef CONFIG_SMP
7516 	init_defrootdomain();
7517 #endif
7518 
7519 #ifdef CONFIG_RT_GROUP_SCHED
7520 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7521 			global_rt_period(), global_rt_runtime());
7522 #endif /* CONFIG_RT_GROUP_SCHED */
7523 
7524 #ifdef CONFIG_CGROUP_SCHED
7525 	task_group_cache = KMEM_CACHE(task_group, 0);
7526 
7527 	list_add(&root_task_group.list, &task_groups);
7528 	INIT_LIST_HEAD(&root_task_group.children);
7529 	INIT_LIST_HEAD(&root_task_group.siblings);
7530 	autogroup_init(&init_task);
7531 #endif /* CONFIG_CGROUP_SCHED */
7532 
7533 	for_each_possible_cpu(i) {
7534 		struct rq *rq;
7535 
7536 		rq = cpu_rq(i);
7537 		raw_spin_lock_init(&rq->lock);
7538 		rq->nr_running = 0;
7539 		rq->calc_load_active = 0;
7540 		rq->calc_load_update = jiffies + LOAD_FREQ;
7541 		init_cfs_rq(&rq->cfs);
7542 		init_rt_rq(&rq->rt);
7543 		init_dl_rq(&rq->dl);
7544 #ifdef CONFIG_FAIR_GROUP_SCHED
7545 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7546 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7547 		/*
7548 		 * How much CPU bandwidth does root_task_group get?
7549 		 *
7550 		 * In case of task-groups formed thr' the cgroup filesystem, it
7551 		 * gets 100% of the CPU resources in the system. This overall
7552 		 * system CPU resource is divided among the tasks of
7553 		 * root_task_group and its child task-groups in a fair manner,
7554 		 * based on each entity's (task or task-group's) weight
7555 		 * (se->load.weight).
7556 		 *
7557 		 * In other words, if root_task_group has 10 tasks of weight
7558 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7559 		 * then A0's share of the CPU resource is:
7560 		 *
7561 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7562 		 *
7563 		 * We achieve this by letting root_task_group's tasks sit
7564 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7565 		 */
7566 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7567 #endif /* CONFIG_FAIR_GROUP_SCHED */
7568 
7569 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7570 #ifdef CONFIG_RT_GROUP_SCHED
7571 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7572 #endif
7573 #ifdef CONFIG_SMP
7574 		rq->sd = NULL;
7575 		rq->rd = NULL;
7576 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7577 		rq->balance_callback = NULL;
7578 		rq->active_balance = 0;
7579 		rq->next_balance = jiffies;
7580 		rq->push_cpu = 0;
7581 		rq->cpu = i;
7582 		rq->online = 0;
7583 		rq->idle_stamp = 0;
7584 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7585 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7586 
7587 		INIT_LIST_HEAD(&rq->cfs_tasks);
7588 
7589 		rq_attach_root(rq, &def_root_domain);
7590 #ifdef CONFIG_NO_HZ_COMMON
7591 		rq->last_blocked_load_update_tick = jiffies;
7592 		atomic_set(&rq->nohz_flags, 0);
7593 
7594 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7595 #endif
7596 #endif /* CONFIG_SMP */
7597 		hrtick_rq_init(rq);
7598 		atomic_set(&rq->nr_iowait, 0);
7599 	}
7600 
7601 	set_load_weight(&init_task);
7602 
7603 	/*
7604 	 * The boot idle thread does lazy MMU switching as well:
7605 	 */
7606 	mmgrab(&init_mm);
7607 	enter_lazy_tlb(&init_mm, current);
7608 
7609 	/*
7610 	 * Make us the idle thread. Technically, schedule() should not be
7611 	 * called from this thread, however somewhere below it might be,
7612 	 * but because we are the idle thread, we just pick up running again
7613 	 * when this runqueue becomes "idle".
7614 	 */
7615 	init_idle(current, smp_processor_id());
7616 
7617 	calc_load_update = jiffies + LOAD_FREQ;
7618 
7619 #ifdef CONFIG_SMP
7620 	idle_thread_set_boot_cpu();
7621 #endif
7622 	init_sched_fair_class();
7623 
7624 	init_schedstats();
7625 
7626 	psi_init();
7627 
7628 	init_uclamp();
7629 
7630 	scheduler_running = 1;
7631 }
7632 
7633 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7634 static inline int preempt_count_equals(int preempt_offset)
7635 {
7636 	int nested = preempt_count() + rcu_preempt_depth();
7637 
7638 	return (nested == preempt_offset);
7639 }
7640 
__might_sleep(const char * file,int line,int preempt_offset)7641 void __might_sleep(const char *file, int line, int preempt_offset)
7642 {
7643 	/*
7644 	 * Blocking primitives will set (and therefore destroy) current->state,
7645 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7646 	 * otherwise we will destroy state.
7647 	 */
7648 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7649 			"do not call blocking ops when !TASK_RUNNING; "
7650 			"state=%lx set at [<%p>] %pS\n",
7651 			current->state,
7652 			(void *)current->task_state_change,
7653 			(void *)current->task_state_change);
7654 
7655 	___might_sleep(file, line, preempt_offset);
7656 }
7657 EXPORT_SYMBOL(__might_sleep);
7658 
___might_sleep(const char * file,int line,int preempt_offset)7659 void ___might_sleep(const char *file, int line, int preempt_offset)
7660 {
7661 	/* Ratelimiting timestamp: */
7662 	static unsigned long prev_jiffy;
7663 
7664 	unsigned long preempt_disable_ip;
7665 
7666 	/* WARN_ON_ONCE() by default, no rate limit required: */
7667 	rcu_sleep_check();
7668 
7669 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7670 	     !is_idle_task(current) && !current->non_block_count) ||
7671 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7672 	    oops_in_progress)
7673 		return;
7674 
7675 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7676 		return;
7677 	prev_jiffy = jiffies;
7678 
7679 	/* Save this before calling printk(), since that will clobber it: */
7680 	preempt_disable_ip = get_preempt_disable_ip(current);
7681 
7682 	printk(KERN_ERR
7683 		"BUG: sleeping function called from invalid context at %s:%d\n",
7684 			file, line);
7685 	printk(KERN_ERR
7686 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7687 			in_atomic(), irqs_disabled(), current->non_block_count,
7688 			current->pid, current->comm);
7689 
7690 	if (task_stack_end_corrupted(current))
7691 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7692 
7693 	debug_show_held_locks(current);
7694 	if (irqs_disabled())
7695 		print_irqtrace_events(current);
7696 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7697 	    && !preempt_count_equals(preempt_offset)) {
7698 		pr_err("Preemption disabled at:");
7699 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7700 	}
7701 
7702 	trace_android_rvh_schedule_bug(NULL);
7703 
7704 	dump_stack();
7705 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7706 }
7707 EXPORT_SYMBOL(___might_sleep);
7708 
__cant_sleep(const char * file,int line,int preempt_offset)7709 void __cant_sleep(const char *file, int line, int preempt_offset)
7710 {
7711 	static unsigned long prev_jiffy;
7712 
7713 	if (irqs_disabled())
7714 		return;
7715 
7716 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7717 		return;
7718 
7719 	if (preempt_count() > preempt_offset)
7720 		return;
7721 
7722 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7723 		return;
7724 	prev_jiffy = jiffies;
7725 
7726 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7727 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7728 			in_atomic(), irqs_disabled(),
7729 			current->pid, current->comm);
7730 
7731 	debug_show_held_locks(current);
7732 	dump_stack();
7733 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7734 }
7735 EXPORT_SYMBOL_GPL(__cant_sleep);
7736 #endif
7737 
7738 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7739 void normalize_rt_tasks(void)
7740 {
7741 	struct task_struct *g, *p;
7742 	struct sched_attr attr = {
7743 		.sched_policy = SCHED_NORMAL,
7744 	};
7745 
7746 	read_lock(&tasklist_lock);
7747 	for_each_process_thread(g, p) {
7748 		/*
7749 		 * Only normalize user tasks:
7750 		 */
7751 		if (p->flags & PF_KTHREAD)
7752 			continue;
7753 
7754 		p->se.exec_start = 0;
7755 		schedstat_set(p->se.statistics.wait_start,  0);
7756 		schedstat_set(p->se.statistics.sleep_start, 0);
7757 		schedstat_set(p->se.statistics.block_start, 0);
7758 
7759 		if (!dl_task(p) && !rt_task(p)) {
7760 			/*
7761 			 * Renice negative nice level userspace
7762 			 * tasks back to 0:
7763 			 */
7764 			if (task_nice(p) < 0)
7765 				set_user_nice(p, 0);
7766 			continue;
7767 		}
7768 
7769 		__sched_setscheduler(p, &attr, false, false);
7770 	}
7771 	read_unlock(&tasklist_lock);
7772 }
7773 
7774 #endif /* CONFIG_MAGIC_SYSRQ */
7775 
7776 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7777 /*
7778  * These functions are only useful for the IA64 MCA handling, or kdb.
7779  *
7780  * They can only be called when the whole system has been
7781  * stopped - every CPU needs to be quiescent, and no scheduling
7782  * activity can take place. Using them for anything else would
7783  * be a serious bug, and as a result, they aren't even visible
7784  * under any other configuration.
7785  */
7786 
7787 /**
7788  * curr_task - return the current task for a given CPU.
7789  * @cpu: the processor in question.
7790  *
7791  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7792  *
7793  * Return: The current task for @cpu.
7794  */
curr_task(int cpu)7795 struct task_struct *curr_task(int cpu)
7796 {
7797 	return cpu_curr(cpu);
7798 }
7799 
7800 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7801 
7802 #ifdef CONFIG_IA64
7803 /**
7804  * ia64_set_curr_task - set the current task for a given CPU.
7805  * @cpu: the processor in question.
7806  * @p: the task pointer to set.
7807  *
7808  * Description: This function must only be used when non-maskable interrupts
7809  * are serviced on a separate stack. It allows the architecture to switch the
7810  * notion of the current task on a CPU in a non-blocking manner. This function
7811  * must be called with all CPU's synchronized, and interrupts disabled, the
7812  * and caller must save the original value of the current task (see
7813  * curr_task() above) and restore that value before reenabling interrupts and
7814  * re-starting the system.
7815  *
7816  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7817  */
ia64_set_curr_task(int cpu,struct task_struct * p)7818 void ia64_set_curr_task(int cpu, struct task_struct *p)
7819 {
7820 	cpu_curr(cpu) = p;
7821 }
7822 
7823 #endif
7824 
7825 #ifdef CONFIG_CGROUP_SCHED
7826 /* task_group_lock serializes the addition/removal of task groups */
7827 static DEFINE_SPINLOCK(task_group_lock);
7828 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)7829 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7830 					    struct task_group *parent)
7831 {
7832 #ifdef CONFIG_UCLAMP_TASK_GROUP
7833 	enum uclamp_id clamp_id;
7834 
7835 	for_each_clamp_id(clamp_id) {
7836 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7837 			      uclamp_none(clamp_id), false);
7838 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7839 	}
7840 #endif
7841 }
7842 
sched_free_group(struct task_group * tg)7843 static void sched_free_group(struct task_group *tg)
7844 {
7845 	free_fair_sched_group(tg);
7846 	free_rt_sched_group(tg);
7847 	autogroup_free(tg);
7848 	kmem_cache_free(task_group_cache, tg);
7849 }
7850 
7851 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7852 struct task_group *sched_create_group(struct task_group *parent)
7853 {
7854 	struct task_group *tg;
7855 
7856 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7857 	if (!tg)
7858 		return ERR_PTR(-ENOMEM);
7859 
7860 	if (!alloc_fair_sched_group(tg, parent))
7861 		goto err;
7862 
7863 	if (!alloc_rt_sched_group(tg, parent))
7864 		goto err;
7865 
7866 	alloc_uclamp_sched_group(tg, parent);
7867 
7868 	return tg;
7869 
7870 err:
7871 	sched_free_group(tg);
7872 	return ERR_PTR(-ENOMEM);
7873 }
7874 
sched_online_group(struct task_group * tg,struct task_group * parent)7875 void sched_online_group(struct task_group *tg, struct task_group *parent)
7876 {
7877 	unsigned long flags;
7878 
7879 	spin_lock_irqsave(&task_group_lock, flags);
7880 	list_add_rcu(&tg->list, &task_groups);
7881 
7882 	/* Root should already exist: */
7883 	WARN_ON(!parent);
7884 
7885 	tg->parent = parent;
7886 	INIT_LIST_HEAD(&tg->children);
7887 	list_add_rcu(&tg->siblings, &parent->children);
7888 	spin_unlock_irqrestore(&task_group_lock, flags);
7889 
7890 	online_fair_sched_group(tg);
7891 }
7892 
7893 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7894 static void sched_free_group_rcu(struct rcu_head *rhp)
7895 {
7896 	/* Now it should be safe to free those cfs_rqs: */
7897 	sched_free_group(container_of(rhp, struct task_group, rcu));
7898 }
7899 
sched_destroy_group(struct task_group * tg)7900 void sched_destroy_group(struct task_group *tg)
7901 {
7902 	/* Wait for possible concurrent references to cfs_rqs complete: */
7903 	call_rcu(&tg->rcu, sched_free_group_rcu);
7904 }
7905 
sched_offline_group(struct task_group * tg)7906 void sched_offline_group(struct task_group *tg)
7907 {
7908 	unsigned long flags;
7909 
7910 	/* End participation in shares distribution: */
7911 	unregister_fair_sched_group(tg);
7912 
7913 	spin_lock_irqsave(&task_group_lock, flags);
7914 	list_del_rcu(&tg->list);
7915 	list_del_rcu(&tg->siblings);
7916 	spin_unlock_irqrestore(&task_group_lock, flags);
7917 }
7918 
sched_change_group(struct task_struct * tsk,int type)7919 static void sched_change_group(struct task_struct *tsk, int type)
7920 {
7921 	struct task_group *tg;
7922 
7923 	/*
7924 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7925 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7926 	 * to prevent lockdep warnings.
7927 	 */
7928 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7929 			  struct task_group, css);
7930 	tg = autogroup_task_group(tsk, tg);
7931 	tsk->sched_task_group = tg;
7932 
7933 #ifdef CONFIG_FAIR_GROUP_SCHED
7934 	if (tsk->sched_class->task_change_group)
7935 		tsk->sched_class->task_change_group(tsk, type);
7936 	else
7937 #endif
7938 		set_task_rq(tsk, task_cpu(tsk));
7939 }
7940 
7941 /*
7942  * Change task's runqueue when it moves between groups.
7943  *
7944  * The caller of this function should have put the task in its new group by
7945  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7946  * its new group.
7947  */
sched_move_task(struct task_struct * tsk)7948 void sched_move_task(struct task_struct *tsk)
7949 {
7950 	int queued, running, queue_flags =
7951 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7952 	struct rq_flags rf;
7953 	struct rq *rq;
7954 
7955 	rq = task_rq_lock(tsk, &rf);
7956 	update_rq_clock(rq);
7957 
7958 	running = task_current(rq, tsk);
7959 	queued = task_on_rq_queued(tsk);
7960 
7961 	if (queued)
7962 		dequeue_task(rq, tsk, queue_flags);
7963 	if (running)
7964 		put_prev_task(rq, tsk);
7965 
7966 	sched_change_group(tsk, TASK_MOVE_GROUP);
7967 
7968 	if (queued)
7969 		enqueue_task(rq, tsk, queue_flags);
7970 	if (running) {
7971 		set_next_task(rq, tsk);
7972 		/*
7973 		 * After changing group, the running task may have joined a
7974 		 * throttled one but it's still the running task. Trigger a
7975 		 * resched to make sure that task can still run.
7976 		 */
7977 		resched_curr(rq);
7978 	}
7979 
7980 	task_rq_unlock(rq, tsk, &rf);
7981 }
7982 
css_tg(struct cgroup_subsys_state * css)7983 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7984 {
7985 	return css ? container_of(css, struct task_group, css) : NULL;
7986 }
7987 
7988 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7989 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7990 {
7991 	struct task_group *parent = css_tg(parent_css);
7992 	struct task_group *tg;
7993 
7994 	if (!parent) {
7995 		/* This is early initialization for the top cgroup */
7996 		return &root_task_group.css;
7997 	}
7998 
7999 	tg = sched_create_group(parent);
8000 	if (IS_ERR(tg))
8001 		return ERR_PTR(-ENOMEM);
8002 
8003 	return &tg->css;
8004 }
8005 
8006 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8007 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8008 {
8009 	struct task_group *tg = css_tg(css);
8010 	struct task_group *parent = css_tg(css->parent);
8011 
8012 	if (parent)
8013 		sched_online_group(tg, parent);
8014 
8015 #ifdef CONFIG_UCLAMP_TASK_GROUP
8016 	/* Propagate the effective uclamp value for the new group */
8017 	mutex_lock(&uclamp_mutex);
8018 	rcu_read_lock();
8019 	cpu_util_update_eff(css);
8020 	rcu_read_unlock();
8021 	mutex_unlock(&uclamp_mutex);
8022 #endif
8023 
8024 	trace_android_rvh_cpu_cgroup_online(css);
8025 	return 0;
8026 }
8027 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8028 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8029 {
8030 	struct task_group *tg = css_tg(css);
8031 
8032 	sched_offline_group(tg);
8033 }
8034 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8035 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8036 {
8037 	struct task_group *tg = css_tg(css);
8038 
8039 	/*
8040 	 * Relies on the RCU grace period between css_released() and this.
8041 	 */
8042 	sched_free_group(tg);
8043 }
8044 
8045 /*
8046  * This is called before wake_up_new_task(), therefore we really only
8047  * have to set its group bits, all the other stuff does not apply.
8048  */
cpu_cgroup_fork(struct task_struct * task)8049 static void cpu_cgroup_fork(struct task_struct *task)
8050 {
8051 	struct rq_flags rf;
8052 	struct rq *rq;
8053 
8054 	rq = task_rq_lock(task, &rf);
8055 
8056 	update_rq_clock(rq);
8057 	sched_change_group(task, TASK_SET_GROUP);
8058 
8059 	task_rq_unlock(rq, task, &rf);
8060 }
8061 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8062 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8063 {
8064 	struct task_struct *task;
8065 	struct cgroup_subsys_state *css;
8066 	int ret = 0;
8067 
8068 	cgroup_taskset_for_each(task, css, tset) {
8069 #ifdef CONFIG_RT_GROUP_SCHED
8070 		if (!sched_rt_can_attach(css_tg(css), task))
8071 			return -EINVAL;
8072 #endif
8073 		/*
8074 		 * Serialize against wake_up_new_task() such that if its
8075 		 * running, we're sure to observe its full state.
8076 		 */
8077 		raw_spin_lock_irq(&task->pi_lock);
8078 		/*
8079 		 * Avoid calling sched_move_task() before wake_up_new_task()
8080 		 * has happened. This would lead to problems with PELT, due to
8081 		 * move wanting to detach+attach while we're not attached yet.
8082 		 */
8083 		if (task->state == TASK_NEW)
8084 			ret = -EINVAL;
8085 		raw_spin_unlock_irq(&task->pi_lock);
8086 
8087 		if (ret)
8088 			break;
8089 	}
8090 
8091 	trace_android_rvh_cpu_cgroup_can_attach(tset, &ret);
8092 
8093 	return ret;
8094 }
8095 
cpu_cgroup_attach(struct cgroup_taskset * tset)8096 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8097 {
8098 	struct task_struct *task;
8099 	struct cgroup_subsys_state *css;
8100 
8101 	cgroup_taskset_for_each(task, css, tset)
8102 		sched_move_task(task);
8103 
8104 	trace_android_rvh_cpu_cgroup_attach(tset);
8105 }
8106 
8107 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8108 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8109 {
8110 	struct cgroup_subsys_state *top_css = css;
8111 	struct uclamp_se *uc_parent = NULL;
8112 	struct uclamp_se *uc_se = NULL;
8113 	unsigned int eff[UCLAMP_CNT];
8114 	enum uclamp_id clamp_id;
8115 	unsigned int clamps;
8116 
8117 	lockdep_assert_held(&uclamp_mutex);
8118 	SCHED_WARN_ON(!rcu_read_lock_held());
8119 
8120 	css_for_each_descendant_pre(css, top_css) {
8121 		uc_parent = css_tg(css)->parent
8122 			? css_tg(css)->parent->uclamp : NULL;
8123 
8124 		for_each_clamp_id(clamp_id) {
8125 			/* Assume effective clamps matches requested clamps */
8126 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8127 			/* Cap effective clamps with parent's effective clamps */
8128 			if (uc_parent &&
8129 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8130 				eff[clamp_id] = uc_parent[clamp_id].value;
8131 			}
8132 		}
8133 		/* Ensure protection is always capped by limit */
8134 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8135 
8136 		/* Propagate most restrictive effective clamps */
8137 		clamps = 0x0;
8138 		uc_se = css_tg(css)->uclamp;
8139 		for_each_clamp_id(clamp_id) {
8140 			if (eff[clamp_id] == uc_se[clamp_id].value)
8141 				continue;
8142 			uc_se[clamp_id].value = eff[clamp_id];
8143 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8144 			clamps |= (0x1 << clamp_id);
8145 		}
8146 		if (!clamps) {
8147 			css = css_rightmost_descendant(css);
8148 			continue;
8149 		}
8150 
8151 		/* Immediately update descendants RUNNABLE tasks */
8152 		uclamp_update_active_tasks(css);
8153 	}
8154 }
8155 
8156 /*
8157  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8158  * C expression. Since there is no way to convert a macro argument (N) into a
8159  * character constant, use two levels of macros.
8160  */
8161 #define _POW10(exp) ((unsigned int)1e##exp)
8162 #define POW10(exp) _POW10(exp)
8163 
8164 struct uclamp_request {
8165 #define UCLAMP_PERCENT_SHIFT	2
8166 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8167 	s64 percent;
8168 	u64 util;
8169 	int ret;
8170 };
8171 
8172 static inline struct uclamp_request
capacity_from_percent(char * buf)8173 capacity_from_percent(char *buf)
8174 {
8175 	struct uclamp_request req = {
8176 		.percent = UCLAMP_PERCENT_SCALE,
8177 		.util = SCHED_CAPACITY_SCALE,
8178 		.ret = 0,
8179 	};
8180 
8181 	buf = strim(buf);
8182 	if (strcmp(buf, "max")) {
8183 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8184 					     &req.percent);
8185 		if (req.ret)
8186 			return req;
8187 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8188 			req.ret = -ERANGE;
8189 			return req;
8190 		}
8191 
8192 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8193 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8194 	}
8195 
8196 	return req;
8197 }
8198 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8199 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8200 				size_t nbytes, loff_t off,
8201 				enum uclamp_id clamp_id)
8202 {
8203 	struct uclamp_request req;
8204 	struct task_group *tg;
8205 
8206 	req = capacity_from_percent(buf);
8207 	if (req.ret)
8208 		return req.ret;
8209 
8210 	static_branch_enable(&sched_uclamp_used);
8211 
8212 	mutex_lock(&uclamp_mutex);
8213 	rcu_read_lock();
8214 
8215 	tg = css_tg(of_css(of));
8216 	if (tg->uclamp_req[clamp_id].value != req.util)
8217 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8218 
8219 	/*
8220 	 * Because of not recoverable conversion rounding we keep track of the
8221 	 * exact requested value
8222 	 */
8223 	tg->uclamp_pct[clamp_id] = req.percent;
8224 
8225 	/* Update effective clamps to track the most restrictive value */
8226 	cpu_util_update_eff(of_css(of));
8227 
8228 	rcu_read_unlock();
8229 	mutex_unlock(&uclamp_mutex);
8230 
8231 	return nbytes;
8232 }
8233 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8234 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8235 				    char *buf, size_t nbytes,
8236 				    loff_t off)
8237 {
8238 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8239 }
8240 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8241 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8242 				    char *buf, size_t nbytes,
8243 				    loff_t off)
8244 {
8245 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8246 }
8247 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8248 static inline void cpu_uclamp_print(struct seq_file *sf,
8249 				    enum uclamp_id clamp_id)
8250 {
8251 	struct task_group *tg;
8252 	u64 util_clamp;
8253 	u64 percent;
8254 	u32 rem;
8255 
8256 	rcu_read_lock();
8257 	tg = css_tg(seq_css(sf));
8258 	util_clamp = tg->uclamp_req[clamp_id].value;
8259 	rcu_read_unlock();
8260 
8261 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8262 		seq_puts(sf, "max\n");
8263 		return;
8264 	}
8265 
8266 	percent = tg->uclamp_pct[clamp_id];
8267 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8268 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8269 }
8270 
cpu_uclamp_min_show(struct seq_file * sf,void * v)8271 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8272 {
8273 	cpu_uclamp_print(sf, UCLAMP_MIN);
8274 	return 0;
8275 }
8276 
cpu_uclamp_max_show(struct seq_file * sf,void * v)8277 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8278 {
8279 	cpu_uclamp_print(sf, UCLAMP_MAX);
8280 	return 0;
8281 }
8282 
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)8283 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
8284 				   struct cftype *cftype, u64 ls)
8285 {
8286 	struct task_group *tg;
8287 
8288 	if (ls > 1)
8289 		return -EINVAL;
8290 	tg = css_tg(css);
8291 	tg->latency_sensitive = (unsigned int) ls;
8292 
8293 	return 0;
8294 }
8295 
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8296 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
8297 				  struct cftype *cft)
8298 {
8299 	struct task_group *tg = css_tg(css);
8300 
8301 	return (u64) tg->latency_sensitive;
8302 }
8303 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8304 
8305 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8306 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8307 				struct cftype *cftype, u64 shareval)
8308 {
8309 	if (shareval > scale_load_down(ULONG_MAX))
8310 		shareval = MAX_SHARES;
8311 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8312 }
8313 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8314 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8315 			       struct cftype *cft)
8316 {
8317 	struct task_group *tg = css_tg(css);
8318 
8319 	return (u64) scale_load_down(tg->shares);
8320 }
8321 
8322 #ifdef CONFIG_CFS_BANDWIDTH
8323 static DEFINE_MUTEX(cfs_constraints_mutex);
8324 
8325 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8326 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8327 /* More than 203 days if BW_SHIFT equals 20. */
8328 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8329 
8330 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8331 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8332 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8333 {
8334 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8335 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8336 
8337 	if (tg == &root_task_group)
8338 		return -EINVAL;
8339 
8340 	/*
8341 	 * Ensure we have at some amount of bandwidth every period.  This is
8342 	 * to prevent reaching a state of large arrears when throttled via
8343 	 * entity_tick() resulting in prolonged exit starvation.
8344 	 */
8345 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8346 		return -EINVAL;
8347 
8348 	/*
8349 	 * Likewise, bound things on the otherside by preventing insane quota
8350 	 * periods.  This also allows us to normalize in computing quota
8351 	 * feasibility.
8352 	 */
8353 	if (period > max_cfs_quota_period)
8354 		return -EINVAL;
8355 
8356 	/*
8357 	 * Bound quota to defend quota against overflow during bandwidth shift.
8358 	 */
8359 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8360 		return -EINVAL;
8361 
8362 	/*
8363 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8364 	 * unthrottle_offline_cfs_rqs().
8365 	 */
8366 	get_online_cpus();
8367 	mutex_lock(&cfs_constraints_mutex);
8368 	ret = __cfs_schedulable(tg, period, quota);
8369 	if (ret)
8370 		goto out_unlock;
8371 
8372 	runtime_enabled = quota != RUNTIME_INF;
8373 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8374 	/*
8375 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8376 	 * before making related changes, and on->off must occur afterwards
8377 	 */
8378 	if (runtime_enabled && !runtime_was_enabled)
8379 		cfs_bandwidth_usage_inc();
8380 	raw_spin_lock_irq(&cfs_b->lock);
8381 	cfs_b->period = ns_to_ktime(period);
8382 	cfs_b->quota = quota;
8383 
8384 	__refill_cfs_bandwidth_runtime(cfs_b);
8385 
8386 	/* Restart the period timer (if active) to handle new period expiry: */
8387 	if (runtime_enabled)
8388 		start_cfs_bandwidth(cfs_b);
8389 
8390 	raw_spin_unlock_irq(&cfs_b->lock);
8391 
8392 	for_each_online_cpu(i) {
8393 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8394 		struct rq *rq = cfs_rq->rq;
8395 		struct rq_flags rf;
8396 
8397 		rq_lock_irq(rq, &rf);
8398 		cfs_rq->runtime_enabled = runtime_enabled;
8399 		cfs_rq->runtime_remaining = 0;
8400 
8401 		if (cfs_rq->throttled)
8402 			unthrottle_cfs_rq(cfs_rq);
8403 		rq_unlock_irq(rq, &rf);
8404 	}
8405 	if (runtime_was_enabled && !runtime_enabled)
8406 		cfs_bandwidth_usage_dec();
8407 out_unlock:
8408 	mutex_unlock(&cfs_constraints_mutex);
8409 	put_online_cpus();
8410 
8411 	return ret;
8412 }
8413 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8414 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8415 {
8416 	u64 quota, period;
8417 
8418 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8419 	if (cfs_quota_us < 0)
8420 		quota = RUNTIME_INF;
8421 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8422 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8423 	else
8424 		return -EINVAL;
8425 
8426 	return tg_set_cfs_bandwidth(tg, period, quota);
8427 }
8428 
tg_get_cfs_quota(struct task_group * tg)8429 static long tg_get_cfs_quota(struct task_group *tg)
8430 {
8431 	u64 quota_us;
8432 
8433 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8434 		return -1;
8435 
8436 	quota_us = tg->cfs_bandwidth.quota;
8437 	do_div(quota_us, NSEC_PER_USEC);
8438 
8439 	return quota_us;
8440 }
8441 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8442 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8443 {
8444 	u64 quota, period;
8445 
8446 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8447 		return -EINVAL;
8448 
8449 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8450 	quota = tg->cfs_bandwidth.quota;
8451 
8452 	return tg_set_cfs_bandwidth(tg, period, quota);
8453 }
8454 
tg_get_cfs_period(struct task_group * tg)8455 static long tg_get_cfs_period(struct task_group *tg)
8456 {
8457 	u64 cfs_period_us;
8458 
8459 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8460 	do_div(cfs_period_us, NSEC_PER_USEC);
8461 
8462 	return cfs_period_us;
8463 }
8464 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8465 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8466 				  struct cftype *cft)
8467 {
8468 	return tg_get_cfs_quota(css_tg(css));
8469 }
8470 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8471 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8472 				   struct cftype *cftype, s64 cfs_quota_us)
8473 {
8474 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8475 }
8476 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8477 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8478 				   struct cftype *cft)
8479 {
8480 	return tg_get_cfs_period(css_tg(css));
8481 }
8482 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8483 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8484 				    struct cftype *cftype, u64 cfs_period_us)
8485 {
8486 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8487 }
8488 
8489 struct cfs_schedulable_data {
8490 	struct task_group *tg;
8491 	u64 period, quota;
8492 };
8493 
8494 /*
8495  * normalize group quota/period to be quota/max_period
8496  * note: units are usecs
8497  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8498 static u64 normalize_cfs_quota(struct task_group *tg,
8499 			       struct cfs_schedulable_data *d)
8500 {
8501 	u64 quota, period;
8502 
8503 	if (tg == d->tg) {
8504 		period = d->period;
8505 		quota = d->quota;
8506 	} else {
8507 		period = tg_get_cfs_period(tg);
8508 		quota = tg_get_cfs_quota(tg);
8509 	}
8510 
8511 	/* note: these should typically be equivalent */
8512 	if (quota == RUNTIME_INF || quota == -1)
8513 		return RUNTIME_INF;
8514 
8515 	return to_ratio(period, quota);
8516 }
8517 
tg_cfs_schedulable_down(struct task_group * tg,void * data)8518 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8519 {
8520 	struct cfs_schedulable_data *d = data;
8521 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8522 	s64 quota = 0, parent_quota = -1;
8523 
8524 	if (!tg->parent) {
8525 		quota = RUNTIME_INF;
8526 	} else {
8527 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8528 
8529 		quota = normalize_cfs_quota(tg, d);
8530 		parent_quota = parent_b->hierarchical_quota;
8531 
8532 		/*
8533 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8534 		 * always take the min.  On cgroup1, only inherit when no
8535 		 * limit is set:
8536 		 */
8537 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8538 			quota = min(quota, parent_quota);
8539 		} else {
8540 			if (quota == RUNTIME_INF)
8541 				quota = parent_quota;
8542 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8543 				return -EINVAL;
8544 		}
8545 	}
8546 	cfs_b->hierarchical_quota = quota;
8547 
8548 	return 0;
8549 }
8550 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8551 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8552 {
8553 	int ret;
8554 	struct cfs_schedulable_data data = {
8555 		.tg = tg,
8556 		.period = period,
8557 		.quota = quota,
8558 	};
8559 
8560 	if (quota != RUNTIME_INF) {
8561 		do_div(data.period, NSEC_PER_USEC);
8562 		do_div(data.quota, NSEC_PER_USEC);
8563 	}
8564 
8565 	rcu_read_lock();
8566 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8567 	rcu_read_unlock();
8568 
8569 	return ret;
8570 }
8571 
cpu_cfs_stat_show(struct seq_file * sf,void * v)8572 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8573 {
8574 	struct task_group *tg = css_tg(seq_css(sf));
8575 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8576 
8577 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8578 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8579 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8580 
8581 	if (schedstat_enabled() && tg != &root_task_group) {
8582 		u64 ws = 0;
8583 		int i;
8584 
8585 		for_each_possible_cpu(i)
8586 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8587 
8588 		seq_printf(sf, "wait_sum %llu\n", ws);
8589 	}
8590 
8591 	return 0;
8592 }
8593 #endif /* CONFIG_CFS_BANDWIDTH */
8594 #endif /* CONFIG_FAIR_GROUP_SCHED */
8595 
8596 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8597 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8598 				struct cftype *cft, s64 val)
8599 {
8600 	return sched_group_set_rt_runtime(css_tg(css), val);
8601 }
8602 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8603 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8604 			       struct cftype *cft)
8605 {
8606 	return sched_group_rt_runtime(css_tg(css));
8607 }
8608 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8609 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8610 				    struct cftype *cftype, u64 rt_period_us)
8611 {
8612 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8613 }
8614 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8615 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8616 				   struct cftype *cft)
8617 {
8618 	return sched_group_rt_period(css_tg(css));
8619 }
8620 #endif /* CONFIG_RT_GROUP_SCHED */
8621 
8622 static struct cftype cpu_legacy_files[] = {
8623 #ifdef CONFIG_FAIR_GROUP_SCHED
8624 	{
8625 		.name = "shares",
8626 		.read_u64 = cpu_shares_read_u64,
8627 		.write_u64 = cpu_shares_write_u64,
8628 	},
8629 #endif
8630 #ifdef CONFIG_CFS_BANDWIDTH
8631 	{
8632 		.name = "cfs_quota_us",
8633 		.read_s64 = cpu_cfs_quota_read_s64,
8634 		.write_s64 = cpu_cfs_quota_write_s64,
8635 	},
8636 	{
8637 		.name = "cfs_period_us",
8638 		.read_u64 = cpu_cfs_period_read_u64,
8639 		.write_u64 = cpu_cfs_period_write_u64,
8640 	},
8641 	{
8642 		.name = "stat",
8643 		.seq_show = cpu_cfs_stat_show,
8644 	},
8645 #endif
8646 #ifdef CONFIG_RT_GROUP_SCHED
8647 	{
8648 		.name = "rt_runtime_us",
8649 		.read_s64 = cpu_rt_runtime_read,
8650 		.write_s64 = cpu_rt_runtime_write,
8651 	},
8652 	{
8653 		.name = "rt_period_us",
8654 		.read_u64 = cpu_rt_period_read_uint,
8655 		.write_u64 = cpu_rt_period_write_uint,
8656 	},
8657 #endif
8658 #ifdef CONFIG_UCLAMP_TASK_GROUP
8659 	{
8660 		.name = "uclamp.min",
8661 		.flags = CFTYPE_NOT_ON_ROOT,
8662 		.seq_show = cpu_uclamp_min_show,
8663 		.write = cpu_uclamp_min_write,
8664 	},
8665 	{
8666 		.name = "uclamp.max",
8667 		.flags = CFTYPE_NOT_ON_ROOT,
8668 		.seq_show = cpu_uclamp_max_show,
8669 		.write = cpu_uclamp_max_write,
8670 	},
8671 	{
8672 		.name = "uclamp.latency_sensitive",
8673 		.flags = CFTYPE_NOT_ON_ROOT,
8674 		.read_u64 = cpu_uclamp_ls_read_u64,
8675 		.write_u64 = cpu_uclamp_ls_write_u64,
8676 	},
8677 #endif
8678 	{ }	/* Terminate */
8679 };
8680 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8681 static int cpu_extra_stat_show(struct seq_file *sf,
8682 			       struct cgroup_subsys_state *css)
8683 {
8684 #ifdef CONFIG_CFS_BANDWIDTH
8685 	{
8686 		struct task_group *tg = css_tg(css);
8687 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8688 		u64 throttled_usec;
8689 
8690 		throttled_usec = cfs_b->throttled_time;
8691 		do_div(throttled_usec, NSEC_PER_USEC);
8692 
8693 		seq_printf(sf, "nr_periods %d\n"
8694 			   "nr_throttled %d\n"
8695 			   "throttled_usec %llu\n",
8696 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8697 			   throttled_usec);
8698 	}
8699 #endif
8700 	return 0;
8701 }
8702 
8703 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8704 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8705 			       struct cftype *cft)
8706 {
8707 	struct task_group *tg = css_tg(css);
8708 	u64 weight = scale_load_down(tg->shares);
8709 
8710 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8711 }
8712 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8713 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8714 				struct cftype *cft, u64 weight)
8715 {
8716 	/*
8717 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8718 	 * values which are 1, 100 and 10000 respectively.  While it loses
8719 	 * a bit of range on both ends, it maps pretty well onto the shares
8720 	 * value used by scheduler and the round-trip conversions preserve
8721 	 * the original value over the entire range.
8722 	 */
8723 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8724 		return -ERANGE;
8725 
8726 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8727 
8728 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8729 }
8730 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8731 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8732 				    struct cftype *cft)
8733 {
8734 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8735 	int last_delta = INT_MAX;
8736 	int prio, delta;
8737 
8738 	/* find the closest nice value to the current weight */
8739 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8740 		delta = abs(sched_prio_to_weight[prio] - weight);
8741 		if (delta >= last_delta)
8742 			break;
8743 		last_delta = delta;
8744 	}
8745 
8746 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8747 }
8748 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8749 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8750 				     struct cftype *cft, s64 nice)
8751 {
8752 	unsigned long weight;
8753 	int idx;
8754 
8755 	if (nice < MIN_NICE || nice > MAX_NICE)
8756 		return -ERANGE;
8757 
8758 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8759 	idx = array_index_nospec(idx, 40);
8760 	weight = sched_prio_to_weight[idx];
8761 
8762 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8763 }
8764 #endif
8765 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8766 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8767 						  long period, long quota)
8768 {
8769 	if (quota < 0)
8770 		seq_puts(sf, "max");
8771 	else
8772 		seq_printf(sf, "%ld", quota);
8773 
8774 	seq_printf(sf, " %ld\n", period);
8775 }
8776 
8777 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8778 static int __maybe_unused cpu_period_quota_parse(char *buf,
8779 						 u64 *periodp, u64 *quotap)
8780 {
8781 	char tok[21];	/* U64_MAX */
8782 
8783 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8784 		return -EINVAL;
8785 
8786 	*periodp *= NSEC_PER_USEC;
8787 
8788 	if (sscanf(tok, "%llu", quotap))
8789 		*quotap *= NSEC_PER_USEC;
8790 	else if (!strcmp(tok, "max"))
8791 		*quotap = RUNTIME_INF;
8792 	else
8793 		return -EINVAL;
8794 
8795 	return 0;
8796 }
8797 
8798 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)8799 static int cpu_max_show(struct seq_file *sf, void *v)
8800 {
8801 	struct task_group *tg = css_tg(seq_css(sf));
8802 
8803 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8804 	return 0;
8805 }
8806 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8807 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8808 			     char *buf, size_t nbytes, loff_t off)
8809 {
8810 	struct task_group *tg = css_tg(of_css(of));
8811 	u64 period = tg_get_cfs_period(tg);
8812 	u64 quota;
8813 	int ret;
8814 
8815 	ret = cpu_period_quota_parse(buf, &period, &quota);
8816 	if (!ret)
8817 		ret = tg_set_cfs_bandwidth(tg, period, quota);
8818 	return ret ?: nbytes;
8819 }
8820 #endif
8821 
8822 static struct cftype cpu_files[] = {
8823 #ifdef CONFIG_FAIR_GROUP_SCHED
8824 	{
8825 		.name = "weight",
8826 		.flags = CFTYPE_NOT_ON_ROOT,
8827 		.read_u64 = cpu_weight_read_u64,
8828 		.write_u64 = cpu_weight_write_u64,
8829 	},
8830 	{
8831 		.name = "weight.nice",
8832 		.flags = CFTYPE_NOT_ON_ROOT,
8833 		.read_s64 = cpu_weight_nice_read_s64,
8834 		.write_s64 = cpu_weight_nice_write_s64,
8835 	},
8836 #endif
8837 #ifdef CONFIG_CFS_BANDWIDTH
8838 	{
8839 		.name = "max",
8840 		.flags = CFTYPE_NOT_ON_ROOT,
8841 		.seq_show = cpu_max_show,
8842 		.write = cpu_max_write,
8843 	},
8844 #endif
8845 #ifdef CONFIG_UCLAMP_TASK_GROUP
8846 	{
8847 		.name = "uclamp.min",
8848 		.flags = CFTYPE_NOT_ON_ROOT,
8849 		.seq_show = cpu_uclamp_min_show,
8850 		.write = cpu_uclamp_min_write,
8851 	},
8852 	{
8853 		.name = "uclamp.max",
8854 		.flags = CFTYPE_NOT_ON_ROOT,
8855 		.seq_show = cpu_uclamp_max_show,
8856 		.write = cpu_uclamp_max_write,
8857 	},
8858 	{
8859 		.name = "uclamp.latency_sensitive",
8860 		.flags = CFTYPE_NOT_ON_ROOT,
8861 		.read_u64 = cpu_uclamp_ls_read_u64,
8862 		.write_u64 = cpu_uclamp_ls_write_u64,
8863 	},
8864 #endif
8865 	{ }	/* terminate */
8866 };
8867 
8868 struct cgroup_subsys cpu_cgrp_subsys = {
8869 	.css_alloc	= cpu_cgroup_css_alloc,
8870 	.css_online	= cpu_cgroup_css_online,
8871 	.css_released	= cpu_cgroup_css_released,
8872 	.css_free	= cpu_cgroup_css_free,
8873 	.css_extra_stat_show = cpu_extra_stat_show,
8874 	.fork		= cpu_cgroup_fork,
8875 	.can_attach	= cpu_cgroup_can_attach,
8876 	.attach		= cpu_cgroup_attach,
8877 	.legacy_cftypes	= cpu_legacy_files,
8878 	.dfl_cftypes	= cpu_files,
8879 	.early_init	= true,
8880 	.threaded	= true,
8881 };
8882 
8883 #endif	/* CONFIG_CGROUP_SCHED */
8884 
dump_cpu_task(int cpu)8885 void dump_cpu_task(int cpu)
8886 {
8887 	pr_info("Task dump for CPU %d:\n", cpu);
8888 	sched_show_task(cpu_curr(cpu));
8889 }
8890 
8891 /*
8892  * Nice levels are multiplicative, with a gentle 10% change for every
8893  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8894  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8895  * that remained on nice 0.
8896  *
8897  * The "10% effect" is relative and cumulative: from _any_ nice level,
8898  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8899  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8900  * If a task goes up by ~10% and another task goes down by ~10% then
8901  * the relative distance between them is ~25%.)
8902  */
8903 const int sched_prio_to_weight[40] = {
8904  /* -20 */     88761,     71755,     56483,     46273,     36291,
8905  /* -15 */     29154,     23254,     18705,     14949,     11916,
8906  /* -10 */      9548,      7620,      6100,      4904,      3906,
8907  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8908  /*   0 */      1024,       820,       655,       526,       423,
8909  /*   5 */       335,       272,       215,       172,       137,
8910  /*  10 */       110,        87,        70,        56,        45,
8911  /*  15 */        36,        29,        23,        18,        15,
8912 };
8913 
8914 /*
8915  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8916  *
8917  * In cases where the weight does not change often, we can use the
8918  * precalculated inverse to speed up arithmetics by turning divisions
8919  * into multiplications:
8920  */
8921 const u32 sched_prio_to_wmult[40] = {
8922  /* -20 */     48388,     59856,     76040,     92818,    118348,
8923  /* -15 */    147320,    184698,    229616,    287308,    360437,
8924  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8925  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8926  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8927  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8928  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8929  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8930 };
8931 
call_trace_sched_update_nr_running(struct rq * rq,int count)8932 void call_trace_sched_update_nr_running(struct rq *rq, int count)
8933 {
8934         trace_sched_update_nr_running_tp(rq, count);
8935 }
8936