1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
__vmalloc(unsigned long size,gfp_t gfp_mask)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157 {
158 return __vmalloc(size, gfp_mask);
159 }
160
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163 {
164 return __vmalloc(size, gfp_mask);
165 }
166
__vmalloc_user_flags(unsigned long size,gfp_t flags)167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183 }
184
vmalloc_user(unsigned long size)185 void *vmalloc_user(unsigned long size)
186 {
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
vmalloc_to_page(const void * addr)191 struct page *vmalloc_to_page(const void *addr)
192 {
193 return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
vmalloc_to_pfn(const void * addr)197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
vread(char * buf,char * addr,unsigned long count)203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211 }
212
vwrite(char * buf,char * addr,unsigned long count)213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 /* Don't allow overflow */
216 if ((unsigned long) addr + count < count)
217 count = -(unsigned long) addr;
218
219 memcpy(addr, buf, count);
220 return count;
221 }
222
223 /*
224 * vmalloc - allocate virtually contiguous memory
225 *
226 * @size: allocation size
227 *
228 * Allocate enough pages to cover @size from the page level
229 * allocator and map them into contiguous kernel virtual space.
230 *
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
233 */
vmalloc(unsigned long size)234 void *vmalloc(unsigned long size)
235 {
236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241 * vzalloc - allocate virtually contiguous memory with zero fill
242 *
243 * @size: allocation size
244 *
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 * The memory allocated is set to zero.
248 *
249 * For tight control over page level allocator and protection flags
250 * use __vmalloc() instead.
251 */
vzalloc(unsigned long size)252 void *vzalloc(unsigned long size)
253 {
254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259 * vmalloc_node - allocate memory on a specific node
260 * @size: allocation size
261 * @node: numa node
262 *
263 * Allocate enough pages to cover @size from the page level
264 * allocator and map them into contiguous kernel virtual space.
265 *
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
268 */
vmalloc_node(unsigned long size,int node)269 void *vmalloc_node(unsigned long size, int node)
270 {
271 return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276 * vzalloc_node - allocate memory on a specific node with zero fill
277 * @size: allocation size
278 * @node: numa node
279 *
280 * Allocate enough pages to cover @size from the page level
281 * allocator and map them into contiguous kernel virtual space.
282 * The memory allocated is set to zero.
283 *
284 * For tight control over page level allocator and protection flags
285 * use __vmalloc() instead.
286 */
vzalloc_node(unsigned long size,int node)287 void *vzalloc_node(unsigned long size, int node)
288 {
289 return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
295 * @size: allocation size
296 *
297 * Allocate enough 32bit PA addressable pages to cover @size from the
298 * page level allocator and map them into contiguous kernel virtual space.
299 */
vmalloc_32(unsigned long size)300 void *vmalloc_32(unsigned long size)
301 {
302 return __vmalloc(size, GFP_KERNEL);
303 }
304 EXPORT_SYMBOL(vmalloc_32);
305
306 /**
307 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308 * @size: allocation size
309 *
310 * The resulting memory area is 32bit addressable and zeroed so it can be
311 * mapped to userspace without leaking data.
312 *
313 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314 * remap_vmalloc_range() are permissible.
315 */
vmalloc_32_user(unsigned long size)316 void *vmalloc_32_user(unsigned long size)
317 {
318 /*
319 * We'll have to sort out the ZONE_DMA bits for 64-bit,
320 * but for now this can simply use vmalloc_user() directly.
321 */
322 return vmalloc_user(size);
323 }
324 EXPORT_SYMBOL(vmalloc_32_user);
325
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327 {
328 BUG();
329 return NULL;
330 }
331 EXPORT_SYMBOL(vmap);
332
vunmap(const void * addr)333 void vunmap(const void *addr)
334 {
335 BUG();
336 }
337 EXPORT_SYMBOL(vunmap);
338
vm_map_ram(struct page ** pages,unsigned int count,int node)339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
340 {
341 BUG();
342 return NULL;
343 }
344 EXPORT_SYMBOL(vm_map_ram);
345
vm_unmap_ram(const void * mem,unsigned int count)346 void vm_unmap_ram(const void *mem, unsigned int count)
347 {
348 BUG();
349 }
350 EXPORT_SYMBOL(vm_unmap_ram);
351
vm_unmap_aliases(void)352 void vm_unmap_aliases(void)
353 {
354 }
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356
free_vm_area(struct vm_struct * area)357 void free_vm_area(struct vm_struct *area)
358 {
359 BUG();
360 }
361 EXPORT_SYMBOL_GPL(free_vm_area);
362
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)363 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
364 struct page *page)
365 {
366 return -EINVAL;
367 }
368 EXPORT_SYMBOL(vm_insert_page);
369
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)370 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
371 unsigned long num)
372 {
373 return -EINVAL;
374 }
375 EXPORT_SYMBOL(vm_map_pages);
376
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)377 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
378 unsigned long num)
379 {
380 return -EINVAL;
381 }
382 EXPORT_SYMBOL(vm_map_pages_zero);
383
384 /*
385 * sys_brk() for the most part doesn't need the global kernel
386 * lock, except when an application is doing something nasty
387 * like trying to un-brk an area that has already been mapped
388 * to a regular file. in this case, the unmapping will need
389 * to invoke file system routines that need the global lock.
390 */
SYSCALL_DEFINE1(brk,unsigned long,brk)391 SYSCALL_DEFINE1(brk, unsigned long, brk)
392 {
393 struct mm_struct *mm = current->mm;
394
395 if (brk < mm->start_brk || brk > mm->context.end_brk)
396 return mm->brk;
397
398 if (mm->brk == brk)
399 return mm->brk;
400
401 /*
402 * Always allow shrinking brk
403 */
404 if (brk <= mm->brk) {
405 mm->brk = brk;
406 return brk;
407 }
408
409 /*
410 * Ok, looks good - let it rip.
411 */
412 flush_icache_user_range(mm->brk, brk);
413 return mm->brk = brk;
414 }
415
416 /*
417 * initialise the percpu counter for VM and region record slabs
418 */
mmap_init(void)419 void __init mmap_init(void)
420 {
421 int ret;
422
423 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
424 VM_BUG_ON(ret);
425 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
426 }
427
428 /*
429 * validate the region tree
430 * - the caller must hold the region lock
431 */
432 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)433 static noinline void validate_nommu_regions(void)
434 {
435 struct vm_region *region, *last;
436 struct rb_node *p, *lastp;
437
438 lastp = rb_first(&nommu_region_tree);
439 if (!lastp)
440 return;
441
442 last = rb_entry(lastp, struct vm_region, vm_rb);
443 BUG_ON(last->vm_end <= last->vm_start);
444 BUG_ON(last->vm_top < last->vm_end);
445
446 while ((p = rb_next(lastp))) {
447 region = rb_entry(p, struct vm_region, vm_rb);
448 last = rb_entry(lastp, struct vm_region, vm_rb);
449
450 BUG_ON(region->vm_end <= region->vm_start);
451 BUG_ON(region->vm_top < region->vm_end);
452 BUG_ON(region->vm_start < last->vm_top);
453
454 lastp = p;
455 }
456 }
457 #else
validate_nommu_regions(void)458 static void validate_nommu_regions(void)
459 {
460 }
461 #endif
462
463 /*
464 * add a region into the global tree
465 */
add_nommu_region(struct vm_region * region)466 static void add_nommu_region(struct vm_region *region)
467 {
468 struct vm_region *pregion;
469 struct rb_node **p, *parent;
470
471 validate_nommu_regions();
472
473 parent = NULL;
474 p = &nommu_region_tree.rb_node;
475 while (*p) {
476 parent = *p;
477 pregion = rb_entry(parent, struct vm_region, vm_rb);
478 if (region->vm_start < pregion->vm_start)
479 p = &(*p)->rb_left;
480 else if (region->vm_start > pregion->vm_start)
481 p = &(*p)->rb_right;
482 else if (pregion == region)
483 return;
484 else
485 BUG();
486 }
487
488 rb_link_node(®ion->vm_rb, parent, p);
489 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
490
491 validate_nommu_regions();
492 }
493
494 /*
495 * delete a region from the global tree
496 */
delete_nommu_region(struct vm_region * region)497 static void delete_nommu_region(struct vm_region *region)
498 {
499 BUG_ON(!nommu_region_tree.rb_node);
500
501 validate_nommu_regions();
502 rb_erase(®ion->vm_rb, &nommu_region_tree);
503 validate_nommu_regions();
504 }
505
506 /*
507 * free a contiguous series of pages
508 */
free_page_series(unsigned long from,unsigned long to)509 static void free_page_series(unsigned long from, unsigned long to)
510 {
511 for (; from < to; from += PAGE_SIZE) {
512 struct page *page = virt_to_page(from);
513
514 atomic_long_dec(&mmap_pages_allocated);
515 put_page(page);
516 }
517 }
518
519 /*
520 * release a reference to a region
521 * - the caller must hold the region semaphore for writing, which this releases
522 * - the region may not have been added to the tree yet, in which case vm_top
523 * will equal vm_start
524 */
__put_nommu_region(struct vm_region * region)525 static void __put_nommu_region(struct vm_region *region)
526 __releases(nommu_region_sem)
527 {
528 BUG_ON(!nommu_region_tree.rb_node);
529
530 if (--region->vm_usage == 0) {
531 if (region->vm_top > region->vm_start)
532 delete_nommu_region(region);
533 up_write(&nommu_region_sem);
534
535 if (region->vm_file)
536 fput(region->vm_file);
537
538 /* IO memory and memory shared directly out of the pagecache
539 * from ramfs/tmpfs mustn't be released here */
540 if (region->vm_flags & VM_MAPPED_COPY)
541 free_page_series(region->vm_start, region->vm_top);
542 kmem_cache_free(vm_region_jar, region);
543 } else {
544 up_write(&nommu_region_sem);
545 }
546 }
547
548 /*
549 * release a reference to a region
550 */
put_nommu_region(struct vm_region * region)551 static void put_nommu_region(struct vm_region *region)
552 {
553 down_write(&nommu_region_sem);
554 __put_nommu_region(region);
555 }
556
557 /*
558 * add a VMA into a process's mm_struct in the appropriate place in the list
559 * and tree and add to the address space's page tree also if not an anonymous
560 * page
561 * - should be called with mm->mmap_lock held writelocked
562 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)563 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
564 {
565 struct vm_area_struct *pvma, *prev;
566 struct address_space *mapping;
567 struct rb_node **p, *parent, *rb_prev;
568
569 BUG_ON(!vma->vm_region);
570
571 mm->map_count++;
572 vma->vm_mm = mm;
573
574 /* add the VMA to the mapping */
575 if (vma->vm_file) {
576 mapping = vma->vm_file->f_mapping;
577
578 i_mmap_lock_write(mapping);
579 flush_dcache_mmap_lock(mapping);
580 vma_interval_tree_insert(vma, &mapping->i_mmap);
581 flush_dcache_mmap_unlock(mapping);
582 i_mmap_unlock_write(mapping);
583 }
584
585 /* add the VMA to the tree */
586 parent = rb_prev = NULL;
587 p = &mm->mm_rb.rb_node;
588 while (*p) {
589 parent = *p;
590 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
591
592 /* sort by: start addr, end addr, VMA struct addr in that order
593 * (the latter is necessary as we may get identical VMAs) */
594 if (vma->vm_start < pvma->vm_start)
595 p = &(*p)->rb_left;
596 else if (vma->vm_start > pvma->vm_start) {
597 rb_prev = parent;
598 p = &(*p)->rb_right;
599 } else if (vma->vm_end < pvma->vm_end)
600 p = &(*p)->rb_left;
601 else if (vma->vm_end > pvma->vm_end) {
602 rb_prev = parent;
603 p = &(*p)->rb_right;
604 } else if (vma < pvma)
605 p = &(*p)->rb_left;
606 else if (vma > pvma) {
607 rb_prev = parent;
608 p = &(*p)->rb_right;
609 } else
610 BUG();
611 }
612
613 rb_link_node(&vma->vm_rb, parent, p);
614 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
615
616 /* add VMA to the VMA list also */
617 prev = NULL;
618 if (rb_prev)
619 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
620
621 __vma_link_list(mm, vma, prev);
622 }
623
624 /*
625 * delete a VMA from its owning mm_struct and address space
626 */
delete_vma_from_mm(struct vm_area_struct * vma)627 static void delete_vma_from_mm(struct vm_area_struct *vma)
628 {
629 int i;
630 struct address_space *mapping;
631 struct mm_struct *mm = vma->vm_mm;
632 struct task_struct *curr = current;
633
634 mm->map_count--;
635 for (i = 0; i < VMACACHE_SIZE; i++) {
636 /* if the vma is cached, invalidate the entire cache */
637 if (curr->vmacache.vmas[i] == vma) {
638 vmacache_invalidate(mm);
639 break;
640 }
641 }
642
643 /* remove the VMA from the mapping */
644 if (vma->vm_file) {
645 mapping = vma->vm_file->f_mapping;
646
647 i_mmap_lock_write(mapping);
648 flush_dcache_mmap_lock(mapping);
649 vma_interval_tree_remove(vma, &mapping->i_mmap);
650 flush_dcache_mmap_unlock(mapping);
651 i_mmap_unlock_write(mapping);
652 }
653
654 /* remove from the MM's tree and list */
655 rb_erase(&vma->vm_rb, &mm->mm_rb);
656
657 __vma_unlink_list(mm, vma);
658 }
659
660 /*
661 * destroy a VMA record
662 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)663 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 if (vma->vm_ops && vma->vm_ops->close)
666 vma->vm_ops->close(vma);
667 if (vma->vm_file)
668 fput(vma->vm_file);
669 put_nommu_region(vma->vm_region);
670 vm_area_free(vma);
671 }
672
673 /*
674 * look up the first VMA in which addr resides, NULL if none
675 * - should be called with mm->mmap_lock at least held readlocked
676 */
find_vma(struct mm_struct * mm,unsigned long addr)677 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
678 {
679 struct vm_area_struct *vma;
680
681 /* check the cache first */
682 vma = vmacache_find(mm, addr);
683 if (likely(vma))
684 return vma;
685
686 /* trawl the list (there may be multiple mappings in which addr
687 * resides) */
688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
689 if (vma->vm_start > addr)
690 return NULL;
691 if (vma->vm_end > addr) {
692 vmacache_update(addr, vma);
693 return vma;
694 }
695 }
696
697 return NULL;
698 }
699 EXPORT_SYMBOL(find_vma);
700
701 /*
702 * find a VMA
703 * - we don't extend stack VMAs under NOMMU conditions
704 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)705 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
706 {
707 return find_vma(mm, addr);
708 }
709
710 /*
711 * expand a stack to a given address
712 * - not supported under NOMMU conditions
713 */
expand_stack(struct vm_area_struct * vma,unsigned long address)714 int expand_stack(struct vm_area_struct *vma, unsigned long address)
715 {
716 return -ENOMEM;
717 }
718
719 /*
720 * look up the first VMA exactly that exactly matches addr
721 * - should be called with mm->mmap_lock at least held readlocked
722 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)723 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
724 unsigned long addr,
725 unsigned long len)
726 {
727 struct vm_area_struct *vma;
728 unsigned long end = addr + len;
729
730 /* check the cache first */
731 vma = vmacache_find_exact(mm, addr, end);
732 if (vma)
733 return vma;
734
735 /* trawl the list (there may be multiple mappings in which addr
736 * resides) */
737 for (vma = mm->mmap; vma; vma = vma->vm_next) {
738 if (vma->vm_start < addr)
739 continue;
740 if (vma->vm_start > addr)
741 return NULL;
742 if (vma->vm_end == end) {
743 vmacache_update(addr, vma);
744 return vma;
745 }
746 }
747
748 return NULL;
749 }
750
751 /*
752 * determine whether a mapping should be permitted and, if so, what sort of
753 * mapping we're capable of supporting
754 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)755 static int validate_mmap_request(struct file *file,
756 unsigned long addr,
757 unsigned long len,
758 unsigned long prot,
759 unsigned long flags,
760 unsigned long pgoff,
761 unsigned long *_capabilities)
762 {
763 unsigned long capabilities, rlen;
764 int ret;
765
766 /* do the simple checks first */
767 if (flags & MAP_FIXED)
768 return -EINVAL;
769
770 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
771 (flags & MAP_TYPE) != MAP_SHARED)
772 return -EINVAL;
773
774 if (!len)
775 return -EINVAL;
776
777 /* Careful about overflows.. */
778 rlen = PAGE_ALIGN(len);
779 if (!rlen || rlen > TASK_SIZE)
780 return -ENOMEM;
781
782 /* offset overflow? */
783 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
784 return -EOVERFLOW;
785
786 if (file) {
787 /* files must support mmap */
788 if (!file->f_op->mmap)
789 return -ENODEV;
790
791 /* work out if what we've got could possibly be shared
792 * - we support chardevs that provide their own "memory"
793 * - we support files/blockdevs that are memory backed
794 */
795 if (file->f_op->mmap_capabilities) {
796 capabilities = file->f_op->mmap_capabilities(file);
797 } else {
798 /* no explicit capabilities set, so assume some
799 * defaults */
800 switch (file_inode(file)->i_mode & S_IFMT) {
801 case S_IFREG:
802 case S_IFBLK:
803 capabilities = NOMMU_MAP_COPY;
804 break;
805
806 case S_IFCHR:
807 capabilities =
808 NOMMU_MAP_DIRECT |
809 NOMMU_MAP_READ |
810 NOMMU_MAP_WRITE;
811 break;
812
813 default:
814 return -EINVAL;
815 }
816 }
817
818 /* eliminate any capabilities that we can't support on this
819 * device */
820 if (!file->f_op->get_unmapped_area)
821 capabilities &= ~NOMMU_MAP_DIRECT;
822 if (!(file->f_mode & FMODE_CAN_READ))
823 capabilities &= ~NOMMU_MAP_COPY;
824
825 /* The file shall have been opened with read permission. */
826 if (!(file->f_mode & FMODE_READ))
827 return -EACCES;
828
829 if (flags & MAP_SHARED) {
830 /* do checks for writing, appending and locking */
831 if ((prot & PROT_WRITE) &&
832 !(file->f_mode & FMODE_WRITE))
833 return -EACCES;
834
835 if (IS_APPEND(file_inode(file)) &&
836 (file->f_mode & FMODE_WRITE))
837 return -EACCES;
838
839 if (locks_verify_locked(file))
840 return -EAGAIN;
841
842 if (!(capabilities & NOMMU_MAP_DIRECT))
843 return -ENODEV;
844
845 /* we mustn't privatise shared mappings */
846 capabilities &= ~NOMMU_MAP_COPY;
847 } else {
848 /* we're going to read the file into private memory we
849 * allocate */
850 if (!(capabilities & NOMMU_MAP_COPY))
851 return -ENODEV;
852
853 /* we don't permit a private writable mapping to be
854 * shared with the backing device */
855 if (prot & PROT_WRITE)
856 capabilities &= ~NOMMU_MAP_DIRECT;
857 }
858
859 if (capabilities & NOMMU_MAP_DIRECT) {
860 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
861 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
862 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
863 ) {
864 capabilities &= ~NOMMU_MAP_DIRECT;
865 if (flags & MAP_SHARED) {
866 pr_warn("MAP_SHARED not completely supported on !MMU\n");
867 return -EINVAL;
868 }
869 }
870 }
871
872 /* handle executable mappings and implied executable
873 * mappings */
874 if (path_noexec(&file->f_path)) {
875 if (prot & PROT_EXEC)
876 return -EPERM;
877 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
878 /* handle implication of PROT_EXEC by PROT_READ */
879 if (current->personality & READ_IMPLIES_EXEC) {
880 if (capabilities & NOMMU_MAP_EXEC)
881 prot |= PROT_EXEC;
882 }
883 } else if ((prot & PROT_READ) &&
884 (prot & PROT_EXEC) &&
885 !(capabilities & NOMMU_MAP_EXEC)
886 ) {
887 /* backing file is not executable, try to copy */
888 capabilities &= ~NOMMU_MAP_DIRECT;
889 }
890 } else {
891 /* anonymous mappings are always memory backed and can be
892 * privately mapped
893 */
894 capabilities = NOMMU_MAP_COPY;
895
896 /* handle PROT_EXEC implication by PROT_READ */
897 if ((prot & PROT_READ) &&
898 (current->personality & READ_IMPLIES_EXEC))
899 prot |= PROT_EXEC;
900 }
901
902 /* allow the security API to have its say */
903 ret = security_mmap_addr(addr);
904 if (ret < 0)
905 return ret;
906
907 /* looks okay */
908 *_capabilities = capabilities;
909 return 0;
910 }
911
912 /*
913 * we've determined that we can make the mapping, now translate what we
914 * now know into VMA flags
915 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)916 static unsigned long determine_vm_flags(struct file *file,
917 unsigned long prot,
918 unsigned long flags,
919 unsigned long capabilities)
920 {
921 unsigned long vm_flags;
922
923 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
924 /* vm_flags |= mm->def_flags; */
925
926 if (!(capabilities & NOMMU_MAP_DIRECT)) {
927 /* attempt to share read-only copies of mapped file chunks */
928 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
929 if (file && !(prot & PROT_WRITE))
930 vm_flags |= VM_MAYSHARE;
931 } else {
932 /* overlay a shareable mapping on the backing device or inode
933 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
934 * romfs/cramfs */
935 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
936 if (flags & MAP_SHARED)
937 vm_flags |= VM_SHARED;
938 }
939
940 /* refuse to let anyone share private mappings with this process if
941 * it's being traced - otherwise breakpoints set in it may interfere
942 * with another untraced process
943 */
944 if ((flags & MAP_PRIVATE) && current->ptrace)
945 vm_flags &= ~VM_MAYSHARE;
946
947 return vm_flags;
948 }
949
950 /*
951 * set up a shared mapping on a file (the driver or filesystem provides and
952 * pins the storage)
953 */
do_mmap_shared_file(struct vm_area_struct * vma)954 static int do_mmap_shared_file(struct vm_area_struct *vma)
955 {
956 int ret;
957
958 ret = call_mmap(vma->vm_file, vma);
959 if (ret == 0) {
960 vma->vm_region->vm_top = vma->vm_region->vm_end;
961 return 0;
962 }
963 if (ret != -ENOSYS)
964 return ret;
965
966 /* getting -ENOSYS indicates that direct mmap isn't possible (as
967 * opposed to tried but failed) so we can only give a suitable error as
968 * it's not possible to make a private copy if MAP_SHARED was given */
969 return -ENODEV;
970 }
971
972 /*
973 * set up a private mapping or an anonymous shared mapping
974 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)975 static int do_mmap_private(struct vm_area_struct *vma,
976 struct vm_region *region,
977 unsigned long len,
978 unsigned long capabilities)
979 {
980 unsigned long total, point;
981 void *base;
982 int ret, order;
983
984 /* invoke the file's mapping function so that it can keep track of
985 * shared mappings on devices or memory
986 * - VM_MAYSHARE will be set if it may attempt to share
987 */
988 if (capabilities & NOMMU_MAP_DIRECT) {
989 ret = call_mmap(vma->vm_file, vma);
990 if (ret == 0) {
991 /* shouldn't return success if we're not sharing */
992 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
993 vma->vm_region->vm_top = vma->vm_region->vm_end;
994 return 0;
995 }
996 if (ret != -ENOSYS)
997 return ret;
998
999 /* getting an ENOSYS error indicates that direct mmap isn't
1000 * possible (as opposed to tried but failed) so we'll try to
1001 * make a private copy of the data and map that instead */
1002 }
1003
1004
1005 /* allocate some memory to hold the mapping
1006 * - note that this may not return a page-aligned address if the object
1007 * we're allocating is smaller than a page
1008 */
1009 order = get_order(len);
1010 total = 1 << order;
1011 point = len >> PAGE_SHIFT;
1012
1013 /* we don't want to allocate a power-of-2 sized page set */
1014 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1015 total = point;
1016
1017 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1018 if (!base)
1019 goto enomem;
1020
1021 atomic_long_add(total, &mmap_pages_allocated);
1022
1023 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1024 region->vm_start = (unsigned long) base;
1025 region->vm_end = region->vm_start + len;
1026 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1027
1028 vma->vm_start = region->vm_start;
1029 vma->vm_end = region->vm_start + len;
1030
1031 if (vma->vm_file) {
1032 /* read the contents of a file into the copy */
1033 loff_t fpos;
1034
1035 fpos = vma->vm_pgoff;
1036 fpos <<= PAGE_SHIFT;
1037
1038 ret = kernel_read(vma->vm_file, base, len, &fpos);
1039 if (ret < 0)
1040 goto error_free;
1041
1042 /* clear the last little bit */
1043 if (ret < len)
1044 memset(base + ret, 0, len - ret);
1045
1046 } else {
1047 vma_set_anonymous(vma);
1048 }
1049
1050 return 0;
1051
1052 error_free:
1053 free_page_series(region->vm_start, region->vm_top);
1054 region->vm_start = vma->vm_start = 0;
1055 region->vm_end = vma->vm_end = 0;
1056 region->vm_top = 0;
1057 return ret;
1058
1059 enomem:
1060 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1061 len, current->pid, current->comm);
1062 show_free_areas(0, NULL);
1063 return -ENOMEM;
1064 }
1065
1066 /*
1067 * handle mapping creation for uClinux
1068 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1069 unsigned long do_mmap(struct file *file,
1070 unsigned long addr,
1071 unsigned long len,
1072 unsigned long prot,
1073 unsigned long flags,
1074 unsigned long pgoff,
1075 unsigned long *populate,
1076 struct list_head *uf)
1077 {
1078 struct vm_area_struct *vma;
1079 struct vm_region *region;
1080 struct rb_node *rb;
1081 vm_flags_t vm_flags;
1082 unsigned long capabilities, result;
1083 int ret;
1084
1085 *populate = 0;
1086
1087 /* decide whether we should attempt the mapping, and if so what sort of
1088 * mapping */
1089 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1090 &capabilities);
1091 if (ret < 0)
1092 return ret;
1093
1094 /* we ignore the address hint */
1095 addr = 0;
1096 len = PAGE_ALIGN(len);
1097
1098 /* we've determined that we can make the mapping, now translate what we
1099 * now know into VMA flags */
1100 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1101
1102 /* we're going to need to record the mapping */
1103 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1104 if (!region)
1105 goto error_getting_region;
1106
1107 vma = vm_area_alloc(current->mm);
1108 if (!vma)
1109 goto error_getting_vma;
1110
1111 region->vm_usage = 1;
1112 region->vm_flags = vm_flags;
1113 region->vm_pgoff = pgoff;
1114
1115 vma->vm_flags = vm_flags;
1116 vma->vm_pgoff = pgoff;
1117
1118 if (file) {
1119 region->vm_file = get_file(file);
1120 vma->vm_file = get_file(file);
1121 }
1122
1123 down_write(&nommu_region_sem);
1124
1125 /* if we want to share, we need to check for regions created by other
1126 * mmap() calls that overlap with our proposed mapping
1127 * - we can only share with a superset match on most regular files
1128 * - shared mappings on character devices and memory backed files are
1129 * permitted to overlap inexactly as far as we are concerned for in
1130 * these cases, sharing is handled in the driver or filesystem rather
1131 * than here
1132 */
1133 if (vm_flags & VM_MAYSHARE) {
1134 struct vm_region *pregion;
1135 unsigned long pglen, rpglen, pgend, rpgend, start;
1136
1137 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138 pgend = pgoff + pglen;
1139
1140 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1141 pregion = rb_entry(rb, struct vm_region, vm_rb);
1142
1143 if (!(pregion->vm_flags & VM_MAYSHARE))
1144 continue;
1145
1146 /* search for overlapping mappings on the same file */
1147 if (file_inode(pregion->vm_file) !=
1148 file_inode(file))
1149 continue;
1150
1151 if (pregion->vm_pgoff >= pgend)
1152 continue;
1153
1154 rpglen = pregion->vm_end - pregion->vm_start;
1155 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156 rpgend = pregion->vm_pgoff + rpglen;
1157 if (pgoff >= rpgend)
1158 continue;
1159
1160 /* handle inexactly overlapping matches between
1161 * mappings */
1162 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1163 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1164 /* new mapping is not a subset of the region */
1165 if (!(capabilities & NOMMU_MAP_DIRECT))
1166 goto sharing_violation;
1167 continue;
1168 }
1169
1170 /* we've found a region we can share */
1171 pregion->vm_usage++;
1172 vma->vm_region = pregion;
1173 start = pregion->vm_start;
1174 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1175 vma->vm_start = start;
1176 vma->vm_end = start + len;
1177
1178 if (pregion->vm_flags & VM_MAPPED_COPY)
1179 vma->vm_flags |= VM_MAPPED_COPY;
1180 else {
1181 ret = do_mmap_shared_file(vma);
1182 if (ret < 0) {
1183 vma->vm_region = NULL;
1184 vma->vm_start = 0;
1185 vma->vm_end = 0;
1186 pregion->vm_usage--;
1187 pregion = NULL;
1188 goto error_just_free;
1189 }
1190 }
1191 fput(region->vm_file);
1192 kmem_cache_free(vm_region_jar, region);
1193 region = pregion;
1194 result = start;
1195 goto share;
1196 }
1197
1198 /* obtain the address at which to make a shared mapping
1199 * - this is the hook for quasi-memory character devices to
1200 * tell us the location of a shared mapping
1201 */
1202 if (capabilities & NOMMU_MAP_DIRECT) {
1203 addr = file->f_op->get_unmapped_area(file, addr, len,
1204 pgoff, flags);
1205 if (IS_ERR_VALUE(addr)) {
1206 ret = addr;
1207 if (ret != -ENOSYS)
1208 goto error_just_free;
1209
1210 /* the driver refused to tell us where to site
1211 * the mapping so we'll have to attempt to copy
1212 * it */
1213 ret = -ENODEV;
1214 if (!(capabilities & NOMMU_MAP_COPY))
1215 goto error_just_free;
1216
1217 capabilities &= ~NOMMU_MAP_DIRECT;
1218 } else {
1219 vma->vm_start = region->vm_start = addr;
1220 vma->vm_end = region->vm_end = addr + len;
1221 }
1222 }
1223 }
1224
1225 vma->vm_region = region;
1226
1227 /* set up the mapping
1228 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1229 */
1230 if (file && vma->vm_flags & VM_SHARED)
1231 ret = do_mmap_shared_file(vma);
1232 else
1233 ret = do_mmap_private(vma, region, len, capabilities);
1234 if (ret < 0)
1235 goto error_just_free;
1236 add_nommu_region(region);
1237
1238 /* clear anonymous mappings that don't ask for uninitialized data */
1239 if (!vma->vm_file &&
1240 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1241 !(flags & MAP_UNINITIALIZED)))
1242 memset((void *)region->vm_start, 0,
1243 region->vm_end - region->vm_start);
1244
1245 /* okay... we have a mapping; now we have to register it */
1246 result = vma->vm_start;
1247
1248 current->mm->total_vm += len >> PAGE_SHIFT;
1249
1250 share:
1251 add_vma_to_mm(current->mm, vma);
1252
1253 /* we flush the region from the icache only when the first executable
1254 * mapping of it is made */
1255 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1256 flush_icache_user_range(region->vm_start, region->vm_end);
1257 region->vm_icache_flushed = true;
1258 }
1259
1260 up_write(&nommu_region_sem);
1261
1262 return result;
1263
1264 error_just_free:
1265 up_write(&nommu_region_sem);
1266 error:
1267 if (region->vm_file)
1268 fput(region->vm_file);
1269 kmem_cache_free(vm_region_jar, region);
1270 if (vma->vm_file)
1271 fput(vma->vm_file);
1272 vm_area_free(vma);
1273 return ret;
1274
1275 sharing_violation:
1276 up_write(&nommu_region_sem);
1277 pr_warn("Attempt to share mismatched mappings\n");
1278 ret = -EINVAL;
1279 goto error;
1280
1281 error_getting_vma:
1282 kmem_cache_free(vm_region_jar, region);
1283 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1284 len, current->pid);
1285 show_free_areas(0, NULL);
1286 return -ENOMEM;
1287
1288 error_getting_region:
1289 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1290 len, current->pid);
1291 show_free_areas(0, NULL);
1292 return -ENOMEM;
1293 }
1294
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1295 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1296 unsigned long prot, unsigned long flags,
1297 unsigned long fd, unsigned long pgoff)
1298 {
1299 struct file *file = NULL;
1300 unsigned long retval = -EBADF;
1301
1302 audit_mmap_fd(fd, flags);
1303 if (!(flags & MAP_ANONYMOUS)) {
1304 file = fget(fd);
1305 if (!file)
1306 goto out;
1307 }
1308
1309 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1310
1311 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1312
1313 if (file)
1314 fput(file);
1315 out:
1316 return retval;
1317 }
1318
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1319 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1320 unsigned long, prot, unsigned long, flags,
1321 unsigned long, fd, unsigned long, pgoff)
1322 {
1323 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1324 }
1325
1326 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1327 struct mmap_arg_struct {
1328 unsigned long addr;
1329 unsigned long len;
1330 unsigned long prot;
1331 unsigned long flags;
1332 unsigned long fd;
1333 unsigned long offset;
1334 };
1335
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1336 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1337 {
1338 struct mmap_arg_struct a;
1339
1340 if (copy_from_user(&a, arg, sizeof(a)))
1341 return -EFAULT;
1342 if (offset_in_page(a.offset))
1343 return -EINVAL;
1344
1345 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1346 a.offset >> PAGE_SHIFT);
1347 }
1348 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1349
1350 /*
1351 * split a vma into two pieces at address 'addr', a new vma is allocated either
1352 * for the first part or the tail.
1353 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1354 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1355 unsigned long addr, int new_below)
1356 {
1357 struct vm_area_struct *new;
1358 struct vm_region *region;
1359 unsigned long npages;
1360
1361 /* we're only permitted to split anonymous regions (these should have
1362 * only a single usage on the region) */
1363 if (vma->vm_file)
1364 return -ENOMEM;
1365
1366 if (mm->map_count >= sysctl_max_map_count)
1367 return -ENOMEM;
1368
1369 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1370 if (!region)
1371 return -ENOMEM;
1372
1373 new = vm_area_dup(vma);
1374 if (!new) {
1375 kmem_cache_free(vm_region_jar, region);
1376 return -ENOMEM;
1377 }
1378
1379 /* most fields are the same, copy all, and then fixup */
1380 *region = *vma->vm_region;
1381 new->vm_region = region;
1382
1383 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1384
1385 if (new_below) {
1386 region->vm_top = region->vm_end = new->vm_end = addr;
1387 } else {
1388 region->vm_start = new->vm_start = addr;
1389 region->vm_pgoff = new->vm_pgoff += npages;
1390 }
1391
1392 if (new->vm_ops && new->vm_ops->open)
1393 new->vm_ops->open(new);
1394
1395 delete_vma_from_mm(vma);
1396 down_write(&nommu_region_sem);
1397 delete_nommu_region(vma->vm_region);
1398 if (new_below) {
1399 vma->vm_region->vm_start = vma->vm_start = addr;
1400 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1401 } else {
1402 vma->vm_region->vm_end = vma->vm_end = addr;
1403 vma->vm_region->vm_top = addr;
1404 }
1405 add_nommu_region(vma->vm_region);
1406 add_nommu_region(new->vm_region);
1407 up_write(&nommu_region_sem);
1408 add_vma_to_mm(mm, vma);
1409 add_vma_to_mm(mm, new);
1410 return 0;
1411 }
1412
1413 /*
1414 * shrink a VMA by removing the specified chunk from either the beginning or
1415 * the end
1416 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1417 static int shrink_vma(struct mm_struct *mm,
1418 struct vm_area_struct *vma,
1419 unsigned long from, unsigned long to)
1420 {
1421 struct vm_region *region;
1422
1423 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1424 * and list */
1425 delete_vma_from_mm(vma);
1426 if (from > vma->vm_start)
1427 vma->vm_end = from;
1428 else
1429 vma->vm_start = to;
1430 add_vma_to_mm(mm, vma);
1431
1432 /* cut the backing region down to size */
1433 region = vma->vm_region;
1434 BUG_ON(region->vm_usage != 1);
1435
1436 down_write(&nommu_region_sem);
1437 delete_nommu_region(region);
1438 if (from > region->vm_start) {
1439 to = region->vm_top;
1440 region->vm_top = region->vm_end = from;
1441 } else {
1442 region->vm_start = to;
1443 }
1444 add_nommu_region(region);
1445 up_write(&nommu_region_sem);
1446
1447 free_page_series(from, to);
1448 return 0;
1449 }
1450
1451 /*
1452 * release a mapping
1453 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1454 * VMA, though it need not cover the whole VMA
1455 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1456 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1457 {
1458 struct vm_area_struct *vma;
1459 unsigned long end;
1460 int ret;
1461
1462 len = PAGE_ALIGN(len);
1463 if (len == 0)
1464 return -EINVAL;
1465
1466 end = start + len;
1467
1468 /* find the first potentially overlapping VMA */
1469 vma = find_vma(mm, start);
1470 if (!vma) {
1471 static int limit;
1472 if (limit < 5) {
1473 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1474 current->pid, current->comm,
1475 start, start + len - 1);
1476 limit++;
1477 }
1478 return -EINVAL;
1479 }
1480
1481 /* we're allowed to split an anonymous VMA but not a file-backed one */
1482 if (vma->vm_file) {
1483 do {
1484 if (start > vma->vm_start)
1485 return -EINVAL;
1486 if (end == vma->vm_end)
1487 goto erase_whole_vma;
1488 vma = vma->vm_next;
1489 } while (vma);
1490 return -EINVAL;
1491 } else {
1492 /* the chunk must be a subset of the VMA found */
1493 if (start == vma->vm_start && end == vma->vm_end)
1494 goto erase_whole_vma;
1495 if (start < vma->vm_start || end > vma->vm_end)
1496 return -EINVAL;
1497 if (offset_in_page(start))
1498 return -EINVAL;
1499 if (end != vma->vm_end && offset_in_page(end))
1500 return -EINVAL;
1501 if (start != vma->vm_start && end != vma->vm_end) {
1502 ret = split_vma(mm, vma, start, 1);
1503 if (ret < 0)
1504 return ret;
1505 }
1506 return shrink_vma(mm, vma, start, end);
1507 }
1508
1509 erase_whole_vma:
1510 delete_vma_from_mm(vma);
1511 delete_vma(mm, vma);
1512 return 0;
1513 }
1514 EXPORT_SYMBOL(do_munmap);
1515
vm_munmap(unsigned long addr,size_t len)1516 int vm_munmap(unsigned long addr, size_t len)
1517 {
1518 struct mm_struct *mm = current->mm;
1519 int ret;
1520
1521 mmap_write_lock(mm);
1522 ret = do_munmap(mm, addr, len, NULL);
1523 mmap_write_unlock(mm);
1524 return ret;
1525 }
1526 EXPORT_SYMBOL(vm_munmap);
1527
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1529 {
1530 return vm_munmap(addr, len);
1531 }
1532
1533 /*
1534 * release all the mappings made in a process's VM space
1535 */
exit_mmap(struct mm_struct * mm)1536 void exit_mmap(struct mm_struct *mm)
1537 {
1538 struct vm_area_struct *vma;
1539
1540 if (!mm)
1541 return;
1542
1543 mm->total_vm = 0;
1544
1545 while ((vma = mm->mmap)) {
1546 mm->mmap = vma->vm_next;
1547 delete_vma_from_mm(vma);
1548 delete_vma(mm, vma);
1549 cond_resched();
1550 }
1551 }
1552
vm_brk(unsigned long addr,unsigned long len)1553 int vm_brk(unsigned long addr, unsigned long len)
1554 {
1555 return -ENOMEM;
1556 }
1557
1558 /*
1559 * expand (or shrink) an existing mapping, potentially moving it at the same
1560 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1561 *
1562 * under NOMMU conditions, we only permit changing a mapping's size, and only
1563 * as long as it stays within the region allocated by do_mmap_private() and the
1564 * block is not shareable
1565 *
1566 * MREMAP_FIXED is not supported under NOMMU conditions
1567 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1568 static unsigned long do_mremap(unsigned long addr,
1569 unsigned long old_len, unsigned long new_len,
1570 unsigned long flags, unsigned long new_addr)
1571 {
1572 struct vm_area_struct *vma;
1573
1574 /* insanity checks first */
1575 old_len = PAGE_ALIGN(old_len);
1576 new_len = PAGE_ALIGN(new_len);
1577 if (old_len == 0 || new_len == 0)
1578 return (unsigned long) -EINVAL;
1579
1580 if (offset_in_page(addr))
1581 return -EINVAL;
1582
1583 if (flags & MREMAP_FIXED && new_addr != addr)
1584 return (unsigned long) -EINVAL;
1585
1586 vma = find_vma_exact(current->mm, addr, old_len);
1587 if (!vma)
1588 return (unsigned long) -EINVAL;
1589
1590 if (vma->vm_end != vma->vm_start + old_len)
1591 return (unsigned long) -EFAULT;
1592
1593 if (vma->vm_flags & VM_MAYSHARE)
1594 return (unsigned long) -EPERM;
1595
1596 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1597 return (unsigned long) -ENOMEM;
1598
1599 /* all checks complete - do it */
1600 vma->vm_end = vma->vm_start + new_len;
1601 return vma->vm_start;
1602 }
1603
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1604 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1605 unsigned long, new_len, unsigned long, flags,
1606 unsigned long, new_addr)
1607 {
1608 unsigned long ret;
1609
1610 mmap_write_lock(current->mm);
1611 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1612 mmap_write_unlock(current->mm);
1613 return ret;
1614 }
1615
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1616 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1617 unsigned int foll_flags)
1618 {
1619 return NULL;
1620 }
1621
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1622 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1623 unsigned long pfn, unsigned long size, pgprot_t prot)
1624 {
1625 if (addr != (pfn << PAGE_SHIFT))
1626 return -EINVAL;
1627
1628 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(remap_pfn_range);
1632
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1633 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1634 {
1635 unsigned long pfn = start >> PAGE_SHIFT;
1636 unsigned long vm_len = vma->vm_end - vma->vm_start;
1637
1638 pfn += vma->vm_pgoff;
1639 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1640 }
1641 EXPORT_SYMBOL(vm_iomap_memory);
1642
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1643 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1644 unsigned long pgoff)
1645 {
1646 unsigned int size = vma->vm_end - vma->vm_start;
1647
1648 if (!(vma->vm_flags & VM_USERMAP))
1649 return -EINVAL;
1650
1651 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1652 vma->vm_end = vma->vm_start + size;
1653
1654 return 0;
1655 }
1656 EXPORT_SYMBOL(remap_vmalloc_range);
1657
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1658 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1659 unsigned long len, unsigned long pgoff, unsigned long flags)
1660 {
1661 return -ENOMEM;
1662 }
1663
filemap_fault(struct vm_fault * vmf)1664 vm_fault_t filemap_fault(struct vm_fault *vmf)
1665 {
1666 BUG();
1667 return 0;
1668 }
1669 EXPORT_SYMBOL(filemap_fault);
1670
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1671 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1672 pgoff_t start_pgoff, pgoff_t end_pgoff)
1673 {
1674 BUG();
1675 return 0;
1676 }
1677 EXPORT_SYMBOL(filemap_map_pages);
1678
1679 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
filemap_allow_speculation(void)1680 bool filemap_allow_speculation(void)
1681 {
1682 BUG();
1683 return false;
1684 }
1685 #endif
1686
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1687 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1688 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1689 {
1690 struct vm_area_struct *vma;
1691 int write = gup_flags & FOLL_WRITE;
1692
1693 if (mmap_read_lock_killable(mm))
1694 return 0;
1695
1696 /* the access must start within one of the target process's mappings */
1697 vma = find_vma(mm, addr);
1698 if (vma) {
1699 /* don't overrun this mapping */
1700 if (addr + len >= vma->vm_end)
1701 len = vma->vm_end - addr;
1702
1703 /* only read or write mappings where it is permitted */
1704 if (write && vma->vm_flags & VM_MAYWRITE)
1705 copy_to_user_page(vma, NULL, addr,
1706 (void *) addr, buf, len);
1707 else if (!write && vma->vm_flags & VM_MAYREAD)
1708 copy_from_user_page(vma, NULL, addr,
1709 buf, (void *) addr, len);
1710 else
1711 len = 0;
1712 } else {
1713 len = 0;
1714 }
1715
1716 mmap_read_unlock(mm);
1717
1718 return len;
1719 }
1720
1721 /**
1722 * access_remote_vm - access another process' address space
1723 * @mm: the mm_struct of the target address space
1724 * @addr: start address to access
1725 * @buf: source or destination buffer
1726 * @len: number of bytes to transfer
1727 * @gup_flags: flags modifying lookup behaviour
1728 *
1729 * The caller must hold a reference on @mm.
1730 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1731 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1732 void *buf, int len, unsigned int gup_flags)
1733 {
1734 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1735 }
1736
1737 /*
1738 * Access another process' address space.
1739 * - source/target buffer must be kernel space
1740 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1741 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1742 unsigned int gup_flags)
1743 {
1744 struct mm_struct *mm;
1745
1746 if (addr + len < addr)
1747 return 0;
1748
1749 mm = get_task_mm(tsk);
1750 if (!mm)
1751 return 0;
1752
1753 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1754
1755 mmput(mm);
1756 return len;
1757 }
1758 EXPORT_SYMBOL_GPL(access_process_vm);
1759
1760 /**
1761 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1762 * @inode: The inode to check
1763 * @size: The current filesize of the inode
1764 * @newsize: The proposed filesize of the inode
1765 *
1766 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1767 * make sure that any outstanding VMAs aren't broken and then shrink the
1768 * vm_regions that extend beyond so that do_mmap() doesn't
1769 * automatically grant mappings that are too large.
1770 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1771 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1772 size_t newsize)
1773 {
1774 struct vm_area_struct *vma;
1775 struct vm_region *region;
1776 pgoff_t low, high;
1777 size_t r_size, r_top;
1778
1779 low = newsize >> PAGE_SHIFT;
1780 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1781
1782 down_write(&nommu_region_sem);
1783 i_mmap_lock_read(inode->i_mapping);
1784
1785 /* search for VMAs that fall within the dead zone */
1786 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1787 /* found one - only interested if it's shared out of the page
1788 * cache */
1789 if (vma->vm_flags & VM_SHARED) {
1790 i_mmap_unlock_read(inode->i_mapping);
1791 up_write(&nommu_region_sem);
1792 return -ETXTBSY; /* not quite true, but near enough */
1793 }
1794 }
1795
1796 /* reduce any regions that overlap the dead zone - if in existence,
1797 * these will be pointed to by VMAs that don't overlap the dead zone
1798 *
1799 * we don't check for any regions that start beyond the EOF as there
1800 * shouldn't be any
1801 */
1802 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1803 if (!(vma->vm_flags & VM_SHARED))
1804 continue;
1805
1806 region = vma->vm_region;
1807 r_size = region->vm_top - region->vm_start;
1808 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1809
1810 if (r_top > newsize) {
1811 region->vm_top -= r_top - newsize;
1812 if (region->vm_end > region->vm_top)
1813 region->vm_end = region->vm_top;
1814 }
1815 }
1816
1817 i_mmap_unlock_read(inode->i_mapping);
1818 up_write(&nommu_region_sem);
1819 return 0;
1820 }
1821
1822 /*
1823 * Initialise sysctl_user_reserve_kbytes.
1824 *
1825 * This is intended to prevent a user from starting a single memory hogging
1826 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1827 * mode.
1828 *
1829 * The default value is min(3% of free memory, 128MB)
1830 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1831 */
init_user_reserve(void)1832 static int __meminit init_user_reserve(void)
1833 {
1834 unsigned long free_kbytes;
1835
1836 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1837
1838 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1839 return 0;
1840 }
1841 subsys_initcall(init_user_reserve);
1842
1843 /*
1844 * Initialise sysctl_admin_reserve_kbytes.
1845 *
1846 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1847 * to log in and kill a memory hogging process.
1848 *
1849 * Systems with more than 256MB will reserve 8MB, enough to recover
1850 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1851 * only reserve 3% of free pages by default.
1852 */
init_admin_reserve(void)1853 static int __meminit init_admin_reserve(void)
1854 {
1855 unsigned long free_kbytes;
1856
1857 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1858
1859 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1860 return 0;
1861 }
1862 subsys_initcall(init_admin_reserve);
1863