• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/mm_inline.h>
42 
43 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 
45 #include "internal.h"
46 
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/shmem_fs.h>
49 #include <trace/hooks/mm.h>
50 
51 static struct vfsmount *shm_mnt;
52 
53 #ifdef CONFIG_SHMEM
54 /*
55  * This virtual memory filesystem is heavily based on the ramfs. It
56  * extends ramfs by the ability to use swap and honor resource limits
57  * which makes it a completely usable filesystem.
58  */
59 
60 #include <linux/xattr.h>
61 #include <linux/exportfs.h>
62 #include <linux/posix_acl.h>
63 #include <linux/posix_acl_xattr.h>
64 #include <linux/mman.h>
65 #include <linux/string.h>
66 #include <linux/slab.h>
67 #include <linux/backing-dev.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/writeback.h>
70 #include <linux/blkdev.h>
71 #include <linux/pagevec.h>
72 #include <linux/percpu_counter.h>
73 #include <linux/falloc.h>
74 #include <linux/splice.h>
75 #include <linux/security.h>
76 #include <linux/swapops.h>
77 #include <linux/mempolicy.h>
78 #include <linux/namei.h>
79 #include <linux/ctype.h>
80 #include <linux/migrate.h>
81 #include <linux/highmem.h>
82 #include <linux/seq_file.h>
83 #include <linux/magic.h>
84 #include <linux/syscalls.h>
85 #include <linux/fcntl.h>
86 #include <uapi/linux/memfd.h>
87 #include <linux/userfaultfd_k.h>
88 #include <linux/rmap.h>
89 #include <linux/uuid.h>
90 
91 #include <linux/uaccess.h>
92 
93 #include "internal.h"
94 
95 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
96 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
97 
98 /* Pretend that each entry is of this size in directory's i_size */
99 #define BOGO_DIRENT_SIZE 20
100 
101 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
102 #define SHORT_SYMLINK_LEN 128
103 
104 /*
105  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
106  * inode->i_private (with i_mutex making sure that it has only one user at
107  * a time): we would prefer not to enlarge the shmem inode just for that.
108  */
109 struct shmem_falloc {
110 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
111 	pgoff_t start;		/* start of range currently being fallocated */
112 	pgoff_t next;		/* the next page offset to be fallocated */
113 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
114 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
115 };
116 
117 struct shmem_options {
118 	unsigned long long blocks;
119 	unsigned long long inodes;
120 	struct mempolicy *mpol;
121 	kuid_t uid;
122 	kgid_t gid;
123 	umode_t mode;
124 	bool full_inums;
125 	int huge;
126 	int seen;
127 #define SHMEM_SEEN_BLOCKS 1
128 #define SHMEM_SEEN_INODES 2
129 #define SHMEM_SEEN_HUGE 4
130 #define SHMEM_SEEN_INUMS 8
131 };
132 
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
144 }
145 #endif
146 
147 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
148 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
149 				struct shmem_inode_info *info, pgoff_t index);
150 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
151 			     struct page **pagep, enum sgp_type sgp,
152 			     gfp_t gfp, struct vm_area_struct *vma,
153 			     vm_fault_t *fault_type);
154 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
155 		struct page **pagep, enum sgp_type sgp,
156 		gfp_t gfp, struct vm_area_struct *vma,
157 		struct vm_fault *vmf, vm_fault_t *fault_type);
158 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)159 int shmem_getpage(struct inode *inode, pgoff_t index,
160 		struct page **pagep, enum sgp_type sgp)
161 {
162 	return shmem_getpage_gfp(inode, index, pagep, sgp,
163 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
164 }
165 
SHMEM_SB(struct super_block * sb)166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 	return sb->s_fs_info;
169 }
170 
171 /*
172  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173  * for shared memory and for shared anonymous (/dev/zero) mappings
174  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175  * consistent with the pre-accounting of private mappings ...
176  */
shmem_acct_size(unsigned long flags,loff_t size)177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 	return (flags & VM_NORESERVE) ?
180 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182 
shmem_unacct_size(unsigned long flags,loff_t size)183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 	if (!(flags & VM_NORESERVE))
186 		vm_unacct_memory(VM_ACCT(size));
187 }
188 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)189 static inline int shmem_reacct_size(unsigned long flags,
190 		loff_t oldsize, loff_t newsize)
191 {
192 	if (!(flags & VM_NORESERVE)) {
193 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 			return security_vm_enough_memory_mm(current->mm,
195 					VM_ACCT(newsize) - VM_ACCT(oldsize));
196 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 	}
199 	return 0;
200 }
201 
202 /*
203  * ... whereas tmpfs objects are accounted incrementally as
204  * pages are allocated, in order to allow large sparse files.
205  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
206  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207  */
shmem_acct_block(unsigned long flags,long pages)208 static inline int shmem_acct_block(unsigned long flags, long pages)
209 {
210 	if (!(flags & VM_NORESERVE))
211 		return 0;
212 
213 	return security_vm_enough_memory_mm(current->mm,
214 			pages * VM_ACCT(PAGE_SIZE));
215 }
216 
shmem_unacct_blocks(unsigned long flags,long pages)217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222 
shmem_inode_acct_block(struct inode * inode,long pages)223 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (shmem_acct_block(info->flags, pages))
229 		return false;
230 
231 	if (sbinfo->max_blocks) {
232 		if (percpu_counter_compare(&sbinfo->used_blocks,
233 					   sbinfo->max_blocks - pages) > 0)
234 			goto unacct;
235 		percpu_counter_add(&sbinfo->used_blocks, pages);
236 	}
237 
238 	return true;
239 
240 unacct:
241 	shmem_unacct_blocks(info->flags, pages);
242 	return false;
243 }
244 
shmem_inode_unacct_blocks(struct inode * inode,long pages)245 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
246 {
247 	struct shmem_inode_info *info = SHMEM_I(inode);
248 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
249 
250 	if (sbinfo->max_blocks)
251 		percpu_counter_sub(&sbinfo->used_blocks, pages);
252 	shmem_unacct_blocks(info->flags, pages);
253 }
254 
255 static const struct super_operations shmem_ops;
256 static const struct address_space_operations shmem_aops;
257 static const struct file_operations shmem_file_operations;
258 static const struct inode_operations shmem_inode_operations;
259 static const struct inode_operations shmem_dir_inode_operations;
260 static const struct inode_operations shmem_special_inode_operations;
261 static const struct vm_operations_struct shmem_vm_ops;
262 static struct file_system_type shmem_fs_type;
263 
vma_is_shmem(struct vm_area_struct * vma)264 bool vma_is_shmem(struct vm_area_struct *vma)
265 {
266 	return vma->vm_ops == &shmem_vm_ops;
267 }
268 
269 static LIST_HEAD(shmem_swaplist);
270 static DEFINE_MUTEX(shmem_swaplist_mutex);
271 
272 /*
273  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
274  * produces a novel ino for the newly allocated inode.
275  *
276  * It may also be called when making a hard link to permit the space needed by
277  * each dentry. However, in that case, no new inode number is needed since that
278  * internally draws from another pool of inode numbers (currently global
279  * get_next_ino()). This case is indicated by passing NULL as inop.
280  */
281 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)282 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
283 {
284 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
285 	ino_t ino;
286 
287 	if (!(sb->s_flags & SB_KERNMOUNT)) {
288 		spin_lock(&sbinfo->stat_lock);
289 		if (sbinfo->max_inodes) {
290 			if (!sbinfo->free_inodes) {
291 				spin_unlock(&sbinfo->stat_lock);
292 				return -ENOSPC;
293 			}
294 			sbinfo->free_inodes--;
295 		}
296 		if (inop) {
297 			ino = sbinfo->next_ino++;
298 			if (unlikely(is_zero_ino(ino)))
299 				ino = sbinfo->next_ino++;
300 			if (unlikely(!sbinfo->full_inums &&
301 				     ino > UINT_MAX)) {
302 				/*
303 				 * Emulate get_next_ino uint wraparound for
304 				 * compatibility
305 				 */
306 				if (IS_ENABLED(CONFIG_64BIT))
307 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
308 						__func__, MINOR(sb->s_dev));
309 				sbinfo->next_ino = 1;
310 				ino = sbinfo->next_ino++;
311 			}
312 			*inop = ino;
313 		}
314 		spin_unlock(&sbinfo->stat_lock);
315 	} else if (inop) {
316 		/*
317 		 * __shmem_file_setup, one of our callers, is lock-free: it
318 		 * doesn't hold stat_lock in shmem_reserve_inode since
319 		 * max_inodes is always 0, and is called from potentially
320 		 * unknown contexts. As such, use a per-cpu batched allocator
321 		 * which doesn't require the per-sb stat_lock unless we are at
322 		 * the batch boundary.
323 		 *
324 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
325 		 * shmem mounts are not exposed to userspace, so we don't need
326 		 * to worry about things like glibc compatibility.
327 		 */
328 		ino_t *next_ino;
329 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
330 		ino = *next_ino;
331 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
332 			spin_lock(&sbinfo->stat_lock);
333 			ino = sbinfo->next_ino;
334 			sbinfo->next_ino += SHMEM_INO_BATCH;
335 			spin_unlock(&sbinfo->stat_lock);
336 			if (unlikely(is_zero_ino(ino)))
337 				ino++;
338 		}
339 		*inop = ino;
340 		*next_ino = ++ino;
341 		put_cpu();
342 	}
343 
344 	return 0;
345 }
346 
shmem_free_inode(struct super_block * sb)347 static void shmem_free_inode(struct super_block *sb)
348 {
349 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 	if (sbinfo->max_inodes) {
351 		spin_lock(&sbinfo->stat_lock);
352 		sbinfo->free_inodes++;
353 		spin_unlock(&sbinfo->stat_lock);
354 	}
355 }
356 
357 /**
358  * shmem_recalc_inode - recalculate the block usage of an inode
359  * @inode: inode to recalc
360  *
361  * We have to calculate the free blocks since the mm can drop
362  * undirtied hole pages behind our back.
363  *
364  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
365  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
366  *
367  * It has to be called with the spinlock held.
368  */
shmem_recalc_inode(struct inode * inode)369 static void shmem_recalc_inode(struct inode *inode)
370 {
371 	struct shmem_inode_info *info = SHMEM_I(inode);
372 	long freed;
373 
374 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
375 	if (freed > 0) {
376 		info->alloced -= freed;
377 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
378 		shmem_inode_unacct_blocks(inode, freed);
379 	}
380 }
381 
shmem_charge(struct inode * inode,long pages)382 bool shmem_charge(struct inode *inode, long pages)
383 {
384 	struct shmem_inode_info *info = SHMEM_I(inode);
385 	unsigned long flags;
386 
387 	if (!shmem_inode_acct_block(inode, pages))
388 		return false;
389 
390 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
391 	inode->i_mapping->nrpages += pages;
392 
393 	spin_lock_irqsave(&info->lock, flags);
394 	info->alloced += pages;
395 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
396 	shmem_recalc_inode(inode);
397 	spin_unlock_irqrestore(&info->lock, flags);
398 
399 	return true;
400 }
401 
shmem_uncharge(struct inode * inode,long pages)402 void shmem_uncharge(struct inode *inode, long pages)
403 {
404 	struct shmem_inode_info *info = SHMEM_I(inode);
405 	unsigned long flags;
406 
407 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
408 
409 	spin_lock_irqsave(&info->lock, flags);
410 	info->alloced -= pages;
411 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
412 	shmem_recalc_inode(inode);
413 	spin_unlock_irqrestore(&info->lock, flags);
414 
415 	shmem_inode_unacct_blocks(inode, pages);
416 }
417 
418 /*
419  * Replace item expected in xarray by a new item, while holding xa_lock.
420  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)421 static int shmem_replace_entry(struct address_space *mapping,
422 			pgoff_t index, void *expected, void *replacement)
423 {
424 	XA_STATE(xas, &mapping->i_pages, index);
425 	void *item;
426 
427 	VM_BUG_ON(!expected);
428 	VM_BUG_ON(!replacement);
429 	item = xas_load(&xas);
430 	if (item != expected)
431 		return -ENOENT;
432 	xas_store(&xas, replacement);
433 	return 0;
434 }
435 
436 /*
437  * Sometimes, before we decide whether to proceed or to fail, we must check
438  * that an entry was not already brought back from swap by a racing thread.
439  *
440  * Checking page is not enough: by the time a SwapCache page is locked, it
441  * might be reused, and again be SwapCache, using the same swap as before.
442  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)443 static bool shmem_confirm_swap(struct address_space *mapping,
444 			       pgoff_t index, swp_entry_t swap)
445 {
446 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
447 }
448 
449 /*
450  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
451  *
452  * SHMEM_HUGE_NEVER:
453  *	disables huge pages for the mount;
454  * SHMEM_HUGE_ALWAYS:
455  *	enables huge pages for the mount;
456  * SHMEM_HUGE_WITHIN_SIZE:
457  *	only allocate huge pages if the page will be fully within i_size,
458  *	also respect fadvise()/madvise() hints;
459  * SHMEM_HUGE_ADVISE:
460  *	only allocate huge pages if requested with fadvise()/madvise();
461  */
462 
463 #define SHMEM_HUGE_NEVER	0
464 #define SHMEM_HUGE_ALWAYS	1
465 #define SHMEM_HUGE_WITHIN_SIZE	2
466 #define SHMEM_HUGE_ADVISE	3
467 
468 /*
469  * Special values.
470  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
471  *
472  * SHMEM_HUGE_DENY:
473  *	disables huge on shm_mnt and all mounts, for emergency use;
474  * SHMEM_HUGE_FORCE:
475  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
476  *
477  */
478 #define SHMEM_HUGE_DENY		(-1)
479 #define SHMEM_HUGE_FORCE	(-2)
480 
481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
482 /* ifdef here to avoid bloating shmem.o when not necessary */
483 
484 static int shmem_huge __read_mostly;
485 
486 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)487 static int shmem_parse_huge(const char *str)
488 {
489 	if (!strcmp(str, "never"))
490 		return SHMEM_HUGE_NEVER;
491 	if (!strcmp(str, "always"))
492 		return SHMEM_HUGE_ALWAYS;
493 	if (!strcmp(str, "within_size"))
494 		return SHMEM_HUGE_WITHIN_SIZE;
495 	if (!strcmp(str, "advise"))
496 		return SHMEM_HUGE_ADVISE;
497 	if (!strcmp(str, "deny"))
498 		return SHMEM_HUGE_DENY;
499 	if (!strcmp(str, "force"))
500 		return SHMEM_HUGE_FORCE;
501 	return -EINVAL;
502 }
503 #endif
504 
505 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)506 static const char *shmem_format_huge(int huge)
507 {
508 	switch (huge) {
509 	case SHMEM_HUGE_NEVER:
510 		return "never";
511 	case SHMEM_HUGE_ALWAYS:
512 		return "always";
513 	case SHMEM_HUGE_WITHIN_SIZE:
514 		return "within_size";
515 	case SHMEM_HUGE_ADVISE:
516 		return "advise";
517 	case SHMEM_HUGE_DENY:
518 		return "deny";
519 	case SHMEM_HUGE_FORCE:
520 		return "force";
521 	default:
522 		VM_BUG_ON(1);
523 		return "bad_val";
524 	}
525 }
526 #endif
527 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)528 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
529 		struct shrink_control *sc, unsigned long nr_to_split)
530 {
531 	LIST_HEAD(list), *pos, *next;
532 	LIST_HEAD(to_remove);
533 	struct inode *inode;
534 	struct shmem_inode_info *info;
535 	struct page *page;
536 	unsigned long batch = sc ? sc->nr_to_scan : 128;
537 	int split = 0;
538 
539 	if (list_empty(&sbinfo->shrinklist))
540 		return SHRINK_STOP;
541 
542 	spin_lock(&sbinfo->shrinklist_lock);
543 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
544 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
545 
546 		/* pin the inode */
547 		inode = igrab(&info->vfs_inode);
548 
549 		/* inode is about to be evicted */
550 		if (!inode) {
551 			list_del_init(&info->shrinklist);
552 			goto next;
553 		}
554 
555 		/* Check if there's anything to gain */
556 		if (round_up(inode->i_size, PAGE_SIZE) ==
557 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
558 			list_move(&info->shrinklist, &to_remove);
559 			goto next;
560 		}
561 
562 		list_move(&info->shrinklist, &list);
563 next:
564 		sbinfo->shrinklist_len--;
565 		if (!--batch)
566 			break;
567 	}
568 	spin_unlock(&sbinfo->shrinklist_lock);
569 
570 	list_for_each_safe(pos, next, &to_remove) {
571 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
572 		inode = &info->vfs_inode;
573 		list_del_init(&info->shrinklist);
574 		iput(inode);
575 	}
576 
577 	list_for_each_safe(pos, next, &list) {
578 		int ret;
579 
580 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
581 		inode = &info->vfs_inode;
582 
583 		if (nr_to_split && split >= nr_to_split)
584 			goto move_back;
585 
586 		page = find_get_page(inode->i_mapping,
587 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
588 		if (!page)
589 			goto drop;
590 
591 		/* No huge page at the end of the file: nothing to split */
592 		if (!PageTransHuge(page)) {
593 			put_page(page);
594 			goto drop;
595 		}
596 
597 		/*
598 		 * Move the inode on the list back to shrinklist if we failed
599 		 * to lock the page at this time.
600 		 *
601 		 * Waiting for the lock may lead to deadlock in the
602 		 * reclaim path.
603 		 */
604 		if (!trylock_page(page)) {
605 			put_page(page);
606 			goto move_back;
607 		}
608 
609 		ret = split_huge_page(page);
610 		unlock_page(page);
611 		put_page(page);
612 
613 		/* If split failed move the inode on the list back to shrinklist */
614 		if (ret)
615 			goto move_back;
616 
617 		split++;
618 drop:
619 		list_del_init(&info->shrinklist);
620 		goto put;
621 move_back:
622 		/*
623 		 * Make sure the inode is either on the global list or deleted
624 		 * from any local list before iput() since it could be deleted
625 		 * in another thread once we put the inode (then the local list
626 		 * is corrupted).
627 		 */
628 		spin_lock(&sbinfo->shrinklist_lock);
629 		list_move(&info->shrinklist, &sbinfo->shrinklist);
630 		sbinfo->shrinklist_len++;
631 		spin_unlock(&sbinfo->shrinklist_lock);
632 put:
633 		iput(inode);
634 	}
635 
636 	return split;
637 }
638 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)639 static long shmem_unused_huge_scan(struct super_block *sb,
640 		struct shrink_control *sc)
641 {
642 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
643 
644 	if (!READ_ONCE(sbinfo->shrinklist_len))
645 		return SHRINK_STOP;
646 
647 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
648 }
649 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)650 static long shmem_unused_huge_count(struct super_block *sb,
651 		struct shrink_control *sc)
652 {
653 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
654 	return READ_ONCE(sbinfo->shrinklist_len);
655 }
656 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
657 
658 #define shmem_huge SHMEM_HUGE_DENY
659 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)660 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
661 		struct shrink_control *sc, unsigned long nr_to_split)
662 {
663 	return 0;
664 }
665 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
666 
is_huge_enabled(struct shmem_sb_info * sbinfo)667 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
668 {
669 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
670 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
671 	    shmem_huge != SHMEM_HUGE_DENY)
672 		return true;
673 	return false;
674 }
675 
676 /*
677  * Like add_to_page_cache_locked, but error if expected item has gone.
678  */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)679 static int shmem_add_to_page_cache(struct page *page,
680 				   struct address_space *mapping,
681 				   pgoff_t index, void *expected, gfp_t gfp,
682 				   struct mm_struct *charge_mm)
683 {
684 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
685 	unsigned long i = 0;
686 	unsigned long nr = compound_nr(page);
687 	int error;
688 
689 	VM_BUG_ON_PAGE(PageTail(page), page);
690 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
691 	VM_BUG_ON_PAGE(!PageLocked(page), page);
692 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
693 	VM_BUG_ON(expected && PageTransHuge(page));
694 
695 	page_ref_add(page, nr);
696 	page->mapping = mapping;
697 	page->index = index;
698 
699 	if (!PageSwapCache(page)) {
700 		error = mem_cgroup_charge(page, charge_mm, gfp);
701 		if (error) {
702 			if (PageTransHuge(page)) {
703 				count_vm_event(THP_FILE_FALLBACK);
704 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
705 			}
706 			goto error;
707 		}
708 	}
709 	cgroup_throttle_swaprate(page, gfp);
710 
711 	do {
712 		void *entry;
713 		xas_lock_irq(&xas);
714 		entry = xas_find_conflict(&xas);
715 		if (entry != expected)
716 			xas_set_err(&xas, -EEXIST);
717 		xas_create_range(&xas);
718 		if (xas_error(&xas))
719 			goto unlock;
720 next:
721 		xas_store(&xas, page);
722 		if (++i < nr) {
723 			xas_next(&xas);
724 			goto next;
725 		}
726 		if (PageTransHuge(page)) {
727 			count_vm_event(THP_FILE_ALLOC);
728 			__inc_node_page_state(page, NR_SHMEM_THPS);
729 		}
730 		mapping->nrpages += nr;
731 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
732 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
733 unlock:
734 		xas_unlock_irq(&xas);
735 	} while (xas_nomem(&xas, gfp));
736 
737 	if (xas_error(&xas)) {
738 		error = xas_error(&xas);
739 		goto error;
740 	}
741 
742 	return 0;
743 error:
744 	page->mapping = NULL;
745 	page_ref_sub(page, nr);
746 	return error;
747 }
748 
749 /*
750  * Like delete_from_page_cache, but substitutes swap for page.
751  */
shmem_delete_from_page_cache(struct page * page,void * radswap)752 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
753 {
754 	struct address_space *mapping = page->mapping;
755 	int error;
756 
757 	VM_BUG_ON_PAGE(PageCompound(page), page);
758 
759 	xa_lock_irq(&mapping->i_pages);
760 	error = shmem_replace_entry(mapping, page->index, page, radswap);
761 	page->mapping = NULL;
762 	mapping->nrpages--;
763 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
764 	__dec_lruvec_page_state(page, NR_SHMEM);
765 	xa_unlock_irq(&mapping->i_pages);
766 	put_page(page);
767 	BUG_ON(error);
768 }
769 
770 /*
771  * Remove swap entry from page cache, free the swap and its page cache.
772  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)773 static int shmem_free_swap(struct address_space *mapping,
774 			   pgoff_t index, void *radswap)
775 {
776 	void *old;
777 
778 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
779 	if (old != radswap)
780 		return -ENOENT;
781 	free_swap_and_cache(radix_to_swp_entry(radswap));
782 	return 0;
783 }
784 
785 /*
786  * Determine (in bytes) how many of the shmem object's pages mapped by the
787  * given offsets are swapped out.
788  *
789  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
790  * as long as the inode doesn't go away and racy results are not a problem.
791  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)792 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
793 						pgoff_t start, pgoff_t end)
794 {
795 	XA_STATE(xas, &mapping->i_pages, start);
796 	struct page *page;
797 	unsigned long swapped = 0;
798 
799 	rcu_read_lock();
800 	xas_for_each(&xas, page, end - 1) {
801 		if (xas_retry(&xas, page))
802 			continue;
803 		if (xa_is_value(page))
804 			swapped++;
805 
806 		if (need_resched()) {
807 			xas_pause(&xas);
808 			cond_resched_rcu();
809 		}
810 	}
811 
812 	rcu_read_unlock();
813 
814 	return swapped << PAGE_SHIFT;
815 }
816 
817 /*
818  * Determine (in bytes) how many of the shmem object's pages mapped by the
819  * given vma is swapped out.
820  *
821  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
822  * as long as the inode doesn't go away and racy results are not a problem.
823  */
shmem_swap_usage(struct vm_area_struct * vma)824 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
825 {
826 	struct inode *inode = file_inode(vma->vm_file);
827 	struct shmem_inode_info *info = SHMEM_I(inode);
828 	struct address_space *mapping = inode->i_mapping;
829 	unsigned long swapped;
830 
831 	/* Be careful as we don't hold info->lock */
832 	swapped = READ_ONCE(info->swapped);
833 
834 	/*
835 	 * The easier cases are when the shmem object has nothing in swap, or
836 	 * the vma maps it whole. Then we can simply use the stats that we
837 	 * already track.
838 	 */
839 	if (!swapped)
840 		return 0;
841 
842 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
843 		return swapped << PAGE_SHIFT;
844 
845 	/* Here comes the more involved part */
846 	return shmem_partial_swap_usage(mapping,
847 			linear_page_index(vma, vma->vm_start),
848 			linear_page_index(vma, vma->vm_end));
849 }
850 
851 /*
852  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
853  */
shmem_unlock_mapping(struct address_space * mapping)854 void shmem_unlock_mapping(struct address_space *mapping)
855 {
856 	struct pagevec pvec;
857 	pgoff_t indices[PAGEVEC_SIZE];
858 	pgoff_t index = 0;
859 
860 	pagevec_init(&pvec);
861 	/*
862 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
863 	 */
864 	while (!mapping_unevictable(mapping)) {
865 		/*
866 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
867 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
868 		 */
869 		pvec.nr = find_get_entries(mapping, index,
870 					   PAGEVEC_SIZE, pvec.pages, indices);
871 		if (!pvec.nr)
872 			break;
873 		index = indices[pvec.nr - 1] + 1;
874 		pagevec_remove_exceptionals(&pvec);
875 		check_move_unevictable_pages(&pvec);
876 		pagevec_release(&pvec);
877 		cond_resched();
878 	}
879 }
880 
881 /*
882  * Check whether a hole-punch or truncation needs to split a huge page,
883  * returning true if no split was required, or the split has been successful.
884  *
885  * Eviction (or truncation to 0 size) should never need to split a huge page;
886  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
887  * head, and then succeeded to trylock on tail.
888  *
889  * A split can only succeed when there are no additional references on the
890  * huge page: so the split below relies upon find_get_entries() having stopped
891  * when it found a subpage of the huge page, without getting further references.
892  */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)893 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
894 {
895 	if (!PageTransCompound(page))
896 		return true;
897 
898 	/* Just proceed to delete a huge page wholly within the range punched */
899 	if (PageHead(page) &&
900 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
901 		return true;
902 
903 	/* Try to split huge page, so we can truly punch the hole or truncate */
904 	return split_huge_page(page) >= 0;
905 }
906 
907 /*
908  * Remove range of pages and swap entries from page cache, and free them.
909  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912 								 bool unfalloc)
913 {
914 	struct address_space *mapping = inode->i_mapping;
915 	struct shmem_inode_info *info = SHMEM_I(inode);
916 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
919 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
920 	struct pagevec pvec;
921 	pgoff_t indices[PAGEVEC_SIZE];
922 	long nr_swaps_freed = 0;
923 	pgoff_t index;
924 	int i;
925 
926 	if (lend == -1)
927 		end = -1;	/* unsigned, so actually very big */
928 
929 	pagevec_init(&pvec);
930 	index = start;
931 	while (index < end) {
932 		pvec.nr = find_get_entries(mapping, index,
933 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
934 			pvec.pages, indices);
935 		if (!pvec.nr)
936 			break;
937 		for (i = 0; i < pagevec_count(&pvec); i++) {
938 			struct page *page = pvec.pages[i];
939 
940 			index = indices[i];
941 			if (index >= end)
942 				break;
943 
944 			if (xa_is_value(page)) {
945 				if (unfalloc)
946 					continue;
947 				nr_swaps_freed += !shmem_free_swap(mapping,
948 								index, page);
949 				continue;
950 			}
951 
952 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
953 
954 			if (!trylock_page(page))
955 				continue;
956 
957 			if ((!unfalloc || !PageUptodate(page)) &&
958 			    page_mapping(page) == mapping) {
959 				VM_BUG_ON_PAGE(PageWriteback(page), page);
960 				if (shmem_punch_compound(page, start, end))
961 					truncate_inode_page(mapping, page);
962 			}
963 			unlock_page(page);
964 		}
965 		pagevec_remove_exceptionals(&pvec);
966 		pagevec_release(&pvec);
967 		cond_resched();
968 		index++;
969 	}
970 
971 	if (partial_start) {
972 		struct page *page = NULL;
973 		shmem_getpage(inode, start - 1, &page, SGP_READ);
974 		if (page) {
975 			unsigned int top = PAGE_SIZE;
976 			if (start > end) {
977 				top = partial_end;
978 				partial_end = 0;
979 			}
980 			zero_user_segment(page, partial_start, top);
981 			set_page_dirty(page);
982 			unlock_page(page);
983 			put_page(page);
984 		}
985 	}
986 	if (partial_end) {
987 		struct page *page = NULL;
988 		shmem_getpage(inode, end, &page, SGP_READ);
989 		if (page) {
990 			zero_user_segment(page, 0, partial_end);
991 			set_page_dirty(page);
992 			unlock_page(page);
993 			put_page(page);
994 		}
995 	}
996 	if (start >= end)
997 		return;
998 
999 	index = start;
1000 	while (index < end) {
1001 		cond_resched();
1002 
1003 		pvec.nr = find_get_entries(mapping, index,
1004 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
1005 				pvec.pages, indices);
1006 		if (!pvec.nr) {
1007 			/* If all gone or hole-punch or unfalloc, we're done */
1008 			if (index == start || end != -1)
1009 				break;
1010 			/* But if truncating, restart to make sure all gone */
1011 			index = start;
1012 			continue;
1013 		}
1014 		for (i = 0; i < pagevec_count(&pvec); i++) {
1015 			struct page *page = pvec.pages[i];
1016 
1017 			index = indices[i];
1018 			if (index >= end)
1019 				break;
1020 
1021 			if (xa_is_value(page)) {
1022 				if (unfalloc)
1023 					continue;
1024 				if (shmem_free_swap(mapping, index, page)) {
1025 					/* Swap was replaced by page: retry */
1026 					index--;
1027 					break;
1028 				}
1029 				nr_swaps_freed++;
1030 				continue;
1031 			}
1032 
1033 			lock_page(page);
1034 
1035 			if (!unfalloc || !PageUptodate(page)) {
1036 				if (page_mapping(page) != mapping) {
1037 					/* Page was replaced by swap: retry */
1038 					unlock_page(page);
1039 					index--;
1040 					break;
1041 				}
1042 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1043 				if (shmem_punch_compound(page, start, end))
1044 					truncate_inode_page(mapping, page);
1045 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1046 					/* Wipe the page and don't get stuck */
1047 					clear_highpage(page);
1048 					flush_dcache_page(page);
1049 					set_page_dirty(page);
1050 					if (index <
1051 					    round_up(start, HPAGE_PMD_NR))
1052 						start = index + 1;
1053 				}
1054 			}
1055 			unlock_page(page);
1056 		}
1057 		pagevec_remove_exceptionals(&pvec);
1058 		pagevec_release(&pvec);
1059 		index++;
1060 	}
1061 
1062 	spin_lock_irq(&info->lock);
1063 	info->swapped -= nr_swaps_freed;
1064 	shmem_recalc_inode(inode);
1065 	spin_unlock_irq(&info->lock);
1066 }
1067 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1068 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1069 {
1070 	shmem_undo_range(inode, lstart, lend, false);
1071 	inode->i_ctime = inode->i_mtime = current_time(inode);
1072 }
1073 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1074 
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1075 static int shmem_getattr(const struct path *path, struct kstat *stat,
1076 			 u32 request_mask, unsigned int query_flags)
1077 {
1078 	struct inode *inode = path->dentry->d_inode;
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1081 
1082 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1083 		spin_lock_irq(&info->lock);
1084 		shmem_recalc_inode(inode);
1085 		spin_unlock_irq(&info->lock);
1086 	}
1087 	generic_fillattr(inode, stat);
1088 
1089 	if (is_huge_enabled(sb_info))
1090 		stat->blksize = HPAGE_PMD_SIZE;
1091 
1092 	return 0;
1093 }
1094 
shmem_setattr(struct dentry * dentry,struct iattr * attr)1095 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1096 {
1097 	struct inode *inode = d_inode(dentry);
1098 	struct shmem_inode_info *info = SHMEM_I(inode);
1099 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1100 	int error;
1101 
1102 	error = setattr_prepare(dentry, attr);
1103 	if (error)
1104 		return error;
1105 
1106 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1107 		loff_t oldsize = inode->i_size;
1108 		loff_t newsize = attr->ia_size;
1109 
1110 		/* protected by i_mutex */
1111 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1112 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1113 			return -EPERM;
1114 
1115 		if (newsize != oldsize) {
1116 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1117 					oldsize, newsize);
1118 			if (error)
1119 				return error;
1120 			i_size_write(inode, newsize);
1121 			inode->i_ctime = inode->i_mtime = current_time(inode);
1122 		}
1123 		if (newsize <= oldsize) {
1124 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1125 			if (oldsize > holebegin)
1126 				unmap_mapping_range(inode->i_mapping,
1127 							holebegin, 0, 1);
1128 			if (info->alloced)
1129 				shmem_truncate_range(inode,
1130 							newsize, (loff_t)-1);
1131 			/* unmap again to remove racily COWed private pages */
1132 			if (oldsize > holebegin)
1133 				unmap_mapping_range(inode->i_mapping,
1134 							holebegin, 0, 1);
1135 
1136 			/*
1137 			 * Part of the huge page can be beyond i_size: subject
1138 			 * to shrink under memory pressure.
1139 			 */
1140 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1141 				spin_lock(&sbinfo->shrinklist_lock);
1142 				/*
1143 				 * _careful to defend against unlocked access to
1144 				 * ->shrink_list in shmem_unused_huge_shrink()
1145 				 */
1146 				if (list_empty_careful(&info->shrinklist)) {
1147 					list_add_tail(&info->shrinklist,
1148 							&sbinfo->shrinklist);
1149 					sbinfo->shrinklist_len++;
1150 				}
1151 				spin_unlock(&sbinfo->shrinklist_lock);
1152 			}
1153 		}
1154 	}
1155 
1156 	setattr_copy(inode, attr);
1157 	if (attr->ia_valid & ATTR_MODE)
1158 		error = posix_acl_chmod(inode, inode->i_mode);
1159 	return error;
1160 }
1161 
shmem_evict_inode(struct inode * inode)1162 static void shmem_evict_inode(struct inode *inode)
1163 {
1164 	struct shmem_inode_info *info = SHMEM_I(inode);
1165 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1166 
1167 	if (inode->i_mapping->a_ops == &shmem_aops) {
1168 		shmem_unacct_size(info->flags, inode->i_size);
1169 		inode->i_size = 0;
1170 		shmem_truncate_range(inode, 0, (loff_t)-1);
1171 		if (!list_empty(&info->shrinklist)) {
1172 			spin_lock(&sbinfo->shrinklist_lock);
1173 			if (!list_empty(&info->shrinklist)) {
1174 				list_del_init(&info->shrinklist);
1175 				sbinfo->shrinklist_len--;
1176 			}
1177 			spin_unlock(&sbinfo->shrinklist_lock);
1178 		}
1179 		while (!list_empty(&info->swaplist)) {
1180 			/* Wait while shmem_unuse() is scanning this inode... */
1181 			wait_var_event(&info->stop_eviction,
1182 				       !atomic_read(&info->stop_eviction));
1183 			mutex_lock(&shmem_swaplist_mutex);
1184 			/* ...but beware of the race if we peeked too early */
1185 			if (!atomic_read(&info->stop_eviction))
1186 				list_del_init(&info->swaplist);
1187 			mutex_unlock(&shmem_swaplist_mutex);
1188 		}
1189 	}
1190 
1191 	simple_xattrs_free(&info->xattrs);
1192 	WARN_ON(inode->i_blocks);
1193 	shmem_free_inode(inode->i_sb);
1194 	clear_inode(inode);
1195 }
1196 
1197 extern struct swap_info_struct *swap_info[];
1198 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1199 static int shmem_find_swap_entries(struct address_space *mapping,
1200 				   pgoff_t start, unsigned int nr_entries,
1201 				   struct page **entries, pgoff_t *indices,
1202 				   unsigned int type, bool frontswap)
1203 {
1204 	XA_STATE(xas, &mapping->i_pages, start);
1205 	struct page *page;
1206 	swp_entry_t entry;
1207 	unsigned int ret = 0;
1208 
1209 	if (!nr_entries)
1210 		return 0;
1211 
1212 	rcu_read_lock();
1213 	xas_for_each(&xas, page, ULONG_MAX) {
1214 		if (xas_retry(&xas, page))
1215 			continue;
1216 
1217 		if (!xa_is_value(page))
1218 			continue;
1219 
1220 		entry = radix_to_swp_entry(page);
1221 		if (swp_type(entry) != type)
1222 			continue;
1223 		if (frontswap &&
1224 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1225 			continue;
1226 
1227 		indices[ret] = xas.xa_index;
1228 		entries[ret] = page;
1229 
1230 		if (need_resched()) {
1231 			xas_pause(&xas);
1232 			cond_resched_rcu();
1233 		}
1234 		if (++ret == nr_entries)
1235 			break;
1236 	}
1237 	rcu_read_unlock();
1238 
1239 	return ret;
1240 }
1241 
1242 /*
1243  * Move the swapped pages for an inode to page cache. Returns the count
1244  * of pages swapped in, or the error in case of failure.
1245  */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1246 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1247 				    pgoff_t *indices)
1248 {
1249 	int i = 0;
1250 	int ret = 0;
1251 	int error = 0;
1252 	struct address_space *mapping = inode->i_mapping;
1253 
1254 	for (i = 0; i < pvec.nr; i++) {
1255 		struct page *page = pvec.pages[i];
1256 
1257 		if (!xa_is_value(page))
1258 			continue;
1259 		error = shmem_swapin_page(inode, indices[i],
1260 					  &page, SGP_CACHE,
1261 					  mapping_gfp_mask(mapping),
1262 					  NULL, NULL);
1263 		if (error == 0) {
1264 			unlock_page(page);
1265 			put_page(page);
1266 			ret++;
1267 		}
1268 		if (error == -ENOMEM)
1269 			break;
1270 		error = 0;
1271 	}
1272 	return error ? error : ret;
1273 }
1274 
1275 /*
1276  * If swap found in inode, free it and move page from swapcache to filecache.
1277  */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1278 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1279 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1280 {
1281 	struct address_space *mapping = inode->i_mapping;
1282 	pgoff_t start = 0;
1283 	struct pagevec pvec;
1284 	pgoff_t indices[PAGEVEC_SIZE];
1285 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1286 	int ret = 0;
1287 
1288 	pagevec_init(&pvec);
1289 	do {
1290 		unsigned int nr_entries = PAGEVEC_SIZE;
1291 
1292 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1293 			nr_entries = *fs_pages_to_unuse;
1294 
1295 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1296 						  pvec.pages, indices,
1297 						  type, frontswap);
1298 		if (pvec.nr == 0) {
1299 			ret = 0;
1300 			break;
1301 		}
1302 
1303 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1304 		if (ret < 0)
1305 			break;
1306 
1307 		if (frontswap_partial) {
1308 			*fs_pages_to_unuse -= ret;
1309 			if (*fs_pages_to_unuse == 0) {
1310 				ret = FRONTSWAP_PAGES_UNUSED;
1311 				break;
1312 			}
1313 		}
1314 
1315 		start = indices[pvec.nr - 1];
1316 	} while (true);
1317 
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Read all the shared memory data that resides in the swap
1323  * device 'type' back into memory, so the swap device can be
1324  * unused.
1325  */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1326 int shmem_unuse(unsigned int type, bool frontswap,
1327 		unsigned long *fs_pages_to_unuse)
1328 {
1329 	struct shmem_inode_info *info, *next;
1330 	int error = 0;
1331 
1332 	if (list_empty(&shmem_swaplist))
1333 		return 0;
1334 
1335 	mutex_lock(&shmem_swaplist_mutex);
1336 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1337 		if (!info->swapped) {
1338 			list_del_init(&info->swaplist);
1339 			continue;
1340 		}
1341 		/*
1342 		 * Drop the swaplist mutex while searching the inode for swap;
1343 		 * but before doing so, make sure shmem_evict_inode() will not
1344 		 * remove placeholder inode from swaplist, nor let it be freed
1345 		 * (igrab() would protect from unlink, but not from unmount).
1346 		 */
1347 		atomic_inc(&info->stop_eviction);
1348 		mutex_unlock(&shmem_swaplist_mutex);
1349 
1350 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1351 					  fs_pages_to_unuse);
1352 		cond_resched();
1353 
1354 		mutex_lock(&shmem_swaplist_mutex);
1355 		next = list_next_entry(info, swaplist);
1356 		if (!info->swapped)
1357 			list_del_init(&info->swaplist);
1358 		if (atomic_dec_and_test(&info->stop_eviction))
1359 			wake_up_var(&info->stop_eviction);
1360 		if (error)
1361 			break;
1362 	}
1363 	mutex_unlock(&shmem_swaplist_mutex);
1364 
1365 	return error;
1366 }
1367 
1368 /*
1369  * Move the page from the page cache to the swap cache.
1370  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1371 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1372 {
1373 	struct shmem_inode_info *info;
1374 	struct address_space *mapping;
1375 	struct inode *inode;
1376 	swp_entry_t swap;
1377 	pgoff_t index;
1378 
1379 	VM_BUG_ON_PAGE(PageCompound(page), page);
1380 	BUG_ON(!PageLocked(page));
1381 	mapping = page->mapping;
1382 	index = page->index;
1383 	inode = mapping->host;
1384 	info = SHMEM_I(inode);
1385 	if (info->flags & VM_LOCKED)
1386 		goto redirty;
1387 	if (!total_swap_pages)
1388 		goto redirty;
1389 
1390 	/*
1391 	 * Our capabilities prevent regular writeback or sync from ever calling
1392 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1393 	 * its underlying filesystem, in which case tmpfs should write out to
1394 	 * swap only in response to memory pressure, and not for the writeback
1395 	 * threads or sync.
1396 	 */
1397 	if (!wbc->for_reclaim) {
1398 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1399 		goto redirty;
1400 	}
1401 
1402 	/*
1403 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1404 	 * value into swapfile.c, the only way we can correctly account for a
1405 	 * fallocated page arriving here is now to initialize it and write it.
1406 	 *
1407 	 * That's okay for a page already fallocated earlier, but if we have
1408 	 * not yet completed the fallocation, then (a) we want to keep track
1409 	 * of this page in case we have to undo it, and (b) it may not be a
1410 	 * good idea to continue anyway, once we're pushing into swap.  So
1411 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1412 	 */
1413 	if (!PageUptodate(page)) {
1414 		if (inode->i_private) {
1415 			struct shmem_falloc *shmem_falloc;
1416 			spin_lock(&inode->i_lock);
1417 			shmem_falloc = inode->i_private;
1418 			if (shmem_falloc &&
1419 			    !shmem_falloc->waitq &&
1420 			    index >= shmem_falloc->start &&
1421 			    index < shmem_falloc->next)
1422 				shmem_falloc->nr_unswapped++;
1423 			else
1424 				shmem_falloc = NULL;
1425 			spin_unlock(&inode->i_lock);
1426 			if (shmem_falloc)
1427 				goto redirty;
1428 		}
1429 		clear_highpage(page);
1430 		flush_dcache_page(page);
1431 		SetPageUptodate(page);
1432 	}
1433 
1434 	trace_android_vh_set_shmem_page_flag(page);
1435 	swap = get_swap_page(page);
1436 	if (!swap.val)
1437 		goto redirty;
1438 
1439 	/*
1440 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1441 	 * if it's not already there.  Do it now before the page is
1442 	 * moved to swap cache, when its pagelock no longer protects
1443 	 * the inode from eviction.  But don't unlock the mutex until
1444 	 * we've incremented swapped, because shmem_unuse_inode() will
1445 	 * prune a !swapped inode from the swaplist under this mutex.
1446 	 */
1447 	mutex_lock(&shmem_swaplist_mutex);
1448 	if (list_empty(&info->swaplist))
1449 		list_add(&info->swaplist, &shmem_swaplist);
1450 
1451 	if (add_to_swap_cache(page, swap,
1452 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1453 			NULL) == 0) {
1454 		spin_lock_irq(&info->lock);
1455 		shmem_recalc_inode(inode);
1456 		info->swapped++;
1457 		spin_unlock_irq(&info->lock);
1458 
1459 		swap_shmem_alloc(swap);
1460 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1461 
1462 		mutex_unlock(&shmem_swaplist_mutex);
1463 		BUG_ON(page_mapped(page));
1464 		swap_writepage(page, wbc);
1465 		return 0;
1466 	}
1467 
1468 	mutex_unlock(&shmem_swaplist_mutex);
1469 	put_swap_page(page, swap);
1470 redirty:
1471 	set_page_dirty(page);
1472 	if (wbc->for_reclaim)
1473 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1474 	unlock_page(page);
1475 	return 0;
1476 }
1477 
1478 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1479 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1480 {
1481 	char buffer[64];
1482 
1483 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1484 		return;		/* show nothing */
1485 
1486 	mpol_to_str(buffer, sizeof(buffer), mpol);
1487 
1488 	seq_printf(seq, ",mpol=%s", buffer);
1489 }
1490 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1491 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493 	struct mempolicy *mpol = NULL;
1494 	if (sbinfo->mpol) {
1495 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1496 		mpol = sbinfo->mpol;
1497 		mpol_get(mpol);
1498 		spin_unlock(&sbinfo->stat_lock);
1499 	}
1500 	return mpol;
1501 }
1502 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1503 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1504 {
1505 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1506 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1507 {
1508 	return NULL;
1509 }
1510 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1511 #ifndef CONFIG_NUMA
1512 #define vm_policy vm_private_data
1513 #endif
1514 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1515 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1516 		struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 	/* Create a pseudo vma that just contains the policy */
1519 	vma_init(vma, NULL);
1520 	/* Bias interleave by inode number to distribute better across nodes */
1521 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1522 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1523 }
1524 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1525 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1526 {
1527 	/* Drop reference taken by mpol_shared_policy_lookup() */
1528 	mpol_cond_put(vma->vm_policy);
1529 }
1530 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1531 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1532 			struct shmem_inode_info *info, pgoff_t index)
1533 {
1534 	struct vm_area_struct pvma;
1535 	struct page *page;
1536 	struct vm_fault vmf = {
1537 		.vma = &pvma,
1538 	};
1539 
1540 	shmem_pseudo_vma_init(&pvma, info, index);
1541 	page = swap_cluster_readahead(swap, gfp, &vmf);
1542 	shmem_pseudo_vma_destroy(&pvma);
1543 
1544 	return page;
1545 }
1546 
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1547 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1548 		struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 	struct vm_area_struct pvma;
1551 	struct address_space *mapping = info->vfs_inode.i_mapping;
1552 	pgoff_t hindex;
1553 	struct page *page;
1554 
1555 	hindex = round_down(index, HPAGE_PMD_NR);
1556 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1557 								XA_PRESENT))
1558 		return NULL;
1559 
1560 	shmem_pseudo_vma_init(&pvma, info, hindex);
1561 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1562 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1563 	shmem_pseudo_vma_destroy(&pvma);
1564 	if (page)
1565 		prep_transhuge_page(page);
1566 	else
1567 		count_vm_event(THP_FILE_FALLBACK);
1568 	return page;
1569 }
1570 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1571 static struct page *shmem_alloc_page(gfp_t gfp,
1572 			struct shmem_inode_info *info, pgoff_t index)
1573 {
1574 	struct vm_area_struct pvma;
1575 	struct page *page = NULL;
1576 
1577 	trace_android_vh_shmem_alloc_page(&page);
1578 	if (page)
1579 		return page;
1580 
1581 	shmem_pseudo_vma_init(&pvma, info, index);
1582 	page = alloc_page_vma(gfp, &pvma, 0);
1583 	shmem_pseudo_vma_destroy(&pvma);
1584 
1585 	return page;
1586 }
1587 
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1588 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1589 		struct inode *inode,
1590 		pgoff_t index, bool huge)
1591 {
1592 	struct shmem_inode_info *info = SHMEM_I(inode);
1593 	struct page *page;
1594 	int nr;
1595 	int err = -ENOSPC;
1596 
1597 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1598 		huge = false;
1599 	nr = huge ? HPAGE_PMD_NR : 1;
1600 
1601 	if (!shmem_inode_acct_block(inode, nr))
1602 		goto failed;
1603 
1604 	if (huge)
1605 		page = shmem_alloc_hugepage(gfp, info, index);
1606 	else
1607 		page = shmem_alloc_page(gfp, info, index);
1608 	if (page) {
1609 		__SetPageLocked(page);
1610 		__SetPageSwapBacked(page);
1611 		return page;
1612 	}
1613 
1614 	err = -ENOMEM;
1615 	shmem_inode_unacct_blocks(inode, nr);
1616 failed:
1617 	return ERR_PTR(err);
1618 }
1619 
1620 /*
1621  * When a page is moved from swapcache to shmem filecache (either by the
1622  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1623  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1624  * ignorance of the mapping it belongs to.  If that mapping has special
1625  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1626  * we may need to copy to a suitable page before moving to filecache.
1627  *
1628  * In a future release, this may well be extended to respect cpuset and
1629  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1630  * but for now it is a simple matter of zone.
1631  */
shmem_should_replace_page(struct page * page,gfp_t gfp)1632 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1633 {
1634 	return page_zonenum(page) > gfp_zone(gfp);
1635 }
1636 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1637 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1638 				struct shmem_inode_info *info, pgoff_t index)
1639 {
1640 	struct page *oldpage, *newpage;
1641 	struct address_space *swap_mapping;
1642 	swp_entry_t entry;
1643 	pgoff_t swap_index;
1644 	int error;
1645 
1646 	oldpage = *pagep;
1647 	entry.val = page_private(oldpage);
1648 	swap_index = swp_offset(entry);
1649 	swap_mapping = page_mapping(oldpage);
1650 
1651 	/*
1652 	 * We have arrived here because our zones are constrained, so don't
1653 	 * limit chance of success by further cpuset and node constraints.
1654 	 */
1655 	gfp &= ~GFP_CONSTRAINT_MASK;
1656 	newpage = shmem_alloc_page(gfp, info, index);
1657 	if (!newpage)
1658 		return -ENOMEM;
1659 
1660 	get_page(newpage);
1661 	copy_highpage(newpage, oldpage);
1662 	flush_dcache_page(newpage);
1663 
1664 	__SetPageLocked(newpage);
1665 	__SetPageSwapBacked(newpage);
1666 	SetPageUptodate(newpage);
1667 	set_page_private(newpage, entry.val);
1668 	SetPageSwapCache(newpage);
1669 
1670 	/*
1671 	 * Our caller will very soon move newpage out of swapcache, but it's
1672 	 * a nice clean interface for us to replace oldpage by newpage there.
1673 	 */
1674 	xa_lock_irq(&swap_mapping->i_pages);
1675 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1676 	if (!error) {
1677 		mem_cgroup_migrate(oldpage, newpage);
1678 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1680 	}
1681 	xa_unlock_irq(&swap_mapping->i_pages);
1682 
1683 	if (unlikely(error)) {
1684 		/*
1685 		 * Is this possible?  I think not, now that our callers check
1686 		 * both PageSwapCache and page_private after getting page lock;
1687 		 * but be defensive.  Reverse old to newpage for clear and free.
1688 		 */
1689 		oldpage = newpage;
1690 	} else {
1691 		lru_cache_add(newpage);
1692 		*pagep = newpage;
1693 	}
1694 
1695 	ClearPageSwapCache(oldpage);
1696 	set_page_private(oldpage, 0);
1697 
1698 	unlock_page(oldpage);
1699 	put_page(oldpage);
1700 	put_page(oldpage);
1701 	return error;
1702 }
1703 
1704 /*
1705  * Swap in the page pointed to by *pagep.
1706  * Caller has to make sure that *pagep contains a valid swapped page.
1707  * Returns 0 and the page in pagep if success. On failure, returns the
1708  * error code and NULL in *pagep.
1709  */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 			     struct page **pagep, enum sgp_type sgp,
1712 			     gfp_t gfp, struct vm_area_struct *vma,
1713 			     vm_fault_t *fault_type)
1714 {
1715 	struct address_space *mapping = inode->i_mapping;
1716 	struct shmem_inode_info *info = SHMEM_I(inode);
1717 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1718 	struct page *page;
1719 	swp_entry_t swap;
1720 	int error;
1721 
1722 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 	swap = radix_to_swp_entry(*pagep);
1724 	*pagep = NULL;
1725 
1726 	/* Look it up and read it in.. */
1727 	page = lookup_swap_cache(swap, NULL, 0);
1728 	if (!page) {
1729 		/* Or update major stats only when swapin succeeds?? */
1730 		if (fault_type) {
1731 			*fault_type |= VM_FAULT_MAJOR;
1732 			count_vm_event(PGMAJFAULT);
1733 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734 		}
1735 		/* Here we actually start the io */
1736 		page = shmem_swapin(swap, gfp, info, index);
1737 		if (!page) {
1738 			error = -ENOMEM;
1739 			goto failed;
1740 		}
1741 	}
1742 
1743 	/* We have to do this with page locked to prevent races */
1744 	lock_page(page);
1745 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 	    !shmem_confirm_swap(mapping, index, swap)) {
1747 		error = -EEXIST;
1748 		goto unlock;
1749 	}
1750 	if (!PageUptodate(page)) {
1751 		error = -EIO;
1752 		goto failed;
1753 	}
1754 	wait_on_page_writeback(page);
1755 
1756 	/*
1757 	 * Some architectures may have to restore extra metadata to the
1758 	 * physical page after reading from swap.
1759 	 */
1760 	arch_swap_restore(swap, page);
1761 
1762 	if (shmem_should_replace_page(page, gfp)) {
1763 		error = shmem_replace_page(&page, gfp, info, index);
1764 		if (error)
1765 			goto failed;
1766 	}
1767 
1768 	error = shmem_add_to_page_cache(page, mapping, index,
1769 					swp_to_radix_entry(swap), gfp,
1770 					charge_mm);
1771 	if (error)
1772 		goto failed;
1773 
1774 	spin_lock_irq(&info->lock);
1775 	info->swapped--;
1776 	shmem_recalc_inode(inode);
1777 	spin_unlock_irq(&info->lock);
1778 
1779 	if (sgp == SGP_WRITE)
1780 		mark_page_accessed(page);
1781 
1782 	delete_from_swap_cache(page);
1783 	set_page_dirty(page);
1784 	swap_free(swap);
1785 
1786 	*pagep = page;
1787 	return 0;
1788 failed:
1789 	if (!shmem_confirm_swap(mapping, index, swap))
1790 		error = -EEXIST;
1791 unlock:
1792 	if (page) {
1793 		unlock_page(page);
1794 		put_page(page);
1795 	}
1796 
1797 	return error;
1798 }
1799 
1800 /*
1801  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1802  *
1803  * If we allocate a new one we do not mark it dirty. That's up to the
1804  * vm. If we swap it in we mark it dirty since we also free the swap
1805  * entry since a page cannot live in both the swap and page cache.
1806  *
1807  * vma, vmf, and fault_type are only supplied by shmem_fault:
1808  * otherwise they are NULL.
1809  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812 	struct vm_area_struct *vma, struct vm_fault *vmf,
1813 			vm_fault_t *fault_type)
1814 {
1815 	struct address_space *mapping = inode->i_mapping;
1816 	struct shmem_inode_info *info = SHMEM_I(inode);
1817 	struct shmem_sb_info *sbinfo;
1818 	struct mm_struct *charge_mm;
1819 	struct page *page;
1820 	enum sgp_type sgp_huge = sgp;
1821 	pgoff_t hindex = index;
1822 	int error;
1823 	int once = 0;
1824 	int alloced = 0;
1825 
1826 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1827 		return -EFBIG;
1828 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1829 		sgp = SGP_CACHE;
1830 repeat:
1831 	if (sgp <= SGP_CACHE &&
1832 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1833 		return -EINVAL;
1834 	}
1835 
1836 	sbinfo = SHMEM_SB(inode->i_sb);
1837 	charge_mm = vma ? vma->vm_mm : current->mm;
1838 
1839 	page = find_lock_entry(mapping, index);
1840 
1841 	if (page && vma && userfaultfd_minor(vma)) {
1842 		if (!xa_is_value(page)) {
1843 			unlock_page(page);
1844 			put_page(page);
1845 		}
1846 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847 		return 0;
1848 	}
1849 
1850 	if (xa_is_value(page)) {
1851 		error = shmem_swapin_page(inode, index, &page,
1852 					  sgp, gfp, vma, fault_type);
1853 		if (error == -EEXIST)
1854 			goto repeat;
1855 
1856 		*pagep = page;
1857 		return error;
1858 	}
1859 
1860 	if (page)
1861 		hindex = page->index;
1862 	if (page && sgp == SGP_WRITE)
1863 		mark_page_accessed(page);
1864 
1865 	/* fallocated page? */
1866 	if (page && !PageUptodate(page)) {
1867 		if (sgp != SGP_READ)
1868 			goto clear;
1869 		unlock_page(page);
1870 		put_page(page);
1871 		page = NULL;
1872 		hindex = index;
1873 	}
1874 	if (page || sgp == SGP_READ)
1875 		goto out;
1876 
1877 	/*
1878 	 * Fast cache lookup did not find it:
1879 	 * bring it back from swap or allocate.
1880 	 */
1881 
1882 	if (vma && userfaultfd_missing(vma)) {
1883 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1884 		return 0;
1885 	}
1886 
1887 	/* shmem_symlink() */
1888 	if (mapping->a_ops != &shmem_aops)
1889 		goto alloc_nohuge;
1890 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1891 		goto alloc_nohuge;
1892 	if (shmem_huge == SHMEM_HUGE_FORCE)
1893 		goto alloc_huge;
1894 	switch (sbinfo->huge) {
1895 	case SHMEM_HUGE_NEVER:
1896 		goto alloc_nohuge;
1897 	case SHMEM_HUGE_WITHIN_SIZE: {
1898 		loff_t i_size;
1899 		pgoff_t off;
1900 
1901 		off = round_up(index, HPAGE_PMD_NR);
1902 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1903 		if (i_size >= HPAGE_PMD_SIZE &&
1904 		    i_size >> PAGE_SHIFT >= off)
1905 			goto alloc_huge;
1906 
1907 		fallthrough;
1908 	}
1909 	case SHMEM_HUGE_ADVISE:
1910 		if (sgp_huge == SGP_HUGE)
1911 			goto alloc_huge;
1912 		/* TODO: implement fadvise() hints */
1913 		goto alloc_nohuge;
1914 	}
1915 
1916 alloc_huge:
1917 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1918 	if (IS_ERR(page)) {
1919 alloc_nohuge:
1920 		page = shmem_alloc_and_acct_page(gfp, inode,
1921 						 index, false);
1922 	}
1923 	if (IS_ERR(page)) {
1924 		int retry = 5;
1925 
1926 		error = PTR_ERR(page);
1927 		page = NULL;
1928 		if (error != -ENOSPC)
1929 			goto unlock;
1930 		/*
1931 		 * Try to reclaim some space by splitting a huge page
1932 		 * beyond i_size on the filesystem.
1933 		 */
1934 		while (retry--) {
1935 			int ret;
1936 
1937 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1938 			if (ret == SHRINK_STOP)
1939 				break;
1940 			if (ret)
1941 				goto alloc_nohuge;
1942 		}
1943 		goto unlock;
1944 	}
1945 
1946 	if (PageTransHuge(page))
1947 		hindex = round_down(index, HPAGE_PMD_NR);
1948 	else
1949 		hindex = index;
1950 
1951 	if (sgp == SGP_WRITE)
1952 		__SetPageReferenced(page);
1953 
1954 	error = shmem_add_to_page_cache(page, mapping, hindex,
1955 					NULL, gfp & GFP_RECLAIM_MASK,
1956 					charge_mm);
1957 	if (error)
1958 		goto unacct;
1959 	lru_cache_add(page);
1960 
1961 	spin_lock_irq(&info->lock);
1962 	info->alloced += compound_nr(page);
1963 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1964 	shmem_recalc_inode(inode);
1965 	spin_unlock_irq(&info->lock);
1966 	alloced = true;
1967 
1968 	if (PageTransHuge(page) &&
1969 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1970 			hindex + HPAGE_PMD_NR - 1) {
1971 		/*
1972 		 * Part of the huge page is beyond i_size: subject
1973 		 * to shrink under memory pressure.
1974 		 */
1975 		spin_lock(&sbinfo->shrinklist_lock);
1976 		/*
1977 		 * _careful to defend against unlocked access to
1978 		 * ->shrink_list in shmem_unused_huge_shrink()
1979 		 */
1980 		if (list_empty_careful(&info->shrinklist)) {
1981 			list_add_tail(&info->shrinklist,
1982 				      &sbinfo->shrinklist);
1983 			sbinfo->shrinklist_len++;
1984 		}
1985 		spin_unlock(&sbinfo->shrinklist_lock);
1986 	}
1987 
1988 	/*
1989 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1990 	 */
1991 	if (sgp == SGP_FALLOC)
1992 		sgp = SGP_WRITE;
1993 clear:
1994 	/*
1995 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1996 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1997 	 * it now, lest undo on failure cancel our earlier guarantee.
1998 	 */
1999 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
2000 		int i;
2001 
2002 		for (i = 0; i < compound_nr(page); i++) {
2003 			clear_highpage(page + i);
2004 			flush_dcache_page(page + i);
2005 		}
2006 		SetPageUptodate(page);
2007 	}
2008 
2009 	/* Perhaps the file has been truncated since we checked */
2010 	if (sgp <= SGP_CACHE &&
2011 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2012 		if (alloced) {
2013 			ClearPageDirty(page);
2014 			delete_from_page_cache(page);
2015 			spin_lock_irq(&info->lock);
2016 			shmem_recalc_inode(inode);
2017 			spin_unlock_irq(&info->lock);
2018 		}
2019 		error = -EINVAL;
2020 		goto unlock;
2021 	}
2022 out:
2023 	*pagep = page + index - hindex;
2024 	return 0;
2025 
2026 	/*
2027 	 * Error recovery.
2028 	 */
2029 unacct:
2030 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2031 
2032 	if (PageTransHuge(page)) {
2033 		unlock_page(page);
2034 		put_page(page);
2035 		goto alloc_nohuge;
2036 	}
2037 unlock:
2038 	if (page) {
2039 		unlock_page(page);
2040 		put_page(page);
2041 	}
2042 	if (error == -ENOSPC && !once++) {
2043 		spin_lock_irq(&info->lock);
2044 		shmem_recalc_inode(inode);
2045 		spin_unlock_irq(&info->lock);
2046 		goto repeat;
2047 	}
2048 	if (error == -EEXIST)
2049 		goto repeat;
2050 	return error;
2051 }
2052 
2053 /*
2054  * This is like autoremove_wake_function, but it removes the wait queue
2055  * entry unconditionally - even if something else had already woken the
2056  * target.
2057  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2058 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2059 {
2060 	int ret = default_wake_function(wait, mode, sync, key);
2061 	list_del_init(&wait->entry);
2062 	return ret;
2063 }
2064 
shmem_fault(struct vm_fault * vmf)2065 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2066 {
2067 	struct vm_area_struct *vma = vmf->vma;
2068 	struct inode *inode = file_inode(vma->vm_file);
2069 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2070 	enum sgp_type sgp;
2071 	int err;
2072 	vm_fault_t ret = VM_FAULT_LOCKED;
2073 
2074 	/*
2075 	 * Trinity finds that probing a hole which tmpfs is punching can
2076 	 * prevent the hole-punch from ever completing: which in turn
2077 	 * locks writers out with its hold on i_mutex.  So refrain from
2078 	 * faulting pages into the hole while it's being punched.  Although
2079 	 * shmem_undo_range() does remove the additions, it may be unable to
2080 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2081 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2082 	 *
2083 	 * It does not matter if we sometimes reach this check just before the
2084 	 * hole-punch begins, so that one fault then races with the punch:
2085 	 * we just need to make racing faults a rare case.
2086 	 *
2087 	 * The implementation below would be much simpler if we just used a
2088 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2089 	 * and bloating every shmem inode for this unlikely case would be sad.
2090 	 */
2091 	if (unlikely(inode->i_private)) {
2092 		struct shmem_falloc *shmem_falloc;
2093 
2094 		spin_lock(&inode->i_lock);
2095 		shmem_falloc = inode->i_private;
2096 		if (shmem_falloc &&
2097 		    shmem_falloc->waitq &&
2098 		    vmf->pgoff >= shmem_falloc->start &&
2099 		    vmf->pgoff < shmem_falloc->next) {
2100 			struct file *fpin;
2101 			wait_queue_head_t *shmem_falloc_waitq;
2102 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2103 
2104 			ret = VM_FAULT_NOPAGE;
2105 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2106 			if (fpin)
2107 				ret = VM_FAULT_RETRY;
2108 
2109 			shmem_falloc_waitq = shmem_falloc->waitq;
2110 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2111 					TASK_UNINTERRUPTIBLE);
2112 			spin_unlock(&inode->i_lock);
2113 			schedule();
2114 
2115 			/*
2116 			 * shmem_falloc_waitq points into the shmem_fallocate()
2117 			 * stack of the hole-punching task: shmem_falloc_waitq
2118 			 * is usually invalid by the time we reach here, but
2119 			 * finish_wait() does not dereference it in that case;
2120 			 * though i_lock needed lest racing with wake_up_all().
2121 			 */
2122 			spin_lock(&inode->i_lock);
2123 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2124 			spin_unlock(&inode->i_lock);
2125 
2126 			if (fpin)
2127 				fput(fpin);
2128 			return ret;
2129 		}
2130 		spin_unlock(&inode->i_lock);
2131 	}
2132 
2133 	sgp = SGP_CACHE;
2134 
2135 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2136 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2137 		sgp = SGP_NOHUGE;
2138 	else if (vma->vm_flags & VM_HUGEPAGE)
2139 		sgp = SGP_HUGE;
2140 
2141 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2142 				  gfp, vma, vmf, &ret);
2143 	if (err)
2144 		return vmf_error(err);
2145 	return ret;
2146 }
2147 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2148 unsigned long shmem_get_unmapped_area(struct file *file,
2149 				      unsigned long uaddr, unsigned long len,
2150 				      unsigned long pgoff, unsigned long flags)
2151 {
2152 	unsigned long (*get_area)(struct file *,
2153 		unsigned long, unsigned long, unsigned long, unsigned long);
2154 	unsigned long addr;
2155 	unsigned long offset;
2156 	unsigned long inflated_len;
2157 	unsigned long inflated_addr;
2158 	unsigned long inflated_offset;
2159 
2160 	if (len > TASK_SIZE)
2161 		return -ENOMEM;
2162 
2163 	get_area = current->mm->get_unmapped_area;
2164 	addr = get_area(file, uaddr, len, pgoff, flags);
2165 
2166 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2167 		return addr;
2168 	if (IS_ERR_VALUE(addr))
2169 		return addr;
2170 	if (addr & ~PAGE_MASK)
2171 		return addr;
2172 	if (addr > TASK_SIZE - len)
2173 		return addr;
2174 
2175 	if (shmem_huge == SHMEM_HUGE_DENY)
2176 		return addr;
2177 	if (len < HPAGE_PMD_SIZE)
2178 		return addr;
2179 	if (flags & MAP_FIXED)
2180 		return addr;
2181 	/*
2182 	 * Our priority is to support MAP_SHARED mapped hugely;
2183 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2184 	 * But if caller specified an address hint and we allocated area there
2185 	 * successfully, respect that as before.
2186 	 */
2187 	if (uaddr == addr)
2188 		return addr;
2189 
2190 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2191 		struct super_block *sb;
2192 
2193 		if (file) {
2194 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2195 			sb = file_inode(file)->i_sb;
2196 		} else {
2197 			/*
2198 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2199 			 * for "/dev/zero", to create a shared anonymous object.
2200 			 */
2201 			if (IS_ERR(shm_mnt))
2202 				return addr;
2203 			sb = shm_mnt->mnt_sb;
2204 		}
2205 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2206 			return addr;
2207 	}
2208 
2209 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2210 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2211 		return addr;
2212 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2213 		return addr;
2214 
2215 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2216 	if (inflated_len > TASK_SIZE)
2217 		return addr;
2218 	if (inflated_len < len)
2219 		return addr;
2220 
2221 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2222 	if (IS_ERR_VALUE(inflated_addr))
2223 		return addr;
2224 	if (inflated_addr & ~PAGE_MASK)
2225 		return addr;
2226 
2227 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2228 	inflated_addr += offset - inflated_offset;
2229 	if (inflated_offset > offset)
2230 		inflated_addr += HPAGE_PMD_SIZE;
2231 
2232 	if (inflated_addr > TASK_SIZE - len)
2233 		return addr;
2234 	return inflated_addr;
2235 }
2236 
2237 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2238 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2239 {
2240 	struct inode *inode = file_inode(vma->vm_file);
2241 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2242 }
2243 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2244 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2245 					  unsigned long addr)
2246 {
2247 	struct inode *inode = file_inode(vma->vm_file);
2248 	pgoff_t index;
2249 
2250 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2251 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2252 }
2253 #endif
2254 
shmem_lock(struct file * file,int lock,struct user_struct * user)2255 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2256 {
2257 	struct inode *inode = file_inode(file);
2258 	struct shmem_inode_info *info = SHMEM_I(inode);
2259 	int retval = -ENOMEM;
2260 
2261 	/*
2262 	 * What serializes the accesses to info->flags?
2263 	 * ipc_lock_object() when called from shmctl_do_lock(),
2264 	 * no serialization needed when called from shm_destroy().
2265 	 */
2266 	if (lock && !(info->flags & VM_LOCKED)) {
2267 		if (!user_shm_lock(inode->i_size, user))
2268 			goto out_nomem;
2269 		info->flags |= VM_LOCKED;
2270 		mapping_set_unevictable(file->f_mapping);
2271 	}
2272 	if (!lock && (info->flags & VM_LOCKED) && user) {
2273 		user_shm_unlock(inode->i_size, user);
2274 		info->flags &= ~VM_LOCKED;
2275 		mapping_clear_unevictable(file->f_mapping);
2276 	}
2277 	retval = 0;
2278 
2279 out_nomem:
2280 	return retval;
2281 }
2282 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2283 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2284 {
2285 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2286 	int ret;
2287 
2288 	ret = seal_check_future_write(info->seals, vma);
2289 	if (ret)
2290 		return ret;
2291 
2292 	/* arm64 - allow memory tagging on RAM-based files */
2293 	vma->vm_flags |= VM_MTE_ALLOWED;
2294 
2295 	file_accessed(file);
2296 	vma->vm_ops = &shmem_vm_ops;
2297 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2298 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2299 			(vma->vm_end & HPAGE_PMD_MASK)) {
2300 		khugepaged_enter(vma, vma->vm_flags);
2301 	}
2302 	return 0;
2303 }
2304 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2305 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2306 				     umode_t mode, dev_t dev, unsigned long flags)
2307 {
2308 	struct inode *inode;
2309 	struct shmem_inode_info *info;
2310 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2311 	ino_t ino;
2312 
2313 	if (shmem_reserve_inode(sb, &ino))
2314 		return NULL;
2315 
2316 	inode = new_inode(sb);
2317 	if (inode) {
2318 		inode->i_ino = ino;
2319 		inode_init_owner(inode, dir, mode);
2320 		inode->i_blocks = 0;
2321 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2322 		inode->i_generation = prandom_u32();
2323 		info = SHMEM_I(inode);
2324 		memset(info, 0, (char *)inode - (char *)info);
2325 		spin_lock_init(&info->lock);
2326 		atomic_set(&info->stop_eviction, 0);
2327 		info->seals = F_SEAL_SEAL;
2328 		info->flags = flags & VM_NORESERVE;
2329 		INIT_LIST_HEAD(&info->shrinklist);
2330 		INIT_LIST_HEAD(&info->swaplist);
2331 		simple_xattrs_init(&info->xattrs);
2332 		cache_no_acl(inode);
2333 
2334 		switch (mode & S_IFMT) {
2335 		default:
2336 			inode->i_op = &shmem_special_inode_operations;
2337 			init_special_inode(inode, mode, dev);
2338 			break;
2339 		case S_IFREG:
2340 			inode->i_mapping->a_ops = &shmem_aops;
2341 			inode->i_op = &shmem_inode_operations;
2342 			inode->i_fop = &shmem_file_operations;
2343 			mpol_shared_policy_init(&info->policy,
2344 						 shmem_get_sbmpol(sbinfo));
2345 			break;
2346 		case S_IFDIR:
2347 			inc_nlink(inode);
2348 			/* Some things misbehave if size == 0 on a directory */
2349 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2350 			inode->i_op = &shmem_dir_inode_operations;
2351 			inode->i_fop = &simple_dir_operations;
2352 			break;
2353 		case S_IFLNK:
2354 			/*
2355 			 * Must not load anything in the rbtree,
2356 			 * mpol_free_shared_policy will not be called.
2357 			 */
2358 			mpol_shared_policy_init(&info->policy, NULL);
2359 			break;
2360 		}
2361 
2362 		lockdep_annotate_inode_mutex_key(inode);
2363 	} else
2364 		shmem_free_inode(sb);
2365 	return inode;
2366 }
2367 
shmem_mapping(struct address_space * mapping)2368 bool shmem_mapping(struct address_space *mapping)
2369 {
2370 	return mapping->a_ops == &shmem_aops;
2371 }
2372 
2373 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2374 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2375 			   pmd_t *dst_pmd,
2376 			   struct vm_area_struct *dst_vma,
2377 			   unsigned long dst_addr,
2378 			   unsigned long src_addr,
2379 			   bool zeropage,
2380 			   struct page **pagep)
2381 {
2382 	struct inode *inode = file_inode(dst_vma->vm_file);
2383 	struct shmem_inode_info *info = SHMEM_I(inode);
2384 	struct address_space *mapping = inode->i_mapping;
2385 	gfp_t gfp = mapping_gfp_mask(mapping);
2386 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2387 	void *page_kaddr;
2388 	struct page *page;
2389 	int ret;
2390 	pgoff_t max_off;
2391 
2392 	if (!shmem_inode_acct_block(inode, 1)) {
2393 		/*
2394 		 * We may have got a page, returned -ENOENT triggering a retry,
2395 		 * and now we find ourselves with -ENOMEM. Release the page, to
2396 		 * avoid a BUG_ON in our caller.
2397 		 */
2398 		if (unlikely(*pagep)) {
2399 			put_page(*pagep);
2400 			*pagep = NULL;
2401 		}
2402 		return -ENOMEM;
2403 	}
2404 
2405 	if (!*pagep) {
2406 		ret = -ENOMEM;
2407 		page = shmem_alloc_page(gfp, info, pgoff);
2408 		if (!page)
2409 			goto out_unacct_blocks;
2410 
2411 		if (!zeropage) {	/* COPY */
2412 			page_kaddr = kmap_atomic(page);
2413 			ret = copy_from_user(page_kaddr,
2414 					     (const void __user *)src_addr,
2415 					     PAGE_SIZE);
2416 			kunmap_atomic(page_kaddr);
2417 
2418 			/* fallback to copy_from_user outside mmap_lock */
2419 			if (unlikely(ret)) {
2420 				*pagep = page;
2421 				ret = -ENOENT;
2422 				/* don't free the page */
2423 				goto out_unacct_blocks;
2424 			}
2425 		} else {		/* ZEROPAGE */
2426 			clear_highpage(page);
2427 		}
2428 	} else {
2429 		page = *pagep;
2430 		*pagep = NULL;
2431 	}
2432 
2433 	VM_BUG_ON(PageLocked(page));
2434 	VM_BUG_ON(PageSwapBacked(page));
2435 	__SetPageLocked(page);
2436 	__SetPageSwapBacked(page);
2437 	__SetPageUptodate(page);
2438 
2439 	ret = -EFAULT;
2440 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2441 	if (unlikely(pgoff >= max_off))
2442 		goto out_release;
2443 
2444 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2445 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2446 	if (ret)
2447 		goto out_release;
2448 
2449 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2450 				       page, true, false);
2451 	if (ret)
2452 		goto out_delete_from_cache;
2453 
2454 	spin_lock_irq(&info->lock);
2455 	info->alloced++;
2456 	inode->i_blocks += BLOCKS_PER_PAGE;
2457 	shmem_recalc_inode(inode);
2458 	spin_unlock_irq(&info->lock);
2459 
2460 	SetPageDirty(page);
2461 	unlock_page(page);
2462 	return 0;
2463 out_delete_from_cache:
2464 	delete_from_page_cache(page);
2465 out_release:
2466 	unlock_page(page);
2467 	put_page(page);
2468 out_unacct_blocks:
2469 	shmem_inode_unacct_blocks(inode, 1);
2470 	return ret;
2471 }
2472 #endif /* CONFIG_USERFAULTFD */
2473 
2474 #ifdef CONFIG_TMPFS
2475 static const struct inode_operations shmem_symlink_inode_operations;
2476 static const struct inode_operations shmem_short_symlink_operations;
2477 
2478 #ifdef CONFIG_TMPFS_XATTR
2479 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2480 #else
2481 #define shmem_initxattrs NULL
2482 #endif
2483 
2484 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2485 shmem_write_begin(struct file *file, struct address_space *mapping,
2486 			loff_t pos, unsigned len, unsigned flags,
2487 			struct page **pagep, void **fsdata)
2488 {
2489 	struct inode *inode = mapping->host;
2490 	struct shmem_inode_info *info = SHMEM_I(inode);
2491 	pgoff_t index = pos >> PAGE_SHIFT;
2492 
2493 	/* i_mutex is held by caller */
2494 	if (unlikely(info->seals & (F_SEAL_GROW |
2495 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2496 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2497 			return -EPERM;
2498 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2499 			return -EPERM;
2500 	}
2501 
2502 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2503 }
2504 
2505 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2506 shmem_write_end(struct file *file, struct address_space *mapping,
2507 			loff_t pos, unsigned len, unsigned copied,
2508 			struct page *page, void *fsdata)
2509 {
2510 	struct inode *inode = mapping->host;
2511 
2512 	if (pos + copied > inode->i_size)
2513 		i_size_write(inode, pos + copied);
2514 
2515 	if (!PageUptodate(page)) {
2516 		struct page *head = compound_head(page);
2517 		if (PageTransCompound(page)) {
2518 			int i;
2519 
2520 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2521 				if (head + i == page)
2522 					continue;
2523 				clear_highpage(head + i);
2524 				flush_dcache_page(head + i);
2525 			}
2526 		}
2527 		if (copied < PAGE_SIZE) {
2528 			unsigned from = pos & (PAGE_SIZE - 1);
2529 			zero_user_segments(page, 0, from,
2530 					from + copied, PAGE_SIZE);
2531 		}
2532 		SetPageUptodate(head);
2533 	}
2534 	set_page_dirty(page);
2535 	unlock_page(page);
2536 	put_page(page);
2537 
2538 	return copied;
2539 }
2540 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2541 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2542 {
2543 	struct file *file = iocb->ki_filp;
2544 	struct inode *inode = file_inode(file);
2545 	struct address_space *mapping = inode->i_mapping;
2546 	pgoff_t index;
2547 	unsigned long offset;
2548 	enum sgp_type sgp = SGP_READ;
2549 	int error = 0;
2550 	ssize_t retval = 0;
2551 	loff_t *ppos = &iocb->ki_pos;
2552 
2553 	/*
2554 	 * Might this read be for a stacking filesystem?  Then when reading
2555 	 * holes of a sparse file, we actually need to allocate those pages,
2556 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2557 	 */
2558 	if (!iter_is_iovec(to))
2559 		sgp = SGP_CACHE;
2560 
2561 	index = *ppos >> PAGE_SHIFT;
2562 	offset = *ppos & ~PAGE_MASK;
2563 
2564 	for (;;) {
2565 		struct page *page = NULL;
2566 		pgoff_t end_index;
2567 		unsigned long nr, ret;
2568 		loff_t i_size = i_size_read(inode);
2569 
2570 		end_index = i_size >> PAGE_SHIFT;
2571 		if (index > end_index)
2572 			break;
2573 		if (index == end_index) {
2574 			nr = i_size & ~PAGE_MASK;
2575 			if (nr <= offset)
2576 				break;
2577 		}
2578 
2579 		error = shmem_getpage(inode, index, &page, sgp);
2580 		if (error) {
2581 			if (error == -EINVAL)
2582 				error = 0;
2583 			break;
2584 		}
2585 		if (page) {
2586 			if (sgp == SGP_CACHE)
2587 				set_page_dirty(page);
2588 			unlock_page(page);
2589 		}
2590 
2591 		/*
2592 		 * We must evaluate after, since reads (unlike writes)
2593 		 * are called without i_mutex protection against truncate
2594 		 */
2595 		nr = PAGE_SIZE;
2596 		i_size = i_size_read(inode);
2597 		end_index = i_size >> PAGE_SHIFT;
2598 		if (index == end_index) {
2599 			nr = i_size & ~PAGE_MASK;
2600 			if (nr <= offset) {
2601 				if (page)
2602 					put_page(page);
2603 				break;
2604 			}
2605 		}
2606 		nr -= offset;
2607 
2608 		if (page) {
2609 			/*
2610 			 * If users can be writing to this page using arbitrary
2611 			 * virtual addresses, take care about potential aliasing
2612 			 * before reading the page on the kernel side.
2613 			 */
2614 			if (mapping_writably_mapped(mapping))
2615 				flush_dcache_page(page);
2616 			/*
2617 			 * Mark the page accessed if we read the beginning.
2618 			 */
2619 			if (!offset)
2620 				mark_page_accessed(page);
2621 		} else {
2622 			page = ZERO_PAGE(0);
2623 			get_page(page);
2624 		}
2625 
2626 		/*
2627 		 * Ok, we have the page, and it's up-to-date, so
2628 		 * now we can copy it to user space...
2629 		 */
2630 		ret = copy_page_to_iter(page, offset, nr, to);
2631 		retval += ret;
2632 		offset += ret;
2633 		index += offset >> PAGE_SHIFT;
2634 		offset &= ~PAGE_MASK;
2635 
2636 		put_page(page);
2637 		if (!iov_iter_count(to))
2638 			break;
2639 		if (ret < nr) {
2640 			error = -EFAULT;
2641 			break;
2642 		}
2643 		cond_resched();
2644 	}
2645 
2646 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2647 	file_accessed(file);
2648 	return retval ? retval : error;
2649 }
2650 
2651 /*
2652  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2653  */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2654 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2655 				    pgoff_t index, pgoff_t end, int whence)
2656 {
2657 	struct page *page;
2658 	struct pagevec pvec;
2659 	pgoff_t indices[PAGEVEC_SIZE];
2660 	bool done = false;
2661 	int i;
2662 
2663 	pagevec_init(&pvec);
2664 	pvec.nr = 1;		/* start small: we may be there already */
2665 	while (!done) {
2666 		pvec.nr = find_get_entries(mapping, index,
2667 					pvec.nr, pvec.pages, indices);
2668 		if (!pvec.nr) {
2669 			if (whence == SEEK_DATA)
2670 				index = end;
2671 			break;
2672 		}
2673 		for (i = 0; i < pvec.nr; i++, index++) {
2674 			if (index < indices[i]) {
2675 				if (whence == SEEK_HOLE) {
2676 					done = true;
2677 					break;
2678 				}
2679 				index = indices[i];
2680 			}
2681 			page = pvec.pages[i];
2682 			if (page && !xa_is_value(page)) {
2683 				if (!PageUptodate(page))
2684 					page = NULL;
2685 			}
2686 			if (index >= end ||
2687 			    (page && whence == SEEK_DATA) ||
2688 			    (!page && whence == SEEK_HOLE)) {
2689 				done = true;
2690 				break;
2691 			}
2692 		}
2693 		pagevec_remove_exceptionals(&pvec);
2694 		pagevec_release(&pvec);
2695 		pvec.nr = PAGEVEC_SIZE;
2696 		cond_resched();
2697 	}
2698 	return index;
2699 }
2700 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2701 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2702 {
2703 	struct address_space *mapping = file->f_mapping;
2704 	struct inode *inode = mapping->host;
2705 	pgoff_t start, end;
2706 	loff_t new_offset;
2707 
2708 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2709 		return generic_file_llseek_size(file, offset, whence,
2710 					MAX_LFS_FILESIZE, i_size_read(inode));
2711 	inode_lock(inode);
2712 	/* We're holding i_mutex so we can access i_size directly */
2713 
2714 	if (offset < 0 || offset >= inode->i_size)
2715 		offset = -ENXIO;
2716 	else {
2717 		start = offset >> PAGE_SHIFT;
2718 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2720 		new_offset <<= PAGE_SHIFT;
2721 		if (new_offset > offset) {
2722 			if (new_offset < inode->i_size)
2723 				offset = new_offset;
2724 			else if (whence == SEEK_DATA)
2725 				offset = -ENXIO;
2726 			else
2727 				offset = inode->i_size;
2728 		}
2729 	}
2730 
2731 	if (offset >= 0)
2732 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2733 	inode_unlock(inode);
2734 	return offset;
2735 }
2736 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2737 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2738 							 loff_t len)
2739 {
2740 	struct inode *inode = file_inode(file);
2741 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2742 	struct shmem_inode_info *info = SHMEM_I(inode);
2743 	struct shmem_falloc shmem_falloc;
2744 	pgoff_t start, index, end;
2745 	int error;
2746 
2747 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2748 		return -EOPNOTSUPP;
2749 
2750 	inode_lock(inode);
2751 
2752 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2753 		struct address_space *mapping = file->f_mapping;
2754 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2755 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2756 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2757 
2758 		/* protected by i_mutex */
2759 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2760 			error = -EPERM;
2761 			goto out;
2762 		}
2763 
2764 		shmem_falloc.waitq = &shmem_falloc_waitq;
2765 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2766 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2767 		spin_lock(&inode->i_lock);
2768 		inode->i_private = &shmem_falloc;
2769 		spin_unlock(&inode->i_lock);
2770 
2771 		if ((u64)unmap_end > (u64)unmap_start)
2772 			unmap_mapping_range(mapping, unmap_start,
2773 					    1 + unmap_end - unmap_start, 0);
2774 		shmem_truncate_range(inode, offset, offset + len - 1);
2775 		/* No need to unmap again: hole-punching leaves COWed pages */
2776 
2777 		spin_lock(&inode->i_lock);
2778 		inode->i_private = NULL;
2779 		wake_up_all(&shmem_falloc_waitq);
2780 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2781 		spin_unlock(&inode->i_lock);
2782 		error = 0;
2783 		goto out;
2784 	}
2785 
2786 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2787 	error = inode_newsize_ok(inode, offset + len);
2788 	if (error)
2789 		goto out;
2790 
2791 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2792 		error = -EPERM;
2793 		goto out;
2794 	}
2795 
2796 	start = offset >> PAGE_SHIFT;
2797 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2798 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2799 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2800 		error = -ENOSPC;
2801 		goto out;
2802 	}
2803 
2804 	shmem_falloc.waitq = NULL;
2805 	shmem_falloc.start = start;
2806 	shmem_falloc.next  = start;
2807 	shmem_falloc.nr_falloced = 0;
2808 	shmem_falloc.nr_unswapped = 0;
2809 	spin_lock(&inode->i_lock);
2810 	inode->i_private = &shmem_falloc;
2811 	spin_unlock(&inode->i_lock);
2812 
2813 	for (index = start; index < end; index++) {
2814 		struct page *page;
2815 
2816 		/*
2817 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2818 		 * been interrupted because we are using up too much memory.
2819 		 */
2820 		if (signal_pending(current))
2821 			error = -EINTR;
2822 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2823 			error = -ENOMEM;
2824 		else
2825 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2826 		if (error) {
2827 			/* Remove the !PageUptodate pages we added */
2828 			if (index > start) {
2829 				shmem_undo_range(inode,
2830 				    (loff_t)start << PAGE_SHIFT,
2831 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2832 			}
2833 			goto undone;
2834 		}
2835 
2836 		/*
2837 		 * Inform shmem_writepage() how far we have reached.
2838 		 * No need for lock or barrier: we have the page lock.
2839 		 */
2840 		shmem_falloc.next++;
2841 		if (!PageUptodate(page))
2842 			shmem_falloc.nr_falloced++;
2843 
2844 		/*
2845 		 * If !PageUptodate, leave it that way so that freeable pages
2846 		 * can be recognized if we need to rollback on error later.
2847 		 * But set_page_dirty so that memory pressure will swap rather
2848 		 * than free the pages we are allocating (and SGP_CACHE pages
2849 		 * might still be clean: we now need to mark those dirty too).
2850 		 */
2851 		set_page_dirty(page);
2852 		unlock_page(page);
2853 		put_page(page);
2854 		cond_resched();
2855 	}
2856 
2857 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2858 		i_size_write(inode, offset + len);
2859 	inode->i_ctime = current_time(inode);
2860 undone:
2861 	spin_lock(&inode->i_lock);
2862 	inode->i_private = NULL;
2863 	spin_unlock(&inode->i_lock);
2864 out:
2865 	inode_unlock(inode);
2866 	return error;
2867 }
2868 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2869 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2870 {
2871 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2872 
2873 	buf->f_type = TMPFS_MAGIC;
2874 	buf->f_bsize = PAGE_SIZE;
2875 	buf->f_namelen = NAME_MAX;
2876 	if (sbinfo->max_blocks) {
2877 		buf->f_blocks = sbinfo->max_blocks;
2878 		buf->f_bavail =
2879 		buf->f_bfree  = sbinfo->max_blocks -
2880 				percpu_counter_sum(&sbinfo->used_blocks);
2881 	}
2882 	if (sbinfo->max_inodes) {
2883 		buf->f_files = sbinfo->max_inodes;
2884 		buf->f_ffree = sbinfo->free_inodes;
2885 	}
2886 	/* else leave those fields 0 like simple_statfs */
2887 	return 0;
2888 }
2889 
2890 /*
2891  * File creation. Allocate an inode, and we're done..
2892  */
2893 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2894 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2895 {
2896 	struct inode *inode;
2897 	int error = -ENOSPC;
2898 
2899 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2900 	if (inode) {
2901 		error = simple_acl_create(dir, inode);
2902 		if (error)
2903 			goto out_iput;
2904 		error = security_inode_init_security(inode, dir,
2905 						     &dentry->d_name,
2906 						     shmem_initxattrs, NULL);
2907 		if (error && error != -EOPNOTSUPP)
2908 			goto out_iput;
2909 
2910 		error = 0;
2911 		dir->i_size += BOGO_DIRENT_SIZE;
2912 		dir->i_ctime = dir->i_mtime = current_time(dir);
2913 		d_instantiate(dentry, inode);
2914 		dget(dentry); /* Extra count - pin the dentry in core */
2915 	}
2916 	return error;
2917 out_iput:
2918 	iput(inode);
2919 	return error;
2920 }
2921 
2922 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2923 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2924 {
2925 	struct inode *inode;
2926 	int error = -ENOSPC;
2927 
2928 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2929 	if (inode) {
2930 		error = security_inode_init_security(inode, dir,
2931 						     NULL,
2932 						     shmem_initxattrs, NULL);
2933 		if (error && error != -EOPNOTSUPP)
2934 			goto out_iput;
2935 		error = simple_acl_create(dir, inode);
2936 		if (error)
2937 			goto out_iput;
2938 		d_tmpfile(dentry, inode);
2939 	}
2940 	return error;
2941 out_iput:
2942 	iput(inode);
2943 	return error;
2944 }
2945 
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2946 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2947 {
2948 	int error;
2949 
2950 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2951 		return error;
2952 	inc_nlink(dir);
2953 	return 0;
2954 }
2955 
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2956 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2957 		bool excl)
2958 {
2959 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2960 }
2961 
2962 /*
2963  * Link a file..
2964  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2965 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2966 {
2967 	struct inode *inode = d_inode(old_dentry);
2968 	int ret = 0;
2969 
2970 	/*
2971 	 * No ordinary (disk based) filesystem counts links as inodes;
2972 	 * but each new link needs a new dentry, pinning lowmem, and
2973 	 * tmpfs dentries cannot be pruned until they are unlinked.
2974 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2975 	 * first link must skip that, to get the accounting right.
2976 	 */
2977 	if (inode->i_nlink) {
2978 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2979 		if (ret)
2980 			goto out;
2981 	}
2982 
2983 	dir->i_size += BOGO_DIRENT_SIZE;
2984 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2985 	inc_nlink(inode);
2986 	ihold(inode);	/* New dentry reference */
2987 	dget(dentry);		/* Extra pinning count for the created dentry */
2988 	d_instantiate(dentry, inode);
2989 out:
2990 	return ret;
2991 }
2992 
shmem_unlink(struct inode * dir,struct dentry * dentry)2993 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2994 {
2995 	struct inode *inode = d_inode(dentry);
2996 
2997 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2998 		shmem_free_inode(inode->i_sb);
2999 
3000 	dir->i_size -= BOGO_DIRENT_SIZE;
3001 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3002 	drop_nlink(inode);
3003 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3004 	return 0;
3005 }
3006 
shmem_rmdir(struct inode * dir,struct dentry * dentry)3007 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3008 {
3009 	if (!simple_empty(dentry))
3010 		return -ENOTEMPTY;
3011 
3012 	drop_nlink(d_inode(dentry));
3013 	drop_nlink(dir);
3014 	return shmem_unlink(dir, dentry);
3015 }
3016 
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3017 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3018 {
3019 	bool old_is_dir = d_is_dir(old_dentry);
3020 	bool new_is_dir = d_is_dir(new_dentry);
3021 
3022 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3023 		if (old_is_dir) {
3024 			drop_nlink(old_dir);
3025 			inc_nlink(new_dir);
3026 		} else {
3027 			drop_nlink(new_dir);
3028 			inc_nlink(old_dir);
3029 		}
3030 	}
3031 	old_dir->i_ctime = old_dir->i_mtime =
3032 	new_dir->i_ctime = new_dir->i_mtime =
3033 	d_inode(old_dentry)->i_ctime =
3034 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3035 
3036 	return 0;
3037 }
3038 
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3039 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3040 {
3041 	struct dentry *whiteout;
3042 	int error;
3043 
3044 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3045 	if (!whiteout)
3046 		return -ENOMEM;
3047 
3048 	error = shmem_mknod(old_dir, whiteout,
3049 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3050 	dput(whiteout);
3051 	if (error)
3052 		return error;
3053 
3054 	/*
3055 	 * Cheat and hash the whiteout while the old dentry is still in
3056 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3057 	 *
3058 	 * d_lookup() will consistently find one of them at this point,
3059 	 * not sure which one, but that isn't even important.
3060 	 */
3061 	d_rehash(whiteout);
3062 	return 0;
3063 }
3064 
3065 /*
3066  * The VFS layer already does all the dentry stuff for rename,
3067  * we just have to decrement the usage count for the target if
3068  * it exists so that the VFS layer correctly free's it when it
3069  * gets overwritten.
3070  */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3071 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3072 {
3073 	struct inode *inode = d_inode(old_dentry);
3074 	int they_are_dirs = S_ISDIR(inode->i_mode);
3075 
3076 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3077 		return -EINVAL;
3078 
3079 	if (flags & RENAME_EXCHANGE)
3080 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3081 
3082 	if (!simple_empty(new_dentry))
3083 		return -ENOTEMPTY;
3084 
3085 	if (flags & RENAME_WHITEOUT) {
3086 		int error;
3087 
3088 		error = shmem_whiteout(old_dir, old_dentry);
3089 		if (error)
3090 			return error;
3091 	}
3092 
3093 	if (d_really_is_positive(new_dentry)) {
3094 		(void) shmem_unlink(new_dir, new_dentry);
3095 		if (they_are_dirs) {
3096 			drop_nlink(d_inode(new_dentry));
3097 			drop_nlink(old_dir);
3098 		}
3099 	} else if (they_are_dirs) {
3100 		drop_nlink(old_dir);
3101 		inc_nlink(new_dir);
3102 	}
3103 
3104 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3105 	new_dir->i_size += BOGO_DIRENT_SIZE;
3106 	old_dir->i_ctime = old_dir->i_mtime =
3107 	new_dir->i_ctime = new_dir->i_mtime =
3108 	inode->i_ctime = current_time(old_dir);
3109 	return 0;
3110 }
3111 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3112 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3113 {
3114 	int error;
3115 	int len;
3116 	struct inode *inode;
3117 	struct page *page;
3118 
3119 	len = strlen(symname) + 1;
3120 	if (len > PAGE_SIZE)
3121 		return -ENAMETOOLONG;
3122 
3123 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3124 				VM_NORESERVE);
3125 	if (!inode)
3126 		return -ENOSPC;
3127 
3128 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3129 					     shmem_initxattrs, NULL);
3130 	if (error && error != -EOPNOTSUPP) {
3131 		iput(inode);
3132 		return error;
3133 	}
3134 
3135 	inode->i_size = len-1;
3136 	if (len <= SHORT_SYMLINK_LEN) {
3137 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3138 		if (!inode->i_link) {
3139 			iput(inode);
3140 			return -ENOMEM;
3141 		}
3142 		inode->i_op = &shmem_short_symlink_operations;
3143 	} else {
3144 		inode_nohighmem(inode);
3145 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3146 		if (error) {
3147 			iput(inode);
3148 			return error;
3149 		}
3150 		inode->i_mapping->a_ops = &shmem_aops;
3151 		inode->i_op = &shmem_symlink_inode_operations;
3152 		memcpy(page_address(page), symname, len);
3153 		SetPageUptodate(page);
3154 		set_page_dirty(page);
3155 		unlock_page(page);
3156 		put_page(page);
3157 	}
3158 	dir->i_size += BOGO_DIRENT_SIZE;
3159 	dir->i_ctime = dir->i_mtime = current_time(dir);
3160 	d_instantiate(dentry, inode);
3161 	dget(dentry);
3162 	return 0;
3163 }
3164 
shmem_put_link(void * arg)3165 static void shmem_put_link(void *arg)
3166 {
3167 	mark_page_accessed(arg);
3168 	put_page(arg);
3169 }
3170 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3171 static const char *shmem_get_link(struct dentry *dentry,
3172 				  struct inode *inode,
3173 				  struct delayed_call *done)
3174 {
3175 	struct page *page = NULL;
3176 	int error;
3177 	if (!dentry) {
3178 		page = find_get_page(inode->i_mapping, 0);
3179 		if (!page)
3180 			return ERR_PTR(-ECHILD);
3181 		if (!PageUptodate(page)) {
3182 			put_page(page);
3183 			return ERR_PTR(-ECHILD);
3184 		}
3185 	} else {
3186 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3187 		if (error)
3188 			return ERR_PTR(error);
3189 		unlock_page(page);
3190 	}
3191 	set_delayed_call(done, shmem_put_link, page);
3192 	return page_address(page);
3193 }
3194 
3195 #ifdef CONFIG_TMPFS_XATTR
3196 /*
3197  * Superblocks without xattr inode operations may get some security.* xattr
3198  * support from the LSM "for free". As soon as we have any other xattrs
3199  * like ACLs, we also need to implement the security.* handlers at
3200  * filesystem level, though.
3201  */
3202 
3203 /*
3204  * Callback for security_inode_init_security() for acquiring xattrs.
3205  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3206 static int shmem_initxattrs(struct inode *inode,
3207 			    const struct xattr *xattr_array,
3208 			    void *fs_info)
3209 {
3210 	struct shmem_inode_info *info = SHMEM_I(inode);
3211 	const struct xattr *xattr;
3212 	struct simple_xattr *new_xattr;
3213 	size_t len;
3214 
3215 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3216 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3217 		if (!new_xattr)
3218 			return -ENOMEM;
3219 
3220 		len = strlen(xattr->name) + 1;
3221 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3222 					  GFP_KERNEL);
3223 		if (!new_xattr->name) {
3224 			kvfree(new_xattr);
3225 			return -ENOMEM;
3226 		}
3227 
3228 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3229 		       XATTR_SECURITY_PREFIX_LEN);
3230 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3231 		       xattr->name, len);
3232 
3233 		simple_xattr_list_add(&info->xattrs, new_xattr);
3234 	}
3235 
3236 	return 0;
3237 }
3238 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)3239 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3240 				   struct dentry *unused, struct inode *inode,
3241 				   const char *name, void *buffer, size_t size,
3242 				   int flags)
3243 {
3244 	struct shmem_inode_info *info = SHMEM_I(inode);
3245 
3246 	name = xattr_full_name(handler, name);
3247 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3248 }
3249 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3250 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3251 				   struct dentry *unused, struct inode *inode,
3252 				   const char *name, const void *value,
3253 				   size_t size, int flags)
3254 {
3255 	struct shmem_inode_info *info = SHMEM_I(inode);
3256 
3257 	name = xattr_full_name(handler, name);
3258 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3259 }
3260 
3261 static const struct xattr_handler shmem_security_xattr_handler = {
3262 	.prefix = XATTR_SECURITY_PREFIX,
3263 	.get = shmem_xattr_handler_get,
3264 	.set = shmem_xattr_handler_set,
3265 };
3266 
3267 static const struct xattr_handler shmem_trusted_xattr_handler = {
3268 	.prefix = XATTR_TRUSTED_PREFIX,
3269 	.get = shmem_xattr_handler_get,
3270 	.set = shmem_xattr_handler_set,
3271 };
3272 
3273 static const struct xattr_handler *shmem_xattr_handlers[] = {
3274 #ifdef CONFIG_TMPFS_POSIX_ACL
3275 	&posix_acl_access_xattr_handler,
3276 	&posix_acl_default_xattr_handler,
3277 #endif
3278 	&shmem_security_xattr_handler,
3279 	&shmem_trusted_xattr_handler,
3280 	NULL
3281 };
3282 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3283 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3284 {
3285 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3286 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3287 }
3288 #endif /* CONFIG_TMPFS_XATTR */
3289 
3290 static const struct inode_operations shmem_short_symlink_operations = {
3291 	.get_link	= simple_get_link,
3292 #ifdef CONFIG_TMPFS_XATTR
3293 	.listxattr	= shmem_listxattr,
3294 #endif
3295 };
3296 
3297 static const struct inode_operations shmem_symlink_inode_operations = {
3298 	.get_link	= shmem_get_link,
3299 #ifdef CONFIG_TMPFS_XATTR
3300 	.listxattr	= shmem_listxattr,
3301 #endif
3302 };
3303 
shmem_get_parent(struct dentry * child)3304 static struct dentry *shmem_get_parent(struct dentry *child)
3305 {
3306 	return ERR_PTR(-ESTALE);
3307 }
3308 
shmem_match(struct inode * ino,void * vfh)3309 static int shmem_match(struct inode *ino, void *vfh)
3310 {
3311 	__u32 *fh = vfh;
3312 	__u64 inum = fh[2];
3313 	inum = (inum << 32) | fh[1];
3314 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3315 }
3316 
3317 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3318 static struct dentry *shmem_find_alias(struct inode *inode)
3319 {
3320 	struct dentry *alias = d_find_alias(inode);
3321 
3322 	return alias ?: d_find_any_alias(inode);
3323 }
3324 
3325 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3326 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3327 		struct fid *fid, int fh_len, int fh_type)
3328 {
3329 	struct inode *inode;
3330 	struct dentry *dentry = NULL;
3331 	u64 inum;
3332 
3333 	if (fh_len < 3)
3334 		return NULL;
3335 
3336 	inum = fid->raw[2];
3337 	inum = (inum << 32) | fid->raw[1];
3338 
3339 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3340 			shmem_match, fid->raw);
3341 	if (inode) {
3342 		dentry = shmem_find_alias(inode);
3343 		iput(inode);
3344 	}
3345 
3346 	return dentry;
3347 }
3348 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3349 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3350 				struct inode *parent)
3351 {
3352 	if (*len < 3) {
3353 		*len = 3;
3354 		return FILEID_INVALID;
3355 	}
3356 
3357 	if (inode_unhashed(inode)) {
3358 		/* Unfortunately insert_inode_hash is not idempotent,
3359 		 * so as we hash inodes here rather than at creation
3360 		 * time, we need a lock to ensure we only try
3361 		 * to do it once
3362 		 */
3363 		static DEFINE_SPINLOCK(lock);
3364 		spin_lock(&lock);
3365 		if (inode_unhashed(inode))
3366 			__insert_inode_hash(inode,
3367 					    inode->i_ino + inode->i_generation);
3368 		spin_unlock(&lock);
3369 	}
3370 
3371 	fh[0] = inode->i_generation;
3372 	fh[1] = inode->i_ino;
3373 	fh[2] = ((__u64)inode->i_ino) >> 32;
3374 
3375 	*len = 3;
3376 	return 1;
3377 }
3378 
3379 static const struct export_operations shmem_export_ops = {
3380 	.get_parent     = shmem_get_parent,
3381 	.encode_fh      = shmem_encode_fh,
3382 	.fh_to_dentry	= shmem_fh_to_dentry,
3383 };
3384 
3385 enum shmem_param {
3386 	Opt_gid,
3387 	Opt_huge,
3388 	Opt_mode,
3389 	Opt_mpol,
3390 	Opt_nr_blocks,
3391 	Opt_nr_inodes,
3392 	Opt_size,
3393 	Opt_uid,
3394 	Opt_inode32,
3395 	Opt_inode64,
3396 };
3397 
3398 static const struct constant_table shmem_param_enums_huge[] = {
3399 	{"never",	SHMEM_HUGE_NEVER },
3400 	{"always",	SHMEM_HUGE_ALWAYS },
3401 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3402 	{"advise",	SHMEM_HUGE_ADVISE },
3403 	{}
3404 };
3405 
3406 const struct fs_parameter_spec shmem_fs_parameters[] = {
3407 	fsparam_u32   ("gid",		Opt_gid),
3408 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3409 	fsparam_u32oct("mode",		Opt_mode),
3410 	fsparam_string("mpol",		Opt_mpol),
3411 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3412 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3413 	fsparam_string("size",		Opt_size),
3414 	fsparam_u32   ("uid",		Opt_uid),
3415 	fsparam_flag  ("inode32",	Opt_inode32),
3416 	fsparam_flag  ("inode64",	Opt_inode64),
3417 	{}
3418 };
3419 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3420 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3421 {
3422 	struct shmem_options *ctx = fc->fs_private;
3423 	struct fs_parse_result result;
3424 	unsigned long long size;
3425 	char *rest;
3426 	int opt;
3427 	kuid_t kuid;
3428 	kgid_t kgid;
3429 
3430 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3431 	if (opt < 0)
3432 		return opt;
3433 
3434 	switch (opt) {
3435 	case Opt_size:
3436 		size = memparse(param->string, &rest);
3437 		if (*rest == '%') {
3438 			size <<= PAGE_SHIFT;
3439 			size *= totalram_pages();
3440 			do_div(size, 100);
3441 			rest++;
3442 		}
3443 		if (*rest)
3444 			goto bad_value;
3445 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3446 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3447 		break;
3448 	case Opt_nr_blocks:
3449 		ctx->blocks = memparse(param->string, &rest);
3450 		if (*rest)
3451 			goto bad_value;
3452 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3453 		break;
3454 	case Opt_nr_inodes:
3455 		ctx->inodes = memparse(param->string, &rest);
3456 		if (*rest)
3457 			goto bad_value;
3458 		ctx->seen |= SHMEM_SEEN_INODES;
3459 		break;
3460 	case Opt_mode:
3461 		ctx->mode = result.uint_32 & 07777;
3462 		break;
3463 	case Opt_uid:
3464 		kuid = make_kuid(current_user_ns(), result.uint_32);
3465 		if (!uid_valid(kuid))
3466 			goto bad_value;
3467 
3468 		/*
3469 		 * The requested uid must be representable in the
3470 		 * filesystem's idmapping.
3471 		 */
3472 		if (!kuid_has_mapping(fc->user_ns, kuid))
3473 			goto bad_value;
3474 
3475 		ctx->uid = kuid;
3476 		break;
3477 	case Opt_gid:
3478 		kgid = make_kgid(current_user_ns(), result.uint_32);
3479 		if (!gid_valid(kgid))
3480 			goto bad_value;
3481 
3482 		/*
3483 		 * The requested gid must be representable in the
3484 		 * filesystem's idmapping.
3485 		 */
3486 		if (!kgid_has_mapping(fc->user_ns, kgid))
3487 			goto bad_value;
3488 
3489 		ctx->gid = kgid;
3490 		break;
3491 	case Opt_huge:
3492 		ctx->huge = result.uint_32;
3493 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3494 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495 		      has_transparent_hugepage()))
3496 			goto unsupported_parameter;
3497 		ctx->seen |= SHMEM_SEEN_HUGE;
3498 		break;
3499 	case Opt_mpol:
3500 		if (IS_ENABLED(CONFIG_NUMA)) {
3501 			mpol_put(ctx->mpol);
3502 			ctx->mpol = NULL;
3503 			if (mpol_parse_str(param->string, &ctx->mpol))
3504 				goto bad_value;
3505 			break;
3506 		}
3507 		goto unsupported_parameter;
3508 	case Opt_inode32:
3509 		ctx->full_inums = false;
3510 		ctx->seen |= SHMEM_SEEN_INUMS;
3511 		break;
3512 	case Opt_inode64:
3513 		if (sizeof(ino_t) < 8) {
3514 			return invalfc(fc,
3515 				       "Cannot use inode64 with <64bit inums in kernel\n");
3516 		}
3517 		ctx->full_inums = true;
3518 		ctx->seen |= SHMEM_SEEN_INUMS;
3519 		break;
3520 	}
3521 	return 0;
3522 
3523 unsupported_parameter:
3524 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525 bad_value:
3526 	return invalfc(fc, "Bad value for '%s'", param->key);
3527 }
3528 
shmem_parse_options(struct fs_context * fc,void * data)3529 static int shmem_parse_options(struct fs_context *fc, void *data)
3530 {
3531 	char *options = data;
3532 
3533 	if (options) {
3534 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3535 		if (err)
3536 			return err;
3537 	}
3538 
3539 	while (options != NULL) {
3540 		char *this_char = options;
3541 		for (;;) {
3542 			/*
3543 			 * NUL-terminate this option: unfortunately,
3544 			 * mount options form a comma-separated list,
3545 			 * but mpol's nodelist may also contain commas.
3546 			 */
3547 			options = strchr(options, ',');
3548 			if (options == NULL)
3549 				break;
3550 			options++;
3551 			if (!isdigit(*options)) {
3552 				options[-1] = '\0';
3553 				break;
3554 			}
3555 		}
3556 		if (*this_char) {
3557 			char *value = strchr(this_char,'=');
3558 			size_t len = 0;
3559 			int err;
3560 
3561 			if (value) {
3562 				*value++ = '\0';
3563 				len = strlen(value);
3564 			}
3565 			err = vfs_parse_fs_string(fc, this_char, value, len);
3566 			if (err < 0)
3567 				return err;
3568 		}
3569 	}
3570 	return 0;
3571 }
3572 
3573 /*
3574  * Reconfigure a shmem filesystem.
3575  *
3576  * Note that we disallow change from limited->unlimited blocks/inodes while any
3577  * are in use; but we must separately disallow unlimited->limited, because in
3578  * that case we have no record of how much is already in use.
3579  */
shmem_reconfigure(struct fs_context * fc)3580 static int shmem_reconfigure(struct fs_context *fc)
3581 {
3582 	struct shmem_options *ctx = fc->fs_private;
3583 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584 	unsigned long inodes;
3585 	const char *err;
3586 
3587 	spin_lock(&sbinfo->stat_lock);
3588 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3589 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590 		if (!sbinfo->max_blocks) {
3591 			err = "Cannot retroactively limit size";
3592 			goto out;
3593 		}
3594 		if (percpu_counter_compare(&sbinfo->used_blocks,
3595 					   ctx->blocks) > 0) {
3596 			err = "Too small a size for current use";
3597 			goto out;
3598 		}
3599 	}
3600 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601 		if (!sbinfo->max_inodes) {
3602 			err = "Cannot retroactively limit inodes";
3603 			goto out;
3604 		}
3605 		if (ctx->inodes < inodes) {
3606 			err = "Too few inodes for current use";
3607 			goto out;
3608 		}
3609 	}
3610 
3611 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612 	    sbinfo->next_ino > UINT_MAX) {
3613 		err = "Current inum too high to switch to 32-bit inums";
3614 		goto out;
3615 	}
3616 
3617 	if (ctx->seen & SHMEM_SEEN_HUGE)
3618 		sbinfo->huge = ctx->huge;
3619 	if (ctx->seen & SHMEM_SEEN_INUMS)
3620 		sbinfo->full_inums = ctx->full_inums;
3621 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622 		sbinfo->max_blocks  = ctx->blocks;
3623 	if (ctx->seen & SHMEM_SEEN_INODES) {
3624 		sbinfo->max_inodes  = ctx->inodes;
3625 		sbinfo->free_inodes = ctx->inodes - inodes;
3626 	}
3627 
3628 	/*
3629 	 * Preserve previous mempolicy unless mpol remount option was specified.
3630 	 */
3631 	if (ctx->mpol) {
3632 		mpol_put(sbinfo->mpol);
3633 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3634 		ctx->mpol = NULL;
3635 	}
3636 	spin_unlock(&sbinfo->stat_lock);
3637 	return 0;
3638 out:
3639 	spin_unlock(&sbinfo->stat_lock);
3640 	return invalfc(fc, "%s", err);
3641 }
3642 
shmem_show_options(struct seq_file * seq,struct dentry * root)3643 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644 {
3645 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646 
3647 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3648 		seq_printf(seq, ",size=%luk",
3649 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3651 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652 	if (sbinfo->mode != (0777 | S_ISVTX))
3653 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655 		seq_printf(seq, ",uid=%u",
3656 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3657 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658 		seq_printf(seq, ",gid=%u",
3659 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3660 
3661 	/*
3662 	 * Showing inode{64,32} might be useful even if it's the system default,
3663 	 * since then people don't have to resort to checking both here and
3664 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3665 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666 	 *
3667 	 * We hide it when inode64 isn't the default and we are using 32-bit
3668 	 * inodes, since that probably just means the feature isn't even under
3669 	 * consideration.
3670 	 *
3671 	 * As such:
3672 	 *
3673 	 *                     +-----------------+-----------------+
3674 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675 	 *  +------------------+-----------------+-----------------+
3676 	 *  | full_inums=true  | show            | show            |
3677 	 *  | full_inums=false | show            | hide            |
3678 	 *  +------------------+-----------------+-----------------+
3679 	 *
3680 	 */
3681 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685 	if (sbinfo->huge)
3686 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687 #endif
3688 	shmem_show_mpol(seq, sbinfo->mpol);
3689 	return 0;
3690 }
3691 
3692 #endif /* CONFIG_TMPFS */
3693 
shmem_put_super(struct super_block * sb)3694 static void shmem_put_super(struct super_block *sb)
3695 {
3696 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697 
3698 	free_percpu(sbinfo->ino_batch);
3699 	percpu_counter_destroy(&sbinfo->used_blocks);
3700 	mpol_put(sbinfo->mpol);
3701 	kfree(sbinfo);
3702 	sb->s_fs_info = NULL;
3703 }
3704 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3705 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706 {
3707 	struct shmem_options *ctx = fc->fs_private;
3708 	struct inode *inode;
3709 	struct shmem_sb_info *sbinfo;
3710 	int err = -ENOMEM;
3711 
3712 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3713 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 				L1_CACHE_BYTES), GFP_KERNEL);
3715 	if (!sbinfo)
3716 		return -ENOMEM;
3717 
3718 	sb->s_fs_info = sbinfo;
3719 
3720 #ifdef CONFIG_TMPFS
3721 	/*
3722 	 * Per default we only allow half of the physical ram per
3723 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3724 	 * but the internal instance is left unlimited.
3725 	 */
3726 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3727 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728 			ctx->blocks = shmem_default_max_blocks();
3729 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3730 			ctx->inodes = shmem_default_max_inodes();
3731 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733 	} else {
3734 		sb->s_flags |= SB_NOUSER;
3735 	}
3736 	sb->s_export_op = &shmem_export_ops;
3737 	sb->s_flags |= SB_NOSEC;
3738 #else
3739 	sb->s_flags |= SB_NOUSER;
3740 #endif
3741 	sbinfo->max_blocks = ctx->blocks;
3742 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743 	if (sb->s_flags & SB_KERNMOUNT) {
3744 		sbinfo->ino_batch = alloc_percpu(ino_t);
3745 		if (!sbinfo->ino_batch)
3746 			goto failed;
3747 	}
3748 	sbinfo->uid = ctx->uid;
3749 	sbinfo->gid = ctx->gid;
3750 	sbinfo->full_inums = ctx->full_inums;
3751 	sbinfo->mode = ctx->mode;
3752 	sbinfo->huge = ctx->huge;
3753 	sbinfo->mpol = ctx->mpol;
3754 	ctx->mpol = NULL;
3755 
3756 	spin_lock_init(&sbinfo->stat_lock);
3757 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758 		goto failed;
3759 	spin_lock_init(&sbinfo->shrinklist_lock);
3760 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3761 
3762 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 	sb->s_blocksize = PAGE_SIZE;
3764 	sb->s_blocksize_bits = PAGE_SHIFT;
3765 	sb->s_magic = TMPFS_MAGIC;
3766 	sb->s_op = &shmem_ops;
3767 	sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 	sb->s_flags |= SB_POSIXACL;
3773 #endif
3774 	uuid_gen(&sb->s_uuid);
3775 
3776 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 	if (!inode)
3778 		goto failed;
3779 	inode->i_uid = sbinfo->uid;
3780 	inode->i_gid = sbinfo->gid;
3781 	sb->s_root = d_make_root(inode);
3782 	if (!sb->s_root)
3783 		goto failed;
3784 	return 0;
3785 
3786 failed:
3787 	shmem_put_super(sb);
3788 	return err;
3789 }
3790 
shmem_get_tree(struct fs_context * fc)3791 static int shmem_get_tree(struct fs_context *fc)
3792 {
3793 	return get_tree_nodev(fc, shmem_fill_super);
3794 }
3795 
shmem_free_fc(struct fs_context * fc)3796 static void shmem_free_fc(struct fs_context *fc)
3797 {
3798 	struct shmem_options *ctx = fc->fs_private;
3799 
3800 	if (ctx) {
3801 		mpol_put(ctx->mpol);
3802 		kfree(ctx);
3803 	}
3804 }
3805 
3806 static const struct fs_context_operations shmem_fs_context_ops = {
3807 	.free			= shmem_free_fc,
3808 	.get_tree		= shmem_get_tree,
3809 #ifdef CONFIG_TMPFS
3810 	.parse_monolithic	= shmem_parse_options,
3811 	.parse_param		= shmem_parse_one,
3812 	.reconfigure		= shmem_reconfigure,
3813 #endif
3814 };
3815 
3816 static struct kmem_cache *shmem_inode_cachep;
3817 
shmem_alloc_inode(struct super_block * sb)3818 static struct inode *shmem_alloc_inode(struct super_block *sb)
3819 {
3820 	struct shmem_inode_info *info;
3821 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822 	if (!info)
3823 		return NULL;
3824 	return &info->vfs_inode;
3825 }
3826 
shmem_free_in_core_inode(struct inode * inode)3827 static void shmem_free_in_core_inode(struct inode *inode)
3828 {
3829 	if (S_ISLNK(inode->i_mode))
3830 		kfree(inode->i_link);
3831 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832 }
3833 
shmem_destroy_inode(struct inode * inode)3834 static void shmem_destroy_inode(struct inode *inode)
3835 {
3836 	if (S_ISREG(inode->i_mode))
3837 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838 }
3839 
shmem_init_inode(void * foo)3840 static void shmem_init_inode(void *foo)
3841 {
3842 	struct shmem_inode_info *info = foo;
3843 	inode_init_once(&info->vfs_inode);
3844 }
3845 
shmem_init_inodecache(void)3846 static void shmem_init_inodecache(void)
3847 {
3848 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849 				sizeof(struct shmem_inode_info),
3850 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851 }
3852 
shmem_destroy_inodecache(void)3853 static void shmem_destroy_inodecache(void)
3854 {
3855 	kmem_cache_destroy(shmem_inode_cachep);
3856 }
3857 
3858 static const struct address_space_operations shmem_aops = {
3859 	.writepage	= shmem_writepage,
3860 	.set_page_dirty	= __set_page_dirty_no_writeback,
3861 #ifdef CONFIG_TMPFS
3862 	.write_begin	= shmem_write_begin,
3863 	.write_end	= shmem_write_end,
3864 #endif
3865 #ifdef CONFIG_MIGRATION
3866 	.migratepage	= migrate_page,
3867 #endif
3868 	.error_remove_page = generic_error_remove_page,
3869 };
3870 
3871 static const struct file_operations shmem_file_operations = {
3872 	.mmap		= shmem_mmap,
3873 	.get_unmapped_area = shmem_get_unmapped_area,
3874 #ifdef CONFIG_TMPFS
3875 	.llseek		= shmem_file_llseek,
3876 	.read_iter	= shmem_file_read_iter,
3877 	.write_iter	= generic_file_write_iter,
3878 	.fsync		= noop_fsync,
3879 	.splice_read	= generic_file_splice_read,
3880 	.splice_write	= iter_file_splice_write,
3881 	.fallocate	= shmem_fallocate,
3882 #endif
3883 };
3884 
3885 static const struct inode_operations shmem_inode_operations = {
3886 	.getattr	= shmem_getattr,
3887 	.setattr	= shmem_setattr,
3888 #ifdef CONFIG_TMPFS_XATTR
3889 	.listxattr	= shmem_listxattr,
3890 	.set_acl	= simple_set_acl,
3891 #endif
3892 };
3893 
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896 	.create		= shmem_create,
3897 	.lookup		= simple_lookup,
3898 	.link		= shmem_link,
3899 	.unlink		= shmem_unlink,
3900 	.symlink	= shmem_symlink,
3901 	.mkdir		= shmem_mkdir,
3902 	.rmdir		= shmem_rmdir,
3903 	.mknod		= shmem_mknod,
3904 	.rename		= shmem_rename2,
3905 	.tmpfile	= shmem_tmpfile,
3906 #endif
3907 #ifdef CONFIG_TMPFS_XATTR
3908 	.listxattr	= shmem_listxattr,
3909 #endif
3910 #ifdef CONFIG_TMPFS_POSIX_ACL
3911 	.setattr	= shmem_setattr,
3912 	.set_acl	= simple_set_acl,
3913 #endif
3914 };
3915 
3916 static const struct inode_operations shmem_special_inode_operations = {
3917 #ifdef CONFIG_TMPFS_XATTR
3918 	.listxattr	= shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 	.setattr	= shmem_setattr,
3922 	.set_acl	= simple_set_acl,
3923 #endif
3924 };
3925 
3926 static const struct super_operations shmem_ops = {
3927 	.alloc_inode	= shmem_alloc_inode,
3928 	.free_inode	= shmem_free_in_core_inode,
3929 	.destroy_inode	= shmem_destroy_inode,
3930 #ifdef CONFIG_TMPFS
3931 	.statfs		= shmem_statfs,
3932 	.show_options	= shmem_show_options,
3933 #endif
3934 	.evict_inode	= shmem_evict_inode,
3935 	.drop_inode	= generic_delete_inode,
3936 	.put_super	= shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938 	.nr_cached_objects	= shmem_unused_huge_count,
3939 	.free_cached_objects	= shmem_unused_huge_scan,
3940 #endif
3941 };
3942 
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944 	.fault		= shmem_fault,
3945 	.map_pages	= filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947 	.set_policy     = shmem_set_policy,
3948 	.get_policy     = shmem_get_policy,
3949 #endif
3950 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3951 	.allow_speculation = filemap_allow_speculation,
3952 #endif
3953 };
3954 
shmem_init_fs_context(struct fs_context * fc)3955 int shmem_init_fs_context(struct fs_context *fc)
3956 {
3957 	struct shmem_options *ctx;
3958 
3959 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3960 	if (!ctx)
3961 		return -ENOMEM;
3962 
3963 	ctx->mode = 0777 | S_ISVTX;
3964 	ctx->uid = current_fsuid();
3965 	ctx->gid = current_fsgid();
3966 
3967 	fc->fs_private = ctx;
3968 	fc->ops = &shmem_fs_context_ops;
3969 	return 0;
3970 }
3971 
3972 static struct file_system_type shmem_fs_type = {
3973 	.owner		= THIS_MODULE,
3974 	.name		= "tmpfs",
3975 	.init_fs_context = shmem_init_fs_context,
3976 #ifdef CONFIG_TMPFS
3977 	.parameters	= shmem_fs_parameters,
3978 #endif
3979 	.kill_sb	= kill_litter_super,
3980 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3981 };
3982 
shmem_init(void)3983 int __init shmem_init(void)
3984 {
3985 	int error;
3986 
3987 	shmem_init_inodecache();
3988 
3989 	error = register_filesystem(&shmem_fs_type);
3990 	if (error) {
3991 		pr_err("Could not register tmpfs\n");
3992 		goto out2;
3993 	}
3994 
3995 	shm_mnt = kern_mount(&shmem_fs_type);
3996 	if (IS_ERR(shm_mnt)) {
3997 		error = PTR_ERR(shm_mnt);
3998 		pr_err("Could not kern_mount tmpfs\n");
3999 		goto out1;
4000 	}
4001 
4002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4003 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4004 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4005 	else
4006 		shmem_huge = 0; /* just in case it was patched */
4007 #endif
4008 	return 0;
4009 
4010 out1:
4011 	unregister_filesystem(&shmem_fs_type);
4012 out2:
4013 	shmem_destroy_inodecache();
4014 	shm_mnt = ERR_PTR(error);
4015 	return error;
4016 }
4017 
4018 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4019 static ssize_t shmem_enabled_show(struct kobject *kobj,
4020 		struct kobj_attribute *attr, char *buf)
4021 {
4022 	static const int values[] = {
4023 		SHMEM_HUGE_ALWAYS,
4024 		SHMEM_HUGE_WITHIN_SIZE,
4025 		SHMEM_HUGE_ADVISE,
4026 		SHMEM_HUGE_NEVER,
4027 		SHMEM_HUGE_DENY,
4028 		SHMEM_HUGE_FORCE,
4029 	};
4030 	int i, count;
4031 
4032 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4033 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4034 
4035 		count += sprintf(buf + count, fmt,
4036 				shmem_format_huge(values[i]));
4037 	}
4038 	buf[count - 1] = '\n';
4039 	return count;
4040 }
4041 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4042 static ssize_t shmem_enabled_store(struct kobject *kobj,
4043 		struct kobj_attribute *attr, const char *buf, size_t count)
4044 {
4045 	char tmp[16];
4046 	int huge;
4047 
4048 	if (count + 1 > sizeof(tmp))
4049 		return -EINVAL;
4050 	memcpy(tmp, buf, count);
4051 	tmp[count] = '\0';
4052 	if (count && tmp[count - 1] == '\n')
4053 		tmp[count - 1] = '\0';
4054 
4055 	huge = shmem_parse_huge(tmp);
4056 	if (huge == -EINVAL)
4057 		return -EINVAL;
4058 	if (!has_transparent_hugepage() &&
4059 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4060 		return -EINVAL;
4061 
4062 	shmem_huge = huge;
4063 	if (shmem_huge > SHMEM_HUGE_DENY)
4064 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4065 	return count;
4066 }
4067 
4068 struct kobj_attribute shmem_enabled_attr =
4069 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4071 
4072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_huge_enabled(struct vm_area_struct * vma)4073 bool shmem_huge_enabled(struct vm_area_struct *vma)
4074 {
4075 	struct inode *inode = file_inode(vma->vm_file);
4076 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4077 	loff_t i_size;
4078 	pgoff_t off;
4079 
4080 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
4081 		return false;
4082 	if (shmem_huge == SHMEM_HUGE_FORCE)
4083 		return true;
4084 	if (shmem_huge == SHMEM_HUGE_DENY)
4085 		return false;
4086 	switch (sbinfo->huge) {
4087 		case SHMEM_HUGE_NEVER:
4088 			return false;
4089 		case SHMEM_HUGE_ALWAYS:
4090 			return true;
4091 		case SHMEM_HUGE_WITHIN_SIZE:
4092 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4093 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4094 			if (i_size >= HPAGE_PMD_SIZE &&
4095 					i_size >> PAGE_SHIFT >= off)
4096 				return true;
4097 			fallthrough;
4098 		case SHMEM_HUGE_ADVISE:
4099 			/* TODO: implement fadvise() hints */
4100 			return (vma->vm_flags & VM_HUGEPAGE);
4101 		default:
4102 			VM_BUG_ON(1);
4103 			return false;
4104 	}
4105 }
4106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4107 
4108 #else /* !CONFIG_SHMEM */
4109 
4110 /*
4111  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4112  *
4113  * This is intended for small system where the benefits of the full
4114  * shmem code (swap-backed and resource-limited) are outweighed by
4115  * their complexity. On systems without swap this code should be
4116  * effectively equivalent, but much lighter weight.
4117  */
4118 
4119 static struct file_system_type shmem_fs_type = {
4120 	.name		= "tmpfs",
4121 	.init_fs_context = ramfs_init_fs_context,
4122 	.parameters	= ramfs_fs_parameters,
4123 	.kill_sb	= ramfs_kill_sb,
4124 	.fs_flags	= FS_USERNS_MOUNT,
4125 };
4126 
shmem_init(void)4127 int __init shmem_init(void)
4128 {
4129 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4130 
4131 	shm_mnt = kern_mount(&shmem_fs_type);
4132 	BUG_ON(IS_ERR(shm_mnt));
4133 
4134 	return 0;
4135 }
4136 
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4137 int shmem_unuse(unsigned int type, bool frontswap,
4138 		unsigned long *fs_pages_to_unuse)
4139 {
4140 	return 0;
4141 }
4142 
shmem_lock(struct file * file,int lock,struct user_struct * user)4143 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4144 {
4145 	return 0;
4146 }
4147 
shmem_unlock_mapping(struct address_space * mapping)4148 void shmem_unlock_mapping(struct address_space *mapping)
4149 {
4150 }
4151 
4152 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4153 unsigned long shmem_get_unmapped_area(struct file *file,
4154 				      unsigned long addr, unsigned long len,
4155 				      unsigned long pgoff, unsigned long flags)
4156 {
4157 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4158 }
4159 #endif
4160 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4161 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4162 {
4163 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4164 }
4165 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4166 
4167 #define shmem_vm_ops				generic_file_vm_ops
4168 #define shmem_file_operations			ramfs_file_operations
4169 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4170 #define shmem_acct_size(flags, size)		0
4171 #define shmem_unacct_size(flags, size)		do {} while (0)
4172 
4173 #endif /* CONFIG_SHMEM */
4174 
4175 /* common code */
4176 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4177 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4178 				       unsigned long flags, unsigned int i_flags)
4179 {
4180 	struct inode *inode;
4181 	struct file *res;
4182 
4183 	if (IS_ERR(mnt))
4184 		return ERR_CAST(mnt);
4185 
4186 	if (size < 0 || size > MAX_LFS_FILESIZE)
4187 		return ERR_PTR(-EINVAL);
4188 
4189 	if (shmem_acct_size(flags, size))
4190 		return ERR_PTR(-ENOMEM);
4191 
4192 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4193 				flags);
4194 	if (unlikely(!inode)) {
4195 		shmem_unacct_size(flags, size);
4196 		return ERR_PTR(-ENOSPC);
4197 	}
4198 	inode->i_flags |= i_flags;
4199 	inode->i_size = size;
4200 	clear_nlink(inode);	/* It is unlinked */
4201 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4202 	if (!IS_ERR(res))
4203 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4204 				&shmem_file_operations);
4205 	if (IS_ERR(res))
4206 		iput(inode);
4207 	return res;
4208 }
4209 
4210 /**
4211  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4212  * 	kernel internal.  There will be NO LSM permission checks against the
4213  * 	underlying inode.  So users of this interface must do LSM checks at a
4214  *	higher layer.  The users are the big_key and shm implementations.  LSM
4215  *	checks are provided at the key or shm level rather than the inode.
4216  * @name: name for dentry (to be seen in /proc/<pid>/maps
4217  * @size: size to be set for the file
4218  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4219  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4220 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4221 {
4222 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4223 }
4224 
4225 /**
4226  * shmem_file_setup - get an unlinked file living in tmpfs
4227  * @name: name for dentry (to be seen in /proc/<pid>/maps
4228  * @size: size to be set for the file
4229  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4230  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4231 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4232 {
4233 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4234 }
4235 EXPORT_SYMBOL_GPL(shmem_file_setup);
4236 
4237 /**
4238  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4239  * @mnt: the tmpfs mount where the file will be created
4240  * @name: name for dentry (to be seen in /proc/<pid>/maps
4241  * @size: size to be set for the file
4242  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4243  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4244 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4245 				       loff_t size, unsigned long flags)
4246 {
4247 	return __shmem_file_setup(mnt, name, size, flags, 0);
4248 }
4249 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4250 
4251 /**
4252  * shmem_zero_setup - setup a shared anonymous mapping
4253  * @vma: the vma to be mmapped is prepared by do_mmap
4254  */
shmem_zero_setup(struct vm_area_struct * vma)4255 int shmem_zero_setup(struct vm_area_struct *vma)
4256 {
4257 	struct file *file;
4258 	loff_t size = vma->vm_end - vma->vm_start;
4259 
4260 	/*
4261 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4262 	 * between XFS directory reading and selinux: since this file is only
4263 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4264 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4265 	 */
4266 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4267 	if (IS_ERR(file))
4268 		return PTR_ERR(file);
4269 
4270 	if (vma->vm_file)
4271 		fput(vma->vm_file);
4272 	vma->vm_file = file;
4273 	vma->vm_ops = &shmem_vm_ops;
4274 
4275 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4276 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4277 			(vma->vm_end & HPAGE_PMD_MASK)) {
4278 		khugepaged_enter(vma, vma->vm_flags);
4279 	}
4280 
4281 	return 0;
4282 }
4283 
4284 /**
4285  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4286  * @mapping:	the page's address_space
4287  * @index:	the page index
4288  * @gfp:	the page allocator flags to use if allocating
4289  *
4290  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4291  * with any new page allocations done using the specified allocation flags.
4292  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4293  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4294  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4295  *
4296  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4297  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4298  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4299 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4300 					 pgoff_t index, gfp_t gfp)
4301 {
4302 #ifdef CONFIG_SHMEM
4303 	struct inode *inode = mapping->host;
4304 	struct page *page;
4305 	int error;
4306 
4307 	BUG_ON(mapping->a_ops != &shmem_aops);
4308 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4309 				  gfp, NULL, NULL, NULL);
4310 	if (error)
4311 		page = ERR_PTR(error);
4312 	else
4313 		unlock_page(page);
4314 	return page;
4315 #else
4316 	/*
4317 	 * The tiny !SHMEM case uses ramfs without swap
4318 	 */
4319 	return read_cache_page_gfp(mapping, index, gfp);
4320 #endif
4321 }
4322 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4323 
shmem_mark_page_lazyfree(struct page * page,bool tail)4324 void shmem_mark_page_lazyfree(struct page *page, bool tail)
4325 {
4326 	mark_page_lazyfree_movetail(page, tail);
4327 }
4328 EXPORT_SYMBOL_GPL(shmem_mark_page_lazyfree);
4329 
reclaim_shmem_address_space(struct address_space * mapping)4330 int reclaim_shmem_address_space(struct address_space *mapping)
4331 {
4332 #ifdef CONFIG_SHMEM
4333 	pgoff_t start = 0;
4334 	struct page *page;
4335 	LIST_HEAD(page_list);
4336 	XA_STATE(xas, &mapping->i_pages, start);
4337 
4338 	if (!shmem_mapping(mapping))
4339 		return -EINVAL;
4340 
4341 	lru_add_drain();
4342 
4343 	rcu_read_lock();
4344 	xas_for_each(&xas, page, ULONG_MAX) {
4345 		if (xas_retry(&xas, page))
4346 			continue;
4347 		if (xa_is_value(page))
4348 			continue;
4349 		if (isolate_lru_page(page))
4350 			continue;
4351 
4352 		list_add(&page->lru, &page_list);
4353 
4354 		if (need_resched()) {
4355 			xas_pause(&xas);
4356 			cond_resched_rcu();
4357 		}
4358 	}
4359 	rcu_read_unlock();
4360 
4361 	return reclaim_pages(&page_list);
4362 #else
4363 	return 0;
4364 #endif
4365 }
4366 EXPORT_SYMBOL_GPL(reclaim_shmem_address_space);
4367