• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 
40 #include <linux/debugfs.h>
41 #include <trace/events/kmem.h>
42 #include <trace/hooks/mm.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock
50  *   3. slab_lock(page) (Only on some arches and for debugging)
51  *
52  *   slab_mutex
53  *
54  *   The role of the slab_mutex is to protect the list of all the slabs
55  *   and to synchronize major metadata changes to slab cache structures.
56  *
57  *   The slab_lock is only used for debugging and on arches that do not
58  *   have the ability to do a cmpxchg_double. It only protects:
59  *	A. page->freelist	-> List of object free in a page
60  *	B. page->inuse		-> Number of objects in use
61  *	C. page->objects	-> Number of objects in page
62  *	D. page->frozen		-> frozen state
63  *
64  *   If a slab is frozen then it is exempt from list management. It is not
65  *   on any list except per cpu partial list. The processor that froze the
66  *   slab is the one who can perform list operations on the page. Other
67  *   processors may put objects onto the freelist but the processor that
68  *   froze the slab is the only one that can retrieve the objects from the
69  *   page's freelist.
70  *
71  *   The list_lock protects the partial and full list on each node and
72  *   the partial slab counter. If taken then no new slabs may be added or
73  *   removed from the lists nor make the number of partial slabs be modified.
74  *   (Note that the total number of slabs is an atomic value that may be
75  *   modified without taking the list lock).
76  *
77  *   The list_lock is a centralized lock and thus we avoid taking it as
78  *   much as possible. As long as SLUB does not have to handle partial
79  *   slabs, operations can continue without any centralized lock. F.e.
80  *   allocating a long series of objects that fill up slabs does not require
81  *   the list lock.
82  *   Interrupts are disabled during allocation and deallocation in order to
83  *   make the slab allocator safe to use in the context of an irq. In addition
84  *   interrupts are disabled to ensure that the processor does not change
85  *   while handling per_cpu slabs, due to kernel preemption.
86  *
87  * SLUB assigns one slab for allocation to each processor.
88  * Allocations only occur from these slabs called cpu slabs.
89  *
90  * Slabs with free elements are kept on a partial list and during regular
91  * operations no list for full slabs is used. If an object in a full slab is
92  * freed then the slab will show up again on the partial lists.
93  * We track full slabs for debugging purposes though because otherwise we
94  * cannot scan all objects.
95  *
96  * Slabs are freed when they become empty. Teardown and setup is
97  * minimal so we rely on the page allocators per cpu caches for
98  * fast frees and allocs.
99  *
100  * page->frozen		The slab is frozen and exempt from list processing.
101  * 			This means that the slab is dedicated to a purpose
102  * 			such as satisfying allocations for a specific
103  * 			processor. Objects may be freed in the slab while
104  * 			it is frozen but slab_free will then skip the usual
105  * 			list operations. It is up to the processor holding
106  * 			the slab to integrate the slab into the slab lists
107  * 			when the slab is no longer needed.
108  *
109  * 			One use of this flag is to mark slabs that are
110  * 			used for allocations. Then such a slab becomes a cpu
111  * 			slab. The cpu slab may be equipped with an additional
112  * 			freelist that allows lockless access to
113  * 			free objects in addition to the regular freelist
114  * 			that requires the slab lock.
115  *
116  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
117  * 			options set. This moves	slab handling out of
118  * 			the fast path and disables lockless freelists.
119  */
120 
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124 #else
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126 #endif
127 #endif
128 
kmem_cache_debug(struct kmem_cache * s)129 static inline bool kmem_cache_debug(struct kmem_cache *s)
130 {
131 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132 }
133 
fixup_red_left(struct kmem_cache * s,void * p)134 void *fixup_red_left(struct kmem_cache *s, void *p)
135 {
136 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 		p += s->red_left_pad;
138 
139 	return p;
140 }
141 
kmem_cache_has_cpu_partial(struct kmem_cache * s)142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143 {
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 	return !kmem_cache_debug(s);
146 #else
147 	return false;
148 #endif
149 }
150 
151 /*
152  * Issues still to be resolved:
153  *
154  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155  *
156  * - Variable sizing of the per node arrays
157  */
158 
159 /* Enable to test recovery from slab corruption on boot */
160 #undef SLUB_RESILIENCY_TEST
161 
162 /* Enable to log cmpxchg failures */
163 #undef SLUB_DEBUG_CMPXCHG
164 
165 /*
166  * Mininum number of partial slabs. These will be left on the partial
167  * lists even if they are empty. kmem_cache_shrink may reclaim them.
168  */
169 #define MIN_PARTIAL 5
170 
171 /*
172  * Maximum number of desirable partial slabs.
173  * The existence of more partial slabs makes kmem_cache_shrink
174  * sort the partial list by the number of objects in use.
175  */
176 #define MAX_PARTIAL 10
177 
178 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
179 				SLAB_POISON | SLAB_STORE_USER)
180 
181 /*
182  * These debug flags cannot use CMPXCHG because there might be consistency
183  * issues when checking or reading debug information
184  */
185 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
186 				SLAB_TRACE)
187 
188 
189 /*
190  * Debugging flags that require metadata to be stored in the slab.  These get
191  * disabled when slub_debug=O is used and a cache's min order increases with
192  * metadata.
193  */
194 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
195 
196 #define OO_SHIFT	16
197 #define OO_MASK		((1 << OO_SHIFT) - 1)
198 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
199 
200 /* Internal SLUB flags */
201 /* Poison object */
202 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
203 /* Use cmpxchg_double */
204 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
205 
206 #ifdef CONFIG_SYSFS
207 static int sysfs_slab_add(struct kmem_cache *);
208 static int sysfs_slab_alias(struct kmem_cache *, const char *);
209 #else
sysfs_slab_add(struct kmem_cache * s)210 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)211 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 							{ return 0; }
213 #endif
214 
215 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
216 static void debugfs_slab_add(struct kmem_cache *);
217 #else
debugfs_slab_add(struct kmem_cache * s)218 static inline void debugfs_slab_add(struct kmem_cache *s) { }
219 #endif
220 
stat(const struct kmem_cache * s,enum stat_item si)221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	/*
225 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 	 * avoid this_cpu_add()'s irq-disable overhead.
227 	 */
228 	raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231 
232 /********************************************************************
233  * 			Core slab cache functions
234  *******************************************************************/
235 
236 /*
237  * Returns freelist pointer (ptr). With hardening, this is obfuscated
238  * with an XOR of the address where the pointer is held and a per-cache
239  * random number.
240  */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)241 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
242 				 unsigned long ptr_addr)
243 {
244 #ifdef CONFIG_SLAB_FREELIST_HARDENED
245 	/*
246 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
247 	 * Normally, this doesn't cause any issues, as both set_freepointer()
248 	 * and get_freepointer() are called with a pointer with the same tag.
249 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
250 	 * example, when __free_slub() iterates over objects in a cache, it
251 	 * passes untagged pointers to check_object(). check_object() in turns
252 	 * calls get_freepointer() with an untagged pointer, which causes the
253 	 * freepointer to be restored incorrectly.
254 	 */
255 	return (void *)((unsigned long)ptr ^ s->random ^
256 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
257 #else
258 	return ptr;
259 #endif
260 }
261 
262 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)263 static inline void *freelist_dereference(const struct kmem_cache *s,
264 					 void *ptr_addr)
265 {
266 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
267 			    (unsigned long)ptr_addr);
268 }
269 
get_freepointer(struct kmem_cache * s,void * object)270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 {
272 	object = kasan_reset_tag(object);
273 	return freelist_dereference(s, object + s->offset);
274 }
275 
prefetch_freepointer(const struct kmem_cache * s,void * object)276 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
277 {
278 	prefetch(object + s->offset);
279 }
280 
get_freepointer_safe(struct kmem_cache * s,void * object)281 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
282 {
283 	unsigned long freepointer_addr;
284 	void *p;
285 
286 	if (!debug_pagealloc_enabled_static())
287 		return get_freepointer(s, object);
288 
289 	object = kasan_reset_tag(object);
290 	freepointer_addr = (unsigned long)object + s->offset;
291 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
292 	return freelist_ptr(s, p, freepointer_addr);
293 }
294 
set_freepointer(struct kmem_cache * s,void * object,void * fp)295 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
296 {
297 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
298 
299 #ifdef CONFIG_SLAB_FREELIST_HARDENED
300 	BUG_ON(object == fp); /* naive detection of double free or corruption */
301 #endif
302 
303 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
304 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
305 }
306 
307 /* Loop over all objects in a slab */
308 #define for_each_object(__p, __s, __addr, __objects) \
309 	for (__p = fixup_red_left(__s, __addr); \
310 		__p < (__addr) + (__objects) * (__s)->size; \
311 		__p += (__s)->size)
312 
order_objects(unsigned int order,unsigned int size)313 static inline unsigned int order_objects(unsigned int order, unsigned int size)
314 {
315 	return ((unsigned int)PAGE_SIZE << order) / size;
316 }
317 
oo_make(unsigned int order,unsigned int size)318 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
319 		unsigned int size)
320 {
321 	struct kmem_cache_order_objects x = {
322 		(order << OO_SHIFT) + order_objects(order, size)
323 	};
324 
325 	return x;
326 }
327 
oo_order(struct kmem_cache_order_objects x)328 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
329 {
330 	return x.x >> OO_SHIFT;
331 }
332 
oo_objects(struct kmem_cache_order_objects x)333 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
334 {
335 	return x.x & OO_MASK;
336 }
337 
338 /*
339  * Per slab locking using the pagelock
340  */
slab_lock(struct page * page)341 static __always_inline void slab_lock(struct page *page)
342 {
343 	VM_BUG_ON_PAGE(PageTail(page), page);
344 	bit_spin_lock(PG_locked, &page->flags);
345 }
346 
slab_unlock(struct page * page)347 static __always_inline void slab_unlock(struct page *page)
348 {
349 	VM_BUG_ON_PAGE(PageTail(page), page);
350 	__bit_spin_unlock(PG_locked, &page->flags);
351 }
352 
353 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)354 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
355 		void *freelist_old, unsigned long counters_old,
356 		void *freelist_new, unsigned long counters_new,
357 		const char *n)
358 {
359 	VM_BUG_ON(!irqs_disabled());
360 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
361     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
362 	if (s->flags & __CMPXCHG_DOUBLE) {
363 		if (cmpxchg_double(&page->freelist, &page->counters,
364 				   freelist_old, counters_old,
365 				   freelist_new, counters_new))
366 			return true;
367 	} else
368 #endif
369 	{
370 		slab_lock(page);
371 		if (page->freelist == freelist_old &&
372 					page->counters == counters_old) {
373 			page->freelist = freelist_new;
374 			page->counters = counters_new;
375 			slab_unlock(page);
376 			return true;
377 		}
378 		slab_unlock(page);
379 	}
380 
381 	cpu_relax();
382 	stat(s, CMPXCHG_DOUBLE_FAIL);
383 
384 #ifdef SLUB_DEBUG_CMPXCHG
385 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
386 #endif
387 
388 	return false;
389 }
390 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)391 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
392 		void *freelist_old, unsigned long counters_old,
393 		void *freelist_new, unsigned long counters_new,
394 		const char *n)
395 {
396 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
397     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
398 	if (s->flags & __CMPXCHG_DOUBLE) {
399 		if (cmpxchg_double(&page->freelist, &page->counters,
400 				   freelist_old, counters_old,
401 				   freelist_new, counters_new))
402 			return true;
403 	} else
404 #endif
405 	{
406 		unsigned long flags;
407 
408 		local_irq_save(flags);
409 		slab_lock(page);
410 		if (page->freelist == freelist_old &&
411 					page->counters == counters_old) {
412 			page->freelist = freelist_new;
413 			page->counters = counters_new;
414 			slab_unlock(page);
415 			local_irq_restore(flags);
416 			return true;
417 		}
418 		slab_unlock(page);
419 		local_irq_restore(flags);
420 	}
421 
422 	cpu_relax();
423 	stat(s, CMPXCHG_DOUBLE_FAIL);
424 
425 #ifdef SLUB_DEBUG_CMPXCHG
426 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
427 #endif
428 
429 	return false;
430 }
431 
432 #ifdef CONFIG_SLUB_DEBUG
433 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
434 static DEFINE_SPINLOCK(object_map_lock);
435 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct page * page)436 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
437 		       struct page *page)
438 {
439 	void *addr = page_address(page);
440 	void *p;
441 
442 	bitmap_zero(obj_map, page->objects);
443 
444 	for (p = page->freelist; p; p = get_freepointer(s, p))
445 		set_bit(__obj_to_index(s, addr, p), obj_map);
446 }
447 
448 /*
449  * Determine a map of object in use on a page.
450  *
451  * Node listlock must be held to guarantee that the page does
452  * not vanish from under us.
453  */
get_map(struct kmem_cache * s,struct page * page)454 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
455 	__acquires(&object_map_lock)
456 {
457 	VM_BUG_ON(!irqs_disabled());
458 
459 	spin_lock(&object_map_lock);
460 
461 	__fill_map(object_map, s, page);
462 
463 	return object_map;
464 }
465 
put_map(unsigned long * map)466 static void put_map(unsigned long *map) __releases(&object_map_lock)
467 {
468 	VM_BUG_ON(map != object_map);
469 	spin_unlock(&object_map_lock);
470 }
471 
size_from_object(struct kmem_cache * s)472 static inline unsigned int size_from_object(struct kmem_cache *s)
473 {
474 	if (s->flags & SLAB_RED_ZONE)
475 		return s->size - s->red_left_pad;
476 
477 	return s->size;
478 }
479 
restore_red_left(struct kmem_cache * s,void * p)480 static inline void *restore_red_left(struct kmem_cache *s, void *p)
481 {
482 	if (s->flags & SLAB_RED_ZONE)
483 		p -= s->red_left_pad;
484 
485 	return p;
486 }
487 
488 /*
489  * Debug settings:
490  */
491 #if defined(CONFIG_SLUB_DEBUG_ON)
492 slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
493 #else
494 slab_flags_t slub_debug;
495 #endif
496 
497 static char *slub_debug_string;
498 static int disable_higher_order_debug;
499 
500 /*
501  * slub is about to manipulate internal object metadata.  This memory lies
502  * outside the range of the allocated object, so accessing it would normally
503  * be reported by kasan as a bounds error.  metadata_access_enable() is used
504  * to tell kasan that these accesses are OK.
505  */
metadata_access_enable(void)506 static inline void metadata_access_enable(void)
507 {
508 	kasan_disable_current();
509 }
510 
metadata_access_disable(void)511 static inline void metadata_access_disable(void)
512 {
513 	kasan_enable_current();
514 }
515 
516 /*
517  * Object debugging
518  */
519 
520 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)521 static inline int check_valid_pointer(struct kmem_cache *s,
522 				struct page *page, void *object)
523 {
524 	void *base;
525 
526 	if (!object)
527 		return 1;
528 
529 	base = page_address(page);
530 	object = kasan_reset_tag(object);
531 	object = restore_red_left(s, object);
532 	if (object < base || object >= base + page->objects * s->size ||
533 		(object - base) % s->size) {
534 		return 0;
535 	}
536 
537 	return 1;
538 }
539 
print_section(char * level,char * text,u8 * addr,unsigned int length)540 static void print_section(char *level, char *text, u8 *addr,
541 			  unsigned int length)
542 {
543 	metadata_access_enable();
544 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
545 			16, 1, kasan_reset_tag((void *)addr), length, 1);
546 	metadata_access_disable();
547 }
548 
549 /*
550  * See comment in calculate_sizes().
551  */
freeptr_outside_object(struct kmem_cache * s)552 static inline bool freeptr_outside_object(struct kmem_cache *s)
553 {
554 	return s->offset >= s->inuse;
555 }
556 
557 /*
558  * Return offset of the end of info block which is inuse + free pointer if
559  * not overlapping with object.
560  */
get_info_end(struct kmem_cache * s)561 static inline unsigned int get_info_end(struct kmem_cache *s)
562 {
563 	if (freeptr_outside_object(s))
564 		return s->inuse + sizeof(void *);
565 	else
566 		return s->inuse;
567 }
568 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)569 static struct track *get_track(struct kmem_cache *s, void *object,
570 	enum track_item alloc)
571 {
572 	struct track *p;
573 
574 	p = object + get_info_end(s);
575 
576 	return kasan_reset_tag(p + alloc);
577 }
578 
579 /*
580  * This function will be used to loop through all the slab objects in
581  * a page to give track structure for each object, the function fn will
582  * be using this track structure and extract required info into its private
583  * data, the return value will be the number of track structures that are
584  * processed.
585  */
get_each_object_track(struct kmem_cache * s,struct page * page,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)586 unsigned long get_each_object_track(struct kmem_cache *s,
587 		struct page *page, enum track_item alloc,
588 		int (*fn)(const struct kmem_cache *, const void *,
589 		const struct track *, void *), void *private)
590 {
591 	void *p;
592 	struct track *t;
593 	int ret;
594 	unsigned long num_track = 0;
595 
596 	if (!slub_debug || !(s->flags & SLAB_STORE_USER))
597 		return 0;
598 
599 	slab_lock(page);
600 	for_each_object(p, s, page_address(page), page->objects) {
601 		t = get_track(s, p, alloc);
602 		metadata_access_enable();
603 		ret = fn(s, p, t, private);
604 		metadata_access_disable();
605 		if (ret < 0)
606 			break;
607 		num_track += 1;
608 	}
609 	slab_unlock(page);
610 	return num_track;
611 }
612 EXPORT_SYMBOL_GPL(get_each_object_track);
613 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)614 static void set_track(struct kmem_cache *s, void *object,
615 			enum track_item alloc, unsigned long addr)
616 {
617 	struct track *p = get_track(s, object, alloc);
618 
619 	if (addr) {
620 #ifdef CONFIG_STACKTRACE
621 		unsigned int nr_entries;
622 
623 		metadata_access_enable();
624 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 					      TRACK_ADDRS_COUNT, 3);
626 		metadata_access_disable();
627 
628 		if (nr_entries < TRACK_ADDRS_COUNT)
629 			p->addrs[nr_entries] = 0;
630 		trace_android_vh_save_track_hash(alloc == TRACK_ALLOC,
631 						(unsigned long)p);
632 #endif
633 		p->addr = addr;
634 		p->cpu = smp_processor_id();
635 		p->pid = current->pid;
636 		p->when = jiffies;
637 	} else {
638 		memset(p, 0, sizeof(struct track));
639 	}
640 }
641 
init_tracking(struct kmem_cache * s,void * object)642 static void init_tracking(struct kmem_cache *s, void *object)
643 {
644 	if (!(s->flags & SLAB_STORE_USER))
645 		return;
646 
647 	set_track(s, object, TRACK_FREE, 0UL);
648 	set_track(s, object, TRACK_ALLOC, 0UL);
649 }
650 
print_track(const char * s,struct track * t,unsigned long pr_time)651 static void print_track(const char *s, struct track *t, unsigned long pr_time)
652 {
653 	if (!t->addr)
654 		return;
655 
656 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
657 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
658 #ifdef CONFIG_STACKTRACE
659 	{
660 		int i;
661 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
662 			if (t->addrs[i])
663 				pr_err("\t%pS\n", (void *)t->addrs[i]);
664 			else
665 				break;
666 	}
667 #endif
668 }
669 
print_tracking(struct kmem_cache * s,void * object)670 void print_tracking(struct kmem_cache *s, void *object)
671 {
672 	unsigned long pr_time = jiffies;
673 	if (!(s->flags & SLAB_STORE_USER))
674 		return;
675 
676 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
677 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
678 }
679 
print_page_info(struct page * page)680 static void print_page_info(struct page *page)
681 {
682 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
683 	       page, page->objects, page->inuse, page->freelist, page->flags);
684 
685 }
686 
slab_bug(struct kmem_cache * s,char * fmt,...)687 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
688 {
689 	struct va_format vaf;
690 	va_list args;
691 
692 	va_start(args, fmt);
693 	vaf.fmt = fmt;
694 	vaf.va = &args;
695 	pr_err("=============================================================================\n");
696 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
697 	pr_err("-----------------------------------------------------------------------------\n\n");
698 	va_end(args);
699 }
700 
slab_fix(struct kmem_cache * s,char * fmt,...)701 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702 {
703 	struct va_format vaf;
704 	va_list args;
705 
706 	va_start(args, fmt);
707 	vaf.fmt = fmt;
708 	vaf.va = &args;
709 	pr_err("FIX %s: %pV\n", s->name, &vaf);
710 	va_end(args);
711 }
712 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)713 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
714 			       void **freelist, void *nextfree)
715 {
716 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
717 	    !check_valid_pointer(s, page, nextfree) && freelist) {
718 		object_err(s, page, *freelist, "Freechain corrupt");
719 		*freelist = NULL;
720 		slab_fix(s, "Isolate corrupted freechain");
721 		return true;
722 	}
723 
724 	return false;
725 }
726 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)727 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
728 {
729 	unsigned int off;	/* Offset of last byte */
730 	u8 *addr = page_address(page);
731 
732 	print_tracking(s, p);
733 
734 	print_page_info(page);
735 
736 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
737 	       p, p - addr, get_freepointer(s, p));
738 
739 	if (s->flags & SLAB_RED_ZONE)
740 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
741 			      s->red_left_pad);
742 	else if (p > addr + 16)
743 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
744 
745 	print_section(KERN_ERR,         "Object   ", p,
746 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
747 	if (s->flags & SLAB_RED_ZONE)
748 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
749 			s->inuse - s->object_size);
750 
751 	off = get_info_end(s);
752 
753 	if (s->flags & SLAB_STORE_USER)
754 		off += 2 * sizeof(struct track);
755 
756 	off += kasan_metadata_size(s);
757 
758 	if (off != size_from_object(s))
759 		/* Beginning of the filler is the free pointer */
760 		print_section(KERN_ERR, "Padding  ", p + off,
761 			      size_from_object(s) - off);
762 
763 	dump_stack();
764 }
765 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)766 void object_err(struct kmem_cache *s, struct page *page,
767 			u8 *object, char *reason)
768 {
769 	slab_bug(s, "%s", reason);
770 	print_trailer(s, page, object);
771 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
772 }
773 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)774 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
775 			const char *fmt, ...)
776 {
777 	va_list args;
778 	char buf[100];
779 
780 	va_start(args, fmt);
781 	vsnprintf(buf, sizeof(buf), fmt, args);
782 	va_end(args);
783 	slab_bug(s, "%s", buf);
784 	print_page_info(page);
785 	dump_stack();
786 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
787 }
788 
init_object(struct kmem_cache * s,void * object,u8 val)789 static void init_object(struct kmem_cache *s, void *object, u8 val)
790 {
791 	u8 *p = kasan_reset_tag(object);
792 
793 	if (s->flags & SLAB_RED_ZONE)
794 		memset(p - s->red_left_pad, val, s->red_left_pad);
795 
796 	if (s->flags & __OBJECT_POISON) {
797 		memset(p, POISON_FREE, s->object_size - 1);
798 		p[s->object_size - 1] = POISON_END;
799 	}
800 
801 	if (s->flags & SLAB_RED_ZONE)
802 		memset(p + s->object_size, val, s->inuse - s->object_size);
803 }
804 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)805 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
806 						void *from, void *to)
807 {
808 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
809 	memset(from, data, to - from);
810 }
811 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)812 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
813 			u8 *object, char *what,
814 			u8 *start, unsigned int value, unsigned int bytes)
815 {
816 	u8 *fault;
817 	u8 *end;
818 	u8 *addr = page_address(page);
819 
820 	metadata_access_enable();
821 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
822 	metadata_access_disable();
823 	if (!fault)
824 		return 1;
825 
826 	end = start + bytes;
827 	while (end > fault && end[-1] == value)
828 		end--;
829 
830 	slab_bug(s, "%s overwritten", what);
831 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
832 					fault, end - 1, fault - addr,
833 					fault[0], value);
834 	print_trailer(s, page, object);
835 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
836 
837 	restore_bytes(s, what, value, fault, end);
838 	return 0;
839 }
840 
841 /*
842  * Object layout:
843  *
844  * object address
845  * 	Bytes of the object to be managed.
846  * 	If the freepointer may overlay the object then the free
847  *	pointer is at the middle of the object.
848  *
849  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
850  * 	0xa5 (POISON_END)
851  *
852  * object + s->object_size
853  * 	Padding to reach word boundary. This is also used for Redzoning.
854  * 	Padding is extended by another word if Redzoning is enabled and
855  * 	object_size == inuse.
856  *
857  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
858  * 	0xcc (RED_ACTIVE) for objects in use.
859  *
860  * object + s->inuse
861  * 	Meta data starts here.
862  *
863  * 	A. Free pointer (if we cannot overwrite object on free)
864  * 	B. Tracking data for SLAB_STORE_USER
865  * 	C. Padding to reach required alignment boundary or at mininum
866  * 		one word if debugging is on to be able to detect writes
867  * 		before the word boundary.
868  *
869  *	Padding is done using 0x5a (POISON_INUSE)
870  *
871  * object + s->size
872  * 	Nothing is used beyond s->size.
873  *
874  * If slabcaches are merged then the object_size and inuse boundaries are mostly
875  * ignored. And therefore no slab options that rely on these boundaries
876  * may be used with merged slabcaches.
877  */
878 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)879 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
880 {
881 	unsigned long off = get_info_end(s);	/* The end of info */
882 
883 	if (s->flags & SLAB_STORE_USER)
884 		/* We also have user information there */
885 		off += 2 * sizeof(struct track);
886 
887 	off += kasan_metadata_size(s);
888 
889 	if (size_from_object(s) == off)
890 		return 1;
891 
892 	return check_bytes_and_report(s, page, p, "Object padding",
893 			p + off, POISON_INUSE, size_from_object(s) - off);
894 }
895 
896 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)897 static int slab_pad_check(struct kmem_cache *s, struct page *page)
898 {
899 	u8 *start;
900 	u8 *fault;
901 	u8 *end;
902 	u8 *pad;
903 	int length;
904 	int remainder;
905 
906 	if (!(s->flags & SLAB_POISON))
907 		return 1;
908 
909 	start = page_address(page);
910 	length = page_size(page);
911 	end = start + length;
912 	remainder = length % s->size;
913 	if (!remainder)
914 		return 1;
915 
916 	pad = end - remainder;
917 	metadata_access_enable();
918 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
919 	metadata_access_disable();
920 	if (!fault)
921 		return 1;
922 	while (end > fault && end[-1] == POISON_INUSE)
923 		end--;
924 
925 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
926 			fault, end - 1, fault - start);
927 	print_section(KERN_ERR, "Padding ", pad, remainder);
928 
929 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
930 	return 0;
931 }
932 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)933 static int check_object(struct kmem_cache *s, struct page *page,
934 					void *object, u8 val)
935 {
936 	u8 *p = object;
937 	u8 *endobject = object + s->object_size;
938 
939 	if (s->flags & SLAB_RED_ZONE) {
940 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
941 			object - s->red_left_pad, val, s->red_left_pad))
942 			return 0;
943 
944 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
945 			endobject, val, s->inuse - s->object_size))
946 			return 0;
947 	} else {
948 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
949 			check_bytes_and_report(s, page, p, "Alignment padding",
950 				endobject, POISON_INUSE,
951 				s->inuse - s->object_size);
952 		}
953 	}
954 
955 	if (s->flags & SLAB_POISON) {
956 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
957 			(!check_bytes_and_report(s, page, p, "Poison", p,
958 					POISON_FREE, s->object_size - 1) ||
959 			 !check_bytes_and_report(s, page, p, "End Poison",
960 				p + s->object_size - 1, POISON_END, 1)))
961 			return 0;
962 		/*
963 		 * check_pad_bytes cleans up on its own.
964 		 */
965 		check_pad_bytes(s, page, p);
966 	}
967 
968 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
969 		/*
970 		 * Object and freepointer overlap. Cannot check
971 		 * freepointer while object is allocated.
972 		 */
973 		return 1;
974 
975 	/* Check free pointer validity */
976 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
977 		object_err(s, page, p, "Freepointer corrupt");
978 		/*
979 		 * No choice but to zap it and thus lose the remainder
980 		 * of the free objects in this slab. May cause
981 		 * another error because the object count is now wrong.
982 		 */
983 		set_freepointer(s, p, NULL);
984 		return 0;
985 	}
986 	return 1;
987 }
988 
check_slab(struct kmem_cache * s,struct page * page)989 static int check_slab(struct kmem_cache *s, struct page *page)
990 {
991 	int maxobj;
992 
993 	VM_BUG_ON(!irqs_disabled());
994 
995 	if (!PageSlab(page)) {
996 		slab_err(s, page, "Not a valid slab page");
997 		return 0;
998 	}
999 
1000 	maxobj = order_objects(compound_order(page), s->size);
1001 	if (page->objects > maxobj) {
1002 		slab_err(s, page, "objects %u > max %u",
1003 			page->objects, maxobj);
1004 		return 0;
1005 	}
1006 	if (page->inuse > page->objects) {
1007 		slab_err(s, page, "inuse %u > max %u",
1008 			page->inuse, page->objects);
1009 		return 0;
1010 	}
1011 	/* Slab_pad_check fixes things up after itself */
1012 	slab_pad_check(s, page);
1013 	return 1;
1014 }
1015 
1016 /*
1017  * Determine if a certain object on a page is on the freelist. Must hold the
1018  * slab lock to guarantee that the chains are in a consistent state.
1019  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)1020 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1021 {
1022 	int nr = 0;
1023 	void *fp;
1024 	void *object = NULL;
1025 	int max_objects;
1026 
1027 	fp = page->freelist;
1028 	while (fp && nr <= page->objects) {
1029 		if (fp == search)
1030 			return 1;
1031 		if (!check_valid_pointer(s, page, fp)) {
1032 			if (object) {
1033 				object_err(s, page, object,
1034 					"Freechain corrupt");
1035 				set_freepointer(s, object, NULL);
1036 			} else {
1037 				slab_err(s, page, "Freepointer corrupt");
1038 				page->freelist = NULL;
1039 				page->inuse = page->objects;
1040 				slab_fix(s, "Freelist cleared");
1041 				return 0;
1042 			}
1043 			break;
1044 		}
1045 		object = fp;
1046 		fp = get_freepointer(s, object);
1047 		nr++;
1048 	}
1049 
1050 	max_objects = order_objects(compound_order(page), s->size);
1051 	if (max_objects > MAX_OBJS_PER_PAGE)
1052 		max_objects = MAX_OBJS_PER_PAGE;
1053 
1054 	if (page->objects != max_objects) {
1055 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1056 			 page->objects, max_objects);
1057 		page->objects = max_objects;
1058 		slab_fix(s, "Number of objects adjusted.");
1059 	}
1060 	if (page->inuse != page->objects - nr) {
1061 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1062 			 page->inuse, page->objects - nr);
1063 		page->inuse = page->objects - nr;
1064 		slab_fix(s, "Object count adjusted.");
1065 	}
1066 	return search == NULL;
1067 }
1068 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1069 static void trace(struct kmem_cache *s, struct page *page, void *object,
1070 								int alloc)
1071 {
1072 	if (s->flags & SLAB_TRACE) {
1073 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1074 			s->name,
1075 			alloc ? "alloc" : "free",
1076 			object, page->inuse,
1077 			page->freelist);
1078 
1079 		if (!alloc)
1080 			print_section(KERN_INFO, "Object ", (void *)object,
1081 					s->object_size);
1082 
1083 		dump_stack();
1084 	}
1085 }
1086 
1087 /*
1088  * Tracking of fully allocated slabs for debugging purposes.
1089  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1090 static void add_full(struct kmem_cache *s,
1091 	struct kmem_cache_node *n, struct page *page)
1092 {
1093 	if (!(s->flags & SLAB_STORE_USER))
1094 		return;
1095 
1096 	lockdep_assert_held(&n->list_lock);
1097 	list_add(&page->slab_list, &n->full);
1098 }
1099 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1100 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1101 {
1102 	if (!(s->flags & SLAB_STORE_USER))
1103 		return;
1104 
1105 	lockdep_assert_held(&n->list_lock);
1106 	list_del(&page->slab_list);
1107 }
1108 
1109 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1110 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1111 {
1112 	struct kmem_cache_node *n = get_node(s, node);
1113 
1114 	return atomic_long_read(&n->nr_slabs);
1115 }
1116 
node_nr_slabs(struct kmem_cache_node * n)1117 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1118 {
1119 	return atomic_long_read(&n->nr_slabs);
1120 }
1121 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1122 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1123 {
1124 	struct kmem_cache_node *n = get_node(s, node);
1125 
1126 	/*
1127 	 * May be called early in order to allocate a slab for the
1128 	 * kmem_cache_node structure. Solve the chicken-egg
1129 	 * dilemma by deferring the increment of the count during
1130 	 * bootstrap (see early_kmem_cache_node_alloc).
1131 	 */
1132 	if (likely(n)) {
1133 		atomic_long_inc(&n->nr_slabs);
1134 		atomic_long_add(objects, &n->total_objects);
1135 	}
1136 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1137 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1138 {
1139 	struct kmem_cache_node *n = get_node(s, node);
1140 
1141 	atomic_long_dec(&n->nr_slabs);
1142 	atomic_long_sub(objects, &n->total_objects);
1143 }
1144 
1145 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1146 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1147 								void *object)
1148 {
1149 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1150 		return;
1151 
1152 	init_object(s, object, SLUB_RED_INACTIVE);
1153 	init_tracking(s, object);
1154 }
1155 
1156 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1157 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1158 {
1159 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1160 		return;
1161 
1162 	metadata_access_enable();
1163 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1164 	metadata_access_disable();
1165 }
1166 
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1167 static inline int alloc_consistency_checks(struct kmem_cache *s,
1168 					struct page *page, void *object)
1169 {
1170 	if (!check_slab(s, page))
1171 		return 0;
1172 
1173 	if (!check_valid_pointer(s, page, object)) {
1174 		object_err(s, page, object, "Freelist Pointer check fails");
1175 		return 0;
1176 	}
1177 
1178 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1179 		return 0;
1180 
1181 	return 1;
1182 }
1183 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1184 static noinline int alloc_debug_processing(struct kmem_cache *s,
1185 					struct page *page,
1186 					void *object, unsigned long addr)
1187 {
1188 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1189 		if (!alloc_consistency_checks(s, page, object))
1190 			goto bad;
1191 	}
1192 
1193 	/* Success perform special debug activities for allocs */
1194 	if (s->flags & SLAB_STORE_USER)
1195 		set_track(s, object, TRACK_ALLOC, addr);
1196 	trace(s, page, object, 1);
1197 	init_object(s, object, SLUB_RED_ACTIVE);
1198 	return 1;
1199 
1200 bad:
1201 	if (PageSlab(page)) {
1202 		/*
1203 		 * If this is a slab page then lets do the best we can
1204 		 * to avoid issues in the future. Marking all objects
1205 		 * as used avoids touching the remaining objects.
1206 		 */
1207 		slab_fix(s, "Marking all objects used");
1208 		page->inuse = page->objects;
1209 		page->freelist = NULL;
1210 	}
1211 	return 0;
1212 }
1213 
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1214 static inline int free_consistency_checks(struct kmem_cache *s,
1215 		struct page *page, void *object, unsigned long addr)
1216 {
1217 	if (!check_valid_pointer(s, page, object)) {
1218 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1219 		return 0;
1220 	}
1221 
1222 	if (on_freelist(s, page, object)) {
1223 		object_err(s, page, object, "Object already free");
1224 		return 0;
1225 	}
1226 
1227 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1228 		return 0;
1229 
1230 	if (unlikely(s != page->slab_cache)) {
1231 		if (!PageSlab(page)) {
1232 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1233 				 object);
1234 		} else if (!page->slab_cache) {
1235 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1236 			       object);
1237 			dump_stack();
1238 		} else
1239 			object_err(s, page, object,
1240 					"page slab pointer corrupt.");
1241 		return 0;
1242 	}
1243 	return 1;
1244 }
1245 
1246 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1247 static noinline int free_debug_processing(
1248 	struct kmem_cache *s, struct page *page,
1249 	void *head, void *tail, int bulk_cnt,
1250 	unsigned long addr)
1251 {
1252 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1253 	void *object = head;
1254 	int cnt = 0;
1255 	unsigned long flags;
1256 	int ret = 0;
1257 
1258 	spin_lock_irqsave(&n->list_lock, flags);
1259 	slab_lock(page);
1260 
1261 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1262 		if (!check_slab(s, page))
1263 			goto out;
1264 	}
1265 
1266 next_object:
1267 	cnt++;
1268 
1269 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1270 		if (!free_consistency_checks(s, page, object, addr))
1271 			goto out;
1272 	}
1273 
1274 	if (s->flags & SLAB_STORE_USER)
1275 		set_track(s, object, TRACK_FREE, addr);
1276 	trace(s, page, object, 0);
1277 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1278 	init_object(s, object, SLUB_RED_INACTIVE);
1279 
1280 	/* Reached end of constructed freelist yet? */
1281 	if (object != tail) {
1282 		object = get_freepointer(s, object);
1283 		goto next_object;
1284 	}
1285 	ret = 1;
1286 
1287 out:
1288 	if (cnt != bulk_cnt)
1289 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1290 			 bulk_cnt, cnt);
1291 
1292 	slab_unlock(page);
1293 	spin_unlock_irqrestore(&n->list_lock, flags);
1294 	if (!ret)
1295 		slab_fix(s, "Object at 0x%p not freed", object);
1296 	return ret;
1297 }
1298 
1299 /*
1300  * Parse a block of slub_debug options. Blocks are delimited by ';'
1301  *
1302  * @str:    start of block
1303  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1304  * @slabs:  return start of list of slabs, or NULL when there's no list
1305  * @init:   assume this is initial parsing and not per-kmem-create parsing
1306  *
1307  * returns the start of next block if there's any, or NULL
1308  */
1309 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1310 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1311 {
1312 	bool higher_order_disable = false;
1313 
1314 	/* Skip any completely empty blocks */
1315 	while (*str && *str == ';')
1316 		str++;
1317 
1318 	if (*str == ',') {
1319 		/*
1320 		 * No options but restriction on slabs. This means full
1321 		 * debugging for slabs matching a pattern.
1322 		 */
1323 		*flags = DEBUG_DEFAULT_FLAGS;
1324 		goto check_slabs;
1325 	}
1326 	*flags = 0;
1327 
1328 	/* Determine which debug features should be switched on */
1329 	for (; *str && *str != ',' && *str != ';'; str++) {
1330 		switch (tolower(*str)) {
1331 		case '-':
1332 			*flags = 0;
1333 			break;
1334 		case 'f':
1335 			*flags |= SLAB_CONSISTENCY_CHECKS;
1336 			break;
1337 		case 'z':
1338 			*flags |= SLAB_RED_ZONE;
1339 			break;
1340 		case 'p':
1341 			*flags |= SLAB_POISON;
1342 			break;
1343 		case 'u':
1344 			*flags |= SLAB_STORE_USER;
1345 			break;
1346 		case 't':
1347 			*flags |= SLAB_TRACE;
1348 			break;
1349 		case 'a':
1350 			*flags |= SLAB_FAILSLAB;
1351 			break;
1352 		case 'o':
1353 			/*
1354 			 * Avoid enabling debugging on caches if its minimum
1355 			 * order would increase as a result.
1356 			 */
1357 			higher_order_disable = true;
1358 			break;
1359 		default:
1360 			if (init)
1361 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1362 		}
1363 	}
1364 check_slabs:
1365 	if (*str == ',')
1366 		*slabs = ++str;
1367 	else
1368 		*slabs = NULL;
1369 
1370 	/* Skip over the slab list */
1371 	while (*str && *str != ';')
1372 		str++;
1373 
1374 	/* Skip any completely empty blocks */
1375 	while (*str && *str == ';')
1376 		str++;
1377 
1378 	if (init && higher_order_disable)
1379 		disable_higher_order_debug = 1;
1380 
1381 	if (*str)
1382 		return str;
1383 	else
1384 		return NULL;
1385 }
1386 
setup_slub_debug(char * str)1387 static int __init setup_slub_debug(char *str)
1388 {
1389 	slab_flags_t flags;
1390 	slab_flags_t global_flags;
1391 	char *saved_str;
1392 	char *slab_list;
1393 	bool global_slub_debug_changed = false;
1394 	bool slab_list_specified = false;
1395 
1396 	global_flags = DEBUG_DEFAULT_FLAGS;
1397 	if (*str++ != '=' || !*str)
1398 		/*
1399 		 * No options specified. Switch on full debugging.
1400 		 */
1401 		goto out;
1402 
1403 	saved_str = str;
1404 	while (str) {
1405 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1406 
1407 		if (!slab_list) {
1408 			global_flags = flags;
1409 			global_slub_debug_changed = true;
1410 		} else {
1411 			slab_list_specified = true;
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * For backwards compatibility, a single list of flags with list of
1417 	 * slabs means debugging is only changed for those slabs, so the global
1418 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1419 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1420 	 * long as there is no option specifying flags without a slab list.
1421 	 */
1422 	if (slab_list_specified) {
1423 		if (!global_slub_debug_changed)
1424 			global_flags = slub_debug;
1425 		slub_debug_string = saved_str;
1426 	}
1427 out:
1428 	slub_debug = global_flags;
1429 	if (slub_debug != 0 || slub_debug_string)
1430 		static_branch_enable(&slub_debug_enabled);
1431 	if ((static_branch_unlikely(&init_on_alloc) ||
1432 	     static_branch_unlikely(&init_on_free)) &&
1433 	    (slub_debug & SLAB_POISON))
1434 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1435 	return 1;
1436 }
1437 
1438 __setup("slub_debug", setup_slub_debug);
1439 
1440 /*
1441  * kmem_cache_flags - apply debugging options to the cache
1442  * @object_size:	the size of an object without meta data
1443  * @flags:		flags to set
1444  * @name:		name of the cache
1445  *
1446  * Debug option(s) are applied to @flags. In addition to the debug
1447  * option(s), if a slab name (or multiple) is specified i.e.
1448  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1449  * then only the select slabs will receive the debug option(s).
1450  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1451 slab_flags_t kmem_cache_flags(unsigned int object_size,
1452 	slab_flags_t flags, const char *name)
1453 {
1454 	char *iter;
1455 	size_t len;
1456 	char *next_block;
1457 	slab_flags_t block_flags;
1458 
1459 	len = strlen(name);
1460 	next_block = slub_debug_string;
1461 	/* Go through all blocks of debug options, see if any matches our slab's name */
1462 	while (next_block) {
1463 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1464 		if (!iter)
1465 			continue;
1466 		/* Found a block that has a slab list, search it */
1467 		while (*iter) {
1468 			char *end, *glob;
1469 			size_t cmplen;
1470 
1471 			end = strchrnul(iter, ',');
1472 			if (next_block && next_block < end)
1473 				end = next_block - 1;
1474 
1475 			glob = strnchr(iter, end - iter, '*');
1476 			if (glob)
1477 				cmplen = glob - iter;
1478 			else
1479 				cmplen = max_t(size_t, len, (end - iter));
1480 
1481 			if (!strncmp(name, iter, cmplen)) {
1482 				flags |= block_flags;
1483 				return flags;
1484 			}
1485 
1486 			if (!*end || *end == ';')
1487 				break;
1488 			iter = end + 1;
1489 		}
1490 	}
1491 
1492 	return flags | slub_debug;
1493 }
1494 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1495 static inline void setup_object_debug(struct kmem_cache *s,
1496 			struct page *page, void *object) {}
1497 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1498 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1499 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1500 static inline int alloc_debug_processing(struct kmem_cache *s,
1501 	struct page *page, void *object, unsigned long addr) { return 0; }
1502 
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1503 static inline int free_debug_processing(
1504 	struct kmem_cache *s, struct page *page,
1505 	void *head, void *tail, int bulk_cnt,
1506 	unsigned long addr) { return 0; }
1507 
slab_pad_check(struct kmem_cache * s,struct page * page)1508 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1509 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1510 static inline int check_object(struct kmem_cache *s, struct page *page,
1511 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1512 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1513 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1514 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1515 					struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1516 slab_flags_t kmem_cache_flags(unsigned int object_size,
1517 	slab_flags_t flags, const char *name)
1518 {
1519 	return flags;
1520 }
1521 #define slub_debug 0
1522 
1523 #define disable_higher_order_debug 0
1524 
slabs_node(struct kmem_cache * s,int node)1525 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1526 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1527 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1528 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1529 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1530 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1531 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1532 							int objects) {}
1533 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1534 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1535 			       void **freelist, void *nextfree)
1536 {
1537 	return false;
1538 }
1539 #endif /* CONFIG_SLUB_DEBUG */
1540 
1541 /*
1542  * Hooks for other subsystems that check memory allocations. In a typical
1543  * production configuration these hooks all should produce no code at all.
1544  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1545 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1546 {
1547 	ptr = kasan_kmalloc_large(ptr, size, flags);
1548 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1549 	kmemleak_alloc(ptr, size, 1, flags);
1550 	return ptr;
1551 }
1552 
kfree_hook(void * x)1553 static __always_inline void kfree_hook(void *x)
1554 {
1555 	kmemleak_free(x);
1556 	kasan_kfree_large(x);
1557 }
1558 
slab_free_hook(struct kmem_cache * s,void * x,bool init)1559 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1560 						void *x, bool init)
1561 {
1562 	kmemleak_free_recursive(x, s->flags);
1563 
1564 	/*
1565 	 * Trouble is that we may no longer disable interrupts in the fast path
1566 	 * So in order to make the debug calls that expect irqs to be
1567 	 * disabled we need to disable interrupts temporarily.
1568 	 */
1569 #ifdef CONFIG_LOCKDEP
1570 	{
1571 		unsigned long flags;
1572 
1573 		local_irq_save(flags);
1574 		debug_check_no_locks_freed(x, s->object_size);
1575 		local_irq_restore(flags);
1576 	}
1577 #endif
1578 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1579 		debug_check_no_obj_freed(x, s->object_size);
1580 
1581 	/* Use KCSAN to help debug racy use-after-free. */
1582 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1583 		__kcsan_check_access(x, s->object_size,
1584 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1585 
1586 	/*
1587 	 * As memory initialization might be integrated into KASAN,
1588 	 * kasan_slab_free and initialization memset's must be
1589 	 * kept together to avoid discrepancies in behavior.
1590 	 *
1591 	 * The initialization memset's clear the object and the metadata,
1592 	 * but don't touch the SLAB redzone.
1593 	 */
1594 	if (init) {
1595 		int rsize;
1596 
1597 		if (!kasan_has_integrated_init())
1598 			memset(kasan_reset_tag(x), 0, s->object_size);
1599 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1600 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1601 		       s->size - s->inuse - rsize);
1602 	}
1603 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1604 	return kasan_slab_free(s, x, init);
1605 }
1606 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1607 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1608 					   void **head, void **tail,
1609 					   int *cnt)
1610 {
1611 
1612 	void *object;
1613 	void *next = *head;
1614 	void *old_tail = *tail ? *tail : *head;
1615 
1616 	if (is_kfence_address(next)) {
1617 		slab_free_hook(s, next, false);
1618 		return true;
1619 	}
1620 
1621 	/* Head and tail of the reconstructed freelist */
1622 	*head = NULL;
1623 	*tail = NULL;
1624 
1625 	do {
1626 		object = next;
1627 		next = get_freepointer(s, object);
1628 
1629 		/* If object's reuse doesn't have to be delayed */
1630 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1631 			/* Move object to the new freelist */
1632 			set_freepointer(s, object, *head);
1633 			*head = object;
1634 			if (!*tail)
1635 				*tail = object;
1636 		} else {
1637 			/*
1638 			 * Adjust the reconstructed freelist depth
1639 			 * accordingly if object's reuse is delayed.
1640 			 */
1641 			--(*cnt);
1642 		}
1643 	} while (object != old_tail);
1644 
1645 	if (*head == *tail)
1646 		*tail = NULL;
1647 
1648 	return *head != NULL;
1649 }
1650 
setup_object(struct kmem_cache * s,struct page * page,void * object)1651 static void *setup_object(struct kmem_cache *s, struct page *page,
1652 				void *object)
1653 {
1654 	setup_object_debug(s, page, object);
1655 	object = kasan_init_slab_obj(s, object);
1656 	if (unlikely(s->ctor)) {
1657 		kasan_unpoison_object_data(s, object);
1658 		s->ctor(object);
1659 		kasan_poison_object_data(s, object);
1660 	}
1661 	return object;
1662 }
1663 
1664 /*
1665  * Slab allocation and freeing
1666  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1667 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1668 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1669 {
1670 	struct page *page;
1671 	unsigned int order = oo_order(oo);
1672 
1673 	if (node == NUMA_NO_NODE)
1674 		page = alloc_pages(flags, order);
1675 	else
1676 		page = __alloc_pages_node(node, flags, order);
1677 
1678 	if (page)
1679 		account_slab_page(page, order, s);
1680 
1681 	return page;
1682 }
1683 
1684 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1685 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1686 static int init_cache_random_seq(struct kmem_cache *s)
1687 {
1688 	unsigned int count = oo_objects(s->oo);
1689 	int err;
1690 
1691 	/* Bailout if already initialised */
1692 	if (s->random_seq)
1693 		return 0;
1694 
1695 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1696 	if (err) {
1697 		pr_err("SLUB: Unable to initialize free list for %s\n",
1698 			s->name);
1699 		return err;
1700 	}
1701 
1702 	/* Transform to an offset on the set of pages */
1703 	if (s->random_seq) {
1704 		unsigned int i;
1705 
1706 		for (i = 0; i < count; i++)
1707 			s->random_seq[i] *= s->size;
1708 	}
1709 	return 0;
1710 }
1711 
1712 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1713 static void __init init_freelist_randomization(void)
1714 {
1715 	struct kmem_cache *s;
1716 
1717 	mutex_lock(&slab_mutex);
1718 
1719 	list_for_each_entry(s, &slab_caches, list)
1720 		init_cache_random_seq(s);
1721 
1722 	mutex_unlock(&slab_mutex);
1723 }
1724 
1725 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1726 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1727 				unsigned long *pos, void *start,
1728 				unsigned long page_limit,
1729 				unsigned long freelist_count)
1730 {
1731 	unsigned int idx;
1732 
1733 	/*
1734 	 * If the target page allocation failed, the number of objects on the
1735 	 * page might be smaller than the usual size defined by the cache.
1736 	 */
1737 	do {
1738 		idx = s->random_seq[*pos];
1739 		*pos += 1;
1740 		if (*pos >= freelist_count)
1741 			*pos = 0;
1742 	} while (unlikely(idx >= page_limit));
1743 
1744 	return (char *)start + idx;
1745 }
1746 
1747 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1748 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1749 {
1750 	void *start;
1751 	void *cur;
1752 	void *next;
1753 	unsigned long idx, pos, page_limit, freelist_count;
1754 
1755 	if (page->objects < 2 || !s->random_seq)
1756 		return false;
1757 
1758 	freelist_count = oo_objects(s->oo);
1759 	pos = get_random_int() % freelist_count;
1760 
1761 	page_limit = page->objects * s->size;
1762 	start = fixup_red_left(s, page_address(page));
1763 
1764 	/* First entry is used as the base of the freelist */
1765 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1766 				freelist_count);
1767 	cur = setup_object(s, page, cur);
1768 	page->freelist = cur;
1769 
1770 	for (idx = 1; idx < page->objects; idx++) {
1771 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1772 			freelist_count);
1773 		next = setup_object(s, page, next);
1774 		set_freepointer(s, cur, next);
1775 		cur = next;
1776 	}
1777 	set_freepointer(s, cur, NULL);
1778 
1779 	return true;
1780 }
1781 #else
init_cache_random_seq(struct kmem_cache * s)1782 static inline int init_cache_random_seq(struct kmem_cache *s)
1783 {
1784 	return 0;
1785 }
init_freelist_randomization(void)1786 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1787 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1788 {
1789 	return false;
1790 }
1791 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1792 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1793 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1794 {
1795 	struct page *page;
1796 	struct kmem_cache_order_objects oo = s->oo;
1797 	gfp_t alloc_gfp;
1798 	void *start, *p, *next;
1799 	int idx;
1800 	bool shuffle;
1801 
1802 	flags &= gfp_allowed_mask;
1803 
1804 	if (gfpflags_allow_blocking(flags))
1805 		local_irq_enable();
1806 
1807 	flags |= s->allocflags;
1808 
1809 	/*
1810 	 * Let the initial higher-order allocation fail under memory pressure
1811 	 * so we fall-back to the minimum order allocation.
1812 	 */
1813 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1814 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1815 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1816 
1817 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1818 	if (unlikely(!page)) {
1819 		oo = s->min;
1820 		alloc_gfp = flags;
1821 		/*
1822 		 * Allocation may have failed due to fragmentation.
1823 		 * Try a lower order alloc if possible
1824 		 */
1825 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1826 		if (unlikely(!page))
1827 			goto out;
1828 		stat(s, ORDER_FALLBACK);
1829 	}
1830 
1831 	page->objects = oo_objects(oo);
1832 
1833 	page->slab_cache = s;
1834 	__SetPageSlab(page);
1835 	if (page_is_pfmemalloc(page))
1836 		SetPageSlabPfmemalloc(page);
1837 
1838 	kasan_poison_slab(page);
1839 
1840 	start = page_address(page);
1841 
1842 	setup_page_debug(s, page, start);
1843 
1844 	shuffle = shuffle_freelist(s, page);
1845 
1846 	if (!shuffle) {
1847 		start = fixup_red_left(s, start);
1848 		start = setup_object(s, page, start);
1849 		page->freelist = start;
1850 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1851 			next = p + s->size;
1852 			next = setup_object(s, page, next);
1853 			set_freepointer(s, p, next);
1854 			p = next;
1855 		}
1856 		set_freepointer(s, p, NULL);
1857 	}
1858 
1859 	page->inuse = page->objects;
1860 	page->frozen = 1;
1861 
1862 out:
1863 	if (gfpflags_allow_blocking(flags))
1864 		local_irq_disable();
1865 	if (!page)
1866 		return NULL;
1867 
1868 	inc_slabs_node(s, page_to_nid(page), page->objects);
1869 
1870 	return page;
1871 }
1872 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1873 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1874 {
1875 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1876 		flags = kmalloc_fix_flags(flags);
1877 
1878 	return allocate_slab(s,
1879 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1880 }
1881 
__free_slab(struct kmem_cache * s,struct page * page)1882 static void __free_slab(struct kmem_cache *s, struct page *page)
1883 {
1884 	int order = compound_order(page);
1885 	int pages = 1 << order;
1886 
1887 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1888 		void *p;
1889 
1890 		slab_pad_check(s, page);
1891 		for_each_object(p, s, page_address(page),
1892 						page->objects)
1893 			check_object(s, page, p, SLUB_RED_INACTIVE);
1894 	}
1895 
1896 	__ClearPageSlabPfmemalloc(page);
1897 	__ClearPageSlab(page);
1898 
1899 	page->mapping = NULL;
1900 	if (current->reclaim_state)
1901 		current->reclaim_state->reclaimed_slab += pages;
1902 	unaccount_slab_page(page, order, s);
1903 	__free_pages(page, order);
1904 }
1905 
rcu_free_slab(struct rcu_head * h)1906 static void rcu_free_slab(struct rcu_head *h)
1907 {
1908 	struct page *page = container_of(h, struct page, rcu_head);
1909 
1910 	__free_slab(page->slab_cache, page);
1911 }
1912 
free_slab(struct kmem_cache * s,struct page * page)1913 static void free_slab(struct kmem_cache *s, struct page *page)
1914 {
1915 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1916 		call_rcu(&page->rcu_head, rcu_free_slab);
1917 	} else
1918 		__free_slab(s, page);
1919 }
1920 
discard_slab(struct kmem_cache * s,struct page * page)1921 static void discard_slab(struct kmem_cache *s, struct page *page)
1922 {
1923 	dec_slabs_node(s, page_to_nid(page), page->objects);
1924 	free_slab(s, page);
1925 }
1926 
1927 /*
1928  * Management of partially allocated slabs.
1929  */
1930 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1931 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1932 {
1933 	n->nr_partial++;
1934 	if (tail == DEACTIVATE_TO_TAIL)
1935 		list_add_tail(&page->slab_list, &n->partial);
1936 	else
1937 		list_add(&page->slab_list, &n->partial);
1938 }
1939 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1940 static inline void add_partial(struct kmem_cache_node *n,
1941 				struct page *page, int tail)
1942 {
1943 	lockdep_assert_held(&n->list_lock);
1944 	__add_partial(n, page, tail);
1945 }
1946 
remove_partial(struct kmem_cache_node * n,struct page * page)1947 static inline void remove_partial(struct kmem_cache_node *n,
1948 					struct page *page)
1949 {
1950 	lockdep_assert_held(&n->list_lock);
1951 	list_del(&page->slab_list);
1952 	n->nr_partial--;
1953 }
1954 
1955 /*
1956  * Remove slab from the partial list, freeze it and
1957  * return the pointer to the freelist.
1958  *
1959  * Returns a list of objects or NULL if it fails.
1960  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1961 static inline void *acquire_slab(struct kmem_cache *s,
1962 		struct kmem_cache_node *n, struct page *page,
1963 		int mode, int *objects)
1964 {
1965 	void *freelist;
1966 	unsigned long counters;
1967 	struct page new;
1968 
1969 	lockdep_assert_held(&n->list_lock);
1970 
1971 	/*
1972 	 * Zap the freelist and set the frozen bit.
1973 	 * The old freelist is the list of objects for the
1974 	 * per cpu allocation list.
1975 	 */
1976 	freelist = page->freelist;
1977 	counters = page->counters;
1978 	new.counters = counters;
1979 	*objects = new.objects - new.inuse;
1980 	if (mode) {
1981 		new.inuse = page->objects;
1982 		new.freelist = NULL;
1983 	} else {
1984 		new.freelist = freelist;
1985 	}
1986 
1987 	VM_BUG_ON(new.frozen);
1988 	new.frozen = 1;
1989 
1990 	if (!__cmpxchg_double_slab(s, page,
1991 			freelist, counters,
1992 			new.freelist, new.counters,
1993 			"acquire_slab"))
1994 		return NULL;
1995 
1996 	remove_partial(n, page);
1997 	WARN_ON(!freelist);
1998 	return freelist;
1999 }
2000 
2001 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2002 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2003 
2004 /*
2005  * Try to allocate a partial slab from a specific node.
2006  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)2007 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2008 				struct kmem_cache_cpu *c, gfp_t flags)
2009 {
2010 	struct page *page, *page2;
2011 	void *object = NULL;
2012 	unsigned int available = 0;
2013 	int objects;
2014 
2015 	/*
2016 	 * Racy check. If we mistakenly see no partial slabs then we
2017 	 * just allocate an empty slab. If we mistakenly try to get a
2018 	 * partial slab and there is none available then get_partial()
2019 	 * will return NULL.
2020 	 */
2021 	if (!n || !n->nr_partial)
2022 		return NULL;
2023 
2024 	spin_lock(&n->list_lock);
2025 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2026 		void *t;
2027 
2028 		if (!pfmemalloc_match(page, flags))
2029 			continue;
2030 
2031 		t = acquire_slab(s, n, page, object == NULL, &objects);
2032 		if (!t)
2033 			break;
2034 
2035 		available += objects;
2036 		if (!object) {
2037 			c->page = page;
2038 			stat(s, ALLOC_FROM_PARTIAL);
2039 			object = t;
2040 		} else {
2041 			put_cpu_partial(s, page, 0);
2042 			stat(s, CPU_PARTIAL_NODE);
2043 		}
2044 		if (!kmem_cache_has_cpu_partial(s)
2045 			|| available > slub_cpu_partial(s) / 2)
2046 			break;
2047 
2048 	}
2049 	spin_unlock(&n->list_lock);
2050 	return object;
2051 }
2052 
2053 /*
2054  * Get a page from somewhere. Search in increasing NUMA distances.
2055  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)2056 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2057 		struct kmem_cache_cpu *c)
2058 {
2059 #ifdef CONFIG_NUMA
2060 	struct zonelist *zonelist;
2061 	struct zoneref *z;
2062 	struct zone *zone;
2063 	enum zone_type highest_zoneidx = gfp_zone(flags);
2064 	void *object;
2065 	unsigned int cpuset_mems_cookie;
2066 
2067 	/*
2068 	 * The defrag ratio allows a configuration of the tradeoffs between
2069 	 * inter node defragmentation and node local allocations. A lower
2070 	 * defrag_ratio increases the tendency to do local allocations
2071 	 * instead of attempting to obtain partial slabs from other nodes.
2072 	 *
2073 	 * If the defrag_ratio is set to 0 then kmalloc() always
2074 	 * returns node local objects. If the ratio is higher then kmalloc()
2075 	 * may return off node objects because partial slabs are obtained
2076 	 * from other nodes and filled up.
2077 	 *
2078 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2079 	 * (which makes defrag_ratio = 1000) then every (well almost)
2080 	 * allocation will first attempt to defrag slab caches on other nodes.
2081 	 * This means scanning over all nodes to look for partial slabs which
2082 	 * may be expensive if we do it every time we are trying to find a slab
2083 	 * with available objects.
2084 	 */
2085 	if (!s->remote_node_defrag_ratio ||
2086 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2087 		return NULL;
2088 
2089 	do {
2090 		cpuset_mems_cookie = read_mems_allowed_begin();
2091 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2092 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2093 			struct kmem_cache_node *n;
2094 
2095 			n = get_node(s, zone_to_nid(zone));
2096 
2097 			if (n && cpuset_zone_allowed(zone, flags) &&
2098 					n->nr_partial > s->min_partial) {
2099 				object = get_partial_node(s, n, c, flags);
2100 				if (object) {
2101 					/*
2102 					 * Don't check read_mems_allowed_retry()
2103 					 * here - if mems_allowed was updated in
2104 					 * parallel, that was a harmless race
2105 					 * between allocation and the cpuset
2106 					 * update
2107 					 */
2108 					return object;
2109 				}
2110 			}
2111 		}
2112 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2113 #endif	/* CONFIG_NUMA */
2114 	return NULL;
2115 }
2116 
2117 /*
2118  * Get a partial page, lock it and return it.
2119  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)2120 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2121 		struct kmem_cache_cpu *c)
2122 {
2123 	void *object;
2124 	int searchnode = node;
2125 
2126 	if (node == NUMA_NO_NODE)
2127 		searchnode = numa_mem_id();
2128 
2129 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2130 	if (object || node != NUMA_NO_NODE)
2131 		return object;
2132 
2133 	return get_any_partial(s, flags, c);
2134 }
2135 
2136 #ifdef CONFIG_PREEMPTION
2137 /*
2138  * Calculate the next globally unique transaction for disambiguation
2139  * during cmpxchg. The transactions start with the cpu number and are then
2140  * incremented by CONFIG_NR_CPUS.
2141  */
2142 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2143 #else
2144 /*
2145  * No preemption supported therefore also no need to check for
2146  * different cpus.
2147  */
2148 #define TID_STEP 1
2149 #endif
2150 
next_tid(unsigned long tid)2151 static inline unsigned long next_tid(unsigned long tid)
2152 {
2153 	return tid + TID_STEP;
2154 }
2155 
2156 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2157 static inline unsigned int tid_to_cpu(unsigned long tid)
2158 {
2159 	return tid % TID_STEP;
2160 }
2161 
tid_to_event(unsigned long tid)2162 static inline unsigned long tid_to_event(unsigned long tid)
2163 {
2164 	return tid / TID_STEP;
2165 }
2166 #endif
2167 
init_tid(int cpu)2168 static inline unsigned int init_tid(int cpu)
2169 {
2170 	return cpu;
2171 }
2172 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2173 static inline void note_cmpxchg_failure(const char *n,
2174 		const struct kmem_cache *s, unsigned long tid)
2175 {
2176 #ifdef SLUB_DEBUG_CMPXCHG
2177 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2178 
2179 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2180 
2181 #ifdef CONFIG_PREEMPTION
2182 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2183 		pr_warn("due to cpu change %d -> %d\n",
2184 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2185 	else
2186 #endif
2187 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2188 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2189 			tid_to_event(tid), tid_to_event(actual_tid));
2190 	else
2191 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2192 			actual_tid, tid, next_tid(tid));
2193 #endif
2194 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2195 }
2196 
init_kmem_cache_cpus(struct kmem_cache * s)2197 static void init_kmem_cache_cpus(struct kmem_cache *s)
2198 {
2199 	int cpu;
2200 
2201 	for_each_possible_cpu(cpu)
2202 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2203 }
2204 
2205 /*
2206  * Remove the cpu slab
2207  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist,struct kmem_cache_cpu * c)2208 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2209 				void *freelist, struct kmem_cache_cpu *c)
2210 {
2211 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2212 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2213 	int lock = 0;
2214 	enum slab_modes l = M_NONE, m = M_NONE;
2215 	void *nextfree;
2216 	int tail = DEACTIVATE_TO_HEAD;
2217 	struct page new;
2218 	struct page old;
2219 
2220 	if (page->freelist) {
2221 		stat(s, DEACTIVATE_REMOTE_FREES);
2222 		tail = DEACTIVATE_TO_TAIL;
2223 	}
2224 
2225 	/*
2226 	 * Stage one: Free all available per cpu objects back
2227 	 * to the page freelist while it is still frozen. Leave the
2228 	 * last one.
2229 	 *
2230 	 * There is no need to take the list->lock because the page
2231 	 * is still frozen.
2232 	 */
2233 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2234 		void *prior;
2235 		unsigned long counters;
2236 
2237 		/*
2238 		 * If 'nextfree' is invalid, it is possible that the object at
2239 		 * 'freelist' is already corrupted.  So isolate all objects
2240 		 * starting at 'freelist'.
2241 		 */
2242 		if (freelist_corrupted(s, page, &freelist, nextfree))
2243 			break;
2244 
2245 		do {
2246 			prior = page->freelist;
2247 			counters = page->counters;
2248 			set_freepointer(s, freelist, prior);
2249 			new.counters = counters;
2250 			new.inuse--;
2251 			VM_BUG_ON(!new.frozen);
2252 
2253 		} while (!__cmpxchg_double_slab(s, page,
2254 			prior, counters,
2255 			freelist, new.counters,
2256 			"drain percpu freelist"));
2257 
2258 		freelist = nextfree;
2259 	}
2260 
2261 	/*
2262 	 * Stage two: Ensure that the page is unfrozen while the
2263 	 * list presence reflects the actual number of objects
2264 	 * during unfreeze.
2265 	 *
2266 	 * We setup the list membership and then perform a cmpxchg
2267 	 * with the count. If there is a mismatch then the page
2268 	 * is not unfrozen but the page is on the wrong list.
2269 	 *
2270 	 * Then we restart the process which may have to remove
2271 	 * the page from the list that we just put it on again
2272 	 * because the number of objects in the slab may have
2273 	 * changed.
2274 	 */
2275 redo:
2276 
2277 	old.freelist = page->freelist;
2278 	old.counters = page->counters;
2279 	VM_BUG_ON(!old.frozen);
2280 
2281 	/* Determine target state of the slab */
2282 	new.counters = old.counters;
2283 	if (freelist) {
2284 		new.inuse--;
2285 		set_freepointer(s, freelist, old.freelist);
2286 		new.freelist = freelist;
2287 	} else
2288 		new.freelist = old.freelist;
2289 
2290 	new.frozen = 0;
2291 
2292 	if (!new.inuse && n->nr_partial >= s->min_partial)
2293 		m = M_FREE;
2294 	else if (new.freelist) {
2295 		m = M_PARTIAL;
2296 		if (!lock) {
2297 			lock = 1;
2298 			/*
2299 			 * Taking the spinlock removes the possibility
2300 			 * that acquire_slab() will see a slab page that
2301 			 * is frozen
2302 			 */
2303 			spin_lock(&n->list_lock);
2304 		}
2305 	} else {
2306 		m = M_FULL;
2307 #ifdef CONFIG_SLUB_DEBUG
2308 		if ((s->flags & SLAB_STORE_USER) && !lock) {
2309 			lock = 1;
2310 			/*
2311 			 * This also ensures that the scanning of full
2312 			 * slabs from diagnostic functions will not see
2313 			 * any frozen slabs.
2314 			 */
2315 			spin_lock(&n->list_lock);
2316 		}
2317 #endif
2318 	}
2319 
2320 	if (l != m) {
2321 		if (l == M_PARTIAL)
2322 			remove_partial(n, page);
2323 		else if (l == M_FULL)
2324 			remove_full(s, n, page);
2325 
2326 		if (m == M_PARTIAL)
2327 			add_partial(n, page, tail);
2328 		else if (m == M_FULL)
2329 			add_full(s, n, page);
2330 	}
2331 
2332 	l = m;
2333 	if (!__cmpxchg_double_slab(s, page,
2334 				old.freelist, old.counters,
2335 				new.freelist, new.counters,
2336 				"unfreezing slab"))
2337 		goto redo;
2338 
2339 	if (lock)
2340 		spin_unlock(&n->list_lock);
2341 
2342 	if (m == M_PARTIAL)
2343 		stat(s, tail);
2344 	else if (m == M_FULL)
2345 		stat(s, DEACTIVATE_FULL);
2346 	else if (m == M_FREE) {
2347 		stat(s, DEACTIVATE_EMPTY);
2348 		discard_slab(s, page);
2349 		stat(s, FREE_SLAB);
2350 	}
2351 
2352 	c->page = NULL;
2353 	c->freelist = NULL;
2354 	c->tid = next_tid(c->tid);
2355 }
2356 
2357 /*
2358  * Unfreeze all the cpu partial slabs.
2359  *
2360  * This function must be called with interrupts disabled
2361  * for the cpu using c (or some other guarantee must be there
2362  * to guarantee no concurrent accesses).
2363  */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)2364 static void unfreeze_partials(struct kmem_cache *s,
2365 		struct kmem_cache_cpu *c)
2366 {
2367 #ifdef CONFIG_SLUB_CPU_PARTIAL
2368 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2369 	struct page *page, *discard_page = NULL;
2370 
2371 	while ((page = slub_percpu_partial(c))) {
2372 		struct page new;
2373 		struct page old;
2374 
2375 		slub_set_percpu_partial(c, page);
2376 
2377 		n2 = get_node(s, page_to_nid(page));
2378 		if (n != n2) {
2379 			if (n)
2380 				spin_unlock(&n->list_lock);
2381 
2382 			n = n2;
2383 			spin_lock(&n->list_lock);
2384 		}
2385 
2386 		do {
2387 
2388 			old.freelist = page->freelist;
2389 			old.counters = page->counters;
2390 			VM_BUG_ON(!old.frozen);
2391 
2392 			new.counters = old.counters;
2393 			new.freelist = old.freelist;
2394 
2395 			new.frozen = 0;
2396 
2397 		} while (!__cmpxchg_double_slab(s, page,
2398 				old.freelist, old.counters,
2399 				new.freelist, new.counters,
2400 				"unfreezing slab"));
2401 
2402 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2403 			page->next = discard_page;
2404 			discard_page = page;
2405 		} else {
2406 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2407 			stat(s, FREE_ADD_PARTIAL);
2408 		}
2409 	}
2410 
2411 	if (n)
2412 		spin_unlock(&n->list_lock);
2413 
2414 	while (discard_page) {
2415 		page = discard_page;
2416 		discard_page = discard_page->next;
2417 
2418 		stat(s, DEACTIVATE_EMPTY);
2419 		discard_slab(s, page);
2420 		stat(s, FREE_SLAB);
2421 	}
2422 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2423 }
2424 
2425 /*
2426  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2427  * partial page slot if available.
2428  *
2429  * If we did not find a slot then simply move all the partials to the
2430  * per node partial list.
2431  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2432 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2433 {
2434 #ifdef CONFIG_SLUB_CPU_PARTIAL
2435 	struct page *oldpage;
2436 	int pages;
2437 	int pobjects;
2438 
2439 	preempt_disable();
2440 	do {
2441 		pages = 0;
2442 		pobjects = 0;
2443 		oldpage = this_cpu_read(s->cpu_slab->partial);
2444 
2445 		if (oldpage) {
2446 			pobjects = oldpage->pobjects;
2447 			pages = oldpage->pages;
2448 			if (drain && pobjects > slub_cpu_partial(s)) {
2449 				unsigned long flags;
2450 				/*
2451 				 * partial array is full. Move the existing
2452 				 * set to the per node partial list.
2453 				 */
2454 				local_irq_save(flags);
2455 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2456 				local_irq_restore(flags);
2457 				oldpage = NULL;
2458 				pobjects = 0;
2459 				pages = 0;
2460 				stat(s, CPU_PARTIAL_DRAIN);
2461 			}
2462 		}
2463 
2464 		pages++;
2465 		pobjects += page->objects - page->inuse;
2466 
2467 		page->pages = pages;
2468 		page->pobjects = pobjects;
2469 		page->next = oldpage;
2470 
2471 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2472 								!= oldpage);
2473 	if (unlikely(!slub_cpu_partial(s))) {
2474 		unsigned long flags;
2475 
2476 		local_irq_save(flags);
2477 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2478 		local_irq_restore(flags);
2479 	}
2480 	preempt_enable();
2481 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2482 }
2483 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2484 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2485 {
2486 	stat(s, CPUSLAB_FLUSH);
2487 	deactivate_slab(s, c->page, c->freelist, c);
2488 }
2489 
2490 /*
2491  * Flush cpu slab.
2492  *
2493  * Called from IPI handler with interrupts disabled.
2494  */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2495 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2496 {
2497 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2498 
2499 	if (c->page)
2500 		flush_slab(s, c);
2501 
2502 	unfreeze_partials(s, c);
2503 }
2504 
flush_cpu_slab(void * d)2505 static void flush_cpu_slab(void *d)
2506 {
2507 	struct kmem_cache *s = d;
2508 
2509 	__flush_cpu_slab(s, smp_processor_id());
2510 }
2511 
has_cpu_slab(int cpu,void * info)2512 static bool has_cpu_slab(int cpu, void *info)
2513 {
2514 	struct kmem_cache *s = info;
2515 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2516 
2517 	return c->page || slub_percpu_partial(c);
2518 }
2519 
flush_all(struct kmem_cache * s)2520 static void flush_all(struct kmem_cache *s)
2521 {
2522 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2523 }
2524 
2525 /*
2526  * Use the cpu notifier to insure that the cpu slabs are flushed when
2527  * necessary.
2528  */
slub_cpu_dead(unsigned int cpu)2529 static int slub_cpu_dead(unsigned int cpu)
2530 {
2531 	struct kmem_cache *s;
2532 	unsigned long flags;
2533 
2534 	mutex_lock(&slab_mutex);
2535 	list_for_each_entry(s, &slab_caches, list) {
2536 		local_irq_save(flags);
2537 		__flush_cpu_slab(s, cpu);
2538 		local_irq_restore(flags);
2539 	}
2540 	mutex_unlock(&slab_mutex);
2541 	return 0;
2542 }
2543 
2544 /*
2545  * Check if the objects in a per cpu structure fit numa
2546  * locality expectations.
2547  */
node_match(struct page * page,int node)2548 static inline int node_match(struct page *page, int node)
2549 {
2550 #ifdef CONFIG_NUMA
2551 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2552 		return 0;
2553 #endif
2554 	return 1;
2555 }
2556 
2557 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2558 static int count_free(struct page *page)
2559 {
2560 	return page->objects - page->inuse;
2561 }
2562 
node_nr_objs(struct kmem_cache_node * n)2563 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2564 {
2565 	return atomic_long_read(&n->total_objects);
2566 }
2567 #endif /* CONFIG_SLUB_DEBUG */
2568 
2569 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2570 static unsigned long count_partial(struct kmem_cache_node *n,
2571 					int (*get_count)(struct page *))
2572 {
2573 	unsigned long flags;
2574 	unsigned long x = 0;
2575 	struct page *page;
2576 
2577 	spin_lock_irqsave(&n->list_lock, flags);
2578 	list_for_each_entry(page, &n->partial, slab_list)
2579 		x += get_count(page);
2580 	spin_unlock_irqrestore(&n->list_lock, flags);
2581 	return x;
2582 }
2583 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2584 
2585 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2586 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2587 {
2588 #ifdef CONFIG_SLUB_DEBUG
2589 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2590 				      DEFAULT_RATELIMIT_BURST);
2591 	int node;
2592 	struct kmem_cache_node *n;
2593 
2594 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2595 		return;
2596 
2597 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2598 		nid, gfpflags, &gfpflags);
2599 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2600 		s->name, s->object_size, s->size, oo_order(s->oo),
2601 		oo_order(s->min));
2602 
2603 	if (oo_order(s->min) > get_order(s->object_size))
2604 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2605 			s->name);
2606 
2607 	for_each_kmem_cache_node(s, node, n) {
2608 		unsigned long nr_slabs;
2609 		unsigned long nr_objs;
2610 		unsigned long nr_free;
2611 
2612 		nr_free  = count_partial(n, count_free);
2613 		nr_slabs = node_nr_slabs(n);
2614 		nr_objs  = node_nr_objs(n);
2615 
2616 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2617 			node, nr_slabs, nr_objs, nr_free);
2618 	}
2619 #endif
2620 }
2621 
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2622 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2623 			int node, struct kmem_cache_cpu **pc)
2624 {
2625 	void *freelist;
2626 	struct kmem_cache_cpu *c = *pc;
2627 	struct page *page;
2628 
2629 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2630 
2631 	freelist = get_partial(s, flags, node, c);
2632 
2633 	if (freelist)
2634 		return freelist;
2635 
2636 	page = new_slab(s, flags, node);
2637 	if (page) {
2638 		c = raw_cpu_ptr(s->cpu_slab);
2639 		if (c->page)
2640 			flush_slab(s, c);
2641 
2642 		/*
2643 		 * No other reference to the page yet so we can
2644 		 * muck around with it freely without cmpxchg
2645 		 */
2646 		freelist = page->freelist;
2647 		page->freelist = NULL;
2648 
2649 		stat(s, ALLOC_SLAB);
2650 		c->page = page;
2651 		*pc = c;
2652 	}
2653 
2654 	return freelist;
2655 }
2656 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2657 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2658 {
2659 	if (unlikely(PageSlabPfmemalloc(page)))
2660 		return gfp_pfmemalloc_allowed(gfpflags);
2661 
2662 	return true;
2663 }
2664 
2665 /*
2666  * Check the page->freelist of a page and either transfer the freelist to the
2667  * per cpu freelist or deactivate the page.
2668  *
2669  * The page is still frozen if the return value is not NULL.
2670  *
2671  * If this function returns NULL then the page has been unfrozen.
2672  *
2673  * This function must be called with interrupt disabled.
2674  */
get_freelist(struct kmem_cache * s,struct page * page)2675 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2676 {
2677 	struct page new;
2678 	unsigned long counters;
2679 	void *freelist;
2680 
2681 	do {
2682 		freelist = page->freelist;
2683 		counters = page->counters;
2684 
2685 		new.counters = counters;
2686 		VM_BUG_ON(!new.frozen);
2687 
2688 		new.inuse = page->objects;
2689 		new.frozen = freelist != NULL;
2690 
2691 	} while (!__cmpxchg_double_slab(s, page,
2692 		freelist, counters,
2693 		NULL, new.counters,
2694 		"get_freelist"));
2695 
2696 	return freelist;
2697 }
2698 
2699 /*
2700  * Slow path. The lockless freelist is empty or we need to perform
2701  * debugging duties.
2702  *
2703  * Processing is still very fast if new objects have been freed to the
2704  * regular freelist. In that case we simply take over the regular freelist
2705  * as the lockless freelist and zap the regular freelist.
2706  *
2707  * If that is not working then we fall back to the partial lists. We take the
2708  * first element of the freelist as the object to allocate now and move the
2709  * rest of the freelist to the lockless freelist.
2710  *
2711  * And if we were unable to get a new slab from the partial slab lists then
2712  * we need to allocate a new slab. This is the slowest path since it involves
2713  * a call to the page allocator and the setup of a new slab.
2714  *
2715  * Version of __slab_alloc to use when we know that interrupts are
2716  * already disabled (which is the case for bulk allocation).
2717  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2718 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2719 			  unsigned long addr, struct kmem_cache_cpu *c)
2720 {
2721 	void *freelist;
2722 	struct page *page;
2723 
2724 	stat(s, ALLOC_SLOWPATH);
2725 
2726 	page = c->page;
2727 	if (!page) {
2728 		/*
2729 		 * if the node is not online or has no normal memory, just
2730 		 * ignore the node constraint
2731 		 */
2732 		if (unlikely(node != NUMA_NO_NODE &&
2733 			     !node_state(node, N_NORMAL_MEMORY)))
2734 			node = NUMA_NO_NODE;
2735 		goto new_slab;
2736 	}
2737 redo:
2738 
2739 	if (unlikely(!node_match(page, node))) {
2740 		/*
2741 		 * same as above but node_match() being false already
2742 		 * implies node != NUMA_NO_NODE
2743 		 */
2744 		if (!node_state(node, N_NORMAL_MEMORY)) {
2745 			node = NUMA_NO_NODE;
2746 			goto redo;
2747 		} else {
2748 			stat(s, ALLOC_NODE_MISMATCH);
2749 			deactivate_slab(s, page, c->freelist, c);
2750 			goto new_slab;
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * By rights, we should be searching for a slab page that was
2756 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2757 	 * information when the page leaves the per-cpu allocator
2758 	 */
2759 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2760 		deactivate_slab(s, page, c->freelist, c);
2761 		goto new_slab;
2762 	}
2763 
2764 	/* must check again c->freelist in case of cpu migration or IRQ */
2765 	freelist = c->freelist;
2766 	if (freelist)
2767 		goto load_freelist;
2768 
2769 	freelist = get_freelist(s, page);
2770 
2771 	if (!freelist) {
2772 		c->page = NULL;
2773 		c->tid = next_tid(c->tid);
2774 		stat(s, DEACTIVATE_BYPASS);
2775 		goto new_slab;
2776 	}
2777 
2778 	stat(s, ALLOC_REFILL);
2779 
2780 load_freelist:
2781 	/*
2782 	 * freelist is pointing to the list of objects to be used.
2783 	 * page is pointing to the page from which the objects are obtained.
2784 	 * That page must be frozen for per cpu allocations to work.
2785 	 */
2786 	VM_BUG_ON(!c->page->frozen);
2787 	c->freelist = get_freepointer(s, freelist);
2788 	c->tid = next_tid(c->tid);
2789 	return freelist;
2790 
2791 new_slab:
2792 
2793 	if (slub_percpu_partial(c)) {
2794 		page = c->page = slub_percpu_partial(c);
2795 		slub_set_percpu_partial(c, page);
2796 		stat(s, CPU_PARTIAL_ALLOC);
2797 		goto redo;
2798 	}
2799 
2800 	freelist = new_slab_objects(s, gfpflags, node, &c);
2801 
2802 	if (unlikely(!freelist)) {
2803 		slab_out_of_memory(s, gfpflags, node);
2804 		return NULL;
2805 	}
2806 
2807 	page = c->page;
2808 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2809 		goto load_freelist;
2810 
2811 	/* Only entered in the debug case */
2812 	if (kmem_cache_debug(s) &&
2813 			!alloc_debug_processing(s, page, freelist, addr))
2814 		goto new_slab;	/* Slab failed checks. Next slab needed */
2815 
2816 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2817 	return freelist;
2818 }
2819 
2820 /*
2821  * Another one that disabled interrupt and compensates for possible
2822  * cpu changes by refetching the per cpu area pointer.
2823  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2824 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2825 			  unsigned long addr, struct kmem_cache_cpu *c)
2826 {
2827 	void *p;
2828 	unsigned long flags;
2829 
2830 	local_irq_save(flags);
2831 #ifdef CONFIG_PREEMPTION
2832 	/*
2833 	 * We may have been preempted and rescheduled on a different
2834 	 * cpu before disabling interrupts. Need to reload cpu area
2835 	 * pointer.
2836 	 */
2837 	c = this_cpu_ptr(s->cpu_slab);
2838 #endif
2839 
2840 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2841 	local_irq_restore(flags);
2842 	return p;
2843 }
2844 
2845 /*
2846  * If the object has been wiped upon free, make sure it's fully initialized by
2847  * zeroing out freelist pointer.
2848  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)2849 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2850 						   void *obj)
2851 {
2852 	if (unlikely(slab_want_init_on_free(s)) && obj)
2853 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2854 			0, sizeof(void *));
2855 }
2856 
2857 /*
2858  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2859  * have the fastpath folded into their functions. So no function call
2860  * overhead for requests that can be satisfied on the fastpath.
2861  *
2862  * The fastpath works by first checking if the lockless freelist can be used.
2863  * If not then __slab_alloc is called for slow processing.
2864  *
2865  * Otherwise we can simply pick the next object from the lockless free list.
2866  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)2867 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2868 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2869 {
2870 	void *object;
2871 	struct kmem_cache_cpu *c;
2872 	struct page *page;
2873 	unsigned long tid;
2874 	struct obj_cgroup *objcg = NULL;
2875 	bool init = false;
2876 
2877 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2878 	if (!s)
2879 		return NULL;
2880 
2881 	object = kfence_alloc(s, orig_size, gfpflags);
2882 	if (unlikely(object))
2883 		goto out;
2884 
2885 redo:
2886 	/*
2887 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2888 	 * enabled. We may switch back and forth between cpus while
2889 	 * reading from one cpu area. That does not matter as long
2890 	 * as we end up on the original cpu again when doing the cmpxchg.
2891 	 *
2892 	 * We should guarantee that tid and kmem_cache are retrieved on
2893 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2894 	 * to check if it is matched or not.
2895 	 */
2896 	do {
2897 		tid = this_cpu_read(s->cpu_slab->tid);
2898 		c = raw_cpu_ptr(s->cpu_slab);
2899 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2900 		 unlikely(tid != READ_ONCE(c->tid)));
2901 
2902 	/*
2903 	 * Irqless object alloc/free algorithm used here depends on sequence
2904 	 * of fetching cpu_slab's data. tid should be fetched before anything
2905 	 * on c to guarantee that object and page associated with previous tid
2906 	 * won't be used with current tid. If we fetch tid first, object and
2907 	 * page could be one associated with next tid and our alloc/free
2908 	 * request will be failed. In this case, we will retry. So, no problem.
2909 	 */
2910 	barrier();
2911 
2912 	/*
2913 	 * The transaction ids are globally unique per cpu and per operation on
2914 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2915 	 * occurs on the right processor and that there was no operation on the
2916 	 * linked list in between.
2917 	 */
2918 
2919 	object = c->freelist;
2920 	page = c->page;
2921 	if (unlikely(!object || !page || !node_match(page, node))) {
2922 		object = __slab_alloc(s, gfpflags, node, addr, c);
2923 	} else {
2924 		void *next_object = get_freepointer_safe(s, object);
2925 
2926 		/*
2927 		 * The cmpxchg will only match if there was no additional
2928 		 * operation and if we are on the right processor.
2929 		 *
2930 		 * The cmpxchg does the following atomically (without lock
2931 		 * semantics!)
2932 		 * 1. Relocate first pointer to the current per cpu area.
2933 		 * 2. Verify that tid and freelist have not been changed
2934 		 * 3. If they were not changed replace tid and freelist
2935 		 *
2936 		 * Since this is without lock semantics the protection is only
2937 		 * against code executing on this cpu *not* from access by
2938 		 * other cpus.
2939 		 */
2940 		if (unlikely(!this_cpu_cmpxchg_double(
2941 				s->cpu_slab->freelist, s->cpu_slab->tid,
2942 				object, tid,
2943 				next_object, next_tid(tid)))) {
2944 
2945 			note_cmpxchg_failure("slab_alloc", s, tid);
2946 			goto redo;
2947 		}
2948 		prefetch_freepointer(s, next_object);
2949 		stat(s, ALLOC_FASTPATH);
2950 	}
2951 
2952 	maybe_wipe_obj_freeptr(s, object);
2953 	init = slab_want_init_on_alloc(gfpflags, s);
2954 
2955 out:
2956 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2957 
2958 	return object;
2959 }
2960 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr,size_t orig_size)2961 static __always_inline void *slab_alloc(struct kmem_cache *s,
2962 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
2963 {
2964 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2965 }
2966 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2967 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2968 {
2969 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2970 
2971 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2972 				s->size, gfpflags);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL(kmem_cache_alloc);
2977 
2978 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2979 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2980 {
2981 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2982 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2983 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2987 #endif
2988 
2989 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2990 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2991 {
2992 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2993 
2994 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2995 				    s->object_size, s->size, gfpflags, node);
2996 
2997 	return ret;
2998 }
2999 EXPORT_SYMBOL(kmem_cache_alloc_node);
3000 
3001 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)3002 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3003 				    gfp_t gfpflags,
3004 				    int node, size_t size)
3005 {
3006 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3007 
3008 	trace_kmalloc_node(_RET_IP_, ret,
3009 			   size, s->size, gfpflags, node);
3010 
3011 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3012 	return ret;
3013 }
3014 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3015 #endif
3016 #endif	/* CONFIG_NUMA */
3017 
3018 /*
3019  * Slow path handling. This may still be called frequently since objects
3020  * have a longer lifetime than the cpu slabs in most processing loads.
3021  *
3022  * So we still attempt to reduce cache line usage. Just take the slab
3023  * lock and free the item. If there is no additional partial page
3024  * handling required then we can return immediately.
3025  */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3026 static void __slab_free(struct kmem_cache *s, struct page *page,
3027 			void *head, void *tail, int cnt,
3028 			unsigned long addr)
3029 
3030 {
3031 	void *prior;
3032 	int was_frozen;
3033 	struct page new;
3034 	unsigned long counters;
3035 	struct kmem_cache_node *n = NULL;
3036 	unsigned long flags;
3037 
3038 	stat(s, FREE_SLOWPATH);
3039 
3040 	if (kfence_free(head))
3041 		return;
3042 
3043 	if (kmem_cache_debug(s) &&
3044 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3045 		return;
3046 
3047 	do {
3048 		if (unlikely(n)) {
3049 			spin_unlock_irqrestore(&n->list_lock, flags);
3050 			n = NULL;
3051 		}
3052 		prior = page->freelist;
3053 		counters = page->counters;
3054 		set_freepointer(s, tail, prior);
3055 		new.counters = counters;
3056 		was_frozen = new.frozen;
3057 		new.inuse -= cnt;
3058 		if ((!new.inuse || !prior) && !was_frozen) {
3059 
3060 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3061 
3062 				/*
3063 				 * Slab was on no list before and will be
3064 				 * partially empty
3065 				 * We can defer the list move and instead
3066 				 * freeze it.
3067 				 */
3068 				new.frozen = 1;
3069 
3070 			} else { /* Needs to be taken off a list */
3071 
3072 				n = get_node(s, page_to_nid(page));
3073 				/*
3074 				 * Speculatively acquire the list_lock.
3075 				 * If the cmpxchg does not succeed then we may
3076 				 * drop the list_lock without any processing.
3077 				 *
3078 				 * Otherwise the list_lock will synchronize with
3079 				 * other processors updating the list of slabs.
3080 				 */
3081 				spin_lock_irqsave(&n->list_lock, flags);
3082 
3083 			}
3084 		}
3085 
3086 	} while (!cmpxchg_double_slab(s, page,
3087 		prior, counters,
3088 		head, new.counters,
3089 		"__slab_free"));
3090 
3091 	if (likely(!n)) {
3092 
3093 		if (likely(was_frozen)) {
3094 			/*
3095 			 * The list lock was not taken therefore no list
3096 			 * activity can be necessary.
3097 			 */
3098 			stat(s, FREE_FROZEN);
3099 		} else if (new.frozen) {
3100 			/*
3101 			 * If we just froze the page then put it onto the
3102 			 * per cpu partial list.
3103 			 */
3104 			put_cpu_partial(s, page, 1);
3105 			stat(s, CPU_PARTIAL_FREE);
3106 		}
3107 
3108 		return;
3109 	}
3110 
3111 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3112 		goto slab_empty;
3113 
3114 	/*
3115 	 * Objects left in the slab. If it was not on the partial list before
3116 	 * then add it.
3117 	 */
3118 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3119 		remove_full(s, n, page);
3120 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3121 		stat(s, FREE_ADD_PARTIAL);
3122 	}
3123 	spin_unlock_irqrestore(&n->list_lock, flags);
3124 	return;
3125 
3126 slab_empty:
3127 	if (prior) {
3128 		/*
3129 		 * Slab on the partial list.
3130 		 */
3131 		remove_partial(n, page);
3132 		stat(s, FREE_REMOVE_PARTIAL);
3133 	} else {
3134 		/* Slab must be on the full list */
3135 		remove_full(s, n, page);
3136 	}
3137 
3138 	spin_unlock_irqrestore(&n->list_lock, flags);
3139 	stat(s, FREE_SLAB);
3140 	discard_slab(s, page);
3141 }
3142 
3143 /*
3144  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3145  * can perform fastpath freeing without additional function calls.
3146  *
3147  * The fastpath is only possible if we are freeing to the current cpu slab
3148  * of this processor. This typically the case if we have just allocated
3149  * the item before.
3150  *
3151  * If fastpath is not possible then fall back to __slab_free where we deal
3152  * with all sorts of special processing.
3153  *
3154  * Bulk free of a freelist with several objects (all pointing to the
3155  * same page) possible by specifying head and tail ptr, plus objects
3156  * count (cnt). Bulk free indicated by tail pointer being set.
3157  */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3158 static __always_inline void do_slab_free(struct kmem_cache *s,
3159 				struct page *page, void *head, void *tail,
3160 				int cnt, unsigned long addr)
3161 {
3162 	void *tail_obj = tail ? : head;
3163 	struct kmem_cache_cpu *c;
3164 	unsigned long tid;
3165 
3166 	/* memcg_slab_free_hook() is already called for bulk free. */
3167 	if (!tail)
3168 		memcg_slab_free_hook(s, &head, 1);
3169 redo:
3170 	/*
3171 	 * Determine the currently cpus per cpu slab.
3172 	 * The cpu may change afterward. However that does not matter since
3173 	 * data is retrieved via this pointer. If we are on the same cpu
3174 	 * during the cmpxchg then the free will succeed.
3175 	 */
3176 	do {
3177 		tid = this_cpu_read(s->cpu_slab->tid);
3178 		c = raw_cpu_ptr(s->cpu_slab);
3179 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3180 		 unlikely(tid != READ_ONCE(c->tid)));
3181 
3182 	/* Same with comment on barrier() in slab_alloc_node() */
3183 	barrier();
3184 
3185 	if (likely(page == c->page)) {
3186 		void **freelist = READ_ONCE(c->freelist);
3187 
3188 		set_freepointer(s, tail_obj, freelist);
3189 
3190 		if (unlikely(!this_cpu_cmpxchg_double(
3191 				s->cpu_slab->freelist, s->cpu_slab->tid,
3192 				freelist, tid,
3193 				head, next_tid(tid)))) {
3194 
3195 			note_cmpxchg_failure("slab_free", s, tid);
3196 			goto redo;
3197 		}
3198 		stat(s, FREE_FASTPATH);
3199 	} else
3200 		__slab_free(s, page, head, tail_obj, cnt, addr);
3201 
3202 }
3203 
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3204 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3205 				      void *head, void *tail, int cnt,
3206 				      unsigned long addr)
3207 {
3208 	/*
3209 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3210 	 * to remove objects, whose reuse must be delayed.
3211 	 */
3212 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3213 		do_slab_free(s, page, head, tail, cnt, addr);
3214 }
3215 
3216 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3217 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3218 {
3219 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3220 }
3221 #endif
3222 
kmem_cache_free(struct kmem_cache * s,void * x)3223 void kmem_cache_free(struct kmem_cache *s, void *x)
3224 {
3225 	s = cache_from_obj(s, x);
3226 	if (!s)
3227 		return;
3228 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3229 	trace_kmem_cache_free(_RET_IP_, x);
3230 }
3231 EXPORT_SYMBOL(kmem_cache_free);
3232 
3233 struct detached_freelist {
3234 	struct page *page;
3235 	void *tail;
3236 	void *freelist;
3237 	int cnt;
3238 	struct kmem_cache *s;
3239 };
3240 
3241 /*
3242  * This function progressively scans the array with free objects (with
3243  * a limited look ahead) and extract objects belonging to the same
3244  * page.  It builds a detached freelist directly within the given
3245  * page/objects.  This can happen without any need for
3246  * synchronization, because the objects are owned by running process.
3247  * The freelist is build up as a single linked list in the objects.
3248  * The idea is, that this detached freelist can then be bulk
3249  * transferred to the real freelist(s), but only requiring a single
3250  * synchronization primitive.  Look ahead in the array is limited due
3251  * to performance reasons.
3252  */
3253 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3254 int build_detached_freelist(struct kmem_cache *s, size_t size,
3255 			    void **p, struct detached_freelist *df)
3256 {
3257 	size_t first_skipped_index = 0;
3258 	int lookahead = 3;
3259 	void *object;
3260 	struct page *page;
3261 
3262 	/* Always re-init detached_freelist */
3263 	df->page = NULL;
3264 
3265 	do {
3266 		object = p[--size];
3267 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3268 	} while (!object && size);
3269 
3270 	if (!object)
3271 		return 0;
3272 
3273 	page = virt_to_head_page(object);
3274 	if (!s) {
3275 		/* Handle kalloc'ed objects */
3276 		if (unlikely(!PageSlab(page))) {
3277 			BUG_ON(!PageCompound(page));
3278 			kfree_hook(object);
3279 			__free_pages(page, compound_order(page));
3280 			p[size] = NULL; /* mark object processed */
3281 			return size;
3282 		}
3283 		/* Derive kmem_cache from object */
3284 		df->s = page->slab_cache;
3285 	} else {
3286 		df->s = cache_from_obj(s, object); /* Support for memcg */
3287 	}
3288 
3289 	if (is_kfence_address(object)) {
3290 		slab_free_hook(df->s, object, false);
3291 		__kfence_free(object);
3292 		p[size] = NULL; /* mark object processed */
3293 		return size;
3294 	}
3295 
3296 	/* Start new detached freelist */
3297 	df->page = page;
3298 	set_freepointer(df->s, object, NULL);
3299 	df->tail = object;
3300 	df->freelist = object;
3301 	p[size] = NULL; /* mark object processed */
3302 	df->cnt = 1;
3303 
3304 	while (size) {
3305 		object = p[--size];
3306 		if (!object)
3307 			continue; /* Skip processed objects */
3308 
3309 		/* df->page is always set at this point */
3310 		if (df->page == virt_to_head_page(object)) {
3311 			/* Opportunity build freelist */
3312 			set_freepointer(df->s, object, df->freelist);
3313 			df->freelist = object;
3314 			df->cnt++;
3315 			p[size] = NULL; /* mark object processed */
3316 
3317 			continue;
3318 		}
3319 
3320 		/* Limit look ahead search */
3321 		if (!--lookahead)
3322 			break;
3323 
3324 		if (!first_skipped_index)
3325 			first_skipped_index = size + 1;
3326 	}
3327 
3328 	return first_skipped_index;
3329 }
3330 
3331 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3332 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3333 {
3334 	if (WARN_ON(!size))
3335 		return;
3336 
3337 	memcg_slab_free_hook(s, p, size);
3338 	do {
3339 		struct detached_freelist df;
3340 
3341 		size = build_detached_freelist(s, size, p, &df);
3342 		if (!df.page)
3343 			continue;
3344 
3345 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3346 	} while (likely(size));
3347 }
3348 EXPORT_SYMBOL(kmem_cache_free_bulk);
3349 
3350 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3351 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3352 			  void **p)
3353 {
3354 	struct kmem_cache_cpu *c;
3355 	int i;
3356 	struct obj_cgroup *objcg = NULL;
3357 
3358 	/* memcg and kmem_cache debug support */
3359 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3360 	if (unlikely(!s))
3361 		return false;
3362 	/*
3363 	 * Drain objects in the per cpu slab, while disabling local
3364 	 * IRQs, which protects against PREEMPT and interrupts
3365 	 * handlers invoking normal fastpath.
3366 	 */
3367 	local_irq_disable();
3368 	c = this_cpu_ptr(s->cpu_slab);
3369 
3370 	for (i = 0; i < size; i++) {
3371 		void *object = kfence_alloc(s, s->object_size, flags);
3372 
3373 		if (unlikely(object)) {
3374 			p[i] = object;
3375 			continue;
3376 		}
3377 
3378 		object = c->freelist;
3379 		if (unlikely(!object)) {
3380 			/*
3381 			 * We may have removed an object from c->freelist using
3382 			 * the fastpath in the previous iteration; in that case,
3383 			 * c->tid has not been bumped yet.
3384 			 * Since ___slab_alloc() may reenable interrupts while
3385 			 * allocating memory, we should bump c->tid now.
3386 			 */
3387 			c->tid = next_tid(c->tid);
3388 
3389 			/*
3390 			 * Invoking slow path likely have side-effect
3391 			 * of re-populating per CPU c->freelist
3392 			 */
3393 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3394 					    _RET_IP_, c);
3395 			if (unlikely(!p[i]))
3396 				goto error;
3397 
3398 			c = this_cpu_ptr(s->cpu_slab);
3399 			maybe_wipe_obj_freeptr(s, p[i]);
3400 
3401 			continue; /* goto for-loop */
3402 		}
3403 		c->freelist = get_freepointer(s, object);
3404 		p[i] = object;
3405 		maybe_wipe_obj_freeptr(s, p[i]);
3406 	}
3407 	c->tid = next_tid(c->tid);
3408 	local_irq_enable();
3409 
3410 	/*
3411 	 * memcg and kmem_cache debug support and memory initialization.
3412 	 * Done outside of the IRQ disabled fastpath loop.
3413 	 */
3414 	slab_post_alloc_hook(s, objcg, flags, size, p,
3415 				slab_want_init_on_alloc(flags, s));
3416 	return i;
3417 error:
3418 	local_irq_enable();
3419 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3420 	__kmem_cache_free_bulk(s, i, p);
3421 	return 0;
3422 }
3423 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3424 
3425 
3426 /*
3427  * Object placement in a slab is made very easy because we always start at
3428  * offset 0. If we tune the size of the object to the alignment then we can
3429  * get the required alignment by putting one properly sized object after
3430  * another.
3431  *
3432  * Notice that the allocation order determines the sizes of the per cpu
3433  * caches. Each processor has always one slab available for allocations.
3434  * Increasing the allocation order reduces the number of times that slabs
3435  * must be moved on and off the partial lists and is therefore a factor in
3436  * locking overhead.
3437  */
3438 
3439 /*
3440  * Mininum / Maximum order of slab pages. This influences locking overhead
3441  * and slab fragmentation. A higher order reduces the number of partial slabs
3442  * and increases the number of allocations possible without having to
3443  * take the list_lock.
3444  */
3445 static unsigned int slub_min_order;
3446 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3447 static unsigned int slub_min_objects;
3448 
3449 /*
3450  * Calculate the order of allocation given an slab object size.
3451  *
3452  * The order of allocation has significant impact on performance and other
3453  * system components. Generally order 0 allocations should be preferred since
3454  * order 0 does not cause fragmentation in the page allocator. Larger objects
3455  * be problematic to put into order 0 slabs because there may be too much
3456  * unused space left. We go to a higher order if more than 1/16th of the slab
3457  * would be wasted.
3458  *
3459  * In order to reach satisfactory performance we must ensure that a minimum
3460  * number of objects is in one slab. Otherwise we may generate too much
3461  * activity on the partial lists which requires taking the list_lock. This is
3462  * less a concern for large slabs though which are rarely used.
3463  *
3464  * slub_max_order specifies the order where we begin to stop considering the
3465  * number of objects in a slab as critical. If we reach slub_max_order then
3466  * we try to keep the page order as low as possible. So we accept more waste
3467  * of space in favor of a small page order.
3468  *
3469  * Higher order allocations also allow the placement of more objects in a
3470  * slab and thereby reduce object handling overhead. If the user has
3471  * requested a higher mininum order then we start with that one instead of
3472  * the smallest order which will fit the object.
3473  */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3474 static inline unsigned int slab_order(unsigned int size,
3475 		unsigned int min_objects, unsigned int max_order,
3476 		unsigned int fract_leftover)
3477 {
3478 	unsigned int min_order = slub_min_order;
3479 	unsigned int order;
3480 
3481 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3482 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3483 
3484 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3485 			order <= max_order; order++) {
3486 
3487 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3488 		unsigned int rem;
3489 
3490 		rem = slab_size % size;
3491 
3492 		if (rem <= slab_size / fract_leftover)
3493 			break;
3494 	}
3495 
3496 	return order;
3497 }
3498 
calculate_order(unsigned int size)3499 static inline int calculate_order(unsigned int size)
3500 {
3501 	unsigned int order;
3502 	unsigned int min_objects;
3503 	unsigned int max_objects;
3504 
3505 	/*
3506 	 * Attempt to find best configuration for a slab. This
3507 	 * works by first attempting to generate a layout with
3508 	 * the best configuration and backing off gradually.
3509 	 *
3510 	 * First we increase the acceptable waste in a slab. Then
3511 	 * we reduce the minimum objects required in a slab.
3512 	 */
3513 	min_objects = slub_min_objects;
3514 	if (!min_objects)
3515 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3516 	max_objects = order_objects(slub_max_order, size);
3517 	min_objects = min(min_objects, max_objects);
3518 
3519 	while (min_objects > 1) {
3520 		unsigned int fraction;
3521 
3522 		fraction = 16;
3523 		while (fraction >= 4) {
3524 			order = slab_order(size, min_objects,
3525 					slub_max_order, fraction);
3526 			if (order <= slub_max_order)
3527 				return order;
3528 			fraction /= 2;
3529 		}
3530 		min_objects--;
3531 	}
3532 
3533 	/*
3534 	 * We were unable to place multiple objects in a slab. Now
3535 	 * lets see if we can place a single object there.
3536 	 */
3537 	order = slab_order(size, 1, slub_max_order, 1);
3538 	if (order <= slub_max_order)
3539 		return order;
3540 
3541 	/*
3542 	 * Doh this slab cannot be placed using slub_max_order.
3543 	 */
3544 	order = slab_order(size, 1, MAX_ORDER, 1);
3545 	if (order < MAX_ORDER)
3546 		return order;
3547 	return -ENOSYS;
3548 }
3549 
3550 static void
init_kmem_cache_node(struct kmem_cache_node * n)3551 init_kmem_cache_node(struct kmem_cache_node *n)
3552 {
3553 	n->nr_partial = 0;
3554 	spin_lock_init(&n->list_lock);
3555 	INIT_LIST_HEAD(&n->partial);
3556 #ifdef CONFIG_SLUB_DEBUG
3557 	atomic_long_set(&n->nr_slabs, 0);
3558 	atomic_long_set(&n->total_objects, 0);
3559 	INIT_LIST_HEAD(&n->full);
3560 #endif
3561 }
3562 
alloc_kmem_cache_cpus(struct kmem_cache * s)3563 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3564 {
3565 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3566 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3567 
3568 	/*
3569 	 * Must align to double word boundary for the double cmpxchg
3570 	 * instructions to work; see __pcpu_double_call_return_bool().
3571 	 */
3572 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3573 				     2 * sizeof(void *));
3574 
3575 	if (!s->cpu_slab)
3576 		return 0;
3577 
3578 	init_kmem_cache_cpus(s);
3579 
3580 	return 1;
3581 }
3582 
3583 static struct kmem_cache *kmem_cache_node;
3584 
3585 /*
3586  * No kmalloc_node yet so do it by hand. We know that this is the first
3587  * slab on the node for this slabcache. There are no concurrent accesses
3588  * possible.
3589  *
3590  * Note that this function only works on the kmem_cache_node
3591  * when allocating for the kmem_cache_node. This is used for bootstrapping
3592  * memory on a fresh node that has no slab structures yet.
3593  */
early_kmem_cache_node_alloc(int node)3594 static void early_kmem_cache_node_alloc(int node)
3595 {
3596 	struct page *page;
3597 	struct kmem_cache_node *n;
3598 
3599 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3600 
3601 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3602 
3603 	BUG_ON(!page);
3604 	if (page_to_nid(page) != node) {
3605 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3606 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3607 	}
3608 
3609 	n = page->freelist;
3610 	BUG_ON(!n);
3611 #ifdef CONFIG_SLUB_DEBUG
3612 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3613 	init_tracking(kmem_cache_node, n);
3614 #endif
3615 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3616 	page->freelist = get_freepointer(kmem_cache_node, n);
3617 	page->inuse = 1;
3618 	page->frozen = 0;
3619 	kmem_cache_node->node[node] = n;
3620 	init_kmem_cache_node(n);
3621 	inc_slabs_node(kmem_cache_node, node, page->objects);
3622 
3623 	/*
3624 	 * No locks need to be taken here as it has just been
3625 	 * initialized and there is no concurrent access.
3626 	 */
3627 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3628 }
3629 
free_kmem_cache_nodes(struct kmem_cache * s)3630 static void free_kmem_cache_nodes(struct kmem_cache *s)
3631 {
3632 	int node;
3633 	struct kmem_cache_node *n;
3634 
3635 	for_each_kmem_cache_node(s, node, n) {
3636 		s->node[node] = NULL;
3637 		kmem_cache_free(kmem_cache_node, n);
3638 	}
3639 }
3640 
__kmem_cache_release(struct kmem_cache * s)3641 void __kmem_cache_release(struct kmem_cache *s)
3642 {
3643 	cache_random_seq_destroy(s);
3644 	free_percpu(s->cpu_slab);
3645 	free_kmem_cache_nodes(s);
3646 }
3647 
init_kmem_cache_nodes(struct kmem_cache * s)3648 static int init_kmem_cache_nodes(struct kmem_cache *s)
3649 {
3650 	int node;
3651 
3652 	for_each_node_state(node, N_NORMAL_MEMORY) {
3653 		struct kmem_cache_node *n;
3654 
3655 		if (slab_state == DOWN) {
3656 			early_kmem_cache_node_alloc(node);
3657 			continue;
3658 		}
3659 		n = kmem_cache_alloc_node(kmem_cache_node,
3660 						GFP_KERNEL, node);
3661 
3662 		if (!n) {
3663 			free_kmem_cache_nodes(s);
3664 			return 0;
3665 		}
3666 
3667 		init_kmem_cache_node(n);
3668 		s->node[node] = n;
3669 	}
3670 	return 1;
3671 }
3672 
set_min_partial(struct kmem_cache * s,unsigned long min)3673 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3674 {
3675 	if (min < MIN_PARTIAL)
3676 		min = MIN_PARTIAL;
3677 	else if (min > MAX_PARTIAL)
3678 		min = MAX_PARTIAL;
3679 	s->min_partial = min;
3680 }
3681 
set_cpu_partial(struct kmem_cache * s)3682 static void set_cpu_partial(struct kmem_cache *s)
3683 {
3684 #ifdef CONFIG_SLUB_CPU_PARTIAL
3685 	/*
3686 	 * cpu_partial determined the maximum number of objects kept in the
3687 	 * per cpu partial lists of a processor.
3688 	 *
3689 	 * Per cpu partial lists mainly contain slabs that just have one
3690 	 * object freed. If they are used for allocation then they can be
3691 	 * filled up again with minimal effort. The slab will never hit the
3692 	 * per node partial lists and therefore no locking will be required.
3693 	 *
3694 	 * This setting also determines
3695 	 *
3696 	 * A) The number of objects from per cpu partial slabs dumped to the
3697 	 *    per node list when we reach the limit.
3698 	 * B) The number of objects in cpu partial slabs to extract from the
3699 	 *    per node list when we run out of per cpu objects. We only fetch
3700 	 *    50% to keep some capacity around for frees.
3701 	 */
3702 	if (!kmem_cache_has_cpu_partial(s))
3703 		slub_set_cpu_partial(s, 0);
3704 	else if (s->size >= PAGE_SIZE)
3705 		slub_set_cpu_partial(s, 2);
3706 	else if (s->size >= 1024)
3707 		slub_set_cpu_partial(s, 6);
3708 	else if (s->size >= 256)
3709 		slub_set_cpu_partial(s, 13);
3710 	else
3711 		slub_set_cpu_partial(s, 30);
3712 #endif
3713 }
3714 
3715 /*
3716  * calculate_sizes() determines the order and the distribution of data within
3717  * a slab object.
3718  */
calculate_sizes(struct kmem_cache * s,int forced_order)3719 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3720 {
3721 	slab_flags_t flags = s->flags;
3722 	unsigned int size = s->object_size;
3723 	unsigned int order;
3724 
3725 	/*
3726 	 * Round up object size to the next word boundary. We can only
3727 	 * place the free pointer at word boundaries and this determines
3728 	 * the possible location of the free pointer.
3729 	 */
3730 	size = ALIGN(size, sizeof(void *));
3731 
3732 #ifdef CONFIG_SLUB_DEBUG
3733 	/*
3734 	 * Determine if we can poison the object itself. If the user of
3735 	 * the slab may touch the object after free or before allocation
3736 	 * then we should never poison the object itself.
3737 	 */
3738 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3739 			!s->ctor)
3740 		s->flags |= __OBJECT_POISON;
3741 	else
3742 		s->flags &= ~__OBJECT_POISON;
3743 
3744 
3745 	/*
3746 	 * If we are Redzoning then check if there is some space between the
3747 	 * end of the object and the free pointer. If not then add an
3748 	 * additional word to have some bytes to store Redzone information.
3749 	 */
3750 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3751 		size += sizeof(void *);
3752 #endif
3753 
3754 	/*
3755 	 * With that we have determined the number of bytes in actual use
3756 	 * by the object and redzoning.
3757 	 */
3758 	s->inuse = size;
3759 
3760 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3761 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3762 	    s->ctor) {
3763 		/*
3764 		 * Relocate free pointer after the object if it is not
3765 		 * permitted to overwrite the first word of the object on
3766 		 * kmem_cache_free.
3767 		 *
3768 		 * This is the case if we do RCU, have a constructor or
3769 		 * destructor, are poisoning the objects, or are
3770 		 * redzoning an object smaller than sizeof(void *).
3771 		 *
3772 		 * The assumption that s->offset >= s->inuse means free
3773 		 * pointer is outside of the object is used in the
3774 		 * freeptr_outside_object() function. If that is no
3775 		 * longer true, the function needs to be modified.
3776 		 */
3777 		s->offset = size;
3778 		size += sizeof(void *);
3779 	} else {
3780 		/*
3781 		 * Store freelist pointer near middle of object to keep
3782 		 * it away from the edges of the object to avoid small
3783 		 * sized over/underflows from neighboring allocations.
3784 		 */
3785 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3786 	}
3787 
3788 #ifdef CONFIG_SLUB_DEBUG
3789 	if (flags & SLAB_STORE_USER)
3790 		/*
3791 		 * Need to store information about allocs and frees after
3792 		 * the object.
3793 		 */
3794 		size += 2 * sizeof(struct track);
3795 #endif
3796 
3797 	kasan_cache_create(s, &size, &s->flags);
3798 #ifdef CONFIG_SLUB_DEBUG
3799 	if (flags & SLAB_RED_ZONE) {
3800 		/*
3801 		 * Add some empty padding so that we can catch
3802 		 * overwrites from earlier objects rather than let
3803 		 * tracking information or the free pointer be
3804 		 * corrupted if a user writes before the start
3805 		 * of the object.
3806 		 */
3807 		size += sizeof(void *);
3808 
3809 		s->red_left_pad = sizeof(void *);
3810 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3811 		size += s->red_left_pad;
3812 	}
3813 #endif
3814 
3815 	/*
3816 	 * SLUB stores one object immediately after another beginning from
3817 	 * offset 0. In order to align the objects we have to simply size
3818 	 * each object to conform to the alignment.
3819 	 */
3820 	size = ALIGN(size, s->align);
3821 	s->size = size;
3822 	s->reciprocal_size = reciprocal_value(size);
3823 	if (forced_order >= 0)
3824 		order = forced_order;
3825 	else
3826 		order = calculate_order(size);
3827 
3828 	if ((int)order < 0)
3829 		return 0;
3830 
3831 	s->allocflags = 0;
3832 	if (order)
3833 		s->allocflags |= __GFP_COMP;
3834 
3835 	if (s->flags & SLAB_CACHE_DMA)
3836 		s->allocflags |= GFP_DMA;
3837 
3838 	if (s->flags & SLAB_CACHE_DMA32)
3839 		s->allocflags |= GFP_DMA32;
3840 
3841 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3842 		s->allocflags |= __GFP_RECLAIMABLE;
3843 
3844 	/*
3845 	 * Determine the number of objects per slab
3846 	 */
3847 	s->oo = oo_make(order, size);
3848 	s->min = oo_make(get_order(size), size);
3849 	if (oo_objects(s->oo) > oo_objects(s->max))
3850 		s->max = s->oo;
3851 
3852 	return !!oo_objects(s->oo);
3853 }
3854 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)3855 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3856 {
3857 	s->flags = kmem_cache_flags(s->size, flags, s->name);
3858 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3859 	s->random = get_random_long();
3860 #endif
3861 
3862 	if (!calculate_sizes(s, -1))
3863 		goto error;
3864 	if (disable_higher_order_debug) {
3865 		/*
3866 		 * Disable debugging flags that store metadata if the min slab
3867 		 * order increased.
3868 		 */
3869 		if (get_order(s->size) > get_order(s->object_size)) {
3870 			s->flags &= ~DEBUG_METADATA_FLAGS;
3871 			s->offset = 0;
3872 			if (!calculate_sizes(s, -1))
3873 				goto error;
3874 		}
3875 	}
3876 
3877 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3878     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3879 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3880 		/* Enable fast mode */
3881 		s->flags |= __CMPXCHG_DOUBLE;
3882 #endif
3883 
3884 	/*
3885 	 * The larger the object size is, the more pages we want on the partial
3886 	 * list to avoid pounding the page allocator excessively.
3887 	 */
3888 	set_min_partial(s, ilog2(s->size) / 2);
3889 
3890 	set_cpu_partial(s);
3891 
3892 #ifdef CONFIG_NUMA
3893 	s->remote_node_defrag_ratio = 1000;
3894 #endif
3895 
3896 	/* Initialize the pre-computed randomized freelist if slab is up */
3897 	if (slab_state >= UP) {
3898 		if (init_cache_random_seq(s))
3899 			goto error;
3900 	}
3901 
3902 	if (!init_kmem_cache_nodes(s))
3903 		goto error;
3904 
3905 	if (alloc_kmem_cache_cpus(s))
3906 		return 0;
3907 
3908 error:
3909 	__kmem_cache_release(s);
3910 	return -EINVAL;
3911 }
3912 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3913 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3914 			      const char *text)
3915 {
3916 #ifdef CONFIG_SLUB_DEBUG
3917 	void *addr = page_address(page);
3918 	unsigned long *map;
3919 	void *p;
3920 
3921 	slab_err(s, page, text, s->name);
3922 	slab_lock(page);
3923 
3924 	map = get_map(s, page);
3925 	for_each_object(p, s, addr, page->objects) {
3926 
3927 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
3928 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3929 			print_tracking(s, p);
3930 		}
3931 	}
3932 	put_map(map);
3933 	slab_unlock(page);
3934 #endif
3935 }
3936 
3937 /*
3938  * Attempt to free all partial slabs on a node.
3939  * This is called from __kmem_cache_shutdown(). We must take list_lock
3940  * because sysfs file might still access partial list after the shutdowning.
3941  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3942 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3943 {
3944 	LIST_HEAD(discard);
3945 	struct page *page, *h;
3946 
3947 	BUG_ON(irqs_disabled());
3948 	spin_lock_irq(&n->list_lock);
3949 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3950 		if (!page->inuse) {
3951 			remove_partial(n, page);
3952 			list_add(&page->slab_list, &discard);
3953 		} else {
3954 			list_slab_objects(s, page,
3955 			  "Objects remaining in %s on __kmem_cache_shutdown()");
3956 		}
3957 	}
3958 	spin_unlock_irq(&n->list_lock);
3959 
3960 	list_for_each_entry_safe(page, h, &discard, slab_list)
3961 		discard_slab(s, page);
3962 }
3963 
__kmem_cache_empty(struct kmem_cache * s)3964 bool __kmem_cache_empty(struct kmem_cache *s)
3965 {
3966 	int node;
3967 	struct kmem_cache_node *n;
3968 
3969 	for_each_kmem_cache_node(s, node, n)
3970 		if (n->nr_partial || slabs_node(s, node))
3971 			return false;
3972 	return true;
3973 }
3974 
3975 /*
3976  * Release all resources used by a slab cache.
3977  */
__kmem_cache_shutdown(struct kmem_cache * s)3978 int __kmem_cache_shutdown(struct kmem_cache *s)
3979 {
3980 	int node;
3981 	struct kmem_cache_node *n;
3982 
3983 	flush_all(s);
3984 	/* Attempt to free all objects */
3985 	for_each_kmem_cache_node(s, node, n) {
3986 		free_partial(s, n);
3987 		if (n->nr_partial || slabs_node(s, node))
3988 			return 1;
3989 	}
3990 	return 0;
3991 }
3992 
3993 /********************************************************************
3994  *		Kmalloc subsystem
3995  *******************************************************************/
3996 
setup_slub_min_order(char * str)3997 static int __init setup_slub_min_order(char *str)
3998 {
3999 	get_option(&str, (int *)&slub_min_order);
4000 
4001 	return 1;
4002 }
4003 
4004 __setup("slub_min_order=", setup_slub_min_order);
4005 
setup_slub_max_order(char * str)4006 static int __init setup_slub_max_order(char *str)
4007 {
4008 	get_option(&str, (int *)&slub_max_order);
4009 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4010 
4011 	return 1;
4012 }
4013 
4014 __setup("slub_max_order=", setup_slub_max_order);
4015 
setup_slub_min_objects(char * str)4016 static int __init setup_slub_min_objects(char *str)
4017 {
4018 	get_option(&str, (int *)&slub_min_objects);
4019 
4020 	return 1;
4021 }
4022 
4023 __setup("slub_min_objects=", setup_slub_min_objects);
4024 
__kmalloc(size_t size,gfp_t flags)4025 void *__kmalloc(size_t size, gfp_t flags)
4026 {
4027 	struct kmem_cache *s;
4028 	void *ret;
4029 
4030 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4031 		return kmalloc_large(size, flags);
4032 
4033 	s = kmalloc_slab(size, flags);
4034 
4035 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 		return s;
4037 
4038 	ret = slab_alloc(s, flags, _RET_IP_, size);
4039 
4040 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4041 
4042 	ret = kasan_kmalloc(s, ret, size, flags);
4043 
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL(__kmalloc);
4047 
4048 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)4049 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4050 {
4051 	struct page *page;
4052 	void *ptr = NULL;
4053 	unsigned int order = get_order(size);
4054 
4055 	flags |= __GFP_COMP;
4056 	page = alloc_pages_node(node, flags, order);
4057 	if (page) {
4058 		ptr = page_address(page);
4059 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4060 				      PAGE_SIZE << order);
4061 	}
4062 
4063 	return kmalloc_large_node_hook(ptr, size, flags);
4064 }
4065 
__kmalloc_node(size_t size,gfp_t flags,int node)4066 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4067 {
4068 	struct kmem_cache *s;
4069 	void *ret;
4070 
4071 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4072 		ret = kmalloc_large_node(size, flags, node);
4073 
4074 		trace_kmalloc_node(_RET_IP_, ret,
4075 				   size, PAGE_SIZE << get_order(size),
4076 				   flags, node);
4077 
4078 		return ret;
4079 	}
4080 
4081 	s = kmalloc_slab(size, flags);
4082 
4083 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4084 		return s;
4085 
4086 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4087 
4088 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4089 
4090 	ret = kasan_kmalloc(s, ret, size, flags);
4091 
4092 	return ret;
4093 }
4094 EXPORT_SYMBOL(__kmalloc_node);
4095 #endif	/* CONFIG_NUMA */
4096 
4097 #ifdef CONFIG_HARDENED_USERCOPY
4098 /*
4099  * Rejects incorrectly sized objects and objects that are to be copied
4100  * to/from userspace but do not fall entirely within the containing slab
4101  * cache's usercopy region.
4102  *
4103  * Returns NULL if check passes, otherwise const char * to name of cache
4104  * to indicate an error.
4105  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4106 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4107 			 bool to_user)
4108 {
4109 	struct kmem_cache *s;
4110 	unsigned int offset;
4111 	size_t object_size;
4112 	bool is_kfence = is_kfence_address(ptr);
4113 
4114 	ptr = kasan_reset_tag(ptr);
4115 
4116 	/* Find object and usable object size. */
4117 	s = page->slab_cache;
4118 
4119 	/* Reject impossible pointers. */
4120 	if (ptr < page_address(page))
4121 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4122 			       to_user, 0, n);
4123 
4124 	/* Find offset within object. */
4125 	if (is_kfence)
4126 		offset = ptr - kfence_object_start(ptr);
4127 	else
4128 		offset = (ptr - page_address(page)) % s->size;
4129 
4130 	/* Adjust for redzone and reject if within the redzone. */
4131 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4132 		if (offset < s->red_left_pad)
4133 			usercopy_abort("SLUB object in left red zone",
4134 				       s->name, to_user, offset, n);
4135 		offset -= s->red_left_pad;
4136 	}
4137 
4138 	/* Allow address range falling entirely within usercopy region. */
4139 	if (offset >= s->useroffset &&
4140 	    offset - s->useroffset <= s->usersize &&
4141 	    n <= s->useroffset - offset + s->usersize)
4142 		return;
4143 
4144 	/*
4145 	 * If the copy is still within the allocated object, produce
4146 	 * a warning instead of rejecting the copy. This is intended
4147 	 * to be a temporary method to find any missing usercopy
4148 	 * whitelists.
4149 	 */
4150 	object_size = slab_ksize(s);
4151 	if (usercopy_fallback &&
4152 	    offset <= object_size && n <= object_size - offset) {
4153 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4154 		return;
4155 	}
4156 
4157 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4158 }
4159 #endif /* CONFIG_HARDENED_USERCOPY */
4160 
__ksize(const void * object)4161 size_t __ksize(const void *object)
4162 {
4163 	struct page *page;
4164 
4165 	if (unlikely(object == ZERO_SIZE_PTR))
4166 		return 0;
4167 
4168 	page = virt_to_head_page(object);
4169 
4170 	if (unlikely(!PageSlab(page))) {
4171 		WARN_ON(!PageCompound(page));
4172 		return page_size(page);
4173 	}
4174 
4175 	return slab_ksize(page->slab_cache);
4176 }
4177 EXPORT_SYMBOL(__ksize);
4178 
kfree(const void * x)4179 void kfree(const void *x)
4180 {
4181 	struct page *page;
4182 	void *object = (void *)x;
4183 
4184 	trace_kfree(_RET_IP_, x);
4185 
4186 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4187 		return;
4188 
4189 	page = virt_to_head_page(x);
4190 	if (unlikely(!PageSlab(page))) {
4191 		unsigned int order = compound_order(page);
4192 
4193 		BUG_ON(!PageCompound(page));
4194 		kfree_hook(object);
4195 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4196 				      -(PAGE_SIZE << order));
4197 		__free_pages(page, order);
4198 		return;
4199 	}
4200 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4201 }
4202 EXPORT_SYMBOL(kfree);
4203 
4204 #define SHRINK_PROMOTE_MAX 32
4205 
4206 /*
4207  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4208  * up most to the head of the partial lists. New allocations will then
4209  * fill those up and thus they can be removed from the partial lists.
4210  *
4211  * The slabs with the least items are placed last. This results in them
4212  * being allocated from last increasing the chance that the last objects
4213  * are freed in them.
4214  */
__kmem_cache_shrink(struct kmem_cache * s)4215 int __kmem_cache_shrink(struct kmem_cache *s)
4216 {
4217 	int node;
4218 	int i;
4219 	struct kmem_cache_node *n;
4220 	struct page *page;
4221 	struct page *t;
4222 	struct list_head discard;
4223 	struct list_head promote[SHRINK_PROMOTE_MAX];
4224 	unsigned long flags;
4225 	int ret = 0;
4226 
4227 	flush_all(s);
4228 	for_each_kmem_cache_node(s, node, n) {
4229 		INIT_LIST_HEAD(&discard);
4230 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4231 			INIT_LIST_HEAD(promote + i);
4232 
4233 		spin_lock_irqsave(&n->list_lock, flags);
4234 
4235 		/*
4236 		 * Build lists of slabs to discard or promote.
4237 		 *
4238 		 * Note that concurrent frees may occur while we hold the
4239 		 * list_lock. page->inuse here is the upper limit.
4240 		 */
4241 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4242 			int free = page->objects - page->inuse;
4243 
4244 			/* Do not reread page->inuse */
4245 			barrier();
4246 
4247 			/* We do not keep full slabs on the list */
4248 			BUG_ON(free <= 0);
4249 
4250 			if (free == page->objects) {
4251 				list_move(&page->slab_list, &discard);
4252 				n->nr_partial--;
4253 			} else if (free <= SHRINK_PROMOTE_MAX)
4254 				list_move(&page->slab_list, promote + free - 1);
4255 		}
4256 
4257 		/*
4258 		 * Promote the slabs filled up most to the head of the
4259 		 * partial list.
4260 		 */
4261 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4262 			list_splice(promote + i, &n->partial);
4263 
4264 		spin_unlock_irqrestore(&n->list_lock, flags);
4265 
4266 		/* Release empty slabs */
4267 		list_for_each_entry_safe(page, t, &discard, slab_list)
4268 			discard_slab(s, page);
4269 
4270 		if (slabs_node(s, node))
4271 			ret = 1;
4272 	}
4273 
4274 	return ret;
4275 }
4276 
slab_mem_going_offline_callback(void * arg)4277 static int slab_mem_going_offline_callback(void *arg)
4278 {
4279 	struct kmem_cache *s;
4280 
4281 	mutex_lock(&slab_mutex);
4282 	list_for_each_entry(s, &slab_caches, list)
4283 		__kmem_cache_shrink(s);
4284 	mutex_unlock(&slab_mutex);
4285 
4286 	return 0;
4287 }
4288 
slab_mem_offline_callback(void * arg)4289 static void slab_mem_offline_callback(void *arg)
4290 {
4291 	struct kmem_cache_node *n;
4292 	struct kmem_cache *s;
4293 	struct memory_notify *marg = arg;
4294 	int offline_node;
4295 
4296 	offline_node = marg->status_change_nid_normal;
4297 
4298 	/*
4299 	 * If the node still has available memory. we need kmem_cache_node
4300 	 * for it yet.
4301 	 */
4302 	if (offline_node < 0)
4303 		return;
4304 
4305 	mutex_lock(&slab_mutex);
4306 	list_for_each_entry(s, &slab_caches, list) {
4307 		n = get_node(s, offline_node);
4308 		if (n) {
4309 			/*
4310 			 * if n->nr_slabs > 0, slabs still exist on the node
4311 			 * that is going down. We were unable to free them,
4312 			 * and offline_pages() function shouldn't call this
4313 			 * callback. So, we must fail.
4314 			 */
4315 			BUG_ON(slabs_node(s, offline_node));
4316 
4317 			s->node[offline_node] = NULL;
4318 			kmem_cache_free(kmem_cache_node, n);
4319 		}
4320 	}
4321 	mutex_unlock(&slab_mutex);
4322 }
4323 
slab_mem_going_online_callback(void * arg)4324 static int slab_mem_going_online_callback(void *arg)
4325 {
4326 	struct kmem_cache_node *n;
4327 	struct kmem_cache *s;
4328 	struct memory_notify *marg = arg;
4329 	int nid = marg->status_change_nid_normal;
4330 	int ret = 0;
4331 
4332 	/*
4333 	 * If the node's memory is already available, then kmem_cache_node is
4334 	 * already created. Nothing to do.
4335 	 */
4336 	if (nid < 0)
4337 		return 0;
4338 
4339 	/*
4340 	 * We are bringing a node online. No memory is available yet. We must
4341 	 * allocate a kmem_cache_node structure in order to bring the node
4342 	 * online.
4343 	 */
4344 	mutex_lock(&slab_mutex);
4345 	list_for_each_entry(s, &slab_caches, list) {
4346 		/*
4347 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4348 		 *      since memory is not yet available from the node that
4349 		 *      is brought up.
4350 		 */
4351 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4352 		if (!n) {
4353 			ret = -ENOMEM;
4354 			goto out;
4355 		}
4356 		init_kmem_cache_node(n);
4357 		s->node[nid] = n;
4358 	}
4359 out:
4360 	mutex_unlock(&slab_mutex);
4361 	return ret;
4362 }
4363 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4364 static int slab_memory_callback(struct notifier_block *self,
4365 				unsigned long action, void *arg)
4366 {
4367 	int ret = 0;
4368 
4369 	switch (action) {
4370 	case MEM_GOING_ONLINE:
4371 		ret = slab_mem_going_online_callback(arg);
4372 		break;
4373 	case MEM_GOING_OFFLINE:
4374 		ret = slab_mem_going_offline_callback(arg);
4375 		break;
4376 	case MEM_OFFLINE:
4377 	case MEM_CANCEL_ONLINE:
4378 		slab_mem_offline_callback(arg);
4379 		break;
4380 	case MEM_ONLINE:
4381 	case MEM_CANCEL_OFFLINE:
4382 		break;
4383 	}
4384 	if (ret)
4385 		ret = notifier_from_errno(ret);
4386 	else
4387 		ret = NOTIFY_OK;
4388 	return ret;
4389 }
4390 
4391 static struct notifier_block slab_memory_callback_nb = {
4392 	.notifier_call = slab_memory_callback,
4393 	.priority = SLAB_CALLBACK_PRI,
4394 };
4395 
4396 /********************************************************************
4397  *			Basic setup of slabs
4398  *******************************************************************/
4399 
4400 /*
4401  * Used for early kmem_cache structures that were allocated using
4402  * the page allocator. Allocate them properly then fix up the pointers
4403  * that may be pointing to the wrong kmem_cache structure.
4404  */
4405 
bootstrap(struct kmem_cache * static_cache)4406 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4407 {
4408 	int node;
4409 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4410 	struct kmem_cache_node *n;
4411 
4412 	memcpy(s, static_cache, kmem_cache->object_size);
4413 
4414 	/*
4415 	 * This runs very early, and only the boot processor is supposed to be
4416 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4417 	 * IPIs around.
4418 	 */
4419 	__flush_cpu_slab(s, smp_processor_id());
4420 	for_each_kmem_cache_node(s, node, n) {
4421 		struct page *p;
4422 
4423 		list_for_each_entry(p, &n->partial, slab_list)
4424 			p->slab_cache = s;
4425 
4426 #ifdef CONFIG_SLUB_DEBUG
4427 		list_for_each_entry(p, &n->full, slab_list)
4428 			p->slab_cache = s;
4429 #endif
4430 	}
4431 	list_add(&s->list, &slab_caches);
4432 	return s;
4433 }
4434 
kmem_cache_init(void)4435 void __init kmem_cache_init(void)
4436 {
4437 	static __initdata struct kmem_cache boot_kmem_cache,
4438 		boot_kmem_cache_node;
4439 
4440 	if (debug_guardpage_minorder())
4441 		slub_max_order = 0;
4442 
4443 	kmem_cache_node = &boot_kmem_cache_node;
4444 	kmem_cache = &boot_kmem_cache;
4445 
4446 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4447 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4448 
4449 	register_hotmemory_notifier(&slab_memory_callback_nb);
4450 
4451 	/* Able to allocate the per node structures */
4452 	slab_state = PARTIAL;
4453 
4454 	create_boot_cache(kmem_cache, "kmem_cache",
4455 			offsetof(struct kmem_cache, node) +
4456 				nr_node_ids * sizeof(struct kmem_cache_node *),
4457 		       SLAB_HWCACHE_ALIGN, 0, 0);
4458 
4459 	kmem_cache = bootstrap(&boot_kmem_cache);
4460 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4461 
4462 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4463 	setup_kmalloc_cache_index_table();
4464 	create_kmalloc_caches(0);
4465 
4466 	/* Setup random freelists for each cache */
4467 	init_freelist_randomization();
4468 
4469 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4470 				  slub_cpu_dead);
4471 
4472 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4473 		cache_line_size(),
4474 		slub_min_order, slub_max_order, slub_min_objects,
4475 		nr_cpu_ids, nr_node_ids);
4476 }
4477 
kmem_cache_init_late(void)4478 void __init kmem_cache_init_late(void)
4479 {
4480 }
4481 
4482 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4483 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4484 		   slab_flags_t flags, void (*ctor)(void *))
4485 {
4486 	struct kmem_cache *s;
4487 
4488 	s = find_mergeable(size, align, flags, name, ctor);
4489 	if (s) {
4490 		s->refcount++;
4491 
4492 		/*
4493 		 * Adjust the object sizes so that we clear
4494 		 * the complete object on kzalloc.
4495 		 */
4496 		s->object_size = max(s->object_size, size);
4497 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4498 
4499 		if (sysfs_slab_alias(s, name)) {
4500 			s->refcount--;
4501 			s = NULL;
4502 		}
4503 	}
4504 
4505 	return s;
4506 }
4507 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4508 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4509 {
4510 	int err;
4511 
4512 	err = kmem_cache_open(s, flags);
4513 	if (err)
4514 		return err;
4515 
4516 	/* Mutex is not taken during early boot */
4517 	if (slab_state <= UP)
4518 		return 0;
4519 
4520 	err = sysfs_slab_add(s);
4521 	if (err) {
4522 		__kmem_cache_release(s);
4523 		return err;
4524 	}
4525 
4526 	if (s->flags & SLAB_STORE_USER)
4527 		debugfs_slab_add(s);
4528 
4529 	return 0;
4530 }
4531 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4532 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4533 {
4534 	struct kmem_cache *s;
4535 	void *ret;
4536 
4537 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4538 		return kmalloc_large(size, gfpflags);
4539 
4540 	s = kmalloc_slab(size, gfpflags);
4541 
4542 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4543 		return s;
4544 
4545 	ret = slab_alloc(s, gfpflags, caller, size);
4546 
4547 	/* Honor the call site pointer we received. */
4548 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4549 
4550 	return ret;
4551 }
4552 EXPORT_SYMBOL(__kmalloc_track_caller);
4553 
4554 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4555 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4556 					int node, unsigned long caller)
4557 {
4558 	struct kmem_cache *s;
4559 	void *ret;
4560 
4561 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4562 		ret = kmalloc_large_node(size, gfpflags, node);
4563 
4564 		trace_kmalloc_node(caller, ret,
4565 				   size, PAGE_SIZE << get_order(size),
4566 				   gfpflags, node);
4567 
4568 		return ret;
4569 	}
4570 
4571 	s = kmalloc_slab(size, gfpflags);
4572 
4573 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4574 		return s;
4575 
4576 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4577 
4578 	/* Honor the call site pointer we received. */
4579 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4580 
4581 	return ret;
4582 }
4583 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4584 #endif
4585 
4586 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4587 static int count_inuse(struct page *page)
4588 {
4589 	return page->inuse;
4590 }
4591 
count_total(struct page * page)4592 static int count_total(struct page *page)
4593 {
4594 	return page->objects;
4595 }
4596 #endif
4597 
4598 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page)4599 static void validate_slab(struct kmem_cache *s, struct page *page)
4600 {
4601 	void *p;
4602 	void *addr = page_address(page);
4603 	unsigned long *map;
4604 
4605 	slab_lock(page);
4606 
4607 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4608 		goto unlock;
4609 
4610 	/* Now we know that a valid freelist exists */
4611 	map = get_map(s, page);
4612 	for_each_object(p, s, addr, page->objects) {
4613 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4614 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4615 
4616 		if (!check_object(s, page, p, val))
4617 			break;
4618 	}
4619 	put_map(map);
4620 unlock:
4621 	slab_unlock(page);
4622 }
4623 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n)4624 static int validate_slab_node(struct kmem_cache *s,
4625 		struct kmem_cache_node *n)
4626 {
4627 	unsigned long count = 0;
4628 	struct page *page;
4629 	unsigned long flags;
4630 
4631 	spin_lock_irqsave(&n->list_lock, flags);
4632 
4633 	list_for_each_entry(page, &n->partial, slab_list) {
4634 		validate_slab(s, page);
4635 		count++;
4636 	}
4637 	if (count != n->nr_partial)
4638 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4639 		       s->name, count, n->nr_partial);
4640 
4641 	if (!(s->flags & SLAB_STORE_USER))
4642 		goto out;
4643 
4644 	list_for_each_entry(page, &n->full, slab_list) {
4645 		validate_slab(s, page);
4646 		count++;
4647 	}
4648 	if (count != atomic_long_read(&n->nr_slabs))
4649 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4650 		       s->name, count, atomic_long_read(&n->nr_slabs));
4651 
4652 out:
4653 	spin_unlock_irqrestore(&n->list_lock, flags);
4654 	return count;
4655 }
4656 
validate_slab_cache(struct kmem_cache * s)4657 static long validate_slab_cache(struct kmem_cache *s)
4658 {
4659 	int node;
4660 	unsigned long count = 0;
4661 	struct kmem_cache_node *n;
4662 
4663 	flush_all(s);
4664 	for_each_kmem_cache_node(s, node, n)
4665 		count += validate_slab_node(s, n);
4666 
4667 	return count;
4668 }
4669 
4670 #ifdef CONFIG_DEBUG_FS
4671 /*
4672  * Generate lists of code addresses where slabcache objects are allocated
4673  * and freed.
4674  */
4675 
4676 struct location {
4677 	unsigned long count;
4678 	unsigned long addr;
4679 	long long sum_time;
4680 	long min_time;
4681 	long max_time;
4682 	long min_pid;
4683 	long max_pid;
4684 	DECLARE_BITMAP(cpus, NR_CPUS);
4685 	nodemask_t nodes;
4686 };
4687 
4688 struct loc_track {
4689 	unsigned long max;
4690 	unsigned long count;
4691 	struct location *loc;
4692 	loff_t idx;
4693 };
4694 
4695 static struct dentry *slab_debugfs_root;
4696 
free_loc_track(struct loc_track * t)4697 static void free_loc_track(struct loc_track *t)
4698 {
4699 	if (t->max)
4700 		free_pages((unsigned long)t->loc,
4701 			get_order(sizeof(struct location) * t->max));
4702 }
4703 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)4704 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4705 {
4706 	struct location *l;
4707 	int order;
4708 
4709 	order = get_order(sizeof(struct location) * max);
4710 
4711 	l = (void *)__get_free_pages(flags, order);
4712 	if (!l)
4713 		return 0;
4714 
4715 	if (t->count) {
4716 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4717 		free_loc_track(t);
4718 	}
4719 	t->max = max;
4720 	t->loc = l;
4721 	return 1;
4722 }
4723 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)4724 static int add_location(struct loc_track *t, struct kmem_cache *s,
4725 				const struct track *track)
4726 {
4727 	long start, end, pos;
4728 	struct location *l;
4729 	unsigned long caddr;
4730 	unsigned long age = jiffies - track->when;
4731 
4732 	start = -1;
4733 	end = t->count;
4734 
4735 	for ( ; ; ) {
4736 		pos = start + (end - start + 1) / 2;
4737 
4738 		/*
4739 		 * There is nothing at "end". If we end up there
4740 		 * we need to add something to before end.
4741 		 */
4742 		if (pos == end)
4743 			break;
4744 
4745 		caddr = t->loc[pos].addr;
4746 		if (track->addr == caddr) {
4747 
4748 			l = &t->loc[pos];
4749 			l->count++;
4750 			if (track->when) {
4751 				l->sum_time += age;
4752 				if (age < l->min_time)
4753 					l->min_time = age;
4754 				if (age > l->max_time)
4755 					l->max_time = age;
4756 
4757 				if (track->pid < l->min_pid)
4758 					l->min_pid = track->pid;
4759 				if (track->pid > l->max_pid)
4760 					l->max_pid = track->pid;
4761 
4762 				cpumask_set_cpu(track->cpu,
4763 						to_cpumask(l->cpus));
4764 			}
4765 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4766 			return 1;
4767 		}
4768 
4769 		if (track->addr < caddr)
4770 			end = pos;
4771 		else
4772 			start = pos;
4773 	}
4774 
4775 	/*
4776 	 * Not found. Insert new tracking element.
4777 	 */
4778 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4779 		return 0;
4780 
4781 	l = t->loc + pos;
4782 	if (pos < t->count)
4783 		memmove(l + 1, l,
4784 			(t->count - pos) * sizeof(struct location));
4785 	t->count++;
4786 	l->count = 1;
4787 	l->addr = track->addr;
4788 	l->sum_time = age;
4789 	l->min_time = age;
4790 	l->max_time = age;
4791 	l->min_pid = track->pid;
4792 	l->max_pid = track->pid;
4793 	cpumask_clear(to_cpumask(l->cpus));
4794 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4795 	nodes_clear(l->nodes);
4796 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4797 	return 1;
4798 }
4799 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * obj_map)4800 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4801 		struct page *page, enum track_item alloc,
4802 		unsigned long *obj_map)
4803 {
4804 	void *addr = page_address(page);
4805 	void *p;
4806 
4807 	__fill_map(obj_map, s, page);
4808 
4809 	for_each_object(p, s, addr, page->objects)
4810 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
4811 			add_location(t, s, get_track(s, p, alloc));
4812 }
4813 #endif	/* CONFIG_DEBUG_FS */
4814 #endif	/* CONFIG_SLUB_DEBUG */
4815 
4816 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4817 static void __init resiliency_test(void)
4818 {
4819 	u8 *p;
4820 	int type = KMALLOC_NORMAL;
4821 
4822 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4823 
4824 	pr_err("SLUB resiliency testing\n");
4825 	pr_err("-----------------------\n");
4826 	pr_err("A. Corruption after allocation\n");
4827 
4828 	p = kzalloc(16, GFP_KERNEL);
4829 	p[16] = 0x12;
4830 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4831 	       p + 16);
4832 
4833 	validate_slab_cache(kmalloc_caches[type][4]);
4834 
4835 	/* Hmmm... The next two are dangerous */
4836 	p = kzalloc(32, GFP_KERNEL);
4837 	p[32 + sizeof(void *)] = 0x34;
4838 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4839 	       p);
4840 	pr_err("If allocated object is overwritten then not detectable\n\n");
4841 
4842 	validate_slab_cache(kmalloc_caches[type][5]);
4843 	p = kzalloc(64, GFP_KERNEL);
4844 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4845 	*p = 0x56;
4846 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4847 	       p);
4848 	pr_err("If allocated object is overwritten then not detectable\n\n");
4849 	validate_slab_cache(kmalloc_caches[type][6]);
4850 
4851 	pr_err("\nB. Corruption after free\n");
4852 	p = kzalloc(128, GFP_KERNEL);
4853 	kfree(p);
4854 	*p = 0x78;
4855 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4856 	validate_slab_cache(kmalloc_caches[type][7]);
4857 
4858 	p = kzalloc(256, GFP_KERNEL);
4859 	kfree(p);
4860 	p[50] = 0x9a;
4861 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4862 	validate_slab_cache(kmalloc_caches[type][8]);
4863 
4864 	p = kzalloc(512, GFP_KERNEL);
4865 	kfree(p);
4866 	p[512] = 0xab;
4867 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4868 	validate_slab_cache(kmalloc_caches[type][9]);
4869 }
4870 #else
4871 #ifdef CONFIG_SYSFS
resiliency_test(void)4872 static void resiliency_test(void) {};
4873 #endif
4874 #endif	/* SLUB_RESILIENCY_TEST */
4875 
4876 #ifdef CONFIG_SYSFS
4877 enum slab_stat_type {
4878 	SL_ALL,			/* All slabs */
4879 	SL_PARTIAL,		/* Only partially allocated slabs */
4880 	SL_CPU,			/* Only slabs used for cpu caches */
4881 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4882 	SL_TOTAL		/* Determine object capacity not slabs */
4883 };
4884 
4885 #define SO_ALL		(1 << SL_ALL)
4886 #define SO_PARTIAL	(1 << SL_PARTIAL)
4887 #define SO_CPU		(1 << SL_CPU)
4888 #define SO_OBJECTS	(1 << SL_OBJECTS)
4889 #define SO_TOTAL	(1 << SL_TOTAL)
4890 
4891 #ifdef CONFIG_MEMCG
4892 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4893 
setup_slub_memcg_sysfs(char * str)4894 static int __init setup_slub_memcg_sysfs(char *str)
4895 {
4896 	int v;
4897 
4898 	if (get_option(&str, &v) > 0)
4899 		memcg_sysfs_enabled = v;
4900 
4901 	return 1;
4902 }
4903 
4904 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4905 #endif
4906 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4907 static ssize_t show_slab_objects(struct kmem_cache *s,
4908 			    char *buf, unsigned long flags)
4909 {
4910 	unsigned long total = 0;
4911 	int node;
4912 	int x;
4913 	unsigned long *nodes;
4914 
4915 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4916 	if (!nodes)
4917 		return -ENOMEM;
4918 
4919 	if (flags & SO_CPU) {
4920 		int cpu;
4921 
4922 		for_each_possible_cpu(cpu) {
4923 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4924 							       cpu);
4925 			int node;
4926 			struct page *page;
4927 
4928 			page = READ_ONCE(c->page);
4929 			if (!page)
4930 				continue;
4931 
4932 			node = page_to_nid(page);
4933 			if (flags & SO_TOTAL)
4934 				x = page->objects;
4935 			else if (flags & SO_OBJECTS)
4936 				x = page->inuse;
4937 			else
4938 				x = 1;
4939 
4940 			total += x;
4941 			nodes[node] += x;
4942 
4943 			page = slub_percpu_partial_read_once(c);
4944 			if (page) {
4945 				node = page_to_nid(page);
4946 				if (flags & SO_TOTAL)
4947 					WARN_ON_ONCE(1);
4948 				else if (flags & SO_OBJECTS)
4949 					WARN_ON_ONCE(1);
4950 				else
4951 					x = page->pages;
4952 				total += x;
4953 				nodes[node] += x;
4954 			}
4955 		}
4956 	}
4957 
4958 	/*
4959 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4960 	 * already held which will conflict with an existing lock order:
4961 	 *
4962 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4963 	 *
4964 	 * We don't really need mem_hotplug_lock (to hold off
4965 	 * slab_mem_going_offline_callback) here because slab's memory hot
4966 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4967 	 */
4968 
4969 #ifdef CONFIG_SLUB_DEBUG
4970 	if (flags & SO_ALL) {
4971 		struct kmem_cache_node *n;
4972 
4973 		for_each_kmem_cache_node(s, node, n) {
4974 
4975 			if (flags & SO_TOTAL)
4976 				x = atomic_long_read(&n->total_objects);
4977 			else if (flags & SO_OBJECTS)
4978 				x = atomic_long_read(&n->total_objects) -
4979 					count_partial(n, count_free);
4980 			else
4981 				x = atomic_long_read(&n->nr_slabs);
4982 			total += x;
4983 			nodes[node] += x;
4984 		}
4985 
4986 	} else
4987 #endif
4988 	if (flags & SO_PARTIAL) {
4989 		struct kmem_cache_node *n;
4990 
4991 		for_each_kmem_cache_node(s, node, n) {
4992 			if (flags & SO_TOTAL)
4993 				x = count_partial(n, count_total);
4994 			else if (flags & SO_OBJECTS)
4995 				x = count_partial(n, count_inuse);
4996 			else
4997 				x = n->nr_partial;
4998 			total += x;
4999 			nodes[node] += x;
5000 		}
5001 	}
5002 	x = sprintf(buf, "%lu", total);
5003 #ifdef CONFIG_NUMA
5004 	for (node = 0; node < nr_node_ids; node++)
5005 		if (nodes[node])
5006 			x += sprintf(buf + x, " N%d=%lu",
5007 					node, nodes[node]);
5008 #endif
5009 	kfree(nodes);
5010 	return x + sprintf(buf + x, "\n");
5011 }
5012 
5013 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5014 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5015 
5016 struct slab_attribute {
5017 	struct attribute attr;
5018 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5019 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5020 };
5021 
5022 #define SLAB_ATTR_RO(_name) \
5023 	static struct slab_attribute _name##_attr = \
5024 	__ATTR(_name, 0400, _name##_show, NULL)
5025 
5026 #define SLAB_ATTR(_name) \
5027 	static struct slab_attribute _name##_attr =  \
5028 	__ATTR(_name, 0600, _name##_show, _name##_store)
5029 
slab_size_show(struct kmem_cache * s,char * buf)5030 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5031 {
5032 	return sprintf(buf, "%u\n", s->size);
5033 }
5034 SLAB_ATTR_RO(slab_size);
5035 
align_show(struct kmem_cache * s,char * buf)5036 static ssize_t align_show(struct kmem_cache *s, char *buf)
5037 {
5038 	return sprintf(buf, "%u\n", s->align);
5039 }
5040 SLAB_ATTR_RO(align);
5041 
object_size_show(struct kmem_cache * s,char * buf)5042 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5043 {
5044 	return sprintf(buf, "%u\n", s->object_size);
5045 }
5046 SLAB_ATTR_RO(object_size);
5047 
objs_per_slab_show(struct kmem_cache * s,char * buf)5048 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5049 {
5050 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5051 }
5052 SLAB_ATTR_RO(objs_per_slab);
5053 
order_show(struct kmem_cache * s,char * buf)5054 static ssize_t order_show(struct kmem_cache *s, char *buf)
5055 {
5056 	return sprintf(buf, "%u\n", oo_order(s->oo));
5057 }
5058 SLAB_ATTR_RO(order);
5059 
min_partial_show(struct kmem_cache * s,char * buf)5060 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5061 {
5062 	return sprintf(buf, "%lu\n", s->min_partial);
5063 }
5064 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5065 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5066 				 size_t length)
5067 {
5068 	unsigned long min;
5069 	int err;
5070 
5071 	err = kstrtoul(buf, 10, &min);
5072 	if (err)
5073 		return err;
5074 
5075 	set_min_partial(s, min);
5076 	return length;
5077 }
5078 SLAB_ATTR(min_partial);
5079 
cpu_partial_show(struct kmem_cache * s,char * buf)5080 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5081 {
5082 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5083 }
5084 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5085 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5086 				 size_t length)
5087 {
5088 	unsigned int objects;
5089 	int err;
5090 
5091 	err = kstrtouint(buf, 10, &objects);
5092 	if (err)
5093 		return err;
5094 	if (objects && !kmem_cache_has_cpu_partial(s))
5095 		return -EINVAL;
5096 
5097 	slub_set_cpu_partial(s, objects);
5098 	flush_all(s);
5099 	return length;
5100 }
5101 SLAB_ATTR(cpu_partial);
5102 
ctor_show(struct kmem_cache * s,char * buf)5103 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5104 {
5105 	if (!s->ctor)
5106 		return 0;
5107 	return sprintf(buf, "%pS\n", s->ctor);
5108 }
5109 SLAB_ATTR_RO(ctor);
5110 
aliases_show(struct kmem_cache * s,char * buf)5111 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5112 {
5113 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5114 }
5115 SLAB_ATTR_RO(aliases);
5116 
partial_show(struct kmem_cache * s,char * buf)5117 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5118 {
5119 	return show_slab_objects(s, buf, SO_PARTIAL);
5120 }
5121 SLAB_ATTR_RO(partial);
5122 
cpu_slabs_show(struct kmem_cache * s,char * buf)5123 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5124 {
5125 	return show_slab_objects(s, buf, SO_CPU);
5126 }
5127 SLAB_ATTR_RO(cpu_slabs);
5128 
objects_show(struct kmem_cache * s,char * buf)5129 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5130 {
5131 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5132 }
5133 SLAB_ATTR_RO(objects);
5134 
objects_partial_show(struct kmem_cache * s,char * buf)5135 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5136 {
5137 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5138 }
5139 SLAB_ATTR_RO(objects_partial);
5140 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5141 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5142 {
5143 	int objects = 0;
5144 	int pages = 0;
5145 	int cpu;
5146 	int len;
5147 
5148 	for_each_online_cpu(cpu) {
5149 		struct page *page;
5150 
5151 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5152 
5153 		if (page) {
5154 			pages += page->pages;
5155 			objects += page->pobjects;
5156 		}
5157 	}
5158 
5159 	len = sprintf(buf, "%d(%d)", objects, pages);
5160 
5161 #ifdef CONFIG_SMP
5162 	for_each_online_cpu(cpu) {
5163 		struct page *page;
5164 
5165 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5166 
5167 		if (page && len < PAGE_SIZE - 20)
5168 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5169 				page->pobjects, page->pages);
5170 	}
5171 #endif
5172 	return len + sprintf(buf + len, "\n");
5173 }
5174 SLAB_ATTR_RO(slabs_cpu_partial);
5175 
reclaim_account_show(struct kmem_cache * s,char * buf)5176 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5177 {
5178 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5179 }
5180 SLAB_ATTR_RO(reclaim_account);
5181 
hwcache_align_show(struct kmem_cache * s,char * buf)5182 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5185 }
5186 SLAB_ATTR_RO(hwcache_align);
5187 
5188 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5189 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5190 {
5191 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5192 }
5193 SLAB_ATTR_RO(cache_dma);
5194 #endif
5195 
usersize_show(struct kmem_cache * s,char * buf)5196 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5197 {
5198 	return sprintf(buf, "%u\n", s->usersize);
5199 }
5200 SLAB_ATTR_RO(usersize);
5201 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5202 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5205 }
5206 SLAB_ATTR_RO(destroy_by_rcu);
5207 
5208 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5209 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5210 {
5211 	return show_slab_objects(s, buf, SO_ALL);
5212 }
5213 SLAB_ATTR_RO(slabs);
5214 
total_objects_show(struct kmem_cache * s,char * buf)5215 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5216 {
5217 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5218 }
5219 SLAB_ATTR_RO(total_objects);
5220 
sanity_checks_show(struct kmem_cache * s,char * buf)5221 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5222 {
5223 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5224 }
5225 SLAB_ATTR_RO(sanity_checks);
5226 
trace_show(struct kmem_cache * s,char * buf)5227 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5228 {
5229 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5230 }
5231 SLAB_ATTR_RO(trace);
5232 
red_zone_show(struct kmem_cache * s,char * buf)5233 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5234 {
5235 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5236 }
5237 
5238 SLAB_ATTR_RO(red_zone);
5239 
poison_show(struct kmem_cache * s,char * buf)5240 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5241 {
5242 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5243 }
5244 
5245 SLAB_ATTR_RO(poison);
5246 
store_user_show(struct kmem_cache * s,char * buf)5247 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5248 {
5249 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5250 }
5251 
5252 SLAB_ATTR_RO(store_user);
5253 
validate_show(struct kmem_cache * s,char * buf)5254 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5255 {
5256 	return 0;
5257 }
5258 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5259 static ssize_t validate_store(struct kmem_cache *s,
5260 			const char *buf, size_t length)
5261 {
5262 	int ret = -EINVAL;
5263 
5264 	if (buf[0] == '1') {
5265 		ret = validate_slab_cache(s);
5266 		if (ret >= 0)
5267 			ret = length;
5268 	}
5269 	return ret;
5270 }
5271 SLAB_ATTR(validate);
5272 
5273 #endif /* CONFIG_SLUB_DEBUG */
5274 
5275 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5276 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5277 {
5278 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5279 }
5280 SLAB_ATTR_RO(failslab);
5281 #endif
5282 
shrink_show(struct kmem_cache * s,char * buf)5283 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5284 {
5285 	return 0;
5286 }
5287 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5288 static ssize_t shrink_store(struct kmem_cache *s,
5289 			const char *buf, size_t length)
5290 {
5291 	if (buf[0] == '1')
5292 		kmem_cache_shrink(s);
5293 	else
5294 		return -EINVAL;
5295 	return length;
5296 }
5297 SLAB_ATTR(shrink);
5298 
5299 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5300 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5301 {
5302 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5303 }
5304 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5305 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5306 				const char *buf, size_t length)
5307 {
5308 	unsigned int ratio;
5309 	int err;
5310 
5311 	err = kstrtouint(buf, 10, &ratio);
5312 	if (err)
5313 		return err;
5314 	if (ratio > 100)
5315 		return -ERANGE;
5316 
5317 	s->remote_node_defrag_ratio = ratio * 10;
5318 
5319 	return length;
5320 }
5321 SLAB_ATTR(remote_node_defrag_ratio);
5322 #endif
5323 
5324 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5325 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5326 {
5327 	unsigned long sum  = 0;
5328 	int cpu;
5329 	int len;
5330 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5331 
5332 	if (!data)
5333 		return -ENOMEM;
5334 
5335 	for_each_online_cpu(cpu) {
5336 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5337 
5338 		data[cpu] = x;
5339 		sum += x;
5340 	}
5341 
5342 	len = sprintf(buf, "%lu", sum);
5343 
5344 #ifdef CONFIG_SMP
5345 	for_each_online_cpu(cpu) {
5346 		if (data[cpu] && len < PAGE_SIZE - 20)
5347 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5348 	}
5349 #endif
5350 	kfree(data);
5351 	return len + sprintf(buf + len, "\n");
5352 }
5353 
clear_stat(struct kmem_cache * s,enum stat_item si)5354 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5355 {
5356 	int cpu;
5357 
5358 	for_each_online_cpu(cpu)
5359 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5360 }
5361 
5362 #define STAT_ATTR(si, text) 					\
5363 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5364 {								\
5365 	return show_stat(s, buf, si);				\
5366 }								\
5367 static ssize_t text##_store(struct kmem_cache *s,		\
5368 				const char *buf, size_t length)	\
5369 {								\
5370 	if (buf[0] != '0')					\
5371 		return -EINVAL;					\
5372 	clear_stat(s, si);					\
5373 	return length;						\
5374 }								\
5375 SLAB_ATTR(text);						\
5376 
5377 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5378 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5379 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5380 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5381 STAT_ATTR(FREE_FROZEN, free_frozen);
5382 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5383 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5384 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5385 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5386 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5387 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5388 STAT_ATTR(FREE_SLAB, free_slab);
5389 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5390 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5391 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5392 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5393 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5394 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5395 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5396 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5397 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5398 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5399 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5400 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5401 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5402 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5403 #endif	/* CONFIG_SLUB_STATS */
5404 
5405 static struct attribute *slab_attrs[] = {
5406 	&slab_size_attr.attr,
5407 	&object_size_attr.attr,
5408 	&objs_per_slab_attr.attr,
5409 	&order_attr.attr,
5410 	&min_partial_attr.attr,
5411 	&cpu_partial_attr.attr,
5412 	&objects_attr.attr,
5413 	&objects_partial_attr.attr,
5414 	&partial_attr.attr,
5415 	&cpu_slabs_attr.attr,
5416 	&ctor_attr.attr,
5417 	&aliases_attr.attr,
5418 	&align_attr.attr,
5419 	&hwcache_align_attr.attr,
5420 	&reclaim_account_attr.attr,
5421 	&destroy_by_rcu_attr.attr,
5422 	&shrink_attr.attr,
5423 	&slabs_cpu_partial_attr.attr,
5424 #ifdef CONFIG_SLUB_DEBUG
5425 	&total_objects_attr.attr,
5426 	&slabs_attr.attr,
5427 	&sanity_checks_attr.attr,
5428 	&trace_attr.attr,
5429 	&red_zone_attr.attr,
5430 	&poison_attr.attr,
5431 	&store_user_attr.attr,
5432 	&validate_attr.attr,
5433 #endif
5434 #ifdef CONFIG_ZONE_DMA
5435 	&cache_dma_attr.attr,
5436 #endif
5437 #ifdef CONFIG_NUMA
5438 	&remote_node_defrag_ratio_attr.attr,
5439 #endif
5440 #ifdef CONFIG_SLUB_STATS
5441 	&alloc_fastpath_attr.attr,
5442 	&alloc_slowpath_attr.attr,
5443 	&free_fastpath_attr.attr,
5444 	&free_slowpath_attr.attr,
5445 	&free_frozen_attr.attr,
5446 	&free_add_partial_attr.attr,
5447 	&free_remove_partial_attr.attr,
5448 	&alloc_from_partial_attr.attr,
5449 	&alloc_slab_attr.attr,
5450 	&alloc_refill_attr.attr,
5451 	&alloc_node_mismatch_attr.attr,
5452 	&free_slab_attr.attr,
5453 	&cpuslab_flush_attr.attr,
5454 	&deactivate_full_attr.attr,
5455 	&deactivate_empty_attr.attr,
5456 	&deactivate_to_head_attr.attr,
5457 	&deactivate_to_tail_attr.attr,
5458 	&deactivate_remote_frees_attr.attr,
5459 	&deactivate_bypass_attr.attr,
5460 	&order_fallback_attr.attr,
5461 	&cmpxchg_double_fail_attr.attr,
5462 	&cmpxchg_double_cpu_fail_attr.attr,
5463 	&cpu_partial_alloc_attr.attr,
5464 	&cpu_partial_free_attr.attr,
5465 	&cpu_partial_node_attr.attr,
5466 	&cpu_partial_drain_attr.attr,
5467 #endif
5468 #ifdef CONFIG_FAILSLAB
5469 	&failslab_attr.attr,
5470 #endif
5471 	&usersize_attr.attr,
5472 
5473 	NULL
5474 };
5475 
5476 static const struct attribute_group slab_attr_group = {
5477 	.attrs = slab_attrs,
5478 };
5479 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5480 static ssize_t slab_attr_show(struct kobject *kobj,
5481 				struct attribute *attr,
5482 				char *buf)
5483 {
5484 	struct slab_attribute *attribute;
5485 	struct kmem_cache *s;
5486 	int err;
5487 
5488 	attribute = to_slab_attr(attr);
5489 	s = to_slab(kobj);
5490 
5491 	if (!attribute->show)
5492 		return -EIO;
5493 
5494 	err = attribute->show(s, buf);
5495 
5496 	return err;
5497 }
5498 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5499 static ssize_t slab_attr_store(struct kobject *kobj,
5500 				struct attribute *attr,
5501 				const char *buf, size_t len)
5502 {
5503 	struct slab_attribute *attribute;
5504 	struct kmem_cache *s;
5505 	int err;
5506 
5507 	attribute = to_slab_attr(attr);
5508 	s = to_slab(kobj);
5509 
5510 	if (!attribute->store)
5511 		return -EIO;
5512 
5513 	err = attribute->store(s, buf, len);
5514 	return err;
5515 }
5516 
kmem_cache_release(struct kobject * k)5517 static void kmem_cache_release(struct kobject *k)
5518 {
5519 	slab_kmem_cache_release(to_slab(k));
5520 }
5521 
5522 static const struct sysfs_ops slab_sysfs_ops = {
5523 	.show = slab_attr_show,
5524 	.store = slab_attr_store,
5525 };
5526 
5527 static struct kobj_type slab_ktype = {
5528 	.sysfs_ops = &slab_sysfs_ops,
5529 	.release = kmem_cache_release,
5530 };
5531 
5532 static struct kset *slab_kset;
5533 
cache_kset(struct kmem_cache * s)5534 static inline struct kset *cache_kset(struct kmem_cache *s)
5535 {
5536 	return slab_kset;
5537 }
5538 
5539 #define ID_STR_LENGTH 64
5540 
5541 /* Create a unique string id for a slab cache:
5542  *
5543  * Format	:[flags-]size
5544  */
create_unique_id(struct kmem_cache * s)5545 static char *create_unique_id(struct kmem_cache *s)
5546 {
5547 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5548 	char *p = name;
5549 
5550 	if (!name)
5551 		return ERR_PTR(-ENOMEM);
5552 
5553 	*p++ = ':';
5554 	/*
5555 	 * First flags affecting slabcache operations. We will only
5556 	 * get here for aliasable slabs so we do not need to support
5557 	 * too many flags. The flags here must cover all flags that
5558 	 * are matched during merging to guarantee that the id is
5559 	 * unique.
5560 	 */
5561 	if (s->flags & SLAB_CACHE_DMA)
5562 		*p++ = 'd';
5563 	if (s->flags & SLAB_CACHE_DMA32)
5564 		*p++ = 'D';
5565 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5566 		*p++ = 'a';
5567 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5568 		*p++ = 'F';
5569 	if (s->flags & SLAB_ACCOUNT)
5570 		*p++ = 'A';
5571 	if (p != name + 1)
5572 		*p++ = '-';
5573 	p += sprintf(p, "%07u", s->size);
5574 
5575 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5576 	return name;
5577 }
5578 
sysfs_slab_add(struct kmem_cache * s)5579 static int sysfs_slab_add(struct kmem_cache *s)
5580 {
5581 	int err;
5582 	const char *name;
5583 	struct kset *kset = cache_kset(s);
5584 	int unmergeable = slab_unmergeable(s);
5585 
5586 	if (!kset) {
5587 		kobject_init(&s->kobj, &slab_ktype);
5588 		return 0;
5589 	}
5590 
5591 	if (!unmergeable && disable_higher_order_debug &&
5592 			(slub_debug & DEBUG_METADATA_FLAGS))
5593 		unmergeable = 1;
5594 
5595 	if (unmergeable) {
5596 		/*
5597 		 * Slabcache can never be merged so we can use the name proper.
5598 		 * This is typically the case for debug situations. In that
5599 		 * case we can catch duplicate names easily.
5600 		 */
5601 		sysfs_remove_link(&slab_kset->kobj, s->name);
5602 		name = s->name;
5603 	} else {
5604 		/*
5605 		 * Create a unique name for the slab as a target
5606 		 * for the symlinks.
5607 		 */
5608 		name = create_unique_id(s);
5609 		if (IS_ERR(name))
5610 			return PTR_ERR(name);
5611 	}
5612 
5613 	s->kobj.kset = kset;
5614 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5615 	if (err)
5616 		goto out;
5617 
5618 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5619 	if (err)
5620 		goto out_del_kobj;
5621 
5622 	if (!unmergeable) {
5623 		/* Setup first alias */
5624 		sysfs_slab_alias(s, s->name);
5625 	}
5626 out:
5627 	if (!unmergeable)
5628 		kfree(name);
5629 	return err;
5630 out_del_kobj:
5631 	kobject_del(&s->kobj);
5632 	goto out;
5633 }
5634 
sysfs_slab_unlink(struct kmem_cache * s)5635 void sysfs_slab_unlink(struct kmem_cache *s)
5636 {
5637 	if (slab_state >= FULL)
5638 		kobject_del(&s->kobj);
5639 }
5640 
sysfs_slab_release(struct kmem_cache * s)5641 void sysfs_slab_release(struct kmem_cache *s)
5642 {
5643 	if (slab_state >= FULL)
5644 		kobject_put(&s->kobj);
5645 }
5646 
5647 /*
5648  * Need to buffer aliases during bootup until sysfs becomes
5649  * available lest we lose that information.
5650  */
5651 struct saved_alias {
5652 	struct kmem_cache *s;
5653 	const char *name;
5654 	struct saved_alias *next;
5655 };
5656 
5657 static struct saved_alias *alias_list;
5658 
sysfs_slab_alias(struct kmem_cache * s,const char * name)5659 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5660 {
5661 	struct saved_alias *al;
5662 
5663 	if (slab_state == FULL) {
5664 		/*
5665 		 * If we have a leftover link then remove it.
5666 		 */
5667 		sysfs_remove_link(&slab_kset->kobj, name);
5668 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5669 	}
5670 
5671 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5672 	if (!al)
5673 		return -ENOMEM;
5674 
5675 	al->s = s;
5676 	al->name = name;
5677 	al->next = alias_list;
5678 	alias_list = al;
5679 	return 0;
5680 }
5681 
slab_sysfs_init(void)5682 static int __init slab_sysfs_init(void)
5683 {
5684 	struct kmem_cache *s;
5685 	int err;
5686 
5687 	mutex_lock(&slab_mutex);
5688 
5689 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5690 	if (!slab_kset) {
5691 		mutex_unlock(&slab_mutex);
5692 		pr_err("Cannot register slab subsystem.\n");
5693 		return -ENOSYS;
5694 	}
5695 
5696 	slab_state = FULL;
5697 
5698 	list_for_each_entry(s, &slab_caches, list) {
5699 		err = sysfs_slab_add(s);
5700 		if (err)
5701 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5702 			       s->name);
5703 	}
5704 
5705 	while (alias_list) {
5706 		struct saved_alias *al = alias_list;
5707 
5708 		alias_list = alias_list->next;
5709 		err = sysfs_slab_alias(al->s, al->name);
5710 		if (err)
5711 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5712 			       al->name);
5713 		kfree(al);
5714 	}
5715 
5716 	mutex_unlock(&slab_mutex);
5717 	resiliency_test();
5718 	return 0;
5719 }
5720 
5721 __initcall(slab_sysfs_init);
5722 #endif /* CONFIG_SYSFS */
5723 
5724 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)5725 static int slab_debugfs_show(struct seq_file *seq, void *v)
5726 {
5727 	struct loc_track *t = seq->private;
5728 	struct location *l;
5729 	unsigned long idx;
5730 
5731 	idx = (unsigned long) t->idx;
5732 	if (idx < t->count) {
5733 		l = &t->loc[idx];
5734 
5735 		seq_printf(seq, "%7ld ", l->count);
5736 
5737 		if (l->addr)
5738 			seq_printf(seq, "%pS", (void *)l->addr);
5739 		else
5740 			seq_puts(seq, "<not-available>");
5741 
5742 		if (l->sum_time != l->min_time) {
5743 			seq_printf(seq, " age=%ld/%llu/%ld",
5744 				l->min_time, div_u64(l->sum_time, l->count),
5745 				l->max_time);
5746 		} else
5747 			seq_printf(seq, " age=%ld", l->min_time);
5748 
5749 		if (l->min_pid != l->max_pid)
5750 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5751 		else
5752 			seq_printf(seq, " pid=%ld",
5753 				l->min_pid);
5754 
5755 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5756 			seq_printf(seq, " cpus=%*pbl",
5757 				 cpumask_pr_args(to_cpumask(l->cpus)));
5758 
5759 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5760 			seq_printf(seq, " nodes=%*pbl",
5761 				 nodemask_pr_args(&l->nodes));
5762 
5763 		seq_puts(seq, "\n");
5764 	}
5765 
5766 	if (!idx && !t->count)
5767 		seq_puts(seq, "No data\n");
5768 
5769 	return 0;
5770 }
5771 
slab_debugfs_stop(struct seq_file * seq,void * v)5772 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5773 {
5774 }
5775 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)5776 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5777 {
5778 	struct loc_track *t = seq->private;
5779 
5780 	t->idx = ++(*ppos);
5781 	if (*ppos <= t->count)
5782 		return ppos;
5783 
5784 	return NULL;
5785 }
5786 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)5787 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5788 {
5789 	struct loc_track *t = seq->private;
5790 
5791 	t->idx = *ppos;
5792 	return ppos;
5793 }
5794 
5795 static const struct seq_operations slab_debugfs_sops = {
5796 	.start  = slab_debugfs_start,
5797 	.next   = slab_debugfs_next,
5798 	.stop   = slab_debugfs_stop,
5799 	.show   = slab_debugfs_show,
5800 };
5801 
slab_debug_trace_open(struct inode * inode,struct file * filep)5802 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5803 {
5804 
5805 	struct kmem_cache_node *n;
5806 	enum track_item alloc;
5807 	int node;
5808 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5809 						sizeof(struct loc_track));
5810 	struct kmem_cache *s = file_inode(filep)->i_private;
5811 	unsigned long *obj_map;
5812 
5813 	if (!t)
5814 		return -ENOMEM;
5815 
5816 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5817 	if (!obj_map) {
5818 		seq_release_private(inode, filep);
5819 		return -ENOMEM;
5820 	}
5821 
5822 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5823 		alloc = TRACK_ALLOC;
5824 	else
5825 		alloc = TRACK_FREE;
5826 
5827 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
5828 		bitmap_free(obj_map);
5829 		seq_release_private(inode, filep);
5830 		return -ENOMEM;
5831 	}
5832 
5833 	/* Push back cpu slabs */
5834 	flush_all(s);
5835 
5836 	for_each_kmem_cache_node(s, node, n) {
5837 		unsigned long flags;
5838 		struct page *page;
5839 
5840 		if (!atomic_long_read(&n->nr_slabs))
5841 			continue;
5842 
5843 		spin_lock_irqsave(&n->list_lock, flags);
5844 		list_for_each_entry(page, &n->partial, slab_list)
5845 			process_slab(t, s, page, alloc, obj_map);
5846 		list_for_each_entry(page, &n->full, slab_list)
5847 			process_slab(t, s, page, alloc, obj_map);
5848 		spin_unlock_irqrestore(&n->list_lock, flags);
5849 	}
5850 
5851 	bitmap_free(obj_map);
5852 	return 0;
5853 }
5854 
slab_debug_trace_release(struct inode * inode,struct file * file)5855 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5856 {
5857 	struct seq_file *seq = file->private_data;
5858 	struct loc_track *t = seq->private;
5859 
5860 	free_loc_track(t);
5861 	return seq_release_private(inode, file);
5862 }
5863 
5864 static const struct file_operations slab_debugfs_fops = {
5865 	.open    = slab_debug_trace_open,
5866 	.read    = seq_read,
5867 	.llseek  = seq_lseek,
5868 	.release = slab_debug_trace_release,
5869 };
5870 
debugfs_slab_add(struct kmem_cache * s)5871 static void debugfs_slab_add(struct kmem_cache *s)
5872 {
5873 	struct dentry *slab_cache_dir;
5874 
5875 	if (unlikely(!slab_debugfs_root))
5876 		return;
5877 
5878 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5879 
5880 	debugfs_create_file("alloc_traces", 0400,
5881 		slab_cache_dir, s, &slab_debugfs_fops);
5882 
5883 	debugfs_create_file("free_traces", 0400,
5884 		slab_cache_dir, s, &slab_debugfs_fops);
5885 }
5886 
debugfs_slab_release(struct kmem_cache * s)5887 void debugfs_slab_release(struct kmem_cache *s)
5888 {
5889 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5890 }
5891 
slab_debugfs_init(void)5892 static int __init slab_debugfs_init(void)
5893 {
5894 	struct kmem_cache *s;
5895 
5896 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
5897 
5898 	list_for_each_entry(s, &slab_caches, list)
5899 		if (s->flags & SLAB_STORE_USER)
5900 			debugfs_slab_add(s);
5901 
5902 	return 0;
5903 
5904 }
5905 __initcall(slab_debugfs_init);
5906 #endif
5907 /*
5908  * The /proc/slabinfo ABI
5909  */
5910 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5911 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5912 {
5913 	unsigned long nr_slabs = 0;
5914 	unsigned long nr_objs = 0;
5915 	unsigned long nr_free = 0;
5916 	int node;
5917 	struct kmem_cache_node *n;
5918 
5919 	for_each_kmem_cache_node(s, node, n) {
5920 		nr_slabs += node_nr_slabs(n);
5921 		nr_objs += node_nr_objs(n);
5922 		nr_free += count_partial(n, count_free);
5923 	}
5924 
5925 	sinfo->active_objs = nr_objs - nr_free;
5926 	sinfo->num_objs = nr_objs;
5927 	sinfo->active_slabs = nr_slabs;
5928 	sinfo->num_slabs = nr_slabs;
5929 	sinfo->objects_per_slab = oo_objects(s->oo);
5930 	sinfo->cache_order = oo_order(s->oo);
5931 }
5932 EXPORT_SYMBOL_GPL(get_slabinfo);
5933 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5934 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5935 {
5936 }
5937 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)5938 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5939 		       size_t count, loff_t *ppos)
5940 {
5941 	return -EIO;
5942 }
5943 #endif /* CONFIG_SLUB_DEBUG */
5944