• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #ifndef __GENKSYMS__
31 #include <trace/hooks/syscall_check.h>
32 #include <trace/hooks/mm.h>
33 #endif
34 
35 /**
36  * kfree_const - conditionally free memory
37  * @x: pointer to the memory
38  *
39  * Function calls kfree only if @x is not in .rodata section.
40  */
kfree_const(const void * x)41 void kfree_const(const void *x)
42 {
43 	if (!is_kernel_rodata((unsigned long)x))
44 		kfree(x);
45 }
46 EXPORT_SYMBOL(kfree_const);
47 
48 /**
49  * kstrdup - allocate space for and copy an existing string
50  * @s: the string to duplicate
51  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
52  *
53  * Return: newly allocated copy of @s or %NULL in case of error
54  */
kstrdup(const char * s,gfp_t gfp)55 char *kstrdup(const char *s, gfp_t gfp)
56 {
57 	size_t len;
58 	char *buf;
59 
60 	if (!s)
61 		return NULL;
62 
63 	len = strlen(s) + 1;
64 	buf = kmalloc_track_caller(len, gfp);
65 	if (buf)
66 		memcpy(buf, s, len);
67 	return buf;
68 }
69 EXPORT_SYMBOL(kstrdup);
70 
71 /**
72  * kstrdup_const - conditionally duplicate an existing const string
73  * @s: the string to duplicate
74  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
75  *
76  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
77  * must not be passed to krealloc().
78  *
79  * Return: source string if it is in .rodata section otherwise
80  * fallback to kstrdup.
81  */
kstrdup_const(const char * s,gfp_t gfp)82 const char *kstrdup_const(const char *s, gfp_t gfp)
83 {
84 	if (is_kernel_rodata((unsigned long)s))
85 		return s;
86 
87 	return kstrdup(s, gfp);
88 }
89 EXPORT_SYMBOL(kstrdup_const);
90 
91 /**
92  * kstrndup - allocate space for and copy an existing string
93  * @s: the string to duplicate
94  * @max: read at most @max chars from @s
95  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
96  *
97  * Note: Use kmemdup_nul() instead if the size is known exactly.
98  *
99  * Return: newly allocated copy of @s or %NULL in case of error
100  */
kstrndup(const char * s,size_t max,gfp_t gfp)101 char *kstrndup(const char *s, size_t max, gfp_t gfp)
102 {
103 	size_t len;
104 	char *buf;
105 
106 	if (!s)
107 		return NULL;
108 
109 	len = strnlen(s, max);
110 	buf = kmalloc_track_caller(len+1, gfp);
111 	if (buf) {
112 		memcpy(buf, s, len);
113 		buf[len] = '\0';
114 	}
115 	return buf;
116 }
117 EXPORT_SYMBOL(kstrndup);
118 
119 /**
120  * kmemdup - duplicate region of memory
121  *
122  * @src: memory region to duplicate
123  * @len: memory region length
124  * @gfp: GFP mask to use
125  *
126  * Return: newly allocated copy of @src or %NULL in case of error
127  */
kmemdup(const void * src,size_t len,gfp_t gfp)128 void *kmemdup(const void *src, size_t len, gfp_t gfp)
129 {
130 	void *p;
131 
132 	p = kmalloc_track_caller(len, gfp);
133 	if (p)
134 		memcpy(p, src, len);
135 	return p;
136 }
137 EXPORT_SYMBOL(kmemdup);
138 
139 /**
140  * kmemdup_nul - Create a NUL-terminated string from unterminated data
141  * @s: The data to stringify
142  * @len: The size of the data
143  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
144  *
145  * Return: newly allocated copy of @s with NUL-termination or %NULL in
146  * case of error
147  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)148 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
149 {
150 	char *buf;
151 
152 	if (!s)
153 		return NULL;
154 
155 	buf = kmalloc_track_caller(len + 1, gfp);
156 	if (buf) {
157 		memcpy(buf, s, len);
158 		buf[len] = '\0';
159 	}
160 	return buf;
161 }
162 EXPORT_SYMBOL(kmemdup_nul);
163 
164 /**
165  * memdup_user - duplicate memory region from user space
166  *
167  * @src: source address in user space
168  * @len: number of bytes to copy
169  *
170  * Return: an ERR_PTR() on failure.  Result is physically
171  * contiguous, to be freed by kfree().
172  */
memdup_user(const void __user * src,size_t len)173 void *memdup_user(const void __user *src, size_t len)
174 {
175 	void *p;
176 
177 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
178 	if (!p)
179 		return ERR_PTR(-ENOMEM);
180 
181 	if (copy_from_user(p, src, len)) {
182 		kfree(p);
183 		return ERR_PTR(-EFAULT);
184 	}
185 
186 	return p;
187 }
188 EXPORT_SYMBOL(memdup_user);
189 
190 /**
191  * vmemdup_user - duplicate memory region from user space
192  *
193  * @src: source address in user space
194  * @len: number of bytes to copy
195  *
196  * Return: an ERR_PTR() on failure.  Result may be not
197  * physically contiguous.  Use kvfree() to free.
198  */
vmemdup_user(const void __user * src,size_t len)199 void *vmemdup_user(const void __user *src, size_t len)
200 {
201 	void *p;
202 
203 	p = kvmalloc(len, GFP_USER);
204 	if (!p)
205 		return ERR_PTR(-ENOMEM);
206 
207 	if (copy_from_user(p, src, len)) {
208 		kvfree(p);
209 		return ERR_PTR(-EFAULT);
210 	}
211 
212 	return p;
213 }
214 EXPORT_SYMBOL(vmemdup_user);
215 
216 /**
217  * strndup_user - duplicate an existing string from user space
218  * @s: The string to duplicate
219  * @n: Maximum number of bytes to copy, including the trailing NUL.
220  *
221  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
222  */
strndup_user(const char __user * s,long n)223 char *strndup_user(const char __user *s, long n)
224 {
225 	char *p;
226 	long length;
227 
228 	length = strnlen_user(s, n);
229 
230 	if (!length)
231 		return ERR_PTR(-EFAULT);
232 
233 	if (length > n)
234 		return ERR_PTR(-EINVAL);
235 
236 	p = memdup_user(s, length);
237 
238 	if (IS_ERR(p))
239 		return p;
240 
241 	p[length - 1] = '\0';
242 
243 	return p;
244 }
245 EXPORT_SYMBOL(strndup_user);
246 
247 /**
248  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
249  *
250  * @src: source address in user space
251  * @len: number of bytes to copy
252  *
253  * Return: an ERR_PTR() on failure.
254  */
memdup_user_nul(const void __user * src,size_t len)255 void *memdup_user_nul(const void __user *src, size_t len)
256 {
257 	char *p;
258 
259 	/*
260 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
261 	 * cause pagefault, which makes it pointless to use GFP_NOFS
262 	 * or GFP_ATOMIC.
263 	 */
264 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
265 	if (!p)
266 		return ERR_PTR(-ENOMEM);
267 
268 	if (copy_from_user(p, src, len)) {
269 		kfree(p);
270 		return ERR_PTR(-EFAULT);
271 	}
272 	p[len] = '\0';
273 
274 	return p;
275 }
276 EXPORT_SYMBOL(memdup_user_nul);
277 
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)278 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
279 		struct vm_area_struct *prev)
280 {
281 	struct vm_area_struct *next;
282 
283 	vma->vm_prev = prev;
284 	if (prev) {
285 		next = prev->vm_next;
286 		prev->vm_next = vma;
287 	} else {
288 		next = mm->mmap;
289 		mm->mmap = vma;
290 	}
291 	vma->vm_next = next;
292 	if (next)
293 		next->vm_prev = vma;
294 }
295 
__vma_unlink_list(struct mm_struct * mm,struct vm_area_struct * vma)296 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
297 {
298 	struct vm_area_struct *prev, *next;
299 
300 	next = vma->vm_next;
301 	prev = vma->vm_prev;
302 	if (prev)
303 		prev->vm_next = next;
304 	else
305 		mm->mmap = next;
306 	if (next)
307 		next->vm_prev = prev;
308 }
309 
310 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)311 int vma_is_stack_for_current(struct vm_area_struct *vma)
312 {
313 	struct task_struct * __maybe_unused t = current;
314 
315 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
316 }
317 
318 #ifndef STACK_RND_MASK
319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
320 #endif
321 
randomize_stack_top(unsigned long stack_top)322 unsigned long randomize_stack_top(unsigned long stack_top)
323 {
324 	unsigned long random_variable = 0;
325 
326 	if (current->flags & PF_RANDOMIZE) {
327 		random_variable = get_random_long();
328 		random_variable &= STACK_RND_MASK;
329 		random_variable <<= PAGE_SHIFT;
330 	}
331 #ifdef CONFIG_STACK_GROWSUP
332 	return PAGE_ALIGN(stack_top) + random_variable;
333 #else
334 	return PAGE_ALIGN(stack_top) - random_variable;
335 #endif
336 }
337 
338 /**
339  * randomize_page - Generate a random, page aligned address
340  * @start:	The smallest acceptable address the caller will take.
341  * @range:	The size of the area, starting at @start, within which the
342  *		random address must fall.
343  *
344  * If @start + @range would overflow, @range is capped.
345  *
346  * NOTE: Historical use of randomize_range, which this replaces, presumed that
347  * @start was already page aligned.  We now align it regardless.
348  *
349  * Return: A page aligned address within [start, start + range).  On error,
350  * @start is returned.
351  */
randomize_page(unsigned long start,unsigned long range)352 unsigned long randomize_page(unsigned long start, unsigned long range)
353 {
354 	if (!PAGE_ALIGNED(start)) {
355 		range -= PAGE_ALIGN(start) - start;
356 		start = PAGE_ALIGN(start);
357 	}
358 
359 	if (start > ULONG_MAX - range)
360 		range = ULONG_MAX - start;
361 
362 	range >>= PAGE_SHIFT;
363 
364 	if (range == 0)
365 		return start;
366 
367 	return start + (get_random_long() % range << PAGE_SHIFT);
368 }
369 
370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)371 unsigned long arch_randomize_brk(struct mm_struct *mm)
372 {
373 	/* Is the current task 32bit ? */
374 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 		return randomize_page(mm->brk, SZ_32M);
376 
377 	return randomize_page(mm->brk, SZ_1G);
378 }
379 
arch_mmap_rnd(void)380 unsigned long arch_mmap_rnd(void)
381 {
382 	unsigned long rnd;
383 
384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 	if (is_compat_task())
386 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 	else
388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390 
391 	return rnd << PAGE_SHIFT;
392 }
393 EXPORT_SYMBOL_GPL(arch_mmap_rnd);
394 
mmap_is_legacy(struct rlimit * rlim_stack)395 static int mmap_is_legacy(struct rlimit *rlim_stack)
396 {
397 	if (current->personality & ADDR_COMPAT_LAYOUT)
398 		return 1;
399 
400 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
401 		return 1;
402 
403 	return sysctl_legacy_va_layout;
404 }
405 
406 /*
407  * Leave enough space between the mmap area and the stack to honour ulimit in
408  * the face of randomisation.
409  */
410 #define MIN_GAP		(SZ_128M)
411 #define MAX_GAP		(STACK_TOP / 6 * 5)
412 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)413 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
414 {
415 	unsigned long gap = rlim_stack->rlim_cur;
416 	unsigned long pad = stack_guard_gap;
417 
418 	/* Account for stack randomization if necessary */
419 	if (current->flags & PF_RANDOMIZE)
420 		pad += (STACK_RND_MASK << PAGE_SHIFT);
421 
422 	/* Values close to RLIM_INFINITY can overflow. */
423 	if (gap + pad > gap)
424 		gap += pad;
425 
426 	if (gap < MIN_GAP)
427 		gap = MIN_GAP;
428 	else if (gap > MAX_GAP)
429 		gap = MAX_GAP;
430 
431 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
432 }
433 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)434 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
435 {
436 	unsigned long random_factor = 0UL;
437 
438 	if (current->flags & PF_RANDOMIZE)
439 		random_factor = arch_mmap_rnd();
440 
441 	if (mmap_is_legacy(rlim_stack)) {
442 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
443 		mm->get_unmapped_area = arch_get_unmapped_area;
444 	} else {
445 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
446 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
447 	}
448 }
449 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)450 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
451 {
452 	mm->mmap_base = TASK_UNMAPPED_BASE;
453 	mm->get_unmapped_area = arch_get_unmapped_area;
454 }
455 #endif
456 
457 /**
458  * __account_locked_vm - account locked pages to an mm's locked_vm
459  * @mm:          mm to account against
460  * @pages:       number of pages to account
461  * @inc:         %true if @pages should be considered positive, %false if not
462  * @task:        task used to check RLIMIT_MEMLOCK
463  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
464  *
465  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
466  * that mmap_lock is held as writer.
467  *
468  * Return:
469  * * 0       on success
470  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
471  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)472 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
473 			struct task_struct *task, bool bypass_rlim)
474 {
475 	unsigned long locked_vm, limit;
476 	int ret = 0;
477 
478 	mmap_assert_write_locked(mm);
479 
480 	locked_vm = mm->locked_vm;
481 	if (inc) {
482 		if (!bypass_rlim) {
483 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
484 			if (locked_vm + pages > limit)
485 				ret = -ENOMEM;
486 		}
487 		if (!ret)
488 			mm->locked_vm = locked_vm + pages;
489 	} else {
490 		WARN_ON_ONCE(pages > locked_vm);
491 		mm->locked_vm = locked_vm - pages;
492 	}
493 
494 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
495 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
496 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
497 		 ret ? " - exceeded" : "");
498 
499 	return ret;
500 }
501 EXPORT_SYMBOL_GPL(__account_locked_vm);
502 
503 /**
504  * account_locked_vm - account locked pages to an mm's locked_vm
505  * @mm:          mm to account against, may be NULL
506  * @pages:       number of pages to account
507  * @inc:         %true if @pages should be considered positive, %false if not
508  *
509  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
510  *
511  * Return:
512  * * 0       on success, or if mm is NULL
513  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
514  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)515 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
516 {
517 	int ret;
518 
519 	if (pages == 0 || !mm)
520 		return 0;
521 
522 	mmap_write_lock(mm);
523 	ret = __account_locked_vm(mm, pages, inc, current,
524 				  capable(CAP_IPC_LOCK));
525 	mmap_write_unlock(mm);
526 
527 	return ret;
528 }
529 EXPORT_SYMBOL_GPL(account_locked_vm);
530 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)531 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
532 	unsigned long len, unsigned long prot,
533 	unsigned long flag, unsigned long pgoff)
534 {
535 	unsigned long ret;
536 	struct mm_struct *mm = current->mm;
537 	unsigned long populate;
538 	LIST_HEAD(uf);
539 
540 	ret = security_mmap_file(file, prot, flag);
541 	if (!ret) {
542 		if (mmap_write_lock_killable(mm))
543 			return -EINTR;
544 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
545 			      &uf);
546 		mmap_write_unlock(mm);
547 		userfaultfd_unmap_complete(mm, &uf);
548 		if (populate)
549 			mm_populate(ret, populate);
550 	}
551 	trace_android_vh_check_mmap_file(file, prot, flag, ret);
552 	return ret;
553 }
554 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)555 unsigned long vm_mmap(struct file *file, unsigned long addr,
556 	unsigned long len, unsigned long prot,
557 	unsigned long flag, unsigned long offset)
558 {
559 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
560 		return -EINVAL;
561 	if (unlikely(offset_in_page(offset)))
562 		return -EINVAL;
563 
564 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
565 }
566 EXPORT_SYMBOL(vm_mmap);
567 
568 /**
569  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
570  * failure, fall back to non-contiguous (vmalloc) allocation.
571  * @size: size of the request.
572  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
573  * @node: numa node to allocate from
574  *
575  * Uses kmalloc to get the memory but if the allocation fails then falls back
576  * to the vmalloc allocator. Use kvfree for freeing the memory.
577  *
578  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
579  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
580  * preferable to the vmalloc fallback, due to visible performance drawbacks.
581  *
582  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
583  * fall back to vmalloc.
584  *
585  * Return: pointer to the allocated memory of %NULL in case of failure
586  */
kvmalloc_node(size_t size,gfp_t flags,int node)587 void *kvmalloc_node(size_t size, gfp_t flags, int node)
588 {
589 	gfp_t kmalloc_flags = flags;
590 	void *ret;
591 	bool use_vmalloc = false;
592 
593 	/*
594 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
595 	 * so the given set of flags has to be compatible.
596 	 */
597 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
598 		return kmalloc_node(size, flags, node);
599 
600 	trace_android_vh_kvmalloc_node_use_vmalloc(size, &kmalloc_flags, &use_vmalloc);
601 	if (use_vmalloc)
602 		goto use_vmalloc_node;
603 
604 	/*
605 	 * We want to attempt a large physically contiguous block first because
606 	 * it is less likely to fragment multiple larger blocks and therefore
607 	 * contribute to a long term fragmentation less than vmalloc fallback.
608 	 * However make sure that larger requests are not too disruptive - no
609 	 * OOM killer and no allocation failure warnings as we have a fallback.
610 	 */
611 	if (size > PAGE_SIZE) {
612 		kmalloc_flags |= __GFP_NOWARN;
613 
614 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
615 			kmalloc_flags |= __GFP_NORETRY;
616 	}
617 
618 	ret = kmalloc_node(size, kmalloc_flags, node);
619 
620 	/*
621 	 * It doesn't really make sense to fallback to vmalloc for sub page
622 	 * requests
623 	 */
624 	if (ret || size <= PAGE_SIZE)
625 		return ret;
626 
627 	/* Don't even allow crazy sizes */
628 	if (unlikely(size > INT_MAX)) {
629 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
630 		return NULL;
631 	}
632 
633 use_vmalloc_node:
634 	return __vmalloc_node(size, 1, flags, node,
635 			__builtin_return_address(0));
636 }
637 EXPORT_SYMBOL(kvmalloc_node);
638 
639 /**
640  * kvfree() - Free memory.
641  * @addr: Pointer to allocated memory.
642  *
643  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
644  * It is slightly more efficient to use kfree() or vfree() if you are certain
645  * that you know which one to use.
646  *
647  * Context: Either preemptible task context or not-NMI interrupt.
648  */
kvfree(const void * addr)649 void kvfree(const void *addr)
650 {
651 	if (is_vmalloc_addr(addr))
652 		vfree(addr);
653 	else
654 		kfree(addr);
655 }
656 EXPORT_SYMBOL(kvfree);
657 
658 /**
659  * kvfree_sensitive - Free a data object containing sensitive information.
660  * @addr: address of the data object to be freed.
661  * @len: length of the data object.
662  *
663  * Use the special memzero_explicit() function to clear the content of a
664  * kvmalloc'ed object containing sensitive data to make sure that the
665  * compiler won't optimize out the data clearing.
666  */
kvfree_sensitive(const void * addr,size_t len)667 void kvfree_sensitive(const void *addr, size_t len)
668 {
669 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
670 		memzero_explicit((void *)addr, len);
671 		kvfree(addr);
672 	}
673 }
674 EXPORT_SYMBOL(kvfree_sensitive);
675 
kvrealloc(const void * p,size_t oldsize,size_t newsize,gfp_t flags)676 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
677 {
678 	void *newp;
679 
680 	if (oldsize >= newsize)
681 		return (void *)p;
682 	newp = kvmalloc(newsize, flags);
683 	if (!newp)
684 		return NULL;
685 	memcpy(newp, p, oldsize);
686 	kvfree(p);
687 	return newp;
688 }
689 EXPORT_SYMBOL(kvrealloc);
690 
__page_rmapping(struct page * page)691 static inline void *__page_rmapping(struct page *page)
692 {
693 	unsigned long mapping;
694 
695 	mapping = (unsigned long)page->mapping;
696 	mapping &= ~PAGE_MAPPING_FLAGS;
697 
698 	return (void *)mapping;
699 }
700 
701 /**
702  * __vmalloc_array - allocate memory for a virtually contiguous array.
703  * @n: number of elements.
704  * @size: element size.
705  * @flags: the type of memory to allocate (see kmalloc).
706  */
__vmalloc_array(size_t n,size_t size,gfp_t flags)707 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
708 {
709 	size_t bytes;
710 
711 	if (unlikely(check_mul_overflow(n, size, &bytes)))
712 		return NULL;
713 	return __vmalloc(bytes, flags);
714 }
715 EXPORT_SYMBOL(__vmalloc_array);
716 
717 /**
718  * vmalloc_array - allocate memory for a virtually contiguous array.
719  * @n: number of elements.
720  * @size: element size.
721  */
vmalloc_array(size_t n,size_t size)722 void *vmalloc_array(size_t n, size_t size)
723 {
724 	return __vmalloc_array(n, size, GFP_KERNEL);
725 }
726 EXPORT_SYMBOL(vmalloc_array);
727 
728 /**
729  * __vcalloc - allocate and zero memory for a virtually contiguous array.
730  * @n: number of elements.
731  * @size: element size.
732  * @flags: the type of memory to allocate (see kmalloc).
733  */
__vcalloc(size_t n,size_t size,gfp_t flags)734 void *__vcalloc(size_t n, size_t size, gfp_t flags)
735 {
736 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
737 }
738 EXPORT_SYMBOL(__vcalloc);
739 
740 /**
741  * vcalloc - allocate and zero memory for a virtually contiguous array.
742  * @n: number of elements.
743  * @size: element size.
744  */
vcalloc(size_t n,size_t size)745 void *vcalloc(size_t n, size_t size)
746 {
747 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
748 }
749 EXPORT_SYMBOL(vcalloc);
750 
751 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)752 void *page_rmapping(struct page *page)
753 {
754 	page = compound_head(page);
755 	return __page_rmapping(page);
756 }
757 
758 /*
759  * Return true if this page is mapped into pagetables.
760  * For compound page it returns true if any subpage of compound page is mapped.
761  */
page_mapped(struct page * page)762 bool page_mapped(struct page *page)
763 {
764 	int i;
765 
766 	if (likely(!PageCompound(page)))
767 		return atomic_read(&page->_mapcount) >= 0;
768 	page = compound_head(page);
769 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
770 		return true;
771 	if (PageHuge(page))
772 		return false;
773 	for (i = 0; i < compound_nr(page); i++) {
774 		if (atomic_read(&page[i]._mapcount) >= 0)
775 			return true;
776 	}
777 	return false;
778 }
779 EXPORT_SYMBOL(page_mapped);
780 
page_anon_vma(struct page * page)781 struct anon_vma *page_anon_vma(struct page *page)
782 {
783 	unsigned long mapping;
784 
785 	page = compound_head(page);
786 	mapping = (unsigned long)page->mapping;
787 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
788 		return NULL;
789 	return __page_rmapping(page);
790 }
791 
page_mapping(struct page * page)792 struct address_space *page_mapping(struct page *page)
793 {
794 	struct address_space *mapping;
795 
796 	page = compound_head(page);
797 
798 	/* This happens if someone calls flush_dcache_page on slab page */
799 	if (unlikely(PageSlab(page)))
800 		return NULL;
801 
802 	if (unlikely(PageSwapCache(page))) {
803 		swp_entry_t entry;
804 
805 		entry.val = page_private(page);
806 		return swap_address_space(entry);
807 	}
808 
809 	mapping = page->mapping;
810 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
811 		return NULL;
812 
813 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
814 }
815 EXPORT_SYMBOL(page_mapping);
816 
817 /*
818  * For file cache pages, return the address_space, otherwise return NULL
819  */
page_mapping_file(struct page * page)820 struct address_space *page_mapping_file(struct page *page)
821 {
822 	if (unlikely(PageSwapCache(page)))
823 		return NULL;
824 	return page_mapping(page);
825 }
826 
827 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)828 int __page_mapcount(struct page *page)
829 {
830 	int ret;
831 
832 	ret = atomic_read(&page->_mapcount) + 1;
833 	/*
834 	 * For file THP page->_mapcount contains total number of mapping
835 	 * of the page: no need to look into compound_mapcount.
836 	 */
837 	if (!PageAnon(page) && !PageHuge(page))
838 		return ret;
839 	page = compound_head(page);
840 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
841 	if (PageDoubleMap(page))
842 		ret--;
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(__page_mapcount);
846 
847 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
848 int sysctl_overcommit_ratio __read_mostly = 50;
849 unsigned long sysctl_overcommit_kbytes __read_mostly;
850 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
851 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
852 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
853 
overcommit_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)854 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
855 		size_t *lenp, loff_t *ppos)
856 {
857 	int ret;
858 
859 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
860 	if (ret == 0 && write)
861 		sysctl_overcommit_kbytes = 0;
862 	return ret;
863 }
864 
sync_overcommit_as(struct work_struct * dummy)865 static void sync_overcommit_as(struct work_struct *dummy)
866 {
867 	percpu_counter_sync(&vm_committed_as);
868 }
869 
overcommit_policy_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)870 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
871 		size_t *lenp, loff_t *ppos)
872 {
873 	struct ctl_table t;
874 	int new_policy = -1;
875 	int ret;
876 
877 	/*
878 	 * The deviation of sync_overcommit_as could be big with loose policy
879 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
880 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
881 	 * with the strict "NEVER", and to avoid possible race condtion (even
882 	 * though user usually won't too frequently do the switching to policy
883 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
884 	 *	1. changing the batch
885 	 *	2. sync percpu count on each CPU
886 	 *	3. switch the policy
887 	 */
888 	if (write) {
889 		t = *table;
890 		t.data = &new_policy;
891 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
892 		if (ret || new_policy == -1)
893 			return ret;
894 
895 		mm_compute_batch(new_policy);
896 		if (new_policy == OVERCOMMIT_NEVER)
897 			schedule_on_each_cpu(sync_overcommit_as);
898 		sysctl_overcommit_memory = new_policy;
899 	} else {
900 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
901 	}
902 
903 	return ret;
904 }
905 
overcommit_kbytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)906 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
907 		size_t *lenp, loff_t *ppos)
908 {
909 	int ret;
910 
911 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
912 	if (ret == 0 && write)
913 		sysctl_overcommit_ratio = 0;
914 	return ret;
915 }
916 
917 /*
918  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
919  */
vm_commit_limit(void)920 unsigned long vm_commit_limit(void)
921 {
922 	unsigned long allowed;
923 
924 	if (sysctl_overcommit_kbytes)
925 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
926 	else
927 		allowed = ((totalram_pages() - hugetlb_total_pages())
928 			   * sysctl_overcommit_ratio / 100);
929 	allowed += total_swap_pages;
930 
931 	return allowed;
932 }
933 
934 /*
935  * Make sure vm_committed_as in one cacheline and not cacheline shared with
936  * other variables. It can be updated by several CPUs frequently.
937  */
938 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
939 
940 /*
941  * The global memory commitment made in the system can be a metric
942  * that can be used to drive ballooning decisions when Linux is hosted
943  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
944  * balancing memory across competing virtual machines that are hosted.
945  * Several metrics drive this policy engine including the guest reported
946  * memory commitment.
947  *
948  * The time cost of this is very low for small platforms, and for big
949  * platform like a 2S/36C/72T Skylake server, in worst case where
950  * vm_committed_as's spinlock is under severe contention, the time cost
951  * could be about 30~40 microseconds.
952  */
vm_memory_committed(void)953 unsigned long vm_memory_committed(void)
954 {
955 	return percpu_counter_sum_positive(&vm_committed_as);
956 }
957 EXPORT_SYMBOL_GPL(vm_memory_committed);
958 
959 /*
960  * Check that a process has enough memory to allocate a new virtual
961  * mapping. 0 means there is enough memory for the allocation to
962  * succeed and -ENOMEM implies there is not.
963  *
964  * We currently support three overcommit policies, which are set via the
965  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
966  *
967  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
968  * Additional code 2002 Jul 20 by Robert Love.
969  *
970  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
971  *
972  * Note this is a helper function intended to be used by LSMs which
973  * wish to use this logic.
974  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)975 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
976 {
977 	long allowed;
978 
979 	vm_acct_memory(pages);
980 
981 	/*
982 	 * Sometimes we want to use more memory than we have
983 	 */
984 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
985 		return 0;
986 
987 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
988 		if (pages > totalram_pages() + total_swap_pages)
989 			goto error;
990 		return 0;
991 	}
992 
993 	allowed = vm_commit_limit();
994 	/*
995 	 * Reserve some for root
996 	 */
997 	if (!cap_sys_admin)
998 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
999 
1000 	/*
1001 	 * Don't let a single process grow so big a user can't recover
1002 	 */
1003 	if (mm) {
1004 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1005 
1006 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1007 	}
1008 
1009 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1010 		return 0;
1011 error:
1012 	vm_unacct_memory(pages);
1013 
1014 	return -ENOMEM;
1015 }
1016 
1017 /**
1018  * get_cmdline() - copy the cmdline value to a buffer.
1019  * @task:     the task whose cmdline value to copy.
1020  * @buffer:   the buffer to copy to.
1021  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1022  *            to this length.
1023  *
1024  * Return: the size of the cmdline field copied. Note that the copy does
1025  * not guarantee an ending NULL byte.
1026  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)1027 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1028 {
1029 	int res = 0;
1030 	unsigned int len;
1031 	struct mm_struct *mm = get_task_mm(task);
1032 	unsigned long arg_start, arg_end, env_start, env_end;
1033 	if (!mm)
1034 		goto out;
1035 	if (!mm->arg_end)
1036 		goto out_mm;	/* Shh! No looking before we're done */
1037 
1038 	spin_lock(&mm->arg_lock);
1039 	arg_start = mm->arg_start;
1040 	arg_end = mm->arg_end;
1041 	env_start = mm->env_start;
1042 	env_end = mm->env_end;
1043 	spin_unlock(&mm->arg_lock);
1044 
1045 	len = arg_end - arg_start;
1046 
1047 	if (len > buflen)
1048 		len = buflen;
1049 
1050 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1051 
1052 	/*
1053 	 * If the nul at the end of args has been overwritten, then
1054 	 * assume application is using setproctitle(3).
1055 	 */
1056 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1057 		len = strnlen(buffer, res);
1058 		if (len < res) {
1059 			res = len;
1060 		} else {
1061 			len = env_end - env_start;
1062 			if (len > buflen - res)
1063 				len = buflen - res;
1064 			res += access_process_vm(task, env_start,
1065 						 buffer+res, len,
1066 						 FOLL_FORCE);
1067 			res = strnlen(buffer, res);
1068 		}
1069 	}
1070 out_mm:
1071 	mmput(mm);
1072 out:
1073 	return res;
1074 }
1075 
memcmp_pages(struct page * page1,struct page * page2)1076 int __weak memcmp_pages(struct page *page1, struct page *page2)
1077 {
1078 	char *addr1, *addr2;
1079 	int ret;
1080 
1081 	addr1 = kmap_atomic(page1);
1082 	addr2 = kmap_atomic(page2);
1083 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1084 	kunmap_atomic(addr2);
1085 	kunmap_atomic(addr1);
1086 	return ret;
1087 }
1088