1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/mm_inline.h>
42
43 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44
45 #include "internal.h"
46
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/shmem_fs.h>
49 #include <trace/hooks/mm.h>
50
51 static struct vfsmount *shm_mnt;
52
53 #ifdef CONFIG_SHMEM
54 /*
55 * This virtual memory filesystem is heavily based on the ramfs. It
56 * extends ramfs by the ability to use swap and honor resource limits
57 * which makes it a completely usable filesystem.
58 */
59
60 #include <linux/xattr.h>
61 #include <linux/exportfs.h>
62 #include <linux/posix_acl.h>
63 #include <linux/posix_acl_xattr.h>
64 #include <linux/mman.h>
65 #include <linux/string.h>
66 #include <linux/slab.h>
67 #include <linux/backing-dev.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/writeback.h>
70 #include <linux/blkdev.h>
71 #include <linux/pagevec.h>
72 #include <linux/percpu_counter.h>
73 #include <linux/falloc.h>
74 #include <linux/splice.h>
75 #include <linux/security.h>
76 #include <linux/swapops.h>
77 #include <linux/mempolicy.h>
78 #include <linux/namei.h>
79 #include <linux/ctype.h>
80 #include <linux/migrate.h>
81 #include <linux/highmem.h>
82 #include <linux/seq_file.h>
83 #include <linux/magic.h>
84 #include <linux/syscalls.h>
85 #include <linux/fcntl.h>
86 #include <uapi/linux/memfd.h>
87 #include <linux/userfaultfd_k.h>
88 #include <linux/rmap.h>
89 #include <linux/uuid.h>
90
91 #include <linux/uaccess.h>
92
93 #include "internal.h"
94
95 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
96 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
97
98 /* Pretend that each entry is of this size in directory's i_size */
99 #define BOGO_DIRENT_SIZE 20
100
101 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
102 #define SHORT_SYMLINK_LEN 128
103
104 /*
105 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
106 * inode->i_private (with i_mutex making sure that it has only one user at
107 * a time): we would prefer not to enlarge the shmem inode just for that.
108 */
109 struct shmem_falloc {
110 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
111 pgoff_t start; /* start of range currently being fallocated */
112 pgoff_t next; /* the next page offset to be fallocated */
113 pgoff_t nr_falloced; /* how many new pages have been fallocated */
114 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
115 };
116
117 struct shmem_options {
118 unsigned long long blocks;
119 unsigned long long inodes;
120 struct mempolicy *mpol;
121 kuid_t uid;
122 kgid_t gid;
123 umode_t mode;
124 bool full_inums;
125 int huge;
126 int seen;
127 #define SHMEM_SEEN_BLOCKS 1
128 #define SHMEM_SEEN_INODES 2
129 #define SHMEM_SEEN_HUGE 4
130 #define SHMEM_SEEN_INUMS 8
131 };
132
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
144 }
145 #endif
146
147 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
148 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
149 struct shmem_inode_info *info, pgoff_t index);
150 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
151 struct page **pagep, enum sgp_type sgp,
152 gfp_t gfp, struct vm_area_struct *vma,
153 vm_fault_t *fault_type);
154 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
155 struct page **pagep, enum sgp_type sgp,
156 gfp_t gfp, struct vm_area_struct *vma,
157 struct vm_fault *vmf, vm_fault_t *fault_type);
158
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)159 int shmem_getpage(struct inode *inode, pgoff_t index,
160 struct page **pagep, enum sgp_type sgp)
161 {
162 return shmem_getpage_gfp(inode, index, pagep, sgp,
163 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
164 }
165
SHMEM_SB(struct super_block * sb)166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 return sb->s_fs_info;
169 }
170
171 /*
172 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173 * for shared memory and for shared anonymous (/dev/zero) mappings
174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175 * consistent with the pre-accounting of private mappings ...
176 */
shmem_acct_size(unsigned long flags,loff_t size)177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 return (flags & VM_NORESERVE) ?
180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182
shmem_unacct_size(unsigned long flags,loff_t size)183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 if (!(flags & VM_NORESERVE))
186 vm_unacct_memory(VM_ACCT(size));
187 }
188
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)189 static inline int shmem_reacct_size(unsigned long flags,
190 loff_t oldsize, loff_t newsize)
191 {
192 if (!(flags & VM_NORESERVE)) {
193 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 return security_vm_enough_memory_mm(current->mm,
195 VM_ACCT(newsize) - VM_ACCT(oldsize));
196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 }
199 return 0;
200 }
201
202 /*
203 * ... whereas tmpfs objects are accounted incrementally as
204 * pages are allocated, in order to allow large sparse files.
205 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207 */
shmem_acct_block(unsigned long flags,long pages)208 static inline int shmem_acct_block(unsigned long flags, long pages)
209 {
210 if (!(flags & VM_NORESERVE))
211 return 0;
212
213 return security_vm_enough_memory_mm(current->mm,
214 pages * VM_ACCT(PAGE_SIZE));
215 }
216
shmem_unacct_blocks(unsigned long flags,long pages)217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222
shmem_inode_acct_block(struct inode * inode,long pages)223 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227
228 if (shmem_acct_block(info->flags, pages))
229 return false;
230
231 if (sbinfo->max_blocks) {
232 if (percpu_counter_compare(&sbinfo->used_blocks,
233 sbinfo->max_blocks - pages) > 0)
234 goto unacct;
235 percpu_counter_add(&sbinfo->used_blocks, pages);
236 }
237
238 return true;
239
240 unacct:
241 shmem_unacct_blocks(info->flags, pages);
242 return false;
243 }
244
shmem_inode_unacct_blocks(struct inode * inode,long pages)245 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
246 {
247 struct shmem_inode_info *info = SHMEM_I(inode);
248 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
249
250 if (sbinfo->max_blocks)
251 percpu_counter_sub(&sbinfo->used_blocks, pages);
252 shmem_unacct_blocks(info->flags, pages);
253 }
254
255 static const struct super_operations shmem_ops;
256 static const struct address_space_operations shmem_aops;
257 static const struct file_operations shmem_file_operations;
258 static const struct inode_operations shmem_inode_operations;
259 static const struct inode_operations shmem_dir_inode_operations;
260 static const struct inode_operations shmem_special_inode_operations;
261 static const struct vm_operations_struct shmem_vm_ops;
262 static struct file_system_type shmem_fs_type;
263
vma_is_shmem(struct vm_area_struct * vma)264 bool vma_is_shmem(struct vm_area_struct *vma)
265 {
266 return vma->vm_ops == &shmem_vm_ops;
267 }
268
269 static LIST_HEAD(shmem_swaplist);
270 static DEFINE_MUTEX(shmem_swaplist_mutex);
271
272 /*
273 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
274 * produces a novel ino for the newly allocated inode.
275 *
276 * It may also be called when making a hard link to permit the space needed by
277 * each dentry. However, in that case, no new inode number is needed since that
278 * internally draws from another pool of inode numbers (currently global
279 * get_next_ino()). This case is indicated by passing NULL as inop.
280 */
281 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)282 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
283 {
284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
285 ino_t ino;
286
287 if (!(sb->s_flags & SB_KERNMOUNT)) {
288 spin_lock(&sbinfo->stat_lock);
289 if (sbinfo->max_inodes) {
290 if (!sbinfo->free_inodes) {
291 spin_unlock(&sbinfo->stat_lock);
292 return -ENOSPC;
293 }
294 sbinfo->free_inodes--;
295 }
296 if (inop) {
297 ino = sbinfo->next_ino++;
298 if (unlikely(is_zero_ino(ino)))
299 ino = sbinfo->next_ino++;
300 if (unlikely(!sbinfo->full_inums &&
301 ino > UINT_MAX)) {
302 /*
303 * Emulate get_next_ino uint wraparound for
304 * compatibility
305 */
306 if (IS_ENABLED(CONFIG_64BIT))
307 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
308 __func__, MINOR(sb->s_dev));
309 sbinfo->next_ino = 1;
310 ino = sbinfo->next_ino++;
311 }
312 *inop = ino;
313 }
314 spin_unlock(&sbinfo->stat_lock);
315 } else if (inop) {
316 /*
317 * __shmem_file_setup, one of our callers, is lock-free: it
318 * doesn't hold stat_lock in shmem_reserve_inode since
319 * max_inodes is always 0, and is called from potentially
320 * unknown contexts. As such, use a per-cpu batched allocator
321 * which doesn't require the per-sb stat_lock unless we are at
322 * the batch boundary.
323 *
324 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
325 * shmem mounts are not exposed to userspace, so we don't need
326 * to worry about things like glibc compatibility.
327 */
328 ino_t *next_ino;
329 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
330 ino = *next_ino;
331 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
332 spin_lock(&sbinfo->stat_lock);
333 ino = sbinfo->next_ino;
334 sbinfo->next_ino += SHMEM_INO_BATCH;
335 spin_unlock(&sbinfo->stat_lock);
336 if (unlikely(is_zero_ino(ino)))
337 ino++;
338 }
339 *inop = ino;
340 *next_ino = ++ino;
341 put_cpu();
342 }
343
344 return 0;
345 }
346
shmem_free_inode(struct super_block * sb)347 static void shmem_free_inode(struct super_block *sb)
348 {
349 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
350 if (sbinfo->max_inodes) {
351 spin_lock(&sbinfo->stat_lock);
352 sbinfo->free_inodes++;
353 spin_unlock(&sbinfo->stat_lock);
354 }
355 }
356
357 /**
358 * shmem_recalc_inode - recalculate the block usage of an inode
359 * @inode: inode to recalc
360 *
361 * We have to calculate the free blocks since the mm can drop
362 * undirtied hole pages behind our back.
363 *
364 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
365 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
366 *
367 * It has to be called with the spinlock held.
368 */
shmem_recalc_inode(struct inode * inode)369 static void shmem_recalc_inode(struct inode *inode)
370 {
371 struct shmem_inode_info *info = SHMEM_I(inode);
372 long freed;
373
374 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
375 if (freed > 0) {
376 info->alloced -= freed;
377 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
378 shmem_inode_unacct_blocks(inode, freed);
379 }
380 }
381
shmem_charge(struct inode * inode,long pages)382 bool shmem_charge(struct inode *inode, long pages)
383 {
384 struct shmem_inode_info *info = SHMEM_I(inode);
385 unsigned long flags;
386
387 if (!shmem_inode_acct_block(inode, pages))
388 return false;
389
390 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
391 inode->i_mapping->nrpages += pages;
392
393 spin_lock_irqsave(&info->lock, flags);
394 info->alloced += pages;
395 inode->i_blocks += pages * BLOCKS_PER_PAGE;
396 shmem_recalc_inode(inode);
397 spin_unlock_irqrestore(&info->lock, flags);
398
399 return true;
400 }
401
shmem_uncharge(struct inode * inode,long pages)402 void shmem_uncharge(struct inode *inode, long pages)
403 {
404 struct shmem_inode_info *info = SHMEM_I(inode);
405 unsigned long flags;
406
407 /* nrpages adjustment done by __delete_from_page_cache() or caller */
408
409 spin_lock_irqsave(&info->lock, flags);
410 info->alloced -= pages;
411 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
412 shmem_recalc_inode(inode);
413 spin_unlock_irqrestore(&info->lock, flags);
414
415 shmem_inode_unacct_blocks(inode, pages);
416 }
417
418 /*
419 * Replace item expected in xarray by a new item, while holding xa_lock.
420 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)421 static int shmem_replace_entry(struct address_space *mapping,
422 pgoff_t index, void *expected, void *replacement)
423 {
424 XA_STATE(xas, &mapping->i_pages, index);
425 void *item;
426
427 VM_BUG_ON(!expected);
428 VM_BUG_ON(!replacement);
429 item = xas_load(&xas);
430 if (item != expected)
431 return -ENOENT;
432 xas_store(&xas, replacement);
433 return 0;
434 }
435
436 /*
437 * Sometimes, before we decide whether to proceed or to fail, we must check
438 * that an entry was not already brought back from swap by a racing thread.
439 *
440 * Checking page is not enough: by the time a SwapCache page is locked, it
441 * might be reused, and again be SwapCache, using the same swap as before.
442 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)443 static bool shmem_confirm_swap(struct address_space *mapping,
444 pgoff_t index, swp_entry_t swap)
445 {
446 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
447 }
448
449 /*
450 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
451 *
452 * SHMEM_HUGE_NEVER:
453 * disables huge pages for the mount;
454 * SHMEM_HUGE_ALWAYS:
455 * enables huge pages for the mount;
456 * SHMEM_HUGE_WITHIN_SIZE:
457 * only allocate huge pages if the page will be fully within i_size,
458 * also respect fadvise()/madvise() hints;
459 * SHMEM_HUGE_ADVISE:
460 * only allocate huge pages if requested with fadvise()/madvise();
461 */
462
463 #define SHMEM_HUGE_NEVER 0
464 #define SHMEM_HUGE_ALWAYS 1
465 #define SHMEM_HUGE_WITHIN_SIZE 2
466 #define SHMEM_HUGE_ADVISE 3
467
468 /*
469 * Special values.
470 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
471 *
472 * SHMEM_HUGE_DENY:
473 * disables huge on shm_mnt and all mounts, for emergency use;
474 * SHMEM_HUGE_FORCE:
475 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
476 *
477 */
478 #define SHMEM_HUGE_DENY (-1)
479 #define SHMEM_HUGE_FORCE (-2)
480
481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
482 /* ifdef here to avoid bloating shmem.o when not necessary */
483
484 static int shmem_huge __read_mostly;
485
486 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)487 static int shmem_parse_huge(const char *str)
488 {
489 if (!strcmp(str, "never"))
490 return SHMEM_HUGE_NEVER;
491 if (!strcmp(str, "always"))
492 return SHMEM_HUGE_ALWAYS;
493 if (!strcmp(str, "within_size"))
494 return SHMEM_HUGE_WITHIN_SIZE;
495 if (!strcmp(str, "advise"))
496 return SHMEM_HUGE_ADVISE;
497 if (!strcmp(str, "deny"))
498 return SHMEM_HUGE_DENY;
499 if (!strcmp(str, "force"))
500 return SHMEM_HUGE_FORCE;
501 return -EINVAL;
502 }
503 #endif
504
505 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)506 static const char *shmem_format_huge(int huge)
507 {
508 switch (huge) {
509 case SHMEM_HUGE_NEVER:
510 return "never";
511 case SHMEM_HUGE_ALWAYS:
512 return "always";
513 case SHMEM_HUGE_WITHIN_SIZE:
514 return "within_size";
515 case SHMEM_HUGE_ADVISE:
516 return "advise";
517 case SHMEM_HUGE_DENY:
518 return "deny";
519 case SHMEM_HUGE_FORCE:
520 return "force";
521 default:
522 VM_BUG_ON(1);
523 return "bad_val";
524 }
525 }
526 #endif
527
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)528 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
529 struct shrink_control *sc, unsigned long nr_to_split)
530 {
531 LIST_HEAD(list), *pos, *next;
532 LIST_HEAD(to_remove);
533 struct inode *inode;
534 struct shmem_inode_info *info;
535 struct page *page;
536 unsigned long batch = sc ? sc->nr_to_scan : 128;
537 int split = 0;
538
539 if (list_empty(&sbinfo->shrinklist))
540 return SHRINK_STOP;
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
544 info = list_entry(pos, struct shmem_inode_info, shrinklist);
545
546 /* pin the inode */
547 inode = igrab(&info->vfs_inode);
548
549 /* inode is about to be evicted */
550 if (!inode) {
551 list_del_init(&info->shrinklist);
552 goto next;
553 }
554
555 /* Check if there's anything to gain */
556 if (round_up(inode->i_size, PAGE_SIZE) ==
557 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
558 list_move(&info->shrinklist, &to_remove);
559 goto next;
560 }
561
562 list_move(&info->shrinklist, &list);
563 next:
564 sbinfo->shrinklist_len--;
565 if (!--batch)
566 break;
567 }
568 spin_unlock(&sbinfo->shrinklist_lock);
569
570 list_for_each_safe(pos, next, &to_remove) {
571 info = list_entry(pos, struct shmem_inode_info, shrinklist);
572 inode = &info->vfs_inode;
573 list_del_init(&info->shrinklist);
574 iput(inode);
575 }
576
577 list_for_each_safe(pos, next, &list) {
578 int ret;
579
580 info = list_entry(pos, struct shmem_inode_info, shrinklist);
581 inode = &info->vfs_inode;
582
583 if (nr_to_split && split >= nr_to_split)
584 goto move_back;
585
586 page = find_get_page(inode->i_mapping,
587 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
588 if (!page)
589 goto drop;
590
591 /* No huge page at the end of the file: nothing to split */
592 if (!PageTransHuge(page)) {
593 put_page(page);
594 goto drop;
595 }
596
597 /*
598 * Move the inode on the list back to shrinklist if we failed
599 * to lock the page at this time.
600 *
601 * Waiting for the lock may lead to deadlock in the
602 * reclaim path.
603 */
604 if (!trylock_page(page)) {
605 put_page(page);
606 goto move_back;
607 }
608
609 ret = split_huge_page(page);
610 unlock_page(page);
611 put_page(page);
612
613 /* If split failed move the inode on the list back to shrinklist */
614 if (ret)
615 goto move_back;
616
617 split++;
618 drop:
619 list_del_init(&info->shrinklist);
620 goto put;
621 move_back:
622 /*
623 * Make sure the inode is either on the global list or deleted
624 * from any local list before iput() since it could be deleted
625 * in another thread once we put the inode (then the local list
626 * is corrupted).
627 */
628 spin_lock(&sbinfo->shrinklist_lock);
629 list_move(&info->shrinklist, &sbinfo->shrinklist);
630 sbinfo->shrinklist_len++;
631 spin_unlock(&sbinfo->shrinklist_lock);
632 put:
633 iput(inode);
634 }
635
636 return split;
637 }
638
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)639 static long shmem_unused_huge_scan(struct super_block *sb,
640 struct shrink_control *sc)
641 {
642 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
643
644 if (!READ_ONCE(sbinfo->shrinklist_len))
645 return SHRINK_STOP;
646
647 return shmem_unused_huge_shrink(sbinfo, sc, 0);
648 }
649
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)650 static long shmem_unused_huge_count(struct super_block *sb,
651 struct shrink_control *sc)
652 {
653 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
654 return READ_ONCE(sbinfo->shrinklist_len);
655 }
656 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
657
658 #define shmem_huge SHMEM_HUGE_DENY
659
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)660 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
661 struct shrink_control *sc, unsigned long nr_to_split)
662 {
663 return 0;
664 }
665 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
666
is_huge_enabled(struct shmem_sb_info * sbinfo)667 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
668 {
669 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
670 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
671 shmem_huge != SHMEM_HUGE_DENY)
672 return true;
673 return false;
674 }
675
676 /*
677 * Like add_to_page_cache_locked, but error if expected item has gone.
678 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)679 static int shmem_add_to_page_cache(struct page *page,
680 struct address_space *mapping,
681 pgoff_t index, void *expected, gfp_t gfp,
682 struct mm_struct *charge_mm)
683 {
684 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
685 unsigned long i = 0;
686 unsigned long nr = compound_nr(page);
687 int error;
688
689 VM_BUG_ON_PAGE(PageTail(page), page);
690 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
691 VM_BUG_ON_PAGE(!PageLocked(page), page);
692 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
693 VM_BUG_ON(expected && PageTransHuge(page));
694
695 page_ref_add(page, nr);
696 page->mapping = mapping;
697 page->index = index;
698
699 if (!PageSwapCache(page)) {
700 error = mem_cgroup_charge(page, charge_mm, gfp);
701 if (error) {
702 if (PageTransHuge(page)) {
703 count_vm_event(THP_FILE_FALLBACK);
704 count_vm_event(THP_FILE_FALLBACK_CHARGE);
705 }
706 goto error;
707 }
708 }
709 cgroup_throttle_swaprate(page, gfp);
710
711 do {
712 void *entry;
713 xas_lock_irq(&xas);
714 entry = xas_find_conflict(&xas);
715 if (entry != expected)
716 xas_set_err(&xas, -EEXIST);
717 xas_create_range(&xas);
718 if (xas_error(&xas))
719 goto unlock;
720 next:
721 xas_store(&xas, page);
722 if (++i < nr) {
723 xas_next(&xas);
724 goto next;
725 }
726 if (PageTransHuge(page)) {
727 count_vm_event(THP_FILE_ALLOC);
728 __inc_node_page_state(page, NR_SHMEM_THPS);
729 }
730 mapping->nrpages += nr;
731 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
732 __mod_lruvec_page_state(page, NR_SHMEM, nr);
733 unlock:
734 xas_unlock_irq(&xas);
735 } while (xas_nomem(&xas, gfp));
736
737 if (xas_error(&xas)) {
738 error = xas_error(&xas);
739 goto error;
740 }
741
742 return 0;
743 error:
744 page->mapping = NULL;
745 page_ref_sub(page, nr);
746 return error;
747 }
748
749 /*
750 * Like delete_from_page_cache, but substitutes swap for page.
751 */
shmem_delete_from_page_cache(struct page * page,void * radswap)752 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
753 {
754 struct address_space *mapping = page->mapping;
755 int error;
756
757 VM_BUG_ON_PAGE(PageCompound(page), page);
758
759 xa_lock_irq(&mapping->i_pages);
760 error = shmem_replace_entry(mapping, page->index, page, radswap);
761 page->mapping = NULL;
762 mapping->nrpages--;
763 __dec_lruvec_page_state(page, NR_FILE_PAGES);
764 __dec_lruvec_page_state(page, NR_SHMEM);
765 xa_unlock_irq(&mapping->i_pages);
766 put_page(page);
767 BUG_ON(error);
768 }
769
770 /*
771 * Remove swap entry from page cache, free the swap and its page cache.
772 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)773 static int shmem_free_swap(struct address_space *mapping,
774 pgoff_t index, void *radswap)
775 {
776 void *old;
777
778 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
779 if (old != radswap)
780 return -ENOENT;
781 free_swap_and_cache(radix_to_swp_entry(radswap));
782 return 0;
783 }
784
785 /*
786 * Determine (in bytes) how many of the shmem object's pages mapped by the
787 * given offsets are swapped out.
788 *
789 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
790 * as long as the inode doesn't go away and racy results are not a problem.
791 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)792 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
793 pgoff_t start, pgoff_t end)
794 {
795 XA_STATE(xas, &mapping->i_pages, start);
796 struct page *page;
797 unsigned long swapped = 0;
798
799 rcu_read_lock();
800 xas_for_each(&xas, page, end - 1) {
801 if (xas_retry(&xas, page))
802 continue;
803 if (xa_is_value(page))
804 swapped++;
805
806 if (need_resched()) {
807 xas_pause(&xas);
808 cond_resched_rcu();
809 }
810 }
811
812 rcu_read_unlock();
813
814 return swapped << PAGE_SHIFT;
815 }
816
817 /*
818 * Determine (in bytes) how many of the shmem object's pages mapped by the
819 * given vma is swapped out.
820 *
821 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
822 * as long as the inode doesn't go away and racy results are not a problem.
823 */
shmem_swap_usage(struct vm_area_struct * vma)824 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
825 {
826 struct inode *inode = file_inode(vma->vm_file);
827 struct shmem_inode_info *info = SHMEM_I(inode);
828 struct address_space *mapping = inode->i_mapping;
829 unsigned long swapped;
830
831 /* Be careful as we don't hold info->lock */
832 swapped = READ_ONCE(info->swapped);
833
834 /*
835 * The easier cases are when the shmem object has nothing in swap, or
836 * the vma maps it whole. Then we can simply use the stats that we
837 * already track.
838 */
839 if (!swapped)
840 return 0;
841
842 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
843 return swapped << PAGE_SHIFT;
844
845 /* Here comes the more involved part */
846 return shmem_partial_swap_usage(mapping,
847 linear_page_index(vma, vma->vm_start),
848 linear_page_index(vma, vma->vm_end));
849 }
850
851 /*
852 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
853 */
shmem_unlock_mapping(struct address_space * mapping)854 void shmem_unlock_mapping(struct address_space *mapping)
855 {
856 struct pagevec pvec;
857 pgoff_t indices[PAGEVEC_SIZE];
858 pgoff_t index = 0;
859
860 pagevec_init(&pvec);
861 /*
862 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
863 */
864 while (!mapping_unevictable(mapping)) {
865 /*
866 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
867 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
868 */
869 pvec.nr = find_get_entries(mapping, index,
870 PAGEVEC_SIZE, pvec.pages, indices);
871 if (!pvec.nr)
872 break;
873 index = indices[pvec.nr - 1] + 1;
874 pagevec_remove_exceptionals(&pvec);
875 check_move_unevictable_pages(&pvec);
876 pagevec_release(&pvec);
877 cond_resched();
878 }
879 }
880
881 /*
882 * Check whether a hole-punch or truncation needs to split a huge page,
883 * returning true if no split was required, or the split has been successful.
884 *
885 * Eviction (or truncation to 0 size) should never need to split a huge page;
886 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
887 * head, and then succeeded to trylock on tail.
888 *
889 * A split can only succeed when there are no additional references on the
890 * huge page: so the split below relies upon find_get_entries() having stopped
891 * when it found a subpage of the huge page, without getting further references.
892 */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)893 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
894 {
895 if (!PageTransCompound(page))
896 return true;
897
898 /* Just proceed to delete a huge page wholly within the range punched */
899 if (PageHead(page) &&
900 page->index >= start && page->index + HPAGE_PMD_NR <= end)
901 return true;
902
903 /* Try to split huge page, so we can truly punch the hole or truncate */
904 return split_huge_page(page) >= 0;
905 }
906
907 /*
908 * Remove range of pages and swap entries from page cache, and free them.
909 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
910 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)911 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
912 bool unfalloc)
913 {
914 struct address_space *mapping = inode->i_mapping;
915 struct shmem_inode_info *info = SHMEM_I(inode);
916 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
917 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
918 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
919 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
920 struct pagevec pvec;
921 pgoff_t indices[PAGEVEC_SIZE];
922 long nr_swaps_freed = 0;
923 pgoff_t index;
924 int i;
925
926 if (lend == -1)
927 end = -1; /* unsigned, so actually very big */
928
929 pagevec_init(&pvec);
930 index = start;
931 while (index < end) {
932 pvec.nr = find_get_entries(mapping, index,
933 min(end - index, (pgoff_t)PAGEVEC_SIZE),
934 pvec.pages, indices);
935 if (!pvec.nr)
936 break;
937 for (i = 0; i < pagevec_count(&pvec); i++) {
938 struct page *page = pvec.pages[i];
939
940 index = indices[i];
941 if (index >= end)
942 break;
943
944 if (xa_is_value(page)) {
945 if (unfalloc)
946 continue;
947 nr_swaps_freed += !shmem_free_swap(mapping,
948 index, page);
949 continue;
950 }
951
952 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
953
954 if (!trylock_page(page))
955 continue;
956
957 if ((!unfalloc || !PageUptodate(page)) &&
958 page_mapping(page) == mapping) {
959 VM_BUG_ON_PAGE(PageWriteback(page), page);
960 if (shmem_punch_compound(page, start, end))
961 truncate_inode_page(mapping, page);
962 }
963 unlock_page(page);
964 }
965 pagevec_remove_exceptionals(&pvec);
966 pagevec_release(&pvec);
967 cond_resched();
968 index++;
969 }
970
971 if (partial_start) {
972 struct page *page = NULL;
973 shmem_getpage(inode, start - 1, &page, SGP_READ);
974 if (page) {
975 unsigned int top = PAGE_SIZE;
976 if (start > end) {
977 top = partial_end;
978 partial_end = 0;
979 }
980 zero_user_segment(page, partial_start, top);
981 set_page_dirty(page);
982 unlock_page(page);
983 put_page(page);
984 }
985 }
986 if (partial_end) {
987 struct page *page = NULL;
988 shmem_getpage(inode, end, &page, SGP_READ);
989 if (page) {
990 zero_user_segment(page, 0, partial_end);
991 set_page_dirty(page);
992 unlock_page(page);
993 put_page(page);
994 }
995 }
996 if (start >= end)
997 return;
998
999 index = start;
1000 while (index < end) {
1001 cond_resched();
1002
1003 pvec.nr = find_get_entries(mapping, index,
1004 min(end - index, (pgoff_t)PAGEVEC_SIZE),
1005 pvec.pages, indices);
1006 if (!pvec.nr) {
1007 /* If all gone or hole-punch or unfalloc, we're done */
1008 if (index == start || end != -1)
1009 break;
1010 /* But if truncating, restart to make sure all gone */
1011 index = start;
1012 continue;
1013 }
1014 for (i = 0; i < pagevec_count(&pvec); i++) {
1015 struct page *page = pvec.pages[i];
1016
1017 index = indices[i];
1018 if (index >= end)
1019 break;
1020
1021 if (xa_is_value(page)) {
1022 if (unfalloc)
1023 continue;
1024 if (shmem_free_swap(mapping, index, page)) {
1025 /* Swap was replaced by page: retry */
1026 index--;
1027 break;
1028 }
1029 nr_swaps_freed++;
1030 continue;
1031 }
1032
1033 lock_page(page);
1034
1035 if (!unfalloc || !PageUptodate(page)) {
1036 if (page_mapping(page) != mapping) {
1037 /* Page was replaced by swap: retry */
1038 unlock_page(page);
1039 index--;
1040 break;
1041 }
1042 VM_BUG_ON_PAGE(PageWriteback(page), page);
1043 if (shmem_punch_compound(page, start, end))
1044 truncate_inode_page(mapping, page);
1045 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1046 /* Wipe the page and don't get stuck */
1047 clear_highpage(page);
1048 flush_dcache_page(page);
1049 set_page_dirty(page);
1050 if (index <
1051 round_up(start, HPAGE_PMD_NR))
1052 start = index + 1;
1053 }
1054 }
1055 unlock_page(page);
1056 }
1057 pagevec_remove_exceptionals(&pvec);
1058 pagevec_release(&pvec);
1059 index++;
1060 }
1061
1062 spin_lock_irq(&info->lock);
1063 info->swapped -= nr_swaps_freed;
1064 shmem_recalc_inode(inode);
1065 spin_unlock_irq(&info->lock);
1066 }
1067
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1068 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1069 {
1070 shmem_undo_range(inode, lstart, lend, false);
1071 inode->i_ctime = inode->i_mtime = current_time(inode);
1072 }
1073 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1074
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1075 static int shmem_getattr(const struct path *path, struct kstat *stat,
1076 u32 request_mask, unsigned int query_flags)
1077 {
1078 struct inode *inode = path->dentry->d_inode;
1079 struct shmem_inode_info *info = SHMEM_I(inode);
1080 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1081
1082 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1083 spin_lock_irq(&info->lock);
1084 shmem_recalc_inode(inode);
1085 spin_unlock_irq(&info->lock);
1086 }
1087 generic_fillattr(inode, stat);
1088
1089 if (is_huge_enabled(sb_info))
1090 stat->blksize = HPAGE_PMD_SIZE;
1091
1092 return 0;
1093 }
1094
shmem_setattr(struct dentry * dentry,struct iattr * attr)1095 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1096 {
1097 struct inode *inode = d_inode(dentry);
1098 struct shmem_inode_info *info = SHMEM_I(inode);
1099 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1100 int error;
1101
1102 error = setattr_prepare(dentry, attr);
1103 if (error)
1104 return error;
1105
1106 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1107 loff_t oldsize = inode->i_size;
1108 loff_t newsize = attr->ia_size;
1109
1110 /* protected by i_mutex */
1111 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1112 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1113 return -EPERM;
1114
1115 if (newsize != oldsize) {
1116 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1117 oldsize, newsize);
1118 if (error)
1119 return error;
1120 i_size_write(inode, newsize);
1121 inode->i_ctime = inode->i_mtime = current_time(inode);
1122 }
1123 if (newsize <= oldsize) {
1124 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1125 if (oldsize > holebegin)
1126 unmap_mapping_range(inode->i_mapping,
1127 holebegin, 0, 1);
1128 if (info->alloced)
1129 shmem_truncate_range(inode,
1130 newsize, (loff_t)-1);
1131 /* unmap again to remove racily COWed private pages */
1132 if (oldsize > holebegin)
1133 unmap_mapping_range(inode->i_mapping,
1134 holebegin, 0, 1);
1135
1136 /*
1137 * Part of the huge page can be beyond i_size: subject
1138 * to shrink under memory pressure.
1139 */
1140 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1141 spin_lock(&sbinfo->shrinklist_lock);
1142 /*
1143 * _careful to defend against unlocked access to
1144 * ->shrink_list in shmem_unused_huge_shrink()
1145 */
1146 if (list_empty_careful(&info->shrinklist)) {
1147 list_add_tail(&info->shrinklist,
1148 &sbinfo->shrinklist);
1149 sbinfo->shrinklist_len++;
1150 }
1151 spin_unlock(&sbinfo->shrinklist_lock);
1152 }
1153 }
1154 }
1155
1156 setattr_copy(inode, attr);
1157 if (attr->ia_valid & ATTR_MODE)
1158 error = posix_acl_chmod(inode, inode->i_mode);
1159 return error;
1160 }
1161
shmem_evict_inode(struct inode * inode)1162 static void shmem_evict_inode(struct inode *inode)
1163 {
1164 struct shmem_inode_info *info = SHMEM_I(inode);
1165 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1166
1167 if (inode->i_mapping->a_ops == &shmem_aops) {
1168 shmem_unacct_size(info->flags, inode->i_size);
1169 inode->i_size = 0;
1170 shmem_truncate_range(inode, 0, (loff_t)-1);
1171 if (!list_empty(&info->shrinklist)) {
1172 spin_lock(&sbinfo->shrinklist_lock);
1173 if (!list_empty(&info->shrinklist)) {
1174 list_del_init(&info->shrinklist);
1175 sbinfo->shrinklist_len--;
1176 }
1177 spin_unlock(&sbinfo->shrinklist_lock);
1178 }
1179 while (!list_empty(&info->swaplist)) {
1180 /* Wait while shmem_unuse() is scanning this inode... */
1181 wait_var_event(&info->stop_eviction,
1182 !atomic_read(&info->stop_eviction));
1183 mutex_lock(&shmem_swaplist_mutex);
1184 /* ...but beware of the race if we peeked too early */
1185 if (!atomic_read(&info->stop_eviction))
1186 list_del_init(&info->swaplist);
1187 mutex_unlock(&shmem_swaplist_mutex);
1188 }
1189 }
1190
1191 simple_xattrs_free(&info->xattrs);
1192 WARN_ON(inode->i_blocks);
1193 shmem_free_inode(inode->i_sb);
1194 clear_inode(inode);
1195 }
1196
1197 extern struct swap_info_struct *swap_info[];
1198
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1199 static int shmem_find_swap_entries(struct address_space *mapping,
1200 pgoff_t start, unsigned int nr_entries,
1201 struct page **entries, pgoff_t *indices,
1202 unsigned int type, bool frontswap)
1203 {
1204 XA_STATE(xas, &mapping->i_pages, start);
1205 struct page *page;
1206 swp_entry_t entry;
1207 unsigned int ret = 0;
1208
1209 if (!nr_entries)
1210 return 0;
1211
1212 rcu_read_lock();
1213 xas_for_each(&xas, page, ULONG_MAX) {
1214 if (xas_retry(&xas, page))
1215 continue;
1216
1217 if (!xa_is_value(page))
1218 continue;
1219
1220 entry = radix_to_swp_entry(page);
1221 if (swp_type(entry) != type)
1222 continue;
1223 if (frontswap &&
1224 !frontswap_test(swap_info[type], swp_offset(entry)))
1225 continue;
1226
1227 indices[ret] = xas.xa_index;
1228 entries[ret] = page;
1229
1230 if (need_resched()) {
1231 xas_pause(&xas);
1232 cond_resched_rcu();
1233 }
1234 if (++ret == nr_entries)
1235 break;
1236 }
1237 rcu_read_unlock();
1238
1239 return ret;
1240 }
1241
1242 /*
1243 * Move the swapped pages for an inode to page cache. Returns the count
1244 * of pages swapped in, or the error in case of failure.
1245 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1246 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1247 pgoff_t *indices)
1248 {
1249 int i = 0;
1250 int ret = 0;
1251 int error = 0;
1252 struct address_space *mapping = inode->i_mapping;
1253
1254 for (i = 0; i < pvec.nr; i++) {
1255 struct page *page = pvec.pages[i];
1256
1257 if (!xa_is_value(page))
1258 continue;
1259 error = shmem_swapin_page(inode, indices[i],
1260 &page, SGP_CACHE,
1261 mapping_gfp_mask(mapping),
1262 NULL, NULL);
1263 if (error == 0) {
1264 unlock_page(page);
1265 put_page(page);
1266 ret++;
1267 }
1268 if (error == -ENOMEM)
1269 break;
1270 error = 0;
1271 }
1272 return error ? error : ret;
1273 }
1274
1275 /*
1276 * If swap found in inode, free it and move page from swapcache to filecache.
1277 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1278 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1279 bool frontswap, unsigned long *fs_pages_to_unuse)
1280 {
1281 struct address_space *mapping = inode->i_mapping;
1282 pgoff_t start = 0;
1283 struct pagevec pvec;
1284 pgoff_t indices[PAGEVEC_SIZE];
1285 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1286 int ret = 0;
1287
1288 pagevec_init(&pvec);
1289 do {
1290 unsigned int nr_entries = PAGEVEC_SIZE;
1291
1292 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1293 nr_entries = *fs_pages_to_unuse;
1294
1295 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1296 pvec.pages, indices,
1297 type, frontswap);
1298 if (pvec.nr == 0) {
1299 ret = 0;
1300 break;
1301 }
1302
1303 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1304 if (ret < 0)
1305 break;
1306
1307 if (frontswap_partial) {
1308 *fs_pages_to_unuse -= ret;
1309 if (*fs_pages_to_unuse == 0) {
1310 ret = FRONTSWAP_PAGES_UNUSED;
1311 break;
1312 }
1313 }
1314
1315 start = indices[pvec.nr - 1];
1316 } while (true);
1317
1318 return ret;
1319 }
1320
1321 /*
1322 * Read all the shared memory data that resides in the swap
1323 * device 'type' back into memory, so the swap device can be
1324 * unused.
1325 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1326 int shmem_unuse(unsigned int type, bool frontswap,
1327 unsigned long *fs_pages_to_unuse)
1328 {
1329 struct shmem_inode_info *info, *next;
1330 int error = 0;
1331
1332 if (list_empty(&shmem_swaplist))
1333 return 0;
1334
1335 mutex_lock(&shmem_swaplist_mutex);
1336 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1337 if (!info->swapped) {
1338 list_del_init(&info->swaplist);
1339 continue;
1340 }
1341 /*
1342 * Drop the swaplist mutex while searching the inode for swap;
1343 * but before doing so, make sure shmem_evict_inode() will not
1344 * remove placeholder inode from swaplist, nor let it be freed
1345 * (igrab() would protect from unlink, but not from unmount).
1346 */
1347 atomic_inc(&info->stop_eviction);
1348 mutex_unlock(&shmem_swaplist_mutex);
1349
1350 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1351 fs_pages_to_unuse);
1352 cond_resched();
1353
1354 mutex_lock(&shmem_swaplist_mutex);
1355 next = list_next_entry(info, swaplist);
1356 if (!info->swapped)
1357 list_del_init(&info->swaplist);
1358 if (atomic_dec_and_test(&info->stop_eviction))
1359 wake_up_var(&info->stop_eviction);
1360 if (error)
1361 break;
1362 }
1363 mutex_unlock(&shmem_swaplist_mutex);
1364
1365 return error;
1366 }
1367
1368 /*
1369 * Move the page from the page cache to the swap cache.
1370 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1371 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1372 {
1373 struct shmem_inode_info *info;
1374 struct address_space *mapping;
1375 struct inode *inode;
1376 swp_entry_t swap;
1377 pgoff_t index;
1378
1379 VM_BUG_ON_PAGE(PageCompound(page), page);
1380 BUG_ON(!PageLocked(page));
1381 mapping = page->mapping;
1382 index = page->index;
1383 inode = mapping->host;
1384 info = SHMEM_I(inode);
1385 if (info->flags & VM_LOCKED)
1386 goto redirty;
1387 if (!total_swap_pages)
1388 goto redirty;
1389
1390 /*
1391 * Our capabilities prevent regular writeback or sync from ever calling
1392 * shmem_writepage; but a stacking filesystem might use ->writepage of
1393 * its underlying filesystem, in which case tmpfs should write out to
1394 * swap only in response to memory pressure, and not for the writeback
1395 * threads or sync.
1396 */
1397 if (!wbc->for_reclaim) {
1398 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1399 goto redirty;
1400 }
1401
1402 /*
1403 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1404 * value into swapfile.c, the only way we can correctly account for a
1405 * fallocated page arriving here is now to initialize it and write it.
1406 *
1407 * That's okay for a page already fallocated earlier, but if we have
1408 * not yet completed the fallocation, then (a) we want to keep track
1409 * of this page in case we have to undo it, and (b) it may not be a
1410 * good idea to continue anyway, once we're pushing into swap. So
1411 * reactivate the page, and let shmem_fallocate() quit when too many.
1412 */
1413 if (!PageUptodate(page)) {
1414 if (inode->i_private) {
1415 struct shmem_falloc *shmem_falloc;
1416 spin_lock(&inode->i_lock);
1417 shmem_falloc = inode->i_private;
1418 if (shmem_falloc &&
1419 !shmem_falloc->waitq &&
1420 index >= shmem_falloc->start &&
1421 index < shmem_falloc->next)
1422 shmem_falloc->nr_unswapped++;
1423 else
1424 shmem_falloc = NULL;
1425 spin_unlock(&inode->i_lock);
1426 if (shmem_falloc)
1427 goto redirty;
1428 }
1429 clear_highpage(page);
1430 flush_dcache_page(page);
1431 SetPageUptodate(page);
1432 }
1433
1434 trace_android_vh_set_shmem_page_flag(page);
1435 swap = get_swap_page(page);
1436 if (!swap.val)
1437 goto redirty;
1438
1439 /*
1440 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1441 * if it's not already there. Do it now before the page is
1442 * moved to swap cache, when its pagelock no longer protects
1443 * the inode from eviction. But don't unlock the mutex until
1444 * we've incremented swapped, because shmem_unuse_inode() will
1445 * prune a !swapped inode from the swaplist under this mutex.
1446 */
1447 mutex_lock(&shmem_swaplist_mutex);
1448 if (list_empty(&info->swaplist))
1449 list_add(&info->swaplist, &shmem_swaplist);
1450
1451 if (add_to_swap_cache(page, swap,
1452 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1453 NULL) == 0) {
1454 spin_lock_irq(&info->lock);
1455 shmem_recalc_inode(inode);
1456 info->swapped++;
1457 spin_unlock_irq(&info->lock);
1458
1459 swap_shmem_alloc(swap);
1460 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1461
1462 mutex_unlock(&shmem_swaplist_mutex);
1463 BUG_ON(page_mapped(page));
1464 swap_writepage(page, wbc);
1465 return 0;
1466 }
1467
1468 mutex_unlock(&shmem_swaplist_mutex);
1469 put_swap_page(page, swap);
1470 redirty:
1471 set_page_dirty(page);
1472 if (wbc->for_reclaim)
1473 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1474 unlock_page(page);
1475 return 0;
1476 }
1477
1478 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1479 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1480 {
1481 char buffer[64];
1482
1483 if (!mpol || mpol->mode == MPOL_DEFAULT)
1484 return; /* show nothing */
1485
1486 mpol_to_str(buffer, sizeof(buffer), mpol);
1487
1488 seq_printf(seq, ",mpol=%s", buffer);
1489 }
1490
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1491 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493 struct mempolicy *mpol = NULL;
1494 if (sbinfo->mpol) {
1495 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1496 mpol = sbinfo->mpol;
1497 mpol_get(mpol);
1498 spin_unlock(&sbinfo->stat_lock);
1499 }
1500 return mpol;
1501 }
1502 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1503 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1504 {
1505 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1506 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1507 {
1508 return NULL;
1509 }
1510 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1511 #ifndef CONFIG_NUMA
1512 #define vm_policy vm_private_data
1513 #endif
1514
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1515 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1516 struct shmem_inode_info *info, pgoff_t index)
1517 {
1518 /* Create a pseudo vma that just contains the policy */
1519 vma_init(vma, NULL);
1520 /* Bias interleave by inode number to distribute better across nodes */
1521 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1522 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1523 }
1524
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1525 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1526 {
1527 /* Drop reference taken by mpol_shared_policy_lookup() */
1528 mpol_cond_put(vma->vm_policy);
1529 }
1530
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1531 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1532 struct shmem_inode_info *info, pgoff_t index)
1533 {
1534 struct vm_area_struct pvma;
1535 struct page *page;
1536 struct vm_fault vmf = {
1537 .vma = &pvma,
1538 };
1539
1540 shmem_pseudo_vma_init(&pvma, info, index);
1541 page = swap_cluster_readahead(swap, gfp, &vmf);
1542 shmem_pseudo_vma_destroy(&pvma);
1543
1544 return page;
1545 }
1546
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1547 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1548 struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 struct vm_area_struct pvma;
1551 struct address_space *mapping = info->vfs_inode.i_mapping;
1552 pgoff_t hindex;
1553 struct page *page;
1554
1555 hindex = round_down(index, HPAGE_PMD_NR);
1556 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1557 XA_PRESENT))
1558 return NULL;
1559
1560 shmem_pseudo_vma_init(&pvma, info, hindex);
1561 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1562 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1563 shmem_pseudo_vma_destroy(&pvma);
1564 if (page)
1565 prep_transhuge_page(page);
1566 else
1567 count_vm_event(THP_FILE_FALLBACK);
1568 return page;
1569 }
1570
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1571 static struct page *shmem_alloc_page(gfp_t gfp,
1572 struct shmem_inode_info *info, pgoff_t index)
1573 {
1574 struct vm_area_struct pvma;
1575 struct page *page = NULL;
1576
1577 trace_android_vh_shmem_alloc_page(&page);
1578 if (page)
1579 return page;
1580
1581 shmem_pseudo_vma_init(&pvma, info, index);
1582 page = alloc_page_vma(gfp, &pvma, 0);
1583 shmem_pseudo_vma_destroy(&pvma);
1584
1585 return page;
1586 }
1587
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1588 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1589 struct inode *inode,
1590 pgoff_t index, bool huge)
1591 {
1592 struct shmem_inode_info *info = SHMEM_I(inode);
1593 struct page *page;
1594 int nr;
1595 int err = -ENOSPC;
1596
1597 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1598 huge = false;
1599 nr = huge ? HPAGE_PMD_NR : 1;
1600
1601 if (!shmem_inode_acct_block(inode, nr))
1602 goto failed;
1603
1604 if (huge)
1605 page = shmem_alloc_hugepage(gfp, info, index);
1606 else
1607 page = shmem_alloc_page(gfp, info, index);
1608 if (page) {
1609 __SetPageLocked(page);
1610 __SetPageSwapBacked(page);
1611 return page;
1612 }
1613
1614 err = -ENOMEM;
1615 shmem_inode_unacct_blocks(inode, nr);
1616 failed:
1617 return ERR_PTR(err);
1618 }
1619
1620 /*
1621 * When a page is moved from swapcache to shmem filecache (either by the
1622 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1623 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1624 * ignorance of the mapping it belongs to. If that mapping has special
1625 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1626 * we may need to copy to a suitable page before moving to filecache.
1627 *
1628 * In a future release, this may well be extended to respect cpuset and
1629 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1630 * but for now it is a simple matter of zone.
1631 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1632 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1633 {
1634 return page_zonenum(page) > gfp_zone(gfp);
1635 }
1636
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1637 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1638 struct shmem_inode_info *info, pgoff_t index)
1639 {
1640 struct page *oldpage, *newpage;
1641 struct address_space *swap_mapping;
1642 swp_entry_t entry;
1643 pgoff_t swap_index;
1644 int error;
1645
1646 oldpage = *pagep;
1647 entry.val = page_private(oldpage);
1648 swap_index = swp_offset(entry);
1649 swap_mapping = page_mapping(oldpage);
1650
1651 /*
1652 * We have arrived here because our zones are constrained, so don't
1653 * limit chance of success by further cpuset and node constraints.
1654 */
1655 gfp &= ~GFP_CONSTRAINT_MASK;
1656 newpage = shmem_alloc_page(gfp, info, index);
1657 if (!newpage)
1658 return -ENOMEM;
1659
1660 get_page(newpage);
1661 copy_highpage(newpage, oldpage);
1662 flush_dcache_page(newpage);
1663
1664 __SetPageLocked(newpage);
1665 __SetPageSwapBacked(newpage);
1666 SetPageUptodate(newpage);
1667 set_page_private(newpage, entry.val);
1668 SetPageSwapCache(newpage);
1669
1670 /*
1671 * Our caller will very soon move newpage out of swapcache, but it's
1672 * a nice clean interface for us to replace oldpage by newpage there.
1673 */
1674 xa_lock_irq(&swap_mapping->i_pages);
1675 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1676 if (!error) {
1677 mem_cgroup_migrate(oldpage, newpage);
1678 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1679 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1680 }
1681 xa_unlock_irq(&swap_mapping->i_pages);
1682
1683 if (unlikely(error)) {
1684 /*
1685 * Is this possible? I think not, now that our callers check
1686 * both PageSwapCache and page_private after getting page lock;
1687 * but be defensive. Reverse old to newpage for clear and free.
1688 */
1689 oldpage = newpage;
1690 } else {
1691 lru_cache_add(newpage);
1692 *pagep = newpage;
1693 }
1694
1695 ClearPageSwapCache(oldpage);
1696 set_page_private(oldpage, 0);
1697
1698 unlock_page(oldpage);
1699 put_page(oldpage);
1700 put_page(oldpage);
1701 return error;
1702 }
1703
1704 /*
1705 * Swap in the page pointed to by *pagep.
1706 * Caller has to make sure that *pagep contains a valid swapped page.
1707 * Returns 0 and the page in pagep if success. On failure, returns the
1708 * error code and NULL in *pagep.
1709 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1710 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1711 struct page **pagep, enum sgp_type sgp,
1712 gfp_t gfp, struct vm_area_struct *vma,
1713 vm_fault_t *fault_type)
1714 {
1715 struct address_space *mapping = inode->i_mapping;
1716 struct shmem_inode_info *info = SHMEM_I(inode);
1717 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1718 struct page *page;
1719 swp_entry_t swap;
1720 int error;
1721
1722 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1723 swap = radix_to_swp_entry(*pagep);
1724 *pagep = NULL;
1725
1726 /* Look it up and read it in.. */
1727 page = lookup_swap_cache(swap, NULL, 0);
1728 if (!page) {
1729 /* Or update major stats only when swapin succeeds?? */
1730 if (fault_type) {
1731 *fault_type |= VM_FAULT_MAJOR;
1732 count_vm_event(PGMAJFAULT);
1733 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1734 }
1735 /* Here we actually start the io */
1736 page = shmem_swapin(swap, gfp, info, index);
1737 if (!page) {
1738 error = -ENOMEM;
1739 goto failed;
1740 }
1741 }
1742
1743 /* We have to do this with page locked to prevent races */
1744 lock_page(page);
1745 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1746 !shmem_confirm_swap(mapping, index, swap)) {
1747 error = -EEXIST;
1748 goto unlock;
1749 }
1750 if (!PageUptodate(page)) {
1751 error = -EIO;
1752 goto failed;
1753 }
1754 wait_on_page_writeback(page);
1755
1756 /*
1757 * Some architectures may have to restore extra metadata to the
1758 * physical page after reading from swap.
1759 */
1760 arch_swap_restore(swap, page);
1761
1762 if (shmem_should_replace_page(page, gfp)) {
1763 error = shmem_replace_page(&page, gfp, info, index);
1764 if (error)
1765 goto failed;
1766 }
1767
1768 error = shmem_add_to_page_cache(page, mapping, index,
1769 swp_to_radix_entry(swap), gfp,
1770 charge_mm);
1771 if (error)
1772 goto failed;
1773
1774 spin_lock_irq(&info->lock);
1775 info->swapped--;
1776 shmem_recalc_inode(inode);
1777 spin_unlock_irq(&info->lock);
1778
1779 if (sgp == SGP_WRITE)
1780 mark_page_accessed(page);
1781
1782 delete_from_swap_cache(page);
1783 set_page_dirty(page);
1784 swap_free(swap);
1785
1786 *pagep = page;
1787 return 0;
1788 failed:
1789 if (!shmem_confirm_swap(mapping, index, swap))
1790 error = -EEXIST;
1791 unlock:
1792 if (page) {
1793 unlock_page(page);
1794 put_page(page);
1795 }
1796
1797 return error;
1798 }
1799
1800 /*
1801 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1802 *
1803 * If we allocate a new one we do not mark it dirty. That's up to the
1804 * vm. If we swap it in we mark it dirty since we also free the swap
1805 * entry since a page cannot live in both the swap and page cache.
1806 *
1807 * vma, vmf, and fault_type are only supplied by shmem_fault:
1808 * otherwise they are NULL.
1809 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1810 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1811 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1812 struct vm_area_struct *vma, struct vm_fault *vmf,
1813 vm_fault_t *fault_type)
1814 {
1815 struct address_space *mapping = inode->i_mapping;
1816 struct shmem_inode_info *info = SHMEM_I(inode);
1817 struct shmem_sb_info *sbinfo;
1818 struct mm_struct *charge_mm;
1819 struct page *page;
1820 enum sgp_type sgp_huge = sgp;
1821 pgoff_t hindex = index;
1822 int error;
1823 int once = 0;
1824 int alloced = 0;
1825
1826 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1827 return -EFBIG;
1828 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1829 sgp = SGP_CACHE;
1830 repeat:
1831 if (sgp <= SGP_CACHE &&
1832 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1833 return -EINVAL;
1834 }
1835
1836 sbinfo = SHMEM_SB(inode->i_sb);
1837 charge_mm = vma ? vma->vm_mm : current->mm;
1838
1839 page = find_lock_entry(mapping, index);
1840
1841 if (page && vma && userfaultfd_minor(vma)) {
1842 if (!xa_is_value(page)) {
1843 unlock_page(page);
1844 put_page(page);
1845 }
1846 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847 return 0;
1848 }
1849
1850 if (xa_is_value(page)) {
1851 error = shmem_swapin_page(inode, index, &page,
1852 sgp, gfp, vma, fault_type);
1853 if (error == -EEXIST)
1854 goto repeat;
1855
1856 *pagep = page;
1857 return error;
1858 }
1859
1860 if (page)
1861 hindex = page->index;
1862 if (page && sgp == SGP_WRITE)
1863 mark_page_accessed(page);
1864
1865 /* fallocated page? */
1866 if (page && !PageUptodate(page)) {
1867 if (sgp != SGP_READ)
1868 goto clear;
1869 unlock_page(page);
1870 put_page(page);
1871 page = NULL;
1872 hindex = index;
1873 }
1874 if (page || sgp == SGP_READ)
1875 goto out;
1876
1877 /*
1878 * Fast cache lookup did not find it:
1879 * bring it back from swap or allocate.
1880 */
1881
1882 if (vma && userfaultfd_missing(vma)) {
1883 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1884 return 0;
1885 }
1886
1887 /* shmem_symlink() */
1888 if (mapping->a_ops != &shmem_aops)
1889 goto alloc_nohuge;
1890 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1891 goto alloc_nohuge;
1892 if (shmem_huge == SHMEM_HUGE_FORCE)
1893 goto alloc_huge;
1894 switch (sbinfo->huge) {
1895 case SHMEM_HUGE_NEVER:
1896 goto alloc_nohuge;
1897 case SHMEM_HUGE_WITHIN_SIZE: {
1898 loff_t i_size;
1899 pgoff_t off;
1900
1901 off = round_up(index, HPAGE_PMD_NR);
1902 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1903 if (i_size >= HPAGE_PMD_SIZE &&
1904 i_size >> PAGE_SHIFT >= off)
1905 goto alloc_huge;
1906
1907 fallthrough;
1908 }
1909 case SHMEM_HUGE_ADVISE:
1910 if (sgp_huge == SGP_HUGE)
1911 goto alloc_huge;
1912 /* TODO: implement fadvise() hints */
1913 goto alloc_nohuge;
1914 }
1915
1916 alloc_huge:
1917 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1918 if (IS_ERR(page)) {
1919 alloc_nohuge:
1920 page = shmem_alloc_and_acct_page(gfp, inode,
1921 index, false);
1922 }
1923 if (IS_ERR(page)) {
1924 int retry = 5;
1925
1926 error = PTR_ERR(page);
1927 page = NULL;
1928 if (error != -ENOSPC)
1929 goto unlock;
1930 /*
1931 * Try to reclaim some space by splitting a huge page
1932 * beyond i_size on the filesystem.
1933 */
1934 while (retry--) {
1935 int ret;
1936
1937 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1938 if (ret == SHRINK_STOP)
1939 break;
1940 if (ret)
1941 goto alloc_nohuge;
1942 }
1943 goto unlock;
1944 }
1945
1946 if (PageTransHuge(page))
1947 hindex = round_down(index, HPAGE_PMD_NR);
1948 else
1949 hindex = index;
1950
1951 if (sgp == SGP_WRITE)
1952 __SetPageReferenced(page);
1953
1954 error = shmem_add_to_page_cache(page, mapping, hindex,
1955 NULL, gfp & GFP_RECLAIM_MASK,
1956 charge_mm);
1957 if (error)
1958 goto unacct;
1959 lru_cache_add(page);
1960
1961 spin_lock_irq(&info->lock);
1962 info->alloced += compound_nr(page);
1963 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1964 shmem_recalc_inode(inode);
1965 spin_unlock_irq(&info->lock);
1966 alloced = true;
1967
1968 if (PageTransHuge(page) &&
1969 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1970 hindex + HPAGE_PMD_NR - 1) {
1971 /*
1972 * Part of the huge page is beyond i_size: subject
1973 * to shrink under memory pressure.
1974 */
1975 spin_lock(&sbinfo->shrinklist_lock);
1976 /*
1977 * _careful to defend against unlocked access to
1978 * ->shrink_list in shmem_unused_huge_shrink()
1979 */
1980 if (list_empty_careful(&info->shrinklist)) {
1981 list_add_tail(&info->shrinklist,
1982 &sbinfo->shrinklist);
1983 sbinfo->shrinklist_len++;
1984 }
1985 spin_unlock(&sbinfo->shrinklist_lock);
1986 }
1987
1988 /*
1989 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1990 */
1991 if (sgp == SGP_FALLOC)
1992 sgp = SGP_WRITE;
1993 clear:
1994 /*
1995 * Let SGP_WRITE caller clear ends if write does not fill page;
1996 * but SGP_FALLOC on a page fallocated earlier must initialize
1997 * it now, lest undo on failure cancel our earlier guarantee.
1998 */
1999 if (sgp != SGP_WRITE && !PageUptodate(page)) {
2000 int i;
2001
2002 for (i = 0; i < compound_nr(page); i++) {
2003 clear_highpage(page + i);
2004 flush_dcache_page(page + i);
2005 }
2006 SetPageUptodate(page);
2007 }
2008
2009 /* Perhaps the file has been truncated since we checked */
2010 if (sgp <= SGP_CACHE &&
2011 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2012 if (alloced) {
2013 ClearPageDirty(page);
2014 delete_from_page_cache(page);
2015 spin_lock_irq(&info->lock);
2016 shmem_recalc_inode(inode);
2017 spin_unlock_irq(&info->lock);
2018 }
2019 error = -EINVAL;
2020 goto unlock;
2021 }
2022 out:
2023 *pagep = page + index - hindex;
2024 return 0;
2025
2026 /*
2027 * Error recovery.
2028 */
2029 unacct:
2030 shmem_inode_unacct_blocks(inode, compound_nr(page));
2031
2032 if (PageTransHuge(page)) {
2033 unlock_page(page);
2034 put_page(page);
2035 goto alloc_nohuge;
2036 }
2037 unlock:
2038 if (page) {
2039 unlock_page(page);
2040 put_page(page);
2041 }
2042 if (error == -ENOSPC && !once++) {
2043 spin_lock_irq(&info->lock);
2044 shmem_recalc_inode(inode);
2045 spin_unlock_irq(&info->lock);
2046 goto repeat;
2047 }
2048 if (error == -EEXIST)
2049 goto repeat;
2050 return error;
2051 }
2052
2053 /*
2054 * This is like autoremove_wake_function, but it removes the wait queue
2055 * entry unconditionally - even if something else had already woken the
2056 * target.
2057 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2058 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2059 {
2060 int ret = default_wake_function(wait, mode, sync, key);
2061 list_del_init(&wait->entry);
2062 return ret;
2063 }
2064
shmem_fault(struct vm_fault * vmf)2065 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2066 {
2067 struct vm_area_struct *vma = vmf->vma;
2068 struct inode *inode = file_inode(vma->vm_file);
2069 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2070 enum sgp_type sgp;
2071 int err;
2072 vm_fault_t ret = VM_FAULT_LOCKED;
2073
2074 /*
2075 * Trinity finds that probing a hole which tmpfs is punching can
2076 * prevent the hole-punch from ever completing: which in turn
2077 * locks writers out with its hold on i_mutex. So refrain from
2078 * faulting pages into the hole while it's being punched. Although
2079 * shmem_undo_range() does remove the additions, it may be unable to
2080 * keep up, as each new page needs its own unmap_mapping_range() call,
2081 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2082 *
2083 * It does not matter if we sometimes reach this check just before the
2084 * hole-punch begins, so that one fault then races with the punch:
2085 * we just need to make racing faults a rare case.
2086 *
2087 * The implementation below would be much simpler if we just used a
2088 * standard mutex or completion: but we cannot take i_mutex in fault,
2089 * and bloating every shmem inode for this unlikely case would be sad.
2090 */
2091 if (unlikely(inode->i_private)) {
2092 struct shmem_falloc *shmem_falloc;
2093
2094 spin_lock(&inode->i_lock);
2095 shmem_falloc = inode->i_private;
2096 if (shmem_falloc &&
2097 shmem_falloc->waitq &&
2098 vmf->pgoff >= shmem_falloc->start &&
2099 vmf->pgoff < shmem_falloc->next) {
2100 struct file *fpin;
2101 wait_queue_head_t *shmem_falloc_waitq;
2102 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2103
2104 ret = VM_FAULT_NOPAGE;
2105 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2106 if (fpin)
2107 ret = VM_FAULT_RETRY;
2108
2109 shmem_falloc_waitq = shmem_falloc->waitq;
2110 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2111 TASK_UNINTERRUPTIBLE);
2112 spin_unlock(&inode->i_lock);
2113 schedule();
2114
2115 /*
2116 * shmem_falloc_waitq points into the shmem_fallocate()
2117 * stack of the hole-punching task: shmem_falloc_waitq
2118 * is usually invalid by the time we reach here, but
2119 * finish_wait() does not dereference it in that case;
2120 * though i_lock needed lest racing with wake_up_all().
2121 */
2122 spin_lock(&inode->i_lock);
2123 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2124 spin_unlock(&inode->i_lock);
2125
2126 if (fpin)
2127 fput(fpin);
2128 return ret;
2129 }
2130 spin_unlock(&inode->i_lock);
2131 }
2132
2133 sgp = SGP_CACHE;
2134
2135 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2136 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2137 sgp = SGP_NOHUGE;
2138 else if (vma->vm_flags & VM_HUGEPAGE)
2139 sgp = SGP_HUGE;
2140
2141 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2142 gfp, vma, vmf, &ret);
2143 if (err)
2144 return vmf_error(err);
2145 return ret;
2146 }
2147
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2148 unsigned long shmem_get_unmapped_area(struct file *file,
2149 unsigned long uaddr, unsigned long len,
2150 unsigned long pgoff, unsigned long flags)
2151 {
2152 unsigned long (*get_area)(struct file *,
2153 unsigned long, unsigned long, unsigned long, unsigned long);
2154 unsigned long addr;
2155 unsigned long offset;
2156 unsigned long inflated_len;
2157 unsigned long inflated_addr;
2158 unsigned long inflated_offset;
2159
2160 if (len > TASK_SIZE)
2161 return -ENOMEM;
2162
2163 get_area = current->mm->get_unmapped_area;
2164 addr = get_area(file, uaddr, len, pgoff, flags);
2165
2166 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2167 return addr;
2168 if (IS_ERR_VALUE(addr))
2169 return addr;
2170 if (addr & ~PAGE_MASK)
2171 return addr;
2172 if (addr > TASK_SIZE - len)
2173 return addr;
2174
2175 if (shmem_huge == SHMEM_HUGE_DENY)
2176 return addr;
2177 if (len < HPAGE_PMD_SIZE)
2178 return addr;
2179 if (flags & MAP_FIXED)
2180 return addr;
2181 /*
2182 * Our priority is to support MAP_SHARED mapped hugely;
2183 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2184 * But if caller specified an address hint and we allocated area there
2185 * successfully, respect that as before.
2186 */
2187 if (uaddr == addr)
2188 return addr;
2189
2190 if (shmem_huge != SHMEM_HUGE_FORCE) {
2191 struct super_block *sb;
2192
2193 if (file) {
2194 VM_BUG_ON(file->f_op != &shmem_file_operations);
2195 sb = file_inode(file)->i_sb;
2196 } else {
2197 /*
2198 * Called directly from mm/mmap.c, or drivers/char/mem.c
2199 * for "/dev/zero", to create a shared anonymous object.
2200 */
2201 if (IS_ERR(shm_mnt))
2202 return addr;
2203 sb = shm_mnt->mnt_sb;
2204 }
2205 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2206 return addr;
2207 }
2208
2209 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2210 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2211 return addr;
2212 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2213 return addr;
2214
2215 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2216 if (inflated_len > TASK_SIZE)
2217 return addr;
2218 if (inflated_len < len)
2219 return addr;
2220
2221 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2222 if (IS_ERR_VALUE(inflated_addr))
2223 return addr;
2224 if (inflated_addr & ~PAGE_MASK)
2225 return addr;
2226
2227 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2228 inflated_addr += offset - inflated_offset;
2229 if (inflated_offset > offset)
2230 inflated_addr += HPAGE_PMD_SIZE;
2231
2232 if (inflated_addr > TASK_SIZE - len)
2233 return addr;
2234 return inflated_addr;
2235 }
2236
2237 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2238 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2239 {
2240 struct inode *inode = file_inode(vma->vm_file);
2241 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2242 }
2243
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2244 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2245 unsigned long addr)
2246 {
2247 struct inode *inode = file_inode(vma->vm_file);
2248 pgoff_t index;
2249
2250 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2251 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2252 }
2253 #endif
2254
shmem_lock(struct file * file,int lock,struct user_struct * user)2255 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2256 {
2257 struct inode *inode = file_inode(file);
2258 struct shmem_inode_info *info = SHMEM_I(inode);
2259 int retval = -ENOMEM;
2260
2261 /*
2262 * What serializes the accesses to info->flags?
2263 * ipc_lock_object() when called from shmctl_do_lock(),
2264 * no serialization needed when called from shm_destroy().
2265 */
2266 if (lock && !(info->flags & VM_LOCKED)) {
2267 if (!user_shm_lock(inode->i_size, user))
2268 goto out_nomem;
2269 info->flags |= VM_LOCKED;
2270 mapping_set_unevictable(file->f_mapping);
2271 }
2272 if (!lock && (info->flags & VM_LOCKED) && user) {
2273 user_shm_unlock(inode->i_size, user);
2274 info->flags &= ~VM_LOCKED;
2275 mapping_clear_unevictable(file->f_mapping);
2276 }
2277 retval = 0;
2278
2279 out_nomem:
2280 return retval;
2281 }
2282
shmem_mmap(struct file * file,struct vm_area_struct * vma)2283 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2284 {
2285 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2286 int ret;
2287
2288 ret = seal_check_future_write(info->seals, vma);
2289 if (ret)
2290 return ret;
2291
2292 /* arm64 - allow memory tagging on RAM-based files */
2293 vma->vm_flags |= VM_MTE_ALLOWED;
2294
2295 file_accessed(file);
2296 vma->vm_ops = &shmem_vm_ops;
2297 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2298 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2299 (vma->vm_end & HPAGE_PMD_MASK)) {
2300 khugepaged_enter(vma, vma->vm_flags);
2301 }
2302 return 0;
2303 }
2304
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2305 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2306 umode_t mode, dev_t dev, unsigned long flags)
2307 {
2308 struct inode *inode;
2309 struct shmem_inode_info *info;
2310 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2311 ino_t ino;
2312
2313 if (shmem_reserve_inode(sb, &ino))
2314 return NULL;
2315
2316 inode = new_inode(sb);
2317 if (inode) {
2318 inode->i_ino = ino;
2319 inode_init_owner(inode, dir, mode);
2320 inode->i_blocks = 0;
2321 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2322 inode->i_generation = prandom_u32();
2323 info = SHMEM_I(inode);
2324 memset(info, 0, (char *)inode - (char *)info);
2325 spin_lock_init(&info->lock);
2326 atomic_set(&info->stop_eviction, 0);
2327 info->seals = F_SEAL_SEAL;
2328 info->flags = flags & VM_NORESERVE;
2329 INIT_LIST_HEAD(&info->shrinklist);
2330 INIT_LIST_HEAD(&info->swaplist);
2331 simple_xattrs_init(&info->xattrs);
2332 cache_no_acl(inode);
2333
2334 switch (mode & S_IFMT) {
2335 default:
2336 inode->i_op = &shmem_special_inode_operations;
2337 init_special_inode(inode, mode, dev);
2338 break;
2339 case S_IFREG:
2340 inode->i_mapping->a_ops = &shmem_aops;
2341 inode->i_op = &shmem_inode_operations;
2342 inode->i_fop = &shmem_file_operations;
2343 mpol_shared_policy_init(&info->policy,
2344 shmem_get_sbmpol(sbinfo));
2345 break;
2346 case S_IFDIR:
2347 inc_nlink(inode);
2348 /* Some things misbehave if size == 0 on a directory */
2349 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2350 inode->i_op = &shmem_dir_inode_operations;
2351 inode->i_fop = &simple_dir_operations;
2352 break;
2353 case S_IFLNK:
2354 /*
2355 * Must not load anything in the rbtree,
2356 * mpol_free_shared_policy will not be called.
2357 */
2358 mpol_shared_policy_init(&info->policy, NULL);
2359 break;
2360 }
2361
2362 lockdep_annotate_inode_mutex_key(inode);
2363 } else
2364 shmem_free_inode(sb);
2365 return inode;
2366 }
2367
shmem_mapping(struct address_space * mapping)2368 bool shmem_mapping(struct address_space *mapping)
2369 {
2370 return mapping->a_ops == &shmem_aops;
2371 }
2372
2373 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2374 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2375 pmd_t *dst_pmd,
2376 struct vm_area_struct *dst_vma,
2377 unsigned long dst_addr,
2378 unsigned long src_addr,
2379 bool zeropage,
2380 struct page **pagep)
2381 {
2382 struct inode *inode = file_inode(dst_vma->vm_file);
2383 struct shmem_inode_info *info = SHMEM_I(inode);
2384 struct address_space *mapping = inode->i_mapping;
2385 gfp_t gfp = mapping_gfp_mask(mapping);
2386 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2387 void *page_kaddr;
2388 struct page *page;
2389 int ret;
2390 pgoff_t max_off;
2391
2392 if (!shmem_inode_acct_block(inode, 1)) {
2393 /*
2394 * We may have got a page, returned -ENOENT triggering a retry,
2395 * and now we find ourselves with -ENOMEM. Release the page, to
2396 * avoid a BUG_ON in our caller.
2397 */
2398 if (unlikely(*pagep)) {
2399 put_page(*pagep);
2400 *pagep = NULL;
2401 }
2402 return -ENOMEM;
2403 }
2404
2405 if (!*pagep) {
2406 ret = -ENOMEM;
2407 page = shmem_alloc_page(gfp, info, pgoff);
2408 if (!page)
2409 goto out_unacct_blocks;
2410
2411 if (!zeropage) { /* COPY */
2412 page_kaddr = kmap_atomic(page);
2413 ret = copy_from_user(page_kaddr,
2414 (const void __user *)src_addr,
2415 PAGE_SIZE);
2416 kunmap_atomic(page_kaddr);
2417
2418 /* fallback to copy_from_user outside mmap_lock */
2419 if (unlikely(ret)) {
2420 *pagep = page;
2421 ret = -ENOENT;
2422 /* don't free the page */
2423 goto out_unacct_blocks;
2424 }
2425 } else { /* ZEROPAGE */
2426 clear_highpage(page);
2427 }
2428 } else {
2429 page = *pagep;
2430 *pagep = NULL;
2431 }
2432
2433 VM_BUG_ON(PageLocked(page));
2434 VM_BUG_ON(PageSwapBacked(page));
2435 __SetPageLocked(page);
2436 __SetPageSwapBacked(page);
2437 __SetPageUptodate(page);
2438
2439 ret = -EFAULT;
2440 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2441 if (unlikely(pgoff >= max_off))
2442 goto out_release;
2443
2444 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2445 gfp & GFP_RECLAIM_MASK, dst_mm);
2446 if (ret)
2447 goto out_release;
2448
2449 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2450 page, true, false);
2451 if (ret)
2452 goto out_delete_from_cache;
2453
2454 spin_lock_irq(&info->lock);
2455 info->alloced++;
2456 inode->i_blocks += BLOCKS_PER_PAGE;
2457 shmem_recalc_inode(inode);
2458 spin_unlock_irq(&info->lock);
2459
2460 SetPageDirty(page);
2461 unlock_page(page);
2462 return 0;
2463 out_delete_from_cache:
2464 delete_from_page_cache(page);
2465 out_release:
2466 unlock_page(page);
2467 put_page(page);
2468 out_unacct_blocks:
2469 shmem_inode_unacct_blocks(inode, 1);
2470 return ret;
2471 }
2472 #endif /* CONFIG_USERFAULTFD */
2473
2474 #ifdef CONFIG_TMPFS
2475 static const struct inode_operations shmem_symlink_inode_operations;
2476 static const struct inode_operations shmem_short_symlink_operations;
2477
2478 #ifdef CONFIG_TMPFS_XATTR
2479 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2480 #else
2481 #define shmem_initxattrs NULL
2482 #endif
2483
2484 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2485 shmem_write_begin(struct file *file, struct address_space *mapping,
2486 loff_t pos, unsigned len, unsigned flags,
2487 struct page **pagep, void **fsdata)
2488 {
2489 struct inode *inode = mapping->host;
2490 struct shmem_inode_info *info = SHMEM_I(inode);
2491 pgoff_t index = pos >> PAGE_SHIFT;
2492
2493 /* i_mutex is held by caller */
2494 if (unlikely(info->seals & (F_SEAL_GROW |
2495 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2496 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2497 return -EPERM;
2498 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2499 return -EPERM;
2500 }
2501
2502 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2503 }
2504
2505 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2506 shmem_write_end(struct file *file, struct address_space *mapping,
2507 loff_t pos, unsigned len, unsigned copied,
2508 struct page *page, void *fsdata)
2509 {
2510 struct inode *inode = mapping->host;
2511
2512 if (pos + copied > inode->i_size)
2513 i_size_write(inode, pos + copied);
2514
2515 if (!PageUptodate(page)) {
2516 struct page *head = compound_head(page);
2517 if (PageTransCompound(page)) {
2518 int i;
2519
2520 for (i = 0; i < HPAGE_PMD_NR; i++) {
2521 if (head + i == page)
2522 continue;
2523 clear_highpage(head + i);
2524 flush_dcache_page(head + i);
2525 }
2526 }
2527 if (copied < PAGE_SIZE) {
2528 unsigned from = pos & (PAGE_SIZE - 1);
2529 zero_user_segments(page, 0, from,
2530 from + copied, PAGE_SIZE);
2531 }
2532 SetPageUptodate(head);
2533 }
2534 set_page_dirty(page);
2535 unlock_page(page);
2536 put_page(page);
2537
2538 return copied;
2539 }
2540
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2541 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2542 {
2543 struct file *file = iocb->ki_filp;
2544 struct inode *inode = file_inode(file);
2545 struct address_space *mapping = inode->i_mapping;
2546 pgoff_t index;
2547 unsigned long offset;
2548 enum sgp_type sgp = SGP_READ;
2549 int error = 0;
2550 ssize_t retval = 0;
2551 loff_t *ppos = &iocb->ki_pos;
2552
2553 /*
2554 * Might this read be for a stacking filesystem? Then when reading
2555 * holes of a sparse file, we actually need to allocate those pages,
2556 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2557 */
2558 if (!iter_is_iovec(to))
2559 sgp = SGP_CACHE;
2560
2561 index = *ppos >> PAGE_SHIFT;
2562 offset = *ppos & ~PAGE_MASK;
2563
2564 for (;;) {
2565 struct page *page = NULL;
2566 pgoff_t end_index;
2567 unsigned long nr, ret;
2568 loff_t i_size = i_size_read(inode);
2569
2570 end_index = i_size >> PAGE_SHIFT;
2571 if (index > end_index)
2572 break;
2573 if (index == end_index) {
2574 nr = i_size & ~PAGE_MASK;
2575 if (nr <= offset)
2576 break;
2577 }
2578
2579 error = shmem_getpage(inode, index, &page, sgp);
2580 if (error) {
2581 if (error == -EINVAL)
2582 error = 0;
2583 break;
2584 }
2585 if (page) {
2586 if (sgp == SGP_CACHE)
2587 set_page_dirty(page);
2588 unlock_page(page);
2589 }
2590
2591 /*
2592 * We must evaluate after, since reads (unlike writes)
2593 * are called without i_mutex protection against truncate
2594 */
2595 nr = PAGE_SIZE;
2596 i_size = i_size_read(inode);
2597 end_index = i_size >> PAGE_SHIFT;
2598 if (index == end_index) {
2599 nr = i_size & ~PAGE_MASK;
2600 if (nr <= offset) {
2601 if (page)
2602 put_page(page);
2603 break;
2604 }
2605 }
2606 nr -= offset;
2607
2608 if (page) {
2609 /*
2610 * If users can be writing to this page using arbitrary
2611 * virtual addresses, take care about potential aliasing
2612 * before reading the page on the kernel side.
2613 */
2614 if (mapping_writably_mapped(mapping))
2615 flush_dcache_page(page);
2616 /*
2617 * Mark the page accessed if we read the beginning.
2618 */
2619 if (!offset)
2620 mark_page_accessed(page);
2621 } else {
2622 page = ZERO_PAGE(0);
2623 get_page(page);
2624 }
2625
2626 /*
2627 * Ok, we have the page, and it's up-to-date, so
2628 * now we can copy it to user space...
2629 */
2630 ret = copy_page_to_iter(page, offset, nr, to);
2631 retval += ret;
2632 offset += ret;
2633 index += offset >> PAGE_SHIFT;
2634 offset &= ~PAGE_MASK;
2635
2636 put_page(page);
2637 if (!iov_iter_count(to))
2638 break;
2639 if (ret < nr) {
2640 error = -EFAULT;
2641 break;
2642 }
2643 cond_resched();
2644 }
2645
2646 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2647 file_accessed(file);
2648 return retval ? retval : error;
2649 }
2650
2651 /*
2652 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2653 */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2654 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2655 pgoff_t index, pgoff_t end, int whence)
2656 {
2657 struct page *page;
2658 struct pagevec pvec;
2659 pgoff_t indices[PAGEVEC_SIZE];
2660 bool done = false;
2661 int i;
2662
2663 pagevec_init(&pvec);
2664 pvec.nr = 1; /* start small: we may be there already */
2665 while (!done) {
2666 pvec.nr = find_get_entries(mapping, index,
2667 pvec.nr, pvec.pages, indices);
2668 if (!pvec.nr) {
2669 if (whence == SEEK_DATA)
2670 index = end;
2671 break;
2672 }
2673 for (i = 0; i < pvec.nr; i++, index++) {
2674 if (index < indices[i]) {
2675 if (whence == SEEK_HOLE) {
2676 done = true;
2677 break;
2678 }
2679 index = indices[i];
2680 }
2681 page = pvec.pages[i];
2682 if (page && !xa_is_value(page)) {
2683 if (!PageUptodate(page))
2684 page = NULL;
2685 }
2686 if (index >= end ||
2687 (page && whence == SEEK_DATA) ||
2688 (!page && whence == SEEK_HOLE)) {
2689 done = true;
2690 break;
2691 }
2692 }
2693 pagevec_remove_exceptionals(&pvec);
2694 pagevec_release(&pvec);
2695 pvec.nr = PAGEVEC_SIZE;
2696 cond_resched();
2697 }
2698 return index;
2699 }
2700
shmem_file_llseek(struct file * file,loff_t offset,int whence)2701 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2702 {
2703 struct address_space *mapping = file->f_mapping;
2704 struct inode *inode = mapping->host;
2705 pgoff_t start, end;
2706 loff_t new_offset;
2707
2708 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2709 return generic_file_llseek_size(file, offset, whence,
2710 MAX_LFS_FILESIZE, i_size_read(inode));
2711 inode_lock(inode);
2712 /* We're holding i_mutex so we can access i_size directly */
2713
2714 if (offset < 0 || offset >= inode->i_size)
2715 offset = -ENXIO;
2716 else {
2717 start = offset >> PAGE_SHIFT;
2718 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2720 new_offset <<= PAGE_SHIFT;
2721 if (new_offset > offset) {
2722 if (new_offset < inode->i_size)
2723 offset = new_offset;
2724 else if (whence == SEEK_DATA)
2725 offset = -ENXIO;
2726 else
2727 offset = inode->i_size;
2728 }
2729 }
2730
2731 if (offset >= 0)
2732 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2733 inode_unlock(inode);
2734 return offset;
2735 }
2736
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2737 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2738 loff_t len)
2739 {
2740 struct inode *inode = file_inode(file);
2741 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2742 struct shmem_inode_info *info = SHMEM_I(inode);
2743 struct shmem_falloc shmem_falloc;
2744 pgoff_t start, index, end;
2745 int error;
2746
2747 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2748 return -EOPNOTSUPP;
2749
2750 inode_lock(inode);
2751
2752 if (mode & FALLOC_FL_PUNCH_HOLE) {
2753 struct address_space *mapping = file->f_mapping;
2754 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2755 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2756 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2757
2758 /* protected by i_mutex */
2759 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2760 error = -EPERM;
2761 goto out;
2762 }
2763
2764 shmem_falloc.waitq = &shmem_falloc_waitq;
2765 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2766 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = &shmem_falloc;
2769 spin_unlock(&inode->i_lock);
2770
2771 if ((u64)unmap_end > (u64)unmap_start)
2772 unmap_mapping_range(mapping, unmap_start,
2773 1 + unmap_end - unmap_start, 0);
2774 shmem_truncate_range(inode, offset, offset + len - 1);
2775 /* No need to unmap again: hole-punching leaves COWed pages */
2776
2777 spin_lock(&inode->i_lock);
2778 inode->i_private = NULL;
2779 wake_up_all(&shmem_falloc_waitq);
2780 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2781 spin_unlock(&inode->i_lock);
2782 error = 0;
2783 goto out;
2784 }
2785
2786 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2787 error = inode_newsize_ok(inode, offset + len);
2788 if (error)
2789 goto out;
2790
2791 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2792 error = -EPERM;
2793 goto out;
2794 }
2795
2796 start = offset >> PAGE_SHIFT;
2797 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2798 /* Try to avoid a swapstorm if len is impossible to satisfy */
2799 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2800 error = -ENOSPC;
2801 goto out;
2802 }
2803
2804 shmem_falloc.waitq = NULL;
2805 shmem_falloc.start = start;
2806 shmem_falloc.next = start;
2807 shmem_falloc.nr_falloced = 0;
2808 shmem_falloc.nr_unswapped = 0;
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = &shmem_falloc;
2811 spin_unlock(&inode->i_lock);
2812
2813 for (index = start; index < end; index++) {
2814 struct page *page;
2815
2816 /*
2817 * Good, the fallocate(2) manpage permits EINTR: we may have
2818 * been interrupted because we are using up too much memory.
2819 */
2820 if (signal_pending(current))
2821 error = -EINTR;
2822 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2823 error = -ENOMEM;
2824 else
2825 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2826 if (error) {
2827 /* Remove the !PageUptodate pages we added */
2828 if (index > start) {
2829 shmem_undo_range(inode,
2830 (loff_t)start << PAGE_SHIFT,
2831 ((loff_t)index << PAGE_SHIFT) - 1, true);
2832 }
2833 goto undone;
2834 }
2835
2836 /*
2837 * Inform shmem_writepage() how far we have reached.
2838 * No need for lock or barrier: we have the page lock.
2839 */
2840 shmem_falloc.next++;
2841 if (!PageUptodate(page))
2842 shmem_falloc.nr_falloced++;
2843
2844 /*
2845 * If !PageUptodate, leave it that way so that freeable pages
2846 * can be recognized if we need to rollback on error later.
2847 * But set_page_dirty so that memory pressure will swap rather
2848 * than free the pages we are allocating (and SGP_CACHE pages
2849 * might still be clean: we now need to mark those dirty too).
2850 */
2851 set_page_dirty(page);
2852 unlock_page(page);
2853 put_page(page);
2854 cond_resched();
2855 }
2856
2857 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2858 i_size_write(inode, offset + len);
2859 inode->i_ctime = current_time(inode);
2860 undone:
2861 spin_lock(&inode->i_lock);
2862 inode->i_private = NULL;
2863 spin_unlock(&inode->i_lock);
2864 out:
2865 inode_unlock(inode);
2866 return error;
2867 }
2868
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2869 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2870 {
2871 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2872
2873 buf->f_type = TMPFS_MAGIC;
2874 buf->f_bsize = PAGE_SIZE;
2875 buf->f_namelen = NAME_MAX;
2876 if (sbinfo->max_blocks) {
2877 buf->f_blocks = sbinfo->max_blocks;
2878 buf->f_bavail =
2879 buf->f_bfree = sbinfo->max_blocks -
2880 percpu_counter_sum(&sbinfo->used_blocks);
2881 }
2882 if (sbinfo->max_inodes) {
2883 buf->f_files = sbinfo->max_inodes;
2884 buf->f_ffree = sbinfo->free_inodes;
2885 }
2886 /* else leave those fields 0 like simple_statfs */
2887 return 0;
2888 }
2889
2890 /*
2891 * File creation. Allocate an inode, and we're done..
2892 */
2893 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2894 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2895 {
2896 struct inode *inode;
2897 int error = -ENOSPC;
2898
2899 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2900 if (inode) {
2901 error = simple_acl_create(dir, inode);
2902 if (error)
2903 goto out_iput;
2904 error = security_inode_init_security(inode, dir,
2905 &dentry->d_name,
2906 shmem_initxattrs, NULL);
2907 if (error && error != -EOPNOTSUPP)
2908 goto out_iput;
2909
2910 error = 0;
2911 dir->i_size += BOGO_DIRENT_SIZE;
2912 dir->i_ctime = dir->i_mtime = current_time(dir);
2913 d_instantiate(dentry, inode);
2914 dget(dentry); /* Extra count - pin the dentry in core */
2915 }
2916 return error;
2917 out_iput:
2918 iput(inode);
2919 return error;
2920 }
2921
2922 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2923 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2924 {
2925 struct inode *inode;
2926 int error = -ENOSPC;
2927
2928 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2929 if (inode) {
2930 error = security_inode_init_security(inode, dir,
2931 NULL,
2932 shmem_initxattrs, NULL);
2933 if (error && error != -EOPNOTSUPP)
2934 goto out_iput;
2935 error = simple_acl_create(dir, inode);
2936 if (error)
2937 goto out_iput;
2938 d_tmpfile(dentry, inode);
2939 }
2940 return error;
2941 out_iput:
2942 iput(inode);
2943 return error;
2944 }
2945
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2946 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2947 {
2948 int error;
2949
2950 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2951 return error;
2952 inc_nlink(dir);
2953 return 0;
2954 }
2955
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2956 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2957 bool excl)
2958 {
2959 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2960 }
2961
2962 /*
2963 * Link a file..
2964 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2965 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2966 {
2967 struct inode *inode = d_inode(old_dentry);
2968 int ret = 0;
2969
2970 /*
2971 * No ordinary (disk based) filesystem counts links as inodes;
2972 * but each new link needs a new dentry, pinning lowmem, and
2973 * tmpfs dentries cannot be pruned until they are unlinked.
2974 * But if an O_TMPFILE file is linked into the tmpfs, the
2975 * first link must skip that, to get the accounting right.
2976 */
2977 if (inode->i_nlink) {
2978 ret = shmem_reserve_inode(inode->i_sb, NULL);
2979 if (ret)
2980 goto out;
2981 }
2982
2983 dir->i_size += BOGO_DIRENT_SIZE;
2984 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2985 inc_nlink(inode);
2986 ihold(inode); /* New dentry reference */
2987 dget(dentry); /* Extra pinning count for the created dentry */
2988 d_instantiate(dentry, inode);
2989 out:
2990 return ret;
2991 }
2992
shmem_unlink(struct inode * dir,struct dentry * dentry)2993 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2994 {
2995 struct inode *inode = d_inode(dentry);
2996
2997 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2998 shmem_free_inode(inode->i_sb);
2999
3000 dir->i_size -= BOGO_DIRENT_SIZE;
3001 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3002 drop_nlink(inode);
3003 dput(dentry); /* Undo the count from "create" - this does all the work */
3004 return 0;
3005 }
3006
shmem_rmdir(struct inode * dir,struct dentry * dentry)3007 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3008 {
3009 if (!simple_empty(dentry))
3010 return -ENOTEMPTY;
3011
3012 drop_nlink(d_inode(dentry));
3013 drop_nlink(dir);
3014 return shmem_unlink(dir, dentry);
3015 }
3016
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3017 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3018 {
3019 bool old_is_dir = d_is_dir(old_dentry);
3020 bool new_is_dir = d_is_dir(new_dentry);
3021
3022 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3023 if (old_is_dir) {
3024 drop_nlink(old_dir);
3025 inc_nlink(new_dir);
3026 } else {
3027 drop_nlink(new_dir);
3028 inc_nlink(old_dir);
3029 }
3030 }
3031 old_dir->i_ctime = old_dir->i_mtime =
3032 new_dir->i_ctime = new_dir->i_mtime =
3033 d_inode(old_dentry)->i_ctime =
3034 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3035
3036 return 0;
3037 }
3038
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3039 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3040 {
3041 struct dentry *whiteout;
3042 int error;
3043
3044 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3045 if (!whiteout)
3046 return -ENOMEM;
3047
3048 error = shmem_mknod(old_dir, whiteout,
3049 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3050 dput(whiteout);
3051 if (error)
3052 return error;
3053
3054 /*
3055 * Cheat and hash the whiteout while the old dentry is still in
3056 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3057 *
3058 * d_lookup() will consistently find one of them at this point,
3059 * not sure which one, but that isn't even important.
3060 */
3061 d_rehash(whiteout);
3062 return 0;
3063 }
3064
3065 /*
3066 * The VFS layer already does all the dentry stuff for rename,
3067 * we just have to decrement the usage count for the target if
3068 * it exists so that the VFS layer correctly free's it when it
3069 * gets overwritten.
3070 */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3071 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3072 {
3073 struct inode *inode = d_inode(old_dentry);
3074 int they_are_dirs = S_ISDIR(inode->i_mode);
3075
3076 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3077 return -EINVAL;
3078
3079 if (flags & RENAME_EXCHANGE)
3080 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3081
3082 if (!simple_empty(new_dentry))
3083 return -ENOTEMPTY;
3084
3085 if (flags & RENAME_WHITEOUT) {
3086 int error;
3087
3088 error = shmem_whiteout(old_dir, old_dentry);
3089 if (error)
3090 return error;
3091 }
3092
3093 if (d_really_is_positive(new_dentry)) {
3094 (void) shmem_unlink(new_dir, new_dentry);
3095 if (they_are_dirs) {
3096 drop_nlink(d_inode(new_dentry));
3097 drop_nlink(old_dir);
3098 }
3099 } else if (they_are_dirs) {
3100 drop_nlink(old_dir);
3101 inc_nlink(new_dir);
3102 }
3103
3104 old_dir->i_size -= BOGO_DIRENT_SIZE;
3105 new_dir->i_size += BOGO_DIRENT_SIZE;
3106 old_dir->i_ctime = old_dir->i_mtime =
3107 new_dir->i_ctime = new_dir->i_mtime =
3108 inode->i_ctime = current_time(old_dir);
3109 return 0;
3110 }
3111
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3112 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3113 {
3114 int error;
3115 int len;
3116 struct inode *inode;
3117 struct page *page;
3118
3119 len = strlen(symname) + 1;
3120 if (len > PAGE_SIZE)
3121 return -ENAMETOOLONG;
3122
3123 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3124 VM_NORESERVE);
3125 if (!inode)
3126 return -ENOSPC;
3127
3128 error = security_inode_init_security(inode, dir, &dentry->d_name,
3129 shmem_initxattrs, NULL);
3130 if (error && error != -EOPNOTSUPP) {
3131 iput(inode);
3132 return error;
3133 }
3134
3135 inode->i_size = len-1;
3136 if (len <= SHORT_SYMLINK_LEN) {
3137 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3138 if (!inode->i_link) {
3139 iput(inode);
3140 return -ENOMEM;
3141 }
3142 inode->i_op = &shmem_short_symlink_operations;
3143 } else {
3144 inode_nohighmem(inode);
3145 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3146 if (error) {
3147 iput(inode);
3148 return error;
3149 }
3150 inode->i_mapping->a_ops = &shmem_aops;
3151 inode->i_op = &shmem_symlink_inode_operations;
3152 memcpy(page_address(page), symname, len);
3153 SetPageUptodate(page);
3154 set_page_dirty(page);
3155 unlock_page(page);
3156 put_page(page);
3157 }
3158 dir->i_size += BOGO_DIRENT_SIZE;
3159 dir->i_ctime = dir->i_mtime = current_time(dir);
3160 d_instantiate(dentry, inode);
3161 dget(dentry);
3162 return 0;
3163 }
3164
shmem_put_link(void * arg)3165 static void shmem_put_link(void *arg)
3166 {
3167 mark_page_accessed(arg);
3168 put_page(arg);
3169 }
3170
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3171 static const char *shmem_get_link(struct dentry *dentry,
3172 struct inode *inode,
3173 struct delayed_call *done)
3174 {
3175 struct page *page = NULL;
3176 int error;
3177 if (!dentry) {
3178 page = find_get_page(inode->i_mapping, 0);
3179 if (!page)
3180 return ERR_PTR(-ECHILD);
3181 if (!PageUptodate(page)) {
3182 put_page(page);
3183 return ERR_PTR(-ECHILD);
3184 }
3185 } else {
3186 error = shmem_getpage(inode, 0, &page, SGP_READ);
3187 if (error)
3188 return ERR_PTR(error);
3189 unlock_page(page);
3190 }
3191 set_delayed_call(done, shmem_put_link, page);
3192 return page_address(page);
3193 }
3194
3195 #ifdef CONFIG_TMPFS_XATTR
3196 /*
3197 * Superblocks without xattr inode operations may get some security.* xattr
3198 * support from the LSM "for free". As soon as we have any other xattrs
3199 * like ACLs, we also need to implement the security.* handlers at
3200 * filesystem level, though.
3201 */
3202
3203 /*
3204 * Callback for security_inode_init_security() for acquiring xattrs.
3205 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3206 static int shmem_initxattrs(struct inode *inode,
3207 const struct xattr *xattr_array,
3208 void *fs_info)
3209 {
3210 struct shmem_inode_info *info = SHMEM_I(inode);
3211 const struct xattr *xattr;
3212 struct simple_xattr *new_xattr;
3213 size_t len;
3214
3215 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3216 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3217 if (!new_xattr)
3218 return -ENOMEM;
3219
3220 len = strlen(xattr->name) + 1;
3221 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3222 GFP_KERNEL);
3223 if (!new_xattr->name) {
3224 kvfree(new_xattr);
3225 return -ENOMEM;
3226 }
3227
3228 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3229 XATTR_SECURITY_PREFIX_LEN);
3230 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3231 xattr->name, len);
3232
3233 simple_xattr_list_add(&info->xattrs, new_xattr);
3234 }
3235
3236 return 0;
3237 }
3238
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size,int flags)3239 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3240 struct dentry *unused, struct inode *inode,
3241 const char *name, void *buffer, size_t size,
3242 int flags)
3243 {
3244 struct shmem_inode_info *info = SHMEM_I(inode);
3245
3246 name = xattr_full_name(handler, name);
3247 return simple_xattr_get(&info->xattrs, name, buffer, size);
3248 }
3249
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3250 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3251 struct dentry *unused, struct inode *inode,
3252 const char *name, const void *value,
3253 size_t size, int flags)
3254 {
3255 struct shmem_inode_info *info = SHMEM_I(inode);
3256
3257 name = xattr_full_name(handler, name);
3258 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3259 }
3260
3261 static const struct xattr_handler shmem_security_xattr_handler = {
3262 .prefix = XATTR_SECURITY_PREFIX,
3263 .get = shmem_xattr_handler_get,
3264 .set = shmem_xattr_handler_set,
3265 };
3266
3267 static const struct xattr_handler shmem_trusted_xattr_handler = {
3268 .prefix = XATTR_TRUSTED_PREFIX,
3269 .get = shmem_xattr_handler_get,
3270 .set = shmem_xattr_handler_set,
3271 };
3272
3273 static const struct xattr_handler *shmem_xattr_handlers[] = {
3274 #ifdef CONFIG_TMPFS_POSIX_ACL
3275 &posix_acl_access_xattr_handler,
3276 &posix_acl_default_xattr_handler,
3277 #endif
3278 &shmem_security_xattr_handler,
3279 &shmem_trusted_xattr_handler,
3280 NULL
3281 };
3282
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3283 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3284 {
3285 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3286 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3287 }
3288 #endif /* CONFIG_TMPFS_XATTR */
3289
3290 static const struct inode_operations shmem_short_symlink_operations = {
3291 .get_link = simple_get_link,
3292 #ifdef CONFIG_TMPFS_XATTR
3293 .listxattr = shmem_listxattr,
3294 #endif
3295 };
3296
3297 static const struct inode_operations shmem_symlink_inode_operations = {
3298 .get_link = shmem_get_link,
3299 #ifdef CONFIG_TMPFS_XATTR
3300 .listxattr = shmem_listxattr,
3301 #endif
3302 };
3303
shmem_get_parent(struct dentry * child)3304 static struct dentry *shmem_get_parent(struct dentry *child)
3305 {
3306 return ERR_PTR(-ESTALE);
3307 }
3308
shmem_match(struct inode * ino,void * vfh)3309 static int shmem_match(struct inode *ino, void *vfh)
3310 {
3311 __u32 *fh = vfh;
3312 __u64 inum = fh[2];
3313 inum = (inum << 32) | fh[1];
3314 return ino->i_ino == inum && fh[0] == ino->i_generation;
3315 }
3316
3317 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3318 static struct dentry *shmem_find_alias(struct inode *inode)
3319 {
3320 struct dentry *alias = d_find_alias(inode);
3321
3322 return alias ?: d_find_any_alias(inode);
3323 }
3324
3325
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3326 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3327 struct fid *fid, int fh_len, int fh_type)
3328 {
3329 struct inode *inode;
3330 struct dentry *dentry = NULL;
3331 u64 inum;
3332
3333 if (fh_len < 3)
3334 return NULL;
3335
3336 inum = fid->raw[2];
3337 inum = (inum << 32) | fid->raw[1];
3338
3339 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3340 shmem_match, fid->raw);
3341 if (inode) {
3342 dentry = shmem_find_alias(inode);
3343 iput(inode);
3344 }
3345
3346 return dentry;
3347 }
3348
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3349 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3350 struct inode *parent)
3351 {
3352 if (*len < 3) {
3353 *len = 3;
3354 return FILEID_INVALID;
3355 }
3356
3357 if (inode_unhashed(inode)) {
3358 /* Unfortunately insert_inode_hash is not idempotent,
3359 * so as we hash inodes here rather than at creation
3360 * time, we need a lock to ensure we only try
3361 * to do it once
3362 */
3363 static DEFINE_SPINLOCK(lock);
3364 spin_lock(&lock);
3365 if (inode_unhashed(inode))
3366 __insert_inode_hash(inode,
3367 inode->i_ino + inode->i_generation);
3368 spin_unlock(&lock);
3369 }
3370
3371 fh[0] = inode->i_generation;
3372 fh[1] = inode->i_ino;
3373 fh[2] = ((__u64)inode->i_ino) >> 32;
3374
3375 *len = 3;
3376 return 1;
3377 }
3378
3379 static const struct export_operations shmem_export_ops = {
3380 .get_parent = shmem_get_parent,
3381 .encode_fh = shmem_encode_fh,
3382 .fh_to_dentry = shmem_fh_to_dentry,
3383 };
3384
3385 enum shmem_param {
3386 Opt_gid,
3387 Opt_huge,
3388 Opt_mode,
3389 Opt_mpol,
3390 Opt_nr_blocks,
3391 Opt_nr_inodes,
3392 Opt_size,
3393 Opt_uid,
3394 Opt_inode32,
3395 Opt_inode64,
3396 };
3397
3398 static const struct constant_table shmem_param_enums_huge[] = {
3399 {"never", SHMEM_HUGE_NEVER },
3400 {"always", SHMEM_HUGE_ALWAYS },
3401 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3402 {"advise", SHMEM_HUGE_ADVISE },
3403 {}
3404 };
3405
3406 const struct fs_parameter_spec shmem_fs_parameters[] = {
3407 fsparam_u32 ("gid", Opt_gid),
3408 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3409 fsparam_u32oct("mode", Opt_mode),
3410 fsparam_string("mpol", Opt_mpol),
3411 fsparam_string("nr_blocks", Opt_nr_blocks),
3412 fsparam_string("nr_inodes", Opt_nr_inodes),
3413 fsparam_string("size", Opt_size),
3414 fsparam_u32 ("uid", Opt_uid),
3415 fsparam_flag ("inode32", Opt_inode32),
3416 fsparam_flag ("inode64", Opt_inode64),
3417 {}
3418 };
3419
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3420 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3421 {
3422 struct shmem_options *ctx = fc->fs_private;
3423 struct fs_parse_result result;
3424 unsigned long long size;
3425 char *rest;
3426 int opt;
3427 kuid_t kuid;
3428 kgid_t kgid;
3429
3430 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3431 if (opt < 0)
3432 return opt;
3433
3434 switch (opt) {
3435 case Opt_size:
3436 size = memparse(param->string, &rest);
3437 if (*rest == '%') {
3438 size <<= PAGE_SHIFT;
3439 size *= totalram_pages();
3440 do_div(size, 100);
3441 rest++;
3442 }
3443 if (*rest)
3444 goto bad_value;
3445 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3446 ctx->seen |= SHMEM_SEEN_BLOCKS;
3447 break;
3448 case Opt_nr_blocks:
3449 ctx->blocks = memparse(param->string, &rest);
3450 if (*rest)
3451 goto bad_value;
3452 ctx->seen |= SHMEM_SEEN_BLOCKS;
3453 break;
3454 case Opt_nr_inodes:
3455 ctx->inodes = memparse(param->string, &rest);
3456 if (*rest)
3457 goto bad_value;
3458 ctx->seen |= SHMEM_SEEN_INODES;
3459 break;
3460 case Opt_mode:
3461 ctx->mode = result.uint_32 & 07777;
3462 break;
3463 case Opt_uid:
3464 kuid = make_kuid(current_user_ns(), result.uint_32);
3465 if (!uid_valid(kuid))
3466 goto bad_value;
3467
3468 /*
3469 * The requested uid must be representable in the
3470 * filesystem's idmapping.
3471 */
3472 if (!kuid_has_mapping(fc->user_ns, kuid))
3473 goto bad_value;
3474
3475 ctx->uid = kuid;
3476 break;
3477 case Opt_gid:
3478 kgid = make_kgid(current_user_ns(), result.uint_32);
3479 if (!gid_valid(kgid))
3480 goto bad_value;
3481
3482 /*
3483 * The requested gid must be representable in the
3484 * filesystem's idmapping.
3485 */
3486 if (!kgid_has_mapping(fc->user_ns, kgid))
3487 goto bad_value;
3488
3489 ctx->gid = kgid;
3490 break;
3491 case Opt_huge:
3492 ctx->huge = result.uint_32;
3493 if (ctx->huge != SHMEM_HUGE_NEVER &&
3494 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3495 has_transparent_hugepage()))
3496 goto unsupported_parameter;
3497 ctx->seen |= SHMEM_SEEN_HUGE;
3498 break;
3499 case Opt_mpol:
3500 if (IS_ENABLED(CONFIG_NUMA)) {
3501 mpol_put(ctx->mpol);
3502 ctx->mpol = NULL;
3503 if (mpol_parse_str(param->string, &ctx->mpol))
3504 goto bad_value;
3505 break;
3506 }
3507 goto unsupported_parameter;
3508 case Opt_inode32:
3509 ctx->full_inums = false;
3510 ctx->seen |= SHMEM_SEEN_INUMS;
3511 break;
3512 case Opt_inode64:
3513 if (sizeof(ino_t) < 8) {
3514 return invalfc(fc,
3515 "Cannot use inode64 with <64bit inums in kernel\n");
3516 }
3517 ctx->full_inums = true;
3518 ctx->seen |= SHMEM_SEEN_INUMS;
3519 break;
3520 }
3521 return 0;
3522
3523 unsupported_parameter:
3524 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3525 bad_value:
3526 return invalfc(fc, "Bad value for '%s'", param->key);
3527 }
3528
shmem_parse_options(struct fs_context * fc,void * data)3529 static int shmem_parse_options(struct fs_context *fc, void *data)
3530 {
3531 char *options = data;
3532
3533 if (options) {
3534 int err = security_sb_eat_lsm_opts(options, &fc->security);
3535 if (err)
3536 return err;
3537 }
3538
3539 while (options != NULL) {
3540 char *this_char = options;
3541 for (;;) {
3542 /*
3543 * NUL-terminate this option: unfortunately,
3544 * mount options form a comma-separated list,
3545 * but mpol's nodelist may also contain commas.
3546 */
3547 options = strchr(options, ',');
3548 if (options == NULL)
3549 break;
3550 options++;
3551 if (!isdigit(*options)) {
3552 options[-1] = '\0';
3553 break;
3554 }
3555 }
3556 if (*this_char) {
3557 char *value = strchr(this_char,'=');
3558 size_t len = 0;
3559 int err;
3560
3561 if (value) {
3562 *value++ = '\0';
3563 len = strlen(value);
3564 }
3565 err = vfs_parse_fs_string(fc, this_char, value, len);
3566 if (err < 0)
3567 return err;
3568 }
3569 }
3570 return 0;
3571 }
3572
3573 /*
3574 * Reconfigure a shmem filesystem.
3575 *
3576 * Note that we disallow change from limited->unlimited blocks/inodes while any
3577 * are in use; but we must separately disallow unlimited->limited, because in
3578 * that case we have no record of how much is already in use.
3579 */
shmem_reconfigure(struct fs_context * fc)3580 static int shmem_reconfigure(struct fs_context *fc)
3581 {
3582 struct shmem_options *ctx = fc->fs_private;
3583 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3584 unsigned long inodes;
3585 const char *err;
3586
3587 spin_lock(&sbinfo->stat_lock);
3588 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3589 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3590 if (!sbinfo->max_blocks) {
3591 err = "Cannot retroactively limit size";
3592 goto out;
3593 }
3594 if (percpu_counter_compare(&sbinfo->used_blocks,
3595 ctx->blocks) > 0) {
3596 err = "Too small a size for current use";
3597 goto out;
3598 }
3599 }
3600 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3601 if (!sbinfo->max_inodes) {
3602 err = "Cannot retroactively limit inodes";
3603 goto out;
3604 }
3605 if (ctx->inodes < inodes) {
3606 err = "Too few inodes for current use";
3607 goto out;
3608 }
3609 }
3610
3611 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3612 sbinfo->next_ino > UINT_MAX) {
3613 err = "Current inum too high to switch to 32-bit inums";
3614 goto out;
3615 }
3616
3617 if (ctx->seen & SHMEM_SEEN_HUGE)
3618 sbinfo->huge = ctx->huge;
3619 if (ctx->seen & SHMEM_SEEN_INUMS)
3620 sbinfo->full_inums = ctx->full_inums;
3621 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3622 sbinfo->max_blocks = ctx->blocks;
3623 if (ctx->seen & SHMEM_SEEN_INODES) {
3624 sbinfo->max_inodes = ctx->inodes;
3625 sbinfo->free_inodes = ctx->inodes - inodes;
3626 }
3627
3628 /*
3629 * Preserve previous mempolicy unless mpol remount option was specified.
3630 */
3631 if (ctx->mpol) {
3632 mpol_put(sbinfo->mpol);
3633 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3634 ctx->mpol = NULL;
3635 }
3636 spin_unlock(&sbinfo->stat_lock);
3637 return 0;
3638 out:
3639 spin_unlock(&sbinfo->stat_lock);
3640 return invalfc(fc, "%s", err);
3641 }
3642
shmem_show_options(struct seq_file * seq,struct dentry * root)3643 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3644 {
3645 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3646
3647 if (sbinfo->max_blocks != shmem_default_max_blocks())
3648 seq_printf(seq, ",size=%luk",
3649 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3650 if (sbinfo->max_inodes != shmem_default_max_inodes())
3651 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3652 if (sbinfo->mode != (0777 | S_ISVTX))
3653 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3654 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3655 seq_printf(seq, ",uid=%u",
3656 from_kuid_munged(&init_user_ns, sbinfo->uid));
3657 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3658 seq_printf(seq, ",gid=%u",
3659 from_kgid_munged(&init_user_ns, sbinfo->gid));
3660
3661 /*
3662 * Showing inode{64,32} might be useful even if it's the system default,
3663 * since then people don't have to resort to checking both here and
3664 * /proc/config.gz to confirm 64-bit inums were successfully applied
3665 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3666 *
3667 * We hide it when inode64 isn't the default and we are using 32-bit
3668 * inodes, since that probably just means the feature isn't even under
3669 * consideration.
3670 *
3671 * As such:
3672 *
3673 * +-----------------+-----------------+
3674 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3675 * +------------------+-----------------+-----------------+
3676 * | full_inums=true | show | show |
3677 * | full_inums=false | show | hide |
3678 * +------------------+-----------------+-----------------+
3679 *
3680 */
3681 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3682 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3684 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3685 if (sbinfo->huge)
3686 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3687 #endif
3688 shmem_show_mpol(seq, sbinfo->mpol);
3689 return 0;
3690 }
3691
3692 #endif /* CONFIG_TMPFS */
3693
shmem_put_super(struct super_block * sb)3694 static void shmem_put_super(struct super_block *sb)
3695 {
3696 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3697
3698 free_percpu(sbinfo->ino_batch);
3699 percpu_counter_destroy(&sbinfo->used_blocks);
3700 mpol_put(sbinfo->mpol);
3701 kfree(sbinfo);
3702 sb->s_fs_info = NULL;
3703 }
3704
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3705 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3706 {
3707 struct shmem_options *ctx = fc->fs_private;
3708 struct inode *inode;
3709 struct shmem_sb_info *sbinfo;
3710 int err = -ENOMEM;
3711
3712 /* Round up to L1_CACHE_BYTES to resist false sharing */
3713 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3714 L1_CACHE_BYTES), GFP_KERNEL);
3715 if (!sbinfo)
3716 return -ENOMEM;
3717
3718 sb->s_fs_info = sbinfo;
3719
3720 #ifdef CONFIG_TMPFS
3721 /*
3722 * Per default we only allow half of the physical ram per
3723 * tmpfs instance, limiting inodes to one per page of lowmem;
3724 * but the internal instance is left unlimited.
3725 */
3726 if (!(sb->s_flags & SB_KERNMOUNT)) {
3727 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3728 ctx->blocks = shmem_default_max_blocks();
3729 if (!(ctx->seen & SHMEM_SEEN_INODES))
3730 ctx->inodes = shmem_default_max_inodes();
3731 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3732 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3733 } else {
3734 sb->s_flags |= SB_NOUSER;
3735 }
3736 sb->s_export_op = &shmem_export_ops;
3737 sb->s_flags |= SB_NOSEC;
3738 #else
3739 sb->s_flags |= SB_NOUSER;
3740 #endif
3741 sbinfo->max_blocks = ctx->blocks;
3742 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3743 if (sb->s_flags & SB_KERNMOUNT) {
3744 sbinfo->ino_batch = alloc_percpu(ino_t);
3745 if (!sbinfo->ino_batch)
3746 goto failed;
3747 }
3748 sbinfo->uid = ctx->uid;
3749 sbinfo->gid = ctx->gid;
3750 sbinfo->full_inums = ctx->full_inums;
3751 sbinfo->mode = ctx->mode;
3752 sbinfo->huge = ctx->huge;
3753 sbinfo->mpol = ctx->mpol;
3754 ctx->mpol = NULL;
3755
3756 spin_lock_init(&sbinfo->stat_lock);
3757 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3758 goto failed;
3759 spin_lock_init(&sbinfo->shrinklist_lock);
3760 INIT_LIST_HEAD(&sbinfo->shrinklist);
3761
3762 sb->s_maxbytes = MAX_LFS_FILESIZE;
3763 sb->s_blocksize = PAGE_SIZE;
3764 sb->s_blocksize_bits = PAGE_SHIFT;
3765 sb->s_magic = TMPFS_MAGIC;
3766 sb->s_op = &shmem_ops;
3767 sb->s_time_gran = 1;
3768 #ifdef CONFIG_TMPFS_XATTR
3769 sb->s_xattr = shmem_xattr_handlers;
3770 #endif
3771 #ifdef CONFIG_TMPFS_POSIX_ACL
3772 sb->s_flags |= SB_POSIXACL;
3773 #endif
3774 uuid_gen(&sb->s_uuid);
3775
3776 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3777 if (!inode)
3778 goto failed;
3779 inode->i_uid = sbinfo->uid;
3780 inode->i_gid = sbinfo->gid;
3781 sb->s_root = d_make_root(inode);
3782 if (!sb->s_root)
3783 goto failed;
3784 return 0;
3785
3786 failed:
3787 shmem_put_super(sb);
3788 return err;
3789 }
3790
shmem_get_tree(struct fs_context * fc)3791 static int shmem_get_tree(struct fs_context *fc)
3792 {
3793 return get_tree_nodev(fc, shmem_fill_super);
3794 }
3795
shmem_free_fc(struct fs_context * fc)3796 static void shmem_free_fc(struct fs_context *fc)
3797 {
3798 struct shmem_options *ctx = fc->fs_private;
3799
3800 if (ctx) {
3801 mpol_put(ctx->mpol);
3802 kfree(ctx);
3803 }
3804 }
3805
3806 static const struct fs_context_operations shmem_fs_context_ops = {
3807 .free = shmem_free_fc,
3808 .get_tree = shmem_get_tree,
3809 #ifdef CONFIG_TMPFS
3810 .parse_monolithic = shmem_parse_options,
3811 .parse_param = shmem_parse_one,
3812 .reconfigure = shmem_reconfigure,
3813 #endif
3814 };
3815
3816 static struct kmem_cache *shmem_inode_cachep;
3817
shmem_alloc_inode(struct super_block * sb)3818 static struct inode *shmem_alloc_inode(struct super_block *sb)
3819 {
3820 struct shmem_inode_info *info;
3821 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3822 if (!info)
3823 return NULL;
3824 return &info->vfs_inode;
3825 }
3826
shmem_free_in_core_inode(struct inode * inode)3827 static void shmem_free_in_core_inode(struct inode *inode)
3828 {
3829 if (S_ISLNK(inode->i_mode))
3830 kfree(inode->i_link);
3831 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3832 }
3833
shmem_destroy_inode(struct inode * inode)3834 static void shmem_destroy_inode(struct inode *inode)
3835 {
3836 if (S_ISREG(inode->i_mode))
3837 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3838 }
3839
shmem_init_inode(void * foo)3840 static void shmem_init_inode(void *foo)
3841 {
3842 struct shmem_inode_info *info = foo;
3843 inode_init_once(&info->vfs_inode);
3844 }
3845
shmem_init_inodecache(void)3846 static void shmem_init_inodecache(void)
3847 {
3848 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3849 sizeof(struct shmem_inode_info),
3850 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3851 }
3852
shmem_destroy_inodecache(void)3853 static void shmem_destroy_inodecache(void)
3854 {
3855 kmem_cache_destroy(shmem_inode_cachep);
3856 }
3857
3858 static const struct address_space_operations shmem_aops = {
3859 .writepage = shmem_writepage,
3860 .set_page_dirty = __set_page_dirty_no_writeback,
3861 #ifdef CONFIG_TMPFS
3862 .write_begin = shmem_write_begin,
3863 .write_end = shmem_write_end,
3864 #endif
3865 #ifdef CONFIG_MIGRATION
3866 .migratepage = migrate_page,
3867 #endif
3868 .error_remove_page = generic_error_remove_page,
3869 };
3870
3871 static const struct file_operations shmem_file_operations = {
3872 .mmap = shmem_mmap,
3873 .get_unmapped_area = shmem_get_unmapped_area,
3874 #ifdef CONFIG_TMPFS
3875 .llseek = shmem_file_llseek,
3876 .read_iter = shmem_file_read_iter,
3877 .write_iter = generic_file_write_iter,
3878 .fsync = noop_fsync,
3879 .splice_read = generic_file_splice_read,
3880 .splice_write = iter_file_splice_write,
3881 .fallocate = shmem_fallocate,
3882 #endif
3883 };
3884
3885 static const struct inode_operations shmem_inode_operations = {
3886 .getattr = shmem_getattr,
3887 .setattr = shmem_setattr,
3888 #ifdef CONFIG_TMPFS_XATTR
3889 .listxattr = shmem_listxattr,
3890 .set_acl = simple_set_acl,
3891 #endif
3892 };
3893
3894 static const struct inode_operations shmem_dir_inode_operations = {
3895 #ifdef CONFIG_TMPFS
3896 .create = shmem_create,
3897 .lookup = simple_lookup,
3898 .link = shmem_link,
3899 .unlink = shmem_unlink,
3900 .symlink = shmem_symlink,
3901 .mkdir = shmem_mkdir,
3902 .rmdir = shmem_rmdir,
3903 .mknod = shmem_mknod,
3904 .rename = shmem_rename2,
3905 .tmpfile = shmem_tmpfile,
3906 #endif
3907 #ifdef CONFIG_TMPFS_XATTR
3908 .listxattr = shmem_listxattr,
3909 #endif
3910 #ifdef CONFIG_TMPFS_POSIX_ACL
3911 .setattr = shmem_setattr,
3912 .set_acl = simple_set_acl,
3913 #endif
3914 };
3915
3916 static const struct inode_operations shmem_special_inode_operations = {
3917 #ifdef CONFIG_TMPFS_XATTR
3918 .listxattr = shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 .setattr = shmem_setattr,
3922 .set_acl = simple_set_acl,
3923 #endif
3924 };
3925
3926 static const struct super_operations shmem_ops = {
3927 .alloc_inode = shmem_alloc_inode,
3928 .free_inode = shmem_free_in_core_inode,
3929 .destroy_inode = shmem_destroy_inode,
3930 #ifdef CONFIG_TMPFS
3931 .statfs = shmem_statfs,
3932 .show_options = shmem_show_options,
3933 #endif
3934 .evict_inode = shmem_evict_inode,
3935 .drop_inode = generic_delete_inode,
3936 .put_super = shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938 .nr_cached_objects = shmem_unused_huge_count,
3939 .free_cached_objects = shmem_unused_huge_scan,
3940 #endif
3941 };
3942
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944 .fault = shmem_fault,
3945 .map_pages = filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947 .set_policy = shmem_set_policy,
3948 .get_policy = shmem_get_policy,
3949 #endif
3950 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
3951 .allow_speculation = filemap_allow_speculation,
3952 #endif
3953 };
3954
shmem_init_fs_context(struct fs_context * fc)3955 int shmem_init_fs_context(struct fs_context *fc)
3956 {
3957 struct shmem_options *ctx;
3958
3959 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3960 if (!ctx)
3961 return -ENOMEM;
3962
3963 ctx->mode = 0777 | S_ISVTX;
3964 ctx->uid = current_fsuid();
3965 ctx->gid = current_fsgid();
3966
3967 fc->fs_private = ctx;
3968 fc->ops = &shmem_fs_context_ops;
3969 return 0;
3970 }
3971
3972 static struct file_system_type shmem_fs_type = {
3973 .owner = THIS_MODULE,
3974 .name = "tmpfs",
3975 .init_fs_context = shmem_init_fs_context,
3976 #ifdef CONFIG_TMPFS
3977 .parameters = shmem_fs_parameters,
3978 #endif
3979 .kill_sb = kill_litter_super,
3980 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3981 };
3982
shmem_init(void)3983 int __init shmem_init(void)
3984 {
3985 int error;
3986
3987 shmem_init_inodecache();
3988
3989 error = register_filesystem(&shmem_fs_type);
3990 if (error) {
3991 pr_err("Could not register tmpfs\n");
3992 goto out2;
3993 }
3994
3995 shm_mnt = kern_mount(&shmem_fs_type);
3996 if (IS_ERR(shm_mnt)) {
3997 error = PTR_ERR(shm_mnt);
3998 pr_err("Could not kern_mount tmpfs\n");
3999 goto out1;
4000 }
4001
4002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4003 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4004 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4005 else
4006 shmem_huge = 0; /* just in case it was patched */
4007 #endif
4008 return 0;
4009
4010 out1:
4011 unregister_filesystem(&shmem_fs_type);
4012 out2:
4013 shmem_destroy_inodecache();
4014 shm_mnt = ERR_PTR(error);
4015 return error;
4016 }
4017
4018 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4019 static ssize_t shmem_enabled_show(struct kobject *kobj,
4020 struct kobj_attribute *attr, char *buf)
4021 {
4022 static const int values[] = {
4023 SHMEM_HUGE_ALWAYS,
4024 SHMEM_HUGE_WITHIN_SIZE,
4025 SHMEM_HUGE_ADVISE,
4026 SHMEM_HUGE_NEVER,
4027 SHMEM_HUGE_DENY,
4028 SHMEM_HUGE_FORCE,
4029 };
4030 int i, count;
4031
4032 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4033 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4034
4035 count += sprintf(buf + count, fmt,
4036 shmem_format_huge(values[i]));
4037 }
4038 buf[count - 1] = '\n';
4039 return count;
4040 }
4041
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4042 static ssize_t shmem_enabled_store(struct kobject *kobj,
4043 struct kobj_attribute *attr, const char *buf, size_t count)
4044 {
4045 char tmp[16];
4046 int huge;
4047
4048 if (count + 1 > sizeof(tmp))
4049 return -EINVAL;
4050 memcpy(tmp, buf, count);
4051 tmp[count] = '\0';
4052 if (count && tmp[count - 1] == '\n')
4053 tmp[count - 1] = '\0';
4054
4055 huge = shmem_parse_huge(tmp);
4056 if (huge == -EINVAL)
4057 return -EINVAL;
4058 if (!has_transparent_hugepage() &&
4059 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4060 return -EINVAL;
4061
4062 shmem_huge = huge;
4063 if (shmem_huge > SHMEM_HUGE_DENY)
4064 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4065 return count;
4066 }
4067
4068 struct kobj_attribute shmem_enabled_attr =
4069 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4071
4072 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_huge_enabled(struct vm_area_struct * vma)4073 bool shmem_huge_enabled(struct vm_area_struct *vma)
4074 {
4075 struct inode *inode = file_inode(vma->vm_file);
4076 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4077 loff_t i_size;
4078 pgoff_t off;
4079
4080 if (!transhuge_vma_enabled(vma, vma->vm_flags))
4081 return false;
4082 if (shmem_huge == SHMEM_HUGE_FORCE)
4083 return true;
4084 if (shmem_huge == SHMEM_HUGE_DENY)
4085 return false;
4086 switch (sbinfo->huge) {
4087 case SHMEM_HUGE_NEVER:
4088 return false;
4089 case SHMEM_HUGE_ALWAYS:
4090 return true;
4091 case SHMEM_HUGE_WITHIN_SIZE:
4092 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4093 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4094 if (i_size >= HPAGE_PMD_SIZE &&
4095 i_size >> PAGE_SHIFT >= off)
4096 return true;
4097 fallthrough;
4098 case SHMEM_HUGE_ADVISE:
4099 /* TODO: implement fadvise() hints */
4100 return (vma->vm_flags & VM_HUGEPAGE);
4101 default:
4102 VM_BUG_ON(1);
4103 return false;
4104 }
4105 }
4106 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4107
4108 #else /* !CONFIG_SHMEM */
4109
4110 /*
4111 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4112 *
4113 * This is intended for small system where the benefits of the full
4114 * shmem code (swap-backed and resource-limited) are outweighed by
4115 * their complexity. On systems without swap this code should be
4116 * effectively equivalent, but much lighter weight.
4117 */
4118
4119 static struct file_system_type shmem_fs_type = {
4120 .name = "tmpfs",
4121 .init_fs_context = ramfs_init_fs_context,
4122 .parameters = ramfs_fs_parameters,
4123 .kill_sb = ramfs_kill_sb,
4124 .fs_flags = FS_USERNS_MOUNT,
4125 };
4126
shmem_init(void)4127 int __init shmem_init(void)
4128 {
4129 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4130
4131 shm_mnt = kern_mount(&shmem_fs_type);
4132 BUG_ON(IS_ERR(shm_mnt));
4133
4134 return 0;
4135 }
4136
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4137 int shmem_unuse(unsigned int type, bool frontswap,
4138 unsigned long *fs_pages_to_unuse)
4139 {
4140 return 0;
4141 }
4142
shmem_lock(struct file * file,int lock,struct user_struct * user)4143 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4144 {
4145 return 0;
4146 }
4147
shmem_unlock_mapping(struct address_space * mapping)4148 void shmem_unlock_mapping(struct address_space *mapping)
4149 {
4150 }
4151
4152 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4153 unsigned long shmem_get_unmapped_area(struct file *file,
4154 unsigned long addr, unsigned long len,
4155 unsigned long pgoff, unsigned long flags)
4156 {
4157 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4158 }
4159 #endif
4160
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4161 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4162 {
4163 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4164 }
4165 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4166
4167 #define shmem_vm_ops generic_file_vm_ops
4168 #define shmem_file_operations ramfs_file_operations
4169 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4170 #define shmem_acct_size(flags, size) 0
4171 #define shmem_unacct_size(flags, size) do {} while (0)
4172
4173 #endif /* CONFIG_SHMEM */
4174
4175 /* common code */
4176
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4177 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4178 unsigned long flags, unsigned int i_flags)
4179 {
4180 struct inode *inode;
4181 struct file *res;
4182
4183 if (IS_ERR(mnt))
4184 return ERR_CAST(mnt);
4185
4186 if (size < 0 || size > MAX_LFS_FILESIZE)
4187 return ERR_PTR(-EINVAL);
4188
4189 if (shmem_acct_size(flags, size))
4190 return ERR_PTR(-ENOMEM);
4191
4192 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4193 flags);
4194 if (unlikely(!inode)) {
4195 shmem_unacct_size(flags, size);
4196 return ERR_PTR(-ENOSPC);
4197 }
4198 inode->i_flags |= i_flags;
4199 inode->i_size = size;
4200 clear_nlink(inode); /* It is unlinked */
4201 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4202 if (!IS_ERR(res))
4203 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4204 &shmem_file_operations);
4205 if (IS_ERR(res))
4206 iput(inode);
4207 return res;
4208 }
4209
4210 /**
4211 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4212 * kernel internal. There will be NO LSM permission checks against the
4213 * underlying inode. So users of this interface must do LSM checks at a
4214 * higher layer. The users are the big_key and shm implementations. LSM
4215 * checks are provided at the key or shm level rather than the inode.
4216 * @name: name for dentry (to be seen in /proc/<pid>/maps
4217 * @size: size to be set for the file
4218 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4219 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4220 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4221 {
4222 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4223 }
4224
4225 /**
4226 * shmem_file_setup - get an unlinked file living in tmpfs
4227 * @name: name for dentry (to be seen in /proc/<pid>/maps
4228 * @size: size to be set for the file
4229 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4230 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4231 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4232 {
4233 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4234 }
4235 EXPORT_SYMBOL_GPL(shmem_file_setup);
4236
4237 /**
4238 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4239 * @mnt: the tmpfs mount where the file will be created
4240 * @name: name for dentry (to be seen in /proc/<pid>/maps
4241 * @size: size to be set for the file
4242 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4243 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4244 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4245 loff_t size, unsigned long flags)
4246 {
4247 return __shmem_file_setup(mnt, name, size, flags, 0);
4248 }
4249 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4250
4251 /**
4252 * shmem_zero_setup - setup a shared anonymous mapping
4253 * @vma: the vma to be mmapped is prepared by do_mmap
4254 */
shmem_zero_setup(struct vm_area_struct * vma)4255 int shmem_zero_setup(struct vm_area_struct *vma)
4256 {
4257 struct file *file;
4258 loff_t size = vma->vm_end - vma->vm_start;
4259
4260 /*
4261 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4262 * between XFS directory reading and selinux: since this file is only
4263 * accessible to the user through its mapping, use S_PRIVATE flag to
4264 * bypass file security, in the same way as shmem_kernel_file_setup().
4265 */
4266 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4267 if (IS_ERR(file))
4268 return PTR_ERR(file);
4269
4270 if (vma->vm_file)
4271 fput(vma->vm_file);
4272 vma->vm_file = file;
4273 vma->vm_ops = &shmem_vm_ops;
4274
4275 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4276 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4277 (vma->vm_end & HPAGE_PMD_MASK)) {
4278 khugepaged_enter(vma, vma->vm_flags);
4279 }
4280
4281 return 0;
4282 }
4283
4284 /**
4285 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4286 * @mapping: the page's address_space
4287 * @index: the page index
4288 * @gfp: the page allocator flags to use if allocating
4289 *
4290 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4291 * with any new page allocations done using the specified allocation flags.
4292 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4293 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4294 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4295 *
4296 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4297 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4298 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4299 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4300 pgoff_t index, gfp_t gfp)
4301 {
4302 #ifdef CONFIG_SHMEM
4303 struct inode *inode = mapping->host;
4304 struct page *page;
4305 int error;
4306
4307 BUG_ON(mapping->a_ops != &shmem_aops);
4308 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4309 gfp, NULL, NULL, NULL);
4310 if (error)
4311 page = ERR_PTR(error);
4312 else
4313 unlock_page(page);
4314 return page;
4315 #else
4316 /*
4317 * The tiny !SHMEM case uses ramfs without swap
4318 */
4319 return read_cache_page_gfp(mapping, index, gfp);
4320 #endif
4321 }
4322 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4323
shmem_mark_page_lazyfree(struct page * page,bool tail)4324 void shmem_mark_page_lazyfree(struct page *page, bool tail)
4325 {
4326 mark_page_lazyfree_movetail(page, tail);
4327 }
4328 EXPORT_SYMBOL_GPL(shmem_mark_page_lazyfree);
4329
reclaim_shmem_address_space(struct address_space * mapping)4330 int reclaim_shmem_address_space(struct address_space *mapping)
4331 {
4332 #ifdef CONFIG_SHMEM
4333 pgoff_t start = 0;
4334 struct page *page;
4335 LIST_HEAD(page_list);
4336 XA_STATE(xas, &mapping->i_pages, start);
4337
4338 if (!shmem_mapping(mapping))
4339 return -EINVAL;
4340
4341 lru_add_drain();
4342
4343 rcu_read_lock();
4344 xas_for_each(&xas, page, ULONG_MAX) {
4345 if (xas_retry(&xas, page))
4346 continue;
4347 if (xa_is_value(page))
4348 continue;
4349 if (isolate_lru_page(page))
4350 continue;
4351
4352 list_add(&page->lru, &page_list);
4353
4354 if (need_resched()) {
4355 xas_pause(&xas);
4356 cond_resched_rcu();
4357 }
4358 }
4359 rcu_read_unlock();
4360
4361 return reclaim_pages(&page_list);
4362 #else
4363 return 0;
4364 #endif
4365 }
4366 EXPORT_SYMBOL_GPL(reclaim_shmem_address_space);
4367