1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26 * Accesses to the metadata (e.g. count) are protected by this lock. Note
27 * that some members of this structure may be protected by other means
28 * (atomic or kmemleak_lock). This lock is also held when scanning the
29 * corresponding memory block to avoid the kernel freeing it via the
30 * kmemleak_free() callback. This is less heavyweight than holding a global
31 * lock like kmemleak_lock during scanning.
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103
104 /*
105 * Kmemleak configuration and common defines.
106 */
107 #define MAX_TRACE 16 /* stack trace length */
108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113 #define BYTES_PER_POINTER sizeof(void *)
114
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120 /* scanning area inside a memory block */
121 struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125 };
126
127 #define KMEMLEAK_GREY 0
128 #define KMEMLEAK_BLACK -1
129
130 /*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * rb_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138 struct kmemleak_object {
139 raw_spinlock_t lock;
140 unsigned int flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct rb_node rb_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* pass surplus references to this pointer */
150 unsigned long excess_ref;
151 /* minimum number of a pointers found before it is considered leak */
152 int min_count;
153 /* the total number of pointers found pointing to this object */
154 int count;
155 /* checksum for detecting modified objects */
156 u32 checksum;
157 /* memory ranges to be scanned inside an object (empty for all) */
158 struct hlist_head area_list;
159 unsigned long trace[MAX_TRACE];
160 unsigned int trace_len;
161 unsigned long jiffies; /* creation timestamp */
162 pid_t pid; /* pid of the current task */
163 char comm[TASK_COMM_LEN]; /* executable name */
164 };
165
166 /* flag representing the memory block allocation status */
167 #define OBJECT_ALLOCATED (1 << 0)
168 /* flag set after the first reporting of an unreference object */
169 #define OBJECT_REPORTED (1 << 1)
170 /* flag set to not scan the object */
171 #define OBJECT_NO_SCAN (1 << 2)
172 /* flag set to fully scan the object when scan_area allocation failed */
173 #define OBJECT_FULL_SCAN (1 << 3)
174
175 #define HEX_PREFIX " "
176 /* number of bytes to print per line; must be 16 or 32 */
177 #define HEX_ROW_SIZE 16
178 /* number of bytes to print at a time (1, 2, 4, 8) */
179 #define HEX_GROUP_SIZE 1
180 /* include ASCII after the hex output */
181 #define HEX_ASCII 1
182 /* max number of lines to be printed */
183 #define HEX_MAX_LINES 2
184
185 /* the list of all allocated objects */
186 static LIST_HEAD(object_list);
187 /* the list of gray-colored objects (see color_gray comment below) */
188 static LIST_HEAD(gray_list);
189 /* memory pool allocation */
190 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
191 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
192 static LIST_HEAD(mem_pool_free_list);
193 /* search tree for object boundaries */
194 static struct rb_root object_tree_root = RB_ROOT;
195 /* protecting the access to object_list and object_tree_root */
196 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
197
198 /* allocation caches for kmemleak internal data */
199 static struct kmem_cache *object_cache;
200 static struct kmem_cache *scan_area_cache;
201
202 /* set if tracing memory operations is enabled */
203 static int kmemleak_enabled = 1;
204 /* same as above but only for the kmemleak_free() callback */
205 static int kmemleak_free_enabled = 1;
206 /* set in the late_initcall if there were no errors */
207 static int kmemleak_initialized;
208 /* set if a kmemleak warning was issued */
209 static int kmemleak_warning;
210 /* set if a fatal kmemleak error has occurred */
211 static int kmemleak_error;
212
213 /* minimum and maximum address that may be valid pointers */
214 static unsigned long min_addr = ULONG_MAX;
215 static unsigned long max_addr;
216
217 static struct task_struct *scan_thread;
218 /* used to avoid reporting of recently allocated objects */
219 static unsigned long jiffies_min_age;
220 static unsigned long jiffies_last_scan;
221 /* delay between automatic memory scannings */
222 static signed long jiffies_scan_wait;
223 /* enables or disables the task stacks scanning */
224 static int kmemleak_stack_scan = 1;
225 /* protects the memory scanning, parameters and debug/kmemleak file access */
226 static DEFINE_MUTEX(scan_mutex);
227 /* setting kmemleak=on, will set this var, skipping the disable */
228 static int kmemleak_skip_disable;
229 /* If there are leaks that can be reported */
230 static bool kmemleak_found_leaks;
231
232 static bool kmemleak_verbose;
233 module_param_named(verbose, kmemleak_verbose, bool, 0600);
234
235 static void kmemleak_disable(void);
236
237 /*
238 * Print a warning and dump the stack trace.
239 */
240 #define kmemleak_warn(x...) do { \
241 pr_warn(x); \
242 dump_stack(); \
243 kmemleak_warning = 1; \
244 } while (0)
245
246 /*
247 * Macro invoked when a serious kmemleak condition occurred and cannot be
248 * recovered from. Kmemleak will be disabled and further allocation/freeing
249 * tracing no longer available.
250 */
251 #define kmemleak_stop(x...) do { \
252 kmemleak_warn(x); \
253 kmemleak_disable(); \
254 } while (0)
255
256 #define warn_or_seq_printf(seq, fmt, ...) do { \
257 if (seq) \
258 seq_printf(seq, fmt, ##__VA_ARGS__); \
259 else \
260 pr_warn(fmt, ##__VA_ARGS__); \
261 } while (0)
262
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)263 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
264 int rowsize, int groupsize, const void *buf,
265 size_t len, bool ascii)
266 {
267 if (seq)
268 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
269 buf, len, ascii);
270 else
271 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
272 rowsize, groupsize, buf, len, ascii);
273 }
274
275 /*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)281 static void hex_dump_object(struct seq_file *seq,
282 struct kmemleak_object *object)
283 {
284 const u8 *ptr = (const u8 *)object->pointer;
285 size_t len;
286
287 /* limit the number of lines to HEX_MAX_LINES */
288 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
289
290 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
291 kasan_disable_current();
292 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
293 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
294 kasan_enable_current();
295 }
296
297 /*
298 * Object colors, encoded with count and min_count:
299 * - white - orphan object, not enough references to it (count < min_count)
300 * - gray - not orphan, not marked as false positive (min_count == 0) or
301 * sufficient references to it (count >= min_count)
302 * - black - ignore, it doesn't contain references (e.g. text section)
303 * (min_count == -1). No function defined for this color.
304 * Newly created objects don't have any color assigned (object->count == -1)
305 * before the next memory scan when they become white.
306 */
color_white(const struct kmemleak_object * object)307 static bool color_white(const struct kmemleak_object *object)
308 {
309 return object->count != KMEMLEAK_BLACK &&
310 object->count < object->min_count;
311 }
312
color_gray(const struct kmemleak_object * object)313 static bool color_gray(const struct kmemleak_object *object)
314 {
315 return object->min_count != KMEMLEAK_BLACK &&
316 object->count >= object->min_count;
317 }
318
319 /*
320 * Objects are considered unreferenced only if their color is white, they have
321 * not be deleted and have a minimum age to avoid false positives caused by
322 * pointers temporarily stored in CPU registers.
323 */
unreferenced_object(struct kmemleak_object * object)324 static bool unreferenced_object(struct kmemleak_object *object)
325 {
326 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
327 time_before_eq(object->jiffies + jiffies_min_age,
328 jiffies_last_scan);
329 }
330
331 /*
332 * Printing of the unreferenced objects information to the seq file. The
333 * print_unreferenced function must be called with the object->lock held.
334 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)335 static void print_unreferenced(struct seq_file *seq,
336 struct kmemleak_object *object)
337 {
338 int i;
339 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
340
341 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
342 object->pointer, object->size);
343 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
344 object->comm, object->pid, object->jiffies,
345 msecs_age / 1000, msecs_age % 1000);
346 hex_dump_object(seq, object);
347 warn_or_seq_printf(seq, " backtrace:\n");
348
349 for (i = 0; i < object->trace_len; i++) {
350 void *ptr = (void *)object->trace[i];
351 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
352 }
353 }
354
355 /*
356 * Print the kmemleak_object information. This function is used mainly for
357 * debugging special cases when kmemleak operations. It must be called with
358 * the object->lock held.
359 */
dump_object_info(struct kmemleak_object * object)360 static void dump_object_info(struct kmemleak_object *object)
361 {
362 pr_notice("Object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 pr_notice(" min_count = %d\n", object->min_count);
367 pr_notice(" count = %d\n", object->count);
368 pr_notice(" flags = 0x%x\n", object->flags);
369 pr_notice(" checksum = %u\n", object->checksum);
370 pr_notice(" backtrace:\n");
371 stack_trace_print(object->trace, object->trace_len, 4);
372 }
373
374 /*
375 * Look-up a memory block metadata (kmemleak_object) in the object search
376 * tree based on a pointer value. If alias is 0, only values pointing to the
377 * beginning of the memory block are allowed. The kmemleak_lock must be held
378 * when calling this function.
379 */
lookup_object(unsigned long ptr,int alias)380 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
381 {
382 struct rb_node *rb = object_tree_root.rb_node;
383
384 while (rb) {
385 struct kmemleak_object *object =
386 rb_entry(rb, struct kmemleak_object, rb_node);
387 if (ptr < object->pointer)
388 rb = object->rb_node.rb_left;
389 else if (object->pointer + object->size <= ptr)
390 rb = object->rb_node.rb_right;
391 else if (object->pointer == ptr || alias)
392 return object;
393 else {
394 kmemleak_warn("Found object by alias at 0x%08lx\n",
395 ptr);
396 dump_object_info(object);
397 break;
398 }
399 }
400 return NULL;
401 }
402
403 /*
404 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
405 * that once an object's use_count reached 0, the RCU freeing was already
406 * registered and the object should no longer be used. This function must be
407 * called under the protection of rcu_read_lock().
408 */
get_object(struct kmemleak_object * object)409 static int get_object(struct kmemleak_object *object)
410 {
411 return atomic_inc_not_zero(&object->use_count);
412 }
413
414 /*
415 * Memory pool allocation and freeing. kmemleak_lock must not be held.
416 */
mem_pool_alloc(gfp_t gfp)417 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
418 {
419 unsigned long flags;
420 struct kmemleak_object *object;
421
422 /* try the slab allocator first */
423 if (object_cache) {
424 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
425 if (object)
426 return object;
427 }
428
429 /* slab allocation failed, try the memory pool */
430 raw_spin_lock_irqsave(&kmemleak_lock, flags);
431 object = list_first_entry_or_null(&mem_pool_free_list,
432 typeof(*object), object_list);
433 if (object)
434 list_del(&object->object_list);
435 else if (mem_pool_free_count)
436 object = &mem_pool[--mem_pool_free_count];
437 else
438 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
440
441 return object;
442 }
443
444 /*
445 * Return the object to either the slab allocator or the memory pool.
446 */
mem_pool_free(struct kmemleak_object * object)447 static void mem_pool_free(struct kmemleak_object *object)
448 {
449 unsigned long flags;
450
451 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
452 kmem_cache_free(object_cache, object);
453 return;
454 }
455
456 /* add the object to the memory pool free list */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 list_add(&object->object_list, &mem_pool_free_list);
459 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
460 }
461
462 /*
463 * RCU callback to free a kmemleak_object.
464 */
free_object_rcu(struct rcu_head * rcu)465 static void free_object_rcu(struct rcu_head *rcu)
466 {
467 struct hlist_node *tmp;
468 struct kmemleak_scan_area *area;
469 struct kmemleak_object *object =
470 container_of(rcu, struct kmemleak_object, rcu);
471
472 /*
473 * Once use_count is 0 (guaranteed by put_object), there is no other
474 * code accessing this object, hence no need for locking.
475 */
476 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
477 hlist_del(&area->node);
478 kmem_cache_free(scan_area_cache, area);
479 }
480 mem_pool_free(object);
481 }
482
483 /*
484 * Decrement the object use_count. Once the count is 0, free the object using
485 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
486 * delete_object() path, the delayed RCU freeing ensures that there is no
487 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
488 * is also possible.
489 */
put_object(struct kmemleak_object * object)490 static void put_object(struct kmemleak_object *object)
491 {
492 if (!atomic_dec_and_test(&object->use_count))
493 return;
494
495 /* should only get here after delete_object was called */
496 WARN_ON(object->flags & OBJECT_ALLOCATED);
497
498 /*
499 * It may be too early for the RCU callbacks, however, there is no
500 * concurrent object_list traversal when !object_cache and all objects
501 * came from the memory pool. Free the object directly.
502 */
503 if (object_cache)
504 call_rcu(&object->rcu, free_object_rcu);
505 else
506 free_object_rcu(&object->rcu);
507 }
508
509 /*
510 * Look up an object in the object search tree and increase its use_count.
511 */
find_and_get_object(unsigned long ptr,int alias)512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 rcu_read_lock();
518 raw_spin_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528 }
529
530 /*
531 * Remove an object from the object_tree_root and object_list. Must be called
532 * with the kmemleak_lock held _if_ kmemleak is still enabled.
533 */
__remove_object(struct kmemleak_object * object)534 static void __remove_object(struct kmemleak_object *object)
535 {
536 rb_erase(&object->rb_node, &object_tree_root);
537 list_del_rcu(&object->object_list);
538 }
539
540 /*
541 * Look up an object in the object search tree and remove it from both
542 * object_tree_root and object_list. The returned object's use_count should be
543 * at least 1, as initially set by create_object().
544 */
find_and_remove_object(unsigned long ptr,int alias)545 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
546 {
547 unsigned long flags;
548 struct kmemleak_object *object;
549
550 raw_spin_lock_irqsave(&kmemleak_lock, flags);
551 object = lookup_object(ptr, alias);
552 if (object)
553 __remove_object(object);
554 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
555
556 return object;
557 }
558
559 /*
560 * Save stack trace to the given array of MAX_TRACE size.
561 */
__save_stack_trace(unsigned long * trace)562 static int __save_stack_trace(unsigned long *trace)
563 {
564 return stack_trace_save(trace, MAX_TRACE, 2);
565 }
566
567 /*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
573 {
574 unsigned long flags;
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
577 unsigned long untagged_ptr;
578
579 object = mem_pool_alloc(gfp);
580 if (!object) {
581 pr_warn("Cannot allocate a kmemleak_object structure\n");
582 kmemleak_disable();
583 return NULL;
584 }
585
586 INIT_LIST_HEAD(&object->object_list);
587 INIT_LIST_HEAD(&object->gray_list);
588 INIT_HLIST_HEAD(&object->area_list);
589 raw_spin_lock_init(&object->lock);
590 atomic_set(&object->use_count, 1);
591 object->flags = OBJECT_ALLOCATED;
592 object->pointer = ptr;
593 object->size = kfence_ksize((void *)ptr) ?: size;
594 object->excess_ref = 0;
595 object->min_count = min_count;
596 object->count = 0; /* white color initially */
597 object->jiffies = jiffies;
598 object->checksum = 0;
599
600 /* task information */
601 if (in_irq()) {
602 object->pid = 0;
603 strncpy(object->comm, "hardirq", sizeof(object->comm));
604 } else if (in_serving_softirq()) {
605 object->pid = 0;
606 strncpy(object->comm, "softirq", sizeof(object->comm));
607 } else {
608 object->pid = current->pid;
609 /*
610 * There is a small chance of a race with set_task_comm(),
611 * however using get_task_comm() here may cause locking
612 * dependency issues with current->alloc_lock. In the worst
613 * case, the command line is not correct.
614 */
615 strncpy(object->comm, current->comm, sizeof(object->comm));
616 }
617
618 /* kernel backtrace */
619 object->trace_len = __save_stack_trace(object->trace);
620
621 raw_spin_lock_irqsave(&kmemleak_lock, flags);
622
623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624 min_addr = min(min_addr, untagged_ptr);
625 max_addr = max(max_addr, untagged_ptr + size);
626 link = &object_tree_root.rb_node;
627 rb_parent = NULL;
628 while (*link) {
629 rb_parent = *link;
630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631 if (ptr + size <= parent->pointer)
632 link = &parent->rb_node.rb_left;
633 else if (parent->pointer + parent->size <= ptr)
634 link = &parent->rb_node.rb_right;
635 else {
636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637 ptr);
638 /*
639 * No need for parent->lock here since "parent" cannot
640 * be freed while the kmemleak_lock is held.
641 */
642 dump_object_info(parent);
643 kmem_cache_free(object_cache, object);
644 object = NULL;
645 goto out;
646 }
647 }
648 rb_link_node(&object->rb_node, rb_parent, link);
649 rb_insert_color(&object->rb_node, &object_tree_root);
650
651 list_add_tail_rcu(&object->object_list, &object_list);
652 out:
653 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
654 return object;
655 }
656
657 /*
658 * Mark the object as not allocated and schedule RCU freeing via put_object().
659 */
__delete_object(struct kmemleak_object * object)660 static void __delete_object(struct kmemleak_object *object)
661 {
662 unsigned long flags;
663
664 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
665 WARN_ON(atomic_read(&object->use_count) < 1);
666
667 /*
668 * Locking here also ensures that the corresponding memory block
669 * cannot be freed when it is being scanned.
670 */
671 raw_spin_lock_irqsave(&object->lock, flags);
672 object->flags &= ~OBJECT_ALLOCATED;
673 raw_spin_unlock_irqrestore(&object->lock, flags);
674 put_object(object);
675 }
676
677 /*
678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 * delete it.
680 */
delete_object_full(unsigned long ptr)681 static void delete_object_full(unsigned long ptr)
682 {
683 struct kmemleak_object *object;
684
685 object = find_and_remove_object(ptr, 0);
686 if (!object) {
687 #ifdef DEBUG
688 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689 ptr);
690 #endif
691 return;
692 }
693 __delete_object(object);
694 }
695
696 /*
697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698 * delete it. If the memory block is partially freed, the function may create
699 * additional metadata for the remaining parts of the block.
700 */
delete_object_part(unsigned long ptr,size_t size)701 static void delete_object_part(unsigned long ptr, size_t size)
702 {
703 struct kmemleak_object *object;
704 unsigned long start, end;
705
706 object = find_and_remove_object(ptr, 1);
707 if (!object) {
708 #ifdef DEBUG
709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710 ptr, size);
711 #endif
712 return;
713 }
714
715 /*
716 * Create one or two objects that may result from the memory block
717 * split. Note that partial freeing is only done by free_bootmem() and
718 * this happens before kmemleak_init() is called.
719 */
720 start = object->pointer;
721 end = object->pointer + object->size;
722 if (ptr > start)
723 create_object(start, ptr - start, object->min_count,
724 GFP_KERNEL);
725 if (ptr + size < end)
726 create_object(ptr + size, end - ptr - size, object->min_count,
727 GFP_KERNEL);
728
729 __delete_object(object);
730 }
731
__paint_it(struct kmemleak_object * object,int color)732 static void __paint_it(struct kmemleak_object *object, int color)
733 {
734 object->min_count = color;
735 if (color == KMEMLEAK_BLACK)
736 object->flags |= OBJECT_NO_SCAN;
737 }
738
paint_it(struct kmemleak_object * object,int color)739 static void paint_it(struct kmemleak_object *object, int color)
740 {
741 unsigned long flags;
742
743 raw_spin_lock_irqsave(&object->lock, flags);
744 __paint_it(object, color);
745 raw_spin_unlock_irqrestore(&object->lock, flags);
746 }
747
paint_ptr(unsigned long ptr,int color)748 static void paint_ptr(unsigned long ptr, int color)
749 {
750 struct kmemleak_object *object;
751
752 object = find_and_get_object(ptr, 0);
753 if (!object) {
754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 ptr,
756 (color == KMEMLEAK_GREY) ? "Grey" :
757 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758 return;
759 }
760 paint_it(object, color);
761 put_object(object);
762 }
763
764 /*
765 * Mark an object permanently as gray-colored so that it can no longer be
766 * reported as a leak. This is used in general to mark a false positive.
767 */
make_gray_object(unsigned long ptr)768 static void make_gray_object(unsigned long ptr)
769 {
770 paint_ptr(ptr, KMEMLEAK_GREY);
771 }
772
773 /*
774 * Mark the object as black-colored so that it is ignored from scans and
775 * reporting.
776 */
make_black_object(unsigned long ptr)777 static void make_black_object(unsigned long ptr)
778 {
779 paint_ptr(ptr, KMEMLEAK_BLACK);
780 }
781
782 /*
783 * Add a scanning area to the object. If at least one such area is added,
784 * kmemleak will only scan these ranges rather than the whole memory block.
785 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)786 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787 {
788 unsigned long flags;
789 struct kmemleak_object *object;
790 struct kmemleak_scan_area *area = NULL;
791 unsigned long untagged_ptr;
792 unsigned long untagged_objp;
793
794 object = find_and_get_object(ptr, 1);
795 if (!object) {
796 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
797 ptr);
798 return;
799 }
800
801 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
802 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
803
804 if (scan_area_cache)
805 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
806
807 raw_spin_lock_irqsave(&object->lock, flags);
808 if (!area) {
809 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
810 /* mark the object for full scan to avoid false positives */
811 object->flags |= OBJECT_FULL_SCAN;
812 goto out_unlock;
813 }
814 if (size == SIZE_MAX) {
815 size = untagged_objp + object->size - untagged_ptr;
816 } else if (untagged_ptr + size > untagged_objp + object->size) {
817 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
818 dump_object_info(object);
819 kmem_cache_free(scan_area_cache, area);
820 goto out_unlock;
821 }
822
823 INIT_HLIST_NODE(&area->node);
824 area->start = ptr;
825 area->size = size;
826
827 hlist_add_head(&area->node, &object->area_list);
828 out_unlock:
829 raw_spin_unlock_irqrestore(&object->lock, flags);
830 put_object(object);
831 }
832
833 /*
834 * Any surplus references (object already gray) to 'ptr' are passed to
835 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
836 * vm_struct may be used as an alternative reference to the vmalloc'ed object
837 * (see free_thread_stack()).
838 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)839 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
840 {
841 unsigned long flags;
842 struct kmemleak_object *object;
843
844 object = find_and_get_object(ptr, 0);
845 if (!object) {
846 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
847 ptr);
848 return;
849 }
850
851 raw_spin_lock_irqsave(&object->lock, flags);
852 object->excess_ref = excess_ref;
853 raw_spin_unlock_irqrestore(&object->lock, flags);
854 put_object(object);
855 }
856
857 /*
858 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
859 * pointer. Such object will not be scanned by kmemleak but references to it
860 * are searched.
861 */
object_no_scan(unsigned long ptr)862 static void object_no_scan(unsigned long ptr)
863 {
864 unsigned long flags;
865 struct kmemleak_object *object;
866
867 object = find_and_get_object(ptr, 0);
868 if (!object) {
869 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
870 return;
871 }
872
873 raw_spin_lock_irqsave(&object->lock, flags);
874 object->flags |= OBJECT_NO_SCAN;
875 raw_spin_unlock_irqrestore(&object->lock, flags);
876 put_object(object);
877 }
878
879 /**
880 * kmemleak_alloc - register a newly allocated object
881 * @ptr: pointer to beginning of the object
882 * @size: size of the object
883 * @min_count: minimum number of references to this object. If during memory
884 * scanning a number of references less than @min_count is found,
885 * the object is reported as a memory leak. If @min_count is 0,
886 * the object is never reported as a leak. If @min_count is -1,
887 * the object is ignored (not scanned and not reported as a leak)
888 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
889 *
890 * This function is called from the kernel allocators when a new object
891 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
892 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)893 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
894 gfp_t gfp)
895 {
896 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
897
898 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
899 create_object((unsigned long)ptr, size, min_count, gfp);
900 }
901 EXPORT_SYMBOL_GPL(kmemleak_alloc);
902
903 /**
904 * kmemleak_alloc_percpu - register a newly allocated __percpu object
905 * @ptr: __percpu pointer to beginning of the object
906 * @size: size of the object
907 * @gfp: flags used for kmemleak internal memory allocations
908 *
909 * This function is called from the kernel percpu allocator when a new object
910 * (memory block) is allocated (alloc_percpu).
911 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)912 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
913 gfp_t gfp)
914 {
915 unsigned int cpu;
916
917 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918
919 /*
920 * Percpu allocations are only scanned and not reported as leaks
921 * (min_count is set to 0).
922 */
923 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924 for_each_possible_cpu(cpu)
925 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926 size, 0, gfp);
927 }
928 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
929
930 /**
931 * kmemleak_vmalloc - register a newly vmalloc'ed object
932 * @area: pointer to vm_struct
933 * @size: size of the object
934 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
935 *
936 * This function is called from the vmalloc() kernel allocator when a new
937 * object (memory block) is allocated.
938 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)939 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
940 {
941 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
942
943 /*
944 * A min_count = 2 is needed because vm_struct contains a reference to
945 * the virtual address of the vmalloc'ed block.
946 */
947 if (kmemleak_enabled) {
948 create_object((unsigned long)area->addr, size, 2, gfp);
949 object_set_excess_ref((unsigned long)area,
950 (unsigned long)area->addr);
951 }
952 }
953 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
954
955 /**
956 * kmemleak_free - unregister a previously registered object
957 * @ptr: pointer to beginning of the object
958 *
959 * This function is called from the kernel allocators when an object (memory
960 * block) is freed (kmem_cache_free, kfree, vfree etc.).
961 */
kmemleak_free(const void * ptr)962 void __ref kmemleak_free(const void *ptr)
963 {
964 pr_debug("%s(0x%p)\n", __func__, ptr);
965
966 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
967 delete_object_full((unsigned long)ptr);
968 }
969 EXPORT_SYMBOL_GPL(kmemleak_free);
970
971 /**
972 * kmemleak_free_part - partially unregister a previously registered object
973 * @ptr: pointer to the beginning or inside the object. This also
974 * represents the start of the range to be freed
975 * @size: size to be unregistered
976 *
977 * This function is called when only a part of a memory block is freed
978 * (usually from the bootmem allocator).
979 */
kmemleak_free_part(const void * ptr,size_t size)980 void __ref kmemleak_free_part(const void *ptr, size_t size)
981 {
982 pr_debug("%s(0x%p)\n", __func__, ptr);
983
984 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985 delete_object_part((unsigned long)ptr, size);
986 }
987 EXPORT_SYMBOL_GPL(kmemleak_free_part);
988
989 /**
990 * kmemleak_free_percpu - unregister a previously registered __percpu object
991 * @ptr: __percpu pointer to beginning of the object
992 *
993 * This function is called from the kernel percpu allocator when an object
994 * (memory block) is freed (free_percpu).
995 */
kmemleak_free_percpu(const void __percpu * ptr)996 void __ref kmemleak_free_percpu(const void __percpu *ptr)
997 {
998 unsigned int cpu;
999
1000 pr_debug("%s(0x%p)\n", __func__, ptr);
1001
1002 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1003 for_each_possible_cpu(cpu)
1004 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1005 cpu));
1006 }
1007 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1008
1009 /**
1010 * kmemleak_update_trace - update object allocation stack trace
1011 * @ptr: pointer to beginning of the object
1012 *
1013 * Override the object allocation stack trace for cases where the actual
1014 * allocation place is not always useful.
1015 */
kmemleak_update_trace(const void * ptr)1016 void __ref kmemleak_update_trace(const void *ptr)
1017 {
1018 struct kmemleak_object *object;
1019 unsigned long flags;
1020
1021 pr_debug("%s(0x%p)\n", __func__, ptr);
1022
1023 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1024 return;
1025
1026 object = find_and_get_object((unsigned long)ptr, 1);
1027 if (!object) {
1028 #ifdef DEBUG
1029 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1030 ptr);
1031 #endif
1032 return;
1033 }
1034
1035 raw_spin_lock_irqsave(&object->lock, flags);
1036 object->trace_len = __save_stack_trace(object->trace);
1037 raw_spin_unlock_irqrestore(&object->lock, flags);
1038
1039 put_object(object);
1040 }
1041 EXPORT_SYMBOL(kmemleak_update_trace);
1042
1043 /**
1044 * kmemleak_not_leak - mark an allocated object as false positive
1045 * @ptr: pointer to beginning of the object
1046 *
1047 * Calling this function on an object will cause the memory block to no longer
1048 * be reported as leak and always be scanned.
1049 */
kmemleak_not_leak(const void * ptr)1050 void __ref kmemleak_not_leak(const void *ptr)
1051 {
1052 pr_debug("%s(0x%p)\n", __func__, ptr);
1053
1054 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1055 make_gray_object((unsigned long)ptr);
1056 }
1057 EXPORT_SYMBOL(kmemleak_not_leak);
1058
1059 /**
1060 * kmemleak_ignore - ignore an allocated object
1061 * @ptr: pointer to beginning of the object
1062 *
1063 * Calling this function on an object will cause the memory block to be
1064 * ignored (not scanned and not reported as a leak). This is usually done when
1065 * it is known that the corresponding block is not a leak and does not contain
1066 * any references to other allocated memory blocks.
1067 */
kmemleak_ignore(const void * ptr)1068 void __ref kmemleak_ignore(const void *ptr)
1069 {
1070 pr_debug("%s(0x%p)\n", __func__, ptr);
1071
1072 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1073 make_black_object((unsigned long)ptr);
1074 }
1075 EXPORT_SYMBOL(kmemleak_ignore);
1076
1077 /**
1078 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1079 * @ptr: pointer to beginning or inside the object. This also
1080 * represents the start of the scan area
1081 * @size: size of the scan area
1082 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1083 *
1084 * This function is used when it is known that only certain parts of an object
1085 * contain references to other objects. Kmemleak will only scan these areas
1086 * reducing the number false negatives.
1087 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1088 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1089 {
1090 pr_debug("%s(0x%p)\n", __func__, ptr);
1091
1092 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1093 add_scan_area((unsigned long)ptr, size, gfp);
1094 }
1095 EXPORT_SYMBOL(kmemleak_scan_area);
1096
1097 /**
1098 * kmemleak_no_scan - do not scan an allocated object
1099 * @ptr: pointer to beginning of the object
1100 *
1101 * This function notifies kmemleak not to scan the given memory block. Useful
1102 * in situations where it is known that the given object does not contain any
1103 * references to other objects. Kmemleak will not scan such objects reducing
1104 * the number of false negatives.
1105 */
kmemleak_no_scan(const void * ptr)1106 void __ref kmemleak_no_scan(const void *ptr)
1107 {
1108 pr_debug("%s(0x%p)\n", __func__, ptr);
1109
1110 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1111 object_no_scan((unsigned long)ptr);
1112 }
1113 EXPORT_SYMBOL(kmemleak_no_scan);
1114
1115 /**
1116 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1117 * address argument
1118 * @phys: physical address of the object
1119 * @size: size of the object
1120 * @min_count: minimum number of references to this object.
1121 * See kmemleak_alloc()
1122 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1123 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1124 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1125 gfp_t gfp)
1126 {
1127 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1128 kmemleak_alloc(__va(phys), size, min_count, gfp);
1129 }
1130 EXPORT_SYMBOL(kmemleak_alloc_phys);
1131
1132 /**
1133 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1134 * physical address argument
1135 * @phys: physical address if the beginning or inside an object. This
1136 * also represents the start of the range to be freed
1137 * @size: size to be unregistered
1138 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1139 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1140 {
1141 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1142 kmemleak_free_part(__va(phys), size);
1143 }
1144 EXPORT_SYMBOL(kmemleak_free_part_phys);
1145
1146 /**
1147 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1148 * address argument
1149 * @phys: physical address of the object
1150 */
kmemleak_not_leak_phys(phys_addr_t phys)1151 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1152 {
1153 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1154 kmemleak_not_leak(__va(phys));
1155 }
1156 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1157
1158 /**
1159 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1160 * address argument
1161 * @phys: physical address of the object
1162 */
kmemleak_ignore_phys(phys_addr_t phys)1163 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1164 {
1165 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1166 kmemleak_ignore(__va(phys));
1167 }
1168 EXPORT_SYMBOL(kmemleak_ignore_phys);
1169
1170 /*
1171 * Update an object's checksum and return true if it was modified.
1172 */
update_checksum(struct kmemleak_object * object)1173 static bool update_checksum(struct kmemleak_object *object)
1174 {
1175 u32 old_csum = object->checksum;
1176
1177 kasan_disable_current();
1178 kcsan_disable_current();
1179 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1180 kasan_enable_current();
1181 kcsan_enable_current();
1182
1183 return object->checksum != old_csum;
1184 }
1185
1186 /*
1187 * Update an object's references. object->lock must be held by the caller.
1188 */
update_refs(struct kmemleak_object * object)1189 static void update_refs(struct kmemleak_object *object)
1190 {
1191 if (!color_white(object)) {
1192 /* non-orphan, ignored or new */
1193 return;
1194 }
1195
1196 /*
1197 * Increase the object's reference count (number of pointers to the
1198 * memory block). If this count reaches the required minimum, the
1199 * object's color will become gray and it will be added to the
1200 * gray_list.
1201 */
1202 object->count++;
1203 if (color_gray(object)) {
1204 /* put_object() called when removing from gray_list */
1205 WARN_ON(!get_object(object));
1206 list_add_tail(&object->gray_list, &gray_list);
1207 }
1208 }
1209
1210 /*
1211 * Memory scanning is a long process and it needs to be interruptable. This
1212 * function checks whether such interrupt condition occurred.
1213 */
scan_should_stop(void)1214 static int scan_should_stop(void)
1215 {
1216 if (!kmemleak_enabled)
1217 return 1;
1218
1219 /*
1220 * This function may be called from either process or kthread context,
1221 * hence the need to check for both stop conditions.
1222 */
1223 if (current->mm)
1224 return signal_pending(current);
1225 else
1226 return kthread_should_stop();
1227
1228 return 0;
1229 }
1230
1231 /*
1232 * Scan a memory block (exclusive range) for valid pointers and add those
1233 * found to the gray list.
1234 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1235 static void scan_block(void *_start, void *_end,
1236 struct kmemleak_object *scanned)
1237 {
1238 unsigned long *ptr;
1239 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1240 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1241 unsigned long flags;
1242 unsigned long untagged_ptr;
1243
1244 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1245 for (ptr = start; ptr < end; ptr++) {
1246 struct kmemleak_object *object;
1247 unsigned long pointer;
1248 unsigned long excess_ref;
1249
1250 if (scan_should_stop())
1251 break;
1252
1253 kasan_disable_current();
1254 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1255 kasan_enable_current();
1256
1257 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1258 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1259 continue;
1260
1261 /*
1262 * No need for get_object() here since we hold kmemleak_lock.
1263 * object->use_count cannot be dropped to 0 while the object
1264 * is still present in object_tree_root and object_list
1265 * (with updates protected by kmemleak_lock).
1266 */
1267 object = lookup_object(pointer, 1);
1268 if (!object)
1269 continue;
1270 if (object == scanned)
1271 /* self referenced, ignore */
1272 continue;
1273
1274 /*
1275 * Avoid the lockdep recursive warning on object->lock being
1276 * previously acquired in scan_object(). These locks are
1277 * enclosed by scan_mutex.
1278 */
1279 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1280 /* only pass surplus references (object already gray) */
1281 if (color_gray(object)) {
1282 excess_ref = object->excess_ref;
1283 /* no need for update_refs() if object already gray */
1284 } else {
1285 excess_ref = 0;
1286 update_refs(object);
1287 }
1288 raw_spin_unlock(&object->lock);
1289
1290 if (excess_ref) {
1291 object = lookup_object(excess_ref, 0);
1292 if (!object)
1293 continue;
1294 if (object == scanned)
1295 /* circular reference, ignore */
1296 continue;
1297 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1298 update_refs(object);
1299 raw_spin_unlock(&object->lock);
1300 }
1301 }
1302 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1303 }
1304
1305 /*
1306 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1307 */
1308 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1309 static void scan_large_block(void *start, void *end)
1310 {
1311 void *next;
1312
1313 while (start < end) {
1314 next = min(start + MAX_SCAN_SIZE, end);
1315 scan_block(start, next, NULL);
1316 start = next;
1317 cond_resched();
1318 }
1319 }
1320 #endif
1321
1322 /*
1323 * Scan a memory block corresponding to a kmemleak_object. A condition is
1324 * that object->use_count >= 1.
1325 */
scan_object(struct kmemleak_object * object)1326 static void scan_object(struct kmemleak_object *object)
1327 {
1328 struct kmemleak_scan_area *area;
1329 unsigned long flags;
1330
1331 /*
1332 * Once the object->lock is acquired, the corresponding memory block
1333 * cannot be freed (the same lock is acquired in delete_object).
1334 */
1335 raw_spin_lock_irqsave(&object->lock, flags);
1336 if (object->flags & OBJECT_NO_SCAN)
1337 goto out;
1338 if (!(object->flags & OBJECT_ALLOCATED))
1339 /* already freed object */
1340 goto out;
1341 if (hlist_empty(&object->area_list) ||
1342 object->flags & OBJECT_FULL_SCAN) {
1343 void *start = (void *)object->pointer;
1344 void *end = (void *)(object->pointer + object->size);
1345 void *next;
1346
1347 do {
1348 next = min(start + MAX_SCAN_SIZE, end);
1349 scan_block(start, next, object);
1350
1351 start = next;
1352 if (start >= end)
1353 break;
1354
1355 raw_spin_unlock_irqrestore(&object->lock, flags);
1356 cond_resched();
1357 raw_spin_lock_irqsave(&object->lock, flags);
1358 } while (object->flags & OBJECT_ALLOCATED);
1359 } else
1360 hlist_for_each_entry(area, &object->area_list, node)
1361 scan_block((void *)area->start,
1362 (void *)(area->start + area->size),
1363 object);
1364 out:
1365 raw_spin_unlock_irqrestore(&object->lock, flags);
1366 }
1367
1368 /*
1369 * Scan the objects already referenced (gray objects). More objects will be
1370 * referenced and, if there are no memory leaks, all the objects are scanned.
1371 */
scan_gray_list(void)1372 static void scan_gray_list(void)
1373 {
1374 struct kmemleak_object *object, *tmp;
1375
1376 /*
1377 * The list traversal is safe for both tail additions and removals
1378 * from inside the loop. The kmemleak objects cannot be freed from
1379 * outside the loop because their use_count was incremented.
1380 */
1381 object = list_entry(gray_list.next, typeof(*object), gray_list);
1382 while (&object->gray_list != &gray_list) {
1383 cond_resched();
1384
1385 /* may add new objects to the list */
1386 if (!scan_should_stop())
1387 scan_object(object);
1388
1389 tmp = list_entry(object->gray_list.next, typeof(*object),
1390 gray_list);
1391
1392 /* remove the object from the list and release it */
1393 list_del(&object->gray_list);
1394 put_object(object);
1395
1396 object = tmp;
1397 }
1398 WARN_ON(!list_empty(&gray_list));
1399 }
1400
1401 /*
1402 * Scan data sections and all the referenced memory blocks allocated via the
1403 * kernel's standard allocators. This function must be called with the
1404 * scan_mutex held.
1405 */
kmemleak_scan(void)1406 static void kmemleak_scan(void)
1407 {
1408 unsigned long flags;
1409 struct kmemleak_object *object;
1410 struct zone *zone;
1411 int __maybe_unused i;
1412 int new_leaks = 0;
1413
1414 jiffies_last_scan = jiffies;
1415
1416 /* prepare the kmemleak_object's */
1417 rcu_read_lock();
1418 list_for_each_entry_rcu(object, &object_list, object_list) {
1419 raw_spin_lock_irqsave(&object->lock, flags);
1420 #ifdef DEBUG
1421 /*
1422 * With a few exceptions there should be a maximum of
1423 * 1 reference to any object at this point.
1424 */
1425 if (atomic_read(&object->use_count) > 1) {
1426 pr_debug("object->use_count = %d\n",
1427 atomic_read(&object->use_count));
1428 dump_object_info(object);
1429 }
1430 #endif
1431 /* reset the reference count (whiten the object) */
1432 object->count = 0;
1433 if (color_gray(object) && get_object(object))
1434 list_add_tail(&object->gray_list, &gray_list);
1435
1436 raw_spin_unlock_irqrestore(&object->lock, flags);
1437 }
1438 rcu_read_unlock();
1439
1440 #ifdef CONFIG_SMP
1441 /* per-cpu sections scanning */
1442 for_each_possible_cpu(i)
1443 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1444 __per_cpu_end + per_cpu_offset(i));
1445 #endif
1446
1447 /*
1448 * Struct page scanning for each node.
1449 */
1450 get_online_mems();
1451 for_each_populated_zone(zone) {
1452 unsigned long start_pfn = zone->zone_start_pfn;
1453 unsigned long end_pfn = zone_end_pfn(zone);
1454 unsigned long pfn;
1455
1456 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1457 struct page *page = pfn_to_online_page(pfn);
1458
1459 if (!page)
1460 continue;
1461
1462 /* only scan pages belonging to this zone */
1463 if (page_zone(page) != zone)
1464 continue;
1465 /* only scan if page is in use */
1466 if (page_count(page) == 0)
1467 continue;
1468 scan_block(page, page + 1, NULL);
1469 if (!(pfn & 63))
1470 cond_resched();
1471 }
1472 }
1473 put_online_mems();
1474
1475 /*
1476 * Scanning the task stacks (may introduce false negatives).
1477 */
1478 if (kmemleak_stack_scan) {
1479 struct task_struct *p, *g;
1480
1481 rcu_read_lock();
1482 for_each_process_thread(g, p) {
1483 void *stack = try_get_task_stack(p);
1484 if (stack) {
1485 scan_block(stack, stack + THREAD_SIZE, NULL);
1486 put_task_stack(p);
1487 }
1488 }
1489 rcu_read_unlock();
1490 }
1491
1492 /*
1493 * Scan the objects already referenced from the sections scanned
1494 * above.
1495 */
1496 scan_gray_list();
1497
1498 /*
1499 * Check for new or unreferenced objects modified since the previous
1500 * scan and color them gray until the next scan.
1501 */
1502 rcu_read_lock();
1503 list_for_each_entry_rcu(object, &object_list, object_list) {
1504 raw_spin_lock_irqsave(&object->lock, flags);
1505 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1506 && update_checksum(object) && get_object(object)) {
1507 /* color it gray temporarily */
1508 object->count = object->min_count;
1509 list_add_tail(&object->gray_list, &gray_list);
1510 }
1511 raw_spin_unlock_irqrestore(&object->lock, flags);
1512 }
1513 rcu_read_unlock();
1514
1515 /*
1516 * Re-scan the gray list for modified unreferenced objects.
1517 */
1518 scan_gray_list();
1519
1520 /*
1521 * If scanning was stopped do not report any new unreferenced objects.
1522 */
1523 if (scan_should_stop())
1524 return;
1525
1526 /*
1527 * Scanning result reporting.
1528 */
1529 rcu_read_lock();
1530 list_for_each_entry_rcu(object, &object_list, object_list) {
1531 raw_spin_lock_irqsave(&object->lock, flags);
1532 if (unreferenced_object(object) &&
1533 !(object->flags & OBJECT_REPORTED)) {
1534 object->flags |= OBJECT_REPORTED;
1535
1536 if (kmemleak_verbose)
1537 print_unreferenced(NULL, object);
1538
1539 new_leaks++;
1540 }
1541 raw_spin_unlock_irqrestore(&object->lock, flags);
1542 }
1543 rcu_read_unlock();
1544
1545 if (new_leaks) {
1546 kmemleak_found_leaks = true;
1547
1548 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1549 new_leaks);
1550 }
1551
1552 }
1553
1554 /*
1555 * Thread function performing automatic memory scanning. Unreferenced objects
1556 * at the end of a memory scan are reported but only the first time.
1557 */
kmemleak_scan_thread(void * arg)1558 static int kmemleak_scan_thread(void *arg)
1559 {
1560 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1561
1562 pr_info("Automatic memory scanning thread started\n");
1563 set_user_nice(current, 10);
1564
1565 /*
1566 * Wait before the first scan to allow the system to fully initialize.
1567 */
1568 if (first_run) {
1569 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1570 first_run = 0;
1571 while (timeout && !kthread_should_stop())
1572 timeout = schedule_timeout_interruptible(timeout);
1573 }
1574
1575 while (!kthread_should_stop()) {
1576 signed long timeout = jiffies_scan_wait;
1577
1578 mutex_lock(&scan_mutex);
1579 kmemleak_scan();
1580 mutex_unlock(&scan_mutex);
1581
1582 /* wait before the next scan */
1583 while (timeout && !kthread_should_stop())
1584 timeout = schedule_timeout_interruptible(timeout);
1585 }
1586
1587 pr_info("Automatic memory scanning thread ended\n");
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Start the automatic memory scanning thread. This function must be called
1594 * with the scan_mutex held.
1595 */
start_scan_thread(void)1596 static void start_scan_thread(void)
1597 {
1598 if (scan_thread)
1599 return;
1600 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1601 if (IS_ERR(scan_thread)) {
1602 pr_warn("Failed to create the scan thread\n");
1603 scan_thread = NULL;
1604 }
1605 }
1606
1607 /*
1608 * Stop the automatic memory scanning thread.
1609 */
stop_scan_thread(void)1610 static void stop_scan_thread(void)
1611 {
1612 if (scan_thread) {
1613 kthread_stop(scan_thread);
1614 scan_thread = NULL;
1615 }
1616 }
1617
1618 /*
1619 * Iterate over the object_list and return the first valid object at or after
1620 * the required position with its use_count incremented. The function triggers
1621 * a memory scanning when the pos argument points to the first position.
1622 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1623 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1624 {
1625 struct kmemleak_object *object;
1626 loff_t n = *pos;
1627 int err;
1628
1629 err = mutex_lock_interruptible(&scan_mutex);
1630 if (err < 0)
1631 return ERR_PTR(err);
1632
1633 rcu_read_lock();
1634 list_for_each_entry_rcu(object, &object_list, object_list) {
1635 if (n-- > 0)
1636 continue;
1637 if (get_object(object))
1638 goto out;
1639 }
1640 object = NULL;
1641 out:
1642 return object;
1643 }
1644
1645 /*
1646 * Return the next object in the object_list. The function decrements the
1647 * use_count of the previous object and increases that of the next one.
1648 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1649 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1650 {
1651 struct kmemleak_object *prev_obj = v;
1652 struct kmemleak_object *next_obj = NULL;
1653 struct kmemleak_object *obj = prev_obj;
1654
1655 ++(*pos);
1656
1657 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1658 if (get_object(obj)) {
1659 next_obj = obj;
1660 break;
1661 }
1662 }
1663
1664 put_object(prev_obj);
1665 return next_obj;
1666 }
1667
1668 /*
1669 * Decrement the use_count of the last object required, if any.
1670 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1671 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1672 {
1673 if (!IS_ERR(v)) {
1674 /*
1675 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1676 * waiting was interrupted, so only release it if !IS_ERR.
1677 */
1678 rcu_read_unlock();
1679 mutex_unlock(&scan_mutex);
1680 if (v)
1681 put_object(v);
1682 }
1683 }
1684
1685 /*
1686 * Print the information for an unreferenced object to the seq file.
1687 */
kmemleak_seq_show(struct seq_file * seq,void * v)1688 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1689 {
1690 struct kmemleak_object *object = v;
1691 unsigned long flags;
1692
1693 raw_spin_lock_irqsave(&object->lock, flags);
1694 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1695 print_unreferenced(seq, object);
1696 raw_spin_unlock_irqrestore(&object->lock, flags);
1697 return 0;
1698 }
1699
1700 static const struct seq_operations kmemleak_seq_ops = {
1701 .start = kmemleak_seq_start,
1702 .next = kmemleak_seq_next,
1703 .stop = kmemleak_seq_stop,
1704 .show = kmemleak_seq_show,
1705 };
1706
kmemleak_open(struct inode * inode,struct file * file)1707 static int kmemleak_open(struct inode *inode, struct file *file)
1708 {
1709 return seq_open(file, &kmemleak_seq_ops);
1710 }
1711
dump_str_object_info(const char * str)1712 static int dump_str_object_info(const char *str)
1713 {
1714 unsigned long flags;
1715 struct kmemleak_object *object;
1716 unsigned long addr;
1717
1718 if (kstrtoul(str, 0, &addr))
1719 return -EINVAL;
1720 object = find_and_get_object(addr, 0);
1721 if (!object) {
1722 pr_info("Unknown object at 0x%08lx\n", addr);
1723 return -EINVAL;
1724 }
1725
1726 raw_spin_lock_irqsave(&object->lock, flags);
1727 dump_object_info(object);
1728 raw_spin_unlock_irqrestore(&object->lock, flags);
1729
1730 put_object(object);
1731 return 0;
1732 }
1733
1734 /*
1735 * We use grey instead of black to ensure we can do future scans on the same
1736 * objects. If we did not do future scans these black objects could
1737 * potentially contain references to newly allocated objects in the future and
1738 * we'd end up with false positives.
1739 */
kmemleak_clear(void)1740 static void kmemleak_clear(void)
1741 {
1742 struct kmemleak_object *object;
1743 unsigned long flags;
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(object, &object_list, object_list) {
1747 raw_spin_lock_irqsave(&object->lock, flags);
1748 if ((object->flags & OBJECT_REPORTED) &&
1749 unreferenced_object(object))
1750 __paint_it(object, KMEMLEAK_GREY);
1751 raw_spin_unlock_irqrestore(&object->lock, flags);
1752 }
1753 rcu_read_unlock();
1754
1755 kmemleak_found_leaks = false;
1756 }
1757
1758 static void __kmemleak_do_cleanup(void);
1759
1760 /*
1761 * File write operation to configure kmemleak at run-time. The following
1762 * commands can be written to the /sys/kernel/debug/kmemleak file:
1763 * off - disable kmemleak (irreversible)
1764 * stack=on - enable the task stacks scanning
1765 * stack=off - disable the tasks stacks scanning
1766 * scan=on - start the automatic memory scanning thread
1767 * scan=off - stop the automatic memory scanning thread
1768 * scan=... - set the automatic memory scanning period in seconds (0 to
1769 * disable it)
1770 * scan - trigger a memory scan
1771 * clear - mark all current reported unreferenced kmemleak objects as
1772 * grey to ignore printing them, or free all kmemleak objects
1773 * if kmemleak has been disabled.
1774 * dump=... - dump information about the object found at the given address
1775 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1776 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1777 size_t size, loff_t *ppos)
1778 {
1779 char buf[64];
1780 int buf_size;
1781 int ret;
1782
1783 buf_size = min(size, (sizeof(buf) - 1));
1784 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1785 return -EFAULT;
1786 buf[buf_size] = 0;
1787
1788 ret = mutex_lock_interruptible(&scan_mutex);
1789 if (ret < 0)
1790 return ret;
1791
1792 if (strncmp(buf, "clear", 5) == 0) {
1793 if (kmemleak_enabled)
1794 kmemleak_clear();
1795 else
1796 __kmemleak_do_cleanup();
1797 goto out;
1798 }
1799
1800 if (!kmemleak_enabled) {
1801 ret = -EPERM;
1802 goto out;
1803 }
1804
1805 if (strncmp(buf, "off", 3) == 0)
1806 kmemleak_disable();
1807 else if (strncmp(buf, "stack=on", 8) == 0)
1808 kmemleak_stack_scan = 1;
1809 else if (strncmp(buf, "stack=off", 9) == 0)
1810 kmemleak_stack_scan = 0;
1811 else if (strncmp(buf, "scan=on", 7) == 0)
1812 start_scan_thread();
1813 else if (strncmp(buf, "scan=off", 8) == 0)
1814 stop_scan_thread();
1815 else if (strncmp(buf, "scan=", 5) == 0) {
1816 unsigned long secs;
1817
1818 ret = kstrtoul(buf + 5, 0, &secs);
1819 if (ret < 0)
1820 goto out;
1821 stop_scan_thread();
1822 if (secs) {
1823 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1824 start_scan_thread();
1825 }
1826 } else if (strncmp(buf, "scan", 4) == 0)
1827 kmemleak_scan();
1828 else if (strncmp(buf, "dump=", 5) == 0)
1829 ret = dump_str_object_info(buf + 5);
1830 else
1831 ret = -EINVAL;
1832
1833 out:
1834 mutex_unlock(&scan_mutex);
1835 if (ret < 0)
1836 return ret;
1837
1838 /* ignore the rest of the buffer, only one command at a time */
1839 *ppos += size;
1840 return size;
1841 }
1842
1843 static const struct file_operations kmemleak_fops = {
1844 .owner = THIS_MODULE,
1845 .open = kmemleak_open,
1846 .read = seq_read,
1847 .write = kmemleak_write,
1848 .llseek = seq_lseek,
1849 .release = seq_release,
1850 };
1851
__kmemleak_do_cleanup(void)1852 static void __kmemleak_do_cleanup(void)
1853 {
1854 struct kmemleak_object *object, *tmp;
1855
1856 /*
1857 * Kmemleak has already been disabled, no need for RCU list traversal
1858 * or kmemleak_lock held.
1859 */
1860 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1861 __remove_object(object);
1862 __delete_object(object);
1863 }
1864 }
1865
1866 /*
1867 * Stop the memory scanning thread and free the kmemleak internal objects if
1868 * no previous scan thread (otherwise, kmemleak may still have some useful
1869 * information on memory leaks).
1870 */
kmemleak_do_cleanup(struct work_struct * work)1871 static void kmemleak_do_cleanup(struct work_struct *work)
1872 {
1873 stop_scan_thread();
1874
1875 mutex_lock(&scan_mutex);
1876 /*
1877 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1878 * longer track object freeing. Ordering of the scan thread stopping and
1879 * the memory accesses below is guaranteed by the kthread_stop()
1880 * function.
1881 */
1882 kmemleak_free_enabled = 0;
1883 mutex_unlock(&scan_mutex);
1884
1885 if (!kmemleak_found_leaks)
1886 __kmemleak_do_cleanup();
1887 else
1888 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1889 }
1890
1891 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1892
1893 /*
1894 * Disable kmemleak. No memory allocation/freeing will be traced once this
1895 * function is called. Disabling kmemleak is an irreversible operation.
1896 */
kmemleak_disable(void)1897 static void kmemleak_disable(void)
1898 {
1899 /* atomically check whether it was already invoked */
1900 if (cmpxchg(&kmemleak_error, 0, 1))
1901 return;
1902
1903 /* stop any memory operation tracing */
1904 kmemleak_enabled = 0;
1905
1906 /* check whether it is too early for a kernel thread */
1907 if (kmemleak_initialized)
1908 schedule_work(&cleanup_work);
1909 else
1910 kmemleak_free_enabled = 0;
1911
1912 pr_info("Kernel memory leak detector disabled\n");
1913 }
1914
1915 /*
1916 * Allow boot-time kmemleak disabling (enabled by default).
1917 */
kmemleak_boot_config(char * str)1918 static int __init kmemleak_boot_config(char *str)
1919 {
1920 if (!str)
1921 return -EINVAL;
1922 if (strcmp(str, "off") == 0)
1923 kmemleak_disable();
1924 else if (strcmp(str, "on") == 0)
1925 kmemleak_skip_disable = 1;
1926 else
1927 return -EINVAL;
1928 return 0;
1929 }
1930 early_param("kmemleak", kmemleak_boot_config);
1931
1932 /*
1933 * Kmemleak initialization.
1934 */
kmemleak_init(void)1935 void __init kmemleak_init(void)
1936 {
1937 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1938 if (!kmemleak_skip_disable) {
1939 kmemleak_disable();
1940 return;
1941 }
1942 #endif
1943
1944 if (kmemleak_error)
1945 return;
1946
1947 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1948 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1949
1950 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1951 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1952
1953 /* register the data/bss sections */
1954 create_object((unsigned long)_sdata, _edata - _sdata,
1955 KMEMLEAK_GREY, GFP_ATOMIC);
1956 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1957 KMEMLEAK_GREY, GFP_ATOMIC);
1958 /* only register .data..ro_after_init if not within .data */
1959 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1960 create_object((unsigned long)__start_ro_after_init,
1961 __end_ro_after_init - __start_ro_after_init,
1962 KMEMLEAK_GREY, GFP_ATOMIC);
1963 }
1964
1965 /*
1966 * Late initialization function.
1967 */
kmemleak_late_init(void)1968 static int __init kmemleak_late_init(void)
1969 {
1970 kmemleak_initialized = 1;
1971
1972 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1973
1974 if (kmemleak_error) {
1975 /*
1976 * Some error occurred and kmemleak was disabled. There is a
1977 * small chance that kmemleak_disable() was called immediately
1978 * after setting kmemleak_initialized and we may end up with
1979 * two clean-up threads but serialized by scan_mutex.
1980 */
1981 schedule_work(&cleanup_work);
1982 return -ENOMEM;
1983 }
1984
1985 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1986 mutex_lock(&scan_mutex);
1987 start_scan_thread();
1988 mutex_unlock(&scan_mutex);
1989 }
1990
1991 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1992 mem_pool_free_count);
1993
1994 return 0;
1995 }
1996 late_initcall(kmemleak_late_init);
1997