• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time
32  */
33 ktime_t tick_next_period;
34 
35 /*
36  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
37  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
38  * variable has two functions:
39  *
40  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
41  *    timekeeping lock all at once. Only the CPU which is assigned to do the
42  *    update is handling it.
43  *
44  * 2) Hand off the duty in the NOHZ idle case by setting the value to
45  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
46  *    at it will take over and keep the time keeping alive.  The handover
47  *    procedure also covers cpu hotplug.
48  */
49 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
50 #ifdef CONFIG_NO_HZ_FULL
51 /*
52  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
53  * tick_do_timer_cpu and it should be taken over by an eligible secondary
54  * when one comes online.
55  */
56 static int tick_do_timer_boot_cpu __read_mostly = -1;
57 #endif
58 
59 /*
60  * Debugging: see timer_list.c
61  */
tick_get_device(int cpu)62 struct tick_device *tick_get_device(int cpu)
63 {
64 	return &per_cpu(tick_cpu_device, cpu);
65 }
66 
67 /**
68  * tick_is_oneshot_available - check for a oneshot capable event device
69  */
tick_is_oneshot_available(void)70 int tick_is_oneshot_available(void)
71 {
72 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
73 
74 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
75 		return 0;
76 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
77 		return 1;
78 	return tick_broadcast_oneshot_available();
79 }
80 
81 /*
82  * Periodic tick
83  */
tick_periodic(int cpu)84 static void tick_periodic(int cpu)
85 {
86 	if (tick_do_timer_cpu == cpu) {
87 		raw_spin_lock(&jiffies_lock);
88 		write_seqcount_begin(&jiffies_seq);
89 
90 		/* Keep track of the next tick event */
91 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
92 
93 		do_timer(1);
94 		write_seqcount_end(&jiffies_seq);
95 		raw_spin_unlock(&jiffies_lock);
96 		update_wall_time();
97 		trace_android_vh_jiffies_update(NULL);
98 	}
99 
100 	update_process_times(user_mode(get_irq_regs()));
101 	profile_tick(CPU_PROFILING);
102 }
103 
104 /*
105  * Event handler for periodic ticks
106  */
tick_handle_periodic(struct clock_event_device * dev)107 void tick_handle_periodic(struct clock_event_device *dev)
108 {
109 	int cpu = smp_processor_id();
110 	ktime_t next = dev->next_event;
111 
112 	tick_periodic(cpu);
113 
114 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
115 	/*
116 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
117 	 * update_process_times() -> run_local_timers() ->
118 	 * hrtimer_run_queues().
119 	 */
120 	if (dev->event_handler != tick_handle_periodic)
121 		return;
122 #endif
123 
124 	if (!clockevent_state_oneshot(dev))
125 		return;
126 	for (;;) {
127 		/*
128 		 * Setup the next period for devices, which do not have
129 		 * periodic mode:
130 		 */
131 		next = ktime_add_ns(next, TICK_NSEC);
132 
133 		if (!clockevents_program_event(dev, next, false))
134 			return;
135 		/*
136 		 * Have to be careful here. If we're in oneshot mode,
137 		 * before we call tick_periodic() in a loop, we need
138 		 * to be sure we're using a real hardware clocksource.
139 		 * Otherwise we could get trapped in an infinite
140 		 * loop, as the tick_periodic() increments jiffies,
141 		 * which then will increment time, possibly causing
142 		 * the loop to trigger again and again.
143 		 */
144 		if (timekeeping_valid_for_hres())
145 			tick_periodic(cpu);
146 	}
147 }
148 
149 /*
150  * Setup the device for a periodic tick
151  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)152 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
153 {
154 	tick_set_periodic_handler(dev, broadcast);
155 
156 	/* Broadcast setup ? */
157 	if (!tick_device_is_functional(dev))
158 		return;
159 
160 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
161 	    !tick_broadcast_oneshot_active()) {
162 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
163 	} else {
164 		unsigned int seq;
165 		ktime_t next;
166 
167 		do {
168 			seq = read_seqcount_begin(&jiffies_seq);
169 			next = tick_next_period;
170 		} while (read_seqcount_retry(&jiffies_seq, seq));
171 
172 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
173 
174 		for (;;) {
175 			if (!clockevents_program_event(dev, next, false))
176 				return;
177 			next = ktime_add_ns(next, TICK_NSEC);
178 		}
179 	}
180 }
181 
182 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)183 static void giveup_do_timer(void *info)
184 {
185 	int cpu = *(unsigned int *)info;
186 
187 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
188 
189 	tick_do_timer_cpu = cpu;
190 }
191 
tick_take_do_timer_from_boot(void)192 static void tick_take_do_timer_from_boot(void)
193 {
194 	int cpu = smp_processor_id();
195 	int from = tick_do_timer_boot_cpu;
196 
197 	if (from >= 0 && from != cpu)
198 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
199 }
200 #endif
201 
202 /*
203  * Setup the tick device
204  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)205 static void tick_setup_device(struct tick_device *td,
206 			      struct clock_event_device *newdev, int cpu,
207 			      const struct cpumask *cpumask)
208 {
209 	void (*handler)(struct clock_event_device *) = NULL;
210 	ktime_t next_event = 0;
211 
212 	/*
213 	 * First device setup ?
214 	 */
215 	if (!td->evtdev) {
216 		/*
217 		 * If no cpu took the do_timer update, assign it to
218 		 * this cpu:
219 		 */
220 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
221 			tick_do_timer_cpu = cpu;
222 			tick_next_period = ktime_get();
223 #ifdef CONFIG_NO_HZ_FULL
224 			/*
225 			 * The boot CPU may be nohz_full, in which case set
226 			 * tick_do_timer_boot_cpu so the first housekeeping
227 			 * secondary that comes up will take do_timer from
228 			 * us.
229 			 */
230 			if (tick_nohz_full_cpu(cpu))
231 				tick_do_timer_boot_cpu = cpu;
232 
233 		} else if (tick_do_timer_boot_cpu != -1 &&
234 						!tick_nohz_full_cpu(cpu)) {
235 			tick_take_do_timer_from_boot();
236 			tick_do_timer_boot_cpu = -1;
237 			WARN_ON(tick_do_timer_cpu != cpu);
238 #endif
239 		}
240 
241 		/*
242 		 * Startup in periodic mode first.
243 		 */
244 		td->mode = TICKDEV_MODE_PERIODIC;
245 	} else {
246 		handler = td->evtdev->event_handler;
247 		next_event = td->evtdev->next_event;
248 		td->evtdev->event_handler = clockevents_handle_noop;
249 	}
250 
251 	td->evtdev = newdev;
252 
253 	/*
254 	 * When the device is not per cpu, pin the interrupt to the
255 	 * current cpu:
256 	 */
257 	if (!cpumask_equal(newdev->cpumask, cpumask))
258 		irq_set_affinity(newdev->irq, cpumask);
259 
260 	/*
261 	 * When global broadcasting is active, check if the current
262 	 * device is registered as a placeholder for broadcast mode.
263 	 * This allows us to handle this x86 misfeature in a generic
264 	 * way. This function also returns !=0 when we keep the
265 	 * current active broadcast state for this CPU.
266 	 */
267 	if (tick_device_uses_broadcast(newdev, cpu))
268 		return;
269 
270 	if (td->mode == TICKDEV_MODE_PERIODIC)
271 		tick_setup_periodic(newdev, 0);
272 	else
273 		tick_setup_oneshot(newdev, handler, next_event);
274 }
275 
tick_install_replacement(struct clock_event_device * newdev)276 void tick_install_replacement(struct clock_event_device *newdev)
277 {
278 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
279 	int cpu = smp_processor_id();
280 
281 	clockevents_exchange_device(td->evtdev, newdev);
282 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
283 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
284 		tick_oneshot_notify();
285 }
286 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)287 static bool tick_check_percpu(struct clock_event_device *curdev,
288 			      struct clock_event_device *newdev, int cpu)
289 {
290 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
291 		return false;
292 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
293 		return true;
294 	/* Check if irq affinity can be set */
295 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
296 		return false;
297 	/* Prefer an existing cpu local device */
298 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
299 		return false;
300 	return true;
301 }
302 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)303 static bool tick_check_preferred(struct clock_event_device *curdev,
304 				 struct clock_event_device *newdev)
305 {
306 	/* Prefer oneshot capable device */
307 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
308 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
309 			return false;
310 		if (tick_oneshot_mode_active())
311 			return false;
312 	}
313 
314 	/*
315 	 * Use the higher rated one, but prefer a CPU local device with a lower
316 	 * rating than a non-CPU local device
317 	 */
318 	return !curdev ||
319 		newdev->rating > curdev->rating ||
320 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
321 }
322 
323 /*
324  * Check whether the new device is a better fit than curdev. curdev
325  * can be NULL !
326  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)327 bool tick_check_replacement(struct clock_event_device *curdev,
328 			    struct clock_event_device *newdev)
329 {
330 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
331 		return false;
332 
333 	return tick_check_preferred(curdev, newdev);
334 }
335 
336 /*
337  * Check, if the new registered device should be used. Called with
338  * clockevents_lock held and interrupts disabled.
339  */
tick_check_new_device(struct clock_event_device * newdev)340 void tick_check_new_device(struct clock_event_device *newdev)
341 {
342 	struct clock_event_device *curdev;
343 	struct tick_device *td;
344 	int cpu;
345 
346 	cpu = smp_processor_id();
347 	td = &per_cpu(tick_cpu_device, cpu);
348 	curdev = td->evtdev;
349 
350 	/* cpu local device ? */
351 	if (!tick_check_percpu(curdev, newdev, cpu))
352 		goto out_bc;
353 
354 	/* Preference decision */
355 	if (!tick_check_preferred(curdev, newdev))
356 		goto out_bc;
357 
358 	if (!try_module_get(newdev->owner))
359 		return;
360 
361 	/*
362 	 * Replace the eventually existing device by the new
363 	 * device. If the current device is the broadcast device, do
364 	 * not give it back to the clockevents layer !
365 	 */
366 	if (tick_is_broadcast_device(curdev)) {
367 		clockevents_shutdown(curdev);
368 		curdev = NULL;
369 	}
370 	clockevents_exchange_device(curdev, newdev);
371 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
372 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
373 		tick_oneshot_notify();
374 	return;
375 
376 out_bc:
377 	/*
378 	 * Can the new device be used as a broadcast device ?
379 	 */
380 	tick_install_broadcast_device(newdev, cpu);
381 }
382 
383 /**
384  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
385  * @state:	The target state (enter/exit)
386  *
387  * The system enters/leaves a state, where affected devices might stop
388  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
389  *
390  * Called with interrupts disabled, so clockevents_lock is not
391  * required here because the local clock event device cannot go away
392  * under us.
393  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)394 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
395 {
396 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
397 
398 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
399 		return 0;
400 
401 	return __tick_broadcast_oneshot_control(state);
402 }
403 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
404 
405 #ifdef CONFIG_HOTPLUG_CPU
406 /*
407  * Transfer the do_timer job away from a dying cpu.
408  *
409  * Called with interrupts disabled. Not locking required. If
410  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
411  */
tick_handover_do_timer(void)412 void tick_handover_do_timer(void)
413 {
414 	if (tick_do_timer_cpu == smp_processor_id()) {
415 		int cpu = cpumask_first(cpu_online_mask);
416 
417 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
418 			TICK_DO_TIMER_NONE;
419 	}
420 }
421 
422 /*
423  * Shutdown an event device on a given cpu:
424  *
425  * This is called on a life CPU, when a CPU is dead. So we cannot
426  * access the hardware device itself.
427  * We just set the mode and remove it from the lists.
428  */
tick_shutdown(unsigned int cpu)429 void tick_shutdown(unsigned int cpu)
430 {
431 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
432 	struct clock_event_device *dev = td->evtdev;
433 
434 	td->mode = TICKDEV_MODE_PERIODIC;
435 	if (dev) {
436 		/*
437 		 * Prevent that the clock events layer tries to call
438 		 * the set mode function!
439 		 */
440 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
441 		clockevents_exchange_device(dev, NULL);
442 		dev->event_handler = clockevents_handle_noop;
443 		td->evtdev = NULL;
444 	}
445 }
446 #endif
447 
448 /**
449  * tick_suspend_local - Suspend the local tick device
450  *
451  * Called from the local cpu for freeze with interrupts disabled.
452  *
453  * No locks required. Nothing can change the per cpu device.
454  */
tick_suspend_local(void)455 void tick_suspend_local(void)
456 {
457 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
458 
459 	clockevents_shutdown(td->evtdev);
460 }
461 
462 /**
463  * tick_resume_local - Resume the local tick device
464  *
465  * Called from the local CPU for unfreeze or XEN resume magic.
466  *
467  * No locks required. Nothing can change the per cpu device.
468  */
tick_resume_local(void)469 void tick_resume_local(void)
470 {
471 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
472 	bool broadcast = tick_resume_check_broadcast();
473 
474 	clockevents_tick_resume(td->evtdev);
475 	if (!broadcast) {
476 		if (td->mode == TICKDEV_MODE_PERIODIC)
477 			tick_setup_periodic(td->evtdev, 0);
478 		else
479 			tick_resume_oneshot();
480 	}
481 }
482 
483 /**
484  * tick_suspend - Suspend the tick and the broadcast device
485  *
486  * Called from syscore_suspend() via timekeeping_suspend with only one
487  * CPU online and interrupts disabled or from tick_unfreeze() under
488  * tick_freeze_lock.
489  *
490  * No locks required. Nothing can change the per cpu device.
491  */
tick_suspend(void)492 void tick_suspend(void)
493 {
494 	tick_suspend_local();
495 	tick_suspend_broadcast();
496 }
497 
498 /**
499  * tick_resume - Resume the tick and the broadcast device
500  *
501  * Called from syscore_resume() via timekeeping_resume with only one
502  * CPU online and interrupts disabled.
503  *
504  * No locks required. Nothing can change the per cpu device.
505  */
tick_resume(void)506 void tick_resume(void)
507 {
508 	tick_resume_broadcast();
509 	tick_resume_local();
510 }
511 
512 #ifdef CONFIG_SUSPEND
513 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
514 static unsigned int tick_freeze_depth;
515 
516 /**
517  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
518  *
519  * Check if this is the last online CPU executing the function and if so,
520  * suspend timekeeping.  Otherwise suspend the local tick.
521  *
522  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
523  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
524  */
tick_freeze(void)525 void tick_freeze(void)
526 {
527 	raw_spin_lock(&tick_freeze_lock);
528 
529 	tick_freeze_depth++;
530 	if (tick_freeze_depth == num_online_cpus()) {
531 		trace_suspend_resume(TPS("timekeeping_freeze"),
532 				     smp_processor_id(), true);
533 		system_state = SYSTEM_SUSPEND;
534 		sched_clock_suspend();
535 		timekeeping_suspend();
536 	} else {
537 		tick_suspend_local();
538 	}
539 
540 	raw_spin_unlock(&tick_freeze_lock);
541 }
542 
543 /**
544  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
545  *
546  * Check if this is the first CPU executing the function and if so, resume
547  * timekeeping.  Otherwise resume the local tick.
548  *
549  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
550  * Interrupts must not be enabled after the preceding %tick_freeze().
551  */
tick_unfreeze(void)552 void tick_unfreeze(void)
553 {
554 	raw_spin_lock(&tick_freeze_lock);
555 
556 	if (tick_freeze_depth == num_online_cpus()) {
557 		timekeeping_resume();
558 		sched_clock_resume();
559 		system_state = SYSTEM_RUNNING;
560 		trace_suspend_resume(TPS("timekeeping_freeze"),
561 				     smp_processor_id(), false);
562 	} else {
563 		touch_softlockup_watchdog();
564 		tick_resume_local();
565 	}
566 
567 	tick_freeze_depth--;
568 
569 	raw_spin_unlock(&tick_freeze_lock);
570 }
571 #endif /* CONFIG_SUSPEND */
572 
573 /**
574  * tick_init - initialize the tick control
575  */
tick_init(void)576 void __init tick_init(void)
577 {
578 	tick_broadcast_init();
579 	tick_nohz_init();
580 }
581