1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
get_online_mems(void)57 void get_online_mems(void)
58 {
59 percpu_down_read(&mem_hotplug_lock);
60 }
61
put_online_mems(void)62 void put_online_mems(void)
63 {
64 percpu_up_read(&mem_hotplug_lock);
65 }
66
67 bool movable_node_enabled = false;
68
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74
setup_memhp_default_state(char * str)75 static int __init setup_memhp_default_state(char *str)
76 {
77 const int online_type = memhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
81
82 return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85
mem_hotplug_begin(void)86 void mem_hotplug_begin(void)
87 {
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90 }
91
mem_hotplug_done(void)92 void mem_hotplug_done(void)
93 {
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96 }
97
98 u64 max_mem_size = U64_MAX;
99
100 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)101 static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
103 {
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
109
110 /*
111 * Make sure value parsed from 'mem=' only restricts memory adding
112 * while booting, so that memory hotplug won't be impacted. Please
113 * refer to document of 'mem=' in kernel-parameters.txt for more
114 * details.
115 */
116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 return ERR_PTR(-E2BIG);
118
119 /*
120 * Request ownership of the new memory range. This might be
121 * a child of an existing resource that was present but
122 * not marked as busy.
123 */
124 res = __request_region(&iomem_resource, start, size,
125 resource_name, flags);
126
127 if (!res) {
128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 start, start + size);
130 return ERR_PTR(-EEXIST);
131 }
132 return res;
133 }
134
release_memory_resource(struct resource * res)135 static void release_memory_resource(struct resource *res)
136 {
137 if (!res)
138 return;
139 release_resource(res);
140 kfree(res);
141 }
142
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
get_page_bootmem(unsigned long info,struct page * page,unsigned long type)144 void get_page_bootmem(unsigned long info, struct page *page,
145 unsigned long type)
146 {
147 page->freelist = (void *)type;
148 SetPagePrivate(page);
149 set_page_private(page, info);
150 page_ref_inc(page);
151 }
152
put_page_bootmem(struct page * page)153 void put_page_bootmem(struct page *page)
154 {
155 unsigned long type;
156
157 type = (unsigned long) page->freelist;
158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160
161 if (page_ref_dec_return(page) == 1) {
162 page->freelist = NULL;
163 ClearPagePrivate(page);
164 set_page_private(page, 0);
165 INIT_LIST_HEAD(&page->lru);
166 free_reserved_page(page);
167 }
168 }
169
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
register_page_bootmem_info_section(unsigned long start_pfn)172 static void register_page_bootmem_info_section(unsigned long start_pfn)
173 {
174 unsigned long mapsize, section_nr, i;
175 struct mem_section *ms;
176 struct page *page, *memmap;
177 struct mem_section_usage *usage;
178
179 section_nr = pfn_to_section_nr(start_pfn);
180 ms = __nr_to_section(section_nr);
181
182 /* Get section's memmap address */
183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184
185 /*
186 * Get page for the memmap's phys address
187 * XXX: need more consideration for sparse_vmemmap...
188 */
189 page = virt_to_page(memmap);
190 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192
193 /* remember memmap's page */
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, SECTION_INFO);
196
197 usage = ms->usage;
198 page = virt_to_page(usage);
199
200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201
202 for (i = 0; i < mapsize; i++, page++)
203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204
205 }
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
register_page_bootmem_info_section(unsigned long start_pfn)207 static void register_page_bootmem_info_section(unsigned long start_pfn)
208 {
209 unsigned long mapsize, section_nr, i;
210 struct mem_section *ms;
211 struct page *page, *memmap;
212 struct mem_section_usage *usage;
213
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
216
217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218
219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220
221 usage = ms->usage;
222 page = virt_to_page(usage);
223
224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225
226 for (i = 0; i < mapsize; i++, page++)
227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228 }
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230
register_page_bootmem_info_node(struct pglist_data * pgdat)231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232 {
233 unsigned long i, pfn, end_pfn, nr_pages;
234 int node = pgdat->node_id;
235 struct page *page;
236
237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 page = virt_to_page(pgdat);
239
240 for (i = 0; i < nr_pages; i++, page++)
241 get_page_bootmem(node, page, NODE_INFO);
242
243 pfn = pgdat->node_start_pfn;
244 end_pfn = pgdat_end_pfn(pgdat);
245
246 /* register section info */
247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 /*
249 * Some platforms can assign the same pfn to multiple nodes - on
250 * node0 as well as nodeN. To avoid registering a pfn against
251 * multiple nodes we check that this pfn does not already
252 * reside in some other nodes.
253 */
254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 register_page_bootmem_info_section(pfn);
256 }
257 }
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259
check_pfn_span(unsigned long pfn,unsigned long nr_pages,const char * reason)260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 const char *reason)
262 {
263 /*
264 * Disallow all operations smaller than a sub-section and only
265 * allow operations smaller than a section for
266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 * enforces a larger memory_block_size_bytes() granularity for
268 * memory that will be marked online, so this check should only
269 * fire for direct arch_{add,remove}_memory() users outside of
270 * add_memory_resource().
271 */
272 unsigned long min_align;
273
274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 min_align = PAGES_PER_SUBSECTION;
276 else
277 min_align = PAGES_PER_SECTION;
278 if (!IS_ALIGNED(pfn, min_align)
279 || !IS_ALIGNED(nr_pages, min_align)) {
280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 reason, pfn, pfn + nr_pages - 1);
282 return -EINVAL;
283 }
284 return 0;
285 }
286
check_hotplug_memory_addressable(unsigned long pfn,unsigned long nr_pages)287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 unsigned long nr_pages)
289 {
290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291
292 if (max_addr >> MAX_PHYSMEM_BITS) {
293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 WARN(1,
295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 return -E2BIG;
298 }
299
300 return 0;
301 }
302
303 /*
304 * Reasonably generic function for adding memory. It is
305 * expected that archs that support memory hotplug will
306 * call this function after deciding the zone to which to
307 * add the new pages.
308 */
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 struct mhp_params *params)
311 {
312 const unsigned long end_pfn = pfn + nr_pages;
313 unsigned long cur_nr_pages;
314 int err;
315 struct vmem_altmap *altmap = params->altmap;
316
317 if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 return -EINVAL;
319
320 err = check_hotplug_memory_addressable(pfn, nr_pages);
321 if (err)
322 return err;
323
324 if (altmap) {
325 /*
326 * Validate altmap is within bounds of the total request
327 */
328 if (altmap->base_pfn != pfn
329 || vmem_altmap_offset(altmap) > nr_pages) {
330 pr_warn_once("memory add fail, invalid altmap\n");
331 return -EINVAL;
332 }
333 altmap->alloc = 0;
334 }
335
336 err = check_pfn_span(pfn, nr_pages, "add");
337 if (err)
338 return err;
339
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 if (err)
346 break;
347 cond_resched();
348 }
349 vmemmap_populate_print_last();
350 return err;
351 }
352
353 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)354 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
355 unsigned long start_pfn,
356 unsigned long end_pfn)
357 {
358 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_to_online_page(start_pfn)))
360 continue;
361
362 if (unlikely(pfn_to_nid(start_pfn) != nid))
363 continue;
364
365 if (zone != page_zone(pfn_to_page(start_pfn)))
366 continue;
367
368 return start_pfn;
369 }
370
371 return 0;
372 }
373
374 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)375 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
376 unsigned long start_pfn,
377 unsigned long end_pfn)
378 {
379 unsigned long pfn;
380
381 /* pfn is the end pfn of a memory section. */
382 pfn = end_pfn - 1;
383 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
384 if (unlikely(!pfn_to_online_page(pfn)))
385 continue;
386
387 if (unlikely(pfn_to_nid(pfn) != nid))
388 continue;
389
390 if (zone != page_zone(pfn_to_page(pfn)))
391 continue;
392
393 return pfn;
394 }
395
396 return 0;
397 }
398
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)399 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
400 unsigned long end_pfn)
401 {
402 unsigned long pfn;
403 int nid = zone_to_nid(zone);
404
405 zone_span_writelock(zone);
406 if (zone->zone_start_pfn == start_pfn) {
407 /*
408 * If the section is smallest section in the zone, it need
409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
410 * In this case, we find second smallest valid mem_section
411 * for shrinking zone.
412 */
413 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
414 zone_end_pfn(zone));
415 if (pfn) {
416 zone->spanned_pages = zone_end_pfn(zone) - pfn;
417 zone->zone_start_pfn = pfn;
418 } else {
419 zone->zone_start_pfn = 0;
420 zone->spanned_pages = 0;
421 }
422 } else if (zone_end_pfn(zone) == end_pfn) {
423 /*
424 * If the section is biggest section in the zone, it need
425 * shrink zone->spanned_pages.
426 * In this case, we find second biggest valid mem_section for
427 * shrinking zone.
428 */
429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
430 start_pfn);
431 if (pfn)
432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
433 else {
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 }
437 }
438 zone_span_writeunlock(zone);
439 }
440
update_pgdat_span(struct pglist_data * pgdat)441 static void update_pgdat_span(struct pglist_data *pgdat)
442 {
443 unsigned long node_start_pfn = 0, node_end_pfn = 0;
444 struct zone *zone;
445
446 for (zone = pgdat->node_zones;
447 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
448 unsigned long zone_end_pfn = zone->zone_start_pfn +
449 zone->spanned_pages;
450
451 /* No need to lock the zones, they can't change. */
452 if (!zone->spanned_pages)
453 continue;
454 if (!node_end_pfn) {
455 node_start_pfn = zone->zone_start_pfn;
456 node_end_pfn = zone_end_pfn;
457 continue;
458 }
459
460 if (zone_end_pfn > node_end_pfn)
461 node_end_pfn = zone_end_pfn;
462 if (zone->zone_start_pfn < node_start_pfn)
463 node_start_pfn = zone->zone_start_pfn;
464 }
465
466 pgdat->node_start_pfn = node_start_pfn;
467 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
468 }
469
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)470 void __ref remove_pfn_range_from_zone(struct zone *zone,
471 unsigned long start_pfn,
472 unsigned long nr_pages)
473 {
474 const unsigned long end_pfn = start_pfn + nr_pages;
475 struct pglist_data *pgdat = zone->zone_pgdat;
476 unsigned long pfn, cur_nr_pages, flags;
477
478 /* Poison struct pages because they are now uninitialized again. */
479 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
480 cond_resched();
481
482 /* Select all remaining pages up to the next section boundary */
483 cur_nr_pages =
484 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
485 page_init_poison(pfn_to_page(pfn),
486 sizeof(struct page) * cur_nr_pages);
487 }
488
489 #ifdef CONFIG_ZONE_DEVICE
490 /*
491 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
492 * we will not try to shrink the zones - which is okay as
493 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
494 */
495 if (zone_idx(zone) == ZONE_DEVICE)
496 return;
497 #endif
498
499 clear_zone_contiguous(zone);
500
501 pgdat_resize_lock(zone->zone_pgdat, &flags);
502 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
503 update_pgdat_span(pgdat);
504 pgdat_resize_unlock(zone->zone_pgdat, &flags);
505
506 set_zone_contiguous(zone);
507 }
508
__remove_section(unsigned long pfn,unsigned long nr_pages,unsigned long map_offset,struct vmem_altmap * altmap)509 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
510 unsigned long map_offset,
511 struct vmem_altmap *altmap)
512 {
513 struct mem_section *ms = __pfn_to_section(pfn);
514
515 if (WARN_ON_ONCE(!valid_section(ms)))
516 return;
517
518 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
519 }
520
521 /**
522 * __remove_pages() - remove sections of pages
523 * @pfn: starting pageframe (must be aligned to start of a section)
524 * @nr_pages: number of pages to remove (must be multiple of section size)
525 * @altmap: alternative device page map or %NULL if default memmap is used
526 *
527 * Generic helper function to remove section mappings and sysfs entries
528 * for the section of the memory we are removing. Caller needs to make
529 * sure that pages are marked reserved and zones are adjust properly by
530 * calling offline_pages().
531 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)532 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
533 struct vmem_altmap *altmap)
534 {
535 const unsigned long end_pfn = pfn + nr_pages;
536 unsigned long cur_nr_pages;
537 unsigned long map_offset = 0;
538
539 map_offset = vmem_altmap_offset(altmap);
540
541 if (check_pfn_span(pfn, nr_pages, "remove"))
542 return;
543
544 for (; pfn < end_pfn; pfn += cur_nr_pages) {
545 cond_resched();
546 /* Select all remaining pages up to the next section boundary */
547 cur_nr_pages = min(end_pfn - pfn,
548 SECTION_ALIGN_UP(pfn + 1) - pfn);
549 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
550 map_offset = 0;
551 }
552 }
553
set_online_page_callback(online_page_callback_t callback)554 int set_online_page_callback(online_page_callback_t callback)
555 {
556 int rc = -EINVAL;
557
558 get_online_mems();
559 mutex_lock(&online_page_callback_lock);
560
561 if (online_page_callback == generic_online_page) {
562 online_page_callback = callback;
563 rc = 0;
564 }
565
566 mutex_unlock(&online_page_callback_lock);
567 put_online_mems();
568
569 return rc;
570 }
571 EXPORT_SYMBOL_GPL(set_online_page_callback);
572
restore_online_page_callback(online_page_callback_t callback)573 int restore_online_page_callback(online_page_callback_t callback)
574 {
575 int rc = -EINVAL;
576
577 get_online_mems();
578 mutex_lock(&online_page_callback_lock);
579
580 if (online_page_callback == callback) {
581 online_page_callback = generic_online_page;
582 rc = 0;
583 }
584
585 mutex_unlock(&online_page_callback_lock);
586 put_online_mems();
587
588 return rc;
589 }
590 EXPORT_SYMBOL_GPL(restore_online_page_callback);
591
generic_online_page(struct page * page,unsigned int order)592 void generic_online_page(struct page *page, unsigned int order)
593 {
594 /*
595 * Freeing the page with debug_pagealloc enabled will try to unmap it,
596 * so we should map it first. This is better than introducing a special
597 * case in page freeing fast path.
598 */
599 debug_pagealloc_map_pages(page, 1 << order);
600 __free_pages_core(page, order);
601 totalram_pages_add(1UL << order);
602 #ifdef CONFIG_HIGHMEM
603 if (PageHighMem(page))
604 totalhigh_pages_add(1UL << order);
605 #endif
606 }
607 EXPORT_SYMBOL_GPL(generic_online_page);
608
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)609 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
610 {
611 const unsigned long end_pfn = start_pfn + nr_pages;
612 unsigned long pfn;
613
614 /*
615 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
616 * decide to not expose all pages to the buddy (e.g., expose them
617 * later). We account all pages as being online and belonging to this
618 * zone ("present").
619 */
620 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES)
621 (*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1);
622
623 /* mark all involved sections as online */
624 online_mem_sections(start_pfn, end_pfn);
625 }
626
627 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)628 static void node_states_check_changes_online(unsigned long nr_pages,
629 struct zone *zone, struct memory_notify *arg)
630 {
631 int nid = zone_to_nid(zone);
632
633 arg->status_change_nid = NUMA_NO_NODE;
634 arg->status_change_nid_normal = NUMA_NO_NODE;
635 arg->status_change_nid_high = NUMA_NO_NODE;
636
637 if (!node_state(nid, N_MEMORY))
638 arg->status_change_nid = nid;
639 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
640 arg->status_change_nid_normal = nid;
641 #ifdef CONFIG_HIGHMEM
642 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
643 arg->status_change_nid_high = nid;
644 #endif
645 }
646
node_states_set_node(int node,struct memory_notify * arg)647 static void node_states_set_node(int node, struct memory_notify *arg)
648 {
649 if (arg->status_change_nid_normal >= 0)
650 node_set_state(node, N_NORMAL_MEMORY);
651
652 if (arg->status_change_nid_high >= 0)
653 node_set_state(node, N_HIGH_MEMORY);
654
655 if (arg->status_change_nid >= 0)
656 node_set_state(node, N_MEMORY);
657 }
658
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)659 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
660 unsigned long nr_pages)
661 {
662 unsigned long old_end_pfn = zone_end_pfn(zone);
663
664 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
665 zone->zone_start_pfn = start_pfn;
666
667 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
668 }
669
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)670 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
671 unsigned long nr_pages)
672 {
673 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
674
675 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
676 pgdat->node_start_pfn = start_pfn;
677
678 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
679
680 }
681 /*
682 * Associate the pfn range with the given zone, initializing the memmaps
683 * and resizing the pgdat/zone data to span the added pages. After this
684 * call, all affected pages are PG_reserved.
685 *
686 * All aligned pageblocks are initialized to the specified migratetype
687 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
688 * zone stats (e.g., nr_isolate_pageblock) are touched.
689 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)690 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
691 unsigned long nr_pages,
692 struct vmem_altmap *altmap, int migratetype)
693 {
694 struct pglist_data *pgdat = zone->zone_pgdat;
695 int nid = pgdat->node_id;
696 unsigned long flags;
697
698 clear_zone_contiguous(zone);
699
700 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
701 pgdat_resize_lock(pgdat, &flags);
702 zone_span_writelock(zone);
703 if (zone_is_empty(zone))
704 init_currently_empty_zone(zone, start_pfn, nr_pages);
705 resize_zone_range(zone, start_pfn, nr_pages);
706 zone_span_writeunlock(zone);
707 resize_pgdat_range(pgdat, start_pfn, nr_pages);
708 pgdat_resize_unlock(pgdat, &flags);
709
710 /*
711 * TODO now we have a visible range of pages which are not associated
712 * with their zone properly. Not nice but set_pfnblock_flags_mask
713 * expects the zone spans the pfn range. All the pages in the range
714 * are reserved so nobody should be touching them so we should be safe
715 */
716 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 0,
717 MEMINIT_HOTPLUG, altmap, migratetype);
718
719 set_zone_contiguous(zone);
720 }
721
722 /*
723 * Returns a default kernel memory zone for the given pfn range.
724 * If no kernel zone covers this pfn range it will automatically go
725 * to the ZONE_NORMAL.
726 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)727 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
728 unsigned long nr_pages)
729 {
730 struct pglist_data *pgdat = NODE_DATA(nid);
731 int zid;
732
733 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
734 struct zone *zone = &pgdat->node_zones[zid];
735
736 if (zone_intersects(zone, start_pfn, nr_pages))
737 return zone;
738 }
739
740 return &pgdat->node_zones[ZONE_NORMAL];
741 }
742
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)743 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
744 unsigned long nr_pages)
745 {
746 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
747 nr_pages);
748 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
749 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
750 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
751
752 /*
753 * We inherit the existing zone in a simple case where zones do not
754 * overlap in the given range
755 */
756 if (in_kernel ^ in_movable)
757 return (in_kernel) ? kernel_zone : movable_zone;
758
759 /*
760 * If the range doesn't belong to any zone or two zones overlap in the
761 * given range then we use movable zone only if movable_node is
762 * enabled because we always online to a kernel zone by default.
763 */
764 return movable_node_enabled ? movable_zone : kernel_zone;
765 }
766
zone_for_pfn_range(int online_type,int nid,unsigned long start_pfn,unsigned long nr_pages)767 struct zone *zone_for_pfn_range(int online_type, int nid,
768 unsigned long start_pfn, unsigned long nr_pages)
769 {
770 if (online_type == MMOP_ONLINE_KERNEL)
771 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
772
773 if (online_type == MMOP_ONLINE_MOVABLE)
774 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
775
776 return default_zone_for_pfn(nid, start_pfn, nr_pages);
777 }
778
online_pages(unsigned long pfn,unsigned long nr_pages,int online_type,int nid)779 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
780 int online_type, int nid)
781 {
782 unsigned long flags;
783 struct zone *zone;
784 int need_zonelists_rebuild = 0;
785 int ret;
786 struct memory_notify arg;
787
788 /* We can only online full sections (e.g., SECTION_IS_ONLINE) */
789 if (WARN_ON_ONCE(!nr_pages ||
790 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION)))
791 return -EINVAL;
792
793 mem_hotplug_begin();
794
795 /* associate pfn range with the zone */
796 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
797 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
798
799 arg.start_pfn = pfn;
800 arg.nr_pages = nr_pages;
801 node_states_check_changes_online(nr_pages, zone, &arg);
802
803 ret = memory_notify(MEM_GOING_ONLINE, &arg);
804 ret = notifier_to_errno(ret);
805 if (ret)
806 goto failed_addition;
807
808 /*
809 * Fixup the number of isolated pageblocks before marking the sections
810 * onlining, such that undo_isolate_page_range() works correctly.
811 */
812 spin_lock_irqsave(&zone->lock, flags);
813 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
814 spin_unlock_irqrestore(&zone->lock, flags);
815
816 /*
817 * If this zone is not populated, then it is not in zonelist.
818 * This means the page allocator ignores this zone.
819 * So, zonelist must be updated after online.
820 */
821 if (!populated_zone(zone)) {
822 need_zonelists_rebuild = 1;
823 setup_zone_pageset(zone);
824 }
825
826 online_pages_range(pfn, nr_pages);
827 zone->present_pages += nr_pages;
828
829 pgdat_resize_lock(zone->zone_pgdat, &flags);
830 zone->zone_pgdat->node_present_pages += nr_pages;
831 pgdat_resize_unlock(zone->zone_pgdat, &flags);
832
833 node_states_set_node(nid, &arg);
834 if (need_zonelists_rebuild)
835 build_all_zonelists(NULL);
836 zone_pcp_update(zone);
837
838 /* Basic onlining is complete, allow allocation of onlined pages. */
839 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
840
841 /*
842 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
843 * the tail of the freelist when undoing isolation). Shuffle the whole
844 * zone to make sure the just onlined pages are properly distributed
845 * across the whole freelist - to create an initial shuffle.
846 */
847 shuffle_zone(zone);
848
849 init_per_zone_wmark_min();
850
851 kswapd_run(nid);
852 kcompactd_run(nid);
853
854 writeback_set_ratelimit();
855
856 memory_notify(MEM_ONLINE, &arg);
857 mem_hotplug_done();
858 return 0;
859
860 failed_addition:
861 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
862 (unsigned long long) pfn << PAGE_SHIFT,
863 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
864 memory_notify(MEM_CANCEL_ONLINE, &arg);
865 remove_pfn_range_from_zone(zone, pfn, nr_pages);
866 mem_hotplug_done();
867 return ret;
868 }
869 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
870
reset_node_present_pages(pg_data_t * pgdat)871 static void reset_node_present_pages(pg_data_t *pgdat)
872 {
873 struct zone *z;
874
875 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
876 z->present_pages = 0;
877
878 pgdat->node_present_pages = 0;
879 }
880
881 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_new_pgdat(int nid)882 static pg_data_t __ref *hotadd_new_pgdat(int nid)
883 {
884 struct pglist_data *pgdat;
885
886 pgdat = NODE_DATA(nid);
887 if (!pgdat) {
888 pgdat = arch_alloc_nodedata(nid);
889 if (!pgdat)
890 return NULL;
891
892 pgdat->per_cpu_nodestats =
893 alloc_percpu(struct per_cpu_nodestat);
894 arch_refresh_nodedata(nid, pgdat);
895 } else {
896 int cpu;
897 /*
898 * Reset the nr_zones, order and highest_zoneidx before reuse.
899 * Note that kswapd will init kswapd_highest_zoneidx properly
900 * when it starts in the near future.
901 */
902 pgdat->nr_zones = 0;
903 pgdat->kswapd_order = 0;
904 pgdat->kswapd_highest_zoneidx = 0;
905 for_each_online_cpu(cpu) {
906 struct per_cpu_nodestat *p;
907
908 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
909 memset(p, 0, sizeof(*p));
910 }
911 }
912
913 /* we can use NODE_DATA(nid) from here */
914 pgdat->node_id = nid;
915 pgdat->node_start_pfn = 0;
916
917 /* init node's zones as empty zones, we don't have any present pages.*/
918 free_area_init_core_hotplug(nid);
919
920 /*
921 * The node we allocated has no zone fallback lists. For avoiding
922 * to access not-initialized zonelist, build here.
923 */
924 build_all_zonelists(pgdat);
925
926 /*
927 * When memory is hot-added, all the memory is in offline state. So
928 * clear all zones' present_pages because they will be updated in
929 * online_pages() and offline_pages().
930 */
931 reset_node_managed_pages(pgdat);
932 reset_node_present_pages(pgdat);
933
934 return pgdat;
935 }
936
rollback_node_hotadd(int nid)937 static void rollback_node_hotadd(int nid)
938 {
939 pg_data_t *pgdat = NODE_DATA(nid);
940
941 arch_refresh_nodedata(nid, NULL);
942 free_percpu(pgdat->per_cpu_nodestats);
943 arch_free_nodedata(pgdat);
944 }
945
946
947 /**
948 * try_online_node - online a node if offlined
949 * @nid: the node ID
950 * @set_node_online: Whether we want to online the node
951 * called by cpu_up() to online a node without onlined memory.
952 *
953 * Returns:
954 * 1 -> a new node has been allocated
955 * 0 -> the node is already online
956 * -ENOMEM -> the node could not be allocated
957 */
__try_online_node(int nid,bool set_node_online)958 static int __try_online_node(int nid, bool set_node_online)
959 {
960 pg_data_t *pgdat;
961 int ret = 1;
962
963 if (node_online(nid))
964 return 0;
965
966 pgdat = hotadd_new_pgdat(nid);
967 if (!pgdat) {
968 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
969 ret = -ENOMEM;
970 goto out;
971 }
972
973 if (set_node_online) {
974 node_set_online(nid);
975 ret = register_one_node(nid);
976 BUG_ON(ret);
977 }
978 out:
979 return ret;
980 }
981
982 /*
983 * Users of this function always want to online/register the node
984 */
try_online_node(int nid)985 int try_online_node(int nid)
986 {
987 int ret;
988
989 mem_hotplug_begin();
990 ret = __try_online_node(nid, true);
991 mem_hotplug_done();
992 return ret;
993 }
994
check_hotplug_memory_range(u64 start,u64 size)995 static int check_hotplug_memory_range(u64 start, u64 size)
996 {
997 /* memory range must be block size aligned */
998 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
999 !IS_ALIGNED(size, memory_block_size_bytes())) {
1000 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1001 memory_block_size_bytes(), start, size);
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006 }
1007
online_memory_block(struct memory_block * mem,void * arg)1008 static int online_memory_block(struct memory_block *mem, void *arg)
1009 {
1010 mem->online_type = memhp_default_online_type;
1011 return device_online(&mem->dev);
1012 }
1013
1014 /*
1015 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1016 * and online/offline operations (triggered e.g. by sysfs).
1017 *
1018 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1019 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1020 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1021 {
1022 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1023 u64 start, size;
1024 bool new_node = false;
1025 int ret;
1026
1027 start = res->start;
1028 size = resource_size(res);
1029
1030 ret = check_hotplug_memory_range(start, size);
1031 if (ret)
1032 return ret;
1033
1034 if (!node_possible(nid)) {
1035 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1036 return -EINVAL;
1037 }
1038
1039 mem_hotplug_begin();
1040
1041 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1042 memblock_add_node(start, size, nid);
1043
1044 ret = __try_online_node(nid, false);
1045 if (ret < 0)
1046 goto error;
1047 new_node = ret;
1048
1049 /* call arch's memory hotadd */
1050 ret = arch_add_memory(nid, start, size, ¶ms);
1051 if (ret < 0)
1052 goto error;
1053
1054 /* create memory block devices after memory was added */
1055 ret = create_memory_block_devices(start, size);
1056 if (ret) {
1057 arch_remove_memory(nid, start, size, NULL);
1058 goto error;
1059 }
1060
1061 if (new_node) {
1062 /* If sysfs file of new node can't be created, cpu on the node
1063 * can't be hot-added. There is no rollback way now.
1064 * So, check by BUG_ON() to catch it reluctantly..
1065 * We online node here. We can't roll back from here.
1066 */
1067 node_set_online(nid);
1068 ret = __register_one_node(nid);
1069 BUG_ON(ret);
1070 }
1071
1072 /* link memory sections under this node.*/
1073 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1074 MEMINIT_HOTPLUG);
1075
1076 /* create new memmap entry */
1077 if (!strcmp(res->name, "System RAM"))
1078 firmware_map_add_hotplug(start, start + size, "System RAM");
1079
1080 /* device_online() will take the lock when calling online_pages() */
1081 mem_hotplug_done();
1082
1083 /*
1084 * In case we're allowed to merge the resource, flag it and trigger
1085 * merging now that adding succeeded.
1086 */
1087 if (mhp_flags & MEMHP_MERGE_RESOURCE)
1088 merge_system_ram_resource(res);
1089
1090 /* online pages if requested */
1091 if (memhp_default_online_type != MMOP_OFFLINE)
1092 walk_memory_blocks(start, size, NULL, online_memory_block);
1093
1094 return ret;
1095 error:
1096 /* rollback pgdat allocation and others */
1097 if (new_node)
1098 rollback_node_hotadd(nid);
1099 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1100 memblock_remove(start, size);
1101 mem_hotplug_done();
1102 return ret;
1103 }
1104
1105 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1106 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1107 {
1108 struct resource *res;
1109 int ret;
1110
1111 res = register_memory_resource(start, size, "System RAM");
1112 if (IS_ERR(res))
1113 return PTR_ERR(res);
1114
1115 ret = add_memory_resource(nid, res, mhp_flags);
1116 if (ret < 0)
1117 release_memory_resource(res);
1118 return ret;
1119 }
1120
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1121 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1122 {
1123 int rc;
1124
1125 lock_device_hotplug();
1126 rc = __add_memory(nid, start, size, mhp_flags);
1127 unlock_device_hotplug();
1128
1129 return rc;
1130 }
1131 EXPORT_SYMBOL_GPL(add_memory);
1132
add_memory_subsection(int nid,u64 start,u64 size)1133 int add_memory_subsection(int nid, u64 start, u64 size)
1134 {
1135 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1136 struct resource *res;
1137 int ret;
1138
1139 if (!IS_ALIGNED(start, SUBSECTION_SIZE) ||
1140 !IS_ALIGNED(size, SUBSECTION_SIZE)) {
1141 pr_err("%s: start 0x%llx size 0x%llx not aligned to subsection size\n",
1142 __func__, start, size);
1143 return -EINVAL;
1144 }
1145
1146 res = register_memory_resource(start, size, "System RAM");
1147 if (IS_ERR(res))
1148 return PTR_ERR(res);
1149
1150 mem_hotplug_begin();
1151
1152 nid = memory_add_physaddr_to_nid(start);
1153
1154 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1155 memblock_add_node(start, size, nid);
1156
1157 ret = arch_add_memory(nid, start, size, ¶ms);
1158 if (ret) {
1159 pr_err("%s failed to add subsection start 0x%llx size 0x%llx\n",
1160 __func__, start, size);
1161 goto err_add_memory;
1162 }
1163 mem_hotplug_done();
1164
1165 return ret;
1166
1167 err_add_memory:
1168 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1169 memblock_remove(start, size);
1170
1171 mem_hotplug_done();
1172
1173 release_memory_resource(res);
1174 return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(add_memory_subsection);
1177
1178 /*
1179 * Add special, driver-managed memory to the system as system RAM. Such
1180 * memory is not exposed via the raw firmware-provided memmap as system
1181 * RAM, instead, it is detected and added by a driver - during cold boot,
1182 * after a reboot, and after kexec.
1183 *
1184 * Reasons why this memory should not be used for the initial memmap of a
1185 * kexec kernel or for placing kexec images:
1186 * - The booting kernel is in charge of determining how this memory will be
1187 * used (e.g., use persistent memory as system RAM)
1188 * - Coordination with a hypervisor is required before this memory
1189 * can be used (e.g., inaccessible parts).
1190 *
1191 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1192 * memory map") are created. Also, the created memory resource is flagged
1193 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1194 * this memory as well (esp., not place kexec images onto it).
1195 *
1196 * The resource_name (visible via /proc/iomem) has to have the format
1197 * "System RAM ($DRIVER)".
1198 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1199 int add_memory_driver_managed(int nid, u64 start, u64 size,
1200 const char *resource_name, mhp_t mhp_flags)
1201 {
1202 struct resource *res;
1203 int rc;
1204
1205 if (!resource_name ||
1206 strstr(resource_name, "System RAM (") != resource_name ||
1207 resource_name[strlen(resource_name) - 1] != ')')
1208 return -EINVAL;
1209
1210 lock_device_hotplug();
1211
1212 res = register_memory_resource(start, size, resource_name);
1213 if (IS_ERR(res)) {
1214 rc = PTR_ERR(res);
1215 goto out_unlock;
1216 }
1217
1218 rc = add_memory_resource(nid, res, mhp_flags);
1219 if (rc < 0)
1220 release_memory_resource(res);
1221
1222 out_unlock:
1223 unlock_device_hotplug();
1224 return rc;
1225 }
1226 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1227
1228 #ifdef CONFIG_MEMORY_HOTREMOVE
1229 /*
1230 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1231 * memory holes). When true, return the zone.
1232 */
test_pages_in_a_zone(unsigned long start_pfn,unsigned long end_pfn)1233 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1234 unsigned long end_pfn)
1235 {
1236 unsigned long pfn, sec_end_pfn;
1237 struct zone *zone = NULL;
1238 struct page *page;
1239 int i;
1240 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1241 pfn < end_pfn;
1242 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1243 /* Make sure the memory section is present first */
1244 if (!present_section_nr(pfn_to_section_nr(pfn)))
1245 continue;
1246 for (; pfn < sec_end_pfn && pfn < end_pfn;
1247 pfn += MAX_ORDER_NR_PAGES) {
1248 i = 0;
1249 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1250 while ((i < MAX_ORDER_NR_PAGES) &&
1251 !pfn_valid_within(pfn + i))
1252 i++;
1253 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1254 continue;
1255 /* Check if we got outside of the zone */
1256 if (zone && !zone_spans_pfn(zone, pfn + i))
1257 return NULL;
1258 page = pfn_to_page(pfn + i);
1259 if (zone && page_zone(page) != zone)
1260 return NULL;
1261 zone = page_zone(page);
1262 }
1263 }
1264
1265 return zone;
1266 }
1267
1268 /*
1269 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1270 * non-lru movable pages and hugepages). Will skip over most unmovable
1271 * pages (esp., pages that can be skipped when offlining), but bail out on
1272 * definitely unmovable pages.
1273 *
1274 * Returns:
1275 * 0 in case a movable page is found and movable_pfn was updated.
1276 * -ENOENT in case no movable page was found.
1277 * -EBUSY in case a definitely unmovable page was found.
1278 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1279 static int scan_movable_pages(unsigned long start, unsigned long end,
1280 unsigned long *movable_pfn)
1281 {
1282 unsigned long pfn;
1283
1284 for (pfn = start; pfn < end; pfn++) {
1285 struct page *page, *head;
1286 unsigned long skip;
1287
1288 if (!pfn_valid(pfn))
1289 continue;
1290 page = pfn_to_page(pfn);
1291 if (PageLRU(page))
1292 goto found;
1293 if (__PageMovable(page))
1294 goto found;
1295
1296 /*
1297 * PageOffline() pages that are not marked __PageMovable() and
1298 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1299 * definitely unmovable. If their reference count would be 0,
1300 * they could at least be skipped when offlining memory.
1301 */
1302 if (PageOffline(page) && page_count(page))
1303 return -EBUSY;
1304
1305 if (!PageHuge(page))
1306 continue;
1307 head = compound_head(page);
1308 if (page_huge_active(head))
1309 goto found;
1310 skip = compound_nr(head) - (pfn - page_to_pfn(head));
1311 pfn += skip - 1;
1312 }
1313 return -ENOENT;
1314 found:
1315 *movable_pfn = pfn;
1316 return 0;
1317 }
1318
1319 static int
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1320 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1321 {
1322 unsigned long pfn;
1323 struct page *page, *head;
1324 int ret = 0;
1325 LIST_HEAD(source);
1326 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1327 DEFAULT_RATELIMIT_BURST);
1328
1329 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1330 if (!pfn_valid(pfn))
1331 continue;
1332 page = pfn_to_page(pfn);
1333 head = compound_head(page);
1334
1335 if (PageHuge(page)) {
1336 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1337 isolate_hugetlb(head, &source);
1338 continue;
1339 } else if (PageTransHuge(page))
1340 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1341
1342 /*
1343 * HWPoison pages have elevated reference counts so the migration would
1344 * fail on them. It also doesn't make any sense to migrate them in the
1345 * first place. Still try to unmap such a page in case it is still mapped
1346 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1347 * the unmap as the catch all safety net).
1348 */
1349 if (PageHWPoison(page)) {
1350 if (WARN_ON(PageLRU(page)))
1351 isolate_lru_page(page);
1352 if (page_mapped(page))
1353 try_to_unmap(page, TTU_IGNORE_MLOCK);
1354 continue;
1355 }
1356
1357 if (!get_page_unless_zero(page))
1358 continue;
1359 /*
1360 * We can skip free pages. And we can deal with pages on
1361 * LRU and non-lru movable pages.
1362 */
1363 if (PageLRU(page))
1364 ret = isolate_lru_page(page);
1365 else
1366 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1367 if (!ret) { /* Success */
1368 list_add_tail(&page->lru, &source);
1369 if (!__PageMovable(page))
1370 inc_node_page_state(page, NR_ISOLATED_ANON +
1371 page_is_file_lru(page));
1372
1373 } else {
1374 if (__ratelimit(&migrate_rs)) {
1375 pr_warn("failed to isolate pfn %lx\n", pfn);
1376 dump_page(page, "isolation failed");
1377 }
1378 }
1379 put_page(page);
1380 }
1381 if (!list_empty(&source)) {
1382 nodemask_t nmask = node_states[N_MEMORY];
1383 struct migration_target_control mtc = {
1384 .nmask = &nmask,
1385 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1386 };
1387
1388 /*
1389 * We have checked that migration range is on a single zone so
1390 * we can use the nid of the first page to all the others.
1391 */
1392 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1393
1394 /*
1395 * try to allocate from a different node but reuse this node
1396 * if there are no other online nodes to be used (e.g. we are
1397 * offlining a part of the only existing node)
1398 */
1399 node_clear(mtc.nid, nmask);
1400 if (nodes_empty(nmask))
1401 node_set(mtc.nid, nmask);
1402 ret = migrate_pages(&source, alloc_migration_target, NULL,
1403 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1404 if (ret) {
1405 list_for_each_entry(page, &source, lru) {
1406 if (__ratelimit(&migrate_rs)) {
1407 pr_warn("migrating pfn %lx failed ret:%d\n",
1408 page_to_pfn(page), ret);
1409 dump_page(page, "migration failure");
1410 }
1411 }
1412 putback_movable_pages(&source);
1413 }
1414 }
1415
1416 return ret;
1417 }
1418
cmdline_parse_movable_node(char * p)1419 static int __init cmdline_parse_movable_node(char *p)
1420 {
1421 movable_node_enabled = true;
1422 return 0;
1423 }
1424 early_param("movable_node", cmdline_parse_movable_node);
1425
1426 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1427 static void node_states_check_changes_offline(unsigned long nr_pages,
1428 struct zone *zone, struct memory_notify *arg)
1429 {
1430 struct pglist_data *pgdat = zone->zone_pgdat;
1431 unsigned long present_pages = 0;
1432 enum zone_type zt;
1433
1434 arg->status_change_nid = NUMA_NO_NODE;
1435 arg->status_change_nid_normal = NUMA_NO_NODE;
1436 arg->status_change_nid_high = NUMA_NO_NODE;
1437
1438 /*
1439 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1440 * If the memory to be offline is within the range
1441 * [0..ZONE_NORMAL], and it is the last present memory there,
1442 * the zones in that range will become empty after the offlining,
1443 * thus we can determine that we need to clear the node from
1444 * node_states[N_NORMAL_MEMORY].
1445 */
1446 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1447 present_pages += pgdat->node_zones[zt].present_pages;
1448 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1449 arg->status_change_nid_normal = zone_to_nid(zone);
1450
1451 #ifdef CONFIG_HIGHMEM
1452 /*
1453 * node_states[N_HIGH_MEMORY] contains nodes which
1454 * have normal memory or high memory.
1455 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1456 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1457 * we determine that the zones in that range become empty,
1458 * we need to clear the node for N_HIGH_MEMORY.
1459 */
1460 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1461 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1462 arg->status_change_nid_high = zone_to_nid(zone);
1463 #endif
1464
1465 /*
1466 * We have accounted the pages from [0..ZONE_NORMAL), and
1467 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1468 * as well.
1469 * Here we count the possible pages from ZONE_MOVABLE.
1470 * If after having accounted all the pages, we see that the nr_pages
1471 * to be offlined is over or equal to the accounted pages,
1472 * we know that the node will become empty, and so, we can clear
1473 * it for N_MEMORY as well.
1474 */
1475 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1476
1477 if (nr_pages >= present_pages)
1478 arg->status_change_nid = zone_to_nid(zone);
1479 }
1480
node_states_clear_node(int node,struct memory_notify * arg)1481 static void node_states_clear_node(int node, struct memory_notify *arg)
1482 {
1483 if (arg->status_change_nid_normal >= 0)
1484 node_clear_state(node, N_NORMAL_MEMORY);
1485
1486 if (arg->status_change_nid_high >= 0)
1487 node_clear_state(node, N_HIGH_MEMORY);
1488
1489 if (arg->status_change_nid >= 0)
1490 node_clear_state(node, N_MEMORY);
1491 }
1492
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1493 static int count_system_ram_pages_cb(unsigned long start_pfn,
1494 unsigned long nr_pages, void *data)
1495 {
1496 unsigned long *nr_system_ram_pages = data;
1497
1498 *nr_system_ram_pages += nr_pages;
1499 return 0;
1500 }
1501
offline_pages(unsigned long start_pfn,unsigned long nr_pages)1502 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1503 {
1504 const unsigned long end_pfn = start_pfn + nr_pages;
1505 unsigned long pfn, system_ram_pages = 0;
1506 unsigned long flags;
1507 struct zone *zone;
1508 struct memory_notify arg;
1509 int ret, node;
1510 char *reason;
1511
1512 /* We can only offline full sections (e.g., SECTION_IS_ONLINE) */
1513 if (WARN_ON_ONCE(!nr_pages ||
1514 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION)))
1515 return -EINVAL;
1516
1517 mem_hotplug_begin();
1518
1519 /*
1520 * Don't allow to offline memory blocks that contain holes.
1521 * Consequently, memory blocks with holes can never get onlined
1522 * via the hotplug path - online_pages() - as hotplugged memory has
1523 * no holes. This way, we e.g., don't have to worry about marking
1524 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1525 * avoid using walk_system_ram_range() later.
1526 */
1527 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1528 count_system_ram_pages_cb);
1529 if (system_ram_pages != nr_pages) {
1530 ret = -EINVAL;
1531 reason = "memory holes";
1532 goto failed_removal;
1533 }
1534
1535 /* This makes hotplug much easier...and readable.
1536 we assume this for now. .*/
1537 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1538 if (!zone) {
1539 ret = -EINVAL;
1540 reason = "multizone range";
1541 goto failed_removal;
1542 }
1543 node = zone_to_nid(zone);
1544
1545 lru_cache_disable();
1546 /* set above range as isolated */
1547 ret = start_isolate_page_range(start_pfn, end_pfn,
1548 MIGRATE_MOVABLE,
1549 MEMORY_OFFLINE | REPORT_FAILURE, NULL);
1550 if (ret) {
1551 reason = "failure to isolate range";
1552 goto failed_removal_lru_cache_disabled;
1553 }
1554
1555 drain_all_pages(zone);
1556
1557 arg.start_pfn = start_pfn;
1558 arg.nr_pages = nr_pages;
1559 node_states_check_changes_offline(nr_pages, zone, &arg);
1560
1561 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1562 ret = notifier_to_errno(ret);
1563 if (ret) {
1564 reason = "notifier failure";
1565 goto failed_removal_isolated;
1566 }
1567
1568 do {
1569 pfn = start_pfn;
1570 do {
1571 if (signal_pending(current)) {
1572 ret = -EINTR;
1573 reason = "signal backoff";
1574 goto failed_removal_isolated;
1575 }
1576
1577 cond_resched();
1578
1579 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1580 if (!ret) {
1581 /*
1582 * TODO: fatal migration failures should bail
1583 * out
1584 */
1585 do_migrate_range(pfn, end_pfn);
1586 }
1587 } while (!ret);
1588
1589 if (ret != -ENOENT) {
1590 reason = "unmovable page";
1591 goto failed_removal_isolated;
1592 }
1593
1594 /*
1595 * Dissolve free hugepages in the memory block before doing
1596 * offlining actually in order to make hugetlbfs's object
1597 * counting consistent.
1598 */
1599 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1600 if (ret) {
1601 reason = "failure to dissolve huge pages";
1602 goto failed_removal_isolated;
1603 }
1604
1605 /*
1606 * per-cpu pages are drained after start_isolate_page_range, but
1607 * if there are still pages that are not free, make sure that we
1608 * drain again, because when we isolated range we might have
1609 * raced with another thread that was adding pages to pcp list.
1610 *
1611 * Forward progress should be still guaranteed because
1612 * pages on the pcp list can only belong to MOVABLE_ZONE
1613 * because has_unmovable_pages explicitly checks for
1614 * PageBuddy on freed pages on other zones.
1615 */
1616 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE, NULL);
1617 if (ret)
1618 drain_all_pages(zone);
1619 } while (ret);
1620
1621 /* Mark all sections offline and remove free pages from the buddy. */
1622 __offline_isolated_pages(start_pfn, end_pfn);
1623 pr_info("Offlined Pages %ld\n", nr_pages);
1624
1625 /*
1626 * The memory sections are marked offline, and the pageblock flags
1627 * effectively stale; nobody should be touching them. Fixup the number
1628 * of isolated pageblocks, memory onlining will properly revert this.
1629 */
1630 spin_lock_irqsave(&zone->lock, flags);
1631 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1632 spin_unlock_irqrestore(&zone->lock, flags);
1633
1634 lru_cache_enable();
1635 /* removal success */
1636 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1637 zone->present_pages -= nr_pages;
1638
1639 pgdat_resize_lock(zone->zone_pgdat, &flags);
1640 zone->zone_pgdat->node_present_pages -= nr_pages;
1641 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1642
1643 init_per_zone_wmark_min();
1644
1645 if (!populated_zone(zone)) {
1646 zone_pcp_reset(zone);
1647 build_all_zonelists(NULL);
1648 } else
1649 zone_pcp_update(zone);
1650
1651 node_states_clear_node(node, &arg);
1652 if (arg.status_change_nid >= 0) {
1653 kswapd_stop(node);
1654 kcompactd_stop(node);
1655 }
1656
1657 writeback_set_ratelimit();
1658
1659 memory_notify(MEM_OFFLINE, &arg);
1660 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1661 mem_hotplug_done();
1662 return 0;
1663
1664 failed_removal_isolated:
1665 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1666 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1667 failed_removal_lru_cache_disabled:
1668 lru_cache_enable();
1669 failed_removal:
1670 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1671 (unsigned long long) start_pfn << PAGE_SHIFT,
1672 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1673 reason);
1674 /* pushback to free area */
1675 mem_hotplug_done();
1676 return ret;
1677 }
1678
check_memblock_offlined_cb(struct memory_block * mem,void * arg)1679 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1680 {
1681 int ret = !is_memblock_offlined(mem);
1682
1683 if (unlikely(ret)) {
1684 phys_addr_t beginpa, endpa;
1685
1686 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1687 endpa = beginpa + memory_block_size_bytes() - 1;
1688 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1689 &beginpa, &endpa);
1690
1691 return -EBUSY;
1692 }
1693 return 0;
1694 }
1695
check_cpu_on_node(pg_data_t * pgdat)1696 static int check_cpu_on_node(pg_data_t *pgdat)
1697 {
1698 int cpu;
1699
1700 for_each_present_cpu(cpu) {
1701 if (cpu_to_node(cpu) == pgdat->node_id)
1702 /*
1703 * the cpu on this node isn't removed, and we can't
1704 * offline this node.
1705 */
1706 return -EBUSY;
1707 }
1708
1709 return 0;
1710 }
1711
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)1712 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1713 {
1714 int nid = *(int *)arg;
1715
1716 /*
1717 * If a memory block belongs to multiple nodes, the stored nid is not
1718 * reliable. However, such blocks are always online (e.g., cannot get
1719 * offlined) and, therefore, are still spanned by the node.
1720 */
1721 return mem->nid == nid ? -EEXIST : 0;
1722 }
1723
1724 /**
1725 * try_offline_node
1726 * @nid: the node ID
1727 *
1728 * Offline a node if all memory sections and cpus of the node are removed.
1729 *
1730 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1731 * and online/offline operations before this call.
1732 */
try_offline_node(int nid)1733 void try_offline_node(int nid)
1734 {
1735 pg_data_t *pgdat = NODE_DATA(nid);
1736 int rc;
1737
1738 /*
1739 * If the node still spans pages (especially ZONE_DEVICE), don't
1740 * offline it. A node spans memory after move_pfn_range_to_zone(),
1741 * e.g., after the memory block was onlined.
1742 */
1743 if (pgdat->node_spanned_pages)
1744 return;
1745
1746 /*
1747 * Especially offline memory blocks might not be spanned by the
1748 * node. They will get spanned by the node once they get onlined.
1749 * However, they link to the node in sysfs and can get onlined later.
1750 */
1751 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1752 if (rc)
1753 return;
1754
1755 if (check_cpu_on_node(pgdat))
1756 return;
1757
1758 /*
1759 * all memory/cpu of this node are removed, we can offline this
1760 * node now.
1761 */
1762 node_set_offline(nid);
1763 unregister_one_node(nid);
1764 }
1765 EXPORT_SYMBOL(try_offline_node);
1766
try_remove_memory(int nid,u64 start,u64 size)1767 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1768 {
1769 int rc = 0;
1770
1771 BUG_ON(check_hotplug_memory_range(start, size));
1772
1773 /*
1774 * All memory blocks must be offlined before removing memory. Check
1775 * whether all memory blocks in question are offline and return error
1776 * if this is not the case.
1777 */
1778 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1779 if (rc)
1780 return rc;
1781
1782 /* remove memmap entry */
1783 firmware_map_remove(start, start + size, "System RAM");
1784
1785 /*
1786 * Memory block device removal under the device_hotplug_lock is
1787 * a barrier against racing online attempts.
1788 */
1789 remove_memory_block_devices(start, size);
1790
1791 mem_hotplug_begin();
1792
1793 arch_remove_memory(nid, start, size, NULL);
1794
1795 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1796 memblock_free(start, size);
1797 memblock_remove(start, size);
1798 }
1799
1800 release_mem_region_adjustable(start, size);
1801
1802 try_offline_node(nid);
1803
1804 mem_hotplug_done();
1805 return 0;
1806 }
1807
1808 /**
1809 * remove_memory
1810 * @nid: the node ID
1811 * @start: physical address of the region to remove
1812 * @size: size of the region to remove
1813 *
1814 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1815 * and online/offline operations before this call, as required by
1816 * try_offline_node().
1817 */
__remove_memory(int nid,u64 start,u64 size)1818 void __remove_memory(int nid, u64 start, u64 size)
1819 {
1820
1821 /*
1822 * trigger BUG() if some memory is not offlined prior to calling this
1823 * function
1824 */
1825 if (try_remove_memory(nid, start, size))
1826 BUG();
1827 }
1828
1829 /*
1830 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1831 * some memory is not offline
1832 */
remove_memory(int nid,u64 start,u64 size)1833 int remove_memory(int nid, u64 start, u64 size)
1834 {
1835 int rc;
1836
1837 lock_device_hotplug();
1838 rc = try_remove_memory(nid, start, size);
1839 unlock_device_hotplug();
1840
1841 return rc;
1842 }
1843 EXPORT_SYMBOL_GPL(remove_memory);
1844
remove_memory_subsection(int nid,u64 start,u64 size)1845 int remove_memory_subsection(int nid, u64 start, u64 size)
1846 {
1847 if (!IS_ALIGNED(start, SUBSECTION_SIZE) ||
1848 !IS_ALIGNED(size, SUBSECTION_SIZE)) {
1849 pr_err("%s: start 0x%llx size 0x%llx not aligned to subsection size\n",
1850 __func__, start, size);
1851 return -EINVAL;
1852 }
1853
1854 mem_hotplug_begin();
1855 arch_remove_memory(nid, start, size, NULL);
1856
1857 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1858 memblock_remove(start, size);
1859
1860 release_mem_region_adjustable(start, size);
1861
1862 mem_hotplug_done();
1863
1864 return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(remove_memory_subsection);
1867
try_offline_memory_block(struct memory_block * mem,void * arg)1868 static int try_offline_memory_block(struct memory_block *mem, void *arg)
1869 {
1870 uint8_t online_type = MMOP_ONLINE_KERNEL;
1871 uint8_t **online_types = arg;
1872 struct page *page;
1873 int rc;
1874
1875 /*
1876 * Sense the online_type via the zone of the memory block. Offlining
1877 * with multiple zones within one memory block will be rejected
1878 * by offlining code ... so we don't care about that.
1879 */
1880 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1881 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1882 online_type = MMOP_ONLINE_MOVABLE;
1883
1884 rc = device_offline(&mem->dev);
1885 /*
1886 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1887 * so try_reonline_memory_block() can do the right thing.
1888 */
1889 if (!rc)
1890 **online_types = online_type;
1891
1892 (*online_types)++;
1893 /* Ignore if already offline. */
1894 return rc < 0 ? rc : 0;
1895 }
1896
try_reonline_memory_block(struct memory_block * mem,void * arg)1897 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1898 {
1899 uint8_t **online_types = arg;
1900 int rc;
1901
1902 if (**online_types != MMOP_OFFLINE) {
1903 mem->online_type = **online_types;
1904 rc = device_online(&mem->dev);
1905 if (rc < 0)
1906 pr_warn("%s: Failed to re-online memory: %d",
1907 __func__, rc);
1908 }
1909
1910 /* Continue processing all remaining memory blocks. */
1911 (*online_types)++;
1912 return 0;
1913 }
1914
1915 /*
1916 * Try to offline and remove memory. Might take a long time to finish in case
1917 * memory is still in use. Primarily useful for memory devices that logically
1918 * unplugged all memory (so it's no longer in use) and want to offline + remove
1919 * that memory.
1920 */
offline_and_remove_memory(int nid,u64 start,u64 size)1921 int offline_and_remove_memory(int nid, u64 start, u64 size)
1922 {
1923 const unsigned long mb_count = size / memory_block_size_bytes();
1924 uint8_t *online_types, *tmp;
1925 int rc;
1926
1927 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1928 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
1929 return -EINVAL;
1930
1931 /*
1932 * We'll remember the old online type of each memory block, so we can
1933 * try to revert whatever we did when offlining one memory block fails
1934 * after offlining some others succeeded.
1935 */
1936 online_types = kmalloc_array(mb_count, sizeof(*online_types),
1937 GFP_KERNEL);
1938 if (!online_types)
1939 return -ENOMEM;
1940 /*
1941 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
1942 * try_offline_memory_block(), we'll skip all unprocessed blocks in
1943 * try_reonline_memory_block().
1944 */
1945 memset(online_types, MMOP_OFFLINE, mb_count);
1946
1947 lock_device_hotplug();
1948
1949 tmp = online_types;
1950 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
1951
1952 /*
1953 * In case we succeeded to offline all memory, remove it.
1954 * This cannot fail as it cannot get onlined in the meantime.
1955 */
1956 if (!rc) {
1957 rc = try_remove_memory(nid, start, size);
1958 if (rc)
1959 pr_err("%s: Failed to remove memory: %d", __func__, rc);
1960 }
1961
1962 /*
1963 * Rollback what we did. While memory onlining might theoretically fail
1964 * (nacked by a notifier), it barely ever happens.
1965 */
1966 if (rc) {
1967 tmp = online_types;
1968 walk_memory_blocks(start, size, &tmp,
1969 try_reonline_memory_block);
1970 }
1971 unlock_device_hotplug();
1972
1973 kfree(online_types);
1974 return rc;
1975 }
1976 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1977 #endif /* CONFIG_MEMORY_HOTREMOVE */
1978